

Barangaroo Lend Lease (Millers Point) Pty Ltd 23 November 2012 Document No. 60153531-5.7-RPCP-0001 C

# Tree Root Mass Investigation

Hickson Road, Millers Point, NSW



# Tree Root Mass Investigation

Hickson Road, Millers Point, NSW

### Prepared for

Lend Lease (Millers Point) Pty Ltd

### Prepared by

### **AECOM Australia Pty Ltd**

Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 2 8934 0000 F +61 2 8934 0001 www.aecom.com

ABN 20 093 846 925

23 November 2012

60153531

AECOM in Australia and New Zealand is certified to the latest version of ISO9001 and ISO14001.

### © AECOM

- \* AECOM Australia Pty Ltd (AECOM) has prepared this document for the purpose which is described in the Scope of Works section, and was based on information provided by the client, AECOM's understanding of the site conditions, and AECOM's experience, having regard to the assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles.
- \* This document was prepared for the sole use of the party identified on the cover sheet, and that party is the only intended beneficiary of AECOM's work.
- No other party should rely on the document without the prior written consent of AECOM, and AECOM undertakes no duty to, nor accepts any responsibility to, any third party who may rely upon this document.
- \* All rights reserved. No section or element of this document may be removed from this document, extracted, reproduced, electronically stored or transmitted in any form without the prior written permission of AECOM.

This document was prepared by AECOM Australia Pty Ltd (AECOM) for the sole use of Lend Lease (Millers Point) Pty Ltd, the only intended beneficiary of our work. Any advice, opinions or recommendations contained in this document should be read and relied upon only in the context of the document as a whole and are considered current to the date of this document. Any other party should satisfy themselves that the scope of work conducted and reported herein meets their specific needs before relying on this document. AECOM cannot be held liable for any third party reliance on this document, as AECOM is not aware of the specific needs of the third party. No other party should rely on the document without the prior written consent of AECOM, and AECOM undertakes no duty to, nor accepts any responsibility to, any third party who may rely upon this document.

This document was prepared for the specific purpose described in our proposal and as agreed to by Lend Lease (Millers Point) Pty Ltd. From a technical perspective, the subsurface environment at any site may present substantial uncertainty. It is a heterogeneous, complex environment, in which small subsurface features or changes in geologic conditions can have substantial impacts on water and chemical movement. Uncertainties may also affect source characterisation assessment of chemical fate and transport in the environment, assessment of exposure risks and health effects, and remedial action performance.

AECOM's professional opinions are based upon its professional judgement, experience, and training. These opinions are also based upon data derived from the testing and analysis described in this document. It is possible that additional testing and analysis might produce different results and/or different opinions. AECOM has limited its investigation to the scope agreed upon with its client. AECOM believes that its opinions are reasonably supported by the testing and analysis that have been done, and that those opinions have been developed according to the professional standard of care for the environmental consulting profession in this area at the date of this document. That standard of care may change and new methods and practices of exploration, testing, analysis and remediation may develop in the future, which might produce different results.

AECOM's professional opinions contained in this document are subject to modification if additional information is obtained, through further investigation, observations, or validation testing and analysis during remedial activities.

# **Quality Information**

Document Tree Root Mass Investigation

Ref 60153531

Date 23 November 2012

Prepared by Kate McGrath

Kate Pigram

Anthony Davis

Reviewed by Brad Eismen

### Revision History

| Revision   | Revision<br>Date | Details | Authorised                          |           |  |
|------------|------------------|---------|-------------------------------------|-----------|--|
| T (OVIDIO) |                  | Bottano | Name/Position                       | Signature |  |
| А          | 06-Jun-2011      | Draft   | Michael Jones<br>Associate Director |           |  |
| В          | 22-Jun-2011      | Draft   | Michael Jones<br>Associate Director |           |  |
| С          | 23-Nov-2012      | Final   | Michael Jones<br>Associate Director |           |  |

# **Table of Contents**

|      | ry of Terms                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .i         |
|------|-----------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|      | ive Summa                               | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iii        |
| 1.0  | Introdu                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |
|      | 1.1                                     | Backgro        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |
|      | 1.2                                     |                | e and Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          |
|      | 1.3                                     | Scope o        | f Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1          |
| 2.0  |                                         | entification   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3          |
| 3.0  |                                         | ıs Investigat  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4          |
| 4.0  |                                         |                | Surrounding Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5          |
|      | 4.1                                     |                | Land Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5          |
|      | 4.2                                     | Propose        | ed Land Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5          |
|      | 4.3                                     | Surroun        | ding Land Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5          |
|      | 4.4                                     | Topogra        | aphy and Drainage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5          |
|      | 4.5                                     | Geology        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5          |
|      | 4.6                                     | Hydroge        | eology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6          |
|      | 4.7                                     | Potentia       | ally Sensitive Receptors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6          |
| 5.0  | Potentia                                | ally Contam    | ninating Activities and Contaminants of Concern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8          |
|      | 5.1                                     |                | Identified Contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8          |
|      | 5.2                                     | Chemica        | als Potentially used for S-ISCO <sup>®</sup> Remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8          |
| 6.0  | Investig                                | ation Metho    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9          |
|      | 6.1                                     | Soil Field     | d Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9          |
|      |                                         | 6.1.1          | Services Location and Clearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9          |
|      |                                         | 6.1.2          | Intrusive Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9          |
|      |                                         | 6.1.3          | Soil Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9          |
|      |                                         | 6.1.4          | Soil Sample Labelling, Preservation, Storage and Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9          |
|      |                                         | 6.1.5          | Soil Sampling Equipment Decontamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10         |
|      |                                         | 6.1.6          | Field Screening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10         |
|      |                                         | 6.1.7          | Field Logging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10         |
|      |                                         | 6.1.8          | Survey of Boreholes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10         |
|      | 6.2                                     | Tree Ro        | oot Inspection Test Pits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10         |
|      | 6.3                                     |                | xicity Desktop Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10         |
| 7.0  | Quality                                 | -              | and Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11         |
|      | 7.1                                     |                | uality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11         |
|      | 7.2                                     |                | ory Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11         |
|      | 7.3                                     | Data Us        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12         |
| 8.0  | Basis fo                                |                | ssment Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13         |
|      | 8.1                                     | Site Spe       | ecific Soil Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13         |
|      |                                         | 8.1.1          | Site Specific Target Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13         |
|      |                                         | 8.1.2          | Risks to the Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13         |
|      | 8.2                                     | _              | Soil Assessment Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14         |
| 9.0  | Results                                 | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15         |
|      | 9.1                                     |                | oservations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15         |
|      | • • • • • • • • • • • • • • • • • • • • | 9.1.1          | Boreholes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15         |
|      |                                         | 9.1.2          | Test Pits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16         |
|      | 9.2                                     |                | alytical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16         |
| 10.0 |                                         |                | s - Phytotoxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17         |
| 11.0 |                                         | aracterisation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19         |
|      | 11.1                                    |                | erials and Natural Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19         |
|      | 11.2                                    |                | eological Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19         |
|      | 11.3                                    |                | tual Site Model Update                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19         |
| 12.0 |                                         |                | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20         |
| 13.0 | Refere                                  |                | a source and the second | 21         |
|      |                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>~</b> 1 |

| Appendix A               |   |
|--------------------------|---|
| Figures                  | Α |
| Appendix B               |   |
| Tables                   | В |
| Appendix C               |   |
| Ownership Plans          | С |
| Appendix D               |   |
| Borelogs                 | D |
| Appendix E               |   |
| Calibration Certificates | Ε |
| Appendix F               |   |
| Site Photographs         | F |
| Appendix G               |   |
| Laboratory Reports       | G |
| Appendix H               |   |
| Calculations             | Н |

# Glossary of Terms

| Term         | Description                                                     |
|--------------|-----------------------------------------------------------------|
| AHD          | Australian Height Datum                                         |
| ALS          | ALS Environmental                                               |
| ANZECC       | Australian and New Zealand Environment and Conservation Council |
| AS           | Australian Standard                                             |
| As           | Arsenic                                                         |
| BaP          | Benzo-α-pyrene                                                  |
| BDA          | Barangaroo Delivery Authority                                   |
| ВН           | Borehole Location                                               |
| BTEX         | Benzene, Toluene, Ethyl benzene and Xylene                      |
| Cd           | Cadmium                                                         |
| Cr           | Chromium                                                        |
| CoPC         | Chemicals of Potential Concern                                  |
| СРАН         | Carcinogenic Polycyclic Aromatic Hydrocarbons                   |
| Cr 6+/ Cr VI | Hexavalent Chromium                                             |
| Cu           | Copper                                                          |
| DEC          | Department of Environment and Conservation NSW (superseded)     |
| DECC         | Department of Environment and Climate Change NSW (superseded)   |
| DECCW        | Department of Environment, Climate Change and Water NSW         |
| DGI          | Data Gap Investigation                                          |
| DP           | Deposited Plan                                                  |
| DQO          | Data Quality Objectives                                         |
| DQI          | Data Quality Indicators                                         |
| EC           | Electrical Conductivity                                         |
| EIL          | Ecological Investigation Level                                  |
| EMP          | Environment Management Plan                                     |
| EPA          | Environmental Protection Authority                              |
| ESA          | Environmental Site Assessment                                   |
| GPS          | Global Positioning System                                       |
| Hg           | Mercury                                                         |
| HHERA        | Human Health and Ecological Risk Assessment                     |
| ICP-MS       | Inductively Coupled Plasma Mass Spectrometry                    |
| m bgs        | Metres below ground surface                                     |
| m bTOC       | Metres below top of casing                                      |
| MW           | Monitoring Well Location                                        |
| LOR          | Limit of Reporting                                              |

ii

| NATA             | National Association of Testing Authorities                                  |     |                   |  |  |
|------------------|------------------------------------------------------------------------------|-----|-------------------|--|--|
| NEPC             | National Environment Protection Council                                      |     |                   |  |  |
| NEPM             | National Environmental Protection (Assessment of Site Contamination) Measure |     |                   |  |  |
| Ni               | Nickel                                                                       |     | <u> </u>          |  |  |
| NHMRC            | National Health and Medical Research Council                                 |     |                   |  |  |
| OHS/OH&S         | Occupational Health and Safety                                               |     |                   |  |  |
| PAH              | Polycyclic Aromatic Hydrocarbons                                             |     |                   |  |  |
| PDA              | Project Development Agreement                                                |     |                   |  |  |
| Pb               | Lead                                                                         |     |                   |  |  |
| PSI              | Preliminary Site Assessment                                                  |     |                   |  |  |
| QA/QC            | Quality Assurance/Quality Control                                            |     |                   |  |  |
| RAP              | Remedial Action Plan                                                         |     |                   |  |  |
| RWP              | Remediation Work Plan                                                        |     |                   |  |  |
| SAQP             | Sampling Analysis and Quality Plan                                           |     |                   |  |  |
| SAC              | Soil Acceptance Criteria                                                     |     |                   |  |  |
| SEPR™            | Surfactant Enhanced Product Recovery                                         |     |                   |  |  |
| SIL              | Soil Investigation Level                                                     |     |                   |  |  |
| S-ISCO®          | Surfactant Enhanced In situ Chemical Oxidation                               |     |                   |  |  |
| SROH             | Significant Risk of Harm                                                     |     |                   |  |  |
| SSESC            | Site-specific Ecological Screening Criteria                                  |     |                   |  |  |
| SSTC             | Site Specific Target Criteria                                                |     |                   |  |  |
| SWL              | Standing Water Level                                                         |     |                   |  |  |
| SVOC             | Semi Volatile Organic Compound                                               |     |                   |  |  |
| TPH              | Total Petroleum Hydrocarbons                                                 |     |                   |  |  |
| VMP              | Voluntary Management Proposal                                                |     |                   |  |  |
| VOC              | Volatile Organic Compound                                                    |     |                   |  |  |
| USEPA            | United States Environmental Protection Agency                                |     |                   |  |  |
| Zn               | Zinc                                                                         |     |                   |  |  |
| Units of Measure | ement                                                                        | ı   |                   |  |  |
| °C               | degrees Celsius                                                              | m   | Metres            |  |  |
| cm               | centimetre                                                                   | mS  | milli-Siemens     |  |  |
| ha               | hectare                                                                      | mV  | Millivolts        |  |  |
| kg               | kilogram                                                                     | ppm | parts per million |  |  |
| km               | kilometre                                                                    | μg  | Microgram         |  |  |
| %                | percent                                                                      |     |                   |  |  |

## **Executive Summary**

AECOM Australia Pty Ltd (AECOM) was engaged by Lend Lease (Millers Point) Pty Ltd (Lend Lease) to investigate potential contamination associated within selected tree roots located within the area of EPA Remediation Site declaration 21122, in Hickson Road, Millers Point, NSW (the Site).

The purpose of the investigation was to assess soil contamination conditions and potential for remediation requirements related to the protection of human health in the root mass zone.

The main components of the scope of work undertaken included the following:

- Drilling of nine boreholes (designated TBH01 to TBH09) within the root mass of selected trees using a small track mounted drill rig to a maximum of 2 m below ground surface (bgs);
- Laboratory analysis of sixteen soil and fill samples plus quality assurance and quality control samples for the heavy metals, total petroleum hydrocarbons, BTEX and PAHs;
- Excavation of three inspection pits within the tree root mass to a maximum depth of 0.5 m bgs, using nondestructive vacuum excavation techniques; and
- Desktop investigation of potential phytotoxic effects associated with the use of S-ISCO<sup>®</sup> chemicals (Sodium persulphate, Peroxide, Fe-TAML<sup>®</sup> and VeruSOL<sup>®</sup>).

Based on the results of this investigation AECOM makes the following conclusions regarding the assessment of contamination within the tree root mass zones:

- Tar Containing Material (TCM) was not identified in any of the boreholes completed within the root mass zone of the investigated trees.
- Based on the shallow test pit excavations and boreholes completed, observed tree roots appear largely laterally confined to the footpath side of the kerb line (i.e. to the east of the kerb on the eastern side and to the west of the kerb on the western side of Hickson Road) and generally do not appear to extend further into Hickson Road.
- With respect to addressing the Remediation Site declaration, the material assessed within the root mass zone of the trees investigated is considered suitable, from a human health risk perspective, to remain *in-situ* or for re-use within Hickson Road, based on the comparison of the individual concentrations and the 95% UCL concentrations to the SSTCs.
- Based on the reported results, remediation of the tree root mass is not required. Accordingly, future S-ISCO® injections in this area are not required.
- As the S-ISCO<sup>®</sup> chemicals are injected into the groundwater table, which based on visual observations is generally 1 to 1.5 m below the bulk of the observed tree root mass, it is not anticipated that the tree root mass will be significantly exposed to S-ISCO chemicals, reducing the likelihood of any adverse effects on the health of the trees.

1

### 1.0 Introduction

### 1.1 Background

AECOM Australia Pty Ltd (AECOM) was engaged by Lend Lease (Millers Point) Pty Ltd (Lend Lease) to investigate potential contamination associated within selected tree roots located within the area of EPA Remediation Site declaration 21122, in Hickson Road, Millers Point, NSW (the Site). The Site location is shown on Figure F1 and the Site Layout is shown on Figure F2a, F2b and F2c in **Appendix A**.

The Site is located within the area of land subject to NSW Department of Environment, Climate Change and Water (DECCW) Declaration of Remediation Site (Declaration Number 21122; Area Number 3221) and approved Voluntary Remediation Proposal (VMP) (Declaration Number 20101719), hereafter referred to as the Declaration Area.

### 1.2 Purpose and Objectives

The purpose of the investigation was to assess soil contamination conditions and potential for remediation requirements related to the protection of human health in the root mass zone.

The objectives of the investigation were to:

- Evaluate whether tar containing material (TCM) is present in the root mass of selected trees located within the Declaration Area;
- Complete shallow test pit excavations suitable for Lend Lease's contracted arborist (Tree Wise Men Pty Ltd)
  to inspect the distribution of shallow sub-surface tree roots and associated ground conditions at selected
  trees located within the base of the Hickson Road footpath (behind the kerb);
- Evaluate the extent (if any) of remediation required in the area of the root zones of trees within Hickson Road in the event S-ISCO is selected as the remedial approach;
- Evaluate possible phytotoxic effects associated with the use of S-ISCO<sup>®</sup> chemicals, including sodium persulfate, hydrogen peroxide, Fe-TAML<sup>®</sup> and VeruSOL<sup>®</sup> on trees through a desktop evaluation.

### 1.3 Scope of Work

AECOM undertook the following scope of works to achieve the project objectives:

- Obtained City of Sydney Footpath Opening Permit and RTA Road Occupancy Licence;
- Installation of temporary fencing and barricades at each location;
- Service location in all areas subject to intrusive investigations;
- Non destructive digging in the first 1 m of each borehole and testpit;
- Drilling of nine boreholes (designated TBH01 to TBH09) within the root mass of selected trees using a small track mounted drill rig to a maximum of 2 m below ground surface (bgs);
- Laboratory analysis of sixteen soil and fill samples plus quality assurance and quality control samples for the following analytes:
  - Heavy Metals (arsenic, cadmium, copper, chromium, nickel, lead, mercury and zinc);
  - Total petroleum hydrocarbons (TPH);
  - Benzene, toluene, ethylbenzene and xylenes (BTEX); and
  - Polycyclic aromatic hydrocarbons (PAHs).
- Excavation of three inspection pits within the tree root mass to a maximum depth of 0.5 m bgs, using non
  destructive vacuum excavation techniques;
- Survey of nine borehole locations using a registered surveyor (Rygate Surveyors); and

- Desktop evaluation of potential phytotoxic effects associated with the use of S-ISCO $^{\otimes}$  chemicals (Sodium persulfate, Peroxide, Fe-TAML $^{\otimes}$  and VeruSOL $^{\otimes}$ ).

# 2.0 Site Identification

The following table provides Site identification details.

Table 1 Site Identification

| Item                           | Description                                                               |  |  |  |
|--------------------------------|---------------------------------------------------------------------------|--|--|--|
| Site Owner                     | Owner: City of Sydney Road Authority: Barangaroo Delivery Authority (BDA) |  |  |  |
| Client                         | Lend Lease (Millers Point) Pty Ltd (Lend Lease)                           |  |  |  |
| Site Address                   | Hickson Road (Sussex Street), Barangaroo, NSW 2000                        |  |  |  |
| Legal Description (Lot and DP) | Section of Hickson Road in State Plan 118 and 162 (refer to Appendix A)   |  |  |  |
| County and Parish              | County of Cumberland, Parish of Saint Phillip                             |  |  |  |
| Local Government Authority     | City of Sydney                                                            |  |  |  |
| Current Zoning                 | Maritime and Transport Zone <sup>a</sup>                                  |  |  |  |
| Current Land Use               | Roadway and pedestrian                                                    |  |  |  |
| Proposed Land Use              | Roadway and pedestrian                                                    |  |  |  |
| Approximate Average Elevation  | 2 - 3 m AHD                                                               |  |  |  |
| Site Location                  | Figure F1 (Appendix A)                                                    |  |  |  |
| Site Layout                    | Figure F2a, 2b, 2c (Appendix A)                                           |  |  |  |

Notes

AHD – Australian Height Datum

<sup>\*</sup> Derived from CAD plans provided by Lend Lease.

<sup>&</sup>lt;sup>a</sup> City of Sydney 2005. *Sydney Local Environmental Plan 2005*, Gazetted 9 December 2005, as amended.

### 3.0 Previous Investigations

Contamination investigations and assessments have been previously undertaken for the declaration area in which the Site is located and also of the remainder of land within the Barangaroo Stage 1 Development Area. The investigations assessed the presence of soil and groundwater contamination which originated primarily from the former Miller's Point gas works. Relevant previous contamination investigations and assessment reports are listed below:

- NA&A .1996. Initial Environmental Assessment, Sydney Ports Corporation, Darling Harbour Berths 3-8 Hickson Road, Darling Harbour. June.
- Jeffery and Katauskas (J&K). 2006. Geotechnical Report development of Wharves 3-8 at East Darling Harbour. August.
- ERM. 2007. Environmental Site Assessment, East Darling Harbour, Sydney, NSW, Final Report. 21 June.
- Coffey Environments. 2008. Preliminary Environmental Investigation, 30-38 Hickson Road, Millers Point, NSW 2000. 12 May.
- ERM. 2008a. Additional Investigation Works at Barangaroo, Hickson Road, Millers Point, NSW. July.
- ERM. 2008b. Preliminary Sediment Screening Works at East Darling Harbour, Adjacent to Barangaroo, NSW, Draft, Rev 03. August.
- ARUP. 2008. Barangaroo Development, East Darling Harbour Geotechnical Desk Top Study. 28 October.
- AECOM Australia Pty Ltd, 2009. Revised Draft Remediation Work Plan, Stage 1 Development, Barangaroo, 30 November.
- ERM. 2010. Overarching Remedial Action Plan for the Barangaroo Project Site, Sydney. June.
- AECOM Australia Pty Ltd 2010. Data Gap Investigation, EPA Declaration Area (Parts of Barangaroo Site and Hickson Road), Millers Point, NSW. 23 September.
- AECOM Australia Pty Ltd 2012. Human Health and Ecological Risk Assessment, VMP Remediation Works Area – Barangaroo. 25 October.

The recent Human Health and Ecological Risk Assessment (HHERA) (AECOM 2012) for the VMP Area, developed human health based Site-specific target criteria (SSTC) and Site-specific ecological screening criteria (SSESC) (soil and groundwater concentrations) that remediation would need to achieve to allow redevelopment for the land uses described in the declaration area. The human health SSTC criteria for the declaration area are applicable to this investigation and are discussed in **Section 8.0**.

### 4.0 Site Condition and Surrounding Environment

### 4.1 Current Land Use

The Site is currently a public roadway, consisting of one south and one north bound traffic and bike lanes, parking spaces and pedestrian pathways on either side of the road. Trees are located behind the kerb along both sides of the Road.

With the exception of the immediate area around the base of tree trunks which are covered with crushed granite encompassing area of approximately 1 m<sup>2</sup> to 6 m<sup>2</sup>, the entire Site is sealed with a mixture of asphalt and concrete.

### 4.2 Proposed Land Use

Based on the current Lend Lease development plans, it is understood that the proposed land use across the Development Area (South) will comprise mixed commercial and high density residential (with minimal access to soil) with associated open space areas.

The Site, which comprises a portion of land adjacent to Hickson Road, will remain a public footpath.

### 4.3 Surrounding Land Use

The Site is surrounded by the following land use:

- North: Hickson Road continues to the north, with residential properties on High Street to the northeast above a high rock cutting and the temporary cruise passenger terminal to the northwest.
- South: Hickson Road continues to the south into Sussex Street, with commercial/residential properties to
  the southwest followed by Napoleon Street and part of the Barangaroo Stage 1 development area to the
  southwest:
- East: Commercial and high density residential buildings with Jenkins Street beyond; and
- West: The remainder of the declaration area and the Barangaroo stage 1 development area, followed by Darling Harbour.

### 4.4 Topography and Drainage

The topography of the Site is relatively flat having undergone significant historical cut and fill works. Darling Harbour is located approximately 150 m to the west of the Site. The entire Site is sealed with asphalt and concrete, with the exception of the area immediately around the base of the trees running along either side of Hickson Road.

The majority of stormwater runoff would be captured by the stormwater guttering running along either side of the road, which drain to the west into Darling Harbour.

### 4.5 Geology

The AECOM (2010b) DGI described the following geology beneath the Site:

- Reference to the 1:100, 000 Geological Survey of NSW (Sydney) Sheet 9130 (Ed 1) (Herbert 1983)
  indicates that the stratigraphy of the Site comprises man-made fill material, marine clays and Hawkesbury
  Sandstone.
- Information from previous investigations indicates that during the early 1800s the shoreline ran approximately along the western edge of Hickson Road (i.e. along the eastern edge of the proposed Stage 1 Development).
- The area to the west of Hickson Road is understood to have been progressively reclaimed.
- Aerial photographs from the 1950s indicate that the area between Hickson Road and the current shoreline was occupied by a number of finger wharves, extending from Hickson Road, which were filled in several stages between the 1960s and 1980s with various types of material.

Based on the AECOM (2010b) DGI and Coffey (2008) investigation, the following sequence of lithology has been identified:

- Surface slabs of asphalt and concrete vary to depths between 0.3 to 0.8 m bgs.
- Fill consisting predominantly of sand and gravel with minor anthropogenic inclusions such as brick, coal, charcoal and slag extending to depth ranging between 0.57 and 9.2 m bgs, with the fill layer generally deeper towards the west side of Hickson Road and within former gasworks subsurface structures such as the tar tank beneath Hickson Road.
- Thin layer of residual clayey sand identified at some locations, mainly in the northern portion of the Site ranging between 1.0 and 3.5 m bgs.
- Sandstone bedrock identified at depths ranging between 0.57 m bgs and 9.2 m bgs, generally increasing in depth to the west.

### 4.6 Hydrogeology

The AECOM (2010b) DGI indicated the following about hydrogeology within the Site:

- Groundwater beneath the Site is present as an unconfined, shallow aquifer within the fill materials and the underlying natural sediments.
- Groundwater is also likely to occur as a deeper bedrock aquifer within the underlying sandstone bedrock.
- Groundwater within the bedrock would occur as a fractured bedrock aquifer, potentially confined by an overlying clay unit in some areas of the Site.
- Due to the proximity of the Site to Darling Harbour, the depth to groundwater is shallow (less than 3 m bgs) and the overall direction of groundwater flow is expected to be towards Darling Harbour.
- Groundwater at the Site may be tidally influenced, resulting in the fluctuation of groundwater levels within the fill materials and natural sediments.
- The results of the AECOM (2010b) DGI investigation indicate that the variable nature and distribution of fill
  materials at the Site cause localised variations in groundwater flow, which is further complicated by tidal
  movements.

A search of the NSW Department of Natural Resources (DNR) groundwater bore data base as reported in ERM (2007) indicated that there were 32 registered groundwater bores within a 4 km radius of the Site, which were registered for either recreation, irrigation or monitoring purposes

### 4.7 Potentially Sensitive Receptors

In the context of this investigation, the selected trees located within the Declaration Area which form the subject of this report are the nearest potentially sensitive receptor. The closest potential aquatic sensitive receptor is Darling Harbour and the adjacent Sydney Harbour which are highly urbanised estuaries. Sydney Harbour is used for a mixture of purposes including recreational purposes such as boating, swimming and fishing and for commercial purposes including cargo and passenger transport. The area of Darling Harbour adjacent to the Site currently serves as a passenger terminal for cruise vessels.

The Site is situated in a mixed commercial and residential area, with a child care centre located on the east side of the Site. No other environmentally sensitive receptors have been identified.

Potential human exposure to contaminants of potential concern in impacted soil/fill materials and/or groundwater may occur via the following potential exposure pathways:

- Direct dermal contact with impacted materials;
- Incidental ingestion of impacted materials;
- Inhalation of volatile potential contaminants of concern; and
- Inhalation of potential contaminants of concern sorbed to air-borne particulates.

The following potential human receptors were identified:

Workers engaged in Site operational activities;

- Workers engaged in future redevelopment of the Site;
- Workers on the Site entering confined spaces or exposed to subsurface materials during maintenance work;
- Future residents inhabiting the Site;

AECOM

- Off-site workers conducting construction, road or other sub-surface works in the vicinity of the Site;
- Residents in neighbouring properties and;
- Occupants within the day care facility located on Hickson Road.

# 5.0 Potentially Contaminating Activities and Contaminants of Concern

### 5.1 Existing Identified Contamination

Based on the historical review of the Site as presented in the ERM (2007, 2008a) reports and the results of the environmental and geotechnical investigations conducted on the Site, the potentially contaminating activities and associated chemicals of potential concern (CoPC) have been identified and are summarised in the table below.

| Description of Potentially Contaminating Activity                         | СоРС                                                                  | Comments                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Former gasworks                                                           | Metals, TPH,<br>BTEX, PAHs,<br>phenols, sulphate,<br>cyanide, ammonia | Associated with gasworks waste. Gasworks contamination is likely to be concentrated in the vicinity gasworks infrastructure across the Declaration Area but may have also been relocated.                                                                                                                                                   |
| Importation of fill materials for reclamation activities                  | Metals, TPH,<br>BTEX, PAHs,<br>PCBs, OCPs,<br>VOCs, SVOCs             | Fill materials of unknown origin have been used for land reclamation beneath Hickson Road.                                                                                                                                                                                                                                                  |
| Demolition of former buildings potentially containing hazardous materials | Metals                                                                | Hazardous materials including lead based paints, may have been used in the construction of historical warehouses, buildings and/or industrial infrastructure on the Site and may have been introduced to the subsurface during demolition works or as a result of leaching or weathering while the building structures were still in place. |

Notes: Metals – Arsenic (As), Copper (Cu), Chromium (Cr), Cadmium (Cd), Mercury (Hg), Lead (Pb), Nickel (Ni), Zinc (Zn)

PAHs - Polycyclic aromatic hydrocarbons

TPH - Total petroleum hydrocarbons

BTEX - Benzene, toluene, ethylbenzene and xylenes

OCPs - Organochlorine pesticides

OPPs - Organophosphorus pesticides

PCBs - Polychlorinated biphenyls

SVOCs - Semi volatile organic compounds

VOCs - Volatile organic compounds

# 5.2 Chemicals Potentially used for S-ISCO® Remediation

S-ISCO® and SEPR™ may be used to remediate gas works contamination in the Declaration Area. The chemicals specifically used are hydrogen peroxide, sodium persulfate, sodium hydroxide, VeruSOL® and Fe-TAML®. The volumes, concentrations and injection rates of the chemicals will vary throughout the S-ISCO® and SEPR™ process.

### 6.0 Investigation Methodology

### 6.1 Soil Field Investigation

### 6.1.1 Services Location and Clearance

All borehole locations were cleared for subsurface utilities as follows:

- Plans of underground utilities were requested from the Dial-Before-You-Dig service and relevant utility representatives were contacted to confirm proposed sample points were clear of subsurface utilities. CAD plans relating to the presence of subsurface utilities were also supplied by BDA and Lend Lease. All plans were reviewed by AECOM prior to the commencement of service location clearance.
- All sample locations were marked on the ground with spray paint and were measured from nearby reference points.
- Each sampling location was cleared using a Telstra accredited, underground services location contractor (Australian Locating Services).
- After coring through the asphalt and/or concrete surface, each location was potholed by air-knifing (non-destructive drilling) by a competent subcontractor (Terratest) to at least 1 m bgs or to the depth of refusal.

### 6.1.2 Intrusive Work

Terratest were engaged to carry out the drilling operations. The surface at each location was cored using a track mounted concrete corer and the drilling technique consisted of direct push tube sampling with a track mounted Geoprobe<sup>™</sup> drill rig. The push-tube samplers were hammered into undisturbed soil in one continuous uniform motion without rotating. Samples were collected based on their location, distribution within the soil/fill profile and suitability for sampling.

Boreholes were drilled to a maximum of 2 m bgs or refusal (whichever was shallower).

Borehole locations were reinstated with grout or soil cuttings that had been drilled out from that location. In many instances, no grout or soil cuttings could be placed down the hole due to the collapse of fill materials following completion of drilling. All boreholes were reinstated to original surface level and condition. Any excess soil generated from the drilling process was placed in drums and stored on-site for future disposal.

### 6.1.3 Soil Sampling

All boreholes were cored then air-knifed to a minimum depth of one metre (where possible) to expose underground services. Soil samples were then collected from beneath the concrete or asphalt surface and then every 0.5 m or where a significant change in physical characteristics was identified to the maximum target depth of 2 m bgs. Where possible, soil samples were collected from the natural material, at the interface with any overlying fill and underlying bedrock.

The soil was collected in disposable plastic liners and representative soil samples were transferred from liners into laboratory supplied sampling containers by nitrile-gloved hand.

All soil samples were placed in laboratory prepared glass sampling containers using single use disposable nitrile gloves. Field duplicates (intra-laboratory) and triplicates (inter-laboratory) were prepared in the field by splitting soil samples. In order to minimise the loss of volatiles, samples were not mixed or homogenised during collection or splitting and jars were filled so as to minimise the amount of headspace where sample recovery allowed.

### 6.1.4 Soil Sample Labelling, Preservation, Storage and Transport

All samples were clearly labelled with unique sample identification numbers consisting of the date, sample location, depth of sample and samplers initials. In the case of field duplicates and triplicates, sample containers were labelled so as to not reveal their purpose or sample location to the laboratory. All samples were kept chilled in an ice-filled esky prior to dispatch to the NATA registered laboratory under chain of custody (COC) procedures.

All samples collected are stored at the laboratory (3 months for metals [28 days for mercury], or 14 days for organics).

### 6.1.5 Soil Sampling Equipment Decontamination

The decontamination procedures were performed before initial use of re-useable equipment and after each subsequent use.

All re-usable sampling equipment (split tube sampler and spatula) were decontaminated between each sample by scrubbing with a solution of Decon 90 (a phosphate-free detergent) followed by a rinse in potable water. For each day of sampling, following decontamination procedures, a rinsate blank was completed by running laboratory prepared deionised water over the re-usable sampling equipment for collection directly into laboratory prepared sampling containers for analysis.

At each sample location a new set of disposable nitrile gloves were used to directly collect soil samples from the re-useable sampling equipment for placement into the laboratory prepared glass sampling containers.

### 6.1.6 Field Screening

For each sample depth, additional soil was placed in a sealed plastic bag and screened for head space vapours and the presence of VOCs, using a calibrated photo-ionisation detector (PID). The headspace reading was taken at ambient temperature and was recorded on the borehole logs (**Appendix D**). The PID readings were considered when selecting soil samples for laboratory analysis.

The PID was calibrated with isobutylene gas at 100 ppm at the commencement of each day of sampling and, if necessary, during the day in accordance with the procedure provided by the supplier. Calibration records are provided in (**Appendix E**).

### 6.1.7 Field Logging

Recording of logs for boreholes and in the field was conducted in accordance with AS1726-1993 and soils were classified in accordance with the Unified Soil Classification System (USCS), including observation of any anthropogenic material (i.e. odours, asbestos cement [AC] sheeting etc). Descriptions were recorded on AECOM's standard borehole and monitoring bore field log sheets for uniformity in descriptions, presentation and to aid in future interpretations.

The American Society for Testing and Materials (ASTM) system and the USCS are the general standards used by AECOM in classifying soil by visual and manual examination. The reference for the USCS system is *Procedure for Determining Unified Soil Classification (Visual Method)*, United States Department of the Interior, Bureau of Reclamation (USBR) 5005-86. The reference for the ASTM system is *Description and Identification of Soils (Visual-Manual Procedure)*, ASTM Standard Practice D 2488-90.

### 6.1.8 Survey of Boreholes

The borehole location and ground level were surveyed by a registered surveyor from Rygate & Company Pty Ltd. (Rygate) with reference to the Australian Height Datum (AHD) and Australia Map Grid (AMG).

The elevation and position of the boreholes are recorded on the borelogs provided in (Appendix D).

### 6.2 Tree Root Inspection Test Pits

Three tree root inspection test pits were selected in consultation with Tree Wise Men Pty Ltd arborist Peter Castor. The test pits were located at the base of trees T11, T15 and T18 (refer to Figure F2 in **Appendix A**).

Test pits were excavated using air knifing (non destructive digging) to refusal depths of 0.3 m bgs (T11 and T15) and 0.4 m bgs (T18). Refusal occurred on concrete sub surfaces underlying the tree roots. Photos of tree root inspection test pits are provided in **Appendix F**.

### 6.3 Phytotoxicity Desktop Evaluation

A search of available and relevant phytotoxicity information sources and ecological risk information sources was undertaken in order to provide advice on potential effects of SISCO<sup>®</sup> constituents (other than the elements and compounds for which specific terrestrial soil use criteria are derived in the VMP HHERA [AECOM, 2011]) on adjacent tree roots at Barangaroo. The information is summarised in **Section 10.0** below.

### 7.0 Quality Assurance and Quality Control

### 7.1 Field Quality Control

The field Quality Assurance/Quality Control (QA/QC) procedures, Data Quality Objectives (DQOs) and acceptance limits established for the project are summarised below:

- Use of standard procedures for soil and groundwater sampling;
- Use of a new pair of disposable nitrile gloves for each soil and groundwater sample collection event;
- Use of appropriate equipment decontamination procedures;
- Use of laboratory prepared and supplied sampling containers appropriate for each CoPC investigated;
- Use of appropriate sample Chain of Custody (COC) documentation. Copies of the COCs are included in the laboratory reports (Appendix G);
- Collection and analysis of field duplicate (intra-laboratory duplicate) sample at a rate of approximately one per 10 primary samples;
- Collection and analysis of a field inter-laboratory triplicate sample at a rate of approximately one per 20 primary samples;
- The relative percentage differences (RPDs) of the primary and duplicate sample results are to be less than 50% for all CoPC;

Field sampling QC analytical results are presented on Table T4 in Appendix B and summarised below:

- Two field duplicate soil sample (DUP01 and DUP02) were analysed, meeting the project limit of one per 10 primary samples;
- One field intra-laboratory triplicate soil sample (TRIP01) was analysed, meeting the project limit of one per 20 primary samples;
- The relative percentage differences (RPDs) of the primary and duplicated samples met the within the acceptable limit of 50% for all analytes, with the exception of the following:
  - RPDs for fluoranthrene (126%) and pyrene (124%) in duplicate DUP01 and primary sample TBH01\_0.43-0.5;
  - RPDs for copper (95%), benz(a)anthracene (81%), benzo(a)pyrene (52%), chrysene (67%), fluroanthene (82%), pyrene (73%) in triplicate TRIP01 and primary sample TBH01\_0.43-0.5.
- The elevated RPD is likely to be associated with variation in contaminant concentration within the fill, rather than laboratory inaccuracies. Therefore, AECOM considers that the elevated RPD is not significant.

### 7.2 Laboratory Quality Control

The DQOs and acceptable limits defined for the assessment of the laboratory analytical data are listed below:

- Maximum acceptable sample holding time is 14 days for organic analyses and six months for lead analyses.
- Samples to be appropriately preserved and handled.
- Laboratory LORs to be less than the adopted assessment criteria.
- Laboratory method blank analyses to be less than the laboratory LOR.
- Laboratory duplicate samples to be analysed at a rate of one in 20 samples, when the batch size exceeds five samples. The RPD of results to be less than 50 %.
- Matrix spike recoveries to be conducted by the laboratory at a rate of one in 20 samples.
- Analysis of Laboratory Control Samples (LCS) at a rate of one in 20 samples.
- Matrix, LCS and Surrogate recoveries to be within the acceptable range of 70-130%.

A review of laboratory QA/QC is summarised below:

- Samples were received by the laboratory chilled and intact, as indicated on the sample receipt notification forms (refer **Appendix G**).
- Soil and groundwater samples were extracted and analysed within acceptable holding times;
- Laboratory LORs were less than the adopted soil/groundwater assessment criteria;
- Matrix spike recoveries, laboratory control sample recoveries and method blanks were tested for PAH, TPH, BTEX and metals at the required rates.
- Surrogate sample recoveries were tested for all primary samples for TPH, BTEX and PAHs.
- Two laboratory duplicate samples were analysed for each primary sample batch. This was equivalent to one lab duplicate for four soil samples analysed, thereby fulfilling the QA/QC requirements. RPDs for duplicate laboratory samples were generally within the acceptable limit of 50%, with the exception of the following:
  - ALS Report ES1102539: RPD of 133%for zinc in Lab ID ES1102438-002 and 73.8% for zinc in ES1102363-013.
- Method blank sample results were less than laboratory LORs.
- All matrix spike recoveries, matrix spike duplicate, surrogate spike recoveries and laboratory control sample recoveries were within acceptable range (including laboratory's historical statistical range and/or USEPA-SW846 limits), exception of a matrix spike recovery of 138% for pyrene in Lab ID ES1102540-001 in ALS report ES1102539

### 7.3 Data Useability

The data validation procedure employed in the assessment of the field and laboratory QA/QC data indicated that the reported analytical results are representative of soil and groundwater conditions at the sample locations and that the overall quality of the analytical data produced is acceptably reliable for the purpose of this investigation

### 8.0 Basis for Soil Assessment Criteria

### 8.1 Site Specific Soil Criteria

Site specific soil assessment criteria (SAC) were developed and presented in the VMP HHERA (AECOM, 2012) as discussed below. The VMP HHERA included the derivation of health and odour based site-specific target criteria (SSTC) for the protection of human health.

### 8.1.1 Site Specific Target Criteria

The SSTCs applied to the Site in the VMP Area HHERA (AECOM, 2012) were developed to provide human health risk-based concentrations that can be used:

- As assessment criteria applicable to areas of the Site based on the proposed land uses: if all CoPCs in samples are below the applicable SSTCs, then further assessment of the health risks would not be warranted; and
- As assessment criteria applicable for the beneficial reuse of excavated material (either treated or untreated) within the Barangaroo Stage 1 Development: if all CoPCs in samples are below the SSTCs, then further assessment of the health risks would not be warranted.

Details on how the SSTCs have been derived are provided in the draft VMP HHERA (AECOM, 2012). This assessment is focused on the protection of human health only.

### 8.1.2 Risks to the Environment

The remediation goals for the protection of the environment, recommended by the VMP HHERA (AECOM, 2012) are:

- As a primary goal, removal / remediation of Separate Phase Gasworks Waste and Tar (which includes, but is not limited to TCM) to the extent practicable; and
- As a secondary goal, remediation of soil to the extent practicable, such that groundwater quality leaving the Site (measured at the down hydraulic gradient Site boundary) approaches the Marine Water Quality Criteria (MWQC).

The VMP Remediation Extent document describes the extent of remediation that can be practicably achieved with a view to ultimately improving groundwater quality at the Site. The VMP Remediation Extent document concludes that:

- The extent of remediation that can be practicably accomplished for the protection of the environment is consistent with that required for protection of human health (i.e. based on comparison of the SSTCs against the reported soil and groundwater concentrations); and
- The standard of remediation required should equal the higher or:
  - Removal of separate phase gas works waste and tar (SPGWT) to the extent practicable; and
  - Remediation of contaminated soils such that the contaminant mass is reduced, on average, by 90% (calculated based on the estimated mass of naphthalene and TPH C10—C14).

This document does not specifically consider the requirement for remediation within the tree root mass for the protection of the environment because:

- The extent of remediation required will be consistent with an assessment of the risk to human health (ie. comparison of reported soil concentrations with the VMP SSTC); and
- The requirement to remove SPGWT to the extent practicable is consistent with the requirements of remediation for the protection of human health; and
- It is not appropriate that the requirement for reduction of the contaminant mass by, on average, 90% be assessed solely based on the limited soil volume contained within the tree root mass. It is considered more appropriate that this assessment be made as part of the Block 4 / VMP RAP (which will include consideration of the data presented in this document).

### 8.2 Adopted Soil Assessment Criteria

The adopted assessment criteria are the SSTC for the unsaturated zone as all soil results relevant to this assessment are less than 2 m bgs.

The adopted SSTC are presented in Table T1 in Appendix B.

### 9.0 Results

### 9.1 Field Observations

### 9.1.1 Boreholes

Field observations of fill, natural soil, bedrock and PID readings for each borehole location (TBH01 to TBH09) are summarised in Table 2 below. Borelogs and PID readings are provided in Appendix D.

Table 2 Summary of Field Observations

| Location | Surface                                                                                       | Encountered Fill/Tree Roots                                                                                                                                        | Natural Soil<br>or Bedrock            | Final Depth (m bgs) | PID readings (ppm) |
|----------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|--------------------|
| TBH01    | 0.22 m bgs inclusions of brick and coke gravel                                                |                                                                                                                                                                    | Sandstone<br>bedrock at<br>0.59 m     | 0.59                | 2.4                |
|          |                                                                                               | Fine (<5 mm) tree rootlets observed                                                                                                                                |                                       |                     |                    |
| TBH02    | Borehole cancelled due to surrounding services)                                               | underground services ( no alternative l                                                                                                                            | ocation due to th                     | e presence o        | of nearby          |
| TBH03    | Asphalt and concrete to 0.7 m bgs                                                             | Sandy gravel, sandy clay and clayey sand with inclusions of brick                                                                                                  | Sandstone<br>bedrock at<br>1.66 m bgs | 1.66                | 0.2 - 2.2          |
| ТВН04    | Asphalt to 0.1 m bgs<br>Subsurface concrete<br>slab between 0.25 and<br>0.6 m bgs.            | Sandy gravel, silty sand, gravelly clayey sand with inclusions of charcoal and timber                                                                              | Not<br>encountered                    | 2.0                 | 0.2 - 0.6          |
| ТВН05    | Asphalt to 0.1 m bgs<br>Subsurface<br>asphalt/concrete slab<br>between 0.21 and 0.47<br>m bgs | Sandy Gravel with bituminous gravel layers and weathered sandstone boulders  One 5 mm tree root encountered at 0.2 m bgs  20 mm tree root encountered at 1.4 m bgs | Not<br>encountered                    | 2.0                 | 0 - 0.3            |
| ТВН06    | Asphalt to 0.1 m bgs<br>Subsurface concrete<br>slab from 0.2 to 0.37 m<br>bgs                 | Sandy gravel with concrete at 0.9 to 1 m bgs overlaying sandy clay  One 50 mm tree root encountered at 0.47 m                                                      | Not<br>encountered                    | 2.0                 | 0 - 0.1            |
| ТВН07    | Asphalt to 0.1<br>Subsurface asphalt and<br>concrete slab from 0.15<br>to 0.77 m bgs          | Layer of gravelly sand between 0.1 and 0.15 m bgs                                                                                                                  | Not encountered                       | 0.77                | 0.7                |
| ТВН08    | Asphalt to 0.13 m bgs<br>Subsurface slab from<br>0.29 m bgs to 0.77 m<br>bgs                  | Layer of sandy gravel 0.13 to 0.29 m bgs  One 50 mm tree root encountered at 0.24 m bgs                                                                            | Not<br>encountered                    | 0.77                | 0.5                |
| TBH09    | Asphalt to 0.05 m bgs<br>Subsurface asphalt slab<br>from 0.05 to 0.77 m bgs                   | Gravel between 0.05 m and 0.24 m bgs                                                                                                                               | Not<br>encountered                    | 0.64                | -                  |

Notes: ppm – parts per million

m bgs - metres below ground surface

Additionally the following observations were made:

- Dark grey staining and mild tar odours were noted between 1.2 and 1.66 m bgs in TBH03. No odours or staining were noted in any other borehole.
- No TCM was observed in any of the boreholes.
- Groundwater was encountered in at 1.9 m bgs in borehole TBH05. Groundwater was not encountered in any other borehole.

### 9.1.2 Test Pits

Photographs of the three test pits for tree root observations are shown in Appendix E. Test pits were limited to a maximum depth of 0.4 m bgs as a confining layer of concrete was encountered below the main mass of roots at each test pit location.

### 9.2 Soil Analytical Results

Soil analytical results for samples collected from TBH01 to TBH09 are presented in Table T2 in Appendix B. Historical results for boreholes potentially located within the root mass zones of trees within the Site are presented in Table T3 in Appendix B. All results were less than the VMP SSTC. A summary of the results are provided in Table 3 below.

Table 3 Summary of analytical results

| Chemical                              | EQL     | VMP   | Number  |         | Concentration (mg/kg) |       |         |        |       |
|---------------------------------------|---------|-------|---------|---------|-----------------------|-------|---------|--------|-------|
| Name                                  | (mg/kg) | SSTC  | Results | Detects | Min                   | Max   | Average | Median | SD    |
| Arsenic                               | 2       | -     | 29      | 2       | <5                    | 8     | 3.1     | 2.5    | 1.5   |
| Cadmium                               | 2       | -     | 29      | 0       | <1                    | ND    | 0.5     | 0.5    | 0     |
| Chromium                              |         |       | 29      | 15      | 2                     | 110   | 17      | 8      | 26    |
| Copper                                | 5       | -     | 29      | 14      | <5                    | 76    | 23      | 23     | 21    |
| Lead                                  | 5       | -     | 29      | 14      | <5                    | 1420  | 99      | 25     | 359   |
| Mercury                               | 0.1     | -     | 29      | 1       | <0.1                  | 0.7   | 0.11    | 0.05   | 0.039 |
| Nickel                                | 2       | -     | 29      | 12      | <2                    | 98    | 12      | 7      | 16    |
| Zinc                                  | 5       | -     | 29      | 14      | <5                    | 531   | 68      | 40     | 145   |
| CPAH                                  |         | 67    | 23      | 17      | 0.06                  | 56.15 | 9.1     | 1.256  | 15    |
| PAH (Total)                           |         | -     | 23      | 17      | 1.7                   | 668.3 | 91      | 10.6   | 169   |
| Phenol                                | 0.5     | -     | 13      | 3       | <0.5                  | 1.2   | 0.39    | 0.25   | 0.29  |
| TPH C <sub>6</sub> - C <sub>9</sub>   | 10      | -     | 24      | 0       | <10                   | ND    | 5       | 5      | 0     |
| TPH C <sub>10</sub> - C <sub>14</sub> | 50      | 54000 | 24      | 1       | <50                   | 1010  | 66      | 25     | 201   |
| TPH C <sub>15</sub> -C <sub>28</sub>  | 100     | 72000 | 24      | 9       | <100                  | 2510  | 401     | 50     | 667   |
| TPH C <sub>29</sub> -C <sub>36</sub>  | 100     | 7300  | 24      | 9       | <100                  | 1330  | 272     | 50     | 360   |
| Benzene                               | 0.2     | 380   | 24      | 2       | <0.2                  | 2     | 0.19    | 0.1    | 0.39  |
| Toluene                               | 0.5     | -     | 24      | 1       | <0.5                  | 0.7   | 0.27    | 0.25   | 0.092 |
| Ethylbenzene                          | 0.5     | -     | 24      | 0       | <0.5                  | ND    | 0.25    | 0.25   | 0     |
| Total Xylene                          | 0.15    | -     | 24      | 1       | 0.8                   | 0.8   | 0.51    | 0.5    | 0.061 |

# 10.0 S-ISCO® Chemicals - Phytotoxicity

A review of available information on the possible phytotoxic effects associated with the use of key S-ISCO<sup>®</sup> chemicals, including sodium persulphate, peroxide, Fe-TAML<sup>®</sup> and VeruSOL<sup>®</sup> on trees was undertaken. The following table provides a summary of the available relevant information.

Table 4 Summary of information relating to possible phytotoxic effects associated with the use of S-ISCO® chemicals

| S-ISCO Chemical       | Summary of phytotoxicity information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sodium<br>Persulphate | MSDS (Price Chemicals Pty Ltd, 2007) derived ecological information section states there is currently no data on ecotoxicity, environmental persistence, mobility or bioaccumulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sodium Hydroxide      | MSDS (Science Lab.com Inc, 2005) derived ecological section provides the following information:  - Sodium Hydroxide degrades readily by reacting with natural carbon dioxide in air and does not bio accumulate.  - Possible hazardous short term degradation products are not likely, however long term degradation products may arise.  - The degradation products are not toxic.  - There is no information on ecotoxicity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Hydrogen Peroxide     | <ul> <li>Hydrogen peroxide has many essential roles in plant metabolism but at the same time, accumulation related to virtually any environmental stress is potentially damaging (Cheeseman, 2007).</li> <li>All biotic and abiotic stresses induce or involve oxidative stress to some degree, and the ability of plants to control oxidant levels is highly correlated to stress tolerance (Cheeseman, 2007).</li> <li>It is well established that oxidative metabolism, and particularly hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), is involved in a wide variety of reactions and signalling cascades necessary for all aspects of plant growth and the integration of activity (Cheeseman, 2007).</li> <li>Oxidative stress, arising from an imbalance in the regeneration and removal of reactive oxygen species (ROS) such as the superoxide radical (O<sub>2</sub>), hydrogen peroxide, singlet oxygen and hydroxyl radicals (OH), is a challenge faced by all aerobic organisms. ROS are highly reactive and in the absence of protective mechanisms, can produce damage to cell structure and function. (Cho and Seo, 2004).</li> <li>It is possible that inefficient removal of hydrogen peroxide and subsequent hydrogen peroxide accumulation can induce phytotoxicity. (Cho and Seo, 2004).</li> <li>Radical reactions are exothermic and the decomposition of hydrogen peroxide at the surface yields oxygen. The reaction of Fe<sup>2+</sup> and hydrogen peroxide is extremely exothermic and could evaporate water from soil and is toxic to microbes (Sahl and Munakata-Marr, 2006).</li> <li>The MSDS for hydrogen peroxide (Sigma-Aldrich, 2006) derived ecological information describes the following: <ul> <li>Hydrogen peroxide in the aquatic environment is subject to various reduction or oxidation processes and decomposes in water and oxygen. Hydrogen peroxide half-life in freshwater ranged from 8 hours to 20 days, in air from 10-20 hours and in soils from minutes to hours depending upon microbiological activity and metal contaminants. In addition, hydrogen peroxide breaks down in sunlight.</li> <li>There is</li></ul></li></ul> |
| Fe-TAML®              | <ul> <li>The MSDS for Fe-TAML® catalyst (GreenOx Catalysts, Inc, 2006) provided the following ecological information:</li> <li>Fe-TAML is soluble in water but not likely to mobilise in soil.</li> <li>Is not expected to be persistent or bio-accumulating in the environment.</li> <li>Acute algal toxicity (LC50 Scenedesmus subspicatus &gt; 0.2 mg/L [72 h] [Isopropanol]).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| S-ISCO Chemical | Summary of phytotoxicity information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VeruSOL®        | <ul> <li>VeruSOL® comprises a clear formula made with citrus extracts and plant-derived surfactants (VeruTEK®, 2011b).</li> <li>In particular, VeruSOL-3 is a mixture of D-limonene and plant-based surfactants (Nadagouda et al, 2009).</li> <li>Some of the benefits and features of VeruSOL® include:         <ul> <li>An ecofriendly surfactant – VeruSOL® is made from plant materials and biodegrades.</li> <li>Controlled solubilisation - VeruSOL® forms stable Windsor Type I emulsions with contaminants and contaminant non- aqueous phase liquids (NAPLs) for targeted destruction by coeluted oxidants such as hydrogen peroxide.</li> <li>VeruSOL® is easily manipulated due to its nontoxic and non-irritant properties.</li> </ul> </li> <li>MSDS (VeruTEK, 2006) derived Ecological Information determines the following:         <ul> <li>There is no eco or phytotoxicity information available at this time for this product. However, a spill may produce significant toxicity to aquatic organisms and ecosystems. Some studies have shown that certain bacteria and fungi have the ability to degrade terpenes, decreasing their toxicity to fish. When spilled this product may act as oil, causing a film, sheen, emulsion or sludge at or beneath the surface of a water body.</li> <li>Product is expected to be readily biodegradable.</li> <li>No appreciable bioconcentration is expected in the environment.</li> <li>Product is expected to volatalise rapidly.</li> </ul> </li> </ul> |

### In summary, the following has been identified:

- It is known that VeruSOL<sup>®</sup> is a surfactant derived from plant materials, is non-toxic and biodegrades in the environment. When used with oxidants, including hydrogen peroxide (which decomposes exothermically into water and oxygen) and sodium persulfate, VeruSOL<sup>®</sup> can produce Fenton's reagent; producing a mix of ferrous iron salts as a catalyst and hydrogen peroxide and at low pH hydroxyl radicals (OH) that oxidise contaminants such as chlorinated solvents, fuel oils and BTEX (Amarante, 2000).
- The effects of in situ chemical oxidation (ISCO) on biological processes have been researched to determine if ISCO coupling with in situ bioremediation could be achieved in field and laboratory experiments. Literature has been compiled to determine the effect of ISCO on microbial communities following addition of a chemical oxidant as a range of concentrations to treat a variety of subsurface contaminants. Results indicate that although microbial communities may potentially be adversely affected by chemical oxidation (in particular Fenton's Reagent if not used carefully) in the short-term, a rebound of microbial biomass and/or bioremediation activity can be expected (Sahl and Munakata-Marr, 2006).
- In addition, it is noted that chemicals involved in the ISCO process require health and safety precautions during installation when handled separately (Mueller and Brown, 2011). However, when individual chemicals discussed herein are used as oxidants, they break down into harmless by-products (comprising water, oxygen and carbon dioxide) and are considered to present a minimal phytotoxic risk (VeruTEK® 2010).
- While there is a general lack of literature assessing the specific phytotoxicity of S-ISCO<sup>®</sup> chemicals, case studies in which S-ISCO<sup>®</sup> has been successfully implemented indicate there were no adverse effects to the surrounding environment, including plants (VeruTEK<sup>®</sup> 2011b).

### 11.0 Site Characterisation

To assess the material contained within the root mass of trees, AECOM results have been combined with previous investigation data (Coffey) to characterise the tree root zone.

### 11.1 Fill Materials and Natural Soils

- Observed fill materials at depths between 0 and 2 m bgs generally comprised unconsolidated gravels, sand, bricks, sandstone, slag and charcoal in variable gravelly sand to clayey sand matrix.
- Shallow sandstone bedrock was identified at depths of less than 1 m bgs, on the eastern side of Hickson Road near trees T49 and T44.
- Small tree roots (<50 mm) and fine rootlets were observed between the surface and 2 m bgs, however the bulk of the root mass appeared to be confined above sub-surface slabs which were encountered between 0.2 and 0.4 m bgs in tree root pits and some boreholes.
- All results were less than the adopted SAC with the exception of the concentrations of CPAH in two soil samples.
- The observed root mass was identified in unsaturated soils.
- No observations of TCM were identified in any of the boreholes investigated as part of this assessment

### 11.2 Hydrogeological Conditions

Results of the previous DGI investigation (AECOM 2010b) indicated that groundwater beneath the Site is present as an unconfined, shallow aquifer within the fill materials and the underlying natural sediments. Groundwater is also likely to occur as a deeper bedrock aquifer within the underlying sandstone bedrock. Groundwater within the bedrock would occur as a fractured bedrock aquifer, potentially confined by an overlying clay unit in some areas of the Site.

Due to the proximity of the Site to Darling Harbour, the depth to groundwater is shallow (average of 2 m bgs) and the overall direction of groundwater flow is expected to be towards Darling Harbour. Groundwater at the Site is slightly tidally influenced, resulting in the fluctuation of groundwater levels within the fill materials and natural sediments. Groundwater chemistry at the Site is dominated by sodium and chloride ions, indicative of a saline environment.

### 11.3 Conceptual Site Model Update

Based on the dataset and site information, the following points provide a conceptual site model for the root mass of selected trees in Hickson Road with respect to the contaminants identified in the Remediation Site declaration:

- The bulk of the root mass was observed to be shallow (less than 0.5 m bgs) and mainly confined to the near surface due to subsurface slabs providing a preferential pathway along the back of the kerb;
- Based on the salinity and depth of groundwater it is not anticipated that the root mass would extend past 2 m bgs due to the intolerance of the fig trees (*Ficus hilli* and *Platanus hybridia*) to saline conditions, as such if S-ISCO® chemicals were used, it is unlikely tree roots would come into contact with S-ISCO® chemicals;
- TCM was not identified in any of the tree root mass locations investigated; and
- Given that soil concentrations are all less than the VMP HHERA SSTC's, contamination requiring remediation for the protection of human health was not identified within the tree root mass investigation locations (refer Section . That is, no exceedances of the VMP HHERA SSTC were reported

Given that concentrations of gas works residue exceeding the adopted criteria were not reported at the locations sampled and the tree roots are located in the unsaturated zone, AECOM considers that S-ISCO® chemicals would not likely adversely impact tree health because remediation using S-ISCO® chemicals would not be required in the root mass zone.

### 12.0 Conclusions and Recommendations

Based on the results of this investigation AECOM makes the following conclusions regarding the assessment of contamination within the tree root mass zones:

- Tar Containing Material (TCM) was not identified in any of the boreholes completed within the root mass zone of the investigated trees.
- Based on the shallow test pit excavations and boreholes completed, observed tree roots appear largely laterally confined to the footpath side of the kerb line (i.e. to the east of the kerb on the eastern side and to the west of the kerb on the western side of Hickson Road) and generally do not appear to extend further into Hickson Road.
- With respect to addressing the Remediation Site declaration, the material assessed within the root mass zone of the trees investigated is considered suitable to remain *in-situ* or for re-use within Hickson Road, based on the comparison of the individual concentrations and the 95% UCL concentrations to the SSTCs.
- Based on the reported results, remediation of the tree root mass is not required. Accordingly, potential future S-ISCO injections in this area are not required.
- Additionally as the S-ISCO<sup>®</sup> chemicals are injected into the groundwater table which based on visual observations is generally 1 to 1.5 m below the bulk of the observed tree root mass, it is not anticipated that the tree root mass will be significantly exposed to S-ISCO chemicals, reducing the likelihood of any adverse effects on the health of the trees.

### 13.0 References

AECOM Australia Pty Ltd 2010. Data Gap Investigation, EPA Declaration Area (Parts of Barangaroo Site and Hickson Road), Millers Point, NSW. 23 September.

AECOM Australia Pty Ltd 2012. Human Health and Ecological Risk Assessment, VMP Remediation Works (Addressing the NSW EPA Remediation Site Declaration 21122, Millers Point) - Barangaroo. 25 October.

Anastas, P and Beach, E. Green chemistry: the emergence of a transformative framework. Green Chemistry Letters and Review, 1 (1) 9-24.

ARUP. 2008. Barangaroo Development, East Darling Harbour Geotechnical Desk Top Study. 28 October.

Amarante D., 2000. Applying in situ chemical oxidation. Pollution Engineering, February, 40-42.

Barangaroo

Cheeseman, J.M, 2007. Hydrogen Peroxide and Plant Stress: A Challenging Relationship. Plant Stress, 1 (1) 4-

Cho, U.H and Seo, N.H, 2004. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168, 113-120.

Coffey Environments. 2008. Preliminary Environmental Investigation, 30-38 Hickson Road, Millers Point, NSW 2000. 12 May.

ERM. 2007. Environmental Site Assessment, East Darling Harbour, Sydney, NSW, Final Report. 21 June.

ERM. 2008a. Additional Investigation Works at Barangaroo, Hickson Road, Millers Point, NSW. July.

ERM. 2008b. Preliminary Sediment Screening Works at East Darling Harbour, Adjacent to Barangaroo, NSW, Draft, Rev 03. August.

ERM. 2010. Overarching Remedial Action Plan for the Barangaroo Project Site, Sydney. June.

GreenOx Catalysts, Inc, 2006. Material Safety Data Sheet - Fe-TAML Catalyst. June.

Jeffery and Katauskas (J&K). 2006. Geotechnical Report development of Wharves 3-8 at East Darling Harbour. August.

Kheeton, S and Terrance, C, 2007. Human Pharmaceuticals in the Aquatic Environment: A Challenge to Green Chemistry. Chemical Review, 107, 2319-2364.

Nadagouda. H, Hoag.G, Collins. J and Varma. R, 2009. Green Synthesis of Au Nanostructures at Room Temperature Using Biodegradable Plant Surfactants. Crystal Growth and Design, 9, 4979-4983.

NA&A .1996. Initial Environmental Assessment, Sydney Ports Corporation, Darling Harbour Berths 3-8 Hickson Road, Darling Harbour. June.

NEHF, 1998. Health-Based Soil Investigation Levels. National Environmental Health Forum Monographs. Soil Series No 2. National Environmental Health Forum.

NEPC,1999. National Environment Protection (Assessment of Site Contamination) Measure (NEPM). National Environment Protection Council.

NEPC, 1999a. Guideline on the Investigation Levels for Soil and Groundwater. Schedule B(1). National Environmental Protection Measure. National Environmental Protection Council.

NEPC, 1999b. Guideline on Data Collection, Sample Design and Reporting. Schedule B(2). National Environmental Protection Measure. National Environmental Protection Council.

NEPC 1999c. Guideline on Laboratory Analysis of Potentially Contaminated Soils. Schedule B(3). National Environmental Protection Measure. National Environmental Protection Council.

NEPC, 1999d. Guideline on Health Risk Assessment Methodology. Schedule B(4). National Environmental Protection Measure. National Environmental Protection Council.

NSW DEC. 2005. Information for the assessment of former gasworks sites.

NSW DEC, 2006. Guidelines for the NSW Site Auditor Scheme (2nd edition). NSW Department of Environment and Conservation.

**AECOM** 

NSW DEC, 2007. Guidelines for the Assessment and Management of Groundwater Contamination. NSW Department of Environment and Conservation

NSW DECC, 2008. Waste Classification Guidelines. NSW Department of Environment and Climate Change.

NSW EPA, 1997. Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. NSW Environment Protection Authority.

NSW EPA, 1995. Contaminated Sites: Sampling Design Guidelines. NSW Environment Protection Authority.

NSW EPA, 1994. Contaminated Sites: Guidelines for Assessing Service Station Sites. NSW Environment Protection Authority.

Price Chemicals Pty Ltd, 2007. Material Safety Data Sheet - Sodium Persulphate. July.

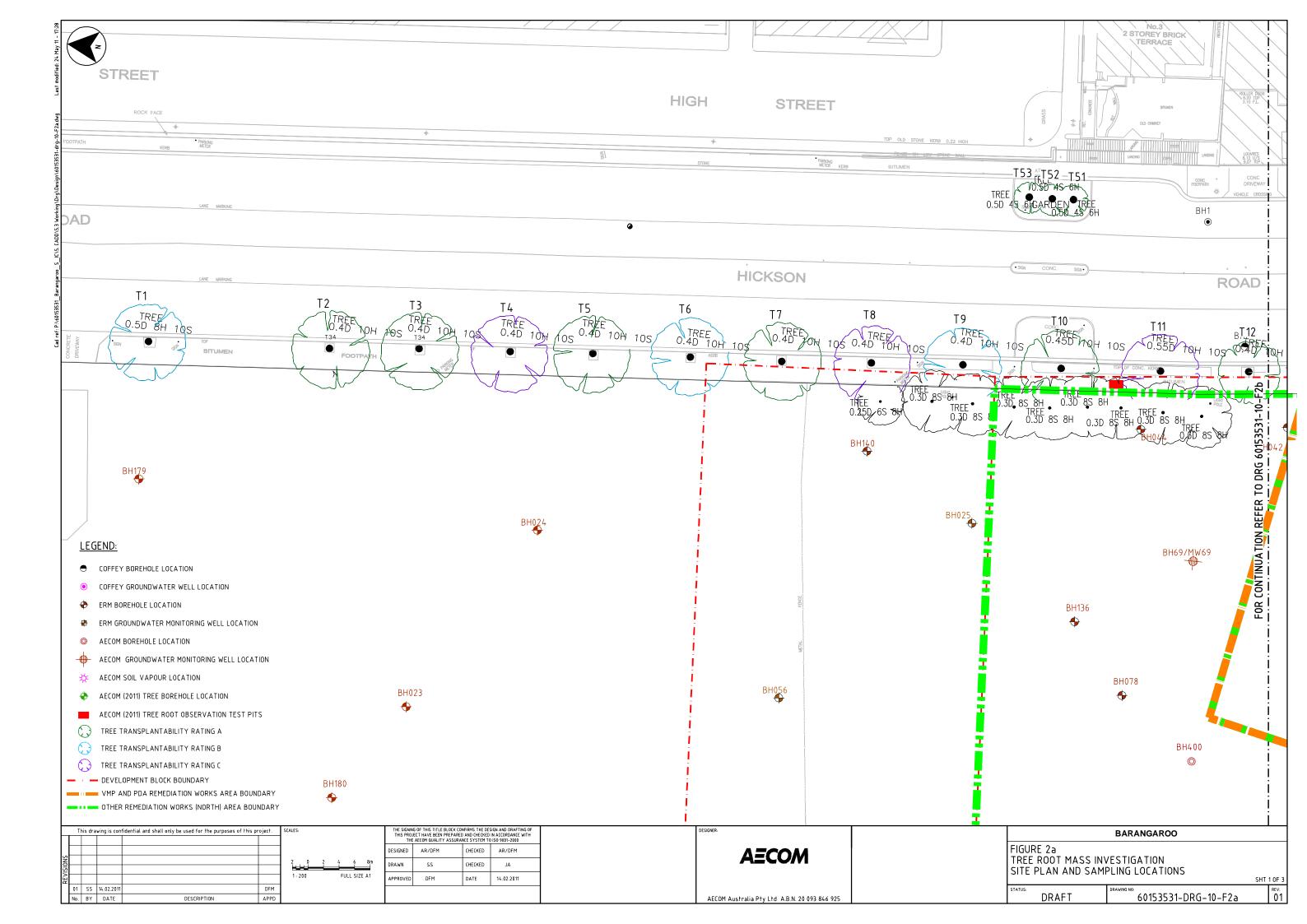
Sahl, J and Munakata-Marr, J, 2006. The effects of in situ chemical oxidation on microbiological processes: A review. *Remediation Journal*, 16 (3) 57-70.

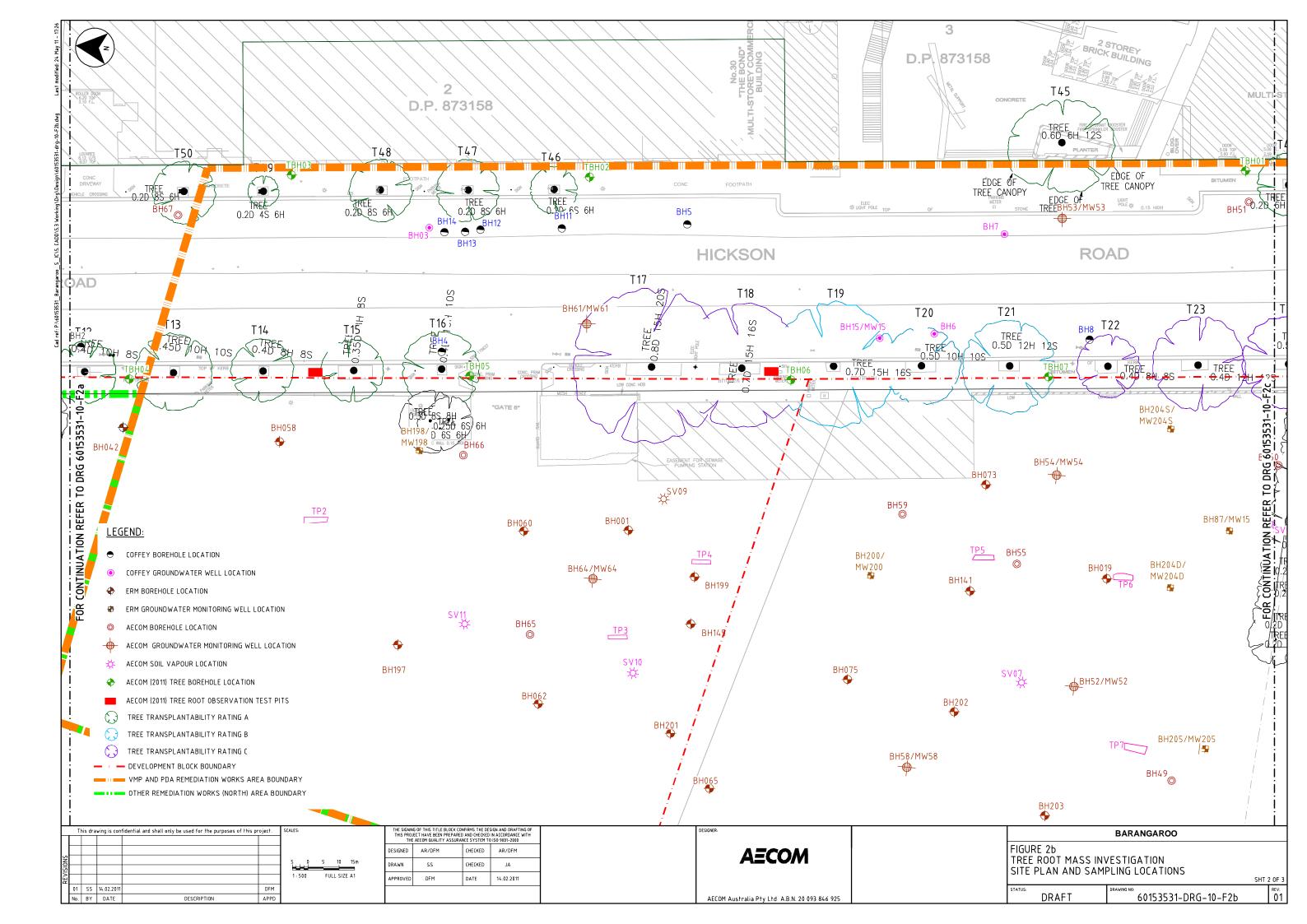
Sigma-Aldrich, 2006. Material Safety Data Sheet - Hydrogen Peroxide Concentrate. 29 October.

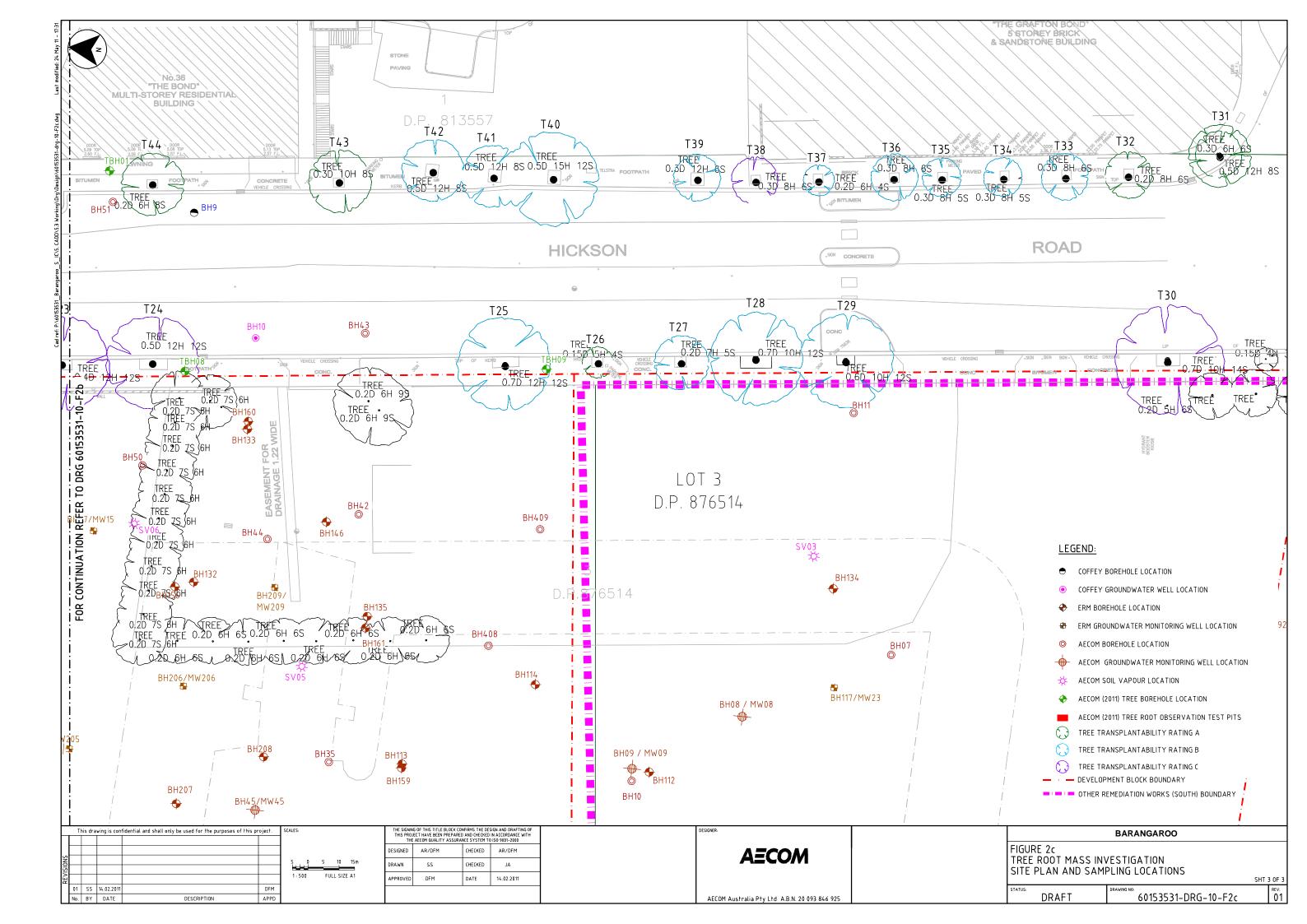
Science Lab.com, Inc, 2005. Material Safety Data Sheet – Sodium Hydroxide. September.

United States Environmental Protection Agency (USEPA), 1996. Low-Flow (Minimal Drawdown) Ground-water Sampling Procedures. Puls and Barcelona, 1996. USEPA Reference EPA/540/S-95/504.

USEPA, 2009. Regional Screening Levels (RSLs).


VeruTEK Technologies Inc, 2006. Material Safety data Sheet - VeruSOL. June.


VeruTEK Technologies Inc, 2011a. Revised Workplan and Trial Management Plan, Surfactant Enhanced In Situ Chemical Oxidation (S-ISCO) & Surfactant Enhanced Product Recovery (SEPR), Block 5 and Hickson Road Pilot Trial. May 2011.


VeruTEK Technologies Inc, 2011b. White Paper: Surfactant Enhanced In Situ Chemical Oxidation (S-ISCO) Technology.

# Appendix A

# Figures







Appendix B

# **Tables**



Tree Root Investigation Table T2 Barangaroo Soil Analytical Results

|                   |                              |                |      | Location    | TBH01                       | TBH03                       | TBH03                       | TBH05                       | TBH05                       | TBH05                       | TBH06                       | TBH06                       | TBH07                       | TBH08                       |
|-------------------|------------------------------|----------------|------|-------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                   |                              |                |      | Field ID    | TBH01_0.43-0.5              | TBH03_1.2-1.3               | TBH03_1.5-1.6               | TBH05_0.6-0.7               | TBH05_1.3-1.7               | TBH05_1.8-2.0               | TBH06_0.55-0.6              | TBH06_1.5-2.0               | TBH07_0.1-0.15              | TBH08_0.13-0.25             |
|                   |                              |                |      | Sample Date | 5/02/2011                   | 5/02/2011                   | 5/02/2011                   | 12/02/2011                  | 12/02/2011                  | 12/02/2011                  | 5/02/2011                   | 12/02/2011                  | 4/02/2011                   | 4/02/2011                   |
|                   |                              |                |      | Consultant  | AECOM                       |
|                   |                              |                |      | Matrix      | Fill                        |
|                   |                              |                |      | Area        | VMP & PDA -<br>Hickson Road |
| _                 |                              | 1              | 1    |             | HICKSOII ROAU               | HICKSOII KOAU               | HICKSOII ROAU               | HICKSOII ROAU               | HICKSOII ROAU               |
| Chemical<br>Group | Chemical Name                | output<br>unit | EQL  | VMP SSTC    |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
| PAHs              | CPAH (Total)                 | mg/kg          |      |             | 8.7                         | <4                          | <4                          | <4                          | 2.2                         | 113.2                       | 3.1                         | <4                          | 39.4                        | 6.4                         |
|                   | CPAH (TEF)                   | mg/kg          |      | 67          | 2.22                        | <1.21                       | <1.21                       | <1.21                       | 0.85                        | 28.753                      | 0.967                       | <1.21                       | 10.663                      | 1.828                       |
|                   | PAH (Total)                  | mg/kg          |      |             | 16.5                        | <8                          | <8                          | <8                          | 4.1                         | 161.8                       | 7.3                         | <8                          | 58.6                        | 12.3                        |
|                   | Acenaphthene                 | mg/kg          | 0.5  |             | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 0.6                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
|                   | Acenaphthylene               | mg/kg          | 0.5  |             | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 0.9                         | <0.5                        | <0.5                        | 1.4                         | <0.5                        |
|                   | Anthracene                   | mg/kg          | 0.5  |             | 0.5                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 3.1                         | <0.5                        | <0.5                        | 1.4                         | <0.5                        |
|                   | Benz(a)anthracene            | mg/kg          | 0.5  |             | 1.9                         | <0.5                        | <0.5                        | <0.5                        | 0.7                         | 15.6                        | 0.9                         | <0.5                        | 4.7                         | 1.3                         |
|                   | Benzo(a) pyrene              | mg/kg          | 0.5  |             | 1.7                         | <0.5                        | <0.5                        | <0.5                        | 0.7                         | 18.8                        | 0.8                         | <0.5                        | 7.8                         | 1.5                         |
|                   | Benzo(b)&(k)fluoranthene     | mg/kg          | 1    |             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
|                   | Benzo(b)fluoranthene         | mg/kg          | 0.5  |             | 1.8                         | <0.5                        | <0.5                        | <0.5                        | 0.8                         | 23.8                        | 0.7                         | <0.5                        | 8                           | 1.3                         |
|                   | Benzo(g,h,i)perylene         | mg/kg          | 0.5  |             | 0.6                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 15.1                        | <0.5                        | <0.5                        | 6.5                         | 0.7                         |
|                   | Benzo(k)fluoranthene         | mg/kg          | 0.5  |             | 0.7                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 9.3                         | <0.5                        | <0.5                        | 2.7                         | 0.5                         |
|                   | Chrysene                     | mg/kg          | 0.5  |             | 1.4                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 13.2                        | 0.7                         | <0.5                        | 4.8                         | 1.1                         |
|                   | Dibenz(a,h)anthracene        | mg/kg          | 0.5  |             | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 3.4                         | <0.5                        | <0.5                        | 0.8                         | <0.5                        |
|                   | Fluoranthene                 | mg/kg          | 0.5  |             | 3.1                         | <0.5                        | <0.5                        | <0.5                        | 1                           | 19.1                        | 1.7                         | <0.5                        | 6.4                         | 2.8                         |
|                   | Fluorene                     | mg/kg          | 0.5  |             | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
|                   | Indeno(1,2,3-c,d)pyrene      | mg/kg          | 0.5  |             | 0.6                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 14                          | <0.5                        | <0.5                        | 4.1                         | <0.5                        |
|                   | Naphthalene                  | mg/kg          | 0.5  |             | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 0.6                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
|                   | Phenanthrene                 | mg/kg          | 0.5  |             | 1.2<br>3                    | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 8.3                         | 0.6                         | <0.5                        | 1.4<br>8.6                  | <0.5                        |
| TDU               | Pyrene                       | mg/kg          | 0.5  |             |                             | <0.5                        | <0.5                        | <0.5                        | 0.9                         | 16                          | 1.9                         | <0.5                        |                             | 3.1                         |
| TPH               | TPH C15-C36<br>TPH C10 - C14 | mg/kg          | 50   | 54000       | <200<br><50                 | <200<br><50                 | <200<br><50                 | <200<br><50                 | <200<br><50                 | 1210<br><50                 | <200<br><50                 | <200<br><50                 | 700<br><50                  | 370<br><50                  |
|                   | TPH C10 - C14 TPH C15-C28    | mg/kg<br>mg/kg | 100  | 72000       | <50<br><100                 | <50<br><100                 | <50<br><100                 | <50<br><100                 | <100                        | 600                         | <100                        | <50<br><100                 | 280                         | 110                         |
|                   | TPH C13-C28                  | mg/kg          | 100  | 21,000      | <100                        | <100                        | <100                        | <100                        | <100                        | 610                         | <100                        | <100                        | 420                         | 260                         |
|                   | TPH C6 - C9                  | mg/kg          | 100  | 21,000      | <100                        | <100                        | <100                        | <100                        | <100                        | <10                         | <100                        | <100                        | <10                         | <10                         |
|                   | TPH+C10 - C36 (Sum of total) | mg/kg          | 50   |             | <50                         | <50                         | <50                         | <50                         | <50                         | 1210                        | <50                         | <50                         | 700                         | 370                         |
| BTEX              | Total Xylene (ESDAT)         | mg/kg          | 0.15 |             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| BILX              | Benzene                      | mg/kg          | 0.10 | 380         | <0.2                        | <0.2                        | <0.2                        | <0.2                        | <0.2                        | <0.2                        | <0.2                        | <0.2                        | <0.2                        | <0.2                        |
|                   | Ethylbenzene                 | mg/kg          | 0.5  | 000         | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
|                   | Toluene                      | mg/kg          | 0.5  |             | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
|                   | Xylene (m & p)               | mg/kg          | 0.5  |             | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
|                   | Xylene (o)                   | mg/kg          | 0.5  |             | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
| Metals            | Arsenic                      | mg/kg          | 2    |             | <5                          | <5                          | <5                          | <5                          | <5                          | <5                          | <5                          | <5                          | 5                           | <5                          |
|                   | Cadmium                      | mg/kg          | 0.5  |             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
|                   | Chromium                     | mg/kg          | 2    |             | 12                          | 6                           | 13                          | 103                         | 4                           | 4                           | 8                           | 7                           | 46                          | 11                          |
|                   | Copper                       | mg/kg          | 5    |             | 11                          | 23                          | 47                          | 39                          | 9                           | 51                          | 28                          | <5                          | 51                          | 76                          |
|                   | Lead                         | mg/kg          | 5    |             | 103                         | 11                          | 20                          | 10                          | 26                          | 115                         | 20                          | <5                          | 25                          | 26                          |
|                   | Mercury                      | mg/kg          | 0.1  |             | 0.2                         | <0.1                        | <0.1                        | <0.1                        | <0.1                        | <0.1                        | <0.1                        | <0.1                        | <0.1                        | <0.1                        |
| 1                 | Nickel                       | mg/kg          | 2    |             | 4                           | 8                           | 10                          | 52                          | <2                          | 18                          | 5                           | <2                          | 49                          | 10                          |
|                   | Zinc                         | mg/kg          | 5    |             | 30                          | 98                          | 106                         | 15                          | 29                          | 344                         | 29                          | <5                          | 43                          | 38                          |

### Notes

mg/kg = milligrams per kilogram
EQL = Estimated Quantitation Limit

< denotes result less than EQL

VMP SSTC - Site Specific Target Criteria for the VMP Area

shading denotes concentration greater than criteria

CPAH= Sum of 8 carcinogenic PAH Compounds (Benz(a)anthracene Benzo(a)

pyrene; Benzo(b)fluoranthene; Benzo(g,h,i)perylene; Benzo(k)fluoranthene;

Chrysene; Dibenz(a,h)anthracene and Indeno(1,2,3-c,d)pyrene)

TEF - Toxicity Equivalent Factor

TPH - Total Petroleum Hydrocarbons

BAH Belyeselia Argentie Hydrocarbone (BAH)

PAH - Polycyclic Aromatic Hydrocarbons (PAH)

\* TPH C6-C9 aliphatic

\* \*TPH C10-C14 aliphatic and aromatic
note TPH in table not speciated



Tree Root Investigation Table T3 Barangaroo Historical Soil Analytical Results

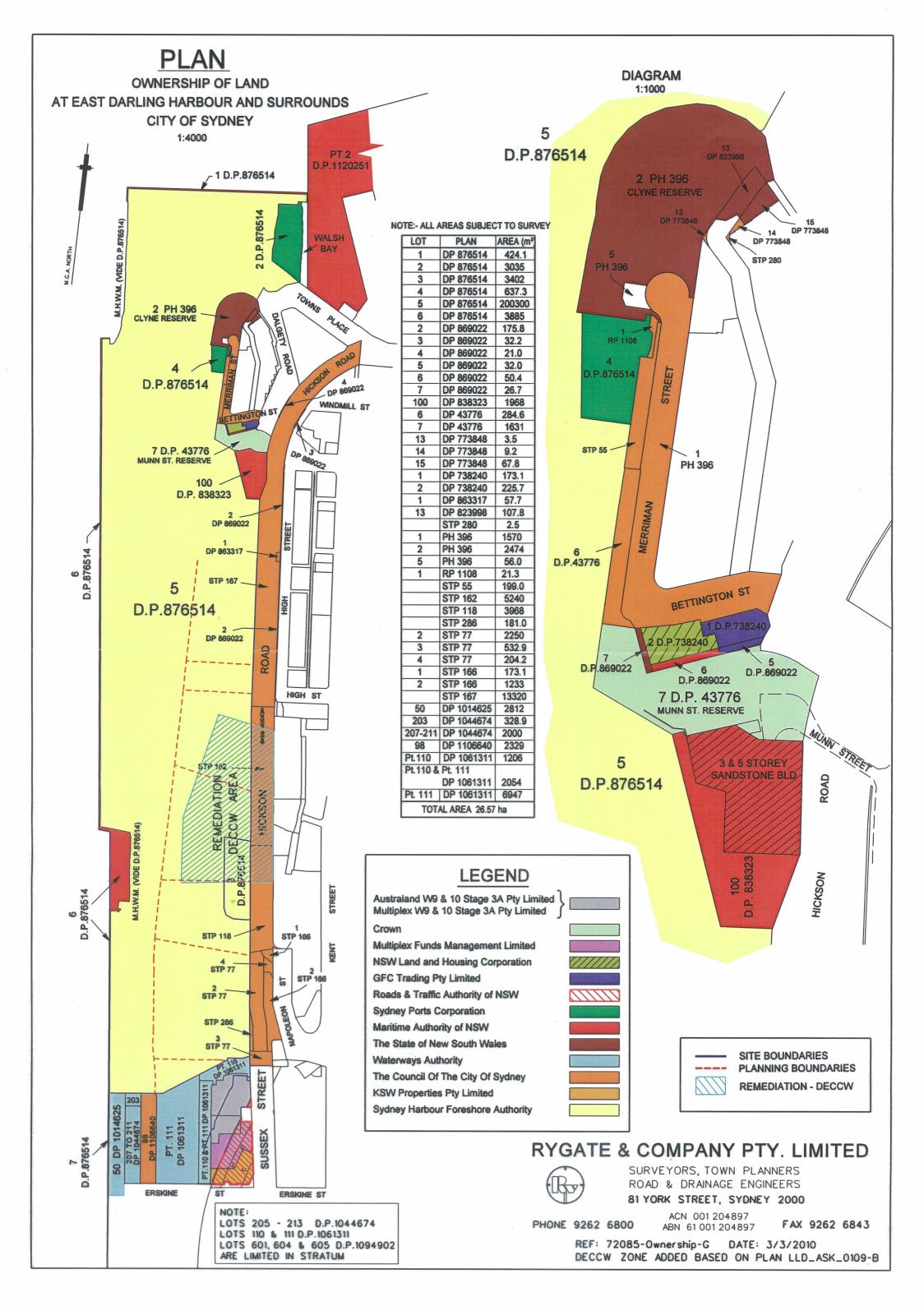
|                   |                                     |                |           | Location                  | BH4                         | BH5                         | BH5                         | BH8                         | BH8                         | BH9                         | MW3                         | MW3                         | MW6                         | AECOM_BH51                  |                             | AECOM_BH61                  | AECOM_BH67                  |
|-------------------|-------------------------------------|----------------|-----------|---------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                   |                                     |                |           | Field ID                  | BH4 0.4-0.5                 | BH5 0.4-0.5                 | BH5 1.2-1.3                 | BH8 0.26-0.4                | BH8 0.6-0.7                 | BH9 0.4-0.5                 | MW3 0.4-0.5                 | MW3 0.9-1.0                 | MW6 0.8-0.9                 | BH51_0.4-0.5                | BH53_1.1-1.5                | BH61_0.3-0.4                | BH67_0.4-0.43               |
|                   |                                     |                |           | Sample Date<br>Consultant | 21/02/2008                  | 23/02/2008                  | 23/02/2008<br>Coffey        | 19/02/2008<br>Coffey        | 19/02/2008<br>Coffey        | 21/02/2008<br>Coffev        | 23/02/2008<br>Coffey        | 23/02/2008<br>Coffev        | 20/02/2008<br>Coffev        | 6/03/2010<br>AECOM          | 6/03/2010<br>AECOM          | 6/03/2010<br>AECOM          | 6/03/2010<br>AECOM          |
|                   |                                     |                |           | Matrix                    | Coffey<br>Fill              | Coffey<br>Fill              | Natural Clayey Sand         | Fill                        |
|                   |                                     |                |           | Area                      |                             |                             | 1 1                         |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
|                   |                                     |                |           | Alou                      | VMP & PDA -<br>Hickson Road |
| Chemical<br>Group | Chemical Name                       | output<br>unit | EQL       | VMP SSTC                  |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
| PAHs              | CPAH (Total)<br>CPAH (TEF)          | mg/kg          |           | 67                        | <3<br><1.11                 | 29.2<br>8.491               | 0.6<br>0.06                 | 61.9<br>21.841              | 91.6<br>37.753              | 0.6<br>0.06                 | 2.5<br>0.16                 | 95.2<br>19.996              | <3<br><1.11                 | 5.9<br>1.256                | 226.6<br>56.149             |                             | 81.5<br>12.389              |
|                   | PAH (Total)                         | mg/kg<br>mg/kg | -         | 67                        | <7                          | 82.9                        | 4.6                         | 136.7                       | 274.5                       | 1.7                         | 5.1                         | 468.5                       | <7                          | 10.6                        | 668.3                       |                             | 131.2                       |
|                   | 2-chloronaphthalene                 | mg/kg          | 0.5       |                           | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 10.0                        | 000.0                       |                             | 101.2                       |
|                   | 2-methylnaphthalene                 | mg/kg          | 0.5       |                           | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 1.4                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |                             | <0.5                        |
|                   | 3-methylcholanthrene                | mg/kg          | 0.5       |                           | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |                             |                             |                             |                             |
|                   | Acenaphthene                        | mg/kg          | 0.5       |                           | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | 1.7                         | <0.5                        | <0.5                        | 5.4                         |                             | <0.5                        |
|                   | Acenaphthylene                      | mg/kg          | 0.5       |                           | <0.5                        | 6.4                         | <0.5                        | 7.4                         | 17.1                        | <0.5                        | 0.6                         | 42.5                        | <0.5                        | <0.5                        | 13                          |                             | 3.2                         |
|                   | Anthracene                          | mg/kg          | 0.5       |                           | <0.5<br><0.5                | 4.4<br>11.8                 | <0.5<br>0.6                 | 5.9<br>24                   | 11.5<br>33.5                | <0.5<br>0.6                 | <0.5<br>0.8                 | 13.8<br>44.6                | <0.5<br><0.5                | <0.5<br>1.3                 | 25.7<br>52.3                |                             | 3.4<br>16.2                 |
|                   | Benz(a)anthracene Benzo(a) pyrene   | mg/kg<br>mg/kg | 0.5       |                           | <0.5<br><0.5                | 6.9                         | <0.5                        | 16.1                        | 33.5                        | <0.5                        | 0.8<br><0.5                 | 11.7                        | <0.5<br><0.5                | 0.9                         | 52.3<br>38.1                |                             | 5.5                         |
|                   | Benzo(b)&(k)fluoranthene            | mg/kg          | 1         |                           | <0.5                        | 20                          | <0.5                        | 34                          | 57                          | <0.5<br><1                  | 1                           | 62                          | <0.5<br><1                  | 0.5                         | 50.1                        |                             | 5.5                         |
| 1                 | Benzo(b)fluoranthene                | mg/kg          | 0.5       |                           |                             |                             | · · ·                       | J.                          |                             |                             | i i                         |                             | ,,                          | 1.4                         | 50.4                        |                             | 20.3                        |
|                   | Benzo(g,h,i)perylene                | mg/kg          | 0.5       |                           | <0.5                        | 2.2                         | <0.5                        | 4.5                         | 4.8                         | <0.5                        | 1                           | 4.2                         | <0.5                        | 0.5                         | 16.8                        |                             | 6.3                         |
|                   | Benzo(k)fluoranthene                | mg/kg          | 0.5       |                           |                             |                             |                             |                             |                             |                             |                             |                             |                             | 0.7                         | 13.8                        |                             | 8.7                         |
|                   | Chrysene                            | mg/kg          | 0.5       |                           | <0.5                        | 4.9                         | <0.5                        | 7.6                         | 10.5                        | <0.5                        | <0.5                        | 23.4                        | <0.5                        | 1.1                         | 36.1                        |                             | 17.6                        |
|                   | Dibenz(a,h)anthracene               | mg/kg          | 0.5       |                           | <0.5                        | <0.5                        | <0.5                        | 2.5                         | 2                           | <0.5                        | <0.5                        | 2.7                         | <0.5                        | <0.5                        | 4.4                         |                             | 1.6                         |
|                   | Fluoranthene                        | mg/kg          | 0.5       |                           | <0.5<br><0.5                | 15.9                        | 0.8                         | 23<br>0.8                   | 62<br>1.9                   | 0.5                         | 0.7                         | 91.1<br>8.5                 | <0.5<br><0.5                | 1.9<br><0.5                 | 142                         |                             | 17.7<br><0.5                |
|                   | Fluorene<br>Indeno(1,2,3-c,d)pyrene | mg/kg<br>mg/kg | 0.5       |                           | <0.5<br><0.5                | <0.5<br>3.4                 | <0.5<br><0.5                | 7.2                         | 9.5                         | <0.5<br><0.5                | <0.5<br>0.7                 | 8.5<br>8.6                  | <0.5<br><0.5                | <0.5<br><0.5                | 15.6<br>14.7                |                             | <0.5<br>5.3                 |
|                   | Naphthalene                         | mg/kg          | 0.5       |                           | <0.5                        | 0.7                         | 1.6                         | 0.9                         | 2.3                         | <0.5                        | <0.5                        | 2.5                         | <0.5                        | <0.5                        | 20.8                        |                             | 0.9                         |
|                   | PAHs (Sum of total)                 | mg/kg          | 0.5       |                           | <b>V0.5</b>                 | 0.7                         | 1.0                         | 0.5                         | 2.5                         | V0.5                        | <b>VO.5</b>                 | 2.0                         | V0.5                        | 10.6                        | 668                         |                             | 131                         |
|                   | Phenanthrene                        | mg/kg          | 0.5       |                           | <0.5                        | 11.6                        | 0.7                         | 12.6                        | 24.8                        | <0.5                        | 0.5                         | 120                         | <0.5                        | 0.8                         | 91.2                        |                             | 7.9                         |
|                   | Pyrene                              | mg/kg          | 0.5       |                           | <0.5                        | 14.7                        | 0.9                         | 24.2                        | 63.3                        | 0.6                         | 0.8                         | 93.2                        | <0.5                        | 2                           | 128                         |                             | 16.6                        |
| TPH               | TPH C15-C36                         | mg/kg          |           |                           | <200                        | 1700                        | <200                        | 510                         | 2370                        | <200                        | <200                        | 3270                        | <200                        | <200                        | 3250                        | <200                        | 1270                        |
|                   | TPH C10 - C14                       | mg/kg          | 50        | 54000                     | <50                         | <50                         | <50                         | <50                         | <50                         | <50                         | <50                         | 1010                        | <50                         | <50                         | <50                         | <50                         | <50                         |
|                   | TPH C15-C28                         | mg/kg          | 100       | 72000                     | <100                        | 1060                        | <100                        | 310                         | 1380                        | <100                        | <100                        | 2510                        | <100                        | <100                        | 1920                        | <100                        | 700                         |
|                   | TPH C29-C36<br>TPH C6 - C9          | mg/kg          | 100<br>10 | 21,000                    | <100<br><10                 | 640                         | <100<br><10                 | 200<br><10                  | 990<br><10                  | <100<br><10                 | <100<br><10                 | 760<br><10                  | <100<br><10                 | <100<br><10                 | 1330<br><10                 | <100<br><10                 | 570<br><10                  |
|                   | TPH+C10 - C36 (Sum of total)        | mg/kg<br>mg/kg | 50        |                           | <250                        | <10<br>1700                 | <250                        | 510                         | 2370                        | <250                        | <250                        | 4280                        | <250                        | <50                         | 3250                        | <50                         | 1270                        |
| BTEX              | Total Xvlene (ESDAT)                | mg/kg          | 0.15      |                           | <1                          | <1                          | 0.8                         | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| J.27              | Benzene                             | mg/kg          | 0.2       | 380                       | <0.2                        | <0.2                        | 2                           | <0.2                        | <0.2                        | <0.2                        | <0.2                        | <0.2                        | <0.2                        | <0.2                        | 0.4                         | <0.2                        | <0.2                        |
|                   | Ethylbenzene                        | mg/kg          | 0.5       |                           | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
|                   | Toluene                             | mg/kg          | 0.5       |                           | <0.5                        | <0.5                        | 0.7                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
|                   | Xylene (m & p)                      | mg/kg          | 0.5       |                           | <0.5                        | <0.5                        | 0.8                         | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
|                   | Xylene (o)                          | mg/kg          | 0.5       |                           | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        | <0.5                        |
| Metals            | Aluminium                           | mg/kg          | 50        |                           |                             |                             | 2160                        |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
|                   | Antimony<br>Arsenic                 | mg/kg<br>mg/kg | 5<br>2    |                           | <5                          | <5                          | <5<br>6                     | <5                          | <5                          | <5                          | <5                          | <5                          | 7                           | <5                          | 8                           | <5                          | <5                          |
|                   | Barium                              | mg/kg          | 10        |                           | 60                          | 30                          | 100                         |                             | \3                          |                             | ν,                          | \0                          | ,                           | ν,                          | 0                           | 73                          | 20                          |
|                   | Beryllium                           | mg/kg          | 1         |                           | <1                          | 1                           | <1                          |                             |                             |                             |                             |                             |                             |                             |                             |                             | <1                          |
|                   | Cadmium                             | mg/kg          | 0.5       |                           | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
|                   | Chromium                            | mg/kg          | 2         |                           | 7                           | 7                           | 110                         | 13                          | 23                          | 9                           | 10                          | <2                          | 8                           | 12                          | 7                           | 8                           | 3                           |
|                   | Chromium (hexavalent)               | mg/kg          | 0.5       |                           |                             |                             | 0.9                         |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
|                   | Cobalt                              | mg/kg          | 2         |                           | 2                           | 12                          | 10                          |                             | 40                          |                             | 4.5                         |                             | 40                          |                             | 40                          | _                           | 2                           |
|                   | Copper                              | mg/kg          | 5<br>5    |                           | 17<br>95                    | <5<br>26                    | 75<br>203                   | 6<br>21                     | 13<br>37                    | 31                          | 15                          | <5<br>-5                    | 18<br>211                   | 27<br>50                    | 12<br>1420                  | 6<br>13                     | 10<br>46                    |
|                   | Lead<br>Manganese                   | mg/kg<br>mg/kg | 5         |                           | 95<br>172                   | 26                          | 203<br>172                  | ∠1                          | 3/                          | 24                          | 21                          | <5                          | ∠11                         | 90                          | 1420                        | 13                          | 46<br>24                    |
|                   | Mercury                             | mg/kg          | 0.1       |                           | 0.1                         | <0.1                        | <0.1                        | 0.7                         | 0.2                         | <0.1                        | 0.5                         | <0.1                        | 0.1                         | <0.1                        | <0.1                        | <0.1                        | <0.1                        |
|                   | Nickel                              | mg/kg          | 2         |                           | 4                           | 9                           | 98                          | 10                          | 6                           | 6                           | 6                           | <2                          | 3                           | 7                           | 6                           | 5                           | <2                          |
|                   | Selenium                            | mg/kg          | 5         |                           |                             | -                           | <5                          |                             | -                           | -                           | -                           | -                           | -                           |                             |                             | <del>-</del>                |                             |
|                   | Silver                              | mg/kg          | 2         |                           |                             |                             | <2                          |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
| 1                 | Tin                                 | mg/kg          | 5         |                           |                             |                             | <5                          |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
|                   | Vanadium                            | mg/kg          | 5         |                           | 12                          | 13                          | 37                          |                             | i                           | I                           | 1                           | 1                           | l                           | 1                           |                             |                             | 8                           |
| 1                 | Zinc                                | mg/kg          | 5         |                           | 75                          | 38                          | 86                          | 22                          | 30                          | 44                          | 28                          | 23                          | 57                          | 67                          | 531                         | 44                          | 36                          |

Notes
mg/kg = milligrams per kilogram
EQL = Estimated Quantitation Limit
< denotes result less than EQL
VMP SSTC - Site Specific Target Criteria for the VMP Area
shading denotes concentration greater than criteria
CPAH= Sum of 8 carcinogenic PAH Compounds (Benz(a)anthracene Benzo(a)
pyrene; Benzo(b)fluoranthene; Benzo(g,h,i)perylene; Benzo(k)fluoranthene;
Chrysene; Dibenz(a,h)anthracene and Indeno(1,2,3-c,d)pyrene)
TEF - Toxicity Equivalent Factor
TPH - Total Petroleum Hydrocarbons
PAH - Polycyclic Aromatic Hydrocarbons (PAH)
note TPH in table not speciated

Data Entry: KP Data Review: AR AECOM 6/11/2012 60153531\_T3\_20121102.xlsm Page 1 of 1



|                                 |          | Field_ID     | TBH01_0.43-0.5 | DUP 01                            | RPD | TRIP01                                       | RPD | TBH05_1.8-2.0                         | DUP02                          | RPD |
|---------------------------------|----------|--------------|----------------|-----------------------------------|-----|----------------------------------------------|-----|---------------------------------------|--------------------------------|-----|
|                                 |          | Sampled_Date | 5/02/2011      | 5/02/2011                         | %   | 5/02/2011                                    | %   | 12/02/2011                            | 12/02/2011                     | %   |
|                                 |          | SampleCode   | ES1102539004   | ES1102539007                      |     | A11-FE30616                                  |     | ES1103303002                          | ES1103303007                   |     |
| ChemName output unit            |          | LOR          | Primary Sample | Field Duplicate of TBH01_0.43-0.5 |     | Field Inter- Laboratory Du<br>TBH01_0.43-0.5 |     | Primary Sample                        | Field Duplicate of TBH05_1.8-2 |     |
| BTEX                            |          |              |                |                                   |     |                                              |     |                                       |                                |     |
| Benzene                         | mg/kg    | 0.2          | <0.2           | <0.2                              | nc  | <0.5                                         | nc  | <0.2                                  | <0.2                           | nc  |
| Ethylbenzene                    | mg/kg    | 0.5          | <0.5           | <0.5                              | nc  | <0.5                                         | nc  | <0.5                                  | <0.5                           | nc  |
| Toluene                         | mg/kg    | 0.5          | <0.5           | <0.5                              | nc  | <0.5                                         | nc  | <0.5                                  | <0.5                           | nc  |
| Xylene (m & p)                  | mg/kg    | 0.5          | <0.5           | <0.5                              | nc  | <1                                           | nc  | <0.5                                  | < 0.5                          | nc  |
| Xylene (o)                      | mg/kg    | 0.5          | < 0.5          | <0.5                              | nc  | <0.5                                         | nc  | <0.5                                  | < 0.5                          | nc  |
| Total Xylene (ESDAT)            | mg/kg    | 0.15         | <1             | <1                                | nc  | <0.15                                        | nc  | <1                                    | <1                             | nc  |
| Metals                          |          |              |                |                                   |     |                                              |     |                                       |                                |     |
| Arsenic                         | mg/kg    | 2            | <5             | <b>&lt;</b> 5                     | nc  | 2.4                                          | nc  | <5                                    | <5                             | nc  |
| Cadmium                         | mg/kg    | 0.5          | <1             | <1                                | nc  | <0.5                                         | nc  | <1                                    | <1                             | nc  |
| Chromium                        | mg/kg    | 2            | 12             | 16                                | 29  | 10                                           | 18  | 4                                     | 6                              | 40  |
| Copper                          | mg/kg    | 5            | 11             | 12                                | 9   | 31                                           | 95  | 51                                    | 54                             | 6   |
| <u>Lead</u>                     | mg/kg    | 5            | 103            | 71                                | 37  | 120                                          | 15  | 115                                   | 113                            | 2   |
| Mercury                         | mg/kg    | 0.1          | 0.2            | <0.1                              | nc  | <0.1                                         | nc  | <0.1                                  | <0.1                           | nc  |
| Nickel                          | mg/kg    | 2            | 4              | 4                                 | 0   | <5                                           | nc  | 18                                    | 18                             | 0   |
| Zinc                            | mg/kg    | 5            | 30             | 24                                | 22  | 25                                           | 18  | 344                                   | 362                            | 5   |
| Polycyclic Aromatic Hydrocarbor | s (PAHs) |              |                |                                   |     |                                              |     |                                       |                                |     |
| Acenaphthene                    | mg/kg    | 0.5          | <0.5           | <0.5                              | nc  | <0.5                                         | nc  | 0.6                                   | 0.6                            | 0   |
| Acenaphthylene                  | mg/kg    | 0.5          | <0.5           | <0.5                              | nc  | <0.5                                         | nc  | 0.9                                   | 0.7                            | 25  |
| Anthracene                      | mg/kg    | 0.5          | 0.5            | <0.5                              | nc  | <0.5                                         | nc  | 3.1                                   | 3.6                            | 15  |
| Benz(a)anthracene               | mg/kg    | 0.5          | 1.9            | <0.5                              | nc  | 0.8                                          | 81  | 15.6                                  | 14.6                           | 7   |
| Benzo(a) pyrene                 | mg/kg    | 0.5          | 1.7            | <0.5                              | nc  | 1                                            | 52  | 18.8                                  | 16.1                           | 15  |
| Benzo(b)&(k)fluoranthene        | mg/kg    | 1            |                |                                   |     | 1.7                                          |     |                                       |                                |     |
| Benzo(b)fluoranthene            | mg/kg    | 0.5          | 1.8            | <0.5                              | nc  |                                              |     | 23.8                                  | 18.1                           | 27  |
| Benzo(g,h,i)perylene            | mg/kg    | 0.5          | 0.6            | <0.5                              | nc  | 0.7                                          | 15  | 15.1                                  | 11.5                           | 27  |
| Benzo(k)fluoranthene            | mg/kg    | 0.5          | 0.7            | <0.5                              | nc  |                                              |     | 9.3                                   | 10.9                           | 16  |
| Chrysene                        | mg/kg    | 0.5          | 1.4            | <0.5                              | nc  | 0.7                                          | 67  | 13.2                                  | 11.8                           | 11  |
| Dibenz(a,h)anthracene           | mg/kg    | 0.5          | <0.5           | <0.5                              | nc  | <0.5                                         | nc  | 3.4                                   | 2.5                            | 31  |
| Fluoranthene                    | mg/kg    | 0.5          | 3.1            | 0.7                               | 126 | 1.3                                          | 82  | 19.1                                  | 17.8                           | 7   |
| Fluorene                        | mg/kg    | 0.5          | < 0.5          | <0.5                              | nc  | <0.5                                         | nc  | <0.5                                  | 0.6                            | nc  |
| Indeno(1,2,3-c,d)pyrene         | mg/kg    | 0.5          | 0.6            | <0.5                              | nc  | 0.6                                          | 0   | 14                                    | 10.6                           | 28  |
| Naphthalene                     | mg/kg    | 0.5          | < 0.5          | <0.5                              | nc  | <0.5                                         | nc  | 0.6                                   | 0.8                            | 29  |
| PAHs (Sum of total)             | mg/kg    | 1            |                |                                   |     | 7.9                                          |     |                                       |                                |     |
| Phenanthrene                    | mg/kg    | 0.5          | 1.2            | <0.5                              | nc  | <0.5                                         | nc  | 8.3                                   | 9.5                            | 13  |
| Pyrene                          | mg/kg    | 0.5          | 3              | 0.7                               | 124 | 1.1                                          | 93  | 16                                    | 14.9                           | 7   |
| CPAH (ESDAT)                    | mg/kg    |              | 9.2            | <4                                | nc  | 4.3                                          | 73  | 113.2                                 | 96.1                           | 16  |
| PAH (ESDAT TOTAL)               | mg/kg    |              | 19             | 8.4                               | 77  | 9.7                                          | 65  | 162.3                                 | 144.6                          | 12  |
| Total Petroleum Hydrocarbons (1 | PH)      |              | <u> </u>       |                                   |     |                                              |     | · · · · · · · · · · · · · · · · · · · |                                |     |
| TPH C6 - C9                     | mg/kg    | 10           | <10            | <10                               | nc  | <10                                          | nc  | <10                                   | <10                            | nc  |
| TPH C10 - C14                   | mg/kg    | 50           | <50            | <50                               | nc  | <50                                          | nc  | <50                                   | <50                            | nc  |
| TPH C15-C28                     | mg/kg    | 100          | <100           | <100                              | nc  | <100                                         | nc  | 600                                   | 530                            | 12  |
| TPH C29-C36                     | mg/kg    | 100          | <100           | <100                              | nc  | <100                                         | nc  | 610                                   | 470                            | 26  |
| TPH+C10 - C36 (Sum of total)    | mg/kg    | 50           | <50            | <50                               | nc  | <100                                         | nc  | 1210                                  | 1000                           | 19  |


Notes
mg/kg - milligrams per kilogram
LOR - Laboratory Limit of Reporting
< denotes concentration less than laboratory LOR
nc - denotes not calcuable as one or more results less than LOR
RPD - Relative Percent Difference

CPAH= Sum of 8 PAH Compounds (Benz(a)anthracene Benzo(a) pyrene;

Benzo(b)fluoranthene; Benzo(g,h,i)perylene; Benzo(k)fluoranthene; Chrysene;

# Appendix C

# Ownership Plans



# Appendix D

# Borelogs

# AECOM Australia Pty Ltd **AECOM BOREHOLE LOG TBH01** Level 5, 828 Pacific Highway Gordon NSW 2072 PROJECT NUMBER \_ 60153531/5.7 DATE 05 Feb 11 PROJECT NAME Tree Root Mass Investigation Hickson Road, Millers Point NSW LOCATION Coring **DRILLING METHOD** SAMPLING METHOD Grab **LOGGED BY** Kate O'Brien **COMMENTS USCS CLASS** RECOVERY ANALYSED GRAPHIC LOG SAMPLE NUMBER PID (ppm) CONTACT DEPTH DEPTH (m BGS) LITHOLOGIC DESCRIPTION ASPHALT Asphalt Footpath 0.10 Concrete Slab FILL 0.18 Concrete Slab 0.22 Gravel (FILL), medium sized road base gravels, loose, dry, greyish brown. No odour, staining or potential asbestos containing materials observed (ACM). Concrete Slab 0.43 Sandy Gravel (FILL), fine to medium grained sand (40%), medium to cobble sized FILL TBH01\_0.43-0.5 |\* 2.4 sandstone gravel with minor brick and fine sized coke gravel, fine (<5 mm) Sandstone Bedrock Borehole terminated at 0.59 m bgs in sandstone bedrock. Total Depth: 0.59 m $\,$ 60153531\_5.7\_BORELOGS\_21FEB2011.GPJ 06/06/11

### AECOM Australia Ptv I td **BOREHOLE LOG TBH03 AE**COM Level 5, 828 Pacific Highway Gordon NSW 2072 PROJECT NUMBER 60153531/5.7 DATE 05 Feb 11 PROJECT NAME Tree Root Mass Investigation Hickson Road, Millers Point NSW **LOCATION DRILLING METHOD** Hand Auger SAMPLING METHOD Hand Auger Kate O'Brien **LOGGED BY COMMENTS** USCS CLASS ANALYSED RECOVERY GRAPHIC LOG SAMPLE NUMBER CONTACT DEPTH PID (ppm) DEPTH (m BGS) LITHOLOGIC DESCRIPTION ASPHALT Asphalt Footpath CONCRETE 0.09 Concrete Slab 0.18 Concrete Slab FILL Gravel with sand (FILL), medium dense, saturated from coring, brown/grey, CONCRETE medium sized concrete gravel. No odour, staining or asbestos containing material (ACM). Concrete Slab 0.50 CONCRETE Cemented Concrete, Brick and Sandstone. 0.70 Silty Sandy Gravel (Fill), medium dense, brown with black, fine to coarse sand with minor silt, fine sub angular and angular brick gravel, moist (from coring). No odour, staining or potential ACM observed. TBH03\_0.7-0.9 2.2 1.00 Red Clay and Sandstone Bricks (Broken). 1.20 Sandy Clay and Clayey Sand (FILL), medium dense, brown and dark grey, fine to medium grained sand, minor inclusion of fine sandstone gravel. Minor dark grey TBH03 1.2-1.3 Ж 0.2 staining and mild tar odour observed. No ACM observed. 1.50 Clayey Sand (FILL), medium stiff to stiff, low to medium plasticity, moist, fine to medium grained sand, orange and dark grey. Minor dark grey staining and mild tar odour observed. No ACM observed. 0.2 TBH03\_1.5-1.6 60153531\_5.7\_BORELOGS\_21FEB2011.GPJ 06/06/11 1.66 Borehole terminated on Sandstone (likely bedrock) Total Depth: 1.66 m

### AECOM Australia Ptv I td **BOREHOLE LOG TBH04 AE**COM Level 5, 828 Pacific Highway Gordon NSW 2072 PROJECT NUMBER 60153531/5.7 DATE 12 Feb 11 **PROJECT NAME** Tree Root Mass Investigation Hickson Road, Millers Point NSW **LOCATION DRILLING METHOD** Push Tube SAMPLING METHOD Grab/Push tube **LOGGED BY** Kate O'Brien **COMMENTS** USCS CLASS ANALYSED RECOVERY SAMPLE NUMBER GRAPHIC LOG CONTACT DEPTH PID (ppm) DEPTH (m BGS) LITHOLOGIC DESCRIPTION ASPHAL Asphalt Footpath 0.10 Gravel with sand (FILL), fine to medium sized road base gravels, greyish brown, saturated from coring. No odour, staining or ACM observed. 0.2 0.24 Concrete Slab 0.60 Sandy Gravel (FILL), weathered and crushed sandstone cobbles, dense, moist to 0.6 TBH04\_0.6-0.65 \* dry, dark yellow and brown. No odour, staining or ACM observed. 0.2 TBH04\_0.7-0.8 \* 0.80 Sandstone Boulder (FILL), dense, white, dry. No odour or staining observed. 0.90 FILL Silty Sand (FILL), medium dense, dark brown, dry, fine grained sand with silt. No odour, staining or ACM observed. 0.2 TBH04\_0.9-1.4 1.40 Gravelly Clayey Sand (FILL), medium dense, dark brown and black, slightly moist, minor fine surrounded charcoal gravel, rootlets and timber. No odour, staining or 0.2 TBH04\_1.7-2.0 \* 2.00 Borehole terminated at 2 m bgs, target depth reached. Total Depth: 2.00 m

60153531\_5.7\_BORELOGS\_21FEB2011.GPJ 06/06/11

### AECOM Australia Ptv I td **BOREHOLE LOG TBH05 AE**COM Level 5, 828 Pacific Highway Gordon NSW 2072 PROJECT NUMBER 60153531/5.7 DATE 12 Feb 11 PROJECT NAME Tree Root Mass Investigation Hickson Road, Millers Point NSW **LOCATION DRILLING METHOD** Push Tube SAMPLING METHOD Grab/Push tube Kate O'Brien **LOGGED BY COMMENTS** USCS CLASS ANALYSED RECOVERY SAMPLE NUMBER GRAPHIC LOG CONTACT DEPTH PID (ppm) DEPTH (m BGS) LITHOLOGIC DESCRIPTION ASPHAL Asphalt Footpath 0.10 Gravel (FILL), coarse concrete and brick gravel, medium dense, dry, pale brown and grey. No odour, staining or ACM observed. 0.3 Sandy Gravel (FILL), fine grained sand with minor silt, fine to medium concrete, ASPHALT brick and sandstone gravel, medium dense, dry, 5 mm tree root. No odour, staining or ACM observed. Asphalt Slab Concrete Slab 0.47 FILL Clayey Sandy Gravel (FILL), coarse to cobble sized sandstone gravel with clayey sand, dense, saturated, yellow brown. No odour, staining or ACM observed. m 0.2 0.70 Sandstone Boulder 1.00 Bitumen Slab (FILL), very dense, dry, black. No odour, staining or ACM observed. 0.2 TBH05\_1.0-1.3 1.30 Sandy Gravel (FILL), weathered sandstone cobbles/boulders, very dense, moist, dark yellow. No odour or staining observed. 20 mm Tree Root at 1.4 m 0 TBH05 1 3-1 7 \* 1.80 FILL Gravel (FILL), bituminous gravel, very dense, saturated, black. No odour or staining observed. TBH05\_1.8-2.0 2.00 DUP02 \* Borehole terminated at 2 m bgs, target depth reached. Total Depth: 2.00 m

60153531\_5.7\_BORELOGS\_21FEB2011.GPJ 06/06/11

### AECOM Australia Ptv I td **BOREHOLE LOG TBH06 AE**COM Level 5, 828 Pacific Highway Gordon NSW 2072 PROJECT NUMBER 60153531/5.7 DATE 5 Feb 2011/ 12 Feb 2011 PROJECT NAME Tree Root Mass Investigation Hickson Road, Millers Point NSW **LOCATION DRILLING METHOD** Push Tube SAMPLING METHOD Grab/Push tube Kate O'Brien **LOGGED BY COMMENTS** USCS CLASS ANALYSED RECOVERY SAMPLE NUMBER GRAPHIC LOG CONTACT DEPTH PID (ppm) DEPTH (m BGS) LITHOLOGIC DESCRIPTION Asphalt Footpath 0.10 Clavey Sandy GRAVEL (FILL), fine to coarse sandstone gravel with minor TBH06\_0.1-0.2 concrete and road base gravels, loose to medium dense, dry, brown, inclusion of 0 0.20 CONCRETE Concrete Slab 0.37 Sandy Gravel (FILL), medium sized sandstone gravel and sandstone cobbles, medium grained sand, medium dense, slightly moist, yellow and brown. No odour staining or ACM observed. 50mm tree root at 0.47 m bgs 0.1 TBH06\_0.55-0.6 |\* 0.60 Sandy Gravel (FILL), sandstone and concrete cobbles, coarse sandstone gravel and minor fine to medium grained sand, medium dense, dry, yellow/brown. No odour staining or ACM observed. 0.90 Concrete Slab 1.00 FILL Sandy Clay (FILL), medium stiff, low plasticity, fine grained sand, slightly moist. No odour staining or ACM observed. 0 TBH06\_1.5-2.0 \*2.00 Borehole terminated at 2 m bgs, target depth reached. Total Depth: 2.00 m

60153531\_5.7\_BORELOGS\_21FEB2011.GPJ 06/06/11

# AECOM Australia Pty Ltd **AE**COM **BOREHOLE LOG TBH07** Level 5, 828 Pacific Highway Gordon NSW 2072 PROJECT NUMBER 60153531/5.7 DATE 04 Feb 11 PROJECT NAME Tree Root Mass Investigation Hickson Road, Millers Point NSW LOCATION **DRILLING METHOD** Coring SAMPLING METHOD Grab **LOGGED BY** Kate O'Brien **COMMENTS USCS CLASS** RECOVERY ANALYSED GRAPHIC LOG PID (ppm) SAMPLE NUMBER CONTACT DEPTH DEPTH (m BGS) LITHOLOGIC DESCRIPTION ASPHALT Asphalt Footpath 0.10 Gravelly Sand (FILL), fine to medium grained sand with minor clay and silt, fine to coarse sub angular sandstone and road base, medium dense, slightly moist, dark brown and grey. No odour staining or ACM observed. TBH07\_0.1-0.15 |\*|0.7 0.15 ASPHALT 0.2 -Asphalt Slab. 0.32 Concrete Slab 0.77 Borehole terminated at 0.77 m bgs in concrete - maximum reach of diatube. Total Depth: 0.77 m 60153531\_5.7\_BORELOGS\_21FEB2011.GPJ 06/06/11

# AECOM Australia Pty Ltd **AE**COM **BOREHOLE LOG TBH08** Level 5, 828 Pacific Highway Gordon NSW 2072 PROJECT NUMBER 60153531/5.7 DATE 04 Feb 11 PROJECT NAME Tree Root Mass Investigation Hickson Road, Millers Point NSW LOCATION **DRILLING METHOD** Coring SAMPLING METHOD Grab **LOGGED BY** Kate O'Brien **COMMENTS USCS CLASS** RECOVERY ANALYSED GRAPHIC LOG PID (ppm) SAMPLE NUMBER CONTACT DEPTH DEPTH (m BGS) LITHOLOGIC DESCRIPTION ASPHALT Asphalt Footpath 0.13 FILL Sandy Gravel (FILL), fine to medium sized sand, fine to cobble sized gravel (sandstone, concrete and road base gravels), loose, dry to slightly moist, pale brown and grey. No odour staining or ACM observed. 0.5 TBH08\_0.13-0.25 | \*\* 50 mm tree root above asphalt subsurface slab. 0.29 Asphalt Slab. 0.77 Borehole terminated at 0.77 m bgs in asphalt - maximum reach of diatube. Total Depth: 0.77 m 60153531\_5.7\_BORELOGS\_21FEB2011.GPJ 06/06/11

# AECOM Australia Pty Ltd **AE**COM **BOREHOLE LOG TBH09** Level 5, 828 Pacific Highway Gordon NSW 2072 PROJECT NUMBER 60153531/5.7 DATE 04 Feb 11 PROJECT NAME Tree Root Mass Investigation Hickson Road, Millers Point NSW LOCATION **DRILLING METHOD** Coring SAMPLING METHOD **LOGGED BY** Kate O'Brien **COMMENTS** USCS CLASS RECOVERY ANALYSED GRAPHIC LOG PID (ppm) SAMPLE NUMBER CONTACT DEPTH DEPTH (m BGS) LITHOLOGIC DESCRIPTION ASPHALT Asphalt Footpath Gravel (FILL), fine angular road base gravels, loose, dry, greyish brown. No odour, staining or ACM observed. 0.11 FILL Gravel (FILL), concrete gravel, dense, dry, pale grey. No odour, staining or ACM observed. 0.2 ASPHALT Asphalt Slab 0.64 Borehole terminated at 0.64 m bgs in asphalt - maximum reach of diatube. Total Depth: 0.64 m 60153531\_5.7\_BORELOGS\_21FEB2011.GPJ 06/06/11

Appendix E

# Calibration Certificates

AICOM

# Photoionization Detector (Hire Unit)

Job Number/Name: 80153531/5.7 Hickson Read Tree Investigation

Frequency:

Daily on Use or Twice Daily

| PID Serial Number | Date/Time      | Fresh Air Cal.                        | Span Gas<br>concentration<br>(e.g.101 ppm<br>Isobutylene) | Span Gas Cal. | Name (print)                                  | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|----------------|---------------------------------------|-----------------------------------------------------------|---------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 4.2.11 / 11 am | 0.0                                   | 101.1 ppm4                                                | 9 100 ppm = 3 | Kat O'Rrion                                   | Johne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11                | 5.2.11 / 8am   | 0.0                                   | 100.7 ppm                                                 |               | Kate Obrie                                    | Pokre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /1                | 12-2.11/8 am   | 0.0                                   | 100 ppm+3                                                 | 102-appm      | Kate O'Brien<br>Kate O'Brien<br>Leute O'Brien | Logor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |                |                                       |                                                           |               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                                                           |               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                                                           | ,             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·                 |                |                                       |                                                           |               | - <del>; </del>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , -               | ·              |                                       |                                                           |               | +                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                                                           |               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                                                           |               | <del></del>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                                                           |               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·                 |                |                                       |                                                           |               |                                               | , and the second |
|                   |                | · · · · · · · · · · · · · · · · · · · |                                                           |               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### **PID Calibration Certificate**

Instrument

**PhoCheck Tiger** 

Serial No.

T-105429



# Air-Met Scientific Pty Ltd 1300 137 067

| ltem          | Test              | Pass     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Comments | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|-------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Battery       | Charge Condition  | ✓        | - Marie - Mari |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Fuses             | ✓        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | Annual Control of the |
|               | Capacity          | ✓        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Recharge OK?      | ✓        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Switch/keypad | Operation         | <b>✓</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Display       | Intensity         | ✓        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Operation         | ✓        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | (segments)        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Grill Filter  | Condition         | ✓        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | Seal              | <b>✓</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pump          | Operation         | <b>✓</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ··            | Filter            | ✓        | The state of the s |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Flow              | ✓        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Valves, Diaphragm | <b>~</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB           | Condition         | ✓        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Connectors    | Condition         | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sensor        | PID               | <b>′</b> | 10.6 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alarms        | Beeper            | 1        | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High   | TWA      | STEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | Settings          | ✓        | 50ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100ppm |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Software      | Version           | ✓        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , ,  | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data logger   | Operation         | ✓        | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Download      | Operation         | 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other tests:  |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor   | Serial no | Calibration gas and concentration | Certified | Gas bottle No | Instrument Reading |
|----------|-----------|-----------------------------------|-----------|---------------|--------------------|
| PID Lamp |           | 103ppm Isobutylene                | NATA      | 828SY         | 100ppm             |

Calibrated by:

Carly Hanrahan

Calibration date:

18/01/2011

Next calibration due:

17/02/2011

Appendix F

# Site Photographs

Tree Pit - Tree T11





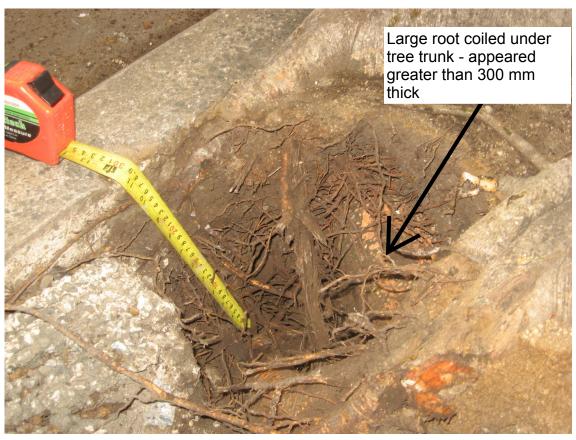
Test Pit - Tree T15

Test pit limited in extent due to concrete subsurface

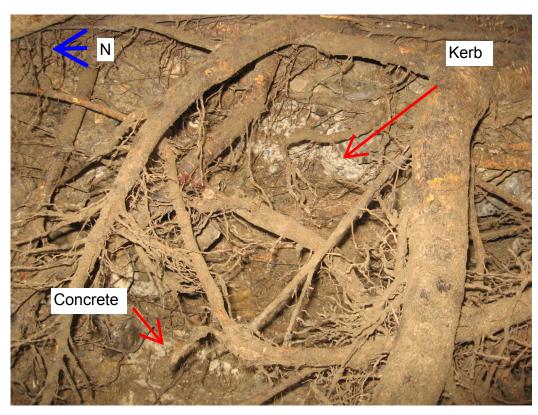


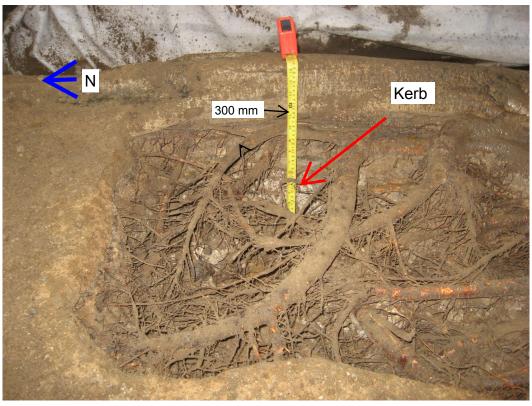


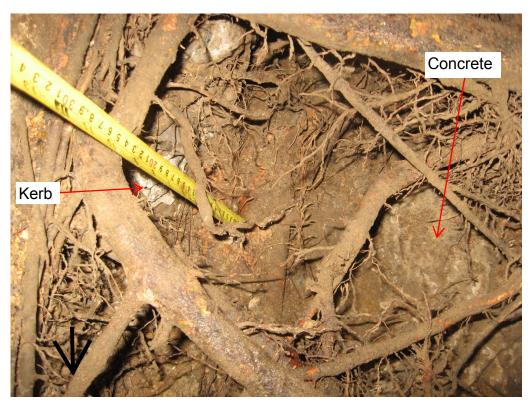




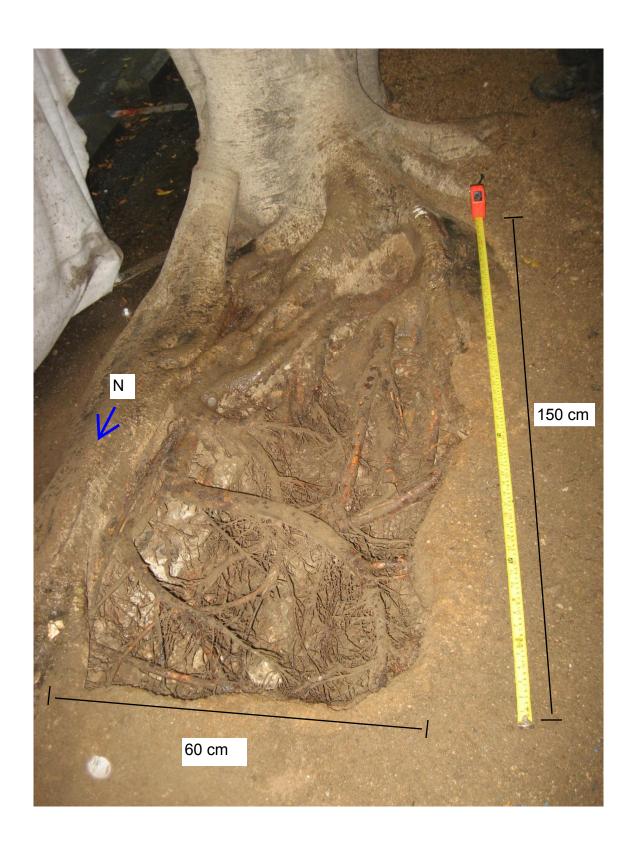

Concrete layer





Concrete layer

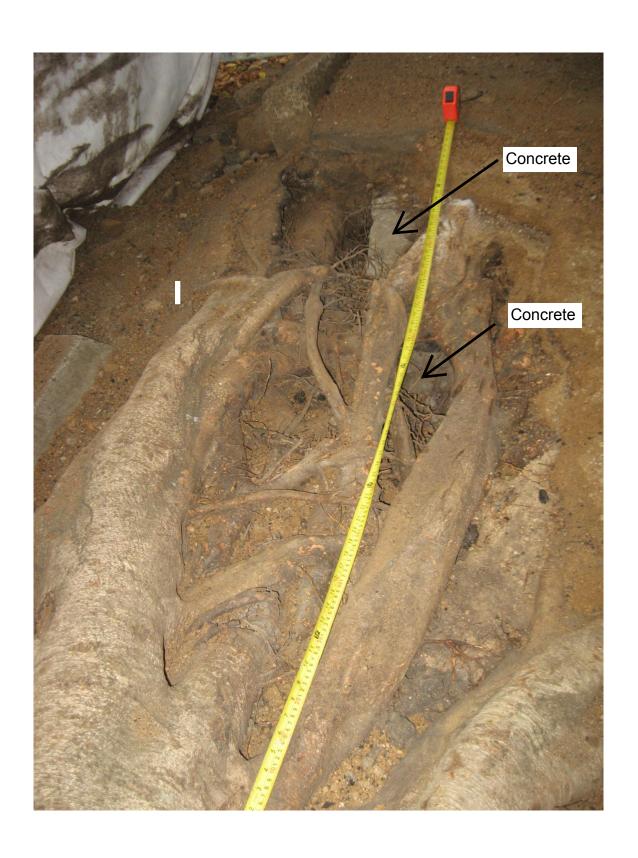






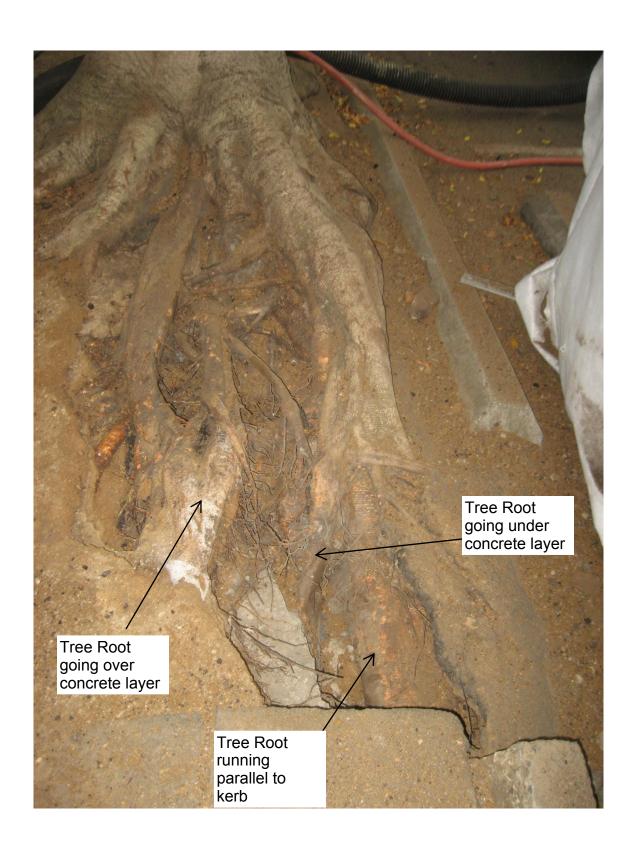







# Test Pit – Tree T18


















# Appendix G

# Laboratory Reports





## **Environmental Division**

### CERTIFICATE OF ANALYSIS

Work Order : **ES1102539** Page : 1 of 7

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Sydney

Contact : MS KATE O BRIEN Contact : Jennifer Cullen

Address : LEVEL 5, 828 PACIFIC HIGHWAY Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

GORDON NSW, AUSTRALIA 2072

Telephone : +61 02 8484 8999 Telephone : +61 2 8784 8509
Facsimile : +61 02 8484 8989 Facsimile : +61 2 8784 8500

Project : 60153531 5 7 HICKSON ROAD QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : 38962AUS

C-O-C number : ---- Date Samples Received : 07-FEB-2011
Sampler : KO Issue Date : 15-FEB-2011

Site : ---

Quote number : EN/004/10 No. of samples received : 9

Quote number : EN/004/10 No. of samples analysed : 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits



NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Celine Conceicao
 Spectroscopist
 Inorganics

Edwandy Fadjar Senior Organic Chemist Organics
Hoa Nguyen Inorganic Chemist Inorganics

Page : 2 of 7
Work Order : ES1102539

Client : AECOM Australia Pty Ltd

Project : 60153531 5 7 HICKSON ROAD



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- EG005T: Sample ES1102363013 shows poor duplicate precision for zinc due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EG005T: Sample ES1102438002 shows poor duplicate precision for zinc due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EP075(SIM): Poor matrix spike recovery due to sample matrix interferences.

Page : 3 of 7
Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



| Sub-Matrix: SOIL                     |             | Clie        | ent sample ID  | TBH07_0.1-0.15    | TBH03_1.2-1.3     | TBH03_1.5-1.6     | TBH01_0.43-0.5    | TBH06_0.55-0.6    |
|--------------------------------------|-------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Cli         | ient sampli | ng date / time | 04-FEB-2011 15:00 | 05-FEB-2011 15:00 | 05-FEB-2011 15:00 | 05-FEB-2011 15:00 | 05-FEB-2011 15:00 |
| Compound                             | CAS Number  | LOR         | Unit           | ES1102539-001     | ES1102539-002     | ES1102539-003     | ES1102539-004     | ES1102539-005     |
| EA055: Moisture Content              |             |             |                |                   |                   |                   |                   |                   |
| ^ Moisture Content (dried @ 103°C)   |             | 1.0         | %              | 7.3               | 14.3              | 16.4              | 12.4              | 10.8              |
| EG005T: Total Metals by ICP-AES      |             |             |                |                   |                   |                   |                   |                   |
| Arsenic                              | 7440-38-2   | 5           | mg/kg          | 5                 | <5                | <5                | <5                | <5                |
| Cadmium                              | 7440-43-9   | 1           | mg/kg          | <1                | <1                | <1                | <1                | <1                |
| Chromium                             | 7440-47-3   | 2           | mg/kg          | 46                | 6                 | 13                | 12                | 8                 |
| Copper                               | 7440-50-8   | 5           | mg/kg          | 51                | 23                | 47                | 11                | 28                |
| Lead                                 | 7439-92-1   | 5           | mg/kg          | 25                | 11                | 20                | 103               | 20                |
| Nickel                               | 7440-02-0   | 2           | mg/kg          | 49                | 8                 | 10                | 4                 | 5                 |
| Zinc                                 | 7440-66-6   | 5           | mg/kg          | 43                | 98                | 106               | 30                | 29                |
| EG035T: Total Recoverable Mercury by | y FIMS      |             |                |                   |                   |                   |                   |                   |
| Mercury                              | 7439-97-6   | 0.1         | mg/kg          | <0.1              | <0.1              | <0.1              | 0.2               | <0.1              |
| EP075(SIM)B: Polynuclear Aromatic Hy | /drocarbons |             |                |                   |                   |                   |                   |                   |
| Naphthalene                          | 91-20-3     | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Acenaphthylene                       | 208-96-8    | 0.5         | mg/kg          | 1.4               | <0.5              | <0.5              | <0.5              | <0.5              |
| Acenaphthene                         | 83-32-9     | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Fluorene                             | 86-73-7     | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Phenanthrene                         | 85-01-8     | 0.5         | mg/kg          | 1.4               | <0.5              | <0.5              | 1.2               | 0.6               |
| Anthracene                           | 120-12-7    | 0.5         | mg/kg          | 1.4               | <0.5              | <0.5              | 0.5               | <0.5              |
| Fluoranthene                         | 206-44-0    | 0.5         | mg/kg          | 6.4               | <0.5              | <0.5              | 3.1               | 1.7               |
| Pyrene                               | 129-00-0    | 0.5         | mg/kg          | 8.6               | <0.5              | <0.5              | 3.0               | 1.9               |
| Benz(a)anthracene                    | 56-55-3     | 0.5         | mg/kg          | 4.7               | <0.5              | <0.5              | 1.9               | 0.9               |
| Chrysene                             | 218-01-9    | 0.5         | mg/kg          | 4.8               | <0.5              | <0.5              | 1.4               | 0.7               |
| Benzo(b)fluoranthene                 | 205-99-2    | 0.5         | mg/kg          | 8.0               | <0.5              | <0.5              | 1.8               | 0.7               |
| Benzo(k)fluoranthene                 | 207-08-9    | 0.5         | mg/kg          | 2.7               | <0.5              | <0.5              | 0.7               | <0.5              |
| Benzo(a)pyrene                       | 50-32-8     | 0.5         | mg/kg          | 7.8               | <0.5              | <0.5              | 1.7               | 0.8               |
| Indeno(1.2.3.cd)pyrene               | 193-39-5    | 0.5         | mg/kg          | 4.1               | <0.5              | <0.5              | 0.6               | <0.5              |
| Dibenz(a.h)anthracene                | 53-70-3     | 0.5         | mg/kg          | 0.8               | <0.5              | <0.5              | <0.5              | <0.5              |
| Benzo(g.h.i)perylene                 | 191-24-2    | 0.5         | mg/kg          | 6.5               | <0.5              | <0.5              | 0.6               | <0.5              |
| EP080/071: Total Petroleum Hydrocarb | ons         |             |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                     |             | 10          | mg/kg          | <10               | <10               | <10               | <10               | <10               |
| C10 - C14 Fraction                   |             | 50          | mg/kg          | <50               | <50               | <50               | <50               | <50               |
| C15 - C28 Fraction                   |             | 100         | mg/kg          | 280               | <100              | <100              | <100              | <100              |
| C29 - C36 Fraction                   |             | 100         | mg/kg          | 420               | <100              | <100              | <100              | <100              |
| ^ C10 - C36 Fraction (sum)           |             | 50          | mg/kg          | 700               | <50               | <50               | <50               | <50               |
| EP080: BTEX                          |             |             |                |                   |                   |                   |                   |                   |
| Benzene                              | 71-43-2     | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Toluene                              | 108-88-3    | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |

Page : 4 of 7
Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



| Sub-Matrix: SOIL               |                   | Clie        | ent sample ID  | TBH07_0.1-0.15    | TBH03_1.2-1.3     | TBH03_1.5-1.6     | TBH01_0.43-0.5    | TBH06_0.55-0.6    |
|--------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                | Cl                | ient sampli | ng date / time | 04-FEB-2011 15:00 | 05-FEB-2011 15:00 | 05-FEB-2011 15:00 | 05-FEB-2011 15:00 | 05-FEB-2011 15:00 |
| Compound                       | CAS Number        | LOR         | Unit           | ES1102539-001     | ES1102539-002     | ES1102539-003     | ES1102539-004     | ES1102539-005     |
| EP080: BTEX - Continued        |                   |             |                |                   |                   |                   |                   |                   |
| Ethylbenzene                   | 100-41-4          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| meta- & para-Xylene            | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| ortho-Xylene                   | 95-47-6           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| EP075(SIM)S: Phenolic Compound | Surrogates        |             |                |                   |                   |                   |                   |                   |
| Phenol-d6                      | 13127-88-3        | 0.1         | %              | 126               | 121               | 118               | 118               | 120               |
| 2-Chlorophenol-D4              | 93951-73-6        | 0.1         | %              | 120               | 116               | 110               | 109               | 109               |
| 2.4.6-Tribromophenol           | 118-79-6          | 0.1         | %              | 93.2              | 108               | 97.5              | 80.8              | 72.1              |
| EP075(SIM)T: PAH Surrogates    |                   |             |                |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl               | 321-60-8          | 0.1         | %              | 117               | 114               | 110               | 111               | 112               |
| Anthracene-d10                 | 1719-06-8         | 0.1         | %              | 118               | 110               | 105               | 112               | 111               |
| 4-Terphenyl-d14                | 1718-51-0         | 0.1         | %              | 120               | 119               | 115               | 117               | 116               |
| EP080S: TPH(V)/BTEX Surrogates |                   |             |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4          | 17060-07-0        | 0.1         | %              | 95.4              | 93.2              | 118               | 89.9              | 89.0              |
| Toluene-D8                     | 2037-26-5         | 0.1         | %              | 90.2              | 88.1              | 116               | 81.2              | 85.5              |
| 4-Bromofluorobenzene           | 460-00-4          | 0.1         | %              | 118               | 118               | 103               | 107               | 110               |

Page : 5 of 7
Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



| Sub-Matrix: <b>SOIL</b>               |            | Clie       | ent sample ID  | TBH08_0.13-0.25   | DUP 01            | <br> |  |
|---------------------------------------|------------|------------|----------------|-------------------|-------------------|------|--|
|                                       | Cli        | ent sampli | ng date / time | 04-FEB-2011 15:00 | 05-FEB-2011 15:00 | <br> |  |
| Compound                              | CAS Number | LOR        | Unit           | ES1102539-006     | ES1102539-007     | <br> |  |
| EA055: Moisture Content               |            |            |                |                   |                   |      |  |
| ^ Moisture Content (dried @ 103°C)    |            | 1.0        | %              | 6.8               | 13.4              | <br> |  |
| EG005T: Total Metals by ICP-AES       |            |            |                |                   |                   |      |  |
| Arsenic                               | 7440-38-2  | 5          | mg/kg          | <5                | <5                | <br> |  |
| Cadmium                               | 7440-43-9  | 1          | mg/kg          | <1                | <1                | <br> |  |
| Chromium                              | 7440-47-3  | 2          | mg/kg          | 11                | 16                | <br> |  |
| Copper                                | 7440-50-8  | 5          | mg/kg          | 76                | 12                | <br> |  |
| Lead                                  | 7439-92-1  | 5          | mg/kg          | 26                | 71                | <br> |  |
| Nickel                                | 7440-02-0  | 2          | mg/kg          | 10                | 4                 | <br> |  |
| Zinc                                  | 7440-66-6  | 5          | mg/kg          | 38                | 24                | <br> |  |
| EG035T: Total Recoverable Mercury by  | FIMS       |            |                |                   |                   |      |  |
| Mercury                               | 7439-97-6  | 0.1        | mg/kg          | <0.1              | <0.1              | <br> |  |
| EP075(SIM)B: Polynuclear Aromatic Hy  | drocarbons |            |                |                   |                   |      |  |
| Naphthalene                           | 91-20-3    | 0.5        | mg/kg          | <0.5              | <0.5              | <br> |  |
| Acenaphthylene                        | 208-96-8   | 0.5        | mg/kg          | <0.5              | <0.5              | <br> |  |
| Acenaphthene                          | 83-32-9    | 0.5        | mg/kg          | <0.5              | <0.5              | <br> |  |
| Fluorene                              | 86-73-7    | 0.5        | mg/kg          | <0.5              | <0.5              | <br> |  |
| Phenanthrene                          | 85-01-8    | 0.5        | mg/kg          | <0.5              | <0.5              | <br> |  |
| Anthracene                            | 120-12-7   | 0.5        | mg/kg          | <0.5              | <0.5              | <br> |  |
| Fluoranthene                          | 206-44-0   | 0.5        | mg/kg          | 2.8               | 0.7               | <br> |  |
| Pyrene                                | 129-00-0   | 0.5        | mg/kg          | 3.1               | 0.7               | <br> |  |
| Benz(a)anthracene                     | 56-55-3    | 0.5        | mg/kg          | 1.3               | <0.5              | <br> |  |
| Chrysene                              | 218-01-9   | 0.5        | mg/kg          | 1.1               | <0.5              | <br> |  |
| Benzo(b)fluoranthene                  | 205-99-2   | 0.5        | mg/kg          | 1.3               | <0.5              | <br> |  |
| Benzo(k)fluoranthene                  | 207-08-9   | 0.5        | mg/kg          | 0.5               | <0.5              | <br> |  |
| Benzo(a)pyrene                        | 50-32-8    | 0.5        | mg/kg          | 1.5               | <0.5              | <br> |  |
| Indeno(1.2.3.cd)pyrene                | 193-39-5   | 0.5        | mg/kg          | <0.5              | <0.5              | <br> |  |
| Dibenz(a.h)anthracene                 | 53-70-3    | 0.5        | mg/kg          | <0.5              | <0.5              | <br> |  |
| Benzo(g.h.i)perylene                  | 191-24-2   | 0.5        | mg/kg          | 0.7               | <0.5              | <br> |  |
| EP080/071: Total Petroleum Hydrocarbo | ons        | 12         |                | 12                |                   |      |  |
| C6 - C9 Fraction                      |            | 10         | mg/kg          | <10               | <10               | <br> |  |
| C10 - C14 Fraction                    |            | 50         | mg/kg          | <50               | <50               | <br> |  |
| C15 - C28 Fraction                    |            | 100        | mg/kg          | 110               | <100              | <br> |  |
| C29 - C36 Fraction                    |            | 100<br>50  | mg/kg          | 260<br>370        | <100<br><50       | <br> |  |
| ^ C10 - C36 Fraction (sum)            |            | 50         | mg/kg          | 3/0               | <b>\00</b>        | <br> |  |
| EP080: BTEX                           |            |            |                |                   |                   |      |  |
| Benzene                               | 71-43-2    | 0.2        | mg/kg          | <0.2              | <0.2              | <br> |  |
| Toluene                               | 108-88-3   | 0.5        | mg/kg          | <0.5              | <0.5              | <br> |  |

Page : 6 of 7
Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



| Sub-Matrix: SOIL                 |                   | Clie        | ent sample ID  | TBH08_0.13-0.25   | DUP 01            | <br> |  |
|----------------------------------|-------------------|-------------|----------------|-------------------|-------------------|------|--|
|                                  | Cl                | ient sampli | ng date / time | 04-FEB-2011 15:00 | 05-FEB-2011 15:00 | <br> |  |
| Compound                         | CAS Number        | LOR         | Unit           | ES1102539-006     | ES1102539-007     | <br> |  |
| EP080: BTEX - Continued          |                   |             |                |                   |                   |      |  |
| Ethylbenzene                     | 100-41-4          | 0.5         | mg/kg          | <0.5              | <0.5              | <br> |  |
| meta- & para-Xylene              | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5              | <0.5              | <br> |  |
| ortho-Xylene                     | 95-47-6           | 0.5         | mg/kg          | <0.5              | <0.5              | <br> |  |
| EP075(SIM)S: Phenolic Compound S | Surrogates        |             |                |                   |                   |      |  |
| Phenol-d6                        | 13127-88-3        | 0.1         | %              | 122               | 122               | <br> |  |
| 2-Chlorophenol-D4                | 93951-73-6        | 0.1         | %              | 115               | 115               | <br> |  |
| 2.4.6-Tribromophenol             | 118-79-6          | 0.1         | %              | 92.6              | 86.7              | <br> |  |
| EP075(SIM)T: PAH Surrogates      |                   |             |                |                   |                   |      |  |
| 2-Fluorobiphenyl                 | 321-60-8          | 0.1         | %              | 116               | 118               | <br> |  |
| Anthracene-d10                   | 1719-06-8         | 0.1         | %              | 112               | 114               | <br> |  |
| 4-Terphenyl-d14                  | 1718-51-0         | 0.1         | %              | 118               | 119               | <br> |  |
| EP080S: TPH(V)/BTEX Surrogates   |                   |             |                |                   |                   |      |  |
| 1.2-Dichloroethane-D4            | 17060-07-0        | 0.1         | %              | 100               | 91.3              | <br> |  |
| Toluene-D8                       | 2037-26-5         | 0.1         | %              | 119               | 87.7              | <br> |  |
| 4-Bromofluorobenzene             | 460-00-4          | 0.1         | %              | 107               | 115               | <br> |  |

Page : 7 of 7 Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



#### **Surrogate Control Limits**

| Sub-Matrix: SOIL                          |            | Recovery | Limits (%) |
|-------------------------------------------|------------|----------|------------|
| Compound                                  | CAS Number | Low      | High       |
| EP075(SIM)S: Phenolic Compound Surrogates |            |          |            |
| Phenol-d6                                 | 13127-88-3 | 56.3     | 133.3      |
| 2-Chlorophenol-D4                         | 93951-73-6 | 53.8     | 133.8      |
| 2.4.6-Tribromophenol                      | 118-79-6   | 23.1     | 134.9      |
| EP075(SIM)T: PAH Surrogates               |            |          |            |
| 2-Fluorobiphenyl                          | 321-60-8   | 58.9     | 132.7      |
| Anthracene-d10                            | 1719-06-8  | 55.0     | 137.6      |
| 4-Terphenyl-d14                           | 1718-51-0  | 54.0     | 147.8      |
| EP080S: TPH(V)/BTEX Surrogates            |            |          |            |
| 1.2-Dichloroethane-D4                     | 17060-07-0 | 72.8     | 133.2      |
| Toluene-D8                                | 2037-26-5  | 73.9     | 132.1      |
| 4-Bromofluorobenzene                      | 460-00-4   | 71.6     | 130.0      |

15-2-11

| AECOM - Sydney (Gordon)                                    |                                         |                    |           |                         |             |              | =                                             | <u></u>     | -              | Lab        | orato               | y De         | tails         |               | Tel:     | 8784 85     | 55                                    |                 | 7           |
|------------------------------------------------------------|-----------------------------------------|--------------------|-----------|-------------------------|-------------|--------------|-----------------------------------------------|-------------|----------------|------------|---------------------|--------------|---------------|---------------|----------|-------------|---------------------------------------|-----------------|-------------|
| PO Box 726                                                 |                                         |                    |           | Tel:                    | 61 2 8484   | 8999         |                                               |             |                | Lab.       | Name:               | Al           | s             |               | Fax:     |             |                                       | 112             | İ           |
| Pymble NSW 2073 Australia                                  | a                                       |                    |           |                         | 61 2 8484   |              |                                               |             |                | Lab.       | Addres              | S: 277       | Woodpark Rd S | mithfield     | Pretimia | nary Report | by:                                   | '7-             |             |
|                                                            |                                         |                    |           |                         |             | Влел@эесс    | om com                                        |             |                | Conf       | act Nan             | ne:          |               |               | Final R  | eport by:   |                                       |                 | 1           |
|                                                            |                                         |                    |           |                         | 1.0.00      | <u> </u>     |                                               |             | _              | Lab.       | Ref:                |              |               |               | Lab Qu   | ote No: S   | Y/418/10                              | V2              | ŀ           |
| Project Name: Hick                                         | son Road                                |                    | ]         | Project I               | lumber:     | 60           | 153531/5                                      | .7          |                | Pur        | chase               | Orde         | r Number      | :             |          | 38962AU     | \$                                    | •               | 7           |
| Sample collected by:                                       |                                         | Kate O'Brien       |           | Sample I                | Results 1   | o be retu    | rned to:                                      | h/Air       | D'Shigh Law    | 1 11       | <u></u>             | a igre       | r Design      | AATU."        |          | •           | · ·                                   |                 |             |
| Specifications: Esc                                        | dat                                     |                    |           |                         |             |              | (Tick)                                        |             |                | Ī          |                     |              |               | Anai          | lysis Re | guest       | · · · · · · · · · · · · · · · · · · · |                 | 1           |
|                                                            |                                         |                    |           |                         | <br>        |              |                                               |             |                | 4          |                     |              |               |               |          |             | Rema                                  | arks & comments | -           |
| Urgent TAT required? (pleas     Fast TAT Guarantee Require |                                         | days               | )         |                         | Yes Yes     |              | □ No                                          |             | □ N/A<br>□ N/A | 4          |                     |              |               |               |          |             |                                       |                 |             |
| 3. Is any sediment layer presen                            |                                         | from extraction    | 157       |                         | Yes         |              | □ No                                          |             | □ N/A          | ┨          |                     |              |               |               |          | 1   1       |                                       |                 | 1           |
| Special storage requirement                                |                                         | TOTAL WATER COLUMN |           |                         | Yes         |              | □ No                                          |             | □ N/A          | 1          |                     |              |               |               | 1        |             |                                       |                 |             |
| 5. Preservation requirements?                              |                                         |                    |           |                         | Yes         |              | □ No                                          |             | □N/A           | †ଳା        |                     |              |               |               |          |             |                                       |                 | 1           |
| 6. Other requirements?                                     | - <del></del>                           |                    |           |                         | Yes         |              | □No                                           |             | □N/A           | اقِ ۲      | ହ                   |              |               |               |          |             |                                       |                 | 1           |
| 7. Report Format: Fax                                      | Hard copy 🔽 En                          | nail               | B. Projec | t Manager: A            | Anthony Dav | is           |                                               | tel;        | 8484 8939      | Metals (8) | TPH (C6-C36)        |              |               |               |          |             |                                       |                 |             |
| Lab. Sam                                                   | nple ID                                 | ·                  |           | Ma                      | trix        | P            | reservation                                   |             | Conteiner      |            | ΙŠ                  | یا           | <u>_</u>      |               |          | 12          |                                       |                 | -           |
| OI                                                         |                                         | Sampling Date      | & time  - | soll wat                | er olhor    | fixed ac     | ald ice                                       | other       | (No. & type)   | Heavy      | 唐                   | BTEX         | PAHS          |               |          |             |                                       |                 |             |
|                                                            | HO7_0.1-0.15                            | 4.2.11             |           | X                       |             |              | X                                             |             | 150ml          | M          | X                   | $\neg$       |               |               |          |             |                                       |                 | _           |
| (B) 7B                                                     | 1403_07-09                              | 5-2·11             |           | X                       |             |              | X                                             |             | 290M           | $\prod$    | $\Box\Box$          | 7            |               | $\sqcap$      |          | X           |                                       | Environmenta    |             |
| 2 78                                                       | 1403_1-2-1-3                            | 5-2-11             |           | $\overline{\mathbf{x}}$ |             |              | 上                                             |             | 2801           | X          | X                   | X            | X             |               |          |             | -                                     | Sydne           | •           |
| 3 78                                                       | 403-1-5-1-6                             | 52.11              |           | X                       |             |              |                                               |             | 250M           | IX         | X                   | N            |               |               | 1 1      |             | -                                     | Work O          | rder        |
| 4 .18                                                      | 1401-0-43-0                             | 5 5-2              | - 77      | X                       |             |              | 1                                             |             | 250 ml         | X          | X                   | Ŋ            |               |               |          |             | •                                     | ES110           | 2539        |
| (9) 78                                                     | H06_01-02                               | 5-2                |           | X                       |             |              |                                               | ·           | 250M           | ľ          |                     |              |               |               |          | X           | -                                     |                 |             |
| 5 10                                                       | H16_0.55-0.                             | 6 5-2              | 2.11      | X                       |             |              | 文                                             |             | 250M           | X          | X                   | $\mathbf{x}$ |               |               |          |             | - <b> </b>                            |                 |             |
|                                                            | H08-0-13-0-1                            | C 4.2              |           | X                       |             |              | X                                             |             | 250M           | X          | X                   | X            |               |               |          |             | ·                                     |                 |             |
|                                                            | UPOI                                    | 5.2.1              |           | x                       |             |              | - X                                           | :#          | 150ml          | ŹÌ         | X                   | T/X          | <u>ואל ל</u>  |               |          |             | -                                     |                 |             |
| / /                                                        | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | <del></del>        |           |                         | 1           | <del> </del> |                                               | Τ.          |                |            | 7                   | 7            | 1-6-          | <del> </del>  |          |             | -<br>Te                               | elephone: +61-  | 2-8784 8555 |
| Relinquished By:                                           | ·                                       |                    | Receiv    | red by:                 |             |              | <u>, , , , , , , , , , , , , , , , , , , </u> |             |                |            | ived in g<br>ition? | ood          | Yes/No/NA     | Method        | of Shipm | ent         | •                                     |                 | .Tr         |
| Name: Kath Okn                                             | IB                                      | Date: 2.11         | Name:     | Sal                     | Want        | to           | ······································        | <u>بربر</u> | Date:          | Samp       | ies reco            | ived (       | Yesinoma      |               | nment No | te          |                                       | ·               | 1           |
| of: AECOM                                                  | <i>VI</i> (                             |                    |           | /N/                     | 10 10 1     | 1000         |                                               | UF          | 1 m. L.        | chille     | d?                  | _ `          | YesiNoiNA     | No.<br>Transp | ort Co:  | _           |                                       |                 | -           |
| Relinquished By:                                           |                                         |                    |           | red by:                 | J.)701      | <u> </u>     |                                               |             | 15,50          | Rece       | ived in g           | looq         | Yes/No/NA     | Method        | of Shipm |             | ier 🎞 Po                              | stal By Hand    |             |
|                                                            |                                         |                    | Name:     |                         |             | •            |                                               |             | Date:          |            | itlan?<br>des rece  | ived         | Yes/No/NA     | Consig        | nment No | te          | at .                                  |                 | - ·         |
| Name:                                                      |                                         |                    | of;       |                         |             |              |                                               |             | Time:          | chille     |                     |              | Yes/No/NA     | No.<br>Transp |          | _           |                                       | · <u> </u>      | -           |
| of:                                                        |                                         |                    | <u> </u>  |                         |             |              | _                                             | _           | - 1            | 1          |                     |              |               |               |          | Cour        | ier 🔲 Po                              | staí 🗌 By Hand  | 1           |

| ~~~~                    |                                           |                     |            |           |               |          |        |                     |       |                |            |                 |              |            |          |            |                |          |               |         |            |                                             |                |
|-------------------------|-------------------------------------------|---------------------|------------|-----------|---------------|----------|--------|---------------------|-------|----------------|------------|-----------------|--------------|------------|----------|------------|----------------|----------|---------------|---------|------------|---------------------------------------------|----------------|
| AECOM - Sydney (Go      | ordon)                                    |                     |            |           |               |          |        |                     |       |                | Lab        | orator          | y De         | tails      | 5        |            | Te             | : 8      | 784           | 8555    | ,          |                                             |                |
| PO Box 726              |                                           |                     |            | Tel: (    | 61 2 8484     | 1 8999   |        |                     |       |                | Lab.       | Name:           | Αl           | s .        |          |            | Fa             | x:       |               |         |            |                                             |                |
| Pymble NSW 2073 Au      | ustralia                                  |                     |            | Fax: (    | 51 2 8484     | 1 8989   |        |                     |       |                | Lab.       | Address         | 27           | 7 Woo      | opark Rd | Smithfi    | eld Pre        | eliminar | ry Re         | port by | r <u>.</u> |                                             |                |
|                         |                                           |                     |            | Emai      | l: Kate.O'    | Brien@   | aecom. | com                 |       |                | Conta      | act Name        | <b>9</b> :   |            |          |            | Fir            | nal Repo | ort by        | ŗ.      |            |                                             |                |
| <u> </u>                |                                           |                     |            |           |               |          |        |                     |       | -              | Lab.       | Ref:            |              |            |          |            | . La           | b Quote  | e No:         | SY/     | 418/10 V2  |                                             |                |
| Project Name:           | Hickson Road                              |                     | Pro        | ject N    | umber:        |          | 6015   | 3 <del>5</del> 31/5 | .7    |                | Pure       | chase •         | Orde         | r N        | umbe     | r:         |                | 3        | 8962          | AUS     |            |                                             | _              |
| Sample collected        | by:                                       | Kate O'Brien        | San        | nple R    | esults t      | to be i  | return | ed to:              | Kate. | O'Brien@ae     | com.c      | om / A          | nthe         | ny.[       | Davis(   | Qae(       | com.co         | <u>m</u> |               |         |            |                                             | _              |
| Specifications:         | Esdat                                     |                     |            |           |               |          |        | (Tick)              |       |                |            |                 |              |            |          | -          | Analysis       | Requ     | uest          |         |            |                                             |                |
|                         | <del> </del>                              |                     |            |           | <u> </u>      |          |        |                     |       |                |            |                 |              |            |          |            |                | $\Box$   | Т             |         | Remarks    | & comme                                     | ntş            |
| 1. Urgent TAT required? | <u> </u>                                  | days)               |            |           | Yes           |          |        | No                  |       | □ N/A          | 4          |                 |              |            | 1        |            |                |          |               | 1 1     |            |                                             |                |
| 2. Fast TAT Guarantee F | required? present in waters to be exclude |                     |            |           | Yes           |          |        | No                  |       | □ N/A          | 4          |                 |              |            |          |            |                |          |               |         |            |                                             |                |
| Special storage requi   |                                           | o from extractions? |            | -         | ☐ Yes         |          |        | No<br>No            |       | □ N/A<br>□ N/A | 4          |                 |              |            |          |            |                | 1 !      |               |         |            |                                             |                |
| Preservation requirem   |                                           |                     |            |           | Yes           |          |        |                     |       | □ N/A          | ┨╗┠        |                 |              |            |          |            | 11             |          |               |         |            |                                             |                |
| 6. Other requirements?  | ,                                         | -                   |            |           | Yes           |          | 一日     |                     |       | —□N/A          | નજુ        | ြု              |              |            |          |            |                |          |               | 1       |            |                                             |                |
| 7. Report Format:       | Fax Hard copy 🔽 E                         | mail 8.             | Project Ma | nager: Ar | · <del></del> |          |        |                     | tel:  | 8484 8939      | Metals (8) | TPH (C6-C36)    |              | İ          |          |            |                |          | İ             |         |            |                                             |                |
| Lab.                    | Sample ID                                 |                     |            | Matr      | ix            |          | Pres   | ervation            |       | Container      |            | မြို့           | <sub>×</sub> |            | ဖ        |            |                |          |               | 1 }     |            |                                             | _              |
| ID                      | , ·                                       | Sampling Date &     | time soil  | water     | other         | filt'ed  | acid   | ice                 | other | (No. & type)   | Heavy      | [품]             | RTEX         |            | PAHS     |            | '              | ' '      | •             |         |            |                                             |                |
|                         | TBH07 0.1-0.15                            | 4.2.11              | - X        |           |               |          |        |                     |       | 150ml          | 11         | 11              | T            |            |          |            | †              | Εn       | viro          | nme     | ntal Divi  | ision                                       | _              |
| 8                       | TBH02_0-7-0-9                             | 5-2-11              | X          | •         |               |          |        |                     |       | 250M           |            |                 | Ť            | <b>†</b> " |          | 1          | †              |          |               |         | dney       |                                             | _              |
| 2                       | TRI-103 1-2-1-3                           | 5-2-11              | X          |           | · ·           |          |        |                     |       | 280N           |            |                 | $\top$       | $\top$     |          |            | <b>†</b>       |          |               |         | Order      | ~~                                          | _              |
| 2,                      | TRH03-1.5-1.6                             | 5.2.11              | X          |           |               |          |        |                     |       | 250M           |            | 11              |              | ┪          |          | 1          | <del>  -</del> | E        | ΞS            | 11      | 1025       | 39                                          |                |
| 6                       | TBH01_0.43-0                              | 5-2-1               | IX         |           |               |          |        |                     |       | 250 ml         | $\Box$     | 11              | $\top$       | 1          |          | 十          | Ė              |          |               |         |            | 1 (5 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 | _              |
| Q'                      | TBH06-0-1-0-2                             | 5-2.                | 11 X       |           |               | İ        |        |                     |       | 250m           |            |                 | Ť            | T          |          | T          | ┼              |          |               |         |            |                                             | _              |
| 4                       | TBHOG-055-0                               | 6 5.2.              | 11X        |           |               | <u> </u> |        |                     |       | 250M           |            | 11              |              | †          |          |            | ┼ ╎            |          |               |         |            |                                             | _              |
| <b>1</b>                | TBH08_0.13-0.                             | 15 4.2.1            | V X        |           |               |          |        | ,                   |       | 250M           |            |                 |              |            |          | <u> </u>   | <u> </u>       | JU KYSTO | 1 661 1 1     |         | (MI        | A 0555                                      | _              |
| 7                       | DUPOI                                     | 5.2.11              | X          |           |               |          |        |                     |       | 150ml          |            |                 |              |            |          |            |                | Tele     | ephó          | one:    | + 61-2-878 | 4 6555                                      | . <del>-</del> |
|                         |                                           |                     |            |           |               |          |        |                     |       | i              |            |                 |              | -          |          |            | <u> </u>       | 7- T-    | _             | 1-1     |            |                                             | _              |
| Relinquished By:        | • ***                                     | Ř                   | eceived    | by:       |               |          |        | -/-                 | -     |                | Recei      | ved in go       | od           | Yes        | /No/NA   | Me         | thod of S      | hipmen   | t             |         |            |                                             |                |
| Name: Kate O            | Briln                                     | Date: 2.11 Na       | me:Sc      | 418       | tent          | 145      | 6      | 7,6                 | 071   | Date: 2_ [ [ ] | Samp       | les recei       |              | ₹ē.        | /No/NA   |            | nsignmer       | nt Note  | +             |         |            |                                             |                |
| of: AECC                |                                           | Time gam of         |            | 7         | 3 6           | 1100     | 2      |                     |       | Time:          |            | 3. 65<br>13. CC | _            | Yes        | No/NA    | No.<br>Tra | nsport C       |          | 士             |         |            |                                             |                |
|                         |                                           |                     | eceived    | ph.       | 274           | JV14     |        |                     | 15    | 7.20.          |            | ved in go       | od.          | Yes        | /No/NA   | Me         | thod of S      |          |               | ourier  | Postal     | By Han                                      | 1              |
| Relinquished By:        |                                           |                     |            | ~7.       |               |          |        |                     |       | B-(-           | condit     | tion?           |              |            |          |            |                | ·        | 1             | •       |            |                                             |                |
| Name:                   |                                           | Date: Na            | ime:       |           |               |          |        |                     |       | Date:          | Sampl      | les recei<br>d? | /ed          | Yes        | /No/NA   | No.        | nsignmer       | it Note  |               |         |            |                                             |                |
| of:                     | ·                                         | Time: of:           |            |           |               |          |        |                     |       | Time:          |            |                 |              | Yes        | /No/NA   | Tra        | nsport C       | 0:       | $\frac{1}{1}$ | Courter | Postal     | By Hand                                     | _              |



| AECOM - Sydney (Gor                        | don)                            |                     |          |         |               |                |                                                  |              |          |               |                | Lab              | orat          | ory           | Deta          | ails            |                                               |                |          | Tel:     | 8                 | 784      | 4 855            | 55          |                       |          |
|--------------------------------------------|---------------------------------|---------------------|----------|---------|---------------|----------------|--------------------------------------------------|--------------|----------|---------------|----------------|------------------|---------------|---------------|---------------|-----------------|-----------------------------------------------|----------------|----------|----------|-------------------|----------|------------------|-------------|-----------------------|----------|
| PO Box 726                                 | •                               |                     |          |         | Tel: 6        | 1 2 8484       | 8999                                             |              |          |               |                | Lab.             | Name          | ∋:            | ALS           | 3               |                                               |                |          | Fax:     |                   |          |                  |             |                       |          |
| Pymble NSW 2073 Au                         | stralia                         |                     |          |         | Fax: 6        | 1 2 8484       | 8989                                             |              |          |               |                | Lab.             | Addr          | 98 <b>5</b> : | 277 (         | Noodp           | ark Rd S                                      | Smithfie       | eld      | Preli    | iminaı            | ry Re    | eport l          | by:         |                       |          |
| '                                          |                                 |                     |          |         | Email:        | Kate.O'l       | Brien@a                                          | aecom.c      | com      |               |                | Cont             | act N         | ame:          |               |                 |                                               |                |          | Fina     | l Rep             | ort b    | y:               |             |                       |          |
|                                            |                                 |                     |          |         |               |                |                                                  |              |          |               |                | Lab.             | Ref:          |               |               |                 |                                               |                |          | Lab      | Quote             | e No     | : SY             | //418       | 3/10 V2               |          |
| Project Name:                              | Hickson Road                    |                     |          | Proje   | ect Nu        | ımber:         |                                                  | 6015         | 3531/5.  | .7            |                | Pur              | chas          | e O           | der           | Nu              | mbe                                           | r:             |          |          | 3                 | 8962     | 2AUS             |             |                       | ***      |
| Sample collected                           | by:                             | Kate O'Brien        |          | Samı    | ple Re        | sults t        | o be r                                           | eturn        | ed to:   | Kate.         | O'Brien@ae     | com.             | com           | / An          | hon           | ıy.Di           | avis@                                         | даес           | cont.    | con      | 1                 |          |                  | •           |                       |          |
| Specifications:                            | Esdat                           |                     |          |         |               |                |                                                  |              | (Tick)   |               |                |                  |               |               |               |                 |                                               | · ·            | naly     | sis      | Req               | ues      | t                |             |                       |          |
|                                            |                                 |                     |          |         |               |                |                                                  |              | <u> </u> |               |                | 11               |               |               |               |                 |                                               |                |          |          | j                 |          |                  | R           | emarks 8              | comments |
| 1. Urgent TAT required? (                  |                                 | days)               |          |         |               | Yes            |                                                  | 모            |          |               | _ □ N/A        | 4                |               |               |               |                 |                                               |                |          |          |                   |          | İ                | _           |                       |          |
| 2. Fast TAT Guarantee R                    | <u>'</u>                        |                     |          |         |               | Yes            |                                                  |              |          | •             | □ N/A          | 4                |               |               |               |                 |                                               | 1              |          |          |                   |          |                  |             |                       |          |
|                                            | present in waters to be exclude | d from extractions? | ? *      |         |               | Yes            |                                                  |              | No       |               | N/A            | -[               |               |               |               |                 | Ì                                             |                |          |          |                   |          | ı                |             |                       |          |
| Special storage require                    |                                 |                     |          |         |               | Yes            |                                                  | 뮤            |          |               | □N/A           | ┨ <sub>┯</sub> ┞ |               |               |               |                 |                                               |                |          |          |                   |          |                  |             |                       |          |
| 5. Preservation requirement                | ents?                           |                     |          |         |               | ☐ Yes<br>☐ Yes |                                                  |              |          |               | □ N/A<br>□ N/A | -[流              | 1             |               |               |                 |                                               |                |          | - 1      |                   |          |                  |             | mal                   | 1000/    |
| Other requirements?      Report Format:  F | Fax ☐ Hard copy ☑ E             | mail 5              |          |         |               |                |                                                  |              | INO      | tel:          | L_IN/A         | 뚫                | 25            |               |               |                 |                                               |                |          | ļ        |                   |          |                  | _           | OP                    | OHI      |
|                                            |                                 | riaii 8             | s. Proje | ct Mana |               | thony Dav      | ns                                               |              | ·        |               | 8484 8939      | Heavy Metals (8) | TPH (CR.C.3R) |               |               |                 |                                               |                |          |          |                   |          |                  |             |                       |          |
| Lab.                                       | Sample ID                       | Sampling Date 8     | k time   |         | Matri         |                | fill'ed                                          |              | ervation |               | Container      | -  8  -          | 급             |               | втех          |                 | PAHs                                          | 1              |          |          |                   |          |                  | <u> </u>    |                       |          |
| ID                                         | main i                          | C 11                |          | soil    | water         | other          | IIII.ed                                          | acid         | ice      | other         | (No. & type)   | ╀                | +             | +             | В             | ┝               | <u>a.                                    </u> | +              | $\vdash$ | $\dashv$ | _                 | +        | +                | +           | •                     |          |
|                                            | TRIPOI                          | 5.2.11              |          | ^       |               |                |                                                  | <u> </u>     |          | ļ <u>-</u>    |                |                  |               | -             |               |                 | $\perp$                                       | <del> </del>   |          | =        | _                 | +        | -                | 1           |                       |          |
|                                            |                                 |                     |          |         |               |                |                                                  |              |          |               |                |                  |               | Garl          | 300           | 22.5            | C L                                           | ) - 3 A        | ar       | a l      | 2                 | 10       | Sni              | # 1         | WO                    |          |
|                                            | Please Send                     | TRIPOI              | to       | 2cul    | 2000          | 1/K            |                                                  |              |          |               |                |                  |               | E             |               | A               | $\searrow$                                    |                | 1        | _/       |                   | 1        | ~ ~ ~            | 1,          | W.                    |          |
|                                            | 7727790                         |                     |          |         |               |                | ĺ                                                |              |          |               |                | 1                |               | 14.5          | 1             | 12              | 2011                                          |                | 1        |          | نبكح              | = 6      | <del>/ # *</del> |             | <del>3/</del>         |          |
|                                            |                                 |                     |          |         |               |                | <del>                                     </del> | <del> </del> |          | ┼             |                | +                | +             | $\Psi r$      | <del>ga</del> | <del>II</del> 3 | <del>eq.,</del>                               | 4 <del>y</del> | ľ        | 21       | <del>2:   -</del> | =        |                  |             |                       |          |
|                                            |                                 |                     |          |         | <u> </u>      | ļ              |                                                  | <u> </u>     | <u> </u> |               |                | +                |               | Re            | 177           | 687             | i i                                           | 41             | 19-y     | / II     | a                 | ليح      | _                | ╀           |                       |          |
|                                            |                                 |                     |          |         | ł             |                |                                                  |              |          |               |                |                  |               |               |               | 1               | / (                                           |                |          |          |                   |          |                  |             |                       |          |
|                                            |                                 |                     |          |         |               |                |                                                  |              |          |               |                |                  |               |               |               |                 |                                               |                | il is    | ا • •    | -                 | - + -    |                  | -           |                       |          |
|                                            |                                 |                     |          |         |               |                | <u> </u>                                         | ····         |          |               |                | 1 1              | -             | ₩.            | ΡĪ            | 433             | -                                             | -              | 11       |          |                   |          |                  |             |                       |          |
|                                            |                                 |                     |          |         | ├             |                |                                                  |              |          | -             |                | +                |               | Atı           | ac            | 1               | iv i                                          | 0              | / I      | au       | EN'ER             | al f     | Sin              | e L         |                       |          |
| <u> </u>                                   |                                 |                     |          |         |               |                |                                                  |              |          |               |                | 1                |               |               |               |                 |                                               | <u> </u>       |          |          |                   | 4        |                  |             |                       |          |
|                                            |                                 |                     |          |         |               |                |                                                  |              |          |               |                |                  | -             |               |               |                 |                                               |                |          |          |                   |          |                  |             |                       |          |
| Relinquished By:                           |                                 | 1                   |          | ived b  | -             |                |                                                  |              |          | ·             |                |                  | ived i        | n goo         | d             | Yes/l           | No/NA                                         | Me             | thod o   | of Sh    | ipmer             | 1t       | ·                |             |                       |          |
| Name: Klittl OB                            | ner                             | Date: 7-2-11        | Name:    | Sc      | <del>من</del> | XLan           | The                                              |              | 6,0      | <del></del> , | Date:  2  11   |                  | les re        | ceive         | ,             |                 | No/NA                                         | Co             |          | ment     | Note              |          |                  |             |                       |          |
| of: HAT CAY                                | )                               |                     | of:      | <u></u> | <del></del>   | 1 7 / C        |                                                  | ملعب         |          |               | Time: 5150     | _                |               | 6             |               | Ŷes/            | No/NA                                         |                | nspo     | rt Co    | :                 | 士        | Couric           | . F         | T <sub>Doctal</sub> I | By Hand  |
| Relinquished By:                           | 7                               |                     | Rece     | ived t  | bv:           | 4-2)           | >401                                             | 1- V         |          |               | 7770           | Rece             | ived l        | n goo         | ď             | Yes/            | No/NA                                         | Me             | thod (   | of Sh    | ipmer             |          | CUBIR            | 51 <u>L</u> |                       | Пру папа |
| Reinquisned By:                            |                                 |                     |          |         | - , -         |                |                                                  |              |          |               | Date:          |                  | ition?        | ceive         | М             | Yes/            | No/NA                                         | 100            | nsign    | morf     | Note              | +        |                  |             |                       |          |
| Name:                                      |                                 |                     | Name:    |         |               |                |                                                  |              |          |               |                | chille           |               | , ce IVE      | u             |                 |                                               | No             |          |          |                   | $\perp$  |                  |             |                       |          |
| of:                                        |                                 | Time:               | of:      |         |               |                |                                                  |              |          |               | Time:          |                  |               |               |               | res/l           | AN\oN                                         | Tra            | nspo     | rt Co    | :                 | <u>亡</u> | Courie           | er [        | Postal                | By Hand  |

#### ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES



#### **Environmental Division**

#### **QUALITY CONTROL REPORT**

Work Order : **ES1102539** Page : 1 of 7

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Sydney

Contact : MS KATE O BRIEN Contact : Jennifer Cullen

Address : LEVEL 5, 828 PACIFIC HIGHWAY Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

GORDON NSW, AUSTRALIA 2072

Telephone : +61 02 8484 8999 Telephone : +61 2 8784 8509
Facsimile : +61 02 8484 8989 Facsimile : +61 2 8784 8500

Project : 60153531 5 7 HICKSON ROAD QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : ---- Date Samples Received : 07-FEB-2011
Sampler : KO Issue Date : 15-FEB-2011

Order number : 38962AUS

No. of samples received : 9

Quote number : EN/004/10 No. of samples analysed : 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category |
|------------------|------------------------|------------------------|
| Celine Conceicao | Spectroscopist         | Inorganics             |
| Edwandy Fadjar   | Senior Organic Chemist | Organics               |
| Hoa Nguyen       | Inorganic Chemist      | Inorganics             |

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164 **Tel. +61-2-8784 8555** Fax. +61-2-8784 8500 **www.alsglobal.com** 

A Campbell Brothers Limited Company

Page : 2 of 7
Work Order : ES1102539

Client : AECOM Australia Pty Ltd

Project : 60153531 5 7 HICKSON ROAD



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 7 Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

| Sub-Matrix: SOIL     |                          |                                             |            |     |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|--------------------------|---------------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                            | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA055: Moisture Co   | ontent (QC Lot: 1661549) |                                             |            |     |       |                 |                        |         |                     |
| ES1102399-032        | Anonymous                | EA055-103: Moisture Content (dried @ 103°C) |            | 1.0 | %     | 2.5             | 2.6                    | 6.7     | No Limit            |
| ES1102422-016        | Anonymous                | EA055-103: Moisture Content (dried @ 103°C) |            | 1.0 | %     | 17.2            | 16.4                   | 5.4     | 0% - 50%            |
| EA055: Moisture Co   | ontent (QC Lot: 1661550) |                                             |            |     |       |                 |                        |         |                     |
| ES1102539-003        | TBH03_1.5-1.6            | EA055-103: Moisture Content (dried @ 103°C) |            | 1.0 | %     | 16.4            | 16.9                   | 2.8     | 0% - 50%            |
| ES1102632-003        | Anonymous                | EA055-103: Moisture Content (dried @ 103°C) |            | 1.0 | %     | 29.1            | 29.0                   | 0.0     | 0% - 20%            |
| EG005T: Total Meta   | Is by ICP-AES (QC Lot:   | 1661285)                                    |            |     |       |                 |                        |         |                     |
| ES1102363-013        | Anonymous                | EG005T: Cadmium                             | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit            |
|                      |                          | EG005T: Chromium                            | 7440-47-3  | 2   | mg/kg | 6               | 6                      | 0.0     | No Limit            |
|                      |                          | EG005T: Nickel                              | 7440-02-0  | 2   | mg/kg | 4               | 4                      | 0.0     | No Limit            |
|                      |                          | EG005T: Arsenic                             | 7440-38-2  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit            |
|                      |                          | EG005T: Copper                              | 7440-50-8  | 5   | mg/kg | 6               | 6                      | 0.0     | No Limit            |
|                      |                          | EG005T: Lead                                | 7439-92-1  | 5   | mg/kg | 95              | 69                     | 32.3    | 0% - 50%            |
|                      |                          | EG005T: Zinc                                | 7440-66-6  | 5   | mg/kg | 34              | 73                     | # 73.8  | 0% - 50%            |
| ES1102438-002        | Anonymous                | EG005T: Cadmium                             | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit            |
|                      |                          | EG005T: Chromium                            | 7440-47-3  | 2   | mg/kg | 16              | 13                     | 20.6    | No Limit            |
|                      |                          | EG005T: Nickel                              | 7440-02-0  | 2   | mg/kg | 21              | 19                     | 12.0    | No Limit            |
|                      |                          | EG005T: Arsenic                             | 7440-38-2  | 5   | mg/kg | 306             | 296                    | 3.6     | 0% - 20%            |
|                      |                          | EG005T: Copper                              | 7440-50-8  | 5   | mg/kg | 55              | 54                     | 1.9     | 0% - 50%            |
|                      |                          | EG005T: Lead                                | 7439-92-1  | 5   | mg/kg | 103             | 115                    | 10.8    | 0% - 20%            |
|                      |                          | EG005T: Zinc                                | 7440-66-6  | 5   | mg/kg | 222             | 1110                   | # 133   | 0% - 20%            |
| EG035T: Total Rec    | overable Mercury by FIM  | IS (QC Lot: 1661286)                        |            |     |       |                 |                        |         |                     |
| ES1102363-013        | Anonymous                | EG035T: Mercury                             | 7439-97-6  | 0.1 | mg/kg | <0.1            | <0.1                   | 0.0     | No Limit            |
| ES1102438-002        | Anonymous                | EG035T: Mercury                             | 7439-97-6  | 0.1 | mg/kg | 0.2             | 0.3                    | 0.0     | No Limit            |
| EP075(SIM)B: Polyr   | nuclear Aromatic Hydroc  | earbons (QC Lot: 1661974)                   |            |     |       |                 |                        |         |                     |
| ES1102539-001        | TBH07_0.1-0.15           | EP075(SIM): Naphthalene                     | 91-20-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                          | EP075(SIM): Acenaphthylene                  | 208-96-8   | 0.5 | mg/kg | 1.4             | 1.6                    | 12.8    | No Limit            |
|                      |                          | EP075(SIM): Acenaphthene                    | 83-32-9    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                          | EP075(SIM): Fluorene                        | 86-73-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                          | EP075(SIM): Phenanthrene                    | 85-01-8    | 0.5 | mg/kg | 1.4             | 2.0                    | 37.0    | No Limit            |
|                      |                          | EP075(SIM): Anthracene                      | 120-12-7   | 0.5 | mg/kg | 1.4             | 2.0                    | 33.6    | No Limit            |
|                      |                          | EP075(SIM): Fluoranthene                    | 206-44-0   | 0.5 | mg/kg | 6.4             | 8.8                    | 30.6    | 0% - 50%            |
|                      |                          | EP075(SIM): Pyrene                          | 129-00-0   | 0.5 | mg/kg | 8.6             | 11.0                   | # 24.8  | 0% - 20%            |
|                      |                          | EP075(SIM): Benz(a)anthracene               | 56-55-3    | 0.5 | mg/kg | 4.7             | 6.0                    | 23.3    | 0% - 50%            |
|                      |                          | EP075(SIM): Chrysene                        | 218-01-9   | 0.5 | mg/kg | 4.8             | 5.8                    | 18.8    | 0% - 50%            |
|                      |                          | EP075(SIM): Benzo(b)fluoranthene            | 205-99-2   | 0.5 | mg/kg | 8.0             | 8.3                    | 3.6     | 0% - 50%            |

Page : 4 of 7
Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



| Sub-Matrix: SOIL     |                       |                                       |            |     |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|---------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                      | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP075(SIM)B: Polyn   | uclear Aromatic Hydro | carbons (QC Lot: 1661974) - continued |            |     |       |                 |                        |         |                     |
| ES1102539-001        | TBH07_0.1-0.15        | EP075(SIM): Benzo(k)fluoranthene      | 207-08-9   | 0.5 | mg/kg | 2.7             | 2.5                    | 7.7     | No Limit            |
|                      |                       | EP075(SIM): Benzo(a)pyrene            | 50-32-8    | 0.5 | mg/kg | 7.8             | 8.1                    | 3.7     | 0% - 50%            |
|                      |                       | EP075(SIM): Indeno(1.2.3.cd)pyrene    | 193-39-5   | 0.5 | mg/kg | 4.1             | 3.6                    | 10.7    | No Limit            |
|                      |                       | EP075(SIM): Dibenz(a.h)anthracene     | 53-70-3    | 0.5 | mg/kg | 0.8             | 0.7                    | 0.0     | No Limit            |
|                      |                       | EP075(SIM): Benzo(g.h.i)perylene      | 191-24-2   | 0.5 | mg/kg | 6.5             | 5.5                    | 16.2    | 0% - 50%            |
| EP080/071: Total Pe  | troleum Hydrocarbons  | (QC Lot: 1661127)                     |            |     |       |                 |                        |         |                     |
| ES1102399-045        | Anonymous             | EP080: C6 - C9 Fraction               |            | 10  | mg/kg | <10             | <10                    | 0.0     | No Limit            |
| ES1102540-001        | Anonymous             | EP080: C6 - C9 Fraction               |            | 10  | mg/kg | <10             | <10                    | 0.0     | No Limit            |
| EP080/071: Total Pe  | troleum Hydrocarbons  | (QC Lot: 1661973)                     |            |     |       |                 |                        |         |                     |
| ES1102539-001        | TBH07_0.1-0.15        | EP071: C15 - C28 Fraction             |            | 100 | mg/kg | 280             | 340                    | 18.6    | No Limit            |
|                      |                       | EP071: C29 - C36 Fraction             |            | 100 | mg/kg | 420             | 420                    | 0.0     | No Limit            |
|                      |                       | EP071: C10 - C14 Fraction             |            | 50  | mg/kg | <50             | <50                    | 0.0     | No Limit            |
| EP080: BTEX (QC L    | .ot: 1661127)         |                                       |            |     |       |                 |                        |         |                     |
| ES1102399-045        | Anonymous             | EP080: Benzene                        | 71-43-2    | 0.2 | mg/kg | <0.2            | <0.2                   | 0.0     | No Limit            |
|                      |                       | EP080: Toluene                        | 108-88-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                       | EP080: Ethylbenzene                   | 100-41-4   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                       | EP080: meta- & para-Xylene            | 108-38-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                       |                                       | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                       | EP080: ortho-Xylene                   | 95-47-6    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
| ES1102540-001        | Anonymous             | EP080: Benzene                        | 71-43-2    | 0.2 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                       | EP080: Toluene                        | 108-88-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                       | EP080: Ethylbenzene                   | 100-41-4   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                       | EP080: meta- & para-Xylene            | 108-38-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                       |                                       | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                       | EP080: ortho-Xylene                   | 95-47-6    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |

Page : 5 of 7 Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                              |                     |     | Method Blank (MB)<br>Report |        | Laboratory Control Spike (LCS) Report |                    |          |            |
|-----------------------------------------------|---------------------|-----|-----------------------------|--------|---------------------------------------|--------------------|----------|------------|
|                                               |                     |     |                             | Report | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                              | CAS Number          | LOR | Unit                        | Result | Concentration                         | LCS                | Low      | High       |
| EG005T: Total Metals by ICP-AES (QCLot: 16612 | 85)                 |     |                             |        |                                       |                    |          |            |
| EG005T: Arsenic                               | 7440-38-2           | 5   | mg/kg                       | <5     | 13.11 mg/kg                           | 121                | 70       | 130        |
| EG005T: Cadmium                               | 7440-43-9           | 1   | mg/kg                       | <1     | 2.76 mg/kg                            | 99.0               | 83.3     | 111        |
| EG005T: Chromium                              | 7440-47-3           | 2   | mg/kg                       | <2     | 60.93 mg/kg                           | 105                | 89.2     | 117        |
| EG005T: Copper                                | 7440-50-8           | 5   | mg/kg                       | <5     | 54.68 mg/kg                           | 103                | 90.1     | 114        |
| EG005T: Lead                                  | 7439-92-1           | 5   | mg/kg                       | <5     | 54.76 mg/kg                           | 100                | 85.2     | 111        |
| EG005T: Nickel                                | 7440-02-0           | 2   | mg/kg                       | <2     | 55.23 mg/kg                           | 108                | 88.3     | 116        |
| EG005T: Zinc                                  | 7440-66-6           | 5   | mg/kg                       | <5     | 103.88 mg/kg                          | 100                | 88.9     | 112        |
| EG035T: Total Recoverable Mercury by FIMS (Q  | CLot: 1661286)      |     |                             |        |                                       |                    |          |            |
| EG035T: Mercury                               | 7439-97-6           | 0.1 | mg/kg                       | <0.1   | 1.4 mg/kg                             | 68.8               | 67       | 118        |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbor | ns (QCLot: 1661974) |     |                             |        |                                       |                    |          |            |
| EP075(SIM): Naphthalene                       | 91-20-3             | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 101                | 81.9     | 113        |
| EP075(SIM): Acenaphthylene                    | 208-96-8            | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 99.6               | 79.6     | 113        |
| EP075(SIM): Acenaphthene                      | 83-32-9             | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 97.1               | 81.5     | 112        |
| EP075(SIM): Fluorene                          | 86-73-7             | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 97.2               | 79.9     | 112        |
| EP075(SIM): Phenanthrene                      | 85-01-8             | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 106                | 79.4     | 114        |
| EP075(SIM): Anthracene                        | 120-12-7            | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 110                | 81.1     | 112        |
| EP075(SIM): Fluoranthene                      | 206-44-0            | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 102                | 78.8     | 113        |
| EP075(SIM): Pyrene                            | 129-00-0            | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 103                | 78.9     | 113        |
| EP075(SIM): Benz(a)anthracene                 | 56-55-3             | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 81.7               | 77.2     | 112        |
| EP075(SIM): Chrysene                          | 218-01-9            | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 105                | 79.8     | 114        |
| EP075(SIM): Benzo(b)fluoranthene              | 205-99-2            | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 83.9               | 71.8     | 118        |
| EP075(SIM): Benzo(k)fluoranthene              | 207-08-9            | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 103                | 74.2     | 117        |
| EP075(SIM): Benzo(a)pyrene                    | 50-32-8             | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 87.0               | 76.4     | 113        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene            | 193-39-5            | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 79.1               | 71       | 113        |
| EP075(SIM): Dibenz(a.h)anthracene             | 53-70-3             | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 75.9               | 71.7     | 113        |
| EP075(SIM): Benzo(g.h.i)perylene              | 191-24-2            | 0.5 | mg/kg                       | <0.5   | 4 mg/kg                               | 79.1               | 72.4     | 114        |
| EP080/071: Total Petroleum Hydrocarbons (QCL  | ot: 1661127)        |     |                             |        |                                       |                    |          |            |
| EP080: C6 - C9 Fraction                       |                     | 10  | mg/kg                       | <10    | 26 mg/kg                              | 90.2               | 68.4     | 128        |
| EP080/071: Total Petroleum Hydrocarbons(QCLo  | ot: 1661973)        |     |                             |        |                                       |                    |          |            |
| EP071: C10 - C14 Fraction                     |                     | 50  | mg/kg                       | <50    | 200 mg/kg                             | 97.0               | 75.2     | 116        |
| EP071: C15 - C28 Fraction                     |                     | 100 | mg/kg                       | <100   | 200 mg/kg                             | 99.0               | 75.3     | 113        |
| EP071: C29 - C36 Fraction                     |                     | 100 | mg/kg                       | <100   | 200 mg/kg                             | 90.0               | 72.6     | 117        |
| EP080: BTEX (QCLot: 1661127)                  |                     |     |                             |        |                                       |                    |          |            |
| EP080: Benzene                                | 71-43-2             | 0.2 | mg/kg                       | <0.2   | 1 mg/kg                               | 81.2               | 63       | 121        |

Page : 6 of 7
Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



| Sub-Matrix: SOIL                         |            |     |       | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report |                     |      |
|------------------------------------------|------------|-----|-------|-------------------|---------------|---------------------------------------|---------------------|------|
|                                          |            |     |       | Report            | Spike         | Spike Recovery (%)                    | Recovery Limits (%) |      |
| Method: Compound                         | CAS Number | LOR | Unit  | Result            | Concentration | LCS                                   | Low                 | High |
| EP080: BTEX (QCLot: 1661127) - continued |            |     |       |                   |               |                                       |                     |      |
| EP080: Toluene                           | 108-88-3   | 0.5 | mg/kg | <0.5              | 1 mg/kg       | 106                                   | 69                  | 122  |
| EP080: Ethylbenzene                      | 100-41-4   | 0.5 | mg/kg | <0.5              | 1 mg/kg       | 85.6                                  | 61                  | 117  |
| EP080: meta- & para-Xylene               | 108-38-3   | 0.5 | mg/kg | <0.5              | 2 mg/kg       | 85.0                                  | 62                  | 118  |
|                                          | 106-42-3   |     |       |                   |               |                                       |                     |      |
| EP080: ortho-Xylene                      | 95-47-6    | 0.5 | mg/kg | <0.5              | 1 mg/kg       | 90.0                                  | 63                  | 117  |

Page : 7 of 7
Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL             |                               |                            |            |               | Matrix Spike (MS) Report |          |            |  |
|------------------------------|-------------------------------|----------------------------|------------|---------------|--------------------------|----------|------------|--|
|                              |                               |                            |            | Spike         | Spike Recovery (%)       | Recovery | Limits (%) |  |
| Laboratory sample ID         | Client sample ID              | Method: Compound           | CAS Number | Concentration | MS                       | Low      | High       |  |
| G005T: Total Meta            | ls by ICP-AES (QCLot: 1661285 |                            |            |               |                          |          |            |  |
| ES1102363-013                | Anonymous                     | EG005T: Arsenic            | 7440-38-2  | 50 mg/kg      | 112                      | 70       | 130        |  |
|                              |                               | EG005T: Cadmium            | 7440-43-9  | 50 mg/kg      | 104                      | 70       | 130        |  |
|                              |                               | EG005T: Chromium           | 7440-47-3  | 50 mg/kg      | 106                      | 70       | 130        |  |
|                              |                               | EG005T: Copper             | 7440-50-8  | 250 mg/kg     | 118                      | 70       | 130        |  |
|                              |                               | EG005T: Lead               | 7439-92-1  | 250 mg/kg     | 94.8                     | 70       | 130        |  |
|                              |                               | EG005T: Nickel             | 7440-02-0  | 50 mg/kg      | 105                      | 70       | 130        |  |
|                              |                               | EG005T: Zinc               | 7440-66-6  | 250 mg/kg     | 100                      | 70       | 130        |  |
| EG035T: Total Reco           | overable Mercury by FIMS (QCL | _ot: 1661286)              |            |               |                          |          |            |  |
| ES1102363-013                | Anonymous                     | EG035T: Mercury            | 7439-97-6  | 5 mg/kg       | 90.8                     | 70       | 130        |  |
| EP075(SIM)B: Polyn           | uclear Aromatic Hydrocarbons  | (QCLot: 1661974)           |            |               |                          |          |            |  |
| ES1102539-001 TBH07_0.1-0.15 |                               | EP075(SIM): Acenaphthene   | 83-32-9    | 10 mg/kg      | 127                      | 70       | 130        |  |
|                              |                               | EP075(SIM): Pyrene         | 129-00-0   | 10 mg/kg      | # 138                    | 70       | 130        |  |
| EP080/071: Total Pe          | troleum Hydrocarbons (QCLot   | : 1661127)                 |            |               |                          |          |            |  |
| ES1102399-045                | Anonymous                     | EP080: C6 - C9 Fraction    |            | 26 mg/kg      | 79.3                     | 70       | 130        |  |
| EP080/071: Total Pe          | troleum Hydrocarbons (QCLot   | : 1661973)                 |            |               |                          |          |            |  |
| ES1102539-001                | TBH07_0.1-0.15                | EP071: C10 - C14 Fraction  |            | 640 mg/kg     | 111                      | 70       | 130        |  |
|                              |                               | EP071: C15 - C28 Fraction  |            | 3140 mg/kg    | 99.4                     | 70       | 130        |  |
|                              |                               | EP071: C29 - C36 Fraction  |            | 2860 mg/kg    | 100                      | 70       | 130        |  |
| EP080: BTEX (QCL             | ot: 1661127)                  |                            |            |               |                          |          |            |  |
| ES1102399-045                | Anonymous                     | EP080: Benzene             | 71-43-2    | 2.5 mg/kg     | 71.0                     | 70       | 130        |  |
|                              |                               | EP080: Toluene             | 108-88-3   | 2.5 mg/kg     | 74.2                     | 70       | 130        |  |
|                              |                               | EP080: Ethylbenzene        | 100-41-4   | 2.5 mg/kg     | 71.4                     | 70       | 130        |  |
|                              |                               | EP080: meta- & para-Xylene | 108-38-3   | 2.5 mg/kg     | 71.6                     | 70       | 130        |  |
|                              |                               |                            | 106-42-3   |               |                          |          |            |  |
|                              |                               | EP080: ortho-Xylene        | 95-47-6    | 2.5 mg/kg     | 75.3                     | 70       | 130        |  |





#### **Environmental Division**

#### INTERPRETIVE QUALITY CONTROL REPORT

**Work Order** : **ES1102539** Page : 1 of 6

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Sydney

Contact : MS KATE O BRIEN Contact : Jennifer Cullen

Address : LEVEL 5, 828 PACIFIC HIGHWAY Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

GORDON NSW, AUSTRALIA 2072

 Telephone
 : +61 02 8484 8999
 Telephone
 : +61 2 8784 8509

 Facsimile
 : +61 02 8484 8989
 Facsimile
 : +61 2 8784 8500

Project : 60153531 5 7 HICKSON ROAD QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 :-- Date Samples Received
 : 07-FEB-2011

 Sampler
 : KO
 Issue Date
 : 15-FEB-2011

Order number : 38962AUS

Quote number : EN/004/10 No. of samples received : 9

Quote number : EN/004/10 No. of samples analysed : 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 6 Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



#### **Analysis Holding Time Compliance**

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL

Evaluation: **×** = Holding time breach : ✓ = Within holding time.

| Method                                                                             |                                   | Sample Date | Ex             | traction / Preparation | Lvaidation | Analysis      |                  |           |  |
|------------------------------------------------------------------------------------|-----------------------------------|-------------|----------------|------------------------|------------|---------------|------------------|-----------|--|
| Container / Client Sample ID(s)                                                    |                                   |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluatio |  |
| EA055: Moisture Content                                                            |                                   |             |                |                        |            |               |                  |           |  |
| Soil Glass Jar - Unpreserved<br>TBH07_0.1-0.15,                                    | TBH08_0.13-0.25                   | 04-FEB-2011 |                |                        |            | 08-FEB-2011   | 18-FEB-2011      | 1         |  |
| Soil Glass Jar - Unpreserved<br>TBH03_1.2-1.3,<br>TBH01_0.43-0.5,<br>DUP 01        | TBH03_1.5-1.6,<br>TBH06_0.55-0.6, | 05-FEB-2011 |                |                        |            | 08-FEB-2011   | 19-FEB-2011      | 1         |  |
| EG005T: Total Metals by ICP-AES                                                    |                                   |             |                |                        |            |               |                  |           |  |
| Soil Glass Jar - Unpreserved TBH07_0.1-0.15,                                       | TBH08_0.13-0.25                   | 04-FEB-2011 | 08-FEB-2011    | 03-AUG-2011            | <b>✓</b>   | 09-FEB-2011   | 03-AUG-2011      | <b>✓</b>  |  |
| Soil Glass Jar - Unpreserved<br>TBH03_1.2-1.3,<br>TBH01_0.43-0.5,<br>DUP 01        | TBH03_1.5-1.6,<br>TBH06_0.55-0.6, | 05-FEB-2011 | 08-FEB-2011    | 04-AUG-2011            | ✓          | 09-FEB-2011   | 04-AUG-2011      | ✓         |  |
| EG035T: Total Recoverable Mercury by FIMS                                          |                                   |             |                |                        |            |               |                  |           |  |
| Soil Glass Jar - Unpreserved<br>TBH07_0.1-0.15,                                    | TBH08_0.13-0.25                   | 04-FEB-2011 | 08-FEB-2011    | 04-MAR-2011            | <b>√</b>   | 10-FEB-2011   | 04-MAR-2011      | <b>✓</b>  |  |
| Soil Glass Jar - Unpreserved<br>TBH03_1.2-1.3,<br>TBH01_0.43-0.5,<br>DUP 01        | TBH03_1.5-1.6,<br>TBH06_0.55-0.6, | 05-FEB-2011 | 08-FEB-2011    | 05-MAR-2011            | ✓          | 10-FEB-2011   | 05-MAR-2011      | ✓         |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbon                                      | s                                 |             |                |                        |            |               |                  |           |  |
| Soil Glass Jar - Unpreserved<br>TBH07_0.1-0.15,                                    | TBH08_0.13-0.25                   | 04-FEB-2011 | 09-FEB-2011    | 18-FEB-2011            | <b>√</b>   | 10-FEB-2011   | 21-MAR-2011      | <b>✓</b>  |  |
| <b>Soil Glass Jar - Unpreserved</b><br>TBH03_1.2-1.3,<br>TBH01_0.43-0.5,<br>DUP 01 | TBH03_1.5-1.6,<br>TBH06_0.55-0.6, | 05-FEB-2011 | 09-FEB-2011    | 19-FEB-2011            | ✓          | 10-FEB-2011   | 21-MAR-2011      | <b>√</b>  |  |

Page : 3 of 6
Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



#### Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

| Wattix. COIL                                                                |                                   |             |                |                        |            | riolaling time | 2.040,           | r nording time |
|-----------------------------------------------------------------------------|-----------------------------------|-------------|----------------|------------------------|------------|----------------|------------------|----------------|
| Method                                                                      |                                   | Sample Date | Ex             | traction / Preparation |            |                | Analysis         |                |
| Container / Client Sample ID(s)                                             |                                   |             | Date extracted | Due for extraction     | Evaluation | Date analysed  | Due for analysis | Evaluation     |
| EP080/071: Total Petroleum Hydrocarbons                                     |                                   |             |                |                        |            |                |                  |                |
| Soil Glass Jar - Unpreserved<br>TBH07_0.1-0.15,                             | TBH08_0.13-0.25                   | 04-FEB-2011 | 08-FEB-2011    | 18-FEB-2011            | <b>√</b>   | 08-FEB-2011    | 18-FEB-2011      | <b>✓</b>       |
| Soil Glass Jar - Unpreserved<br>TBH07_0.1-0.15,                             | TBH08_0.13-0.25                   | 04-FEB-2011 | 09-FEB-2011    | 18-FEB-2011            | <b>√</b>   | 10-FEB-2011    | 21-MAR-2011      | <b>√</b>       |
| Soil Glass Jar - Unpreserved<br>TBH03_1.2-1.3,<br>TBH01_0.43-0.5,<br>DUP 01 | TBH03_1.5-1.6,<br>TBH06_0.55-0.6, | 05-FEB-2011 | 08-FEB-2011    | 19-FEB-2011            | ✓          | 08-FEB-2011    | 19-FEB-2011      | ✓              |
| Soil Glass Jar - Unpreserved TBH03_1.2-1.3, TBH01_0.43-0.5, DUP 01          | TBH03_1.5-1.6,<br>TBH06_0.55-0.6, | 05-FEB-2011 | 09-FEB-2011    | 19-FEB-2011            | ✓          | 10-FEB-2011    | 21-MAR-2011      | ✓              |
| EP080: BTEX                                                                 |                                   |             |                |                        |            |                |                  |                |
| Soil Glass Jar - Unpreserved<br>TBH07_0.1-0.15,                             | TBH08_0.13-0.25                   | 04-FEB-2011 | 08-FEB-2011    | 18-FEB-2011            | <b>√</b>   | 08-FEB-2011    | 18-FEB-2011      | <b>✓</b>       |
| <b>Soil Glass Jar - Unpreserved</b> TBH03_1.2-1.3, TBH01_0.43-0.5, DUP 01   | TBH03_1.5-1.6,<br>TBH06_0.55-0.6, | 05-FEB-2011 | 08-FEB-2011    | 19-FEB-2011            | ✓          | 08-FEB-2011    | 19-FEB-2011      | ✓              |

Page : 4 of 6 Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



#### **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL** Evaluation: **×** = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

|                                  |            |    |         |        |          |            | act mains openiously, adding control in equality mains opening |
|----------------------------------|------------|----|---------|--------|----------|------------|----------------------------------------------------------------|
| tuality Control Sample Type      |            | C  | Count   |        | Rate (%) |            | Quality Control Specification                                  |
| nalytical Methods                | Method     | QC | Regular | Actual | Expected | Evaluation |                                                                |
| aboratory Duplicates (DUP)       |            |    |         |        |          |            |                                                                |
| Moisture Content                 | EA055-103  | 4  | 32      | 12.5   | 10.0     | ✓          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| PAH/Phenols (SIM)                | EP075(SIM) | 1  | 9       | 11.1   | 10.0     | ✓          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| Total Mercury by FIMS            | EG035T     | 2  | 11      | 18.2   | 10.0     | ✓          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| Total Metals by ICP-AES          | EG005T     | 2  | 19      | 10.5   | 10.0     | ✓          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| TPH - Semivolatile Fraction      | EP071      | 1  | 9       | 11.1   | 10.0     | ✓          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| TPH Volatiles/BTEX               | EP080      | 2  | 14      | 14.3   | 10.0     | ✓          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| _aboratory Control Samples (LCS) |            |    |         |        |          |            |                                                                |
| PAH/Phenols (SIM)                | EP075(SIM) | 1  | 9       | 11.1   | 5.0      | 1          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| Total Mercury by FIMS            | EG035T     | 1  | 11      | 9.1    | 5.0      | 1          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| Total Metals by ICP-AES          | EG005T     | 1  | 19      | 5.3    | 5.0      | <u> </u>   | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| TPH - Semivolatile Fraction      | EP071      | 1  | 9       | 11.1   | 5.0      | 1          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| FPH Volatiles/BTEX               | EP080      | 1  | 14      | 7.1    | 5.0      | <b>√</b>   | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| Method Blanks (MB)               |            |    |         |        |          |            |                                                                |
| PAH/Phenols (SIM)                | EP075(SIM) | 1  | 9       | 11.1   | 5.0      | 1          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| Total Mercury by FIMS            | EG035T     | 1  | 11      | 9.1    | 5.0      | 1          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| Total Metals by ICP-AES          | EG005T     | 1  | 19      | 5.3    | 5.0      | 1          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| TPH - Semivolatile Fraction      | EP071      | 1  | 9       | 11.1   | 5.0      | 1          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| ΓΡΗ Volatiles/BTEX               | EP080      | 1  | 14      | 7.1    | 5.0      | ✓          | NEPM 1999 Schedule B(3) and ALS QCS3 requirement               |
| Matrix Spikes (MS)               |            |    |         |        |          |            |                                                                |
| PAH/Phenols (SIM)                | EP075(SIM) | 1  | 9       | 11.1   | 5.0      | 1          | ALS QCS3 requirement                                           |
| Total Mercury by FIMS            | EG035T     | 1  | 11      | 9.1    | 5.0      | 1          | ALS QCS3 requirement                                           |
| Total Metals by ICP-AES          | EG005T     | 1  | 19      | 5.3    | 5.0      | ✓          | ALS QCS3 requirement                                           |
| TPH - Semivolatile Fraction      | EP071      | 1  | 9       | 11.1   | 5.0      | ✓          | ALS QCS3 requirement                                           |
| TPH Volatiles/BTEX               | EP080      | 1  | 14      | 7.1    | 5.0      | <b>√</b>   | ALS QCS3 requirement                                           |

Page : 5 of 6
Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                          | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                            | EA055-103  | SOIL   | A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2010 Draft) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                       |
| Total Metals by ICP-AES                                     | EG005T     | SOIL   | (APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)                                                                                   |
| Total Mercury by FIMS                                       | EG035T     | SOIL   | AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) |
| TPH - Semivolatile Fraction                                 | EP071      | SOIL   | (USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (1999) Schedule B(3) (Method 506.1)                                                                                                                                                                                                                                                                   |
| PAH/Phenols (SIM)                                           | EP075(SIM) | SOIL   | (USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 502 and 507)                                                                                                                                                                                                                     |
| TPH Volatiles/BTEX                                          | EP080      | SOIL   | (USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)                                                                                                                                                                                                                                            |
| Preparation Methods                                         | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hot Block Digest for metals in soils sediments and sludges  | EN69       | SOIL   | USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (1999) Schedule B(3) (Method 202)                                                                                |
| Methanolic Extraction of Soils for Purge and Trap           | * ORG16    | SOIL   | (USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.                                                                                                                                                                                                                                                                                                                                                         |
| Tumbler Extraction of Solids (Option B - Non-concentrating) | ORG17B     | SOIL   | In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.                                                                                                                                                                                                                                                                       |

Page : 6 of 6 Work Order : ES1102539

Client : AECOM Australia Pty Ltd
Project : 60153531 5 7 HICKSON ROAD



#### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

#### Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                            | Laboratory Sample ID | Client Sample ID | Analyte | CAS Number | Data   | Limits  | Comment                                  |
|------------------------------------------------|----------------------|------------------|---------|------------|--------|---------|------------------------------------------|
| Duplicate (DUP) RPDs                           |                      |                  |         |            |        |         |                                          |
| EG005T: Total Metals by ICP-AES                | ES1102438-002        | Anonymous        | Zinc    | 7440-66-6  | 133 %  | 0-20%   | RPD exceeds LOR based limits             |
| EG005T: Total Metals by ICP-AES                | ES1102363-013        | Anonymous        | Zinc    | 7440-66-6  | 73.8 % | 0-50%   | RPD exceeds LOR based limits             |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons | ES1102539-001        | TBH07_0.1-0.15   | Pyrene  | 129-00-0   | 24.8 % | 0-20%   | RPD exceeds LOR based limits             |
| Matrix Spike (MS) Recoveries                   |                      |                  |         |            |        |         |                                          |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons | ES1102539-001        | TBH07_0.1-0.15   | Pyrene  | 129-00-0   | 138 %  | 70-130% | Recovery greater than upper data quality |
|                                                |                      |                  |         |            |        |         | objective                                |

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Laboratory Control outliers occur.

#### Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.





#### **Environmental Division**

#### **CERTIFICATE OF ANALYSIS**

Work Order : **ES1103303** Page : 1 of 7

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Sydney

Contact : MS KATE O BRIEN Contact : Jennifer Cullen

Address : LEVEL 5, 828 PACIFIC HIGHWAY Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

GORDON NSW, AUSTRALIA 2072

Telephone : +61 02 8484 8999 Telephone : +61 2 8784 8509
Facsimile : +61 02 8484 8989 Facsimile : +61 2 8784 8500

Project : HICKSON ROAD 60153531 5 7 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : 38962AUS

C-O-C number : ---- Date Samples Received : 14-FEB-2011
Sampler : K'O Issue Date : 24-FEB-2011

Site · ---

No. of samples received : 12

Quote number : SY/418/10 V2

No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits



NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position                 | Accreditation Category |
|----------------|--------------------------|------------------------|
| Edwandy Fadjar | Senior Organic Chemist   | Organics               |
| Hoa Nguyen     | Inorganic Chemist        | Inorganics             |
| Luke Witham    | Senior Inorganic Chemist | Inorganics             |
| Pabi Subba     | Senior Organic Chemist   | Organics               |

Page : 2 of 7
Work Order : ES1103303

Client : AECOM Australia Pty Ltd

Project : HICKSON ROAD 60153531 5 7



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EG005T: LCS recovery for Nickel falls outside ALS Dynamic Control Limit. However, they are within the acceptance criteria based on ALS DQO. No further action is required.

Page : 3 of 7
Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



| Sub-Matrix: SOIL                    |              | Clie        | ent sample ID  | TBH06_1.5-2.0     | TBH05_1.8-2.0     | TBH05_0.6-0.7     | TBH04_0.6-0.65    | TBH04_1.7-2.0     |
|-------------------------------------|--------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cli          | ent samplii | ng date / time | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 |
| Compound                            | CAS Number   | LOR         | Unit           | ES1103303-001     | ES1103303-002     | ES1103303-003     | ES1103303-004     | ES1103303-006     |
| EA055: Moisture Content             |              |             |                |                   |                   |                   |                   |                   |
| ^ Moisture Content (dried @ 103°C)  |              | 1.0         | %              | 14.5              | 24.4              | 25.6              | 11.1              | 27.1              |
| EG005T: Total Metals by ICP-AES     |              |             |                |                   |                   |                   |                   |                   |
| Arsenic                             | 7440-38-2    | 5           | mg/kg          | <5                | <5                | <5                | <5                | 5                 |
| Cadmium                             | 7440-43-9    | 1           | mg/kg          | <1                | <1                | <1                | <1                | 3                 |
| Chromium                            | 7440-47-3    | 2           | mg/kg          | 7                 | 4                 | 103               | 10                | 10                |
| Copper                              | 7440-50-8    | 5           | mg/kg          | <5                | 51                | 39                | 43                | 454               |
| Lead                                | 7439-92-1    | 5           | mg/kg          | <5                | 115               | 10                | 16                | 508               |
| Nickel                              | 7440-02-0    | 2           | mg/kg          | <2                | 18                | 52                | 7                 | 17                |
| Zinc                                | 7440-66-6    | 5           | mg/kg          | <5                | 344               | 15                | 18                | 1420              |
| EG035T: Total Recoverable Mercury I | oy FIMS      |             |                |                   |                   |                   |                   |                   |
| Mercury                             | 7439-97-6    | 0.1         | mg/kg          | <0.1              | <0.1              | <0.1              | 0.1               | 1.8               |
| EP075(SIM)B: Polynuclear Aromatic H | lydrocarbons |             |                |                   |                   |                   |                   |                   |
| Naphthalene                         | 91-20-3      | 0.5         | mg/kg          | <0.5              | 0.6               | <0.5              | <0.5              | 0.7               |
| Acenaphthylene                      | 208-96-8     | 0.5         | mg/kg          | <0.5              | 0.9               | <0.5              | <0.5              | 5.0               |
| Acenaphthene                        | 83-32-9      | 0.5         | mg/kg          | <0.5              | 0.6               | <0.5              | <0.5              | <0.5              |
| Fluorene                            | 86-73-7      | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 1.0               |
| Phenanthrene                        | 85-01-8      | 0.5         | mg/kg          | <0.5              | 8.3               | <0.5              | <0.5              | 1.6               |
| Anthracene                          | 120-12-7     | 0.5         | mg/kg          | <0.5              | 3.1               | <0.5              | <0.5              | 1.9               |
| Fluoranthene                        | 206-44-0     | 0.5         | mg/kg          | <0.5              | 19.1              | <0.5              | <0.5              | 4.3               |
| Pyrene                              | 129-00-0     | 0.5         | mg/kg          | <0.5              | 16.0              | <0.5              | <0.5              | 4.2               |
| Benz(a)anthracene                   | 56-55-3      | 0.5         | mg/kg          | <0.5              | 15.6              | <0.5              | <0.5              | 3.9               |
| Chrysene                            | 218-01-9     | 0.5         | mg/kg          | <0.5              | 13.2              | <0.5              | <0.5              | 3.4               |
| Benzo(b)fluoranthene                | 205-99-2     | 0.5         | mg/kg          | <0.5              | 23.8              | <0.5              | <0.5              | 5.5               |
| Benzo(k)fluoranthene                | 207-08-9     | 0.5         | mg/kg          | <0.5              | 9.3               | <0.5              | <0.5              | 2.8               |
| Benzo(a)pyrene                      | 50-32-8      | 0.5         | mg/kg          | <0.5              | 18.8              | <0.5              | <0.5              | 6.4               |
| Indeno(1.2.3.cd)pyrene              | 193-39-5     | 0.5         | mg/kg          | <0.5              | 14.0              | <0.5              | <0.5              | 5.4               |
| Dibenz(a.h)anthracene               | 53-70-3      | 0.5         | mg/kg          | <0.5              | 3.4               | <0.5              | <0.5              | 1.2               |
| Benzo(g.h.i)perylene                | 191-24-2     | 0.5         | mg/kg          | <0.5              | 15.1              | <0.5              | <0.5              | 7.0               |
| EP080/071: Total Petroleum Hydrocar | bons         |             |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                    |              | 10          | mg/kg          | <10               | <10               | <10               | <10               | <10               |
| C10 - C14 Fraction                  |              | 50          | mg/kg          | <50               | <50               | <50               | <50               | <50               |
| C15 - C28 Fraction                  |              | 100         | mg/kg          | <100              | 600               | <100              | <100              | 1340              |
| C29 - C36 Fraction                  |              | 100         | mg/kg          | <100              | 610               | <100              | <100              | 700               |
| ^ C10 - C36 Fraction (sum)          |              | 50          | mg/kg          | <50               | 1210              | <50               | <50               | 2040              |
| EP080: BTEX                         |              |             |                |                   |                   |                   |                   |                   |
| Benzene                             | 71-43-2      | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Toluene                             | 108-88-3     | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |

Page : 4 of 7
Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



| Sub-Matrix: SOIL              |                   | Cli         | ent sample ID   | TBH06_1.5-2.0     | TBH05_1.8-2.0     | TBH05_0.6-0.7     | TBH04_0.6-0.65    | TBH04_1.7-2.0     |
|-------------------------------|-------------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                               | CI                | ient sampli | ing date / time | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 |
| Compound                      | CAS Number        | LOR         | Unit            | ES1103303-001     | ES1103303-002     | ES1103303-003     | ES1103303-004     | ES1103303-006     |
| EP080: BTEX - Continued       |                   |             |                 |                   |                   |                   |                   |                   |
| Ethylbenzene                  | 100-41-4          | 0.5         | mg/kg           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| meta- & para-Xylene           | 108-38-3 106-42-3 | 0.5         | mg/kg           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| ortho-Xylene                  | 95-47-6           | 0.5         | mg/kg           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| EP075(SIM)S: Phenolic Compo   | und Surrogates    |             |                 |                   |                   |                   |                   |                   |
| Phenol-d6                     | 13127-88-3        | 0.1         | %               | 110               | 108               | 113               | 110               | 110               |
| 2-Chlorophenol-D4             | 93951-73-6        | 0.1         | %               | 102               | 94.3              | 94.2              | 96.5              | 94.0              |
| 2.4.6-Tribromophenol          | 118-79-6          | 0.1         | %               | 59.9              | 69.2              | 58.5              | 55.1              | 73.5              |
| EP075(SIM)T: PAH Surrogates   |                   |             |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl              | 321-60-8          | 0.1         | %               | 105               | 99.2              | 100               | 102               | 99.0              |
| Anthracene-d10                | 1719-06-8         | 0.1         | %               | 112               | 107               | 108               | 108               | 109               |
| 4-Terphenyl-d14               | 1718-51-0         | 0.1         | %               | 104               | 97.6              | 101               | 105               | 110               |
| EP080S: TPH(V)/BTEX Surrogate | tes               |             |                 |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4         | 17060-07-0        | 0.1         | %               | 116               | 109               | 106               | 113               | 114               |
| Toluene-D8                    | 2037-26-5         | 0.1         | %               | 123               | 110               | 110               | 114               | 119               |
| 4-Bromofluorobenzene          | 460-00-4          | 0.1         | %               | 108               | 101               | 101               | 108               | 112               |

Page : 5 of 7

Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



| Sub-Matrix: SOIL                     |             | Clie       | ent sample ID  | DUP02             | TBH04_0.7-0.8     | TBH05_1.3-1.7     | <br> |
|--------------------------------------|-------------|------------|----------------|-------------------|-------------------|-------------------|------|
|                                      | Cli         | ent sampli | ng date / time | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | <br> |
| Compound                             | CAS Number  | LOR        | Unit           | ES1103303-007     | ES1103303-008     | ES1103303-011     | <br> |
| EA055: Moisture Content              |             |            |                |                   |                   |                   |      |
| ^ Moisture Content (dried @ 103°C)   |             | 1.0        | %              | 26.4              | 10.8              | 21.2              | <br> |
| EG005T: Total Metals by ICP-AES      | 22.0        |            |                |                   |                   |                   |      |
| Arsenic                              | 7440-38-2   | 5          | mg/kg          | <5                | 11                | <5                | <br> |
| Cadmium                              | 7440-43-9   | 1          | mg/kg          | <1                | <1                | <1                | <br> |
| Chromium                             | 7440-47-3   | 2          | mg/kg          | 6                 | 10                | 4                 | <br> |
| Copper                               | 7440-50-8   | 5          | mg/kg          | 54                | 1730              | 9                 | <br> |
| Lead                                 | 7439-92-1   | 5          | mg/kg          | 113               | 279               | 26                | <br> |
| Nickel                               | 7440-02-0   | 2          | mg/kg          | 18                | 9                 | <2                | <br> |
| Zinc                                 | 7440-66-6   | 5          | mg/kg          | 362               | 649               | 29                | <br> |
| EG035T: Total Recoverable Mercury b  | y FIMS      |            |                |                   |                   |                   |      |
| Mercury                              | 7439-97-6   | 0.1        | mg/kg          | <0.1              | 0.3               | <0.1              | <br> |
| EP075(SIM)B: Polynuclear Aromatic Hy | ydrocarbons |            |                |                   |                   |                   |      |
| Naphthalene                          | 91-20-3     | 0.5        | mg/kg          | 0.8               | 0.9               | <0.5              | <br> |
| Acenaphthylene                       | 208-96-8    | 0.5        | mg/kg          | 0.7               | 3.1               | <0.5              | <br> |
| Acenaphthene                         | 83-32-9     | 0.5        | mg/kg          | 0.6               | <0.5              | <0.5              | <br> |
| Fluorene                             | 86-73-7     | 0.5        | mg/kg          | 0.6               | 0.6               | <0.5              | <br> |
| Phenanthrene                         | 85-01-8     | 0.5        | mg/kg          | 9.5               | 6.4               | <0.5              | <br> |
| Anthracene                           | 120-12-7    | 0.5        | mg/kg          | 3.6               | 2.9               | <0.5              | <br> |
| Fluoranthene                         | 206-44-0    | 0.5        | mg/kg          | 17.8              | 14.1              | 1.0               | <br> |
| Pyrene                               | 129-00-0    | 0.5        | mg/kg          | 14.9              | 14.4              | 0.9               | <br> |
| Benz(a)anthracene                    | 56-55-3     | 0.5        | mg/kg          | 14.6              | 8.0               | 0.7               | <br> |
| Chrysene                             | 218-01-9    | 0.5        | mg/kg          | 11.8              | 6.3               | <0.5              | <br> |
| Benzo(b)fluoranthene                 | 205-99-2    | 0.5        | mg/kg          | 18.1              | 8.0               | 0.8               | <br> |
| Benzo(k)fluoranthene                 | 207-08-9    | 0.5        | mg/kg          | 10.9              | 3.2               | <0.5              | <br> |
| Benzo(a)pyrene                       | 50-32-8     | 0.5        | mg/kg          | 16.1              | 7.6               | 0.7               | <br> |
| Indeno(1.2.3.cd)pyrene               | 193-39-5    | 0.5        | mg/kg          | 10.6              | 2.7               | <0.5              | <br> |
| Dibenz(a.h)anthracene                | 53-70-3     | 0.5        | mg/kg          | 2.5               | 0.7               | <0.5              | <br> |
| Benzo(g.h.i)perylene                 | 191-24-2    | 0.5        | mg/kg          | 11.5              | 2.8               | <0.5              | <br> |
| EP080/071: Total Petroleum Hydrocarb | ons         |            |                |                   |                   |                   |      |
| C6 - C9 Fraction                     |             | 10         | mg/kg          | <10               | <10               | <10               | <br> |
| C10 - C14 Fraction                   |             | 50         | mg/kg          | <50               | <50               | <50               | <br> |
| C15 - C28 Fraction                   |             | 100        | mg/kg          | 530               | 520               | <100              | <br> |
| C29 - C36 Fraction                   |             | 100        | mg/kg          | 470               | 340               | <100              | <br> |
| ^ C10 - C36 Fraction (sum)           |             | 50         | mg/kg          | 1000              | 860               | <50               | <br> |
| EP080: BTEX                          |             |            |                |                   |                   |                   |      |
| Benzene                              | 71-43-2     | 0.2        | mg/kg          | <0.2              | <0.2              | <0.2              | <br> |
| Toluene                              | 108-88-3    | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <br> |

Page : 6 of 7
Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



| Sub-Matrix: SOIL                 |                   | Clie        | ent sample ID  | DUP02             | TBH04_0.7-0.8     | TBH05_1.3-1.7     | <br> |
|----------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|------|
|                                  | Cl                | ient sampli | ng date / time | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | 12-FEB-2011 15:00 | <br> |
| Compound                         | CAS Number        | LOR         | Unit           | ES1103303-007     | ES1103303-008     | ES1103303-011     | <br> |
| EP080: BTEX - Continued          |                   |             |                |                   |                   |                   |      |
| Ethylbenzene                     | 100-41-4          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <br> |
| meta- & para-Xylene              | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <br> |
| ortho-Xylene                     | 95-47-6           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <br> |
| EP075(SIM)S: Phenolic Compound S | Surrogates        |             |                |                   |                   |                   |      |
| Phenol-d6                        | 13127-88-3        | 0.1         | %              | 111               | 84.9              | 74.1              | <br> |
| 2-Chlorophenol-D4                | 93951-73-6        | 0.1         | %              | 96.4              | 102               | 89.9              | <br> |
| 2.4.6-Tribromophenol             | 118-79-6          | 0.1         | %              | 74.3              | 64.0              | 50.7              | <br> |
| EP075(SIM)T: PAH Surrogates      |                   |             |                |                   |                   |                   |      |
| 2-Fluorobiphenyl                 | 321-60-8          | 0.1         | %              | 104               | 99.8              | 88.2              | <br> |
| Anthracene-d10                   | 1719-06-8         | 0.1         | %              | 111               | 96.2              | 90.4              | <br> |
| 4-Terphenyl-d14                  | 1718-51-0         | 0.1         | %              | 105               | 84.1              | 101               | <br> |
| EP080S: TPH(V)/BTEX Surrogates   |                   |             |                |                   |                   |                   |      |
| 1.2-Dichloroethane-D4            | 17060-07-0        | 0.1         | %              | 123               | 105               | 104               | <br> |
| Toluene-D8                       | 2037-26-5         | 0.1         | %              | 102               | 113               | 102               | <br> |
| 4-Bromofluorobenzene             | 460-00-4          | 0.1         | %              | 89.3              | 98.6              | 99.3              | <br> |

Page : 7 of 7 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



#### **Surrogate Control Limits**

| Sub-Matrix: SOIL                          |            | Recovery | Limits (%) |
|-------------------------------------------|------------|----------|------------|
| Compound                                  | CAS Number | Low      | High       |
| EP075(SIM)S: Phenolic Compound Surrogates |            |          |            |
| Phenol-d6                                 | 13127-88-3 | 56.3     | 133.3      |
| 2-Chlorophenol-D4                         | 93951-73-6 | 53.8     | 133.8      |
| 2.4.6-Tribromophenol                      | 118-79-6   | 23.1     | 134.9      |
| EP075(SIM)T: PAH Surrogates               |            |          |            |
| 2-Fluorobiphenyl                          | 321-60-8   | 58.9     | 132.7      |
| Anthracene-d10                            | 1719-06-8  | 55.0     | 137.6      |
| 4-Terphenyl-d14                           | 1718-51-0  | 54.0     | 147.8      |
| EP080S: TPH(V)/BTEX Surrogates            |            |          |            |
| 1.2-Dichloroethane-D4                     | 17060-07-0 | 72.8     | 133.2      |
| Toluene-D8                                | 2037-26-5  | 73.9     | 132.1      |
| 4-Bromofluorobenzene                      | 460-00-4   | 71.6     | 130.0      |

#### A

#### CPFO419 (ENV) Chain of Custody Analysis Request Form

Coc #2 Page 1/2

| AECOM - Sydney (Gordon)                                              |                                           |                      |          |                               |            |               |       |          |       |                | Laboratory Details     |              |                                            |        |               | Te       | l: 8                   | 3784 8              | 8555          |                        |                                                      |         |  |  |  |
|----------------------------------------------------------------------|-------------------------------------------|----------------------|----------|-------------------------------|------------|---------------|-------|----------|-------|----------------|------------------------|--------------|--------------------------------------------|--------|---------------|----------|------------------------|---------------------|---------------|------------------------|------------------------------------------------------|---------|--|--|--|
| PO Box 726 Tel: 61 2 8484 8999                                       |                                           |                      |          |                               |            |               |       |          |       |                | Lab. Name: ALS         |              |                                            |        |               |          | Fa                     | Fax:                |               |                        |                                                      |         |  |  |  |
| Pymble NSW 2073 A                                                    | Australia                                 |                      |          | Fax: 61 2 8484 8989           |            |               |       |          |       |                |                        |              | Lab. Address: 277 Woodpark Rd Smithfield   |        |               |          |                        |                     |               | Preliminary Report by: |                                                      |         |  |  |  |
|                                                                      |                                           |                      |          | Email: Kate,O'Brien@aecom.com |            |               |       |          |       |                |                        |              | Contact Name:                              |        |               |          |                        |                     |               | Final Report by:       |                                                      |         |  |  |  |
|                                                                      |                                           |                      |          | •                             |            |               |       |          |       | -              | Lab. I                 | Ref:         |                                            |        |               |          | La                     | b Quote             | e No:         | SY/418                 | 8/10 V2                                              |         |  |  |  |
| Project Name:                                                        | Hickson Road                              |                      | Proje    | ect Nu                        | mber:      |               | 6015  | 3531/5.  | .7    |                | Purchase Order Number: |              |                                            |        |               |          |                        | 38962AUS            |               |                        |                                                      |         |  |  |  |
| Sample collecte                                                      | d by:                                     | Kate O'Brien         | Sam      | ple Re                        | sults t    | O'Brien@ae    | com.c | com / a  | Anth  | ony.[          | Davis(                 | Даес         | om.co                                      | om.com |               |          |                        |                     |               |                        |                                                      |         |  |  |  |
| Specifications:                                                      | Esdat                                     |                      |          |                               |            | •             |       |          |       |                |                        | Α            | nalysi                                     | Requ   | Jest          |          |                        |                     |               |                        |                                                      |         |  |  |  |
| d Hanna Ta Tana da da                                                | 2 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                      |          |                               | <u>г</u>   |               |       | (Tick)   |       | <b>—</b>       | 1                      |              |                                            |        |               |          |                        |                     |               | R                      | emarks & c                                           | omments |  |  |  |
| <ol> <li>Urgent TAT required?</li> <li>Fast TAT Guarantee</li> </ol> | <del>"</del>                              | days)                |          |                               | ☐ Yes☐ Yes |               |       | No<br>No |       | N/A            | 1                      |              |                                            |        | 11            |          |                        |                     |               | _                      |                                                      |         |  |  |  |
|                                                                      | r present in waters to be exclude         | rl from extractions? |          |                               | Yes        |               |       | No<br>No |       | □ N/A<br>□ N/A | 1                      |              |                                            |        |               |          |                        |                     |               |                        |                                                      | ŀ       |  |  |  |
| Special storage requ                                                 | · · · · · · · · · · · · · · · · · · ·     | 1 HOM GRACOSTON      |          |                               | Yes        |               | 一片    |          |       | □ N/A          | <b>{</b>               |              | -                                          |        |               |          |                        |                     |               |                        |                                                      | ŀ       |  |  |  |
| 5. Preservation requires                                             | ·                                         |                      | -        |                               | Yes        |               | 一百    |          |       | □ N/A          | <sub>@</sub>           |              |                                            |        |               |          |                        |                     |               |                        |                                                      | ŀ       |  |  |  |
| 6. Other requirements?                                               |                                           |                      |          |                               | Yes        |               |       | No       |       | □ N/A          | <u> </u>               | 99           |                                            |        |               |          |                        |                     |               |                        |                                                      | ļ       |  |  |  |
| 7. Report Format:                                                    | Fax Hard copy 🗹 E                         | mail 8. Proje        | ect Mana | ager: Anti                    | hony Dav   | is            |       |          | tel:  | 8484 8939      | Metals (8)             | тРН (С6-С36) |                                            |        |               |          |                        | <b>'</b>            |               |                        |                                                      |         |  |  |  |
| Lab.                                                                 | Sample ID                                 | Sampling Date & time |          | Matrix                        |            |               | Pres  | ervation |       | Container      | Heavy                  | 밁            | 1                                          | ដ      | 뽀             |          |                        | I                   |               |                        |                                                      |         |  |  |  |
|                                                                      |                                           | Sampling Date & lime | soil     | water                         | other      | filt'ed       | acid  | ice      | other | (No. & type)   | <u> [</u>              |              | ŀ                                          | Z<br>Z | PAHs          | L        |                        |                     |               |                        |                                                      |         |  |  |  |
| <u>4</u><br><u>D</u> 5                                               | TBH04_0.6-0.6                             |                      | X        |                               |            |               |       | X        |       | 250ml          |                        |              |                                            |        |               | $\top$   |                        | Envi                |               |                        | Division                                             |         |  |  |  |
| <b>®</b>                                                             | TBHO4_ 0.7-0:                             | 8 11                 | X        |                               |            |               |       | ×        |       | 150ml.         |                        |              |                                            |        |               | T        |                        |                     |               | ydney                  |                                                      |         |  |  |  |
| 5                                                                    | TBH04_0.9-1.                              |                      | X        |                               |            |               |       | X        |       | 250ml          |                        |              |                                            |        |               | T        |                        | <b></b> .           |               | rk Ord                 |                                                      |         |  |  |  |
| 6_                                                                   | 18H04_1.7-2.0                             |                      | X        |                               |            |               |       | X        |       | 250N.          |                        | Ti           |                                            |        |               | $\top$   |                        | 上                   | 57            | <i>103</i>             | 3303                                                 |         |  |  |  |
| <u> </u>                                                             | -78HO5_02-0.21                            |                      | X        |                               |            |               |       | 4        |       | 280nl          |                        |              |                                            |        |               | $\top$   | B  \$11                | 110 840             | #1 P1 F#1     | ·=== 01/1 s            |                                                      |         |  |  |  |
| 3                                                                    | 78HO5_06-07                               |                      | Х        |                               |            |               |       | X        |       | 150ml          | $\sqcap$               | 7.7          |                                            |        | $\Box$        | $\top$   |                        |                     |               |                        |                                                      |         |  |  |  |
| (a)                                                                  | 18HO5_1-1-3                               | . 11                 | X        |                               |            |               |       | X        |       | 250nl          | $\sqcap$               | 11           |                                            | $\top$ | 11            | 十        |                        |                     |               |                        |                                                      |         |  |  |  |
| (I)_                                                                 | TBHO5_1.3-1-                              | 7. 11                | X        |                               |            |               |       | ×        |       | 280m           |                        |              |                                            |        |               | <b>T</b> | 111 E11                | () 41 <b>41</b> ) ) | 45 pt 140) ii |                        | #   <b>6</b> 11    #   #   #   #   #   #   #   #   # | III     |  |  |  |
| 2                                                                    | TBH05-1-8-2-C                             | ). ' tr              | X        |                               |            |               |       | 乂        |       | 150ml          |                        | 17           |                                            |        |               | $\top$   | 1                      | elepno              | ∍ne: ⋅        | + 61-2-8               | 8784 8555                                            | -       |  |  |  |
|                                                                      | -7BH06-1:5-20                             | 9 11                 | X        |                               |            |               |       | X        |       | 250ml          |                        |              |                                            |        |               |          |                        | 1                   | 1 1           | 1 1                    |                                                      |         |  |  |  |
| Relinquished By                                                      | -                                         | Rece                 | ived b   | y:                            |            |               |       |          |       |                | Receiv                 | ved in g     | ood                                        | Yes    | /No/NA        | Meti     | nod of S               | hipmen              | $\top$        |                        |                                                      |         |  |  |  |
| Name: Kotto                                                          | Obvien                                    | Date: 7 / 1) Name:   |          |                               |            | <del></del> - |       |          |       | Date:          | Sampl                  | les rece     | ived                                       | Yes    | /No/NA        |          | signmer                | nt Note             | +-            |                        |                                                      |         |  |  |  |
| of:                                                                  | Elm -                                     | Time: 7 of:          |          |                               |            |               |       |          | 5     | Time:          | chilled                | 17           |                                            | Yes    | /No/NA        | No.      | sport C                | o: ,                | $\pm$         |                        |                                                      |         |  |  |  |
| Relinquished By                                                      |                                           | Rece                 | ived b   |                               | -          |               | •     |          |       |                |                        |              |                                            |        |               | and of S | Courier Postal By Hand |                     |               |                        |                                                      |         |  |  |  |
| Relinquished by                                                      | <u> </u>                                  |                      |          |                               |            |               |       |          |       |                |                        |              | condition?                                 |        |               |          |                        |                     |               |                        |                                                      |         |  |  |  |
| Name:                                                                |                                           | Date: Names          | Mar      | Són                           |            | 1 602 h       |       |          |       |                |                        |              | Samples received Yes/No/NA Corchilled? No. |        |               |          |                        | signment Note       |               |                        |                                                      |         |  |  |  |
| of:                                                                  | Ais                                       | 16) 20 (             |          |                               |            |               |       |          |       |                |                        |              | /No/NA                                     | Tran   | Transport Co: |          |                        | Postal D            | By Hand       |                        |                                                      |         |  |  |  |

COC#2 Page 2/2

**AECOM** 

| AECOM - Sydney (Gordon)                                             |                                 |                   |                      |                                                      |           |              |          |                  |                                       |       |              | Laboratory Details                       |              |               |            |        |          |                        | Tel: 8784 8555               |        |           |         |          |         |         |
|---------------------------------------------------------------------|---------------------------------|-------------------|----------------------|------------------------------------------------------|-----------|--------------|----------|------------------|---------------------------------------|-------|--------------|------------------------------------------|--------------|---------------|------------|--------|----------|------------------------|------------------------------|--------|-----------|---------|----------|---------|---------|
| PO Box 726                                                          |                                 |                   |                      |                                                      | Tel· 6    | 1 2 8484     | 8999     |                  |                                       |       | •            | Lab. Name: ALS                           |              |               |            |        |          |                        | Fax:                         |        |           |         |          |         |         |
| Pymble NSW 2073 A                                                   | uetralia .                      |                   |                      |                                                      |           | 1 2 8484     |          |                  |                                       |       |              | Lab. Address: 277 Woodpark Rd Smithfield |              |               |            |        |          |                        | Preliminary Report by:       |        |           |         |          |         |         |
| , indicitors 20107                                                  | o Strain a                      |                   |                      |                                                      |           |              |          |                  |                                       |       |              | Contact Name:                            |              |               |            |        |          |                        | Final Report by:             |        |           |         |          |         |         |
|                                                                     |                                 |                   |                      |                                                      |           | -1010101     | <u> </u> | 2000             | · · · · · · · · · · · · · · · · · · · |       | •            | Lab. Ref: Lab Quote No: SY/418/10 V2     |              |               |            |        |          |                        |                              |        |           |         |          |         |         |
| Project Name:                                                       | Hickson Road                    |                   |                      | Proje                                                | ect Nu    | mber:        |          | 6015             | 3531/5.                               | .7    | , ,          | Pur                                      | chase        | Ord           | er N       | umbe   | r:       |                        |                              | 3      | 896       | 2AUS    |          |         |         |
| Sample collected                                                    | d by:                           | Kate O'Brien      |                      | Sample Results to be returned to: Kate.O'Brien@aecor |           |              |          |                  |                                       |       |              | ecom.com / Anthony.Davis@aecom.com       |              |               |            |        |          |                        |                              |        |           |         |          |         |         |
| Specifications: Esdat                                               |                                 |                   |                      |                                                      |           |              |          |                  |                                       |       |              |                                          |              |               |            |        |          |                        |                              | Regi   | ues       | t       |          |         |         |
| ,                                                                   |                                 |                   |                      |                                                      |           |              |          |                  | (Tick)                                |       |              |                                          |              |               | Т          | П      | T        | · ·                    |                              | 1      | 1         |         | Remar    | ks & c  | omments |
| <ol> <li>Urgent TAT required?</li> </ol>                            | (please circle: 24hr 48hr       | days              | )                    |                                                      |           | Yes          |          | □ No □ N/A       |                                       |       |              | ]                                        | - [          |               |            |        |          |                        | -                            |        |           |         |          |         |         |
| <ol><li>Fast TAT Guarantee F</li></ol>                              | •                               |                   |                      |                                                      |           | Yes          |          | □ No □ N/A       |                                       |       |              | ]                                        |              |               |            |        |          |                        | - 1                          |        |           |         |          |         |         |
| <del></del>                                                         | present in waters to be exclude | d from extraction | ns?                  |                                                      |           | Yes          |          |                  | No                                    |       | □ N/A        | 1                                        |              |               |            |        |          |                        | - 1                          |        |           |         |          |         | ,       |
| Special storage requi                                               |                                 |                   |                      |                                                      |           | ☐ Yes        |          | 무                |                                       |       | □ N/A        | ┨┈┞                                      |              |               |            |        |          |                        |                              |        |           |         |          |         |         |
| <ol><li>Preservation requirem</li><li>Other requirements?</li></ol> | ients?                          |                   |                      |                                                      |           | Yes          |          | NoN/A<br>NoN/A   |                                       |       |              | <u>@</u>                                 | ြက္က         |               |            |        |          |                        | - 1                          |        |           |         |          |         |         |
| 7. Report Format:                                                   | Fax Hard copy 🔽 E               | mail              | 8. Proje             | ect Mana                                             | iger: Ani | hony Dav     | is       | <u> </u>         |                                       | tel:  | 8484 8939    | Heavy Metals (8)                         | TPH (C6-C36) |               |            |        |          |                        |                              |        |           |         |          |         |         |
| Lab.                                                                | Sample ID                       |                   |                      | Matrix                                               |           |              |          | Preservation Cor |                                       |       | Container    | ≥                                        | [일           | ج             | <u>د</u> ا | မှ     |          | $  \cdot  $            |                              |        |           |         |          |         |         |
| ID                                                                  |                                 | Sampling Date     | Sampling Date & time |                                                      | water     | ather filt'e |          | t'ed acid ice    |                                       | other | (No. & type) | 1뿔                                       | [휴           | PTEY          | 5          | PAHs   |          |                        |                              |        |           |         |          |         | _       |
| 7                                                                   | DUPO2                           | 12.2.1            | 1 (                  | X                                                    |           |              |          |                  | ×                                     |       | 150ml        | П                                        |              |               |            |        | T        |                        |                              |        | 7         |         |          |         |         |
|                                                                     | Extra samp la                   |                   |                      |                                                      |           |              |          |                  |                                       |       |              |                                          |              |               |            |        |          |                        |                              |        |           |         |          |         |         |
| ( <del>2</del> )                                                    | TPHOS_0.9-                      | 1.4 12            | -0211                |                                                      |           |              |          |                  |                                       |       |              |                                          |              |               |            |        | 1        |                        | . 1                          |        | 1         |         |          |         |         |
| _                                                                   |                                 |                   |                      |                                                      |           |              |          |                  |                                       |       |              |                                          |              |               | $\top$     | $\Box$ | _        | П                      | 寸                            |        |           |         |          |         |         |
|                                                                     |                                 |                   |                      |                                                      |           |              |          |                  |                                       |       |              |                                          |              |               |            |        | +        |                        |                              |        | Ť         |         |          |         |         |
|                                                                     |                                 |                   |                      |                                                      |           |              |          |                  |                                       |       |              |                                          | 11           |               | $\top$     |        | ┪        | П                      | _                            |        | †         |         |          |         |         |
|                                                                     |                                 |                   |                      |                                                      |           |              |          |                  |                                       |       |              |                                          |              |               | †          |        |          | П                      | 1                            | 1      | +         |         |          |         |         |
|                                                                     |                                 |                   |                      |                                                      |           |              |          |                  |                                       |       | -            |                                          |              |               | †          |        | <u> </u> | T                      | 1                            | T      | $\dagger$ | $\top$  |          |         | _       |
|                                                                     |                                 |                   |                      |                                                      |           |              |          |                  |                                       |       |              |                                          |              |               | T          |        | $\top$   |                        |                              | $\neg$ | $\dagger$ |         |          |         |         |
|                                                                     | 1                               |                   |                      |                                                      |           |              |          |                  |                                       |       |              |                                          | 11           | -             | ╁          |        | 十        |                        | $\dashv$                     | $\top$ | $\dagger$ |         |          |         |         |
| Relinquished By:                                                    |                                 | · <del>L</del>    | Rece                 | ived b                                               | y:        |              |          | <u> </u>         |                                       |       |              | Recei                                    | ved in g     | ood           | Yes        | /No/NA | Met      | thod                   | of Shi                       | pmen   | it        |         |          |         |         |
| Name: Kaito                                                         | OBNU                            | Date:/2///        | Name:                |                                                      |           |              |          |                  |                                       |       | Date:        | Samp                                     | les rece     | ived          | Yes        | /No/NA |          | _                      | nent                         | Note   | +         |         |          |         |         |
| of:                                                                 | gren                            | Tim Born          | of:                  |                                                      |           |              |          |                  |                                       | -     | Time:        | chille                                   | d?           |               | Yes        | /No/NA | No.      | nspo                   | t Co:                        |        | $\pm$     |         |          |         |         |
| Relinquished By:                                                    |                                 |                   | Recei                | ived b                                               | γ:        |              |          |                  |                                       |       |              | Received in good Yes/No/NA Method        |              |               |            |        | thod o   | Courier Postal By Hand |                              |        |           | By Hand |          |         |         |
|                                                                     |                                 | Date:             | Name:                | CAN                                                  | 7 · r     | -01/1        |          |                  |                                       |       | Date:        | condition?  Samples received Yes/No/NA   |              |               |            | /No/NA | Cou      | Consignment Note       |                              |        |           |         | <u> </u> |         |         |
| Name:                                                               |                                 |                   |                      | $-\frac{\sqrt{\lambda}}{2}$                          | ZIN       | <u>سر</u>    |          | ,                | <u>-</u>                              |       | Date:        |                                          | chilled?     |               |            |        | No.      | No.                    |                              |        |           |         |          |         |         |
| .of:                                                                |                                 | Time: of:         |                      |                                                      |           |              | 1830     |                  |                                       |       |              |                                          |              | Yes/No/NA Tra |            |        |          |                        | port Co: Courier Postal By H |        |           |         |          | By Hand |         |

## Fadi Soro

From: Jennifer Cullen

Sent: Wednesday, 16 February 2011 12:10 PM

 $\ddot{\circ}$ Fadi Soro; Samples Sydney

Wael Saleh

Subject: FW: Barangaroo - Hickson Road - 60153531/5.7

Importance: High

Could you also arrange for the below samples be logged in for analysis

These ones would have been delivered on Monday for the Barangaroo project.

# How was your customer experience? Please send us your feedback

Kind Regards

# Jennifer Cullen SENIOR PROJECT MANAGER

# ALS | Environmental Division

Address 277-289 Woodpark Road, Smithfield, NSW, 2164

PHONE +61 2 8784 8555 DIRECT +61 2 8784 8509 FAX +61 2 8784 8500

# www.alsglobal.com

🚓 Please consider the environment before printing this email.

From: O'Brien, Kate [mailto:Kate.O'Brien@aecom.com] Sent: Wednesday, 16 February 2011 12:01 PM

To: Jennifer Cullen

Subject: Barangaroo - Hickson Road - 60153531/5.7

Hi Jenny

Could I also please get the following samples analysed which were delivered to the lab on Monday

- TBH06\_1.5-2.0 Metals (8), TPH, BTEX, PAH
- (2) TBH05\_1.8-2.0 Metals (8), TPH, BTEX, PAH
- TBH05\_0.6-0.7 Metals (8), TPH, BTEX, PAH
- TBH04\_0.6-0.65 Metals (8), TPH, BTEX, PAH
- TBH04\_0.9-1.4 Metals (8), TPH, BTEX, PAH
- TBH04\_1.7-2.0 Metals (8), TPH, BTEX, PAH
- DUP02 Metals (8), TPH, BTEX, PAH

### Regards

# Kate O'Brien

Professional Scientist D+61 2 8484 8939 Kate.O'Brien@aecom.com

## **AECOM**

Level 5, 828 Pacific Highway, Gordon, NSW 2072 PO Box 726 Pymble NSW 2073 T+61 2 8484 8999 F+61 2 8484 8989 www.aecom.com

Please consider the environment before printing this email.

; ;

This electronic communication, which includes any files or attachments thereto, contains proprietary or confidential information and may be privileged and otherwise protected under copyright or other applicable intellectual property laws. All information contained in this electronic communication is solely for the use of the individual(s) or entity to which it was addressed. If you are not the intended recipient(s), you are hereby notified that distributing, copying, or in any way disclosing any of the information in this e-mail is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately, and destroy the communication and any files or attachments in their entirety, whether in electronic or hard copy format. Since data stored on electronic media can deteriorate, be translated or modified, AECOM, its subsidiaries, and/or affiliates will not be liable for the completeness, correctness or readability of the electronic data. The electronic data should be verified against the hard copy.

ALS Group: Click here to report this email as spam.

#### ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES



#### **Environmental Division**

#### SAMPLE RECEIPT NOTIFICATION (SRN)

#### Comprehensive Report

: ES1103303 Work Order

Client : AECOM Australia Ptv Ltd Laboratory : Environmental Division Sydney

Contact : MS KATE O BRIEN Contact : Jennifer Cullen

Address : LEVEL 5. 828 PACIFIC HIGHWAY Address : 277-289 Woodpark Road Smithfield

> GORDON NSW, AUSTRALIA 2072 NSW Australia 2164

E-mail : kate.obrien@aecom.com E-mail : jennifer.cullen@alsglobal.com

Telephone Telephone : +61 02 8484 8999 : +61 2 8784 8509 Facsimile : +61 02 8484 8989 Facsimile : +61 2 8784 8500

**Project** : HICKSON ROAD 60153531 5 7 Page : 1 of 3

Order number · 38962AUS

C-O-C number Quote number : ES2010HLAENV0391 (SY/418/10 V2)

Sampler QC Level : K'O : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

**Dates** 

**Date Samples Received** : 17-FEB-2011 13:33 : 14-FEB-2011 Issue Date Client Requested Due Date : 24-FEB-2011 Scheduled Reporting Date 24-FEB-2011

**Delivery Details** 

Mode of Delivery Temperature : 7.8'C - Ice present : Carrier

No. of coolers/boxes : 1 HARD No. of samples received : 12 Security Seal No. of samples analysed · Intact : 7

#### General Comments

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Sample(s) have been received within recommended holding times.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Sample id TPH05\_0.9-1.4 received extra and placed on hold, please confrim.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 17-FEB-2011 13:33

Page : 2 of 3 Work Order : ES1103303

ES1103303-012

Client : AECOM Australia Pty Ltd



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exist.

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. When sampling time information is not provided by the 8 metals/TPH/BTEX/PAH client, sampling dates are shown without a time component. No analysis requested In these instances, the time component has been assumed by the laboratory for processing purposes. On Hold) SOIL Matrix: SOIL Client sample ID Laboratory sample Client sampling ID date / time ES1103303-001 12-FEB-2011 15:00 TBH06\_1.5-2.0 ES1103303-002 ✓ 12-FEB-2011 15:00 TBH05\_1.8-2.0 ES1103303-003 12-FEB-2011 15:00 TBH05\_0.6-0.7 ✓ ES1103303-004 12-FEB-2011 15:00 TBH04\_0.6-0.65 ES1103303-005 12-FEB-2011 15:00 TBH04\_0.9-1.4 ES1103303-006 12-FEB-2011 15:00 TBH04\_1.7-2.0 DUP02 ES1103303-007 12-FEB-2011 15:00 ES1103303-008 12-FEB-2011 15:00 TBH04\_0.7-0.8 ES1103303-009 12-FEB-2011 15:00 TBH05\_0.2-0.21 ES1103303-010 12-FEB-2011 15:00 TBH05\_1-1.3 ES1103303-011 12-FEB-2011 15:00 TBH05\_1.3-1.7

TPH05\_0.9-1.4

12-FEB-2011 15:00

Issue Date : 17-FEB-2011 13:33

Page : 3 of 3 Work Order : ES1103303

Client : AECOM Australia Pty Ltd



#### Requested Deliverables

| ACCOUNTS PAYABLE                                               |       |                               |
|----------------------------------------------------------------|-------|-------------------------------|
| - A4 - AU Tax Invoice ( INV )                                  | Email | accountsenv@aecom.com         |
| MR ANTHONY DAVIS                                               |       |                               |
| - *AU Certificate of Analysis - NATA ( COA )                   | Email | anthony.davis@aecom.com       |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) ( QCI )  | Email | anthony.davis@aecom.com       |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA ( QC )          | Email | anthony.davis@aecom.com       |
| - A4 - AU Sample Receipt Notification - Environmental ( SRN )  | Email | anthony.davis@aecom.com       |
| - A4 - AU Tax Invoice ( INV )                                  | Email | anthony.davis@aecom.com       |
| - Chain of Custody (CoC) ( COC )                               | Email | anthony.davis@aecom.com       |
| - EDI Format - ENMRG ( ENMRG )                                 | Email | anthony.davis@aecom.com       |
| - EDI Format - ESDAT ( ESDAT )                                 | Email | anthony.davis@aecom.com       |
| - EDI Format - HLAPro ( HLAPro )                               | Email | anthony.davis@aecom.com       |
| - EDI Format - XTab ( XTAB )                                   | Email | anthony.davis@aecom.com       |
| MS JENNIFER CULLEN                                             |       |                               |
| - Chain of Custody (CoC) ( COC )                               | Email | jennifer.cullen@alsenviro.com |
| MS KATE O BRIEN                                                |       |                               |
| <ul> <li>*AU Certificate of Analysis - NATA ( COA )</li> </ul> | Email | kate.obrien@aecom.com         |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) ( QCI )  | Email | kate.obrien@aecom.com         |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA ( QC )          | Email | kate.obrien@aecom.com         |
| - A4 - AU Sample Receipt Notification - Environmental ( SRN )  | Email | kate.obrien@aecom.com         |
| - Chain of Custody (CoC) ( COC )                               | Email | kate.obrien@aecom.com         |
| - EDI Format - ENMRG ( ENMRG )                                 | Email | kate.obrien@aecom.com         |
| - EDI Format - ESDAT ( ESDAT )                                 | Email | kate.obrien@aecom.com         |
| - EDI Format - HLAPro ( HLAPro )                               | Email | kate.obrien@aecom.com         |
| - EDI Format - XTab ( XTAB )                                   | Email | kate.obrien@aecom.com         |
| MS KATE PIGRAM                                                 |       |                               |
| <ul> <li>*AU Certificate of Analysis - NATA ( COA )</li> </ul> | Email | kate.pigram@aecom.com         |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) ( QCI )  | Email | kate.pigram@aecom.com         |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA ( QC )          | Email | kate.pigram@aecom.com         |
| - A4 - AU Sample Receipt Notification - Environmental ( SRN )  | Email | kate.pigram@aecom.com         |
| - Chain of Custody (CoC) ( COC )                               | Email | kate.pigram@aecom.com         |
| - EDI Format - ENMRG ( ENMRG )                                 | Email | kate.pigram@aecom.com         |
| - EDI Format - ESDAT ( ESDAT )                                 | Email | kate.pigram@aecom.com         |
| - EDI Format - HLAPro ( HLAPro )                               | Email | kate.pigram@aecom.com         |
| - EDI Format - XTab ( XTAB )                                   | Email | kate.pigram@aecom.com         |
|                                                                |       |                               |

#### 200 #2 Page 1/2



| AECOM - Sydney (G                             | Gordon)                             |                                                    |                |          |                                     |                               |         |      |          |                                          |              | 1                                 | orato         | •        |            | 5         |                              | Tel                    |                            | 3784             | 4 8555             |                                         |        |  |
|-----------------------------------------------|-------------------------------------|----------------------------------------------------|----------------|----------|-------------------------------------|-------------------------------|---------|------|----------|------------------------------------------|--------------|-----------------------------------|---------------|----------|------------|-----------|------------------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------------------|--------|--|
| PO 50x 726                                    |                                     |                                                    |                | 7        | el: 61                              | 2 8484                        | 8999    |      |          |                                          |              | Lab. Name: ALS                    |               |          |            |           |                              |                        | Fax:                       |                  |                    |                                         |        |  |
| Pymble NSW 2073 Australia Fax: 61 2 8484 8989 |                                     |                                                    |                |          |                                     |                               |         |      |          | Lab. Address: 277 Woodpark Rd Smithfield |              |                                   |               |          |            |           | Preliminary Report by:       |                        |                            |                  |                    |                                         |        |  |
| [                                             |                                     |                                                    |                |          |                                     | Email: Kate.O'Brien@aecom.com |         |      |          |                                          |              |                                   | Contact Name: |          |            |           |                              |                        |                            | Final Report by: |                    |                                         |        |  |
|                                               |                                     |                                                    |                |          |                                     |                               |         |      |          |                                          | -            | Lab. Ref:                         |               |          |            |           |                              |                        | Lab Quote No: SY/418/10 V2 |                  |                    |                                         |        |  |
| Project Name: Hickson Road                    |                                     |                                                    |                |          | <b>Project Number:</b> 60153531/5.7 |                               |         |      |          |                                          |              | Purchase Order Number:            |               |          |            |           |                              |                        | 38962AUS                   |                  |                    |                                         |        |  |
| Sample collecte                               | 5                                   | Sample Results to be returned to: Kate.O'Brien@aec |                |          |                                     |                               |         |      |          |                                          | om / ,       | Anth                              | ony.[         | Davis(   | @aec       | om.co     | <u>m</u>                     |                        |                            |                  |                    |                                         |        |  |
| Specifications:                               | Esdat                               |                                                    |                |          |                                     |                               |         |      | (Tick)   |                                          | •            |                                   |               |          |            |           | Α                            | nalysis                | s Req                      | ues              |                    |                                         |        |  |
| Urgent TAT required                           | 1? (please circle: 24hr 48hr        | days)                                              | \              |          |                                     | Yes                           |         |      | N-       |                                          | ·            |                                   |               | - 1      |            |           |                              |                        |                            |                  | Ren                | narks & co                              | mments |  |
| 2. Fast TAT Guarantee                         | ···                                 | uays,                                              | ,              |          |                                     | Yes                           |         | 旹    |          |                                          | □ N/A        | 1                                 |               | ı        |            |           |                              |                        |                            |                  |                    |                                         |        |  |
|                                               | er present in waters to be excluded | I from extraction                                  | is?            |          |                                     | Yes                           |         | 旹    |          |                                          | □ N/A        | 1                                 |               |          | ı          |           |                              | ·                      |                            | -                |                    |                                         |        |  |
| Special storage rec                           |                                     |                                                    |                |          |                                     | Yes                           |         | 一百   |          |                                          | □N/A         | 1                                 |               |          |            |           | -                            |                        |                            |                  |                    |                                         |        |  |
| 5. Preservation require                       | ments?                              |                                                    |                |          |                                     | Yes                           |         |      | No       |                                          | □ N/A        | <u>@</u>                          |               |          | 1          |           |                              |                        |                            | ı                |                    |                                         |        |  |
| <ol><li>Other requirements</li></ol>          | ?                                   |                                                    |                |          |                                     | Yes                           |         |      | No       |                                          | □ N/A        | <u>`</u> ≅                        | 99            |          |            |           |                              |                        |                            |                  |                    |                                         |        |  |
| 7. Report Format:                             | Fax Hard copy 🗹 Er                  | nail                                               | 8. Project     | Мапад    | er: Anth                            | ony Davi                      | s       |      |          | tel:                                     | 8484 8939    | Heavy Metals (8)                  | тРН (С6-С36)  |          |            |           |                              | ŀ                      | '                          |                  |                    |                                         |        |  |
| Lab.                                          | Sample ID                           | Sampling Date                                      | 2 time         |          | Matrix                              |                               |         | Pres | ervation |                                          | Container    | [≳                                | 무             |          | <u>ظ</u> ا | φ         |                              | ļ <u>.l.</u>           |                            | _l.              |                    |                                         |        |  |
| ın                                            |                                     | Sampling Date                                      | a unie         | soil     | water                               | other                         | filt'ed | acid | ice      | other                                    | (No. & type) | [훈]                               | ₽             |          | BIEX       | PAHs      |                              |                        |                            |                  |                    |                                         |        |  |
| 4 : \                                         | TBH04_0.6-0.6                       | 12.2.                                              | $\cdot u \mid$ | X        |                                     |                               |         |      | X        |                                          | 250ml        |                                   |               |          |            |           | Т                            |                        | EBV                        | irer             | mental E           | )ivision                                |        |  |
| <b>(3</b> )                                   | -TBHO4_ 0.7-0.                      |                                                    |                | X        |                                     |                               |         |      | ×        |                                          | 150ml        |                                   |               |          |            |           | T                            |                        |                            |                  | Sydney<br>ork Orde |                                         |        |  |
| 5                                             | *TBH04_09-1.                        | 4. u                                               |                | $\times$ |                                     |                               |         |      | X        |                                          | 250ml        |                                   |               |          |            |           |                              |                        | _                          |                  |                    |                                         |        |  |
| 6                                             | 18H04_1.7-2.0                       | ٠,                                                 |                | X        |                                     |                               |         |      | X        |                                          | 250N.        |                                   |               |          |            |           | T                            |                        | E.                         | 5                | 1103:              | <i>303</i>                              |        |  |
| -6<br>(G)<br>33                               | · 78405_02-0.21                     |                                                    |                | X        |                                     |                               |         |      | 4        |                                          | 250nl        |                                   |               |          |            |           |                              | Ri 314                 |                            | 1110             | <b> </b>           | <b></b>                                 |        |  |
| 3                                             | TBH05_06-0.7                        | · / <sub>1</sub>                                   |                | У        |                                     |                               |         |      | X        |                                          | 150m         |                                   |               |          |            |           | T                            |                        |                            |                  |                    |                                         |        |  |
|                                               | -18405-1-1-3                        | . 10                                               |                | X        |                                     |                               |         |      | X        |                                          | 250nl        |                                   |               |          |            |           | T                            |                        |                            |                  |                    |                                         |        |  |
|                                               | TBHU5_1.3-1.7                       |                                                    |                | X        |                                     |                               |         |      | ᅩ        |                                          | 280m         |                                   |               |          |            |           |                              | т.                     | cienh                      | 000              |                    | 18 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11     |  |
| 2                                             | TBHO5-1-8-2-6                       |                                                    |                | X        |                                     |                               |         |      | 乂        |                                          | 150ml        |                                   |               |          |            |           | Τ                            |                        | siepiid                    | SHE              | : +61-2-87         | 84 8555                                 |        |  |
|                                               | +7BH06-1:5-20                       |                                                    |                | X        |                                     |                               |         |      | X        |                                          | 250m         |                                   |               |          |            |           |                              |                        |                            |                  |                    |                                         |        |  |
| Relinquished B                                | y:                                  |                                                    | Receiv         | ed by    | <b>/:</b>                           |                               |         |      |          |                                          |              | Receiv                            |               | ood      | Yes        | /No/NA    | Met                          | hod of S               | hipmen                     | nt               |                    |                                         |        |  |
| Name: Kato                                    | OBNER                               | Pate:/2/1)                                         | Name:          |          |                                     |                               |         |      |          |                                          | Date:        | Sample                            | es rece       | ived     | Yes        | /No/NA    |                              | -                      | nment Note                 |                  |                    |                                         |        |  |
| of:                                           | An.                                 | Time Zun                                           | of:            |          |                                     | ,                             |         |      | •        |                                          | Time:        | Cilinea                           | ı             |          | Yes        | /No/NA    | No.<br>Tra                   |                        | sport Co:                  |                  |                    |                                         |        |  |
| Relinguished B                                | y                                   | 211                                                | Receiv         | ed by    | <b>/:</b>                           |                               |         | •    |          |                                          |              | Received in good Yes/No/NA Method |               |          |            |           | hod of S                     | Courier Postal By Hand |                            |                  |                    |                                         |        |  |
| Name:                                         |                                     | Date:                                              | Name           |          | <del>.()-</del>                     | ⊾ _ Date: -                   |         |      |          |                                          |              |                                   | condition?    |          |            |           |                              | signmer                | nment Note                 |                  |                    |                                         |        |  |
|                                               |                                     | Time:                                              | of: \          | 10m      | <u> </u>                            |                               |         |      |          |                                          | Date: V      | chilled                           |               |          |            | No.       |                              |                        |                            |                  |                    |                                         |        |  |
| of:                                           | <u> </u>                            | 16) 20 R                                           |                |          |                                     |                               |         |      |          |                                          |              |                                   |               | /INU/INA | ITA        | isport Co | port Co: Courier Postal By H |                        |                            |                  | / Hand             |                                         |        |  |

# CPFO419 (ENV) Chain of Custody Analysis Request Form

# COC#2 Page 2/2



| AECOM Cudanu                           | (Camban)                                |                      |                               |              |           |                                                  |         |          |                                                  | <u> </u>       | Lab                | orat               | orv   | )etai    | İs     |             |          | Те      | ł:       | 878          | 84 855      | 5                     |
|----------------------------------------|-----------------------------------------|----------------------|-------------------------------|--------------|-----------|--------------------------------------------------|---------|----------|--------------------------------------------------|----------------|--------------------|--------------------|-------|----------|--------|-------------|----------|---------|----------|--------------|-------------|-----------------------|
| AECOM - Sydney                         | (Gordon)                                |                      |                               | Tol. C       | 1 2 8484  |                                                  |         |          |                                                  |                |                    | Nam                | -     | ALS      |        |             |          | Fa      |          | 0, 0         |             |                       |
| d ·                                    | 70 A4                                   |                      |                               |              |           |                                                  |         |          |                                                  |                | Lab.               | Addr               | ess:  | 277 W    | odpar  | k Rd Sm     | ithfield | Pr      | elimi    | narv I       | Report I    | bv:                   |
| Pymble NSW 207                         | 3 Australia                             |                      |                               |              | 1 2 8484  |                                                  |         |          |                                                  |                |                    | act N              |       |          |        |             |          |         |          | leport       |             | •                     |
|                                        |                                         |                      |                               | Emaii:       | Kate.O'   | Brien@a                                          | aecom.c | com      |                                                  | •              | Lab.               |                    |       |          |        |             |          |         |          |              |             | //418/10 V2           |
| Project Name                           | Hickson Road                            |                      | Proid                         | act Nu       | ımber:    |                                                  | 60151   | 3531/5.  | 7                                                |                |                    |                    | - 0   | -l 1     |        | ber:        |          |         |          |              |             |                       |
|                                        | <u></u>                                 | Kate O'Brien         |                               |              |           | 1                                                |         |          |                                                  |                |                    |                    |       |          |        |             |          |         |          | 389          | 62AUS       |                       |
| Sample collec                          | •                                       | Kate O.Rueu          | Sam                           | ple Re       | sults t   | o be r                                           | eturn   | ed to:   | Kate.                                            | O'Brien@ae     | com.               | com                | / Ant | hony     | .Dav   | <u>/is@</u> |          |         |          |              |             |                       |
| Specification                          | s: Esdat                                |                      |                               |              |           |                                                  |         | (Tick)   |                                                  |                | Н                  |                    | 1     |          | _      | 1 1         | Ar       | alysi   | s Re     | gue          | st          | T                     |
| A Alexander Marie de la                | (0/-)                                   | - 4                  |                               |              |           |                                                  |         |          |                                                  | □ N/A          | 4                  |                    | 1     |          |        |             |          |         |          |              | il          | Remarks & comment     |
| Urgent TAT requir     Fast TAT Guarant | =                                       | rdays)               |                               |              | ☐ Yes     |                                                  |         |          |                                                  | □N/A           | 1                  |                    |       |          |        |             |          |         |          |              |             |                       |
|                                        | ayer present in waters to be exclud     | ed from extractions? |                               |              | Yes       |                                                  |         |          |                                                  | □N/A           | 1                  |                    |       |          |        |             |          |         |          |              | i           |                       |
| Special storage r                      | requirements?                           |                      |                               |              | Yes       |                                                  |         |          |                                                  | □ N/A          | 1                  |                    |       |          |        |             |          |         |          |              |             | ,                     |
| 5. Preservation requ                   | irements?                               |                      |                               |              | Yes       |                                                  |         |          |                                                  | □ N/A          | [∞                 |                    |       |          |        |             |          |         |          |              |             |                       |
| 6. Other requiremen                    | its?                                    |                      |                               |              | Yes       |                                                  |         | No       |                                                  | □ N/A          | ) SE               | 1                  | 3     |          |        |             |          |         |          |              |             |                       |
| 7. Report Format:                      | Fax Hard copy                           | Email 8. Proj        | ect Man                       | ager: An     | thony Dav | is                                               |         |          | tel:                                             | 8484 8939      | Heavy Metals (8)   | TDU (CR. C3R)      |       |          |        |             |          | ŀ       |          |              |             |                       |
| Lab.                                   | Sample ID                               | Sampling Date & time |                               | Matri        | x         |                                                  | Prese   | ervation |                                                  | Container      | 훓                  |                    |       | BTEX     | 1      | 2           |          |         |          |              |             |                       |
| ID .                                   |                                         |                      | soil                          | water        | other     | filt'ed                                          | acid    | ice      | other                                            | (Na. & type)   | 운                  | P                  |       | ВТ       | PAHe   |             |          |         |          |              |             |                       |
| · 7                                    | DUPO2                                   | 12.2.11              | X                             |              |           |                                                  |         | X        |                                                  | 150ml          |                    |                    |       |          |        |             |          |         |          |              |             |                       |
| 1                                      | Extra sumo la                           |                      |                               |              |           |                                                  |         |          |                                                  |                |                    | T                  |       |          | $\top$ |             |          |         |          | $\Box$       |             |                       |
| (12)                                   | TPHOS_0.9                               | -1.4 12021           |                               |              |           |                                                  |         |          |                                                  |                |                    | 1                  | 1     |          |        | $\top$      |          |         |          | $\Box$       |             | ·                     |
|                                        | 111111111111111111111111111111111111111 |                      | 1                             | <u> </u>     |           | 1                                                |         |          | <u> </u>                                         |                | $\vdash$           |                    | +     |          | +      | 1           |          | +       | +        | +            | +           |                       |
| <del></del>                            |                                         |                      | -                             | <del> </del> |           | <del> </del>                                     |         |          | <del>                                     </del> |                | +                  | +                  |       |          | ╁      | +           | $\vdash$ |         | +        | +            | $\vdash$    |                       |
| <del></del>                            | :                                       |                      |                               |              |           | <del>                                     </del> |         |          | ├                                                |                | ╂╾┼                | +                  | +     |          | +      | +           |          | _       | +        | $\dashv$     | <del></del> |                       |
|                                        |                                         | ļ                    | ļ                             | ļ.           |           |                                                  |         |          |                                                  |                | $\vdash$           | _                  |       |          | $\bot$ | $\perp$     |          | _       | <b> </b> |              | $\vdash$    |                       |
|                                        |                                         |                      |                               |              |           |                                                  |         |          | ļ <u>.</u>                                       |                | $oldsymbol{\perp}$ |                    |       |          | ┸      | Ш           |          |         |          | $oxed{oxed}$ |             |                       |
| ·                                      |                                         |                      |                               |              |           |                                                  |         |          |                                                  |                |                    |                    |       |          |        |             |          |         |          |              |             |                       |
|                                        |                                         |                      |                               |              |           |                                                  |         |          |                                                  |                |                    |                    |       |          |        | П           |          |         |          | П            |             |                       |
|                                        |                                         |                      |                               |              |           |                                                  |         |          |                                                  |                |                    |                    |       |          |        |             | $\neg$   |         | ╁        | $\Box$       |             |                       |
| Relinquished                           | <br>Bv:                                 | Rece                 | eived I                       | by:          |           | <u> </u>                                         |         |          |                                                  |                |                    | ived i             |       | Y        | es/No  | /NA         | Meth     | od of S | hipn     | nent         |             |                       |
| 1                                      |                                         | Date:/_ # / Name:    |                               |              |           |                                                  |         |          |                                                  | Date:          |                    | lition?<br>ples re |       | .  <br>1 | es/No  | /NA         | Cons     | ignme   | nt No    | nto          |             |                       |
| Name: Kak                              | e OBNY                                  | MUDIII               |                               |              |           |                                                  |         |          |                                                  |                | chille             |                    |       | L        |        |             | No.      |         |          |              |             |                       |
|                                        | Eren<br>Gren                            | Timborn              |                               |              |           |                                                  |         |          |                                                  | Time:          |                    |                    |       |          | es/No  |             |          | sport C |          |              | Courie      | er 🔲 Postal 🔲 By Hand |
| Relinquished                           | ву.                                     | ·                    | eived I                       | oy:          |           |                                                  |         |          |                                                  |                |                    | ived i<br>lition?  |       | Y        | es/No  | /NA         | Meth     | od of S | hipn     | ient         |             |                       |
| Name:                                  |                                         | Date: Name:          | $\langle \mathcal{N} \rangle$ | ani          | 91        |                                                  |         |          |                                                  | Date:<br>EO2 V | Samp               | ples re<br>ed?     | ceive | 1 Y      | es/No  |             | Cons     | ignme   | nt No    | te           |             |                       |
| of:                                    |                                         | Time: of:            | 18                            | 05           |           |                                                  | •       | ;        | 1                                                | 1030           |                    |                    |       | Y        | es/No  | /NA         | Trans    | port C  | o:       |              | Couri       | er Postal By Hand     |





## **Environmental Division**

## **QUALITY CONTROL REPORT**

Work Order : **ES1103303** Page : 1 of 11

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Sydney

Contact : MS KATE O BRIEN Contact : Jennifer Cullen

Address : LEVEL 5, 828 PACIFIC HIGHWAY Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

GORDON NSW, AUSTRALIA 2072

Telephone : +61 02 8484 8999 Telephone : +61 2 8784 8509
Facsimile : +61 02 8484 8989 Facsimile : +61 2 8784 8500

Project : HICKSON ROAD 60153531 5 7 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : ---- Date Samples Received : 14-FEB-2011
Sampler : K'O Issue Date : 24-FEB-2011

Order number : 38962AUS

No. of samples received : 12

Quote number : SY/418/10 V2

No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position                 | Accreditation Category |
|----------------|--------------------------|------------------------|
| Edwandy Fadjar | Senior Organic Chemist   | Organics               |
| Hoa Nguyen     | Inorganic Chemist        | Inorganics             |
| Luke Witham    | Senior Inorganic Chemist | Inorganics             |
| Pabi Subba     | Senior Organic Chemist   | Organics               |

Page : 2 of 11 Work Order : ES1103303

Client : AECOM Australia Pty Ltd

Project : HICKSON ROAD 60153531 5 7



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

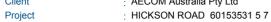
RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 11 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7




## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

| ub-Matrix: SOIL     |                         |                                             |            |     |       | Laboratory      | Duplicate (DUP) Report |         |                    |
|---------------------|-------------------------|---------------------------------------------|------------|-----|-------|-----------------|------------------------|---------|--------------------|
| aboratory sample ID | Client sample ID        | Method: Compound                            | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (% |
| A055: Moisture Co   | ontent (QC Lot: 1674249 | 9)                                          |            |     |       |                 |                        |         |                    |
| S1103277-036        | Anonymous               | EA055-103: Moisture Content (dried @ 103°C) |            | 1.0 | %     | 15.0            | 16.5                   | 9.6     | 0% - 50%           |
| S1103319-001        | Anonymous               | EA055-103: Moisture Content (dried @ 103°C) |            | 1.0 | %     | 52.7            | 50.5                   | 4.1     | 0% - 20%           |
| A055: Moisture Co   | ontent (QC Lot: 167850  | 1)                                          |            |     |       |                 |                        |         |                    |
| S1103303-008        | TBH04_0.7-0.8           | EA055-103: Moisture Content (dried @ 103°C) |            | 1.0 | %     | 10.8            | 12.0                   | 10.7    | 0% - 50%           |
| S1103581-004        | Anonymous               | EA055-103: Moisture Content (dried @ 103°C) |            | 1.0 | %     | 8.1             | 9.4                    | 15.2    | No Limit           |
| G005T: Total Meta   | Is by ICP-AES (QC Lot:  | : 1674252)                                  |            |     |       |                 |                        |         |                    |
| S1103231-001        | Anonymous               | EG005T: Cadmium                             | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit           |
|                     |                         | EG005T: Chromium                            | 7440-47-3  | 2   | mg/kg | <2              | <2                     | 0.0     | No Limit           |
|                     |                         | EG005T: Nickel                              | 7440-02-0  | 2   | mg/kg | <2              | <2                     | 0.0     | No Limit           |
|                     |                         | EG005T: Arsenic                             | 7440-38-2  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                     |                         | EG005T: Copper                              | 7440-50-8  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                     |                         | EG005T: Lead                                | 7439-92-1  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                     |                         | EG005T: Zinc                                | 7440-66-6  | 5   | mg/kg | 14              | 13                     | 0.0     | No Limit           |
| S1103232-002        | Anonymous               | EG005T: Cadmium                             | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit           |
|                     |                         | EG005T: Chromium                            | 7440-47-3  | 2   | mg/kg | <2              | <2                     | 0.0     | No Limit           |
|                     |                         | EG005T: Nickel                              | 7440-02-0  | 2   | mg/kg | <2              | <2                     | 0.0     | No Limit           |
|                     |                         | EG005T: Arsenic                             | 7440-38-2  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                     |                         | EG005T: Copper                              | 7440-50-8  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                     |                         | EG005T: Lead                                | 7439-92-1  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                     |                         | EG005T: Zinc                                | 7440-66-6  | 5   | mg/kg | 5               | 5                      | 0.0     | No Limit           |
| G005T: Total Meta   | Is by ICP-AES (QC Lot:  | : 1677692)                                  |            |     |       |                 |                        |         |                    |
| S1102875-027        | Anonymous               | EG005T: Cadmium                             | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit           |
|                     |                         | EG005T: Chromium                            | 7440-47-3  | 2   | mg/kg | 11              | 14                     | 28.7    | No Limit           |
|                     |                         | EG005T: Nickel                              | 7440-02-0  | 2   | mg/kg | 6               | 8                      | 16.4    | No Limit           |
|                     |                         | EG005T: Arsenic                             | 7440-38-2  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                     |                         | EG005T: Copper                              | 7440-50-8  | 5   | mg/kg | 52              | 45                     | 15.8    | No Limit           |
|                     |                         | EG005T: Lead                                | 7439-92-1  | 5   | mg/kg | 162             | 168                    | 3.4     | 0% - 20%           |
|                     |                         | EG005T: Zinc                                | 7440-66-6  | 5   | mg/kg | 306             | 276                    | 10.2    | 0% - 20%           |
| G035T: Total Rec    | overable Mercury by FII | MS (QC Lot: 1674253)                        |            |     |       |                 |                        |         |                    |
| S1103231-001        | Anonymous               | EG035T: Mercury                             | 7439-97-6  | 0.1 | mg/kg | <0.1            | <0.1                   | 0.0     | No Limit           |
| S1103232-002        | Anonymous               | EG035T: Mercury                             | 7439-97-6  | 0.1 | mg/kg | <0.1            | <0.1                   | 0.0     | No Limit           |
| G035T: Total Rec    | overable Mercury by FII | MS (QC Lot: 1677693)                        |            |     |       |                 |                        |         |                    |
| S1102875-027        | Anonymous               | EG035T: Mercury                             | 7439-97-6  | 0.1 | mg/kg | 0.8             | 0.8                    | 0.0     | No Limit           |
| 2075/SIM\P. Dolu    | nuclear Aromatic Hydro  | carbons (QC Lot: 1674753)                   |            |     |       |                 |                        |         |                    |

Page : 4 of 11 : ES1103303 Work Order

: AECOM Australia Pty Ltd Client





| ub-Matrix: SOIL     |                        |                                        |            |     |       | Laboratory      | Duplicate (DUP) Report |         |                    |
|---------------------|------------------------|----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|--------------------|
| aboratory sample ID | Client sample ID       | Method: Compound                       | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (% |
| P075(SIM)B: Polyn   | nuclear Aromatic Hydro | ocarbons (QC Lot: 1674753) - continued |            |     |       |                 |                        |         |                    |
| S1102875-027        | Anonymous              | EP075(SIM): Naphthalene                | 91-20-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Fluorene                   | 86-73-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5 | mg/kg | 1.8             | <0.5                   | 113     | No Limit           |
|                     |                        | EP075(SIM): Anthracene                 | 120-12-7   | 0.5 | mg/kg | 0.7             | <0.5                   | 39.4    | No Limit           |
|                     |                        | EP075(SIM): Fluoranthene               | 206-44-0   | 0.5 | mg/kg | 2.2             | 1.1                    | 68.6    | No Limit           |
|                     |                        | EP075(SIM): Pyrene                     | 129-00-0   | 0.5 | mg/kg | 2.3             | 1.1                    | 71.8    | No Limit           |
|                     |                        | EP075(SIM): Benz(a)anthracene          | 56-55-3    | 0.5 | mg/kg | 1.8             | 0.7                    | 85.8    | No Limit           |
|                     |                        | EP075(SIM): Chrysene                   | 218-01-9   | 0.5 | mg/kg | 1.5             | 0.6                    | 86.3    | No Limit           |
|                     |                        | EP075(SIM): Benzo(b)fluoranthene       | 205-99-2   | 0.5 | mg/kg | 1.7             | 0.7                    | 81.8    | No Limit           |
|                     |                        | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9   | 0.5 | mg/kg | 0.8             | <0.5                   | 49.8    | No Limit           |
|                     |                        | EP075(SIM): Benzo(a)pyrene             | 50-32-8    | 0.5 | mg/kg | 1.6             | 0.6                    | 82.2    | No Limit           |
|                     |                        | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5   | 0.5 | mg/kg | 0.8             | <0.5                   | 44.4    | No Limit           |
|                     |                        | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5 | mg/kg | 1.0             | <0.5                   | 66.4    | No Limit           |
| S1103136-042        | Anonymous              | EP075(SIM): Naphthalene                | 91-20-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Fluorene                   | 86-73-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Anthracene                 | 120-12-7   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Fluoranthene               | 206-44-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Pyrene                     | 129-00-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Benz(a)anthracene          | 56-55-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Chrysene                   | 218-01-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Benzo(b)fluoranthene       | 205-99-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Benzo(a)pyrene             | 50-32-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
| P075(SIM)B: Polyn   | nuclear Aromatic Hydro | ocarbons (QC Lot: 1680722)             |            |     |       |                 |                        |         |                    |
| S1103303-008        | TBH04_0.7-0.8          | EP075(SIM): Naphthalene                | 91-20-3    | 0.5 | mg/kg | 0.9             | 0.8                    | 14.7    | No Limit           |
|                     | _                      | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5 | mg/kg | 3.1             | 2.7                    | 11.4    | No Limit           |
|                     |                        | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Fluorene                   | 86-73-7    | 0.5 | mg/kg | 0.6             | <0.5                   | 0.0     | No Limit           |
|                     |                        | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5 | mg/kg | 6.4             | 6.0                    | 5.4     | 0% - 50%           |
|                     |                        | EP075(SIM): Anthracene                 | 120-12-7   | 0.5 | mg/kg | 2.9             | 2.9                    | 0.0     | No Limit           |

Page : 5 of 11 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



| Sub-Matrix: SOIL                 |                        |                                                        |                      |     |       | Laboratory      | Duplicate (DUP) Report | t       |                     |
|----------------------------------|------------------------|--------------------------------------------------------|----------------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID             | Client sample ID       | Method: Compound                                       | CAS Number           | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP075(SIM)B: Poly                | nuclear Aromatic Hydro | carbons (QC Lot: 1680722) - continued                  |                      |     |       |                 |                        |         |                     |
| ES1103303-008                    | TBH04_0.7-0.8          | EP075(SIM): Fluoranthene                               | 206-44-0             | 0.5 | mg/kg | 14.1            | 14.3                   | 1.7     | 0% - 20%            |
|                                  |                        | EP075(SIM): Pyrene                                     | 129-00-0             | 0.5 | mg/kg | 14.4            | 13.9                   | 3.5     | 0% - 20%            |
|                                  |                        | EP075(SIM): Benz(a)anthracene                          | 56-55-3              | 0.5 | mg/kg | 8.0             | 7.8                    | 1.6     | 0% - 50%            |
|                                  |                        | EP075(SIM): Chrysene                                   | 218-01-9             | 0.5 | mg/kg | 6.3             | 7.0                    | 10.9    | 0% - 50%            |
|                                  |                        | EP075(SIM): Benzo(b)fluoranthene                       | 205-99-2             | 0.5 | mg/kg | 8.0             | 7.7                    | 3.5     | 0% - 50%            |
|                                  |                        | EP075(SIM): Benzo(k)fluoranthene                       | 207-08-9             | 0.5 | mg/kg | 3.2             | 3.3                    | 0.0     | No Limit            |
|                                  |                        | EP075(SIM): Benzo(a)pyrene                             | 50-32-8              | 0.5 | mg/kg | 7.6             | 7.5                    | 0.0     | 0% - 50%            |
|                                  |                        | EP075(SIM): Indeno(1.2.3.cd)pyrene                     | 193-39-5             | 0.5 | mg/kg | 2.7             | 3.1                    | 15.5    | No Limit            |
|                                  |                        | EP075(SIM): Dibenz(a.h)anthracene                      | 53-70-3              | 0.5 | mg/kg | 0.7             | 0.7                    | 0.0     | No Limit            |
|                                  |                        | EP075(SIM): Benzo(g.h.i)perylene                       | 191-24-2             | 0.5 | mg/kg | 2.8             | 3.2                    | 13.0    | No Limit            |
| EP080/071: Total F               | etroleum Hydrocarbons  | (QC Lot: 1673428)                                      |                      |     |       |                 |                        |         |                     |
| ES1103303-001                    | TBH06_1.5-2.0          | EP080: C6 - C9 Fraction                                |                      | 10  | mg/kg | <10             | <10                    | 0.0     | No Limit            |
| ES1103374-004                    | Anonymous              | EP080: C6 - C9 Fraction                                |                      | 10  | mg/kg | <10             | <10                    | 0.0     | No Limit            |
| EP080/071: Total F               | etroleum Hydrocarbons  | (QC Lot: 1674752)                                      |                      |     |       |                 |                        |         |                     |
| ES1102875-027                    | Anonymous              | EP071: C15 - C28 Fraction                              |                      | 100 | mg/kg | <100            | <100                   | 0.0     | No Limit            |
|                                  |                        | EP071: C29 - C36 Fraction                              |                      | 100 | mg/kg | <100            | <100                   | 0.0     | No Limit            |
|                                  |                        | EP071: C10 - C14 Fraction                              |                      | 50  | mg/kg | <50             | <50                    | 0.0     | No Limit            |
| ES1103136-042                    | Anonymous              | EP071: C15 - C28 Fraction                              |                      | 100 | mg/kg | <100            | <100                   | 0.0     | No Limit            |
|                                  |                        | EP071: C29 - C36 Fraction                              |                      | 100 | mg/kg | <100            | <100                   | 0.0     | No Limit            |
|                                  |                        | EP071: C10 - C14 Fraction                              |                      | 50  | mg/kg | <50             | <50                    | 0.0     | No Limit            |
| EP080/071: Total B               | etroleum Hydrocarbons  |                                                        |                      |     |       |                 |                        |         |                     |
| ES1103303-008                    | TBH04 0.7-0.8          | EP080: C6 - C9 Fraction                                |                      | 10  | mg/kg | <10             | <10                    | 0.0     | No Limit            |
|                                  | etroleum Hydrocarbons  |                                                        |                      |     | 99    |                 |                        | 0.0     | 110 2               |
| ES1103303-008                    | TBH04_0.7-0.8          |                                                        |                      | 100 | mg/kg | 520             | 520                    | 0.0     | No Limit            |
| L31103303-000                    | 161104_0.7-0.0         | EP071: C15 - C28 Fraction                              |                      | 100 | mg/kg | 340             | 400                    | 17.1    | No Limit            |
|                                  |                        | EP071: C29 - C36 Fraction<br>EP071: C10 - C14 Fraction |                      | 50  | mg/kg | <50             | <50                    | 0.0     | No Limit            |
| EDAGA DIEV (OG                   | 1 - ( - 4070 400)      | EFO7 1: C10 - C14 Flaction                             |                      | 30  | mg/kg | 130             | 430                    | 0.0     | 140 Ellillit        |
| EP080: BTEX (QC<br>ES1103303-001 | TBH06 1.5-2.0          | EDOOG Danasa                                           | 71-43-2              | 0.2 | ma/ka | <0.2            | <0.2                   | 0.0     | No Limit            |
| EST103303-001                    | 1600_1.5-2.0           | EP080: Benzene                                         | 108-88-3             | 0.2 | mg/kg | <0.5            | <0.2                   | 0.0     | No Limit            |
|                                  |                        | EP080: Toluene                                         |                      | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                                  |                        | EP080: Ethylbenzene                                    | 100-41-4             | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                                  |                        | EP080: meta- & para-Xylene                             | 108-38-3             | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | NO LIIIIL           |
|                                  |                        | ED000; ortho Vulono                                    | 106-42-3<br>95-47-6  | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
| ES1103374-004                    | Anonymous              | EP080: ortho-Xylene                                    | 71-43-2              | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
| LO 1 1033/4-004                  | Anonymous              | EP080: Teluppe                                         | 108-88-3             | 0.2 | mg/kg | <0.5            | <0.2                   | 0.0     | No Limit            |
|                                  |                        | EP080: Toluene                                         | 100-41-4             | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                                  |                        | EP080: Ethylbenzene                                    |                      | 0.5 |       | <0.5            | <0.5                   | 0.0     | No Limit            |
|                                  |                        | EP080: meta- & para-Xylene                             | 108-38-3<br>106-42-3 | 0.0 | mg/kg | ~∪.∪            | ~∪.∪                   | 0.0     | INO LIIIII          |
|                                  |                        | ED080: ortho Yylana                                    | 95-47-6              | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
| I .                              |                        | EP080: ortho-Xylene                                    | 33- <del>4</del> 7-0 | 0.0 | mg/kg | -0.0            | -0.0                   | 0.0     | 140 LIIIII          |

Page : 6 of 11 Work Order : ES1103303

Client : AECOM Australia Pty Ltd

Project : HICKSON ROAD 60153531 5 7



| Sub-Matrix: SOIL     |                  |                            |            |     |       | Laboratory L    | Ouplicate (DUP) Report | •       |                     |
|----------------------|------------------|----------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP080: BTEX (QC L    | .ot: 1678192)    |                            |            |     |       |                 |                        |         |                     |
| ES1103303-008        | TBH04_0.7-0.8    | EP080: Benzene             | 71-43-2    | 0.2 | mg/kg | <0.2            | <0.2                   | 0.0     | No Limit            |
|                      |                  | EP080: Toluene             | 108-88-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |
|                      |                  |                            | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit            |

Page : 7 of 11 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                     | Sub-Matrix: <b>SOIL</b> |     |       |        | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|------------------------------------------------------|-------------------------|-----|-------|--------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                      |                         |     |       | Report | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                     | CAS Number              | LOR | Unit  | Result | Concentration                         | LCS                | Low      | High       |  |  |
| EG005T: Total Metals by ICP-AES (QCLot: 1674252)     |                         |     |       |        |                                       |                    |          |            |  |  |
| EG005T: Arsenic                                      | 7440-38-2               | 5   | mg/kg | <5     | 13.11 mg/kg                           | 126                | 70       | 130        |  |  |
| EG005T: Cadmium                                      | 7440-43-9               | 1   | mg/kg | <1     | 2.76 mg/kg                            | 99.7               | 83.3     | 111        |  |  |
| EG005T: Chromium                                     | 7440-47-3               | 2   | mg/kg | <2     | 60.93 mg/kg                           | 104                | 89.2     | 117        |  |  |
| EG005T: Copper                                       | 7440-50-8               | 5   | mg/kg | <5     | 54.68 mg/kg                           | 108                | 90.1     | 114        |  |  |
| EG005T: Lead                                         | 7439-92-1               | 5   | mg/kg | <5     | 54.76 mg/kg                           | 104                | 85.2     | 111        |  |  |
| EG005T: Nickel                                       | 7440-02-0               | 2   | mg/kg | <2     | 55.23 mg/kg                           | # 117              | 88.3     | 116        |  |  |
| EG005T: Zinc                                         | 7440-66-6               | 5   | mg/kg | <5     | 103.88 mg/kg                          | 92.0               | 88.9     | 112        |  |  |
| EG005T: Total Metals by ICP-AES (QCLot: 1677692)     |                         |     |       |        |                                       |                    |          |            |  |  |
| EG005T: Arsenic                                      | 7440-38-2               | 5   | mg/kg | <5     | 13.11 mg/kg                           | 108                | 70       | 130        |  |  |
| EG005T: Cadmium                                      | 7440-43-9               | 1   | mg/kg | <1     | 2.76 mg/kg                            | 90.9               | 83.3     | 111        |  |  |
| EG005T: Chromium                                     | 7440-47-3               | 2   | mg/kg | <2     | 60.93 mg/kg                           | 109                | 89.2     | 117        |  |  |
| EG005T: Copper                                       | 7440-50-8               | 5   | mg/kg | <5     | 54.68 mg/kg                           | 103                | 90.1     | 114        |  |  |
| EG005T: Lead                                         | 7439-92-1               | 5   | mg/kg | <5     | 54.76 mg/kg                           | 93.8               | 85.2     | 111        |  |  |
| EG005T: Nickel                                       | 7440-02-0               | 2   | mg/kg | <2     | 55.23 mg/kg                           | 110                | 88.3     | 116        |  |  |
| EG005T: Zinc                                         | 7440-66-6               | 5   | mg/kg | <5     | 103.88 mg/kg                          | 94.1               | 88.9     | 112        |  |  |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: 16 | 674253)                 |     |       |        |                                       |                    |          |            |  |  |
| EG035T: Mercury                                      | 7439-97-6               | 0.1 | mg/kg | <0.1   | 1.4 mg/kg                             | 74.1               | 67       | 118        |  |  |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: 16 | 677693)                 |     |       |        |                                       |                    |          |            |  |  |
| EG035T: Mercury                                      | 7439-97-6               | 0.1 | mg/kg | <0.1   | 1.4 mg/kg                             | 68.2               | 67       | 118        |  |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL  | ot: 1674753)            |     |       |        |                                       |                    |          |            |  |  |
| EP075(SIM): Naphthalene                              | 91-20-3                 | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 105                | 81.9     | 113        |  |  |
| EP075(SIM): Acenaphthylene                           | 208-96-8                | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 109                | 79.6     | 113        |  |  |
| EP075(SIM): Acenaphthene                             | 83-32-9                 | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 108                | 81.5     | 112        |  |  |
| EP075(SIM): Fluorene                                 | 86-73-7                 | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | # 112              | 79.9     | 112        |  |  |
| EP075(SIM): Phenanthrene                             | 85-01-8                 | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 113                | 79.4     | 114        |  |  |
| EP075(SIM): Anthracene                               | 120-12-7                | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 111                | 81.1     | 112        |  |  |
| EP075(SIM): Fluoranthene                             | 206-44-0                | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | # 114              | 78.8     | 113        |  |  |
| EP075(SIM): Pyrene                                   | 129-00-0                | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | # 117              | 78.9     | 113        |  |  |
| EP075(SIM): Benz(a)anthracene                        | 56-55-3                 | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 107                | 77.2     | 112        |  |  |
| EP075(SIM): Chrysene                                 | 218-01-9                | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 113                | 79.8     | 114        |  |  |
| EP075(SIM): Benzo(b)fluoranthene                     | 205-99-2                | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 95.2               | 71.8     | 118        |  |  |
| EP075(SIM): Benzo(k)fluoranthene                     | 207-08-9                | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 102                | 74.2     | 117        |  |  |
| EP075(SIM): Benzo(a)pyrene                           | 50-32-8                 | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 105                | 76.4     | 113        |  |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                   | 193-39-5                | 0.5 | mg/kg | <0.5   | 4 mg/kg                               | 104                | 71       | 113        |  |  |

Page : 8 of 11 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



| Sub-Matrix: SOIL                                       |                 |         |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|--------------------------------------------------------|-----------------|---------|-------|-------------------|---------------|------------------------------|-----------|------------|
|                                                        |                 |         |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                       | CAS Number      | LOR     | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot  | : 1674753) - co | ntinued |       |                   |               |                              |           |            |
| EP075(SIM): Dibenz(a.h)anthracene                      | 53-70-3         | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 105                          | 71.7      | 113        |
| EP075(SIM): Benzo(g.h.i)perylene                       | 191-24-2        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 102                          | 72.4      | 114        |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot  | : 1680722)      |         |       |                   |               |                              |           |            |
| EP075(SIM): Naphthalene                                | 91-20-3         | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 97.9                         | 81.9      | 113        |
| EP075(SIM): Acenaphthylene                             | 208-96-8        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 92.2                         | 79.6      | 113        |
| EP075(SIM): Acenaphthene                               | 83-32-9         | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 91.8                         | 81.5      | 112        |
| EP075(SIM): Fluorene                                   | 86-73-7         | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 92.2                         | 79.9      | 112        |
| EP075(SIM): Phenanthrene                               | 85-01-8         | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 96.2                         | 79.4      | 114        |
| EP075(SIM): Anthracene                                 | 120-12-7        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 96.1                         | 81.1      | 112        |
| EP075(SIM): Fluoranthene                               | 206-44-0        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 96.0                         | 78.8      | 113        |
| EP075(SIM): Pyrene                                     | 129-00-0        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 95.2                         | 78.9      | 113        |
| EP075(SIM): Benz(a)anthracene                          | 56-55-3         | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 91.1                         | 77.2      | 112        |
| EP075(SIM): Chrysene                                   | 218-01-9        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 93.9                         | 79.8      | 114        |
| EP075(SIM): Benzo(b)fluoranthene                       | 205-99-2        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 92.9                         | 71.8      | 118        |
| EP075(SIM): Benzo(k)fluoranthene                       | 207-08-9        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 87.4                         | 74.2      | 117        |
| EP075(SIM): Benzo(a)pyrene                             | 50-32-8         | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 101                          | 76.4      | 113        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                     | 193-39-5        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 80.8                         | 71        | 113        |
| EP075(SIM): Dibenz(a.h)anthracene                      | 53-70-3         | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 84.9                         | 71.7      | 113        |
| EP075(SIM): Benzo(g.h.i)perylene                       | 191-24-2        | 0.5     | mg/kg | <0.5              | 4 mg/kg       | 80.2                         | 72.4      | 114        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 167342 | 3)              |         |       |                   |               |                              |           |            |
| EP080: C6 - C9 Fraction                                |                 | 10      | mg/kg | <10               | 26 mg/kg      | 81.3                         | 68.4      | 128        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 167475 | 2)              |         |       |                   |               |                              |           |            |
| EP071: C10 - C14 Fraction                              |                 | 50      | mg/kg | <50               | 200 mg/kg     | 110                          | 75.2      | 116        |
| EP071: C15 - C28 Fraction                              |                 | 100     | mg/kg | <100              | 200 mg/kg     | 98.1                         | 75.3      | 113        |
| EP071: C29 - C36 Fraction                              |                 | 100     | mg/kg | <100              | 200 mg/kg     | 98.8                         | 72.6      | 117        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 167819 | 2)              |         |       |                   |               |                              |           |            |
| EP080: C6 - C9 Fraction                                |                 | 10      | mg/kg | <10               | 26 mg/kg      | 93.2                         | 68.4      | 128        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 168072 | 1)              |         |       |                   |               |                              |           |            |
| EP071: C10 - C14 Fraction                              |                 | 50      | mg/kg | <50               | 200 mg/kg     | 106                          | 75.2      | 116        |
| EP071: C15 - C28 Fraction                              |                 | 100     | mg/kg | <100              | 200 mg/kg     | 94.0                         | 75.3      | 113        |
| EP071: C29 - C36 Fraction                              |                 | 100     | mg/kg | <100              | 200 mg/kg     | 90.0                         | 72.6      | 117        |
| EP080: BTEX (QCLot: 1673428)                           |                 |         |       |                   |               |                              |           |            |
| EP080: Benzene                                         | 71-43-2         | 0.2     | mg/kg | <0.2              | 1 mg/kg       | 90.1                         | 63        | 121        |
| EP080: Toluene                                         | 108-88-3        | 0.5     | mg/kg | <0.5              | 1 mg/kg       | 101                          | 69        | 122        |
| EP080: Ethylbenzene                                    | 100-41-4        | 0.5     | mg/kg | <0.5              | 1 mg/kg       | 91.7                         | 61        | 117        |
| EP080: meta- & para-Xylene                             | 108-38-3        | 0.5     | mg/kg | <0.5              | 2 mg/kg       | 96.3                         | 62        | 118        |
|                                                        | 106-42-3        |         |       |                   |               |                              |           |            |
| EP080: ortho-Xylene                                    | 95-47-6         | 0.5     | mg/kg | <0.5              | 1 mg/kg       | 95.0                         | 63        | 117        |

Page : 9 of 11 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



| Sub-Matrix: SOIL             |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                              |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound             | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EP080: BTEX (QCLot: 1678192) |            |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Benzene               | 71-43-2    | 0.2 | mg/kg | <0.2              | 1 mg/kg                               | 97.0               | 63       | 121        |  |  |
| EP080: Toluene               | 108-88-3   | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 96.8               | 69       | 122        |  |  |
| EP080: Ethylbenzene          | 100-41-4   | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 93.0               | 61       | 117        |  |  |
| EP080: meta- & para-Xylene   | 108-38-3   | 0.5 | mg/kg | <0.5              | 2 mg/kg                               | 87.7               | 62       | 118        |  |  |
|                              | 106-42-3   |     |       |                   |                                       |                    |          |            |  |  |
| EP080: ortho-Xylene          | 95-47-6    | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 93.6               | 63       | 117        |  |  |

Page : 10 of 11 Work Order : ES1103303

Client : AECOM Australia Pty Ltd

Project : HICKSON ROAD 60153531 5 7



## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: SOIL     |                                |                           |            |               | Matrix Spike (MS) Repo | rt       |            |
|---------------------|--------------------------------|---------------------------|------------|---------------|------------------------|----------|------------|
|                     |                                |                           |            | Spike         | Spike Recovery (%)     | Recovery | Limits (%) |
| aboratory sample ID | Client sample ID               | Method: Compound          | CAS Number | Concentration | MS                     | Low      | High       |
| G005T: Total Metal  | ls by ICP-AES (QCLot: 1674252) |                           |            |               |                        |          |            |
| S1103231-001        | Anonymous                      | EG005T: Arsenic           | 7440-38-2  | 50 mg/kg      | 109                    | 70       | 130        |
|                     |                                | EG005T: Cadmium           | 7440-43-9  | 50 mg/kg      | 103                    | 70       | 130        |
|                     |                                | EG005T: Chromium          | 7440-47-3  | 50 mg/kg      | 102                    | 70       | 130        |
|                     |                                | EG005T: Copper            | 7440-50-8  | 250 mg/kg     | 115                    | 70       | 130        |
|                     |                                | EG005T: Lead              | 7439-92-1  | 250 mg/kg     | 107                    | 70       | 130        |
|                     |                                | EG005T: Nickel            | 7440-02-0  | 50 mg/kg      | 112                    | 70       | 130        |
|                     |                                | EG005T: Zinc              | 7440-66-6  | 250 mg/kg     | 104                    | 70       | 130        |
| G005T: Total Metal  | ls by ICP-AES (QCLot: 1677692) |                           |            |               |                        |          |            |
| S1102875-027        | Anonymous                      | EG005T: Arsenic           | 7440-38-2  | 50 mg/kg      | 110                    | 70       | 130        |
|                     |                                | EG005T: Cadmium           | 7440-43-9  | 50 mg/kg      | 95.8                   | 70       | 130        |
|                     |                                | EG005T: Chromium          | 7440-47-3  | 50 mg/kg      | 111                    | 70       | 130        |
|                     |                                | EG005T: Copper            | 7440-50-8  | 250 mg/kg     | 113                    | 70       | 130        |
|                     |                                | EG005T: Lead              | 7439-92-1  | 250 mg/kg     | 125                    | 70       | 130        |
|                     |                                | EG005T: Nickel            | 7440-02-0  | 50 mg/kg      | 111                    | 70       | 130        |
|                     |                                | EG005T: Zinc              | 7440-66-6  | 250 mg/kg     | 87.2                   | 70       | 130        |
| G035T: Total Reco   | overable Mercury by FIMS (QCL  | ot: 1674253)              |            |               |                        |          |            |
| ES1103231-001       | Anonymous                      | EG035T: Mercury           | 7439-97-6  | 5 mg/kg       | 84.0                   | 70       | 130        |
| G035T: Total Reco   | overable Mercury by FIMS (QCL  | ot: 1677693)              |            |               |                        |          |            |
| ES1102875-027       | Anonymous                      | EG035T: Mercury           | 7439-97-6  | 5 mg/kg       | 89.9                   | 70       | 130        |
| P075(SIM)B: Polyn   | uclear Aromatic Hydrocarbons   | (QCLot: 1674753)          |            |               |                        |          |            |
| S1102875-027        | Anonymous                      | EP075(SIM): Acenaphthene  | 83-32-9    | 10 mg/kg      | 122                    | 70       | 130        |
|                     |                                | EP075(SIM): Pyrene        | 129-00-0   | 10 mg/kg      | 98.5                   | 70       | 130        |
| P075(SIM)B: Polyn   | uclear Aromatic Hydrocarbons   |                           |            |               |                        |          |            |
| ES1103303-008       | TBH04_0.7-0.8                  | EP075(SIM): Acenaphthene  | 83-32-9    | 10 mg/kg      | 95.6                   | 70       | 130        |
| 10110000            |                                | EP075(SIM): Pyrene        | 129-00-0   | 10 mg/kg      | 80.0                   | 70       | 130        |
| D090/074: Total Do  | troleum Hydrocarbons (QCLot:   |                           |            | . o g         | 55.5                   | .,       |            |
| ES1103303-001       | TBH06 1.5-2.0                  | EP080: C6 - C9 Fraction   |            | 26 mg/kg      | 82.5                   | 70       | 130        |
|                     | _                              |                           |            | 20 mg/kg      | 02.0                   | 70       | 100        |
|                     | troleum Hydrocarbons (QCLot:   |                           |            | 0.40          | 400                    | 70       | 400        |
| ES1102875-027       | Anonymous                      | EP071: C10 - C14 Fraction |            | 640 mg/kg     | 100                    | 70       | 130        |
|                     |                                | EP071: C15 - C28 Fraction |            | 3140 mg/kg    | 87.6                   | 70       | 130        |
|                     |                                | EP071: C29 - C36 Fraction |            | 2860 mg/kg    | 76.3                   | 70       | 130        |
| P080/071: Total Pe  | troleum Hydrocarbons (QCLot:   | 1678192)                  |            |               |                        |          |            |
| ES1103303-008       | TBH04_0.7-0.8                  | EP080: C6 - C9 Fraction   |            | 32.5 mg/kg    | 76.0                   | 70       | 130        |

Page : 11 of 11 Work Order : ES1103303

Client : AECOM Australia Pty Ltd



Project : HICKSON ROAD 60153531 5 7

| Sub-Matrix: SOIL     |                             |                            |            |               | Matrix Spike (MS) Rep | ort      |            |
|----------------------|-----------------------------|----------------------------|------------|---------------|-----------------------|----------|------------|
|                      |                             |                            |            | Spike         | Spike Recovery (%)    | Recovery | Limits (%) |
| Laboratory sample ID | Client sample ID            | Method: Compound           | CAS Number | Concentration | MS                    | Low      | High       |
| EP080/071: Total Pe  | etroleum Hydrocarbons (QCLo | ot: 1680721)               |            |               |                       |          |            |
| ES1103303-008        | TBH04_0.7-0.8               | EP071: C10 - C14 Fraction  |            | 640 mg/kg     | 103                   | 70       | 130        |
|                      |                             | EP071: C15 - C28 Fraction  |            | 3140 mg/kg    | 77.6                  | 70       | 130        |
|                      |                             | EP071: C29 - C36 Fraction  |            | 2860 mg/kg    | 71.9                  | 70       | 130        |
| EP080: BTEX (QCL     | ot: 1673428)                |                            |            |               |                       |          |            |
| ES1103303-001        | TBH06_1.5-2.0               | EP080: Benzene             | 71-43-2    | 2.5 mg/kg     | 75.4                  | 70       | 130        |
|                      |                             | EP080: Toluene             | 108-88-3   | 2.5 mg/kg     | 78.8                  | 70       | 130        |
|                      |                             | EP080: Ethylbenzene        | 100-41-4   | 2.5 mg/kg     | 78.0                  | 70       | 130        |
|                      |                             | EP080: meta- & para-Xylene | 108-38-3   | 2.5 mg/kg     | 79.0                  | 70       | 130        |
|                      |                             |                            | 106-42-3   |               |                       |          |            |
|                      |                             | EP080: ortho-Xylene        | 95-47-6    | 2.5 mg/kg     | 78.9                  | 70       | 130        |
| EP080: BTEX (QCL     | ot: 1678192)                |                            |            |               |                       |          |            |
| ES1103303-008        | TBH04_0.7-0.8               | EP080: Benzene             | 71-43-2    | 2.5 mg/kg     | 98.2                  | 70       | 130        |
|                      |                             | EP080: Toluene             | 108-88-3   | 2.5 mg/kg     | 96.7                  | 70       | 130        |
|                      |                             | EP080: Ethylbenzene        | 100-41-4   | 2.5 mg/kg     | 93.3                  | 70       | 130        |
|                      |                             | EP080: meta- & para-Xylene | 108-38-3   | 2.5 mg/kg     | 89.6                  | 70       | 130        |
|                      |                             |                            | 106-42-3   |               |                       |          |            |
|                      |                             | EP080: ortho-Xylene        | 95-47-6    | 2.5 mg/kg     | 90.9                  | 70       | 130        |





## **Environmental Division**

## INTERPRETIVE QUALITY CONTROL REPORT

**Work Order** : **ES1103303** Page : 1 of 6

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Sydney

Contact : MS KATE O BRIEN Contact : Jennifer Cullen

Address : LEVEL 5, 828 PACIFIC HIGHWAY Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

GORDON NSW, AUSTRALIA 2072

 Telephone
 : +61 02 8484 8999
 Telephone
 : +61 2 8784 8509

 Facsimile
 : +61 02 8484 8989
 Facsimile
 : +61 2 8784 8500

Project : HICKSON ROAD 60153531 5 7 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : --- Date Samples Received
 : 14-FEB-2011

 Sampler
 : K'O
 Issue Date
 : 24-FEB-2011

Order number : 38962AUS

No. of samples received : 12

Quote number : SY/418/10 V2 No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 6 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



## **Analysis Holding Time Compliance**

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL

Evaluation: **×** = Holding time breach ; ✓ = Within holding time.

| Method                                                                             |                                            | Sample Date | Ex             | traction / Preparation |            |               | Analysis         |            |
|------------------------------------------------------------------------------------|--------------------------------------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)                                                    |                                            | ·           | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA055: Moisture Content                                                            |                                            |             |                |                        |            |               |                  |            |
| Soil Glass Jar - Unpreserved<br>TBH06_1.5-2.0,<br>TBH05_0.6-0.7,<br>TBH04_1.7-2.0, | TBH05_1.8-2.0,<br>TBH04_0.6-0.65,<br>DUP02 | 12-FEB-2011 |                |                        |            | 18-FEB-2011   | 26-FEB-2011      | ✓          |
| Soil Glass Jar - Unpreserved TBH04_0.7-0.8,                                        | TBH05_1.3-1.7                              | 12-FEB-2011 |                |                        |            | 22-FEB-2011   | 26-FEB-2011      | ✓          |
| EG005T: Total Metals by ICP-AES                                                    |                                            |             |                |                        |            |               |                  |            |
| Soil Glass Jar - Unpreserved<br>TBH06_1.5-2.0,<br>TBH05_0.6-0.7,<br>TBH04_1.7-2.0, | TBH05_1.8-2.0,<br>TBH04_0.6-0.65,<br>DUP02 | 12-FEB-2011 | 18-FEB-2011    | 11-AUG-2011            | ✓          | 18-FEB-2011   | 11-AUG-2011      | ✓          |
| Soil Glass Jar - Unpreserved<br>TBH04_0.7-0.8,                                     | TBH05_1.3-1.7                              | 12-FEB-2011 | 21-FEB-2011    | 11-AUG-2011            | <b>√</b>   | 22-FEB-2011   | 11-AUG-2011      | ✓          |
| EG035T: Total Recoverable Mercury by FIMS                                          |                                            |             |                |                        |            |               |                  |            |
| Soil Glass Jar - Unpreserved<br>TBH06_1.5-2.0,<br>TBH05_0.6-0.7,<br>TBH04_1.7-2.0, | TBH05_1.8-2.0,<br>TBH04_0.6-0.65,<br>DUP02 | 12-FEB-2011 | 18-FEB-2011    | 12-MAR-2011            | ✓          | 18-FEB-2011   | 12-MAR-2011      | ✓          |
| Soil Glass Jar - Unpreserved TBH04_0.7-0.8,                                        | TBH05_1.3-1.7                              | 12-FEB-2011 | 21-FEB-2011    | 12-MAR-2011            | <b>√</b>   | 22-FEB-2011   | 12-MAR-2011      | <b>√</b>   |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbon                                      | s                                          |             |                |                        |            |               |                  |            |
| Soil Glass Jar - Unpreserved<br>TBH06_1.5-2.0,<br>TBH05_0.6-0.7,<br>TBH04_1.7-2.0, | TBH05_1.8-2.0,<br>TBH04_0.6-0.65,<br>DUP02 | 12-FEB-2011 | 18-FEB-2011    | 26-FEB-2011            | ✓          | 18-FEB-2011   | 30-MAR-2011      | ✓          |
| Soil Glass Jar - Unpreserved<br>TBH04_0.7-0.8,                                     | TBH05_1.3-1.7                              | 12-FEB-2011 | 23-FEB-2011    | 26-FEB-2011            | ✓          | 23-FEB-2011   | 04-APR-2011      | ✓          |

Page : 3 of 6 Work Order : ES1103303

Client : AECOM Australia Pty Ltd



Project : HICKSON ROAD 60153531 5 7

| Matrix: SOIL                                                                       |                                            |             |                |                        | Evaluation: | x = Holding time | breach ; ✓ = Withi | n holding time |  |
|------------------------------------------------------------------------------------|--------------------------------------------|-------------|----------------|------------------------|-------------|------------------|--------------------|----------------|--|
| Method                                                                             |                                            | Sample Date | Ex             | traction / Preparation |             | Analysis         |                    |                |  |
| Container / Client Sample ID(s)                                                    |                                            |             | Date extracted | Due for extraction     | Evaluation  | Date analysed    | Due for analysis   | Evaluation     |  |
| EP080/071: Total Petroleum Hydrocarbons                                            |                                            |             |                |                        |             |                  |                    |                |  |
| Soil Glass Jar - Unpreserved                                                       |                                            |             |                |                        |             |                  |                    |                |  |
| TBH06_1.5-2.0,<br>TBH05_0.6-0.7,                                                   | TBH05_1.8-2.0,<br>TBH04_0.6-0.65,          | 12-FEB-2011 | 17-FEB-2011    | 26-FEB-2011            | ✓           | 17-FEB-2011      | 26-FEB-2011        | ✓              |  |
| TBH04_1.7-2.0,                                                                     | DUP02                                      |             |                |                        |             |                  |                    |                |  |
| Soil Glass Jar - Unpreserved<br>TBH06_1.5-2.0,<br>TBH05_0.6-0.7,<br>TBH04_1.7-2.0, | TBH05_1.8-2.0,<br>TBH04_0.6-0.65,<br>DUP02 | 12-FEB-2011 | 18-FEB-2011    | 26-FEB-2011            | ✓           | 18-FEB-2011      | 30-MAR-2011        | ✓              |  |
| Soil Glass Jar - Unpreserved                                                       | TDU05 4 2 4 7                              |             |                | 00 555 0044            | ,           |                  | 00 550 0044        | ,              |  |
| TBH04_0.7-0.8,                                                                     | TBH05_1.3-1.7                              | 12-FEB-2011 | 22-FEB-2011    | 26-FEB-2011            | ✓           | 22-FEB-2011      | 26-FEB-2011        | ✓              |  |
| Soil Glass Jar - Unpreserved TBH04_0.7-0.8,                                        | TBH05_1.3-1.7                              | 12-FEB-2011 | 23-FEB-2011    | 26-FEB-2011            | ✓           | 23-FEB-2011      | 04-APR-2011        | ✓              |  |
| EP080: BTEX                                                                        |                                            |             |                |                        |             |                  |                    |                |  |
| <b>Soil Glass Jar - Unpreserved</b> TBH06_1.5-2.0, TBH05_0.6-0.7, TBH04_1.7-2.0,   | TBH05_1.8-2.0,<br>TBH04_0.6-0.65,<br>DUP02 | 12-FEB-2011 | 17-FEB-2011    | 26-FEB-2011            | ✓           | 17-FEB-2011      | 26-FEB-2011        | ✓              |  |
| Soil Glass Jar - Unpreserved TBH04_0.7-0.8,                                        | TBH05_1.3-1.7                              | 12-FEB-2011 | 22-FEB-2011    | 26-FEB-2011            | /           | 22-FEB-2011      | 26-FEB-2011        | 1              |  |

Page : 4 of 6 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Evaluation: × = Quality Control frequency not within specification: ✓ = Quality Control frequency within specification

| Matrix: SOIL                    |            |    |         | Evaluation | i: 🗴 = Quality Co | ntroi frequency r | not within specification ; ✓ = Quality Control frequency within specificat |
|---------------------------------|------------|----|---------|------------|-------------------|-------------------|----------------------------------------------------------------------------|
| Quality Control Sample Type     |            | С  | ount    |            | Rate (%)          |                   | Quality Control Specification                                              |
| Analytical Methods              | Method     | QC | Regular | Actual     | Expected          | Evaluation        |                                                                            |
| aboratory Duplicates (DUP)      |            |    |         |            |                   |                   |                                                                            |
| Moisture Content                | EA055-103  | 4  | 34      | 11.8       | 10.0              | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| PAH/Phenols (SIM)               | EP075(SIM) | 3  | 22      | 13.6       | 10.0              | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| otal Mercury by FIMS            | EG035T     | 3  | 28      | 10.7       | 10.0              | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| otal Metals by ICP-AES          | EG005T     | 3  | 29      | 10.3       | 10.0              | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| PH - Semivolatile Fraction      | EP071      | 3  | 26      | 11.5       | 10.0              | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| PH Volatiles/BTEX               | EP080      | 3  | 27      | 11.1       | 10.0              | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| aboratory Control Samples (LCS) |            |    |         |            |                   |                   |                                                                            |
| AH/Phenols (SIM)                | EP075(SIM) | 2  | 22      | 9.1        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| otal Mercury by FIMS            | EG035T     | 2  | 28      | 7.1        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| otal Metals by ICP-AES          | EG005T     | 2  | 29      | 6.9        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| PH - Semivolatile Fraction      | EP071      | 2  | 26      | 7.7        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| PH Volatiles/BTEX               | EP080      | 2  | 27      | 7.4        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| lethod Blanks (MB)              |            |    |         |            |                   |                   |                                                                            |
| AH/Phenols (SIM)                | EP075(SIM) | 2  | 22      | 9.1        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| otal Mercury by FIMS            | EG035T     | 2  | 28      | 7.1        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| otal Metals by ICP-AES          | EG005T     | 2  | 29      | 6.9        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| PH - Semivolatile Fraction      | EP071      | 2  | 26      | 7.7        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| PH Volatiles/BTEX               | EP080      | 2  | 27      | 7.4        | 5.0               | ✓                 | NEPM 1999 Schedule B(3) and ALS QCS3 requirement                           |
| latrix Spikes (MS)              |            |    |         |            |                   |                   |                                                                            |
| AH/Phenols (SIM)                | EP075(SIM) | 2  | 22      | 9.1        | 5.0               | ✓                 | ALS QCS3 requirement                                                       |
| otal Mercury by FIMS            | EG035T     | 2  | 28      | 7.1        | 5.0               | <b>√</b>          | ALS QCS3 requirement                                                       |
| otal Metals by ICP-AES          | EG005T     | 2  | 29      | 6.9        | 5.0               | ✓                 | ALS QCS3 requirement                                                       |
| PH - Semivolatile Fraction      | EP071      | 2  | 26      | 7.7        | 5.0               | ✓                 | ALS QCS3 requirement                                                       |
| PH Volatiles/BTEX               | EP080      | 2  | 27      | 7.4        | 5.0               | 1                 | ALS QCS3 requirement                                                       |

Page : 5 of 6 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                          | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                            | EA055-103  | SOIL   | A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2010 Draft) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                       |
| Total Metals by ICP-AES                                     | EG005T     | SOIL   | (APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)                                                                                   |
| Total Mercury by FIMS                                       | EG035T     | SOIL   | AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) |
| TPH - Semivolatile Fraction                                 | EP071      | SOIL   | (USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (1999) Schedule B(3) (Method 506.1)                                                                                                                                                                                                                                                                   |
| PAH/Phenols (SIM)                                           | EP075(SIM) | SOIL   | (USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 502 and 507)                                                                                                                                                                                                                     |
| TPH Volatiles/BTEX                                          | EP080      | SOIL   | (USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)                                                                                                                                                                                                                                            |
| Preparation Methods                                         | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hot Block Digest for metals in soils sediments and sludges  | EN69       | SOIL   | USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (1999) Schedule B(3) (Method 202)                                                                                |
| Methanolic Extraction of Soils for Purge and Trap           | * ORG16    | SOIL   | (USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.                                                                                                                                                                                                                                                                                                                                                         |
| Tumbler Extraction of Solids (Option B - Non-concentrating) | ORG17B     | SOIL   | In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.                                                                                                                                                                                                                                                                       |

Page : 6 of 6 Work Order : ES1103303

Client : AECOM Australia Pty Ltd
Project : HICKSON ROAD 60153531 5 7



## **Summary of Outliers**

## **Outliers: Quality Control Samples**

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

#### Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                            | Laboratory Sample ID | y Sample ID Client Sample ID Analyte |              | CAS Number | Data  | Limits    | Comment                                   |
|------------------------------------------------|----------------------|--------------------------------------|--------------|------------|-------|-----------|-------------------------------------------|
| Laboratory Control Spike (LCS) Recoveries      |                      |                                      |              |            |       |           |                                           |
| EG005T: Total Metals by ICP-AES                | 1967045-002          |                                      | Nickel       | 7440-02-0  | 117 % | 88.3-116% | Recovery greater than upper control limit |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons | 1967444-007          |                                      | Fluorene     | 86-73-7    | 112 % | 79.9-112% | Recovery greater than upper control limit |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons | 1967444-007          |                                      | Fluoranthene | 206-44-0   | 114 % | 78.8-113% | Recovery greater than upper control limit |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons | 1967444-007          |                                      | Pyrene       | 129-00-0   | 117 % | 78.9-113% | Recovery greater than upper control limit |

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Matrix Spike outliers occur.

#### Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

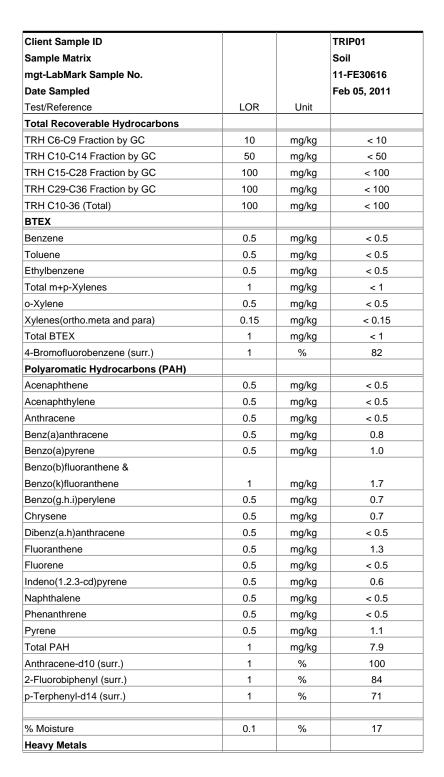
No Analysis Holding Time Outliers exist.

### **Outliers: Frequency of Quality Control Samples**

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.




**AECOM Aust P/L Sydney** Level 5, 828 Pacific Hwy Gordon NSW 2072

Attention: Kate O'Brien

289864-S Report

HICKSON ROAD 60153531/5.7 Client Reference

Received Date Feb 08, 2011



## Certificate of Analysis



NATA Accredited Laboratory Number 13535

The tests covered by this document have been performed in accordance with NATA and ISO/IES 17025 and are traceable to national standards of measurement. This document shall not be reproduced, except in full.



| Client Sample ID       |     |       | TRIP01       |
|------------------------|-----|-------|--------------|
| Sample Matrix          |     |       | Soil         |
| mgt-LabMark Sample No. |     |       | 11-FE30616   |
| Date Sampled           |     |       | Feb 05, 2011 |
| Test/Reference         | LOR | Unit  |              |
| Arsenic                | 2   | mg/kg | 2.4          |
| Cadmium                | 0.5 | mg/kg | < 0.5        |
| Chromium               | 5   | mg/kg | 10           |
| Copper                 | 5   | mg/kg | 31           |
| Lead                   | 5   | mg/kg | 120          |
| Nickel                 | 5   | mg/kg | < 5          |
| Zinc                   | 5   | mg/kg | 25           |
| Mercury                | 0.1 | mg/kg | < 0.1        |



#### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

| Testing Site | Extracted               | Holding Time                                                                           |
|--------------|-------------------------|----------------------------------------------------------------------------------------|
| Asquith      | Feb 11, 2011            | 14 Day                                                                                 |
|              |                         |                                                                                        |
| Asquith      | Feb 11, 2011            | 14 Day                                                                                 |
|              |                         |                                                                                        |
| Asquith      | Feb 11, 2011            | 14 Day                                                                                 |
|              |                         |                                                                                        |
| Asquith      | Feb 11, 2011            | 28 Day                                                                                 |
|              |                         |                                                                                        |
| Oakleigh     | Feb 11, 2011            | 6 Month                                                                                |
|              | Asquith Asquith Asquith | Asquith Feb 11, 2011  Asquith Feb 11, 2011  Asquith Feb 11, 2011  Asquith Feb 11, 2011 |



ABN - 50 005 085 521 e.mail: mgt@mgtenv.com.au web: www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 9564 7055

NATA Site # 1261

Thornleigh
1a Chilvers Rd
Thornleigh NSW 2120
Phone: +61 2 9484 3300 NATA Site # 18217

Asquith Unit 1, 8 Leighton Place Asquith NSW 2077 Phone: +61 2 9476 6533 NATA Site # 13535

Clayton 1868 Dandenong Road Clayton VIC 3168 Phone: +61 3 9265 9300 NATA Site # 1645

Company Name: Address:

AECOM Aust P/L Sydney Level 5, 828 Pacific Hwy

Gordon NSW 2072

Order No.:

Report #: 289864

(02) 8484 8999 (02) 8484 8989 Phone: Fax:

Received: Feb 8, 2011 12:00 Feb 15, 2011 05:00 Due:

5 Day Kate O'Brien Priority: Contact name:

HICKSON ROAD 60153531/5.7 Client Job No.: mgt-LabMark Client Manager: Leanne Knowles

|               | Sample Detail  Laboratory where analysis is conducted |                  |        |             |   | Arsenic | Cadmium | Chromium | Copper | Lead | Mercury | Nickel | Zinc | Total Recoverable Hydrocarbons | втех | Polyaromatic Hydrocarbons (PAH) |
|---------------|-------------------------------------------------------|------------------|--------|-------------|---|---------|---------|----------|--------|------|---------|--------|------|--------------------------------|------|---------------------------------|
| Laboratory w  | here analysis i                                       | s conducted      |        |             |   |         |         |          |        |      |         |        |      |                                |      |                                 |
| Oakleigh Lab  | oratory - NATA                                        | Site #1261       |        |             |   | Х       | Х       | Х        | Х      | Х    | Х       | Х      | Х    |                                |      |                                 |
| Thornleigh La | aboratory - NA                                        | TA Site #18217   |        |             |   |         |         |          |        |      |         |        |      |                                |      |                                 |
| Asquith Labo  | ratory - NATA                                         | Site #13535      |        |             | Х |         |         |          |        |      |         |        |      | Х                              | Х    | Х                               |
| Clayton Labo  | Clayton Laboratory - NATA Site #1645                  |                  |        |             |   |         |         |          |        |      |         |        |      |                                |      |                                 |
| Sample ID     | Sample Date                                           | Sampling<br>Time | Matrix | LAB ID      |   |         |         |          |        |      |         |        |      |                                |      |                                 |
| TRIP01        | Feb 05, 2011                                          | _                | Soil   | A11-FE30616 | Х | Х       | Х       | х        | Х      | Х    | Х       | Х      | х    | Х                              | х    | Х                               |



# mgt-LabMark Internal Quality Control Review General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples
  are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis.
- 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001)

For samples received on the last day of holding time, notification of testing requirements should have been received at least

6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as an RPD

#### UNITS

mg/kg:milligrams per Kilogram mg/L:milligrams per litre

µg/l: micrograms per litre ppm: Parts per million

ppb: Parts per billion %: Percentage

org/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

#### **TERMS**

Dry: Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR: Limit Of Reporting.

SPIKE: Addition of the analyte to the sample and reported as percentage recovery.

RPD: Relative Percent Difference between two Duplicate pieces of analysis.

LCS: Laboratory Control Sample - reported as percent recovery.

CRM: Certified Reference Material - reported as percent recovery.

Method Blank: In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate: The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate:** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**Batch Duplicate:** A second piece of analysis from a sample outside of the client's batch of samples but run within the laboratory batch of analysis. **Batch SPIKE:** Spike recovery reported on a sample from outside of the client's batch of samples but run within the laboratory batch of analysis.

USEPA: U.S Environmental Protection Agency
APHA: American Public Health Association

ASLP: Australian Standard Leaching Procedure (AS4439.3)

TCLP: Toxicity Characteristic Leaching Procedure

COC: Chain Of Custody
SRA: Sample Receipt Advice

#### QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-20%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

#### **QC DATA GENERAL COMMENTS**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data below the LOR with a positive RPD
- eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.



#### **Quality Control Results**

| Sample, Test, Result Reference                | Units     | Result 1    | Acceptance<br>Limits | Pass<br>Limits | Qualifyin<br>Codes |
|-----------------------------------------------|-----------|-------------|----------------------|----------------|--------------------|
| Method Blank                                  |           |             |                      |                |                    |
| Total Recoverable Hydrocarbons E004           | Petroleum | Hydrocarbor |                      |                |                    |
| TRH C6-C9 Fraction by GC                      | mg/kg     | < 10        | 10                   | Pass           |                    |
| TRH C10-C14 Fraction by GC                    | mg/kg     | < 50        | 50                   | Pass           |                    |
| TRH C15-C28 Fraction by GC                    | mg/kg     | < 100       | 100                  | Pass           |                    |
| TRH C29-C36 Fraction by GC                    | mg/kg     | < 100       | 100                  | Pass           |                    |
| Method Blank                                  |           |             |                      |                |                    |
| BTEX E029/E016 BTEX                           |           |             |                      |                |                    |
| Benzene                                       | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Toluene                                       | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Ethylbenzene                                  | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Total m+p-Xylenes                             | mg/kg     | < 1         | 1                    | Pass           |                    |
| o-Xylene                                      | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Xylenes(ortho.meta and para)                  | mg/kg     | < 0.15      | 0.15                 | Pass           |                    |
| Total BTEX                                    | mg/kg     | < 1         | 1                    | Pass           |                    |
| Method Blank                                  |           |             |                      |                |                    |
| Polyaromatic Hydrocarbons (PAH) E007          |           |             |                      |                |                    |
| Acenaphthene                                  | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Acenaphthylene                                | mg/kg     | < 0.5       | 0.5                  | Pass           | 1                  |
| Anthracene                                    | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Benz(a)anthracene                             | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Benzo(b)fluoranthene & Benzo(k)fluoran        |           | < 1         | 1                    | Pass           |                    |
| Benzo(g.h.i)perylene                          | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Chrysene                                      | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                         | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Fluoranthene                                  | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Fluorene                                      | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                        | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Naphthalene                                   | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Phenanthrene                                  | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Pyrene                                        | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Method Blank                                  |           |             |                      |                | _                  |
| Heavy Metals USEPA 6020 Heavy Metal           |           |             |                      |                |                    |
| Arsenic                                       | mg/kg     | < 2         | 2                    | Pass           |                    |
| Cadmium                                       | mg/kg     | < 0.5       | 0.5                  | Pass           |                    |
| Chromium                                      | mg/kg     | < 5         | 5                    | Pass           |                    |
| Copper                                        | mg/kg     | < 5         | 5                    | Pass           |                    |
| Lead                                          | mg/kg     | < 5         | 5                    | Pass           |                    |
| Nickel                                        | mg/kg     | < 5         | 5                    | Pass           |                    |
| Zinc                                          | mg/kg     | < 5         | 5                    | Pass           |                    |
| Mercury                                       | mg/kg     | < 0.1       | 0.1                  | Pass           | _                  |
| LCS - % Recovery                              |           |             |                      |                | _                  |
| Total Recoverable Hydrocarbons E004 Petroleum |           | Result 1    |                      |                |                    |
| TRH C6-C9 Fraction by GC                      | %         | 101         | 70-130               | Pass           | 1                  |
| TRH C15-C28 Fraction by GC                    | %         | 93          | 70-130               | Pass           |                    |
| LCS - % Recovery                              |           |             |                      |                | _                  |
| BTEX E029/E016 BTEX                           | 0/        | Result 1    |                      | +              |                    |
| Benzene                                       | %         | 100         | 70-130               | Pass           |                    |
| Toluene                                       | %         | 98          | 70-130               | Pass           |                    |
| Ethylbenzene                                  | %         | 95          | 70-130               | Pass           | 1                  |
| Total m+p-Xylenes                             | %         | 91          | 70-130               | Pass           |                    |
| o-Xylene                                      | %         | 92          | 70-130               | Pass           | <u> </u>           |
| Xylenes(ortho.meta and para)                  | %         | 91          | 70-130               | Pass           | -                  |
| LCS - % Recovery                              |           | D- 1: 1     |                      |                | -                  |
| Polyaromatic Hydrocarbons (PAH) E007 Polyaron |           |             |                      | +              | 1                  |
| Acenaphthene                                  | %         | 106         | 70-130               | Pass           |                    |
| Acenaphthylene                                | %         | 105         | 70-130               | Pass           | 1                  |
| Anthracene                                    | %         | 112         | 70-130               | Pass           |                    |
| Benz(a)anthracene                             | %         | 109         | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                | %         | 120         | 70-130               | Pass           |                    |
| Benzo(b)fluoranthene & Benzo(k)fluorar        | %         | 117         | 70-130               | Pass           | 1                  |
| Benzo(g.h.i)perylene                          | %         | 120         | 70-130               | Pass           | 1                  |
| Chrysene                                      | %         | 118         | 70-130               | Pass           |                    |



| Sample, Test, Result Reference                               | Units          | Result 1       |                |         | Acceptance<br>Limits | Pass<br>Limits       | Qualifyir<br>Codes |
|--------------------------------------------------------------|----------------|----------------|----------------|---------|----------------------|----------------------|--------------------|
| Dibenz(a.h)anthracene                                        | %              | 110            |                |         | 70-130               | Pass                 |                    |
| Fluoranthene                                                 | %              | 125            |                |         | 70-130               | Pass                 |                    |
| Fluorene                                                     | %              | 106            |                |         | 70-130               | Pass                 |                    |
| Indeno(1.2.3-cd)pyrene                                       | %              | 112            |                |         | 70-130               | Pass                 |                    |
| Naphthalene                                                  | %              | 106            |                |         | 70-130               | Pass                 |                    |
| Phenanthrene                                                 | %              | 109            |                |         | 70-130               | Pass                 |                    |
| Pyrene                                                       | %              | 106            |                |         | 70-130               | Pass                 |                    |
| LCS - % Recovery                                             |                |                |                |         |                      |                      |                    |
| Heavy Metals USEPA 6020 Heavy Metals & USEPA                 | 7470/71 Mer    | Result 1       |                |         |                      |                      |                    |
| Arsenic                                                      | %              | 96             |                |         | 80-120               | Pass                 |                    |
| Cadmium                                                      | %              | 96             |                |         | 80-120               | Pass                 |                    |
| Chromium                                                     | %              | 100            |                |         | 80-120               | Pass                 |                    |
| Copper                                                       | %              | 99             |                |         | 80-120               | Pass                 |                    |
| Lead                                                         | %              | 94             |                |         | 80-120               | Pass                 |                    |
| Nickel                                                       | %              | 99             |                |         | 80-120               | Pass                 |                    |
| Zinc                                                         | %              | 82             |                |         | 80-120               | Pass                 |                    |
| Mercury                                                      | %              | 111            |                |         | 75-125               | Pass                 |                    |
| Duplicate of 11-FE30730 - BATCH]                             |                | D              | D 11.5         |         |                      |                      | <u> </u>           |
| Total Recoverable Hydrocarbons                               | //             | Result 1       | Result 2       | RPD     | 2001                 | T 5                  | <u> </u>           |
| TRH C6-C9 Fraction by GC                                     | mg/kg          | < 10           | < 10           | <1      | 30%                  | Pass                 |                    |
| TRH C10-C14 Fraction by GC                                   | mg/kg          | < 50           | < 50           | <1      | 30%                  | Pass                 |                    |
| TRH C15-C28 Fraction by GC                                   | mg/kg          | < 100          | < 100          | <1      | 30%                  | Pass                 | <u> </u>           |
| TRH C29-C36 Fraction by GC  Duplicate of 11-FE30730 - BATCH] | mg/kg          | < 100          | < 100          | <1      | 30%                  | Pass                 |                    |
| STEX                                                         |                | Decult 4       | Decult 0       | RPD     | 1                    |                      |                    |
| Benzene                                                      | ma/ka          | Result 1 < 0.5 | Result 2 < 0.5 | RPD<br> | 30%                  | Pass                 |                    |
| Toluene                                                      | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Ethylbenzene                                                 | mg/kg<br>mg/kg | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Total m+p-Xylenes                                            | mg/kg          | < 1            | < 1            | <1      | 30%                  | Pass                 |                    |
| o-Xylene                                                     | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Xylenes(ortho.meta and para)                                 | mg/kg          | < 0.15         | < 0.15         | <1      | 30%                  | Pass                 |                    |
| [Duplicate of 11-FE30617 - BATCH]                            | mg/kg          | V 0.10         | V 0.10         |         | 0070                 | 1 433                |                    |
| Polyaromatic Hydrocarbons (PAH)                              |                | Result 1       | Result 2       | RPD     |                      |                      |                    |
| Acenaphthene                                                 | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Acenaphthylene                                               | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Anthracene                                                   | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Benz(a)anthracene                                            | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Benzo(a)pyrene                                               | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Benzo(b)fluoranthene & Benzo(k)fluoran                       | mg/kg          | < 1            | < 1            | <1      | 30%                  | Pass                 |                    |
| Benzo(g.h.i)perylene                                         | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Chrysene                                                     | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Dibenz(a.h)anthracene                                        | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Fluoranthene                                                 | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Fluorene                                                     | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Indeno(1.2.3-cd)pyrene                                       | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Naphthalene                                                  | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Phenanthrene                                                 | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Pyrene                                                       | mg/kg          | < 0.5          | < 0.5          | <1      | 30%                  | Pass                 |                    |
| Duplicate of 11-FE05093 - BATCH]                             |                |                |                |         |                      |                      |                    |
| Heavy Metals                                                 |                | Result 1       | Result 2       | RPD     |                      | T -                  |                    |
| Arsenic                                                      | mg/kg          | 22             | 19             | 13      | 30%                  | Pass                 |                    |
| Chromium                                                     | mg/kg          | 12             | 11             | 4       | 30%                  | Pass                 |                    |
| Copper                                                       | mg/kg          | < 5            | < 5            | <1      | 30%                  | Pass                 |                    |
| Lead                                                         | mg/kg          | 12             | 11             | 11      | 30%                  | Pass                 | ļ                  |
| Nickel                                                       | mg/kg          | 6.5            | 6.1            | 7       | 30%                  | Pass                 |                    |
| Zinc                                                         | mg/kg          | < 5            | < 5            | <1      | 30%                  | Pass                 |                    |
| Mercury                                                      | mg/kg          | < 0.1          | < 0.1          | <1      | 30%                  | Pass                 |                    |
| Spike of 11-FE30730 - BATCH] - % Reco                        | overy          | D. 1. 1        |                |         |                      |                      |                    |
| BTEX                                                         | 0/             | Result 1       |                |         | 70 (00               | T 5                  | 1                  |
| Benzene                                                      | %              | 92             |                |         | 70 - 130             | Pass                 |                    |
| Talarana                                                     | %              | 93             |                |         | 70 - 130             | Pass                 |                    |
| Toluene                                                      | ~ .            |                |                | 1       | 70 - 130             | Pass                 |                    |
| Ethylbenzene                                                 | %              | 88             |                | 1       |                      | _                    | 1                  |
| Ethylbenzene<br>Total m+p-Xylenes                            | %              | 85             |                |         | 70 - 130             | Pass                 |                    |
| Ethylbenzene                                                 |                |                |                |         |                      | Pass<br>Pass<br>Pass |                    |



| Sample, Test, Result Reference | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Codes |
|--------------------------------|-------|----------|----------------------|----------------|---------------------|
| Heavy Metals                   | •     | Result 1 |                      |                |                     |
| Arsenic                        | %     | 91       | 75 - 125             | Pass           |                     |
| Cadmium                        | %     | 95       | 75 - 125             | Pass           |                     |
| Chromium                       | %     | 96       | 75 - 125             | Pass           |                     |
| Copper                         | %     | 99       | 75 - 125             | Pass           |                     |
| Lead                           | %     | 87       | 75 - 125             | Pass           |                     |
| Nickel                         | %     | 94       | 75 - 125             | Pass           |                     |
| Zinc                           | %     | 81       | 75 - 125             | Pass           |                     |
| Mercury                        | %     | 123      | 70 - 130             | Pass           |                     |



#### Comments

#### Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Organic samples had Teflon liners

Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

Yes

#### Authorised By

**Dr. Bob Symons**NATA Signatory

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

mgt-LabMark shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgt-LabMark be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on samples as received.

| AECOM - Sydney (Gordon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | Lal        | borat              | огу           | Detai  | ls      |          |               | Tel:    |        | 378    | 4 855   | 5                                              |         | - /-     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------|--------------------|---------------|--------|---------|----------|---------------|---------|--------|--------|---------|------------------------------------------------|---------|----------|
| PO Box 726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |          | Tel: 61    | 2 8484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8999     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | 10000000   | . Name             |               | ALS    |         |          |               | Fax     | Ľ.     |        |         |                                                |         | 2/2      |
| Pymble NSW 2073 Australia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |          | Fax: 61    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | Lab        | . Addr             | ess:          | 277 W  | oodpark | Rd Sm    | bleild        | Pre     | limina | ry R   | eport l | by:                                            |         | -1       |
| , in side the traditional and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |          | Email: k   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | secom.r | com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                | Con        | itaci N            | ame:          |        |         |          |               | Fina    | al Rep | ort b  | y:      |                                                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |            | 101070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71101165 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | Lab        | . Ref:             |               |        |         |          |               | Lab     | Quot   | te No  | : S1    | //418/1                                        | 0 V2    |          |
| Project Name: Hickson Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | Proje    | ct Nun     | nber:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 6015    | 3531/5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7           |                | Pu         | rchas              | e O           | der l  | Num     | ber:     |               |         | 3      | 896    | 2AUS    |                                                |         |          |
| Sample collected by: Kate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O'Brien                                 | Samp     | le Res     | sults to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o be r   | eturn   | ed to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>Nate</u> | Quenta (Car    | Ç.Ç.Y.     |                    | <u> -</u> _:: |        | Con     |          |               |         |        |        |         |                                                |         |          |
| Specifications: Esdat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | (Tick)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                |            |                    | .,            |        |         | , ,      | Ana           | alysis  | Req    | ues    | t       |                                                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | 1 1        |                    |               |        |         |          |               |         |        |        |         | Ren                                            | narks & | comments |
| Urgent TAT required? (please circle: 24hr 48hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | days)                                   |          |            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | □ N/A          |            |                    |               |        |         |          |               |         |        |        |         |                                                |         |          |
| 2. Fast TAT Guarantee Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | □ N/A<br>□ N/A | 1          |                    |               |        |         |          | 1             |         | 1      |        |         |                                                |         | •        |
| Is any sediment layer present in waters to be excluded from     Special storage requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extractions?                            |          |            | Yes<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 님       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | □ N/A          | 96         |                    |               |        |         |          |               |         |        |        |         |                                                |         |          |
| Special storage requirements?  5. Preservation requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | -        |            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | ᆸ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | □ N/A          | <u>@</u>   |                    |               | 8      |         |          |               |         |        |        |         | 1                                              |         |          |
| 6. Other requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |          |            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Ē       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | □ N/A          | lls (      | Ę,                 | 3             |        |         |          |               |         |        |        |         |                                                |         |          |
| 7. Report Format: Fax Hard copy Fmail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8. Projec                               | ct Manas | ger: Antho | ony Davi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tel:        | 8484 8939      | Metals (8) | TPH (CR-C3R)       |               |        |         |          |               |         |        |        |         |                                                |         |          |
| Lab. Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F - D-1- 0 F                            |          | Matrix     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Pres    | ervation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Container      | Heavy      | l l                |               | ŭ      | £       |          |               |         |        |        |         |                                                |         |          |
| ID Sami                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pling Date & time                       | soi!     | water      | other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RIFed.   | acid    | lco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ather       | (No. & type)   | 문          | TP                 |               | BTEX   | PAHs    |          |               |         |        |        |         |                                                |         |          |
| 11-FE30616 TRIPOI 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.11                                    | X        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                | X          |                    |               | X      | X       |          |               |         |        |        |         |                                                |         |          |
| 77722070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | 1          |                    |               | ,      |         |          |               |         |        |        |         |                                                |         |          |
| please send TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PIROL to                                | 100      | mi         | rp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for      | Can     | eder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 215         |                |            |                    |               |        |         |          |               |         |        | 1      |         |                                                |         |          |
| PIEUSE SEINE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -n       | 777-11     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / 5/     | 074     | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa | .,          |                | Н          | $\vdash$           | $\vdash$      |        |         | -        | -             |         | H      | $\top$ | +       |                                                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | +          |                    |               |        | 1       | Н        | $\top$        | 1       |        | _      | +       |                                                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.          |                | П          |                    | $\top$        | $\top$ |         | $\Box$   |               | $\top$  |        |        | +       |                                                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | Н          |                    | 1             |        | 1       |          |               |         |        |        | 1       |                                                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | П          |                    |               |        |         |          |               |         |        |        | $\top$  |                                                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | П          |                    |               |        | ┪       | $\Box$   |               |         |        |        |         |                                                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | П          |                    | $\top$        |        |         | П        | 1             |         | П      |        |         |                                                |         |          |
| Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Recei                                   | ved b    | y:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |            | eived in           | 1 good        | Y      | es/No/  | NA       | Metho         | d of SI | ipmer  | nt     |         |                                                |         |          |
| Name: Kittl OBNER Dale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2 // Name:                             |          | 50         | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o/h~     | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.7        | Date: 11       | Sam        | ples re            |               | Y      | es/No/  |          |               | ynmen   | t Note | 1      |         |                                                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          | 20         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 7        | ,       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Time:          | Chill      | led?               | 8             | Y      | es/No/  |          | No.<br>Transp | ort Co  | ):     | #      |         |                                                |         | 7        |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | am of:<br>Recei                         | ved h    | v:         | Mes S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1500           | Rec        | aived in           |               | Y      | es/No/  | NA       | Melho         | d of St | nipmer |        | Lourie  | , <u>                                     </u> | ostal   | By Hand  |
| Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | 13         | sie.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dales / T.     |            | dition?<br>ples re | celve         | t V    | es/No/  | NA       | Consid        | nmen    | t Note | +      |         |                                                |         |          |
| Name: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |          | Ba         | nl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dale 2 4       | chill      |                    | 20146         |        | es/No/  | 7.50m2.N | No.           | ort Co  |        | _      |         |                                                |         |          |
| of: Time;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of:                                     | n        | ex         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a       | h       | aul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C           | Time; (45)     | <u> </u>   |                    |               |        | COLINO  | NA.      | rransj        | JOIL GC | ,.<br> | 口      | Courie  | er 🔲 F                                         | ostal _ | By Hand  |

289864



ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 9564 7055 NATA Acc # 1261 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 8215 6222 NATA Acc # 1645 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600

## Sample Receipt Advice

Company name: AECOM Aust P/L Sydney

Contact name: Kate O'Brien

Client job number: HICKSON ROAD 60153531/5.7

COC number: Not provided

Turn around time: 5 Day
Date received: Feb 8, 2011
MGT lab reference: 289864

## Sample information

- ☑ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Organic samples had Teflon liners.
- ☑ Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

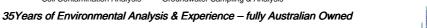
#### **Notes**

Heavy Metals (8) by mgt Labmark Melbourne - results may be delayed.

#### **Contact notes**

If you have any questions with respect to these samples please contact:

Leanne Knowles on Phone: +61 2 9476 6533 or by e.mail: leanne.knowles@labmark.com.au


Results will be delivered electronically via e.mail to Kate O'Brien - kate.obrien@aecom.com.

### mgt Labmark Sample Receipt



Environmental Laboratory
Air Analysis
Water Analysis
Soil Contamination Analysis
Soir Contamination Analysis

NATA Accretitation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis







ABN - 50 005 085 521 e.mail: mgt@mgtenv.com.au web: www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 9564 7055 NATA Site # 1261 Thornleigh 1a Chilvers Rd Thornleigh NSW 2120 Phone: +61 2 9484 3300 NATA Site # 18217

Asquith Unit 1, 8 Leighton Place Asquith NSW 2077 Phone: +61 2 9476 6533 NATA Site # 13535

Clayton 1868 Dandenong Road Clayton VIC 3168 Phone: +61 3 9265 9300 NATA Site # 1645

Company Name: Address: AECOM Aust P/L Sydney Level 5, 828 Pacific Hwy Gordon NSW 2072

Order No.:

Report #: Phone: 289864 (02) 8484 8999 (02) 8484 8989 Fax:

Feb 8, 2011 12:00 Feb 15, 2011 05:00 Received: Due: Priority:

5 Day Kate O'Brien Contact name:

Client Job No.: HICKSON ROAD 60153531/5.7 mgt-LabMark Client Manager: Leanne Knowles

| Sample Detail |                  |                  |        |             | % Moisture | Arsenic | Cadmium | Chromium | Copper | Lead | Mercury | Nickel | Zinc | Total Recoverable Hydrocarbons | втех | Polyaromatic Hydrocarbons (PAH) |
|---------------|------------------|------------------|--------|-------------|------------|---------|---------|----------|--------|------|---------|--------|------|--------------------------------|------|---------------------------------|
| Laboratory w  | here analysis is | s conducted      |        |             |            |         |         |          |        |      |         |        |      |                                |      |                                 |
| Oakleigh Lab  | oratory - NATA   | Site #1261       |        |             |            | Х       | Х       | Х        | Х      | Х    | Х       | Х      | Х    |                                |      |                                 |
| Thornleigh La | aboratory - NA   | TA Site #18217   | ,      |             |            |         |         |          |        |      |         |        |      |                                |      |                                 |
| Asquith Labo  | ratory - NATA    | Site #13535      |        |             | Х          |         |         |          |        |      |         |        |      | Х                              | Х    | Х                               |
| Clayton Labo  | ratory - NATA    | Site #1645       |        |             |            |         |         |          |        |      |         |        |      |                                |      |                                 |
| Sample ID     | Sample Date      | Sampling<br>Time | Matrix | LAB ID      |            |         |         |          |        |      |         |        |      |                                |      |                                 |
| TRIP01        | Feb 05, 2011     |                  | Soil   | A11-FE30616 | Х          | Х       | Х       | Х        | Х      | Х    | Х       | Х      | Х    | Х                              | Х    | Х                               |

Appendix H

# Calculations

| User Selected Options From File Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full Precision Full | L                                   |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Full Precision   OFF   ON-   Confidence Coefficient   9%%   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-   On-    |                                     |  |  |  |  |  |  |  |  |  |  |  |
| Confidence Coefficient 95%  Number of Bootstrap Operations 2000  Phonanthrone  Comparison Sumber of March Detailed Data Prevent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Non-Detect Data Percent Data Percent Data Percent Data Percent Data Percent Data Percent Data Data Data Data Data Data Data Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ıta.wst                             |  |  |  |  |  |  |  |  |  |  |  |
| Number of Bootstrap Operations   2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |  |  |  |  |  |  |  |  |  |  |  |
| Phenanthrone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |  |  |  |  |  |  |  |  |  |  |  |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Number of Bootstrap Operations 2000 |  |  |  |  |  |  |  |  |  |  |  |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |  |  |  |  |  |  |  |  |  |  |  |
| Number of Valid Data   21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                  |  |  |  |  |  |  |  |  |  |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                  |  |  |  |  |  |  |  |  |  |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.38%                              |  |  |  |  |  |  |  |  |  |  |  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.511                              |  |  |  |  |  |  |  |  |  |  |  |
| Mean of Detected   1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.211                               |  |  |  |  |  |  |  |  |  |  |  |
| SD of Detected   7,669   SD of Detected   21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.222                               |  |  |  |  |  |  |  |  |  |  |  |
| Minimum Non-Detect   0.5   Minimum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect   0.5   Maximum Non-Detect    | 1.311                               |  |  |  |  |  |  |  |  |  |  |  |
| Maximum Non-Detect   0.5   Maximum Non-Detect   23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.693                              |  |  |  |  |  |  |  |  |  |  |  |
| Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.693                              |  |  |  |  |  |  |  |  |  |  |  |
| Normal Distribution Test with Detected Values Only   Lognormal Distribution Test with Detected Values Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |  |  |  |  |  |  |  |  |  |  |  |
| Normal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Test Statist Shapiro Wilk Test Statist Shapiro Wilk Test Statist Shapiro Wilk Test Statist Shapiro Wilk Test Statist Shapiro Wilk Test Statist Shapiro Wilk Test Statist Shapiro Wilk Test Statist Shapiro Shapiro Shapiro Wilk Test Statist Shapiro Wilk Statist Shapiro Wilk Statist Shapiro Wilk Statist Shapiro Wilk Statist Shapiro S |                                     |  |  |  |  |  |  |  |  |  |  |  |
| Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Shapiro Wilk Critical Value O Bata not Normal at 5% Significance Level  Data appear Lognormal at 5% Significance Level  Data appear Lognormal at 5% Significance Level  Data appear Lognormal at 5% Significance Level  Assuming Normal Distribution  Assuming Lognormal Distribution  DL/2 Substitution Method  Mean SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method SD BL/2 Substitution Method  |                                     |  |  |  |  |  |  |  |  |  |  |  |
| Shapiro Wilk Critical Value   0.842   5% Shapiro Wilk Critical Value   29   Data not Normal at 5% Significance Level   Data appear Lognormal at 5% Significance Level   30   31   Assuming Normal Distribution   Assuming Lognormal Distribution   32   DL/2 Substitution Method   DL/2 Substitution Method   33   Mean   3.331   Mean   3.34   SD   6.118   SD   5.633   95% H-Stat (DL/2) UCL   5.635   95% DL/2 (t) UCL   5.633   95% H-Stat (DL/2) UCL   36   Maximum Likelihood Estimate(MLE) Method   N/A   Log ROS Method   38   MLE yields a negative mean   Mean in Log Scale   39   SD in Log Scale   40   Mean in Original Scale   41   SD in Original Scale   42   95% Percentile Bootstrap UCL   43   95% BCA Bootstrap UCL   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Related Method Original Scale   44   Pate Method Original Scale   44   Pate Method Original Scale   45   Pate Method Original Scale   45   Pate Method Original Scale   46   Pate Method Original Scale   47   Pate Method Original Scale   48   Pate Method Original Scale   49   Pate Method Original Scale   49   Pate Method Original Scale   49   Pate Method Original Scale   49   Pate Method Original Scale   40   Pate Method Original Scale   40   Pate Method Original Scale   40   Pate Method Original Scale   40   Pate Method Original Scale   40   Pate Method Original Scale   40   Pate Method Original Scale   40   Pate Method   | _                                   |  |  |  |  |  |  |  |  |  |  |  |
| Data not Normal at 5% Significance Level  Data appear Lognormal at 5% Significance Level  Assuming Normal Distribution  Assuming Lognormal Distribution  DL/2 Substitution Method  Mean 3.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.914                               |  |  |  |  |  |  |  |  |  |  |  |
| 30 31 Assuming Normal Distribution 32 DL/2 Substitution Method 33 Mean 3.331 Mean 34 SD 6.118 SD 35 95% DL/2 (t) UCL 5.633 95% H-Stat (DL/2) UCL 36 Maximum Likelihood Estimate(MLE) Method N/A Log ROS Method 38 MLE yields a negative mean Mean in Log Scale 39 SD Mean in Original Scale 40 Mean in Original Scale 41 SD Mean in Original Scale 42 95% BCA Bootstrap UCL 43 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.842                               |  |  |  |  |  |  |  |  |  |  |  |
| Assuming Normal Distribution  DL/2 Substitution Method  DL/2 Substitution Method  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.331  Mean 3.3 |                                     |  |  |  |  |  |  |  |  |  |  |  |
| DL/2 Substitution Method  DL/2 Substitution Method  DL/2 Substitution Method  DL/2 Substitution Method  DL/2 Substitution Method  DL/2 Substitution Method  DL/2 Substitution Method  Mean  Mean  Mean  SD  6.118  SD  35  95% H-Stat (DL/2) UCL  36  37  Maximum Likelihood Estimate(MLE) Method  N/A  Log ROS Method  AB  MLE yields a negative mean  Mean in Log Scale  SD in Log Scale  SD in Log Scale  40  Mean in Original Scale  41  SD in Original Scale  42  95% Percentile Bootstrap UCL  43  44  44  Cannot Distribution Teat with Datasted Values Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 33   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331   Mean   3.331     |                                     |  |  |  |  |  |  |  |  |  |  |  |
| SD   6.118   SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.144                              |  |  |  |  |  |  |  |  |  |  |  |
| 35 95% DL/2 (t) UCL 5.633 95% H-Stat (DL/2) UCL 36 37 Maximum Likelihood Estimate(MLE) Method N/A Log ROS Method 38 MLE yields a negative mean Mean in Log Scale 39 SD in Log Scale 40 Mean in Original Scale 41 SD in Original Scale 42 95% Percentile Bootstrap UCL 43 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.598                               |  |  |  |  |  |  |  |  |  |  |  |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.343                               |  |  |  |  |  |  |  |  |  |  |  |
| Maximum Likelihood Estimate(MLE) Method N/A Log ROS Method MLE yields a negative mean Mean in Log Scale SD in Log Scale Mean in Original Scale Mean in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |  |  |  |  |  |  |  |  |  |  |  |
| MLE yields a negative mean  Mean in Log Scale  SD in Log Scale  Mean in Original Scale  Mean in Original Scale  SD in Original Scale  SD in Original Scale  95% Percentile Bootstrap UCL  95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |  |  |  |  |  |  |  |  |
| SD in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.797                              |  |  |  |  |  |  |  |  |  |  |  |
| Mean in Original Scale  SD in Original Scale  SD in Original Scale  95% Percentile Bootstrap UCL  95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.355                               |  |  |  |  |  |  |  |  |  |  |  |
| SD in Original Scale  95% Percentile Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.269                               |  |  |  |  |  |  |  |  |  |  |  |
| 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.151                               |  |  |  |  |  |  |  |  |  |  |  |
| 95% BCA Bootstrap UCL 44  Commo Diotribution Test with Detected Values Only  Data Distribution Test with Detected Values Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.602                               |  |  |  |  |  |  |  |  |  |  |  |
| 44 Commo Distribution Test with Detected Values Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.621                               |  |  |  |  |  |  |  |  |  |  |  |
| Commo Distribution Test with Detected Values Only  Data Distribution Test with Detected Values Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 45 Gamma distribution lest with detected values only data distribution lest with detected values only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |  |  |  |  |  |  |  |  |  |  |  |
| k star (bias corrected) 0.669 Data appear Gamma Distributed at 5% Significance L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vel                                 |  |  |  |  |  |  |  |  |  |  |  |
| 47 Theta Star 10.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |  |  |  |  |  |  |  |  |  |  |  |
| nu star 13.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |  |  |  |  |  |  |  |  |  |  |  |
| A-D Test Statistic 0.479 Nonparametric Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 51 5% A-D Critical Value 0.753 Kaplan-Meier (KM) Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |  |  |  |  |  |  |  |  |  |  |  |
| 52K-S Test Statistic0.753Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.514                               |  |  |  |  |  |  |  |  |  |  |  |
| 53 5% K-S Critical Value 0.275 SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.878                               |  |  |  |  |  |  |  |  |  |  |  |

|     | A B C D E  Data appear Gamma Distributed at 5% Significance | F                                       | G                        | H I J K<br>SE of Mean                           | L<br>1.352     |  |  |  |  |  |
|-----|-------------------------------------------------------------|-----------------------------------------|--------------------------|-------------------------------------------------|----------------|--|--|--|--|--|
| 54  | Data appear Gamma Distributed at 5% Significance            | Levei                                   |                          | 95% KM (t) UCL                                  | 5.846          |  |  |  |  |  |
| 55  | Assuming Gamma Distribution                                 |                                         |                          | 95% KM (z) UCL                                  |                |  |  |  |  |  |
| 56  | Gamma ROS Statistics using Extrapolated Data                | 95% KM (jackknife) UCL                  | 5.738                    |                                                 |                |  |  |  |  |  |
| 57  | Minimum                                                     |                                         |                          | 95% KM (bootstrap t) UCL                        | 7.527          |  |  |  |  |  |
| 58  | Maximum                                                     | 24.8                                    |                          | 95% KM (BCA) UCL                                | 6.124          |  |  |  |  |  |
| 59  | Mean                                                        | 7.585                                   |                          | 95% KM (Percentile Bootstrap) UCL               | 5.976          |  |  |  |  |  |
| 60  | Median                                                      |                                         | 95% KM (Chebyshev) UCL   | 9.407                                           |                |  |  |  |  |  |
| 61  | SD                                                          |                                         | 97.5% KM (Chebyshev) UCL | 11.96                                           |                |  |  |  |  |  |
| 62  | k star                                                      | 7.539<br>0.264                          |                          | 99% KM (Chebyshev) UCL                          | 16.97          |  |  |  |  |  |
| 63  | Theta star                                                  | 28.75                                   |                          | 7778 Kill (elles)silet) e e e                   | 10.77          |  |  |  |  |  |
| 64  | Nu star                                                     | 11.08                                   |                          | Potential UCLs to Use                           |                |  |  |  |  |  |
| 65  | AppChi2                                                     | 4.629                                   |                          | 95% KM (t) UCL                                  | 5.846          |  |  |  |  |  |
| 66  | 95% Gamma Approximate UCL                                   | 18.16                                   |                          | 7376 KIN (I) 332                                | 3.040          |  |  |  |  |  |
| 67  | 95% Adjusted Gamma UCL                                      | 19.49                                   |                          |                                                 |                |  |  |  |  |  |
| 68  | Note: DL/2 is not a recommended method.                     | 17.47                                   |                          |                                                 |                |  |  |  |  |  |
| 69  | Note: DETE IS NOT a recommended method.                     |                                         |                          |                                                 |                |  |  |  |  |  |
| 70  |                                                             |                                         |                          |                                                 |                |  |  |  |  |  |
| 71  | Zinc                                                        |                                         |                          |                                                 |                |  |  |  |  |  |
| 72  | Zilio                                                       |                                         |                          |                                                 |                |  |  |  |  |  |
| 73  |                                                             | General                                 | Statistics               |                                                 |                |  |  |  |  |  |
| 74  | Number of Valid Data                                        |                                         |                          | Number of Detected Data                         | 20             |  |  |  |  |  |
| 75  | Number of Distinct Detected Data                            | 17                                      |                          | Number of Non-Detect Data                       | 1              |  |  |  |  |  |
| 76  | Named of Bistinet Belosted Bata                             | ,,                                      |                          | Percent Non-Detects                             | 4.76%          |  |  |  |  |  |
| 77  |                                                             |                                         |                          | T crossik Nort Bottosis                         | 1.7070         |  |  |  |  |  |
| 78  | Raw Statistics                                              |                                         |                          | Log-transformed Statistics                      |                |  |  |  |  |  |
| 79  | Minimum Detected                                            | 15                                      |                          | Minimum Detected                                | 2.708          |  |  |  |  |  |
| 80  | Maximum Detected                                            |                                         |                          | Maximum Detected                                | 6.475          |  |  |  |  |  |
| 81  |                                                             | Mean of Detected 101.3 Mean of Detected |                          |                                                 |                |  |  |  |  |  |
| 82  | SD of Detected                                              |                                         |                          | SD of Detected                                  | 3.902<br>1.064 |  |  |  |  |  |
| 83  | Minimum Non-Detect                                          | 5                                       |                          | Minimum Non-Detect                              | 1.609          |  |  |  |  |  |
| 84  | Maximum Non-Detect                                          |                                         |                          | Maximum Non-Detect                              | 1.609          |  |  |  |  |  |
| 85  | Waximan Non Beleet                                          | 3                                       |                          | Waximam Non Beteet                              | 1.007          |  |  |  |  |  |
| 86  |                                                             |                                         |                          |                                                 |                |  |  |  |  |  |
| 87  |                                                             | UCL St                                  | atistics                 |                                                 |                |  |  |  |  |  |
| 88  | Normal Distribution Test with Detected Values Or            |                                         |                          | normal Distribution Test with Detected Values O | nlv            |  |  |  |  |  |
| 89  | Shapiro Wilk Test Statistic                                 |                                         | 208                      | Shapiro Wilk Test Statistic                     | 0.825          |  |  |  |  |  |
| 90  | 5% Shapiro Wilk Critical Value                              |                                         |                          | 5% Shapiro Wilk Critical Value                  | 0.905          |  |  |  |  |  |
| 91  | Data not Normal at 5% Significance Level                    | 01700                                   |                          | Data not Lognormal at 5% Significance Level     |                |  |  |  |  |  |
| 92  |                                                             |                                         |                          |                                                 |                |  |  |  |  |  |
| 93  | Assuming Normal Distribution                                |                                         |                          | Assuming Lognormal Distribution                 |                |  |  |  |  |  |
| 94  | DL/2 Substitution Method                                    |                                         |                          | DL/2 Substitution Method                        |                |  |  |  |  |  |
| 95  | Mean                                                        |                                         |                          | Mean                                            | 3.76           |  |  |  |  |  |
| 96  | SD                                                          | 160                                     |                          | SD                                              | 1.224          |  |  |  |  |  |
| 97  | 95% DL/2 (t) UCL                                            | 156.8                                   |                          | 95% H-Stat (DL/2) UCL                           | 175.6          |  |  |  |  |  |
| 98  | 73.73.22.2 (1) 332.                                         | 133.0                                   |                          |                                                 | 5.6            |  |  |  |  |  |
| 99  | Maximum Likelihood Estimate(MLE) Method                     |                                         |                          | Log ROS Method                                  |                |  |  |  |  |  |
| 100 | Mean                                                        |                                         |                          | Mean in Log Scale                               | 3.785          |  |  |  |  |  |
| 101 | SD                                                          | 161.4                                   |                          | SD in Log Scale                                 | 1.167          |  |  |  |  |  |
| 102 | 95% MLE (t) UCL                                             |                                         |                          | Mean in Original Scale                          | 96.68          |  |  |  |  |  |
| 103 | 95% MLE (Tiku) UCL                                          |                                         |                          | SD in Original Scale                            | 160            |  |  |  |  |  |
| 104 | 7070 MEE (TING) OCE                                         | 177.5                                   |                          | 95% Percentile Bootstrap UCL                    | 156.9          |  |  |  |  |  |
| 105 |                                                             |                                         |                          | 95% BCA Bootstrap UCL                           | 185            |  |  |  |  |  |
| 106 |                                                             |                                         |                          | 7070 2071 2000 and 002                          | .50            |  |  |  |  |  |

|                                               | A B C D E                                                                   | F                  | G H I J K                                                   | L                |
|-----------------------------------------------|-----------------------------------------------------------------------------|--------------------|-------------------------------------------------------------|------------------|
| 107                                           | Gamma Distribution Test with Detected Values Or                             | nlv                | Data Distribution Test with Detected Values Only            |                  |
| 108                                           | k star (bias corrected)                                                     | 0.735              | Data do not follow a Discernable Distribution (0.05)        |                  |
| 109                                           | Theta Star                                                                  | 137.8              |                                                             |                  |
| 110                                           | nu star                                                                     | 29.4               |                                                             |                  |
| <ul><li>111</li><li>112</li></ul>             |                                                                             |                    |                                                             |                  |
| 113                                           | A-D Test Statistic                                                          | 2.384              | Nonparametric Statistics                                    |                  |
| 114                                           | 5% A-D Critical Value                                                       | 0.776              | Kaplan-Meier (KM) Method                                    |                  |
| 115                                           | K-S Test Statistic                                                          | 0.776              | Mean                                                        | 97.19            |
| 116                                           | 5% K-S Critical Value                                                       | 0.201              | SD                                                          | 155.8            |
| 117                                           | Data not Gamma Distributed at 5% Significance Le                            | vel                | SE of Mean                                                  | 34.89            |
| 118                                           |                                                                             |                    | 95% KM (t) UCL                                              | 157.4            |
| 119                                           | Assuming Gamma Distribution                                                 |                    | 95% KM (z) UCL                                              | 154.6            |
| 120                                           | Gamma ROS Statistics using Extrapolated Data                                |                    | 95% KM (jackknife) UCL                                      | 157.2            |
| 121                                           | Minimum                                                                     | 1E-09              | 95% KM (bootstrap t) UCL                                    | 208.8            |
| 122                                           | Maximum                                                                     | 649                | 95% KM (BCA) UCL                                            | 156.9            |
| 123                                           | Mean                                                                        | 96.48              | 95% KM (Percentile Bootstrap) UCL                           | 155.9            |
| 124                                           | Median                                                                      | 30                 | 95% KM (Chebyshev) UCL                                      | 249.3            |
| 125                                           | SD                                                                          | 160.1              | 97.5% KM (Chebyshev) UCL                                    | 315.1            |
| 126                                           | k star                                                                      | 0.343              | 99% KM (Chebyshev) UCL                                      | 444.4            |
| 127                                           | Theta star                                                                  | 281.2              |                                                             |                  |
| 128                                           | Nu star                                                                     | 14.41              | Potential UCLs to Use                                       |                  |
| 129                                           | AppChi2                                                                     | 6.853              | 97.5% KM (Chebyshev) UCL                                    | 315.1            |
| 130                                           | 95% Gamma Approximate UCL                                                   | 202.9              |                                                             |                  |
| 131                                           | 95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.              | 215.4              |                                                             |                  |
| <ul><li>134</li><li>135</li><li>136</li></ul> | Copper                                                                      |                    |                                                             |                  |
| 137                                           |                                                                             | General            | Statistics                                                  |                  |
| 138                                           | Number of Valid Data                                                        | 20                 | Number of Detected Data                                     | 17               |
| 139                                           | Number of Distinct Detected Data                                            | 16                 | Number of Non-Detect Data                                   | 3                |
| 140                                           |                                                                             |                    | Percent Non-Detects                                         | 15.00%           |
| 141                                           |                                                                             |                    |                                                             |                  |
| 142                                           | Raw Statistics                                                              |                    | Log-transformed Statistics                                  |                  |
| 143                                           | Minimum Detected                                                            | 6                  | Minimum Detected                                            | 1.792            |
| 144                                           | Maximum Detected                                                            | 76                 | Maximum Detected                                            | 4.331            |
| 145                                           | Mean of Detected                                                            | 31.24              | Mean of Detected                                            | 3.2              |
| 146                                           | SD of Detected                                                              | 20.22              | SD of Detected                                              | 0.765            |
| 147                                           | Minimum Non-Detect                                                          | 5                  | Minimum Non-Detect                                          | 1.609            |
| 148                                           | Maximum Non-Detect                                                          | 5                  | Maximum Non-Detect                                          | 1.609            |
| 149                                           |                                                                             |                    |                                                             |                  |
| 150                                           |                                                                             | 1101.5             | a Al-Al-a                                                   |                  |
| 151                                           | Normal Distribution Test with Detected Vel.                                 | UCL St             |                                                             |                  |
| 152                                           | Normal Distribution Test with Detected Values On                            | <b>ly</b><br>0.926 | Lognormal Distribution Test with Detected Values Onl        | <b>y</b><br>0.93 |
| 153                                           | Shapiro Wilk Test Statistic<br>5% Shapiro Wilk Critical Value               | 0.926              | Shapiro Wilk Test Statistic  5% Shapiro Wilk Critical Value | 0.93             |
| 154                                           | 5% Snapiro Wilk Critical Value  Data appear Normal at 5% Significance Level | 0.892              | Data appear Lognormal at 5% Significance Level              | 0.892            |
| 155                                           | Data appear Normal at 5% Significance Level                                 |                    | Data appear Logitoritial at 5% Significance Level           |                  |
| 156                                           | Assuming Normal Distribution                                                |                    | Assuming Lognormal Distribution                             |                  |
| 157                                           | DL/2 Substitution Method                                                    |                    | DL/2 Substitution Method                                    |                  |
| 158                                           | Moon                                                                        | 26.93              | Mean                                                        | 2.857            |
| 159                                           | ····sa···                                                                   |                    |                                                             |                  |

| 1/0                               | Α        |            | В         | (       | С        |          | )         | E<br>SD              | F     | 21.33          | G                |   | Н       |       |                    | I      |        | J       |       |          | K<br>S                | SD  | L<br>1.092 |   |
|-----------------------------------|----------|------------|-----------|---------|----------|----------|-----------|----------------------|-------|----------------|------------------|---|---------|-------|--------------------|--------|--------|---------|-------|----------|-----------------------|-----|------------|---|
| 160                               |          |            |           |         |          |          | 95% D     | L/2 (t) UCL          |       | 35.17          |                  |   |         |       |                    |        | 959    | % H-    | Stat  | (DL/     |                       |     | 39.13      |   |
| 161<br>162                        |          |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    |        |        |         |       | `        |                       | -   |            |   |
| 163                               |          |            | Maxim     | num Lik | kelihoo  | d Estin  | nate(ML   | E) Method            |       |                |                  |   |         |       |                    |        |        | Lo      | og R  | OS I     | Metho                 | od  |            |   |
| 164                               |          |            |           |         |          |          |           | Mean                 |       | 25.39          |                  |   |         |       |                    |        |        | Me      | an ir | ı Lo     | g Sca                 | ile | 2.937      |   |
| 165                               |          |            |           |         |          |          |           | SD                   |       | 23.2           | SD in Log Sca    |   |         |       |                    |        |        | g Sca   | ıle   | 0.956    |                       |     |            |   |
| 166                               |          |            |           |         |          |          | 95% M     | LE (t) UCL           |       | 34.36          |                  |   |         |       |                    |        | N      | 1ean ii | n Ori | gina     | ıl Sca                | ile | 27.21      |   |
| 167                               |          |            |           |         |          | 95%      | % MLE     | (Tiku) UCL           |       | 34.39          |                  |   |         |       |                    |        |        | SD in   | n Ori | gina     | al Sca                | ile | 21.01      |   |
| 168                               |          |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    | 95%    | Perc   | centile | Вос   | otstra   | ap UC                 | CL  | 35.01      |   |
| 169                               |          |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    |        | 95%    | 6 BCA   | Вос   | otstra   | ap UC                 | CL  | 35.65      |   |
| 170                               |          |            |           |         |          |          |           |                      | 1     |                |                  |   |         |       |                    |        |        |         |       |          |                       |     | -          |   |
| 171                               |          | Gamm       | na Distri | ibution | Test     | with De  | etected   | Values O             | nly   |                |                  | D | ata Dis | tribu | ition <sup>-</sup> | Test   | with [ | Detec   | ted \ | Valu     | ies O                 | nly |            |   |
| 172                               |          |            |           |         |          | k st     | ar (bias  | corrected)           |       | 1.867          |                  |   | Data a  | ppea  | ar No              | rmal   | at 5%  | 6 Sign  | ifica | nce      | Leve                  | el  |            |   |
| 173                               |          |            |           |         |          |          |           | Theta Star           |       | 16.73          |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 174                               |          |            |           |         |          |          |           | nu star              |       | 63.49          |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 175                               |          |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 176                               |          |            |           |         |          |          | A-D Te    | est Statistic        |       | 0.465          |                  |   |         | ı     | Nonp               | aram   | etric  | Statis  | tics  |          |                       |     |            |   |
| 177                               |          |            |           |         |          | 5%       | A-D Cri   | itical Value         |       | 0.749          |                  |   |         |       |                    | ŀ      | Kapla  | ın-Mei  | er (k | (M) I    | Metho                 | od  |            |   |
| 178                               |          |            |           |         |          |          |           | est Statistic        |       | 0.749          |                  |   |         |       |                    |        |        |         |       |          | Mea                   |     | 27.45      |   |
| 179                               |          |            |           |         |          |          |           | tical Value          |       | 0.211          |                  |   |         |       |                    |        |        |         |       |          |                       | SD  | 20.21      |   |
| 180                               | Da       | ata app    | ear Ga    | mma D   | Distribu | uted at  | 5% Sig    | gnificance           | Level |                |                  |   |         |       |                    |        |        |         |       |          | of Mea                |     | 4.657      |   |
| 181                               |          |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    |        |        |         |       |          | (t) UC                |     | 35.5       |   |
| 182                               |          |            |           |         | -        |          | stributio |                      |       |                |                  |   |         |       |                    |        |        |         |       |          | (z) UC                |     | 35.11      |   |
| 183                               |          | G          | amma R    | ROS Sta | atistics | using    | Extrapo   | lated Data           |       |                |                  |   |         |       |                    |        |        | % KM    |       |          |                       |     | 35.24      |   |
| 184                               |          |            |           |         |          |          |           | Minimum              |       | 1E-09          |                  |   |         |       |                    |        | 95%    | KM (b   |       |          |                       |     | 36.82      |   |
| 185                               |          |            |           |         |          |          |           | Maximum              |       | 76             |                  |   |         |       |                    |        |        |         |       |          | A) UC                 |     | 36.35      |   |
| 186                               |          |            |           |         |          |          |           | Mean                 |       | 26.93          |                  |   |         |       | 95%                |        |        | entile  |       |          | • •                   |     | 35.45      |   |
| 187                               |          |            |           |         |          |          |           | Median               |       | 25             |                  |   |         |       |                    |        |        | KM (C   | _     |          |                       |     | 47.75      | J |
| 188                               |          |            |           |         |          |          |           | SD                   |       | 21.35          |                  |   |         |       |                    |        |        | KM (C   |       |          |                       |     | 56.53      | 1 |
| 189                               |          |            |           |         |          |          |           | k star               |       | 0.401          |                  |   |         |       |                    | Ç      | 99% k  | KM (C   | heby  | /she     | v) UC                 | )L  | 73.79      |   |
| 190                               |          |            |           |         |          |          |           | Theta star           |       | 67.18          |                  |   |         |       | Data               | 4! 1   | 1101   | _ 1_ 11 |       |          |                       |     |            |   |
| 191                               |          |            |           |         |          |          |           | Nu star              |       | 16.04          |                  |   |         |       | Pote               | entiai | UCL    | s to U  |       | 1/ 1/    | ( <del>1</del> ) 1.16 | 21  | 25.5       |   |
| 192                               |          |            |           |         | 0E0/ C   | amma     | Annroy    | AppChi2<br>imate UCL |       | 7.987          |                  |   |         |       | OE 0/              | LVV V  | Doro   | entile  |       |          | (t) UC                |     | 35.5       |   |
| 193                               |          |            |           |         |          |          |           | amma UCL             |       | 54.07<br>57.27 |                  |   |         |       | 9570               | NIVI ( | Perc   | entille | БОО   | ısıra    | p) UC                 | ,L  | 35.45      |   |
| 194                               | Note: DL | /2 is no   | ot a roce | ommor   |          |          |           |                      |       | 37.27          |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 193                               | Note. DL | ./2 15 110 | Ji a leci | omme    | nueu n   | nemou    | •         |                      |       |                |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 196                               |          |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 197                               | СРАН     |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 190                               | 017111   |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 199                               |          |            |           |         |          |          |           |                      | Ge    | neral:         | Statistics       | • |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 200                               |          |            |           |         |          | Nur      | mber of   | Valid Data           |       | 21             | o la li o li o l |   |         |       |                    |        | Nun    | nber o  | f Det | tecte    | ed Da                 | ıta | 13         |   |
| 201                               |          |            |           | Nı      | umber    |          |           | ected Data           |       | 13             |                  |   |         |       |                    | N      |        | er of N |       |          |                       |     | 8          |   |
| 202                               |          |            |           |         |          |          | 0(        |                      |       |                |                  |   |         |       |                    |        |        | Perce   |       |          |                       |     | 38.10%     |   |
| 203                               |          |            |           |         |          |          |           |                      | 1     |                |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| 204                               |          |            |           | F       | Raw St   | tatistic | S         |                      |       |                |                  |   |         | L     | og-tra             | ansfo  | rmed   | Stati   | stics | <u> </u> |                       |     |            |   |
|                                   |          |            |           |         |          |          |           | n Detected           |       | 4.3            |                  |   |         |       |                    |        |        |         |       |          | etecte                | ed  | 1.459      |   |
| <ul><li>206</li><li>207</li></ul> |          |            |           |         |          | N        | 1aximur   | n Detected           |       | 113.2          |                  |   |         |       |                    |        |        |         |       |          | etecte                |     | 4.729      |   |
| 207                               |          |            |           |         |          |          | Mean o    | of Detected          |       | 39.59          |                  |   |         |       |                    |        |        |         |       |          | etecte                |     | 3.049      |   |
| 209                               |          |            |           |         |          |          | SDo       | of Detected          |       | 39.28          |                  |   |         |       |                    |        |        |         | SD    | of D     | etecte                | ed  | 1.269      | J |
| 210                               |          |            |           |         |          | Mir      | nimum N   | Non-Detect           |       | 3              |                  |   |         |       |                    |        |        | Minim   | num   | Non      | -Dete                 | ect | 1.099      | J |
| 211                               |          |            |           |         |          | Max      | kimum N   | Non-Detect           |       | 4              |                  |   |         |       |                    |        | 1      | Maxim   | num   | Non      | -Dete                 | ect | 1.386      |   |
| 212                               |          |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    |        |        |         |       |          |                       |     |            |   |
| <u> </u>                          |          |            |           |         |          |          |           |                      |       |                |                  |   |         |       |                    |        |        |         |       |          |                       |     |            | ı |

|                                   | A B C D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F              | G H I J K                                           | L      |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------|--------|
| 213                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nded           | Number treated as Non-Detect                        | 8      |
| 214                               | For all methods (except KM, DL/2, and ROS Methods),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Number treated as Detected                          | 13     |
| 215                               | Observations < Largest ND are treated as NDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | Single DL Non-Detect Percentage                     | 38.10% |
| 216                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                     |        |
| 217                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCL Sta        |                                                     |        |
| 218                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              | Lognormal Distribution Test with Detected Values Or |        |
| 219                               | Shapiro Wilk Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Shapiro Wilk Test Statistic                         | 0.865  |
| 220                               | 5% Shapiro Wilk Critical Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.866          | 5% Shapiro Wilk Critical Value                      | 0.866  |
| 221                               | Data not Normal at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | Data not Lognormal at 5% Significance Level         |        |
| 222                               | Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | Assuming Lognormal Distribution                     |        |
| 223                               | DL/2 Substitution Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | DL/2 Substitution Method                            |        |
| 224                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.22          | Mean                                                | 2.124  |
| 225                               | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.22<br>35.75 | SD                                                  |        |
| 226                               | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                     | 1.56   |
| 227                               | 95% DL/2 (t) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.68          | 95% H-Stat (DL/2) UCL                               | 55.5   |
| 228                               | Maximum Likelihood Estimate(MLE) Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Log ROS Method                                      |        |
| 229                               | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.23          | Mean in Log Scale                                   | 1.844  |
| 230                               | Wiedi I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48.97          | SD in Log Scale                                     | 1.916  |
| 231                               | 95% MLE (t) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.66          | Mean in Original Scale                              | 24.94  |
| 232                               | 95% MLE (I) OCL<br>95% MLE (Tiku) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.63          | SD in Original Scale                                | 35.94  |
| 233                               | 93% IVILE (TIKU) OCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.03          | 95% Percentile Bootstrap UCL                        | 38.17  |
| 234                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 95% BCA Bootstrap UCL                               | 40.32  |
| 235                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 93% BCA BOOISHAP OCE                                | 40.32  |
| 236                               | Gamma Distribution Test with Detected Values Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nly            | Data Distribution Test with Detected Values Only    | -      |
| 237                               | k star (bias corrected)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.763          | Data appear Gamma Distributed at 5% Significance Le | aval   |
| 238                               | Theta Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51.86          | Data appear Gamma Distributed at 5% Significance Le | 3461   |
| 239                               | nu star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.85          |                                                     |        |
| 240                               | na star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.00          |                                                     |        |
| 241                               | A-D Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.718          | Nonparametric Statistics                            |        |
| 242                               | FO( A D C :: H = -1 \ / -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Kaplan-Meier (KM) Method                            | -      |
| 243                               | K-S Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.761          | Mean                                                | 26.15  |
| 244                               | F0/ I/ C C *** - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - 1 \/ - |                | SD                                                  | 34.28  |
| <ul><li>245</li><li>246</li></ul> | Data appear Gamma Distributed at 5% Significance I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | SE of Mean                                          | 7.786  |
| 247                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 95% KM (t) UCL                                      | 39.58  |
| 248                               | Assuming Gamma Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 95% KM (z) UCL                                      | 38.95  |
| 249                               | Commo DOS Statistics using Extrapolated Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 95% KM (jackknife) UCL                              | 39.26  |
| 250                               | Minimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1E-09          | 95% KM (bootstrap t) UCL                            | 44.65  |
| 251                               | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113.2          | 95% KM (BCA) UCL                                    | 38.95  |
| 252                               | Magn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.11          | 95% KM (Percentile Bootstrap) UCL                   | 39.48  |
| 253                               | Madian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.35          | 95% KM (Chebyshev) UCL                              | 60.09  |
| 254                               | CD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.96          | 97.5% KM (Chebyshev) UCL                            | 74.77  |
| 255                               | k star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.253          | 99% KM (Chebyshev) UCL                              | 103.6  |
| 256                               | Theta star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.2          |                                                     |        |
| 257                               | Nu stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.61          | Potential UCLs to Use                               |        |
| 258                               | AnnChia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.328          | 95% KM (BCA) UCL                                    | 38.95  |
| 259                               | OEO/ Commo Approximate LICI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73.84          |                                                     |        |
| 260                               | 95% Adjusted Gamma UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.43          |                                                     |        |
|                                   | Note: DL/2 is not a recommended method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                     |        |
| 262                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                     |        |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                     |        |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                     |        |