

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

> Project 73942 5 February 2015 PMO

Ecove Group Pty Ltd Locked Bay 1451 MEADOWBANK NSW 2114

Attention: Mr Michael Azar

Dear Sirs

Report on Additional Testing Site 68 – Corner of Bennelong Parkway and Australia Avenue Sydney Olympic Park

1. Introduction

This report describes the results of additional testing undertaken for the proposed residential development on Site 68 at the corner of Bennelong Parkway and Australia Avenue, Sydney Olympic Park. The work was undertaken for Ecove Group Pty Ltd, developer of the site.

Douglas Partners has previous undertaken geotechnical and contamination investigations on the above site. The current revisions of the previous reports are as follows:

- *Report on Supplementary Geotechnical Investigation Rev 0* for Project 73942 dated 19 September 2014; and
- Report on Preliminary Site Investigation (Contamination) Rev 0 for Project 73942 dated 19 September 2014.

These reports recommended some additional investigations following development approval and before the commencement of construction. The recommended additional investigations included:

- Further assessment of contaminant levels in any existing filling and soil that will remain on site;
- Assessment of groundwater quality on the site to determine appropriate groundwater control and disposal options that will need to be incorporated into the building; and
- Waste classification of all materials requiring removal from the site to allow them to be disposed of in an appropriate manner.

The additional testing recently undertaken on the site included an assessment of groundwater quality in two existing monitoring wells located in the footpath area of Bennelong Parkway, and permeability testing of the wells to estimate the permeability of the rock adjacent to the proposed basement excavation. It is noted that access to the remainder of the site for the recommended contamination assessment and waste classification is not currently available due to SOPA environmental restrictions and this work should be undertaken at a later stage following DA approval.

Integrated Practical Solutions
 Brisbane • Cairns • Campbelltown • Canberra • Darwin • Gold Coast • Melbourne • Newcastle • Perth • Sunshine Coast • Sydney •
 Townsville • Wollongong • Wyong

Douglas Partners Geotechnics | Environment | Groundwater

2. Groundwater Quality Assessment

Two of the existing monitoring wells (BH105 and BH106 in attached drawing) were sampled in January 2015. The sampling procedure was as follows:

- Re-development of the wells on 27 January 2015 by pumping the wells dry to ensure fresh groundwater was available for sampling on 29 January 2015;
- Measurement of field parameters (pH, electrical conductivity, temperature and dissolved oxygen) and ensuring the parameters had stabilised prior to sampling;
- Sampling of the wells using a low-flow pump with disposable tubing;
- Placement of the samples in appropriately preserved vials/bottles, storage of the samples in an insulated container and transport of the samples to a NATA accredited analytical laboratory;
- Analysis of QA/QC samples; and
- Maintaining chain of custody documentation.

The groundwater samples were analysed for a range of properties and potential contaminants in accordance with our previous recommendations. Selected results are provided in Tables 1 to 3.

Sample	В	т	E	X	C ₆ to C ₉	C ₁₀ to C ₃₆	+ve PAH	Naphth.
BH105	<1	<1	<1	<3	<10	<250	NIL +ve	<1
BH106	<1	<1	<1	<3	<10	<250	NIL +ve	<1
		Ground	vater Investi	gation Level	s for Marine	Waters ²		
	500	-	-	550	-	-	-	50

Table 1: Summary of Results for Hydrocarbons¹

Notes: B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; C₆ to C_{36} = Total recoverable hydrocarbons;

PAH = Polycyclic aromatic hydrocarbons; Napth. = Naphthalene

¹ All results in µg/L unless otherwise noted

² NEPM Schedule B1

Table 2: Summary of Results for Pesticides, PCBs, Phenol and Ammonia¹

Sample	Organochlorine Pesticides	Polychlorinated Biphenyls	Phenol	Ammonia as N
BH105	0.01 (a-Chlordane)	NIL +ve	<50	280
BH106	NIL +ve	NIL +ve	<50	43
	Groundwater In	vestigation Levels for	Marine Waters ²	
	Various	Various	400	910

Notes: ¹ All results in µg/L unless otherwise noted

² NEPM Schedule B1

Sample	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Hardness
BH105	<1	0.4	<1	2	<1	<0.05	42	140	500
BH106	<1	<0.1	<1	2	<1	<0.05	3	25	31
G	Groundwat	er Investig	ation Leve	Is for Mari	ne Waters	Depending	on Water	Hardness ²	
Soft	24	0.7	4.4	1.3	4.4	0.1	7	15	-
Ext. hard	24	9	44	14	157	0.1	77	164	-

Table 3: Summary of Results for Metals¹ and Hardness¹

Notes: As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu =- Copper; Pb = Lead, Hg = Mercury; Ni = Nickel; Zn = Zinc; ¹ Metal results in µg/L and Hardness results in mgCaCO₃/L

² NEPM Schedule B1

The detailed laboratory results and chain of custody documentation are attached to this report.

3. Permeability Testing

Slug testing was carried out in the two existing wells to assess the permeability of the surrounding rock. Both drawdown and inflow slug tests were undertaken following groundwater sampling. A drawdown slug test involves pumping water from the monitoring well and measuring the rate of recovery of the water level. An inflow slug test involves adding water to the monitoring well and measuring the rate of dissipation of the slug of water. Both these methods are commonly used to estimate soil permeability rates at depth.

The rates of recovery and dissipation were measured using LevelTROLL 500 data loggers which were vented to allow atmospheric pressures to be taken into account in the water pressure readings. The loggers measured water levels at one second intervals during the testing programme.

The results of the drawdown and inflow slug tests for each well are shown in Figures 1 and 2. In each case, the data from the LevelTROLL loggers is plotted as water level against time. The water levels have been converted from pressure readings.

Figure 2: Results of Slug Tests in BH106

The rock permeability adjacent to each monitoring well was assessed using the slug test results. The data plotted on Figures 1 and 2 was selectively analysed to determine representative values of permeability. The results of the analyses are shown in Table 4.

Well Location	Drawdown Permeability (m/s)	Injection Permeability (m/s)	Average Permeability (m/s)
BH105	1.7 x 10 ⁻⁷	3.2 x 10 ⁻⁷	2.5 x 10 ⁻⁷
BH106	2.6 x 10 ⁻⁸	4.8 x 10 ⁻⁸	3.7 x 10 ⁻⁸

Table 4:	Results of	Permeability	/ Analy	vses (m/s)	
	Results of	1 criticability		, 202		

5. Comments

5.1 Groundwater Quality

The laboratory test results for the current range of testing indicate low levels of contaminants that are below the NEPM/ANZECC criteria for marine waters. This suggests that groundwater is likely to flow from the north-west towards Bicentennial Park, rather than flow from the landfill cells within Bicentennial Park back towards the development site. The water quality would be poor if leachate was present within the groundwater.

Provided that the two samples tested are representative of the groundwater quality on and adjacent to the site, water seepage into the basement should be able to be disposed of to stormwater.

5.2 Rock Permeability

The permeability results are relatively consistent between the two wells and within one order of magnitude. The testing indicates that the rock is relatively impermeable and seepage inflows should be able to be handled using an appropriately designed drainage system.

It is noted that rock mass permeability is dependent on the jointing within the rock mass and some areas of the excavation may experience higher seepage inflows than others. This is often dealt with during construction by grouting open joints if inflows are significant. It is noted that in Douglas Partners' experience, groundwater inflows into basements within the Ashfield Shale in Sydney Olympic Park are usually minor.

6. Conclusions

The additional testing was aimed at providing information on groundwater quality and rock permeability. The quality of the groundwater was within the adopted guideline levels and the rock permeability measured was very low.

The other additional testing previously recommended (i.e. contamination testing and waste classification of the soils in the areas that could not previously be tested) cannot be undertaken until access to the full site area (i.e. inside the stormwater dam) is available. Environmental restrictions in this area remain in place and it therefore follows that testing would be best undertaken at a later stage rather than at the current pre-DA approval stage. The results of the additional soil testing will not affect the proposed use of the land; any soils that are not suitable for the proposed land use can be disposed of or remediated as appropriate.

7. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for a project at Site 68, Sydney Olympic Park in accordance with instructions received from Ecove Group Pty Ltd. The report is provided for the use of Ecove Group Pty Ltd for this project only and for the purpose(s) described in the report. It should not be used for other projects or by a third party.

The results provided in the report are indicative of the sub-surface conditions only at the specific sampling or testing locations, and then only to the depths investigated and at the time the work was carried out. Subsurface conditions can change abruptly due to variable geological processes and also as a result of anthropogenic influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be limited by undetected variations in ground conditions between sampling locations. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

This report must be read in conjunction with all of the attached notes and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion given in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk.

We trust the above information meets your present requirements.

Yours faithfully Douglas Partners Pty Ltd

Film

Peter Oitmaa Senior Associate

Inchare the

Michael J Thom Principal

Reviewed by

Attachments: Notes Relating to This Report Drawing Field Sheets Laboratory Test Results

Notes About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Drawing

Field Sheets

Groundwater Field Sheet

Groundwater Field Sile					
Project and Bore Installation					
Bore / Standpipe ID:	BH105				
Project Name:	Site 68 Geotec	hnical Investi	gation		
Project Number:	73942				
Site Location:	Sydney Olymp	ic Park			
Bore Easting:			Northing:		
Installation Date:	3/09/2014		•		
GW Level (during drilling):	1.5	m bgl			
Well Depth:	6	m bgl			
Screened Interval:	3	m bgl			
Contaminants/Comments:					
Bore Development Details					
Date/Time:	27/01/2015				
Purged By:	JE				
GW Level (pre-purge):	1.2	m bgl			
GW Level (post-purge):	5.5	m bgl			
PSH observed:	Yes / No (i	nterface/visua	I).		
Observed Well Depth:	6	m bgl	1		
Estimated Bore Volume:	9.4	L			
Total Volume Purged:	8.4	L			
Equipment:		-			
Micropurge and Sampling De	tails				
Date/Time:	29/1/15 9.00an	n			
Sampled By:	JE, KM				
Weather Conditions:	Fine				
GW Level (pre-purge):	1.26	m hal			
GW Level (post sample):	3.6	m bgl m bgl			
PSH observed:		nterface/visua	I)		
	· · · ·		1).		
Observed Well Depth: Estimated Bore Volume:	6 9.3	m bgl			
		<u>L</u>			
Total Volume Purged:	4.6				
Equipment:			80D, Peristaltio	c groundwater	pump
T		Quality Param			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10 mV
8.54	21.5	0.66	7509	6.02	124.4
8.55	21.6	0.91	7419	6	123.2
8.56	21.7	1	7374	5.98	122.4
Additional Readings Following	DO % Sat	SPC	TDS		
stabilisation:					
		Sample Details			
Sampling Depth (rationale):	3.6	m bgl,			
Sample Appearance (e.g.		<u> </u>			
colour, siltiness, odour):	Slightly murky				
Sample ID:	BH105				
QA/QC Samples:	BD1				
Sampling Containers and		2x500ml nl	astic, 2x40mL g	ass (HCI) 1v2	00ml plastic
filtration:	(H2SO4), 1x20		2300, 274011L Y	1000, 1000, 182	oome plastic
	(1200+), 1720	piasiic			
Comments / Observations:					

Groundwater Field Sheet

Oroundwater Tield Sile					
Project and Bore Installation	Details				
Bore / Standpipe ID:	BH106				
Project Name:	Site 68 Geotec	hnical Investig	gation		
Project Number:	73942				
Site Location:	Sydney Olympi	ic Park			
Bore Easting:			Northing:		
Installation Date:	3/09/2014		, U		
GW Level (during drilling):	-	m bgl			
Well Depth:	6	m bgl			
Screened Interval:	3	m bgl			
Contaminants/Comments:					
Bore Development Details					
Date/Time:	27/01/2015				
Purged By:	JE				
GW Level (pre-purge):	0.7	m bgl			
GW Level (post-purge):	5.8	v			
PSH observed:		nterface/visua	I)		
Observed Well Depth:	1 es / NO (ii	m bgl	1).		
Estimated Bore Volume:	10.4	L			
Total Volume Purged:	10.4	L			
0		L			
Equipment:					
Micropurge and Sampling De					
Date/Time:	29/1/15 8.30an	n			
Sampled By:	JE, KM				
Weather Conditions:	Fine				
GW Level (pre-purge):	0.89	m bgl			
GW Level (post sample):	3.52	m bgl			
PSH observed:		nterface/visua	I).		
Observed Well Depth:	6	m bgl			
Estimated Bore Volume:	10.0	L			
Total Volume Purged:	5.2	L			
Equipment:			980D, Peristaltic	groundwater	pump
	Water	Quality Param	<u>ieters</u>		
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10 mV
8.3	22.6	4.26	2455	5.64	131
8.32	22.6	4.27	2384	5.63	123.1
8.33	22.7	4.8	2476	5.7	116
_					
<u> </u>					
<u> </u>					
Additional Readings Following	DO % Sat	SPC	TDS		
stabilisation:	DO // Out	010	100		
		Sample Details			
Sampling Depth (rationale):	3.5				
· · · · · · · · · · · · · · · · · · ·	3.0	m bgl,			
Sample Appearance (e.g. colour, siltiness, odour):	Slightly murky				
Sample ID:	BH106				
QA/QC Samples:	-				
Sampling Containers and		0.500			
filtration:			astic, 2x40mL gl	ass (HCI), 1x2	200mL plastic
	(H2SO4), 1x20	0mL plastic			
Comments / Observations:					
Comments / Observations:					

Laboratory Test Results

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

122693

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

Sample log in details:

Your Reference:73942.00, Sydney Olympic ParkNo. of samples:6 WatersDate samples received / completed instructions received29/1/2015/29/1/2015/

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 2/02/15
 / 2/02/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

				[,
VOCs in water		100000 1	400000.0	400000.0	400000 4	100000.0
Our Reference: Your Reference	UNITS	122693-1 BH105	122693-2 BH106	122693-3 BD1	122693-4 Rins1	122693-6 TB
Date Sampled		29/01/2015	29/01/2015	29/01/2015	29/01/2015	27/01/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	_	30/01/2015	30/01/2015	30/01/2015	30/01/2015	30/01/2015
	-					
Date analysed	-	31/01/2015	31/01/2015	31/01/2015	31/01/2015	31/01/2015
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1	<1	<1
Chloroform	µg/L	<1	<1	<1	43	<1
2,2-dichloropropane	µg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	17	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	4	<1
1,2-dibromoethane	μg/L	<1	<1	<1	4 <1	<1 <1
Tetrachloroethene		<1	<1	<1	<1	<1 <1
	µg/L	<1	<1		<1	<1 <1
1,1,1,2-tetrachloroethane	µg/L			<1		
Chlorobenzene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
Bromoform	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
Styrene	µg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1	<1	<1
o-xylene	µg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1

VOCs in water						
Our Reference:	UNITS	122693-1	122693-2	122693-3	122693-4	122693-6
Your Reference		BH105	BH106	BD1	Rins1	TB
Date Sampled		29/01/2015	29/01/2015	29/01/2015	29/01/2015	27/01/2015
Type of sample		Water	Water	Water	Water	Water
Isopropylbenzene	µg/L	<1	<1	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	99	101	100	103	100
Surrogate toluene-d8	%	99	99	98	98	98
Surrogate 4-BFB	%	106	105	106	103	104

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	122693-1	122693-2	122693-3	122693-4	122693-5
Your Reference		BH105	BH106	BD1	Rins1	TS
Date Sampled		29/01/2015	29/01/2015	29/01/2015	29/01/2015	27/01/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	30/01/2015	30/01/2015	30/01/2015	30/01/2015	30/01/2015
Date analysed	-	31/01/2015	31/01/2015	31/01/2015	31/01/2015	31/01/2015
TRHC6 - C9	µg/L	<10	<10	<10	43	[NA]
TRHC6 - C10	µg/L	<10	<10	<10	43	[NA]
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	<10	43	[NA]
Benzene	µg/L	<1	<1	<1	<1	98%
Toluene	µg/L	<1	<1	<1	<1	99%
Ethylbenzene	µg/L	<1	<1	<1	<1	100%
m+p-xylene	µg/L	<2	<2	<2	<2	100%
o-xylene	µg/L	<1	<1	<1	<1	102%
Naphthalene	µg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	99	101	100	103	102
Surrogate toluene-d8	%	99	99	98	98	99
Surrogate 4-BFB	%	106	105	106	103	97

svTRH (C10-C40) in Water					
Our Reference:	UNITS	122693-1	122693-2	122693-3	122693-4
Your Reference		BH105	BH106	BD1	Rins1
Date Sampled		29/01/2015	29/01/2015	29/01/2015	29/01/2015
Type of sample		Water	Water	Water	Water
Date extracted	-	30/01/2015	30/01/2015	30/01/2015	30/01/2015
Date analysed	-	30/01/2015	30/01/2015	30/01/2015	30/01/2015
TRHC 10 - C14	µg/L	<50	<50	<50	<50
TRHC 15 - C28	µg/L	<100	110	<100	<100
TRHC 29 - C36	µg/L	<100	<100	<100	<100
TRH>C10 - C16	µg/L	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50
TRH>C16 - C34	µg/L	<100	120	<100	<100
TRH>C34 - C40	µg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	123	117	122	75

PAHs in Water					
Our Reference:	UNITS	122693-1	122693-2	122693-3	122693-4
Your Reference		BH105	BH106	BD1	Rins1
Date Sampled		29/01/2015	29/01/2015	29/01/2015	29/01/2015
Type of sample		Water	Water	Water	Water
Date extracted	-	30/01/2015	30/01/2015	30/01/2015	30/01/2015
Date analysed	-	31/01/2015	31/01/2015	31/01/2015	31/01/2015
Naphthalene	µg/L	<1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	83	71	79	77

OCP in water - low level				
Our Reference:	UNITS	122693-1	122693-2	122693-3
Your Reference		BH105	BH106	BD1
Date Sampled		29/01/2015	29/01/2015	29/01/2015
Type of sample		Water	Water	Water
Date extracted	-	30/01/2015	30/01/2015	30/01/2015
Date analysed	-	31/01/2015	31/01/2015	31/01/2015
HCB	µg/L	<0.01	<0.01	<0.01
alpha-BHC	µg/L	<0.01	<0.01	<0.01
gamma-BHC	μg/L	<0.01	<0.01	<0.01
beta-BHC	μg/L	<0.01	<0.01	<0.01
Heptachlor	μg/L	<0.01	<0.01	<0.01
delta-BHC	µg/L	<0.01	<0.01	<0.01
Aldrin	µg/L	<0.01	<0.01	<0.01
Heptachlor Epoxide	µg/L	<0.01	<0.01	<0.01
gamma-Chlordane	µg/L	<0.01	<0.01	<0.01
alpha-Chlordane	µg/L	0.01	<0.01	0.02
Endosulfan I	µg/L	<0.01	<0.01	<0.01
pp-DDE	µg/L	<0.01	<0.01	<0.01
Dieldrin	µg/L	<0.01	<0.01	<0.01
Endrin	µg/L	<0.01	<0.01	<0.01
pp-DDD	µg/L	<0.01	<0.01	<0.01
Endosulfan II	µg/L	<0.01	<0.01	<0.01
DDT	µg/L	<0.006	<0.006	<0.006
Endrin Aldehyde	µg/L	<0.01	<0.01	<0.01
Endosulfan Sulphate	µg/L	<0.01	<0.01	<0.01
Methoxychlor	µg/L	<0.01	<0.01	<0.01
Surrogate TCMX	%	67	80	75

OP in water LL ANZECCF/ADWG				
Our Reference:	UNITS	122693-1	122693-2	122693-3
Your Reference		BH105	BH106	BD1
Date Sampled		29/01/2015	29/01/2015	29/01/2015
Type of sample		Water	Water	Water
Date extracted	-	30/01/2015	30/01/2015	30/01/2015
Date analysed	-	31/01/2015	31/01/2015	31/01/2015
Azinphos-methyl (Guthion)	μg/L	<0.020	<0.020	<0.020
Bromophos ethyl	μg/L	<0.01	<0.01	<0.01
Chlorpyriphos	μg/L	<0.01 <0.01		<0.01
Chlorpyriphos-methyl	μg/L	<0.01	<0.01	<0.01
Diazinon	μg/L	<0.01	<0.01	<0.01
Dichlorovos	μg/L	<0.01	<0.01	<0.01
Dimethoate	µg/L	<0.01	<0.01	<0.01
Ethion	µg/L	<0.01	<0.01	<0.01
Fenitrothion	µg/L	<0.01	<0.01	<0.01
Malathion	µg/L	<0.05	<0.05	<0.05
Ronnel	µg/L	<0.01	<0.01	<0.01
Surrogate TCMX	%	67	80	75

PCBs in Water - Low Level Our Reference: Your Reference Date Sampled Type of sample	UNITS	122693-1 BH105 29/01/2015 Water	122693-2 BH106 29/01/2015 Water	122693-3 BD1 29/01/2015 Water
Date extracted	-	30/01/2015	30/01/2015	30/01/2015
Date analysed	-	31/01/2015	31/01/2015	31/01/2015
Arochlor 1016	µg/L	<0.1	<0.1	<0.1
Arochlor 1221	µg/L	<0.1	<0.1	<0.1
Arochlor 1232	µg/L	<0.1	<0.1	<0.1
Arochlor 1242	µg/L	<0.1	<0.1	<0.1
Arochlor 1248	µg/L	<0.1	<0.1	<0.1
Arochlor 1254	µg/L	<0.1	<0.1	<0.1
Arochlor 1260	µg/L	<0.1	<0.1	<0.1
Surrogate TCLMX	%	67	80	75

Total Phenolics in Water				
Our Reference:	UNITS	122693-1	122693-2	122693-3
Your Reference		BH105	BH106	BD1
Date Sampled		29/01/2015	29/01/2015	29/01/2015
Type of sample		Water	Water	Water
Date extracted	-	30/01/2015	30/01/2015	30/01/2015
Date analysed	-	30/01/2015	30/01/2015	30/01/2015
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05

HM in water - dissolved				
Our Reference:	UNITS	122693-1	122693-2	122693-3
Your Reference		BH105	BH106	BD1
Date Sampled		29/01/2015	29/01/2015	29/01/2015
Type of sample		Water	Water	Water
Date prepared	-	30/01/2015	30/01/2015	30/01/2015
Date analysed	-	30/01/2015	30/01/2015	30/01/2015
Arsenic-Dissolved	µg/L	<1	<1	<1
Cadmium-Dissolved	µg/L	0.4	<0.1	0.3
Chromium-Dissolved	µg/L	<1	<1	<1
Copper-Dissolved	µg/L	2	2	2
Lead-Dissolved	µg/L	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	42	3	42
Zinc-Dissolved	µg/L	140	25	140

Miscellaneous Inorganics					
Our Reference:	UNITS	122693-1	122693-2	122693-3	
Your Reference		BH105	BH106	BD1	
Date Sampled		29/01/2015 29/01/2015		29/01/2015	
Type of sample		Water	Water	Water	
Date prepared	-	30/01/2015	30/01/2015	30/01/2015	
Date analysed	-	30/01/2015	30/01/2015	30/01/2015	
Ammonia as N in water	mg/L	0.28	0.043	0.32	

Cations in water Dissolved				
Our Reference:	UNITS	122693-1	122693-2	122693-3
Your Reference		BH105	BH106	BD1
Date Sampled		29/01/2015	29/01/2015	29/01/2015
Type of sample		Water	Water	Water
Date digested	-	30/01/2015	30/01/2015	30/01/2015
Date analysed	-	30/01/2015	30/01/2015	30/01/2015
Calcium - Dissolved	mg/L	22	5.0	21
Magnesium - Dissolved	mg/L	110	4.4	110
Hardness	mgCaCO3 /L	500	31	490

Client Reference: 73942.00, Sydney Olympic Park

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.

		-	nt Reference	1	-	ney Olympic Park	0 1 0 1	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		
Date extracted	-			30/01/2 015	122693-1	30/01/2015 02/02/2015	LCS-W1	30/01/2015
Date analysed	-			31/01/2 015	122693-1	31/01/2015 02/02/2015	LCS-W1	31/01/2015
Dichlorodifluoromethane	µg/L	10	Org-013	<10	122693-1	<10 <10	[NR]	[NR]
Chloromethane	µg/L	10	Org-013	<10	122693-1	<10 <10	[NR]	[NR]
Vinyl Chloride	µg/L	10	Org-013	<10	122693-1	<10 <10	[NR]	[NR]
Bromomethane	µg/L	10	Org-013	<10	122693-1	<10 <10	[NR]	[NR]
Chloroethane	µg/L	10	Org-013	<10	122693-1	<10 <10	[NR]	[NR]
Trichlorofluoromethane	µg/L	10	Org-013	<10	122693-1	<10 <10	[NR]	[NR]
1,1-Dichloroethene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,1-dichloroethane	µg/L	1	Org-013	<1	122693-1	<1 <1	LCS-W1	102%
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Bromochloromethane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Chloroform	µg/L	1	Org-013	<1	122693-1	<1 <1	LCS-W1	103%
2,2-dichloropropane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,2-dichloroethane	µg/L	1	Org-013	<1	122693-1	<1 <1	LCS-W1	103%
1,1,1-trichloroethane	µg/L	1	Org-013	<1	122693-1	<1 <1	LCS-W1	106%
1,1-dichloropropene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Cyclohexane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Carbon tetrachloride	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Benzene	μg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Dibromomethane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,2-dichloropropane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Trichloroethene	μg/L	1	Org-013	<1	122693-1	<1 <1	LCS-W1	104%
Bromodichloromethane	μg/L	1	Org-013	<1	122693-1	<1 <1	LCS-W1	104%
trans-1,3- dichloropropene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,1,2-trichloroethane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Toluene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,3-dichloropropane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Dibromochloromethane	μg/L	1	Org-013	<1	122693-1	<1 <1	LCS-W1	102%
1,2-dibromoethane	μg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Tetrachloroethene	μg/L	1	Org-013	<1	122693-1	<1 <1	LCS-W1	103%
1,1,1,2-	μg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
tetrachloroethane Chlorobenzene		1	Org 013	_1	122603-1			
	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Ethylbenzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Bromoform	µg/L	1	Org-013	্ব ১	122693-1	<1 <1	[NR]	[NR]
m+p-xylene	µg/L	2	Org-013	2	122693-1	<2 <2	[NR]	[NR]
Styrene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,1,2,2- tetrachloroethane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
o-xylene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		
1,2,3-trichloropropane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Isopropylbenzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Bromobenzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
n-propyl benzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
2-chlorotoluene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
4-chlorotoluene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Tert-butyl benzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,3-dichlorobenzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Sec-butyl benzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,4-dichlorobenzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
4-isopropyl toluene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,2-dichlorobenzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
n-butyl benzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Hexachlorobutadiene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-013	100	122693-1	99 99 RPD: 0	LCS-W1	97%
Surrogate toluene-d8	%		Org-013	99	122693-1	99 98 RPD:1	LCS-W1	99%
Surrogate 4-BFB	%		Org-013	105	122693-1	106 103 RPD:3	LCS-W1	92%

Client Reference: 73942.00, Sydney Olympic Park											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II % RPD					
Date extracted	-			30/01/2 015	122693-1	30/01/2015 02/02/2015	LCS-W1	30/01/2015			
Date analysed	-			31/01/2 015	122693-1	31/01/2015 02/02/2015	LCS-W1	31/01/2015			
TRHC6 - C9	µg/L	10	Org-016	<10	122693-1	<10 <10	LCS-W1	101%			
TRHC6 - C10	µg/L	10	Org-016	<10	122693-1	<10 <10	LCS-W1	101%			
Benzene	µg/L	1	Org-016	<1	122693-1	<1 <1	LCS-W1	104%			
Toluene	µg/L	1	Org-016	<1	122693-1	<1 <1	LCS-W1	104%			
Ethylbenzene	µg/L	1	Org-016	<1	122693-1	<1 <1	LCS-W1	97%			
m+p-xylene	µg/L	2	Org-016	~2	122693-1	<2 <2	LCS-W1	99%			
o-xylene	µg/L	1	Org-016	<1	122693-1	<1 <1	LCS-W1	99%			
Naphthalene	µg/L	1	Org-013	<1	122693-1	<1 <1	[NR]	[NR]			
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	103	122693-1	99 99 RPD:0	LCS-W1	97%			
Surrogate toluene-d8	%		Org-016	97	122693-1	99 98 RPD:1	LCS-W1	99%			
Surrogate 4-BFB	%		Org-016	98	122693-1	106 103 RPD:3	LCS-W1	92%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %			
					Sm#			Recovery			
svTRH (C10-C40) in Water						Base II Duplicate II % RPD					
Date extracted	-			30/01/2 015	[NT]	[NT]	LCS-W3	30/01/2015			
Date analysed	-			30/01/2 015	[NT]	[NT]	LCS-W3	30/01/2015			
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W3	121%			
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	119%			
TRHC₂ - C₃	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	106%			
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W3	121%			
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	119%			
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	106%			
Surrogate o-Terphenyl	%		Org-003	77	[NT]	[NT]	LCS-W3	78%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
PAHs in Water						Base II Duplicate II % RPD					
Date extracted	-			30/01/2 015	[NT]	[NT]	LCS-W1	30/01/2015			
Date analysed	-			31/01/2 015	[NT]	[NT]	LCS-W1	31/01/2015			
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	76%			
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]			
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]			
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	91%			
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	85%			

73942.00, Sydney Olympic Park

Client Reference: 73942.00, Sydney Olympic Park												
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
PAHs in Water						Base II Duplicate II % RPD						
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]				
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	84%				
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	98%				
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]				
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	79%				
Benzo(b,j+k) fluoranthene	µg/L	2	Org-012 subset	2	[NT]	[NT]	[NR]	[NR]				
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	87%				
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]				
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]				
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]				
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	86	[NT]	[NT]	LCS-W1	85%				
QUALITYCONTROL	UNITS	NITS PQL METHOD Bla		Blank	Duplicate	Duplicate results	Spike Sm#	Spike %				
OCP in water - low level					Sm#	Base II Duplicate II % RPD		Recovery				
Date extracted	-			30/01/2 015	[NT]	[NT]	LCS-W1	30/01/2015				
Date analysed	-			31/01/2 015	[NT]	[NT]	LCS-W1	31/01/2015				
HCB	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]				
alpha-BHC	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	100%				
gamma-BHC	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]				
beta-BHC	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	82%				
Heptachlor	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	92%				
delta-BHC	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]				
Aldrin	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	82%				
Heptachlor Epoxide	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	97%				
gamma-Chlordane	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]				
alpha-Chlordane	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]				
Endosulfanl	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]				
pp-DDE	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	87%				
Dieldrin	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	103%				
Endrin	µg/∟ µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	93%				
pp-DDD	µg/∟ µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	86%				
Endosulfan II	μg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]					
DDT		0.001	Org-005 Org-005	< 0.001			[NR]	[NR]				
Endrin Aldehyde	µg/L		Org-005 Org-005	<0.006	[NT]	[NT]		[NR]				
-	µg/L	0.01	Org-005 Org-005		[NT]	[NT]	[NR] LCS-W1	[NR] 93%				
Endosulfan Sulphate	µg/L	0.01		<0.01	[NT]	[NT]						
Methoxychlor	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]				

Envirolab Reference: 122693 Revision No:

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in water - low level						Base II Duplicate II % RPD		
Surrogate TCMX	%		Org-005	74	[NT]	[NT]	LCS-W1	79%
QUALITYCONTROL	UNITS	PQL	METHOD	OD Blank Duplicate Duplicate results Sm#		Duplicate results	Spike Sm#	Spike % Recovery
OP in water LL ANZECCF/ADWG						Base II Duplicate II % RPD		
Date extracted	-		30/01/2 [NT] [NT] LCS-W1		LCS-W1	30/01/2015		
Date analysed	-			31/01/2 015	[NT]	[NT]	LCS-W1	31/01/2015
Azinphos-methyl (Guthion)	µg/L	0.02	Org-008	<0.020	[NT]	[NT]	[NR]	[NR]
Bromophos ethyl	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	LCS-W1	87%
Chlorpyriphos-methyl	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Diazinon	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Dichlorovos	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Dimethoate	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Ethion	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	LCS-W1	93%
Fenitrothion	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	LCS-W1	97%
Malathion	µg/L	0.05	Org-008	<0.05	[NT]	[NT]	[NR]	[NR]
Ronnel	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-008	74	[NT]	[NT]	LCS-W1	84%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Water - Low Level						Base II Duplicate II % RPD		
Date extracted	-			30/01/2 015	[NT]	[NT]	LCS-W1	30/01/2015
Date analysed	-			31/01/2 015	[NT]	[NT]	LCS-W1	31/01/2015
Arochlor 1016	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	LCS-W1	91%
Arochlor 1260	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	74	[NT]	[NT]	LCS-W1	100%

Client Reference: 73942.00, Sydney Olympic Park

QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# Spike %									
QUALITYCONTROL	UNITS	PQL	METHOD	DIANK	Sm#	Duplicate results	Spike Sm#	Recovery	
Total Phenolics in Water						Base II Duplicate II % RPD			
Date extracted	-			30/01/2 015	[NT]			30/01/2015	
Date analysed	-			30/01/2 015	[NT]	[NT]	[NT] LCS-W1		
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]	[NT]	LCS-W1	100%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
HM in water - dissolved						Base II Duplicate II % RPD			
Date prepared	-			30/01/2 015	[NT]	[NT]	LCS-W1	30/01/2015	
Date analysed	-			30/01/2 015	[NT]	[NT]	LCS-W1	30/01/2015	
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	99%	
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-W1	103%	
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	95%	
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	93%	
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	105%	
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]	[NT]	LCS-W1	92%	
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	97%	
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	100%	

Client Reference: 73942.00, Sydney Olympic Park												
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
Miscellaneous Inorganics						Base II Duplicate II % RPD						
Date prepared	-			30/01/2 015	[NT]	[NT]	LCS-W1	30/01/2015				
Date analysed	-			30/01/2 015	[NT]	[NT]	LCS-W1	30/01/2015				
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]	[NT]	LCS-W1	100%				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
Cations in water Dissolved						Base II Duplicate II %RPD						
Date digested	-			30/01/2 015	[NT]	[NT]	LCS-W1	30/01/2015				
Date analysed	-			30/01/2 015	[NT]	[NT]	LCS-W1	30/01/2015				
Calcium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	96%				
Magnesium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	98%				
Hardness	mgCaCO 3/L	3		[NT]	[NT]	[NT]	[NR]	[NR]				

Report Comments:

VOC/BTEX in water: 122693-4 was sampled from jar.

METALS_WLL_8_D: # Low spike recovery was obtained for this sample. The sample was re-digested and re-spiked and the low recovery was confirmed. This is due to matrix interferences. However, an acceptable recovery was obtained for the LCS.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:		
Douglas Partners Pty Ltd	ph:	02 9809 0666
96 Hermitage Rd	Fax:	02 9809 4095
West Ryde NSW 2114		

Attention: Peter Oitmaa

Sample log in details:	
Your reference:	73942.00, Sydney Olympic Park
Envirolab Reference:	122693
Date received:	29/1/2015
Date results expected to be reported:	2/02/15
Samples received in appropriate condition for analysis:	YES
No. of samples provided	6 Waters
Turnaround time requested:	48hr

No. of samples provided	6 Wa
Turnaround time requested:	48hr
Temperature on receipt (°C)	16.0
Cooling Method:	Ice
Sampling Date Provided:	YES

Comments:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month

Soil and other solid samples - 2 months

Samples collected in canisters - 1 week. Canisters will then be cleaned.

All other samples are not retained after analysis

If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

>	M																ン ナ	
	2067		Notes					Envirolab Services 12 Ashley St	hatswood NSW 2067 Ph: (02) 9910 6200	2693	2	PT	roleilt erac)	ABrokeninuis	66	95	ime: 29/1/15 16	
CH1	od NSW 2067 Fax: 02 9910 6201 services.com.au		5			-		do log	9	L :on dot	Date Received	Received by:	Cooling: 100/14	Security Total	(02) 9809 0666	(02) 9809 4095	Date & Time:	Date & Time:
	latswo 0 virolab		Anno. 5				۱. == :								Phone:	Fax:	5	
	Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 620 Email: tnotaras@envirolabservices.com.au		Phenol	-			_										Received By:	Received By:
	To: Env 12 / Attr Pho Ema	Analytes	P4H														Recei	Recei
			HU OCP				-									114		
	И + 518		TRH 8 BTER HEONY BTER MEDES															Date & Time:
	Pi'C Park Sampler: JE/LM Mob. Phone: 0412 574 518 aspartners.com.au Lab Quote No.		NoC							•		10 11 11 11 11	134 1			rmitage Road,	24// 1/00 Date &	29/1 12-30 Cate &
	Sydney Olympi'c Park 7.3942.00 Sampler Je_{1} Peter Oitmaa Mob. Phone: 0412 peter.oitmaa@douglaspartners.com.au Mon 2/2/5 Lab Quote I		type type	Varev	-	17	=	JAR	44							SS:	KUU	a a's
	y Olyma 00 aa@dougl	Sample Type	S - soil W - water	2	=	د	-	5	-	4					į		Signed:	Signed:
thers Groundwater	Sydrey Olyn 73942 00 Peter Oitmaa Peter oitmaa@doug Men 2/2/5		Sampling Date	162	6	7 11	1	27/1/rS	51/1/62	× - - -						Uouglas Partners	- aa	.t.
Douglas Partners Geolechnics - Environment - Groundwater	ame: o: gr: F uired: :		Depth ID	-	7	~	4	S	4	} 							y r. U. maa	1. J CJJ4K
G Do Geolec	Project Name: Project No: Project Mgr: Email: Date Required:			8H 102	BH 106	801	RIN 1	1 S	TB .						 Lab Report No.	Send Results to: Delinguished here		Kelinquished by: J CJ) A 1Ct

Form COC Rev0/November 2006

5

1.0

,