Annex G - Geotechnical and Acid Sulphate Soils Assessment

Ammos Resource Management Pty Ltd C/ Tattersall Lander Pty Ltd

Preliminary Geotechnical and Acid Sulfate Soils Assessment - Proposed Sand Quarry at 3631, 3679 and 3721 Nelson Bay Road and 774 Marsh Road, Bobs Farm, NSW

WASTEWATER

GEOTECHNICAL

CIVIL

RE

PROJECT MANAGEMENT

P1303897JR02V02 June 2015

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to complete a preliminary geotechnical and acid sulphate soil assessment for a proposed mine development, in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Ammos Resource Management Pty Ltd C/ Tattersall Lander Pty Ltd (hereafter known as the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© June 2015 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 **Phone: +61-2-9476-8777** Fax: +61-2-9476-18767 Email: mail@martens.com.au Web: www.martens.com.au

	Document and Distribution Status								
Autho	r(s)	Reviewer(s)		Project Manager		Signo	ature		
Grant Taylor Adam Budji		Gray Taylor Ralph Erni		Gray Taylor		Wray Taph.			
					Documen	t Location			
Revision No.	Description	Status	Release Date	File Copy	Ammos Resource Management Pty Ltd	Tattersall Lander Pty Ltd			
1	Preliminary Geotechnical and Acid Sulfate Soils Assessment	Draft	10.11.2014	1E,1P,1H	1P	1P			
2	Final Geotechnical and Acid Sulfate Soils Assessment	Final	05.06.2015	1E,1P,1H	۱P	۱P			

Distribution Type: F = Fax, H = Hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 INTRODUCTION	5
1.1 Overview	5
1.2 Site Mining Plan	5
1.3 Proposed Development	5
1.4 Existing Relevant and Related Documentation	6
1.5 Assessment Objectives	7
1.6 Scope of Works	8
1.7 Relevant Guidelines and Standards	9
1.8 Abbreviations	10
2 BACKGROUND INFORMATION	. 12
2.1 Site Location and Setting	12
2.2 Expected Geology	13
2.3 Expected Subsoil Conditions	13
2.4 Surface Water and Groundwater Conditions	14
2.5 Acid Sulfate Soils	16
3 GEOTECHNICAL ASSESSMENT	. 18
3.1 Supplementary Scope of Works	18
3.2 Encountered Subsurface Conditions	18
3.3 Assessments	19
3.4 Recommendations	25
4 ACID SULFATE SOILS ASSESSMENT	. 28
4.1 Supplementary Laboratory Testing	28
4.2 Results	28
4.3 Conclusions	28
4.4 Acid Sulfate Soils Management Plan (ASSMP)	28
5 IMPACT ON SOIL RESOURCES	. 31
5.1 Background	31
5.2 Soil Salinity Assessment	31
5.3 Soil Dispersivity Assessment	32
5.4 Soil Aggressivity Assessment	33
5.5 Conclusions	33
6 LIMITATIONS	. 34
7 REFERENCES	. 35
8 APPENDIX A - FIGURES	. 38
9 APPENDIX B – TABLES	
10 APPENDIX C – BOREHOLE LOGS	
11 APPENDIX D – DCP TESTING RESULTS	
12 APPENDIX E – LABORATORY CERTIFICATES	51
13 APPENDIX F – SLIDE MODELLING RESULTS 14 APPENDIX G – RISK EVALUATION CALCULATIONS	. 55

1 Introduction

1.1 Overview

This report documents findings of a preliminary geotechnical and acid sulfate soils assessment for a proposed sand quarry over 4 lots, namely 3631, 3679 and 3721 Nelson Bay Road and 774 Marsh Road, Bobs Farm, NSW (the site). The site is located approximately 28 km north east of Newcastle and 5 km south of Port Stephens, at the northern end of the Stockton Bight Dunal system (Appendix A, Figure 1).

This report has been prepared to meet NSW Director General's Requirements associated with the proposed quarry development. The requirements include a geotechnical assessment, an Acid Sulfate Soils assessment and an assessment of possible impacts of soil conditions on potential resources. The assessment results are presented in Sections 3, 4 and 5 of this report respectively, following summaries of the proposed development, background information relevant and related to the proposed development and our assessment and of our scope of works (Sections 1 and 2).

1.2 Site Mining Plan

At the time of preparing this report, a Site Mining Plan (SMP) had not been developed. Details regarding proposed mining operations are based on information from previous assessments by Quarry Mining Systems (2013) and VGT & Quarry Mining Systems (2013). Assumptions made for, and recommendations presented in, this report should be reviewed by Martens and Associates (MA) following development of the SMP. If required, findings and recommendations should be revised to reflect the SMP.

1.3 Proposed Development

For the purpose of this assessment, site extraction works are assumed to occur over the entire site excluding a 15 m buffer zone along site boundaries. A preliminary plan and cross sections of proposed extraction works are provided in Appendix A, Figures 2 and 3 respectively.

From Quarry Mining Systems (2013), VGT & Quarry Mining Systems (2013) and Tattersall Lander (2014) the proposed development is likely to include:

 <u>Preliminary works</u>, including: provision of access roads and an intersection with Nelson Bay Road; initial clearing of existing structures; setting up of screening operations, loading ramp and

storage shed; and construction of the main exit road onto the existing bitumen sealed road within Lot 10 DP1071458.

- <u>Clearing of topsoil</u> and stockpiling, for likely processing into landscape soil base and sports field top-dress material.
- <u>Stage 1 extraction</u> of aeolian sands to approximately 3 m above groundwater table, using conventional excavation/extraction techniques, and stockpiling for later use for various purposes.
- <u>Stage 2 extraction</u> of aeolian sands to approximately 1 m above groundwater table, using specialised excavation/extraction techniques, and stockpiling for later use for various purposes.
- <u>Stage 3 extraction</u> of aeolian and marine sand from approximately 1 m above to 16 m below the groundwater table, by dredging, and stockpiling for later use for various purposes.
- <u>Rehabilitation</u> for likely use of the resultant lake as a tourist attraction.

1.4 Existing Relevant and Related Documentation

Previous site assessments and background information relating to the proposed development and considered relevant to, and reviewed as part of, our assessment include:

- Martens and Associates (2014), Preliminary Groundwater Assessment, Proposed Sand Quarry: 3631 Nelson Bay Rd, Bobs Farm, NSW, Document reference P1303897JR01V01.
- Quarry Mining Systems (2013), Bobs Farm Sand Deposit Stage 2 Investigation, report reference 2013-11-02-D.
- VGT & Quarry Mining Systems (2013), Bobs Farm Stage Two Geological Assessment, report reference BF13A.
- Tattersall Lander (2014), letter dated February 21, 2014, Request for Director-General's Requirements – Supporting Documentation Proposed Sand Mine, Nelson Bay Road, Bobs Farm Port Stephens Local Government Area.
- NSW Department of Local Land Services Hunter (2014), Letter dated 14th March 2014, Bobs Farm Sand Project – SDD Number TBA – DGRS input request.
- NSW Department of Office of Environment & Heritage (2014), Letter dated 24th February 2014, Director General's Requirements for Proposed Bobs Farm Sand Project, report REF: DOC14/12504; FIL14/1226.

- NSW Department of Primary Industries (2014), Letter dated 26th February 2014, Bobs Farm Sand Quarry (SSD 14_6395) – Request for input into Director General Requirements, report REF: OUT14/6325.
- NSW Department of Transport Roads & Maritime Services (2014), Letter dated 13th March 2014, Nelson Bay Road (B63): Proposed Sand Quarry – Lot 254 DP 753204, Lot 51 DP 1015671 & Lot 10 DP 1071458, Nelson Bay Road, Bobs Farm – Director General's Environmental Assessment Requirements (SSD TBA), report REF: SF2014/019270.
- NSW Environmental Protection Authority (2014), Letter dated 20th February 2014, Bobs Farm Sand Project AMMOS Resources Management Pty Ltd, (SSD Number TBA), Director – General's Requirements (DGR's), report REF: DOC14/12442-01; EF14/611.
- Port Stephens Council (2014), Letter dated 12th March 2014, Bobs Farm Sand Project, Request for Input into DGRs.
- NSW Department of Trade & Investment, Resources & Energy (2014), Letter dated 12th February 2014, Request for Director General Requirements – Bobs Farm Sand Project, report REF: OUT14/5153.

1.5 Assessment Objectives

Objectives of the geotechnical assessment include:

- Assess likely site conditions from review of previous investigation results relevant to the geotechnical assessment objectives.
- Additional borehole drilling and Dynamic Cone Penetration (DCP) testing in areas previously not accessed and considered necessary to complete the preliminary assessment of soil properties and design parameters for the underlying soil profile.
- Supplementary laboratory testing to confirm previous test results and close assessed data gaps.
- Assessment of site stability (SLIDE Modelling analysis) associated with the proposed works, including suitability of proposed excavation batter angles of 1V: 2H.
- Provide geotechnical recommendations for safe and economic sand extraction.
- Assess soil erosion and sediment transport management requirements.

• Provide recommended mitigation and management options to limit, control and abate impacts on surrounding land use and the environment. This is to include assessment of the effectiveness and reliability of intended measures and associated residual impacts.

Objectives of the ASS assessment include:

- Review site conditions and previous investigation results, relevant to the ASS assessment objectives.
- Additional borehole drilling and sampling for laboratory (sPOCAS) analysis.
- Prepare a preliminary ASSMP.

In addition, the potential impact of the following soil conditions on soil resources was to be assessed:

- o Salinity
- o Dispersivity
- o Aggressivity

1.6 Scope of Works

A summary of scope of works undertaken to address the objectives of the geotechnical and ASS assessment is provided in Table 1.

Table 1: MA scope of works.

Scope	Objective
Site inspection by Senior Geotechnical Engineer.	Walkover inspection to assess topography, geology, soil characteristics, hydrology, vegetation and access limitations for proposed investigation plant.
Fieldwork by MA geotechnical engineers involving: - Drilling of 8 boreholes up to 13 mBGL. - DCP testing at 6 locations. -Collection of soil samples from boreholes for laboratory testing and future reference. Laboratory testing: - sPOCAS. - EC. - Dispersion.	 Supplement existing data with additional information to confirm previous characterisation of underlying soils and groundwater depths. Assess soil strength properties in accordance with AS 1289.6.3.2 (1997). Assess possible PASS and ASS across site and prepare a preliminary ASSMP.
Geotechnical and ASS assessment including SLOPE stability modelling.	 Assess likely minimum safe batters angles for sand extraction. Provision of geotechnical recommendations for safe and economic extraction. Recommended possible mitigation and management options to limit, control and abate impacts on surrounding land use and the environment. Assess soil erosion and sediment transport management requirements. Assess possibility of saline, aggressive and dispersive soils at the site and their potential impact on soil resources and recommend potential management options (if required).

1.7 Relevant Guidelines and Standards

The geotechnical and acid sulfate soils assessment was carried out in accordance with the following guidelines:

- Port Stephens Local Environmental Plan (2013).
- State Environmental Planning Policy (State and Regional Development, 2011), Schedule 1 State significant development-general.
- State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries, 2007).
- Protection of the Environment Operations Act (1997) No. 156.
- Water Management Act (2000) No. 92.

- Acid Sulfate Soils Assessment Guidelines (1998).
- Australian Standard 1726 (1993) Geotechnical site investigations.
- Australian Standard 1289.6.3.2 (1997), Determination of the Penetration Resistance of a soil - 9kg dynamic cone penetrometer test.
- NSW Department of Conservation & Land Management (1992).
- Australian Drinking Water Guidelines (2011).

All laboratory testing was carried out by National Association of Testing Authorities, Australia (NATA) accredited laboratories.

1.8 Abbreviations

AASS – actual acid sulfate soil

ASS – acid sulfate soil

ASSMAC - acid sulfate soils management advisory committee

ASSMP – acid sulfate soils management plan

BH – borehole

DCP – Dynamic Cone Penetrometer test

EC – electrical conductivity

- FOS factor of safety
- ha hectare

kg – kilogram

mBGL – metres below ground level

- mAHD metres above Australian Height Datum
- NATA National Association of Testing Authority

NO_x – Nitrogen oxide

PASS - potential acid sulfate soil

SMP – site mining plan

sPOCAS – Suspension Peroxide Oxidation Combined Acidity & Sulfur

- SWL standing water level
- T tonnes
- TDS total dissolved solids
- TKN total kjehldahl nitrogen
- TN total nitrogen
- TP total phosphorous
- WBZ water bearing zone

2 Background Information

2.1 Site Location and Setting

Site background information is summarised in Table 2. An aerial photo with elevation contours is provided in Appendix A, Figure 2.

Table 2: Site background informatio	n.
-------------------------------------	----

ltem	Detail
Site address	3631, 3679 and 3721 Nelson Bay Road and 774 Marsh Road, Bobs Farm, NSW.
Lot and DP (Title Information)	Lot 254 DP753204. Lot 51 DP1015671. Lot 10 DP1071458. Lot 1 DP1082774.
Local government area (LGA)	Port Stephens Council.
Site Area	Approximately 40 ha.
Existing Site Development	Approximately 25 % of the site area is utilised for agricultural purposes (primarily olive and fig plantations) with a small proportion of this area occupied by farm sheds, a farm hand residence and a master residence. A power transmission line easement (poles and wires) cuts across the southern corner of the site. The remaining 75 % of the site area remains undeveloped apart from some unpaved vehicle tracks.
Current land use	Rural residential and agriculture.
Proposed land use	Extractive (mining).
Surrounding land uses	Rural-residential allotments border the site to the north, west and south west. Nelson Bay Road borders the site to the south east, with Worimi National Park located on the southern side of Nelson Bay road. The Australian Shark and Ray Centre is located along the western end of the northern site boundary.
Topography and drainage	The site is located near the northern edge of the east-north-east to west-south-west aligned Stockton Bight dunal system, which comprises moderately to steeply undulating land with grades of typically between 2 and 50 %. The Tilligerry Creek floodplain to the north of the site comprises predominantly flat and near-level land. The site has a predominant easterly aspect with some areas sloping down towards the east. The remaining areas slope to the north, west or south west. Slopes are low (typically 0-5 %) in the eastern portion of the site and higher (typically 10-50 %) over the remainder and majority of the site. The high slopes occur on dune knolls. Site elevations range from approximately 35 m AHD at a knoll in the north west of the site to approximately 2 m AHD at a depression in the north. The lower eastern portion of the site has typical elevations of between 2 m and 8 m AHD.

Item	Detail
	The majority of the site drains southwards towards Stockton Beach. A small portion adjacent to the north west site boundaries drains northwards towards Tilligerry Creek.
Vegetation	Approximately 75% of the site consists of uncleared tall open forest dominated by the canopy species <i>Eucalyptus pilularis</i> (Blackbutt) and <i>Angophora</i> costata (Smooth-barked Apple). The remaining low lying areas near Nelson Bay Road comprise olive and fig plantations. Two smaller areas of wetter forest are also present within the lower lying areas.

2.2 Expected Geology

The Newcastle and Port Stephens 1:100,000 Geological Series Sheet 9232 indicates that the site is underlain by Quaternary Holocene sand (stable dunes). The area to the north of the site (beyond the northern boundary) is underlain by estuarine sands, silts and clays derived from deposition within Tilligerry Creek. The area to the south of the site (southern side of Nelson Bay Road) is underlain by Quaternary Holocene sands derived from older beach deposition and covered by low level windblown dunes (Appendix A, Figure 4).

2.3 Expected Subsoil Conditions

VGT & Quarry Mining Systems Pty Ltd (QMS) in August, 2013, drilled and sampled five boreholes (BH1 to BH5) to a target depth of 16 m below the groundwater table. The boreholes were converted to wells upon completion. An additional 5 test pits (TP1 to TP5) were excavated but did not reach their target depth due to significant soil cave-in during excavation. Borehole/well and test pit locations are provided in Appendix A, Figure 5. The main objective of the boreholes/test pits was to assess sand quality changes with depth across the site and whether retrieval and subsequent processing of the sand would be commercially viable and sustainable.

The soil profile at the site was divided by VGT & QMS (2013) into five major units:

- Unit 1: Organic Topsoil
- Unit 2: Mottled Sand (Upper Grey Sand)
- Unit 3: Blonde Sand
- Unit 4: Sand/Black Dark Mud
- o Unit 5: Lower Grey Sand

Indicative depth ranges of the soil units making up the soil profile at the borehole locations are provided in Appendix B, Table 16.

Results of laboratory testing of soil samples selected by VGT & QMS (2013) indicate:

- Site sands are generally subrounded to rounded with moderately high sphericity.
- Soil acidity ranges from slight to extreme.
- Soil salinity is generally low, apart from 3 samples collected from below the water table: BH1-BL-G1-SO 0.5, a moderately saline sand sampled from BH1; BH5-M-SO 0.633, an extremely saline clay sampled from BH5; and BH2-10.5-12.0-SO 0.7, a very highly saline clay sampled from BH2,.
- The level of exchangeable sodium and soil sodicity is generally high, indicating that where clay soils occur, they are prone to dispersion.

2.4 Surface Water and Groundwater Conditions

2.4.1 Site Flooding

Areas to the north west of the site, below 10 m AHD, are below the 1 in 100 year flood level. These may be affected by flooding from Tilligerry Creek (Appendix A, Figure 6). However, given these areas are located beyond elevated parts of the buffer zone, we have assumed that flooding of Tilligerry Creek will not impact the proposed development. No further consideration of flooding of Tilligerry Creek has been included in this assessment.

2.4.2 Groundwater Levels

MA (2014) installed automated data loggers in wells constructed by VGT & QMS (2013). Groundwater levels were measured from 22.08.2013 at 15 minute intervals to 09.01.2014 (approximately 3 months) for BH4 and BH5 and to 17.07.2014 (approximately 11 months) for BH1 to BH3 (ref. P1303897JR01V01). Summaries of measured groundwater levels are provided in Table 3 (datum = mBGL) and Table 4 (datum = mAHD).

 Table 3: Statistical summary of groundwater depths (m BGL) measured by data loggers in existing site wells (BH1 to BH5) between 22.08.2013 and 17.07.2014.

	Groundwater Depth (m BGL)									
	BH1 BH2 BH3 BH4 BH5									
Minimum	2.72	9.13	13.08	7.25	15.30					
Mean	3.28	9.50	13.28	7.36	15.42					
Maximum	3.53	9.78	13.55	7.50	15.57					
Range	0.81	0.65	0.47	0.26	0.27					

Table 4: Statistical summary of groundwater levels (m AHD) measured by data loggersin existing site wells (BH1 to BH5) between 22.08.2013 and 17.07.2014.

	Groundwater Level (m AHD)									
	BH1 BH2 BH3 BH4 BH5									
Minimum	2.29	1.94	1.93	1.95	2.68					
Mean	2.55	2.22	2.20	2.09	2.83					
Maximum	3.10	2.59	2.40	2.21	2.95					
Range	0.81	0.65	0.47	0.26	0.27					

The following observations are made:

- Mean groundwater level ranges from 2.09 m AHD in BH4 (located near south west site boundary) to 2.83 m AHD in BH5 (located near northern site boundary).
- Groundwater level responds to rainfall.
- BH1 and BH2 displayed the most prominent response to a recharge event, which occurred between 17.11.2013 and 19.11.2013 and comprised 137 mm of rainfall. Increases in groundwater level associated with this event were approximately 0.42 m and 0.32 m for BH1 and BH2 respectively.
- We note that groundwater level fluctuations at BH1 and BH2 may be influenced by irrigation of fig plantations. The plantations are typically watered daily for a period of 2 hours with a sprinkler head at every fig plant.
- Further to the above, groundwater levels in BH1 may also be influenced by pumping of the site water supply bore, located to the south of the main dwelling.

2.4.3 Background Groundwater Quality

Groundwater quality samples were taken from site bores by MA (2014) on 22.08.2013 (ref. P1303897JR01V01) and submitted to a NATA accredited laboratory for analysis. Analysis results for key analytes (pH, EC, TDS, TKN, NOx, TN, TP) are reproduced in Appendix B, Table 17. Laboratory certificates for the complete suite of analytes are provided in Appendix E. The results indicate the following:

- Groundwater is slightly acidic.
- Groundwater has an estimated maximum salinity concentration of 275 mg/L considered fresh in the context of salinity classes provided in the NSW Department of Conservation and Land Management (1992) and the Australian Drinking Water Guidelines (2011).
- pH was between 5.2 (BH4) and 6.0 (BH5). Based on a pH of less than 5.5 for three samples, the presence of AASS was considered likely.

2.5 Acid Sulfate Soils

2.5.1 Acid Sulfate Soils Risk Map Classification

Council mapping (Appendix A, Figure 7) has assigned a Class 4 category to the bulk of the site with a Class 3 category assigned to a small portion in the north:

- Class 3 works beyond 1 m below the natural ground surface and works where the water table is likely to be lowered beyond 1 m are likely to present an environmental risk if undertaken in Class 3 land.
- Class 4 works beyond 2 m below the natural ground surface and works where the water table is likely to be lowered beyond 2 m are likely to present an environmental risk if undertaken in Class 4 land.

Considering the above, the proposed development is likely to present an environmental risk as a result of the presence of ASS.

2.5.2 Previous ASS Assessment

A preliminary ASS assessment was completed by MA (2014) to assess the presence of AASS or PASS at the site. A total of 27 soil samples, collected by VGT & QMS from three boreholes (BH3, BH4 and BH5), were selected by MA for sPOCAS testing. The samples covered a range of locations and depths (Table 5). In addition, groundwater samples

were collected from each groundwater monitoring well (BH1 to BH5) for sPOCAS testing.

ВН	Samples Analysed	Surface Elevation	Upper Sample Elevation (m AHD)	Lower Sample
BH3	8	15.48	12.5	-13
BH4	8	9.45	5.5	-13.5
BH5	11	18.25	8.5	-7.5

Table 5: Summary of samples analysed by laboratory for sPOCAS

Laboratory certificates for previous sPOCAS testing are provided in Appendix E, with results summarised in Appendix B, Table 18.

Results for 13 of the 27 samples tested exceeded the ASSMAC action criteria, indicating PASS to be present at the site below approximately 0.8 m AHD, except for one anomalous sample located at 12.5 – 11.5 m AHD.

The pH of collected groundwater samples was between 5.2 (BH4) and 6.0 (BH5). Based on a pH of less than 5.5 for three samples, the presence of AASS was considered likely.

MA (2014) concluded that a detailed ASSMP is required and recommended that additional sampling/laboratory testing is carried out to better delineate spatial extent and depth of PASS and enable application of variable liming rates for treatment.

3 Geotechnical Assessment

3.1 Supplementary Scope of Works

Supplementary field investigations, undertaken between 29/7/2014 and 30/7/2014 by MA geotechnical engineers, included:

- Drilling of eight boreholes up to 13 mBGL.
- DCP testing at six locations.
- Collection of soil samples from boreholes for laboratory testing and future reference.

Approximate borehole and DCP test locations are provided on Figure 5 in Appendix A.

Laboratory testing of collected soil samples included:

- Twenty one samples for sPOCAS.
- Twenty one samples for EC.
- Six samples for Dispersion.

3.2 Encountered Subsurface Conditions

Supplementary borehole investigations by MA confirmed the presence of the five general units described by VGT & QMS (2013). A generalised description of these units is presented below, from youngest to oldest:

- <u>Unit 1:</u> Very loose grey organic sand with rootlets (topsoil), typically less than 0.4 m thick across the site.
- <u>Unit 2:</u> Very loose and loose light grey/grey aeolian sand, typically 1.2 m thick across the site.
- <u>Unit 3:</u> Loose and medium dense orange/yellow aeolian sand, with minor dense layers, typically 8.7 m thick across the site, and very loose sand in dune knolls in the western end of the site (DCP105).
- <u>Unit 4:</u> Medium dense marine sand and clayey sand with organic content, below ground water level likely derived from the paleo tidal zone of Tilligerry Creek. This unit is likely to be encountered in lenses across the site given that it was only intercepted in BH102 and BH103 by MA and BH1 to BH5 by VGT from levels ranging between approximately 3.9 m and -1.8 m AHD.

• <u>Unit 5:</u> Dense light brown/grey marine sand, containing minor heavy mineral bands, below the groundwater table from levels ranging between approximately 3.0 m and -4.4 m AHD.

Detailed borehole logs are provided in Appendix C.

A summary of the soil profiles and depth ranges encountered in each of the boreholes drilled at the site (BH1 to BH5 and BH101 to BH108) is provided in Appendix B, Table 16.

An interpretation of the depositional history of the units is summarised below from oldest to youngest.

- <u>Unit 5:</u> Marine beach sands derived from Stockton Beach are deposited across the site.
- <u>Unit 4:</u> Tidal zone of Tilligerry Creek extends across the site and deposits organic rich sands, silts and clays in low-lying areas.
- <u>Unit 3:</u> Tilligerry Creek tidal zone regresses with localised erosion of Unit 4 sands. Aeolian sands from Stockton Beach transgress across the site in a north westerly direction (dominant wind direction).
- <u>Unit 2:</u> Sequence of deposition of aeolian sand and erosion of these and the underlying Unit 3 sands.
- <u>Unit 1:</u> Recent stabilisation of dunes by vegetation, mainly consisting of grasses and trees, and development of a thin surface layer of organic-containing topsoil.

3.3 Assessments

3.3.1 Preliminary Geotechnical Material Properties and design parameters

Preliminary geotechnical soil strength, estimated from visual assessment, DCP test results and rate of auger advancement (V-bit), using our experience from similar environments, are provided in Table 6.

A typical increase in soil density was observed corresponding with age of deposition or overburden pressure. An exception to this general trend are two cone shaped sand dunes (between BH105 and BH106), found to consist of loose to very loose sands from surface to about 10.05 m BGL.

Owing to varying conditions, design of footings should consider conditions at actual location. For preliminary assessment, an allowable end bearing pressure of 50 kPa may be adopted for shallow footings founding on loose and medium dense (or bedded) sand subject to >1 m above groundwater table; to at least 2 x width of footing below

foundation level; and embedment of >0.75 m in the unit. Preliminary earth pressures for retaining wall design of Ka = 0.4 and Kp = 2.8 may be adopted for aeolian sands and Ka = 0.3 and Kp = 3.3 for marine sands.

Unit	Description ¹	Y _{dry} ² (kN/m³)	Y _{sat} ³ (kN/m³)	Cu⁴	ф'₅ (∘)	E¢
Unit 1: Organic Sand	Very Loose	14	17	-	23	2
Unit 2: Aeolian Sand	Very Loose or Loose ⁷	14	17	-	25	3
Unit 3: Aeolian	Loose	15	18	-	27	5
Sand	Medium Dense	17	20	-	32	15
Unit 4: Marine Organic Sandy Clay/Clayey Sand	Loose or Medium Dense ⁷	17	20	-	30	10
	Soft	15	17	-	-	5
Unit 5: Marine Sand	Loose, Medium Dense and Dense ⁷	19	21	-	36	30

erties.

Notes:

¹ Typical density. Refer to borehole logs (Appendix C) for full soil description details.

² Dry unit weight (+/- 2kN/m³).

³ Saturated unit weight (+/- 2kN/m³).

⁴Undrained cohesion.

⁵ Effective friction angle (+/-2°).

⁶ Effective elastic modulus (based on visual assessment, +/- 10%).

⁷ Assumed average value for unit.

3.3.2 Safe Excavation Batter Assessment

Modelling Approach

A slope stability analysis was undertaken using the *SLIDE 6.0* modelling software to assess a Factor of Safety (FOS) against soil sliding. Cross Section A-A, shown on Figure 3, was used as a basis for the model.

Existing site conditions and expected ground conditions, resulting from the proposed development (extraction Stages 2 and 3), were analysed adopting the design batter angle of 1V:2H, expected soil properties presented in Table 7 and a mean groundwater level groundwater level of 2 m AHD.

Additional sensitivity analyses were carried out to assess potential impacts of model parameter variations on FOS, including:

- Decrease in batter angle of 1:2.5 and 1:3.
- Peak soil conditions, assuming material is stronger than expected, and residual conditions, assuming material is weaker than expected (Table 7).
- A groundwater level of 3 m AHD, considered the peak groundwater level (MA, February 2014).

Modelling Assumptions

Development of the model assumed:

- Cross section A-A (Attachment A, Figure 3) is representative of conditions across the proposed mine footprint.
- Profile divided into 3 soil layers according to composition and inferred density/ consistency.
 - A: Very loose and loose Aeolian sand.
 - B: Medium dense Aeolian and marine sand with some loose and dense layers.
 - C: Very loose to medium dense marine clayey sand/ soft sandy clay.
- No impacts from excavation-induced vibrations.
- No earthquake-induced impacts.
- No impacts from wave movements during dredging.
- o Interpolated unit thicknesses and conditions between boreholes.
- Unit 4 marine organic sands/clays are present across the entire site.
- Homogeneous soil conditions throughout each unit.
- Similar or better soil conditions in all other areas of the site, not modelled.
- Eastern section considered only stage 3 (full excavation).
- Only considered rotational failure mechanism, likely to be the dominant failure mechanism impacting site stability.

• A minimum design FOS of 1.1 was adopted, which is considered typical for medium to long term (> 1 month <20 years) mining operations.

	Material ¹ (k			Expected Strength⁵		Sensitivity Analysis			
Layer		δ _d (kN/m³)²	δ _{sat} (kN/m³)³			Peak Stre	ngth	Residual Strength	
				C' (kPa)⁴	φ'(°)⁵	C' (kPa)⁴	φ'(°)⁵	C' (kPa)⁴	φ'(°)⁵
A	Very loose and loose Aeolian sand	16	20	-	26	-	28	-	24
В	Loose and medium dense Aeolian and marine sand	17	21	-	28	-	30	-	26
С	Clayey sand/sandy clay layer	17	21	1	22	2	24	0	20

Table 7: Assumed soil strength properties used in SLIDE 6.0 model.

Notes:

¹ Preliminary soil strength properties estimated from DCP data; adopted average value for unit thickness.

²Dry unit weight.

³ Saturated unit weight.

⁴ Inferred effective cohesion.

⁵ Inferred friction angle.

Modelling Results

Table 8 summarises the lowest FOS of all slip surfaces analysed for each modelled scenario. Results for each analysis are shown as images in Appendix F.

Soil Strength States	Groundwater Levels	FOS For Batter Angle ²		
			Varying	
Existing site cond	itions	-		
Evenented	2m AHD		1.691	
Expected	3m AHD		1.691	
		1:2	1:2.5	1:3
<u>Stage 2 (excavat</u>	ion to 1m AHD)			
Expected	2m AHD	1.065	1.202	1.641
	3m AHD	1.065	1.202	1.641
<u>Stage 2 (excavat</u>	ion to 1m AHD)			
Expected	2m AHD	1.073	1.281	1.612
Expecieu	3m AHD	1.071	1.198	1.587
<u>Stage 3 (excavat</u>	ion to -15m AHD)			
Expected	2m AHD	1.050 ³	1.2373	1.541
Expected	3m AHD	1.046 ³	1.2333	1.537
Peak (upper	2m AHD	1.142	1.397	1.675
bound)	3m AHD	1.139	1.393	1.671
Residual (lower	2m AHD	0.960	1.175	1.411
bound)	3m AHD	0.957	1.172	1.408

Table 8: Minimum FOS for modelled conditions using SLIDE 6.0.

Notes:

¹ An assessed minimum FOS of 1.011 for an isolated existing cutting along an access track was considered to be of small scale and non-representative of site conditions; therefore not included in our assessment.

² Design batter angle (Vertical:Horizontal).

³ Assessment of the eastern excavation face along section AA at Stage 3 indicates a FOS of 1.064 and 1.331 for batter angels of 1:2 and 1:2.5 respectively.

Assessed Safe Batter Angles

A batter angle of 1:2 is considered generally to provide a FOS of > 1 but may result in unstable conditions from excavations below groundwater level. We therefore recommend adopting a safe batter angle of 1:2.5.

This can be revisited once operations proceed and exposed excavations are monitored, and long-term stability is observed.

3.3.3 Risk Assessment

A geotechnical hazard risk assessment for the proposed works has been completed in accordance with the qualitative risk matrices provided in Section 7 of the AGS (2007) guidelines. Four forms of slope movement are considered likely at the site: translational slide, rotational slide, soil creep and lateral spread. Soil creep and gross instability (slide) are considered most likely to impact or be impacted by the proposed development. A summary of a risk assessment for these hazards is presented in Table 9. The assessment is based on treatment measures, recommended in this report and shown in Table 9 as a minimum, having been implemented. Risk evaluation calculations are provided in Appendix G.

	Treatment Measures	Likelihood ¹	<u>Risk to Life</u>		<u>Risk to Property</u>	
Description			Established Probability ²	Risk	Consequence	Risk
Soil creep	Maintain vegetation of undeveloped areas. Maintain good site drainage.	Possible ¹	5.35 x 10-7	Tolerable	Minor	Low
Gross Instability (slide)	Good hill slope engineering practice. Maintain good site drainage. Do not load crest of excavation batter. Limit vibrations near batters. Do not over-steepen batters (maximum batter slope of not greater than 25° i.e. about 1V:2H).	Unlikely ¹	8.20 x 10 ^{.7}	Tolerable	Moderate	Low

Table 9: Summar	y of slope instability	risk assessment, base	d on AGS (2007).

Notes:

¹ Based on 'treated' site conditions.

² Annual probability of loss of life of an individual most at risk.

Based on AGS, the risk is considered acceptable. However, we point out that it is the responsibility of the client and stakeholders to ultimately decide whether the risk is acceptable.

3.4 Recommendations

3.4.1 Recommended Safe Batter Angles

Proposed extraction of sand resources will need to take into consideration long-term stability of the excavation perimeter, such that impact on buffer zones of adjacent land is limited. To this extent, it is suggested that an average batter slope of not greater than 22° (about 1V:2.5H) be adopted both above and below groundwater level.

Recommended interim maximum safe batters are provided in Table 10. These can be refined with further assessment at detailed design stage.

Unit	Maximum Slope Batter ¹
Unit 1: Organic Sand	1:3.0
Unit 2: Aeolian Sand	1:3.0
Unit 3: Aeolian Sand	1:2.5
Unit 4: Marine Organic Sand	1:2.5
Unit 5: Marine Sand	1:2.5

Table 10: Recommended interim maximum batter angles.

Notes:

¹ Maximum batter slopes (vertical : horizontal).

3.4.2 Existing Infrastructure

The edge of the proposed sand mine excavation is offset approximately 15 m from Nelson Bay Road. The deepest proposed excavation nearest Nelson Bay Road will be approximately 16 m BGL.

Should the recommended maximum batter slope angles be adopted, the excavation will be located outside the zone of influence of Nelson Bay Road (estimated by extending down 30 degrees from the edge of Nelson Bay Road). If excavation extends into the zone of influence, then these excavations should take into consideration requirements of the NSW Department of Planning and Environment (DoPE) and RMS Development Near Rail Corridors and Busy Roads – Interim Guideline, 2008). Alternatively, batter angles may need to be further reduced.

3.4.3 New Infrastructure

Owing to varying subsurface conditions across the site and with depth, foundation design for new infrastructure should consider conditions at actual locations. However, allowable end bearing pressures of 50 kPa may be adopted for preliminary design of high-level lightly loaded footings founding on loose and medium dense (or better) sand respectively, subject to a minimum cover of 1 m to the groundwater

table; uniform foundation conditions to a depth of at least twice the least footing dimension below foundation level and a minimum embedment of 0.75 m. Preliminary retaining wall designs, should they be required, may be carried out using a triangular pressure distribution and adopting active and passive earth pressure coefficients of Ka = 0.4 and Kp = 2.8 respectively for aeolian sands and Ka = 0.3 and Kp = 3.3 respectively for marine sands.

3.4.4 Additional Testing

DCP testing was limited to 5 locations. We recommend that additional testing is carried out to assist with detailed site design to better define soil strength properties across the entire site and identify anomalies to the general conditions assumed for this report. The following additional DCP testing is recommended:

- Along the boundary to Nelson Bay Road.
- At the crest of the sand dunes to the north and west of the site.
- Along site boundaries.
- Within the current orchards and low lying areas.

3.4.5 Construction Considerations

Stage one mining of the soil profile would most likely involve stripping topsoil and root affected sand (Unit 1) by dozer and/or excavator. Subsequent mining of Units 2 and 3 will likely also be carried out by dozer/ excavator. Stockpiling of soil may be required before loading onto trucks and removal from site. As the groundwater table is approached, it is anticipated that trafficability may be reduced due to potential ground heave of saturated soils. A dredging system is expected to be utilised for excavation of soils below groundwater level (stage two).

Table 11 provides recommendations for consideration during construction and expected mining operations.

	<u> </u>
Item	Recommendations
Excavations and Vibrations	All excavation work should be completed with reference to the Code of Practice 'Excavation Work', dated October 2013 by Safe Work Australia.
	Excessive vibrations in the vicinity of any open sand excavation should be avoided to limit the risk of vibration-induced slope movement. Slopes below groundwater are particularly sensitive to vibrations.
Working Platforms,	Working platforms will be required where high localised loading is expected.
where required	Engineer to design working platforms, particularly where adjacent to crest of excavations or natural batters.
Trafficability and Access	Trafficability on exposed sand above the groundwater table is likely to be poor. Excavation of the site may be limited to the use of tracked machinery.
	Trafficability closer to the groundwater table is expected to deteriorate and sand dredging methods may need to be employed or dewatering may need to be carried out.
	Crushed concrete or aggregate should be placed along access and haul roads to facilitate site access by dump trucks and utility vehicles. Further assessment of subgrade e.g. CBR conditions be carried out for pavement thickness design of longer term access roads.
Soil Erosion Control	Sand mining should be performed in a manner that reduces the risk of soil erosion and sedimentation on neighbouring lands by water or wind. Site vegetation should only be cleared as mining progresses and maintained where possible. Surface drainage should be directed away from the crest of batters and batter slopes should be kept vegetated or covered to limit erosion.
	Erosion of, and transportation of sediments off-site from, soil stockpiles should be limited by providing erosion control measures such as bunding and cover, e.g. geotextile or plastic sheeting.

Table 11: Recommendations for consideration in construction and mining operations.

4 Acid Sulfate Soils Assessment

4.1 Supplementary Laboratory Testing

In addition to the 27 soil samples tested by QMS (2013), a total of 21 samples collected by MA (2014) were analysed by Envirolab Services.

4.2 Results

Laboratory test results are summarised in Appendix B, Table 18 with laboratory certificates provided in Appendix E. Exceedances of the action criteria for pH_{ox}, TPA, TSA and S_{POS}, by 7 of the 21 samples indicate the presence of PASS. Samples exceeding action criteria were generally from close to or below the 2-3 m AHD groundwater table, confirming previous findings by MA (2013) that PASS are likely to be present below 0.8 m AHD. However, of 22 samples tested close to or below the groundwater table, 10 were outside action criteria, indicating the presence of possible layers below the water table are not AASS or PASS.

One sample (3897/BH03/+12.5 to +11.5) out of the 26 collected from above groundwater level exceeded the criteria, indicated PASS.

4.3 Conclusions

PASS are likely to be present at the site at levels close to or below groundwater table, typically located between 2 and 3 m AHD. A detailed ASS management plan (ASSMP) is required for the proposed sand dredging operations. As AASS or PASS was generally not found above the groundwater table (apart from one anomaly in BH3 at +12.5 to +11.5 m AHD), no management plan is considered necessary for sand mining of this material.

4.4 Acid Sulfate Soils Management Plan (ASSMP)

4.4.1 Introduction

Current and previous soil test results indicate that AASS/PASS are likely to be encountered below the groundwater table, but unlikely to be present above groundwater levels. This ASSMP covers proposed works associated with soil extraction below the water table only (stages 2 & 3).

4.4.2 Source

The potential source of impact comprises oxidised sulfide minerals that, if exposed to the atmosphere, may oxidise and generate sulfidic acidity. The acidity can mobilise iron, aluminium, arsenic and other heavy metals from the soil profile (sands/ clays). The release of these

heavy metals can be detrimental to biota, human health and infrastructure. Oxidisation of sulfide minerals may occur during the dredging of sand containing PASS or as a result of a lowering of the water table.

4.4.3 Pathways

If oxidisation of *in-situ* PASS generates sulfidic acid, then groundwater is the initial pathway by which impacts may migrate. Acidity could migrate downwards by leachate, upwards with groundwater rebound or laterally through groundwater flows and through dispersion. If acidic groundwater mobilises heavy metals they may migrate along similar pathways. Given the proposed method of sand extraction below the water table by dredging, groundwater levels at the site and at surrounding bores will unlikely be significantly altered. Although significant groundwater drawdown from dredging is unlikely, some local groundwater level reduction may occur due to evaporation of the 'window lake'. However, this is expected to be minor given the high conductivity of the aquifer material surrounding the 'window lake'.

4.4.4 Receptors

Possible ecological, human and built environment receptors include site workers, flora and fauna and mining equipment. Off-site receptors include Tilligerry Creek (approximately 1.4 km to the north), Stockton Beach (approximately 1.8 km to the south), Worimi National Park (approximately 60 m to the south), areas using non-potable water or irrigated areas.

4.4.5 Groundwater

Groundwater across the site is naturally slightly acidic with a pH ranging from 5.2 to 6.0. The slightly acid conditions are not likely to pose an immediate risk to ecological receptors.

4.4.6 Treatment Plan

Treatment plan for the below groundwater level mining process (Stages 2 & 3) is summarised in Table 12. It should be noted that at the time of report writing, details of possible methodologies for sand dredging and soil processing were unknown.

Table 12: Treatment plan for mine operations.

Mining Operation	Treatment	
Dredge slurry separation	• Coarse material = no treatment required.	
	• Fines to sedimentation pond:	
	- pH testing against trigger value of 4.	

Mining Operation	Treatment
	- If pH <4, application of lime to neutralise.
	- Stockpile on-site.
	- Lime treatment if necessary.
	- Retain on site, or disposal off-site.
Periodic removal of fines	o Stockpile on-site.
from sedimentation pond:	 Lime treatment, if necessary.
	o Retain on site, or disposal off-site.

4.4.7 Monitoring Plan

A monitoring plan for the five wells on-site and the dredge pond is summarised in Table 13.

Table 13: Dredging pond and groundwater wells monitoring plan.

Location	Frequency	Parameters	Trigger Value ¹
Dredge pond	3 months ²	pH, EC	pH <4, EC = NA
5 on-site wells	3 months ²	pH, EC	pH <4, EC = NA

Notes:

¹ Preliminary value to be revised after 6 months monitoring.

² 3 month monitoring over at least a 12 month period.

4.4.8 Further works

We recommend the following additional investigation works are carried out:

- Supplementary borehole drilling, sampling and testing across the site and along site boundaries to better define the extent and depth of PASS below the groundwater table.
- Further testing of soil above the groundwater level in the vicinity of BH3 to confirm assumed anomalous test results.
- Installation of 5 new wells around the dredge pond to detect possible movement of sulfidic acidic impacted groundwater.

5 Impact on Soil Resources

5.1 Background

Previous soil lab testing by VGT & QMS (2013) indicated that some soils at the site are potential saline soils and aggressive to buried structures and possibly dispersive. Additional salinity and dispersion testing was undertaken to augment these results and assess the potential impact of the soil resource.

5.2 Soil Salinity Assessment

5.2.1 Observed Site Conditions

Field observations did not identify obvious evidence of the presence of saline soils at the site:

- Vegetation growth appeared healthy and uninhibited.
- No water marks or salt crystals were observed on the ground surface.
- Site surface drainage appeared generally good at the time of inspection.

5.2.2 Laboratory Test Results

A total of 21 samples from 8 boreholes were submitted to Envirolab Services for salinity (EC, pH) testing. The samples were selected to provide representative coverage of the site. Laboratory certificates are provided in Appendix E.

Salinity test results are summarised in Table 14.

Table 14: Salinity test results.

Sample ID ¹	EC(1:5) (dS/m)	ECe (d\$/m) ²	Salinity Class Indication ³
3897/101/2.5	0.01	0.17	Non - Saline
3897/101/8.5	0.01	0.17	Non - Saline
3897/101/13.0	0.02	0.34	Non - Saline
3897/102/2.5	0.01	0.17	Non - Saline
3897/102/5.0	0.05	0.85	Non - Saline

Sample ID1	EC(1:5) (dS/m)	ECe (dS/m) ²	Salinity Class Indication ³
3897/102/7.0	0.02	0.34	Non - Saline
3897/103/2.5	0.01	0.17	Non - Saline
3897/103/8.0	0.02	0.34	Non - Saline
3897/103/10.0	0.02	0.34	Non - Saline
3897/104/2.5	0.01	0.17	Non - Saline
3897/104/10.0	0.01	0.17	Non - Saline
3897/105/2.5	0.01	0.17	Non - Saline
3897/105/10.0	0.01	0.17	Non - Saline
3897/106/5.5	0.01	0.17	Non - Saline
3897/106/10.0	0.01	0.17	Non - Saline
3897/107/5.5	0.01	0.17	Non - Saline
3897/107/10.0	0.01	0.17	Non - Saline
3897/108/2.5	0.04	0.68	Non - Saline
3897/108/5.5	0.03	0.51	Non - Saline
3897/108/8.5	0.05	0.85	Non - Saline
3897/108/13.0	0.03	0.51	Non - Saline

Notes:

¹ Project#/Borehole#/Depth (m BGL)

² Based on EC to ECe multiplication factor of 17 (Table 6.1) in Department of Land and Water Conservation (2002) Guidelines.

³ Based on Table 6.2 of Department of Land and Water Conservation (2002) where ECe <2 dS/m = Non-Saline, ECe of 2-4 dS/m = Slightly Saline, ECe of 4-8 dS/m = Moderately Saline, ECe of 8-16 dS/m = Very Saline, ECe of >16 dS/m = Highly Saline.

Results indicate tested sands are non – saline with ECe values <2 dS/m for all samples tested. This condition was confirmed by quality testing of groundwater samples taken from site bores by MA (2013), indicating fresh groundwater conditions with maximum salinity concentration of 275 mg/L.

5.3 Soil Dispersivity Assessment

5.3.1 Observed Site Conditions

Field observations did not identify obvious evidence of the presence of dispersive soils at the site.

5.3.2 Laboratory Testing

A total of 6 samples from 8 boreholes were submitted to Envirolab Services for testing to assess the Dispersion Index of the soils. Laboratory Certificates are provided in Appendix E. Dispersion test results are summarised in Table 15.

Sample ID ¹	Dispersion Index	Dispersivity ²
3897/101/13.0	0	Negligible/aggregated
3897/102/5.0	1	Slight
3897/102/7.0	0	Negligible/aggregated
3897/103/8.0	4	Slight
3897/108/5.5	1	Slight
3897/108/13.0	0	Negligible/aggregated

Table 15: Dispersion test results.

<u>Notes:</u>

¹Project#/Borehole#/Depth (m BGL)

² Based on Table 2.24 of Interpreting Soil Test Results, What Do All The Numbers Mean (2007).

Results indicate tested sands containing clays have negligible/aggregated to slight dispersibility with dispersion index values ranging from 0 to 4.

5.4 Soil Aggressivity Assessment

The results of laboratory analysis of electrical conductivity and pH (Table 14 and Table 18) of the soils were compared with criteria presented in Tables 6.4.2 (C) and 6.5.2 (C) of AS2159-2009. The results indicate these soils to have the following classification:

Soils above groundwater – Mildly aggressive to concrete Non-aggressive to steel

Soils below groundwater – Moderately aggressive to concrete Mildly to Non-aggressive to steel

5.5 Conclusions

We conclude that:

- No specific management is required associated with soil salinity.
- Use of soil materials will need to consider mild aggressivity.
- No specific management is required associated with soil dispersion.

6 Limitations

This report is a preliminary geotechnical and acid sulfate soils assessment. Occasionally sub-surface soil conditions in areas of the site not investigated may be found to be different from those expected. This can also occur with groundwater conditions, especially after climatic changes. Should, during site works, soil or water conditions be found to be significantly different to those detailed in this report, works shall cease immediately and the new conditions should be addressed by Martens & Associates to determine implications before recommencement.

7 References

Australian Government – National Health and Medical Research Council (2011), Australian Drinking Water Guidelines.

Australian Standard 1289.6.3.2 (1997) Determination of the penetration resistance of a soil -9 kg dynamic cone penetrometer test.

Australian Standard 1726 (1993) Geotechnical Site Investigations.

Australian Standard 2159 (2009) Piling – Design and installation.

Bair and Lahm (2006), Practical Problems in Groundwater Hydrology, Pearson Education.

Geary, P. M. (2003) On-site Treatment System Failure and Shellfish Contamination in Port Stephens, NSW – SepticSafe enhancement Grant Project E08.

Hazelton and Murphy (2007) Interpreting Soil Test Results, What Do All The Numbers Mean?

Martens and Associates (2014), Preliminary Groundwater Assessment, Proposed Sand Quarry: 3631 Nelson Bay Rd, Bobs Farm, NSW, Document reference P1303897JR01V01.

McMahon, Peel, Lowe, Srikanthan and McVicar (date omitted), Supplementary Material to paper 'Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis'.

NSW Department of Conservation and Land Management (1992), What do all the numbers mean, a guide for the interpretation of soil test results.

NSW Department of Local Land Services – Hunter (2014), Letter dated 14th March 2014, Bobs Farm Sand Project – SDD Number TBA – DGRS input request.

NSW Department of Office of Environment & Heritage (2014), Letter dated 24th February 2014, Director General's Requirements for Proposed Bobs Farm Sand Project, report REF: DOC14/12504; FIL14/1226.

NSW Department of Planning and Environment (2008), Development Near Rail Corridors and Busy Roads – Interim Guideline.

NSW Department of Primary Industries (2014), Letter dated 26th February 2014, Bobs Farm Sand Quarry (SSD 14_6395) – Request for input into Director General Requirements, report REF: OUT14/6325.

NSW Department of Mineral Resources (1975), Newcastle Australia 1:100,000 Geological Series Sheet 9232.

NSW Department of Mineral Resources (1977), Port Stephens Australia 1:100,000 Geological Series Sheet 9332.

NSW Department of Transport – Roads & Maritime Services (2014), Letter dated 13th March 2014, Nelson Bay Road (B63): Proposed Sand Quarry – Lot 254 DP 753204, Lot 51 DP 1015671 & Lot 10 DP 1071458, Nelson Bay Road, Bobs Farm – Director General's Environmental Assessment Requirements (SSD TBA), report REF: SF2014/019270.

NSW Environmental Protection Authority (2014), Letter dated 20th February 2014, Bobs Farm Sand Project AMMOS Resources Management Pty Ltd, (SSD Number TBA), Director – General's Requirements (DGR's), report REF: DOC14/12442-01; EF14/611.

Port Stephens Council (2014), Letter dated 12th March 2014, Bobs Farm Sand Project, Request for Input into DGRs.

Quarry Mining Systems (2013), Bobs Farm Sand Deposit Stage 2 Investigation, report REF: 2013-11-02-D.

NSW Department of Trade & Investment, Resources & Energy (2014), Letter dated 12th February 2014, Request for Director General Requirements – Bobs Farm Sand Project, report REF: OUT14/5153.

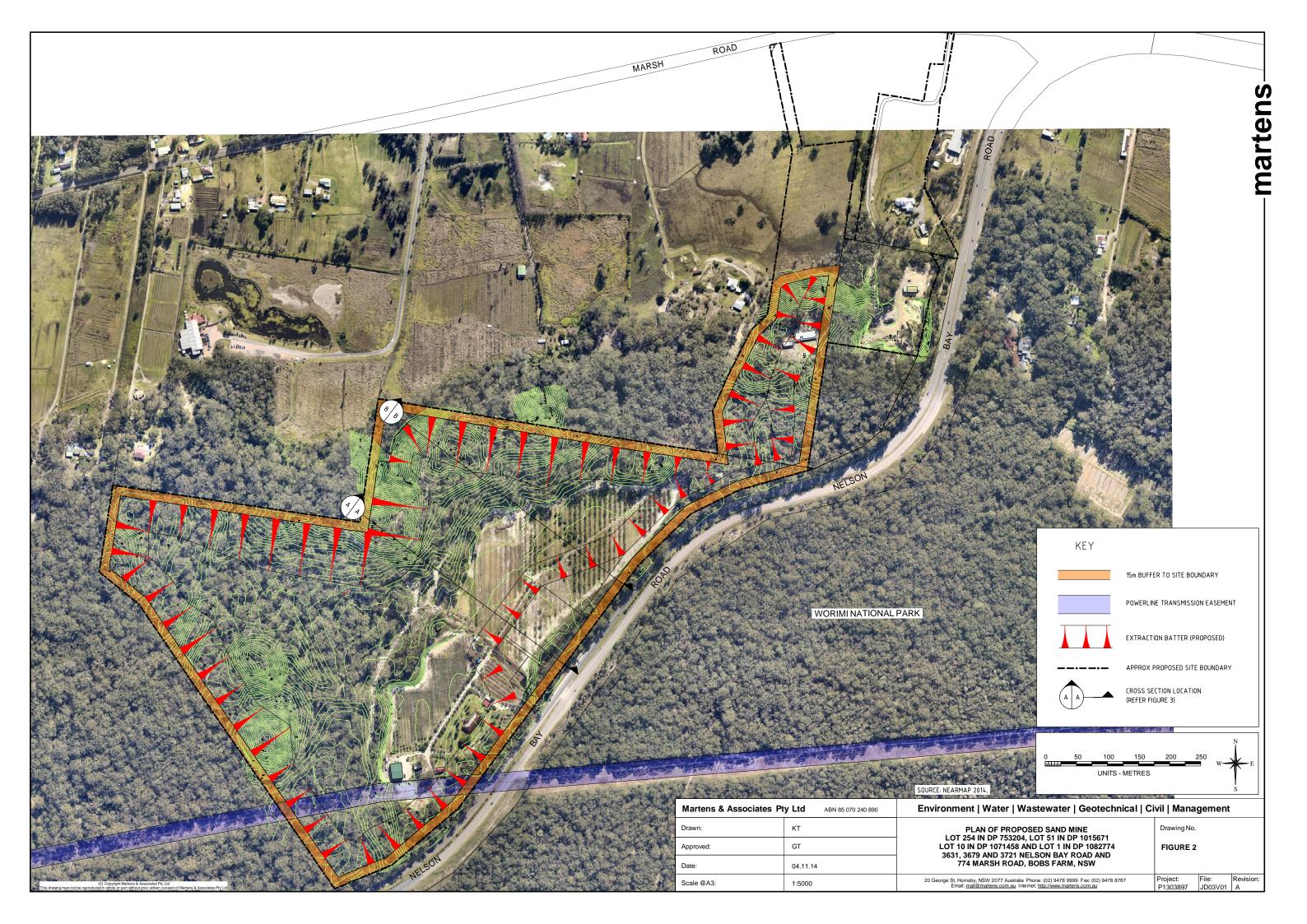
SKM (2009), Modelling Determining Effects on Groundwater Dependent Ecosystems at Raymond Terrace, Newcastle, slide show presented at the International Association of Hydrogeologists Groundwater in the Sydney Basin Symposium.

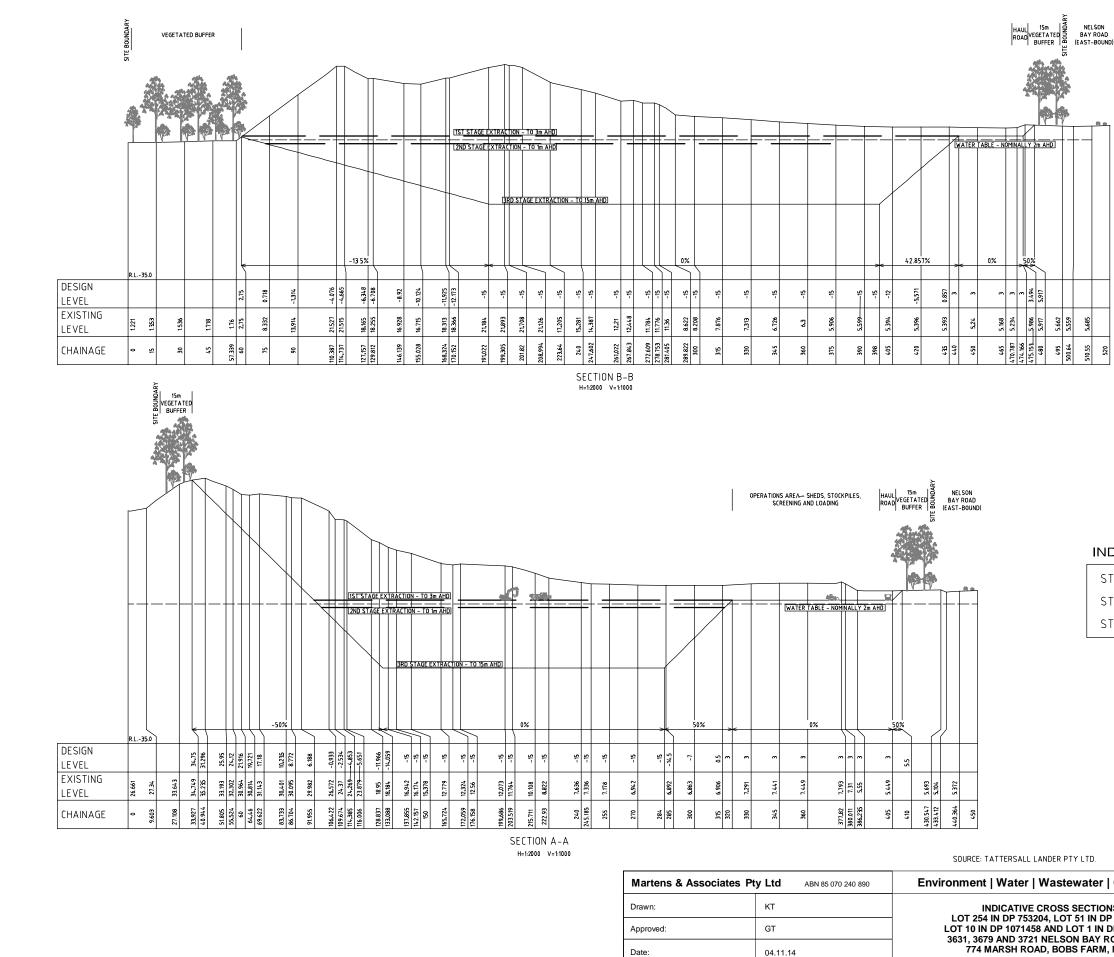
Tattersall Lander (2014), Letter dated 21st February 2014, Request for Director-General's Requirements – Supporting Documentation Proposed Sand Mine, Nelson Bay Road, Bobs Farm Port Stephens Local Government Area.

Umwelt (2009), EA for Sand Extraction from Lots 218 and 220, Salt Ash, REF: 1646/R06/FINAL.

VGT & Quarry Mining Systems (2013), Bobs Farm Stage Two Geological Assessment, report REF: BF13A.

Wildthing Environmental Consultants (2013), Letter dated 31/07/2013, ecological studies undertaken for a proposed sand mine within Lot 254 DP 753204, Lot 10 DP 1071458 and Part Lot 51 DP 1015671 Nelson Bay Road, Bobs Farm NSW.

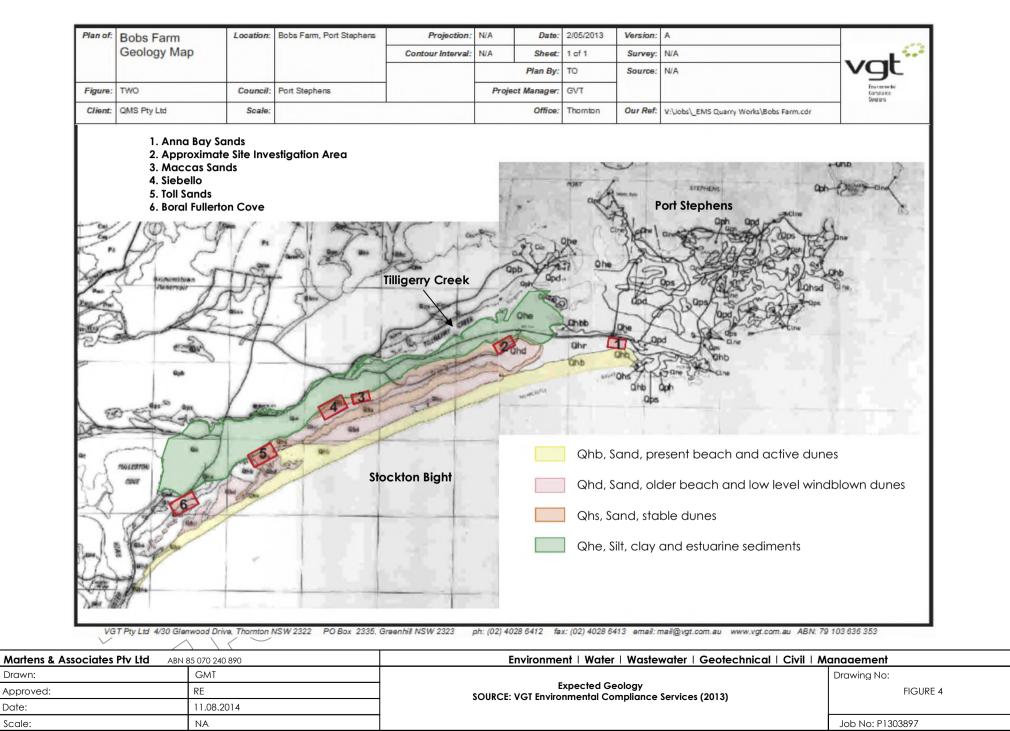


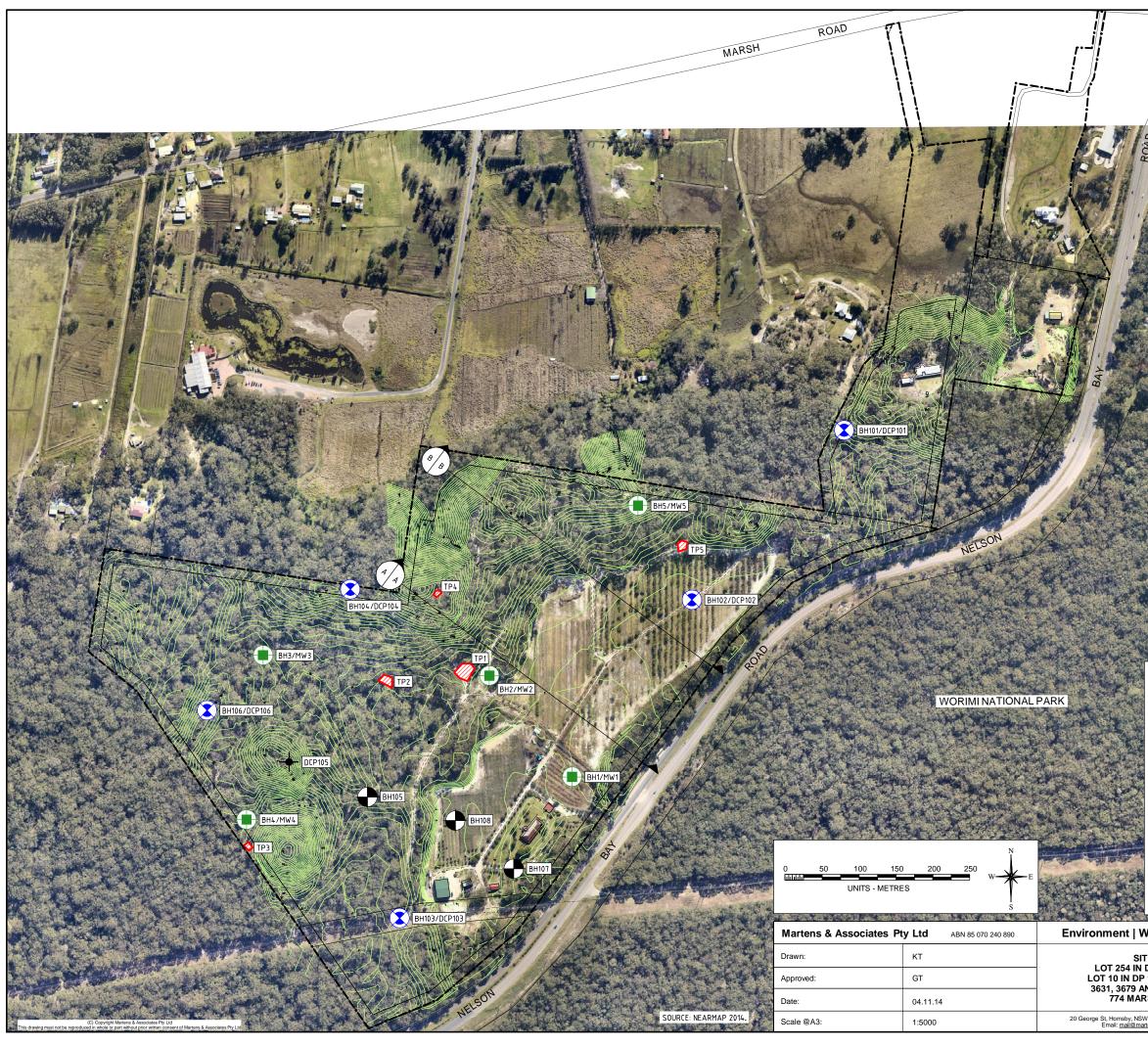

8 Appendix A - Figures

۲ Ν Karuah **Tea Gardens** Tanilba Bay Salam Maitland Medowi Raymond Terrace Thornton Anna Bay Beresfield Site Location KurriKurri Stockton Bight . Hunter Wetlands National Park Maryland meron Park Newcastle 5 km Ľ Warners Bay Martens & Associates Ptv Ltd ABN 85 070 240 890 Environment | Water | Wastewater | Geotechnical | Civil | Manaaement GMT Drawn: Drawing No: SITE LOCALITY RE Approved: FIGURE 1 SOURCE: GOOGLE MAPS Date: 11.08.2014 NA Scale: Job No: P1303897

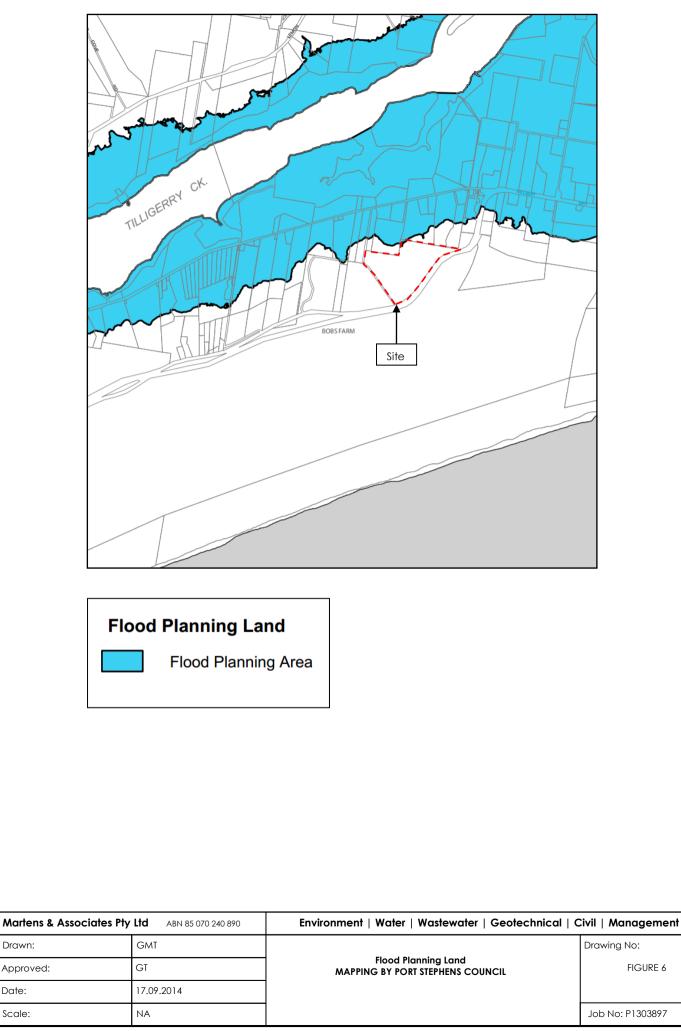
-martens-

Scale @A3:


1:2000

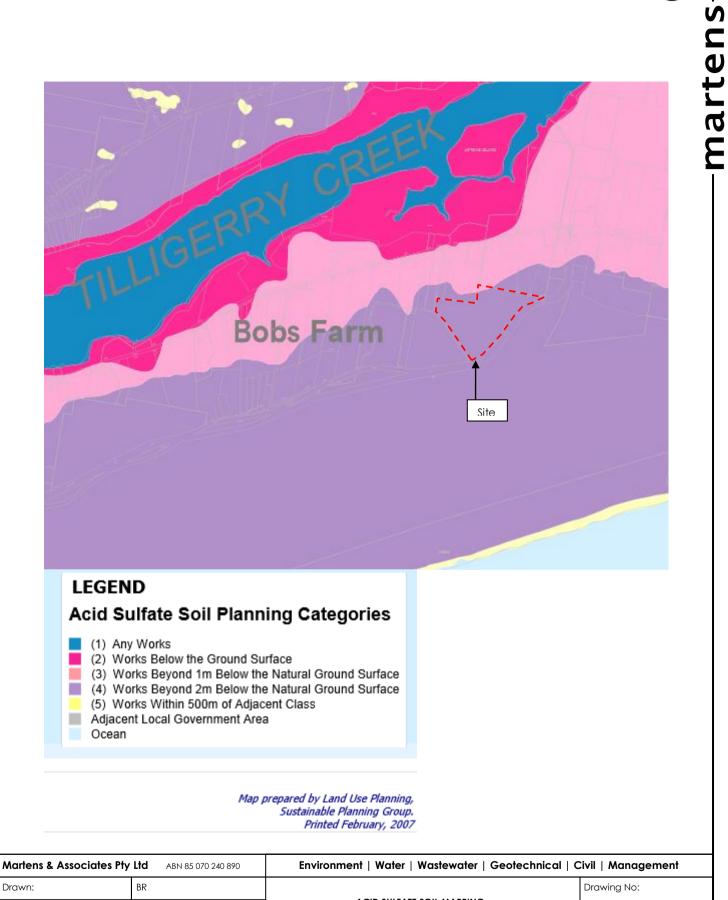

20 George St, Hornsby, NSW Email: <u>mail@mart</u>

INDICATIVE VOLUMES


STAGE 1	3,000,000m³
STAGE 2	600,000m³
STAGE 3	3,700,000m³

	0	20	40	60	80	100
ERSALL LANDER PTY LTD	mmm		UNIT	S - METRES		
/ater Wastewater	Geotecl	hnical	Ci	vil Mana	gement	
CATIVE CROSS SECTIONS	-			Drawing No.		
1071458 AND LOT 1 IN DF ND 3721 NELSON BAY RC SH ROAD, BOBS FARM, N	P 1082774 AD AND	4		FIGURE 3	;	
/ 2077 Australia Phone: (02) 9476 9999 tens.com.au Internet: http://www.martens.		8767		Project: P1303897	File:	Revision:

			Ŝ
	10 .		te
ROAD			
	ないであったの		
KEY			
(QUARRY MINING SYSTEMS PTY LTD)			
(QUARRY MINING SYSTEMS PTY LTD))		
APPROX BOREHOLE & DCP TEST LOC	ATION (MA 2014	.)	
	014)		
	NARY		
CROSS SECTION LOCATION (REF			
Water Wastewater Geotechnical Ci	vil Manag	gement	
ITE TESTING LOCATIONS I DP 753204, LOT 51 IN DP 1015671 P 1071458 AND LOT 1 IN DP 1082774 AND 3721 NELSON BAY ROAD AND RSH ROAD, BOBS FARM, NSW	Drawing No.		
SW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 aatens.com.au Internet: <u>http://www.martens.com.au</u>	Project: P1303897	File: JD03V01	Revision: A


Drawn:

Scale:

Approved: Date:

martens

Job No: P1303897

ACID SULFATE	SOIL MAPPING
MAPPING BY PORT	STEPHENS COUNCIL

Drawn:

Date: Scale:

Approved:

GT

NA

14.09.2014

FIGURE 7

Job No: P1303897

9 Appendix B – Tables

	-									-		_	Depth	(m BG	L ²) Elev	vation (m AHD)			-						
Unit	Layer ¹	BH1	01 ³	BH1	02 ³	BH1	03 ³	BH	104 ³	BH1	105 ³	BH	106 ³	BH1	07 ³	BH1	108 ³	Bł	113	Bł	12⁴	Bł	3₄	Bł	⊣4 ₄	Bł	H5
Unit 1: Topsoil	SAND with Organics – Grey	0.0	11.0	0.0	5.0	0.0	10.0	0.0	29.0	0.0	12.0	0.0	20.0	0.0	6.0	0.0	6.0	0.0	5.8	0.0	11.7	0.0	15.5	0.0	9.5	0.0	18.2
Unit 2: Aeolian Sand	SAND: Light Grey/Grey	0.2	10.8	0.3	4.7	0.2	9.8	0.2	28.8	0.3	11.7	0.3	19.7	NE	NE	0.4	5.6	NE	NE	0.5	11.2	0.3	15.2	0.2	9.3	NE	NE
Unit 3:	SAND: Orange/ Brown	1.5	9.5	2.0	3.0	0.9	9.1	1.2	27.8	1.5	10.5	NE	NE	NE	NE	1.0	5.0	1.0	4.8	3.5	8.2	1.0	14.5	NE	NE	1.0	17.2
Aeolian	SAND: Yellow/Brown	NE	NE	NE	NE	NE	NE	3.5	25.5	NE	NE	2.5	17.5	0.2	5.8	NE	NE	NE	NE	5.0	6.7	4.0	11.5	3.0	6.5	5.5	12.7
	SAND: Light Yellow/White	4.5	6.5	3.5	1.5	4.8	5.2	7.0	22.0	3.0	9.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	14.0	1.5	NE	NE	19.5	-1.3
Unit 4: Marine Organic Sand	CLAYEY SAND/CLAY with Organics: – Dark Brown/Grey/ Black	NE	NE	4.9	0.1	8.0	2.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	3.8	2.0	10.5	1.2	14.5	1.0	5.6	3.9	20.0	-1.8
	Water Table	11.0	0.0	3.5	2.5	6.8	2.2	NE	NE	NE	NE	NE	NE	4.5	1.5	3.5	2.5	3.5	2.3	10.2	1.5	13.2	2.3	7.3	2.2	15.4	2.8
Unit 5:	SAND: Light Brown/Grey	NE	NE	6.5	-1.5	8.5	1.5	NE	NE	NE	NE	NE	NE	4.0	2.0	3.5	2.5	4.5	1.3	NE	NE	NE	NE	6.5	3.0	22.6	-4.4
Marine Sand	SAND: Lower Grey Bands	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	6.0	0.0	6.0	-0.2	12.0	-0.3	16.0	-0.5	11.5	-2.0	23.5	-5.3
Borehole Depth		13.0	-2.0	10.0	-5.0	10.0	0.0	10.0	19.0	10.0	2.0	10.0	10.0	10.0	-4.0	13.0	-7.0	19.0	-13.2	26.5	-14.8	26.5	-11.0	24.0	-14.5	26.5	-8.3

Table 16: Summary of inferred soil profiles at borehole locations drilled by Quarry Mining Systems Pty Ltd (2013) and Martens and Associates (2014).

Notes:

¹ Based on visual assessment of drilling spoil. Refer to borehole logs (Appendix C) for more detailed descriptions.

² Approximate depths in metres below ground level to top of layer and elevation (RL) of Surface level at borehole location approximated from survey plan; boreholes not surveyed.

³ Borehole drilled by MA (2014).

⁴ Borehole drilled by QMS (2014).

NE = Not encountered or included in bordering unit.

martens

Preliminary Geotechnical and Acid Sulfate Soils Assessment - Proposed Sand Quarry: Bobs Farm, NSW.. P1303897JR02V01 – November, 2014

	•			5	, ,			
Monitoring Well ²	Sample date ²	рН	EC µS/cm	TDS ³ mg/L	TKN mg/L	NOx mg/L	TN mg/L	TP mg/L
MW1	22.08.2013	5.3	500	275	1.9	16	17.9	0.1
MW2	22.08.2013	5.4	490	270	2.3	21	23.3	<0.05
MW3	22.08.2013	5.6	250	138	0.5	0.01	0.51	<0.05
MW4	22.08.2013	5.2	190	105	0.3	<0.005	0.3	<0.05
MW5	22.08.2013	6.0	270	149	1.7	0.86	1.7	0.07

Table 17: Summary of laboratory test results - site groundwater quality¹.

Notes: Refer to Appendix E for laboratory certificates.

² Samples collected by MA from groundwater monitoring wells installed by QMS.

³ TDS = total dissolved solids, estimated from EC * 0.55 (South Australian Murray-Darling Basin Natural Resources Management Board).

Sample ID	Sample Depth (mAHD) ²	Material Type ¹	pH _{KCL} ³	pH _{ox} ³	TPA (mol H+/t) ⁴	TSA (mol H+/t)⁵	S _{POS} (%) ⁶	Assessment ⁷	Recommended Liming Rate ⁹ (kg CaCO ₃ /t)
		(F) Fine grained. > 40 % clay.		< 3.5 = PASS	62	62	0.100	TPA, TSA, S _{POS} > criteria = PASS.	
Assessment Crit	teria	(M) Medium grained. 5-40 % clay.	$\leq 4 = AASS$	pHK _{cl} -pH _{ox} >1	36	36	0.060	Exposed soil >1000t, used coarse grained	
		(C) Coarse grained. < 5 % Clay.		= PASS	18	18	0.030	material criteria.	
3897/101/2.5	8.5	С	5.0	4.4	5	5	0.005	NA	<0.75
3897/101/8.5	2.5	С	5.6	4.3	5	5	0.005	NA	<0.75
3897/101/13.0	-2.0	С	5.4	5.7	5	5	0.005	NA	<0.75
3897/102/2.5	2.5	С	4.6	3.5	5	5	0.005	NA	0.9
3897/102/5.0	0.0	м	4.8	2.1	190	180	0.260	PASS	13
3897/102/7.0	-2.0	С	5.1	2.7	47	40	0.100	PASS	5
3897/103/2.5	7.5	с	5.4	4.2	5	5	0.005	NA	<0.75
3897/103/8.0	1.0	С	5.0	2.5	25	20	0.050	PASS	2.6
3897/103/10.0	0.0	С	5.4	3.3	12	10	0.040	PASS	2.1
3897/104/2.5	26.5	с	5.0	4.5	5	5	0.005	NA	<0.75
3897/104/10.0	19.0	с	5.7	5.0	5	5	0.005	NA	<0.75
3897/105/2.5	9.5	С	5.2	3.9	5	5	0.005	NA	<0.75
3897/105/10.0	2.0	С	5.5	5.5	5	5	0.005	NA	<0.75
3897/106/5.5	14.5	С	5.6	5.1	5	5	0.005	NA	<0.75
3897/106/10.0	10.0	c	5.2	4.7	5	5	0.005	NA	<0.75
3897/107/5.5	0.5	С	5.2	6.3	5	5	0.005	NA	<0.75
3897/107/10.0	-4.0	С	5.2	4.0	5	5	0.005	NA	<0.75
3897/108/2.5	3.5	С	4.5	3.4	22	12	0.005	PASS	0.75
3897/108/5.5	0.5	c	5.3	5.2	5	5	0.010	NA	0.93
3897/108/8.5	-2.5	c	5.2	2.8	35	30	0.060	PASS	3.1
3897/108/13.0	-7.0	c	5.2	2.8	35	32	0.050	PASS	2.8
3897/BH03/+12.5 to +11.5	+12.5 to +11.5	С	4.8	3.9	30	20	< 0.005	PASS	0.75
3897/BH03/+6.5 to +5.5	+6.5 to +5.5	с	5.4	4.5	<5	<5	<0.005	NA	<0.75
3897/BH03/+1.5 to +0.5	+1.5 to +0.5	F	5.6	4.5	<5	<5	<0.005	NA	<0.75
3897/BH03/-0.5 to -1.1	-0.5 to -1.1	с	5.6	4.4	10	7	<0.005	NA	<0.75
3897/BH03/-1.3 to -1.5	-1.3 to -1.5	с	5.4	3.2	250	240	0.080	PASS	4.6
3897/BH03/-1.3	-1.3	c	5.4	2.7	460	450	0.130	PASS	7
3897/BH03/-1.3 3897/BH03/-3.1	-1.3	c	4.5	2.7	360	340	0.130	PASS	25
3897/BH03/-3.1	-3.1	c	4.5	3.3	27	25	0.030		1.5
3897/BH03/-13	+5.5 to +3.0	c	5.3	4.3	17	12	<0.005	PASS	<0.75
			5.2		17	12	<0.005	NA	<0.75
3897/BH04/+3.3 to +2.5	+3.3 to +2.5	с		4.5	37	27			0.75
3897/BH04/+0.8 to +0.5	+0.8 to +0.5	с	4.9	3.8	0,	27	< 0.005	PASS	
3897/BH04/-0.5 to -1.5	-0.5 to -1.5	с	5.3	4.4	12	7	<0.005	NA	<0.75
3897/BH04/-2.5 to -3.0	-2.5 to -3.0	с	5.5	4.4	17	16	<0.005	NA	<0.75
3897/BH04/-6.0 to -7.5	-6.0 to -7.5	с	5.3	3.4	27	26	0.020	PASS	0.93
3897/BH04/-11.0 to -13.5	-11.0 to -13.5	с	5.4	3.8	20	19	0.020	PASS	
3897/BH04/-13.5 to -12.1	-13.5 to -12.1	с	5.4	3.7	20	17	0.020	NA	0.92
3897/BH05/+2.0 to +1.0	+2.0 to +1.0	С	5.5	4.5	12	10	< 0.005	NA	<0.75
3897/BH05/+0.0 to -0.5	+0.0 to -0.5	С	4.4	3.4	47	40	<0.005	PASS	
3897/BH05/+0.0 to -1.0	+0.0 to -1.0	с	5.3	4.5	7	<5	<0.005	NA	<0.75
3897/BH05/-1.1 to -1.5	-1.1 to -1.5	С	5.7	4.5	5	<5	<0.005	NA	<0.75
3897/BH05/-1.5 to -2.0	-1.5 to -2.0	F	5.6	4.6	<5	<5	<0.005	NA	<0.75
3897/BH05/-2.5 to -3.0	-2.5 to -3.0	F	5.6	4.4	<5	<5	<0.005	NA	<0.75
3897/BH05/-5	-5.0	С	5.9	2.2	1500	1500	2.6	PASS	120
3897/BH05/-5.5	-5.5	с	7.9	4.1	120	120	1.4	PASS	28
3897/BH05/-6.5	-6.50	С	7.0	2.2	820	820	1.5	PASS	65
3897/BH05/-7.5	-7.50	С	8.1	2.9	67	67	0.2	PASS	6.6

 Table 18: ASS (sPOCAS) testing results. (Samples exceeding the ASSMAC action criteria are highlighted).

Notes:

¹ Material type based on field texture assessment or laboratory report.

² Metres above Australian Height Datum. Surface level at borehole location approximated from survey plan; boreholes not surveyed.

³ pH (actual acidity).

⁴ pH after oxidation with peroxide (potential acidity).

⁵Titratable Peroxide Acidity (Moles H⁺/tonne).

⁶ Titratable Sulfidic Acidity (Moles H⁺/tonne). ⁵ Oxidisable sulphur (%). ⁶ ASSMAC (1998) p.27, for >1,000 tonnes disturbed soil. ⁷ Soil samples are clay – all other samples are sand.

⁷Percentage oxidisable sulphur.

⁸ NA = not AASS or PASS, AASS = Actual Acid Sulfate Soil, PASS = Potential Acid Sulfate Soil.

⁹ Refer to laboratory certificates (Appendix E).

10 Appendix C – Borehole Logs

CL	IEN'	Т	A	nmos R	esou	irce	e Manag	eme	ent Pty Ltd	COMMENCED	29/07/14	COMPLET	ED	29/07/14	4			REF	BH101	
PR	OJE	СТ							chnical Assessment	LOGGED	GMT/BR	CHECKED		RE				Sheet 1	-	
SI			36	31, 367					y Rd & 774 Marsh Rd, ——Bobs Farm, NSW	GEOLOGY	Aeolian Sand	VEGETAT	-	NA				PROJECT N	IO. P1303897	
				ISIONS			Mounted Hy 13.0m depth	drauli	c Auger	EASTING NORTHING	NA	RL SURFA	-	Approx South S				SLOPE	5%	
				ION DA			13.011 deptit		МАТ			ASPECT		3000113	ounv			G & TES		
					_	Щ	U	N		DESCRIPTION		۲	X	í						
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	SOIL NAME, plasticit colour, secondary moisture condition, c ROCK NAME, grain	y or particle chara and minor compo onsistency/relative	cteristics, nents, e density,	CONSISTENCY	DENSITY INDEX		түре	DEPTH (M)	А		JLTS AND - OBSERVATIONS	3
<u>v</u>	Nil	N	M	0.2				_SP_	SAND - Medium	grained, light organics, rool	grey/grey,	+	_ <u>_</u>	<u> </u>	_				- T <u>OPSOIL</u>	
				 1.5				SP	SAND - Medium g				V	L						1. <u>0</u> –
				<u>2.0</u>					 Gi	rading to									- AEOLIAN	 2 <u>.0</u>
				3.0				SP	light brown/c	orange/ light y	ellow.		L	-	A	2.5	3897/101/	2.5		3.0 -
				 4.0 _ 4.5																- 4 <u>.0</u> -
				<u>5</u> .0					G	rading to			м		 A	5.5	3897/101/		- AEOLIAN	 5.0
				 6.0 																6 <u>.0</u> -
V	Nil	N	м																	- 7. <u>0</u> -
				8.0 																8.0 -
				9.0				SP	light y	vellow/white.			L		A	8.5	3897/101/	8.5		- 9.0 -
				<u>10</u> .0 	8										A	10.0	3897/101/	10.0		- 10 <u>.0</u> -
		11.0 <u>V</u>		_ 11.0 _													- Groundw ~11.0m.	vater at		 11.0
		Y	w	<u>12</u> .0																- 12 <u>.0</u> -
				 13.0 					Borehole termin	atad at 12 Om	- in cond				A	13.0	3897/101/	13.0		- - - - -
				 14.0 						aleo al 13.011	nn sand.									- - 14 <u>.0</u> -
				<u>1</u> 5.0 																- 15.0 -
				 16.0 																
				 17.0 																
L				18.0					MOINTURE				DI		T.D				0.000	18. <u>0</u>
	I Na I E IA Ba IA Ha IA Sp IA Co V V-E	atural e xisting ickhoe ind au bade ncrete Bit	expos exca buck ger Core	ure SH vation SC et RE Ni	JPPOR H Shor C Shot 3 Rock I No s	ing crete k Bolf	ts 👽 Wate	e obse neasu er leve er out	red M Moist L Low al W Wet M Mode Wp Plastic limit H High Iow WI Liquid limit R Refus	NCE VS Ve S Sc erate F Fir St Sti	ry Soft VL Very Loc ft L Loose m MD Medium I ff D Dense ry Stiff VD Very Dense rd	ose AA BE Dense UU DE se MN	luger s Bulk sa Undistu Disturb Toisturb	S & TES sample mple urbed sa ed samp re contel ample (x	mple ble nt	pp S VS D(ic cone meter sity	CLASSIFICATION SYMBOLS AND SOIL DESCRIP Y USCS N Agricultur	D TION
<u>⊢</u> ⊧	PT Pu	sh tub	e			-		ייאר	OG TO BE READ IN CONJUN				Q / 1			10.71	PINE			
				rte Martens & Ass		5			N 20 G Phor	IARTENS & AS eorge St, Horns ne: (02) 9476 99	SOCIATES PTY LTD sby, NSW 2077 Austra 999 Fax: (02) 9476 876 EB: http://www.marten	alia 67					jine	ering oreho	g Log - ole	

СГ	IEN	т	-					ent Pty Ltd	COMMENCED	29/07/14	COMPLET	ED	29/07/14			REF	BH102	٦
-		ЕСТ						chnical Assessment y Rd & 774 Marsh Rd,		GMT/BR Aeolian Sand	CHECKED	-	RE			Sheet 1		
SIT EQU		NT				ick Mounted H		Bobs Farm, NSW	GEOLOGY EASTING	NA	VEGETATI RL SURFA		NA Approx 6m /	AHD		PROJECT N	O . P1303897	
EXC				ISIONS	Ø95mm	X 10.0m depth			NORTHING	NA	ASPECT		South East			SLOPE	2%	
	EX			ION DA	_		7	MAT	ERIAL DAT	A				SA	MPLIN	G & TEST	TING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)		- CD	CLASSIFICATION	SOIL NAME, plastici colour, secondary moisture condition, c ROCK NAME, grain	and minor compo onsistency/relative	icteristics, inents, e density,	CONSISTENCY	DENSITY INDEX		DEPTH (M)	A		ILTS AND OBSERVATIONS	
<u>v</u>	Nil	N	м	<u>-0</u> .3	÷		SP	SAND - Mediur minor orga	m grained, gr inics and root		-+						- TOPSOIL	
v	Nil	N	м	- 1.0 - - 2.0			SP	SAND - Medium grai	ned, light gre	/		L 	A	1.5	3897/102	/ 1.5	AEOLIAN	1.0 - - 2.0
		3.5 ¥		- - <u>3</u> .0 - - 3.5			SP		rading to nge/brown.			L	A	2.5	3897/102 - Groundv ~3.5m.			
v	Nil	Y	w	<u>4.0</u> - - - - 4.9			SP		rading to			vi	A	4.0	3897/102	/ 4.0	- AEOLIAN	4.0
v	Nil	Y	w	<u>5.0</u> · <u>6.</u> 0 			SC	Clayey SAND - Medin clay lay	um grained, g ers, dark grey			MI	D A/B	5.0	3897/102	/ 5.0	- MARINE	5. <u>0</u> - - 6 <u>.0</u>
v	Nil	Y	w	- <u>6.5</u> 7.0 - - - - 9.0 - -			SP	SAND - Medium grain	ed, light grey	, inferred dense.			A	7.0 7.5 8.5		/7.5		7.0 8.0 9.0
				10.0 	×		•	Borehole termin	ated at 10.0n	n in sand.			A	10.0	3897/102	/ 10.0	1	10.0 - -
				11.0 - - 12.0 - - 13.0													1	11.0 - 2.0 12.0 - 13.0
				 													1	- - 14 <u>.0</u>
				 													1	- 15.0 - -
																		16 <u>.0</u> 17. <u>0</u>
				- - 18.0														- - 18.0
N X B H S C V T	Ni E H Ba A Ha SI C Co V-I C Tui	atural e xisting ackhoe and au pade oncrete	expos g exca e buck iger e Core n Carb	ure SH vation SC et RE Nil	JPPORT H Shoring C Shotcre 3 Rock B I No sup	ete X Not olts <u>▼</u> Wa port <u></u>	ne obse measu ter leve ter out	rred M Moist L Low al W Wet M Mod Wp Plastic limit H High Ilow WI Liquid limit R Refus	NCE VS Ve S Si erate F Fi St Sti sal VSt Ve H Ha	ff D Dense ery Stiff VD Very Dens	ose A A B B Dense U U D D Se M M	uger s ulk sa Indistu Isturb Ioisturb	& TESTIN ample mple rbed sample ed sample e content ample (x mm) FI	 Pocket p Standard S Vane she CP Dynam penetro D Field der /S Water sa 	ic cone meter isity	CLASSIFICATION SYMBOLS AND soll DESCRIPTION Y USCS N Agricultural	N
				rte			ION L	20 G Phor	MARTENS & AS George St, Horn ne: (02) 9476 99	SOCIATES PTY LTD sby, NSW 2077 Austra 999 Fax: (02) 9476 876 EB: http://www.marten:	ilia 67	S AN			gine	ering	g Log - ole	

CL	IEN	Г	A	nmos R	esou	rce	Manag	eme	ent Pty Ltd	COMMENCED	29/07/14	COMPLET	ED	29/07/14				REF	BH10	3
-	OJE	СТ							chnical Assessment y Rd & 774 Marsh Rd,	LOGGED	GMT/BR	CHECKED	-	RE				Sheet 1	of 1	
		лт					Mounted Hy		Bobs Farm, NSW	GEOLOGY EASTING	Aeolian Sand	VEGETATI RL SURFA	-	NA Approx 9r	n AHE	D		PROJECT N	O. P1303897	
	AVAT	ION E		ISIONS	Ø95mm		10.0m depth	araan		NORTHING	NA	ASPECT		East				SLOPE	2%	
	EX	CA\	/AT	ION DA				_	MAT	ERIAL DAT	A	<u> </u>				SAI	MPLIN	G & TES	TING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	L M DRILLING H RESISTANCE		GRAPHIC LOG	CLASSIFICATION	SOIL NAME, plasticil colour, secondary moisture condition, c ROCK NAME, grain	and minor compo onsistency/relative	icteristics, inents, e density,	CONSISTENCY	DENSITY INDEX		1	DEPTH (M)	A		JLTS AND OBSERVATIO	NS
<u>v</u>	Nil	N	M	<u>0.2</u>				SP	SAND - Medium g	rained, dark ics, rootlets.	grey, some	+			в (0.5	3897/103/	0.5	- T <u>OPSOIL</u>	
				0.9 0.9 2.0 				SP	SAND - Mediu				L L				3897/103/		- AEOLIAN	- - - - - - - - - - - - - - - - - -
v	Nil	N	м					SP	yelia	ow/orange.			M	D 4			3897/103/ 3897/103/			
				<u>5</u> .0 - - - 6.0 -				SP		rading to			L			5.5	3897/103/	5.5	- AEOLIAN	5.0 - - 6 <u>.0</u> -
		6.8 ⊻Y	w	 7.0 8.0										A.	. 7	7.0 7.5	3897/103/ 3897/103/	7.5		
v	Nil	Y	w	- - 8.5				SP					М	D					- MARINE	
v	Nil	Y	w	9.0 				SP	SAND - Medium grair	ned, inferred	^		М		B 1	10.0	3897/103/	10.0	- MARINE	9.0 - - - 10.0
				_					Borehole termin	ated at 10.0n	n in sand.									
Image: Section of the section of th														ND RIPTION						
Ľ	T Pu	tab	-			E	XCAVATIC	ON L	OG TO BE READ IN CONJUN	CTION WITH A	CCOMPANYING REP	ORT NOTE	S AN	ID ABBF	REVIA	ATIO	NS			
				rte					20 G Phor	eorge St, Horn ne: (02) 9476 9	SOCIATES PTY LTD sby, NSW 2077 Austra 999 Fax: (02) 9476 876 EB: http://www.martens	67			Ξn	ıg		ering oreho	g Log - ole	•

СГ	IEN	т	A	nmos R	Reso	ourc	e Manag	eme	ent Pty Ltd	COMMENCED	30/07/14	COMPLETE	D 30/	07/14			REF	BH104	
-	OJE	ст							chnical Assessment	LOGGED	GMT/BR	CHECKED	ED RE Sheet 1 of 1						
SI			36	31, 367	_				/ Rd & 774 Marsh Rd, ——Bobs Farm, NSW	GEOLOGY	Aeolian Sand	VEGETATI					PROJECT N	D. P1303897	
				ISIONS			k Mounted Hy 10.0m depth		Auger	EASTING NORTHING	NA	RL SURFAC		m AHD uth South \	West		SLOPE	2%	
				ION DA					MAT	ERIAL DAT						MPLIN	G & TEST		
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	SOIL NAME, plasticit colour, secondary moisture condition, c ROCK NAME, grain	and minor compo onsistency/relative	icteristics, inents, e density,	CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)	A		LTS AND OBSERVATIONS	
<u>v</u>	Nil	N	M	0.2				SP	SAND - Medium	grained, dark or organics.	grey/grey,	-+	<u>MD</u>		0.5	3897/104	/0.5	T <u>OPSOIL</u>	
				1.0				SP	SAND - Medium		/		L		0.5	3037/104	10.5	- 1.0	
				<u>1.2</u>						rading to		-+		+				- AEOLIAN	
				2.0				SP	orar	nge/brown.			L	A	2.5	3897/104	/ 2.5	2 <u>0</u> - - -	
				<u>3</u> .0 - - <u>3.</u> 5								- +						3.0 	
v	Nil	N	м	<u>4.</u> 0 					G	rading to								- AEOLIAN 4.0 	
				<u>5</u> .0				SP	yell	ow/brown.			L	A	5.5	3897/104	/ 5.5	5.0 - - -	
				6.0 														6 <u>.0</u> - - - 7 0	
				8.0						rading to								- AEOLIAN -	
								SP	light y	ellow white.			L					- - - 9.0	
				 10.0									MD	A	10.0	3897/104	/ 10.0	- - 10.0	
				 11.0					Borehole termin	ated at 10.0n	n in sand.							- - 11.0	
				 12.0														- - 12 <u>.0</u>	
																		-	
				<u>1</u> 3.0														13. <u>0</u> -	
				 														- - 14 <u>.0</u>	
				-														-	
				<u>1</u> 5.0 														15.0 - -	
				<u>16</u> .0															
				- - 17.0														- - - 17.0	
					UPPO		WATER		MOISTURE DRILLING		STENCY DENSITY			TESTING				18.0 CLASSIFICATION	
F S C V	H Ba A Ha SI C Co V-I	ackhoe and au bade ncrete Bit	g exca e buck iger e Core	vation SC et RE Ni r	B Ro	oring otcrete ock Bol o suppo	lts 👽 Wat	measu er leve er outf	red M Moist L Low I W Wet M Mode Wp Plastic limit H High Iow WI Liquid limit R Refus	erate F Fi St Sti sal VSt Ve H Ha	oft L Loose rm MD Medium D ff D Dense ery Stiff VD Very Dens	Dense U U D D Se M M	sturbed bisture c	ed sample sample	S V: D' FI	 Pocket per Standard S Vane she CP Dynam penetro O Field der 'S Water sa 	ic cone meter isity	SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural	
	C lu T Pu			de Bit			EXC AL/ATH	201	DG TO BE READ IN CONJUN						////				
				rte Martens & Ass		S			M 20 G Phor	IARTENS & AS eorge St, Horn ne: (02) 9476 9	SOCIATES PTY LTD sby, NSW 2077 Austra 999 Fax: (02) 9476 876 EB: http://www.martens	lia 67				jine	ering oreho	y Log - ole	

СГ	IEN'	Т	A	nmos R	leso	urc	e Manag	eme	ent Pty Ltd	COMMENCED	30/07/14	COMPLET	ED 3	0/07/14			REF	BH105
	OJE	СТ							chnical Assessment y Rd & 774 Marsh Rd,		GMT/BR Aeolian Sand	CHECKED		E			Sheet 1	
SI		NT					k Mounted Hy		Bobs Farm, NSW	GEOLOGY	NA	VEGETATI RL SURFA	_	.pprox 15m	AHD		PROJECT N	O. P1303897
EXC				ISIONS	Ø95n		10.0m depth			NORTHING	NA	ASPECT	E	ast			SLOPE	2-4%
	EX		/AT	ION DA		ш		z	MAT	ERIAL DAT	Γ Α				SA	MPLIN	G & TEST	TING
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	SOIL NAME, plasticit colour, secondary moisture condition, c ROCK NAME, grain	and minor compo onsistency/relative	acteristics, ments, e density,	CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)	A		ILTS AND OBSERVATIONS
V	Nil	N	М	<u>-0</u> .3	-			SP	SAND - Mediu	m grained, da or organics.	ark grey,		_ <u>L</u>		0.5	3897/105	/ 0.5	- TOPSOIL
				 				SP	SAND - Medium g		/ grey/orange.		L					1.0
				2.0						rading to								- AEOLIAN
				-				SP	brov	wn/orange.		-	VL	A	2.5	3897/105	/ 2.5	
				<u>3.0</u>						rading to		+ - +		- + -	-			
				<u>4.0</u>														- - 4 <u>.0</u> -
V	Nil	N	М	<u>5</u> .0										A	5.5	3897/105	/ 5.5	- 5.0 - -
				<u>6.</u> 0				SP	liabt.	/ellow/white.								- 6 <u>.0</u> -
				7.0				- Зг	iight y	enow/writte.			VL					- 7. <u>0</u> -
				0.8 -														- 8.0 -
				9.0														- 9.0 - -
				10.0 					Borehole termin	ated at 10.0n	n in sand.			A	10.0	3897/105	/ 10.0	
				<u>1</u> 1.0														11. <u>0</u>
				-														-
				<u>12</u> .0														12 <u>.0</u>
				 13.0														- - 13.0 -
				E														-
				<u>14</u> .0														14 <u>.0</u>
				E														-
				<u>1</u> 5.0 														15. <u>0</u> –
																		-
				16.0 														16 <u>.0</u>
				- 17.0														- 17.0
				F														-
				<u>1</u> 8.0														
N X B F S	Na E H Ba A Ha Sp	atural xisting ackhoe and au bade	expos exca buck ger	ure SH vation SC et RE Nil		oring otcrete ck Bol	ts <u>▼</u> Wat		red M Moist L Low W Wet M Mode Wp Plastic limit H High	NCE VS Ve S Se erate F Fi St Sti sal VSt Ve	oft L Loose rm MD Medium I iff D Dense ery Stiff VD Very Dens	ose A A B B Dense U U D D Se M M	uger sa ulk sam Indisturl isturbe loisture	ple bed sample d sample content	pi S V D	Standard S Vane sho CP Dynam penetro	ic cone meter	Y USCS
V T	V-E C Tur	ngsten	Carb	r ide Bit			► Wat	er inflo	W		ard able	Ux T	upe sar	mple (x mm		D Field der /S Water sa		N Agricultural
	T Pu	sh tub	e			E	EXCAVATIO	ON LO	OG TO BE READ IN CONJUN		ACCOMPANYING REP	ORT NOTE	S ANI		VIATI	ONS		
		n	2	rte	n	S			20 G Phor	eorge St, Horn ne: (02) 9476 9	SSOCIATES PTY LTD sby, NSW 2077 Austra 999 Fax: (02) 9476 876	67		E	ng		-	y Log -
		(C) Coj	oyright	Martens & Ass	sociates	s Pty. L	.td . 2014		mail@mart	ens.com.au W	EB: http://www.martens	s.com.au				BC	oreho	ne

С	LIEN	IT	Ammos Resource Management Pty Ltd COMMENCED 30/07/14 COM				COMPLETE	ED 30/07/14 REF BH106				6								
	ROJ	EC								echnical Assessment	LOGGED	GMT/BR	CHECKED	RE					of 1	
	TE			303	51, 367	9 & 3	3721	Nelso	n B	ay Rd & 774 Marsh Rd Bobs Farm, NSW	GEOLOGY	Aeolian Sand	VEGETATIO	_				PROJECT NO	D. P1303897	
				1EN	SIONS	4WD Ø95m	Truck nm X 1	Mounted F 0.0m dept	lydrau n	lic Auger	NORTHING	NA	RL SURFAC		rox 20m th South			SLOPE	2%	
	E)	(C/	AVA	\TI	on da	TA				MAT	ERIAL DAT	A				SA	MPLIN	G & TEST	ING	
METUDD	SUPPORT	WATED	WALER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	SOIL NAME, plastici colour, secondary moisture condition, o ROCK NAME, grain	AL DESCRIPTION city or particle characteristics, ry and minor components, consistency/relative density, in size, texture/fabric, colour, gth, weathering.		CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)	A		LTS AND OBSERVATION	IS
`	Ni	١		м	-0.3				SP	SAND - Mec	lium grained,	beige.		VL			2807/106			
				M	<u>-0.3</u> <u>-</u> <u>1</u> .0 - - <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>				SP	SAND - Medium grainer between 2.5m trace	d, yellow tend	ling to light yellow		MD MD	A A	2.5	3897/106 3897/106 3897/106	/2.5	- AEOLIAN	 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
	X BH E HA F S S CC C	Natur Exist Backh Hand Spad oncr -Bit ungs	ral exp ting exp hoe bin auge le rete C ten C	MET posu corer	ure SH vation SC et RE Ni	JPPOR H Sho C Shoi J No s	ring tcrete k Bolts suppor	a ⊻ ^{Wa} √ Wa ⊳ Wa	ie obs meas ter lev ter ou ter inf	ured M Moist L Low el W Wet M Mod Wp Plastic limit H High fflow WI Liquid limit R Refu	G CONSI ANCE VS V Serate F F Sal VSt V F Fr	STENCY DENSITY ary Soft VL Very Loo oft L Loose rm MD Medium I MD Dense ary Stiff VD Very Dens ard	ise A Aug B Bul Dense U Un D Dis se M Moi Ux Tut	ger sam k sampl disturbe turbed s sture co be samp	e sample ontent ole (x mm	PI S D D N FI	Standard S Vane sh CP Dynam penetro D Field der /S Water sa	ic cone meter hsity	CLASSIFICA SYMBOLS A SOIL DESCF Y N SOIL DESCF N Agricu	ND RIPTION
Quality Sheet No. 4	(rte lartens & Ass		S			N 20 C Pho	MARTENS & As George St, Horr ne: (02) 9476 9	SSOCIATES PTY LTD Isby, NSW 2077 Austra 999 Fax: (02) 9476 87 EB: http://www.martens	ılia 67				gine	ering oreho	∫ Log · ole	•

<u> </u>	CLIENT Ammos Resource Management Pty Ltd PROJECT Acid Sulphate Soils & Geotechnical Assessment				-		30/07/14 GMT/BR	COMPLETE		30/07/14 RE			REF	BH107			
	TE	201		•	9 & 37	21 Nelso	n Ba	av Rd & 774 Marsh Rd.		Aeolian Sand	VEGETATIO					Sheet 1 PROJECT NO	of 1 D. P1303897
		NT	1		4WD Tru	ick Mounted H	lydraul	Bobs Farm, NSW	EASTING	NA	RL SURFAC	_	prox 6m A	HD			
EX				ISIONS	Ø95mm 2	X 10.0m dept	n		NORTHING	NA	ASPECT	Sou	uth East			SLOPE	2%
	EX			ION DA			1	MAT	ERIAL DA	ГА			_	SA	MPLIN	G & TES	FING
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	L DRILLING H RESISTANCE	1 (7)	CLASSIFICATION	SOIL NAME, plasticit colour, secondary moisture condition, c ROCK NAME, grain	and minor comp consistency/relativ	acteristics, onents, re density,	CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)	А		ILTS AND OBSERVATIONS
V	Nil	N	M	<u>0.2</u>			SP	SAND - Medium gr	ained, minor	organics and /	-+	VL	+	-			T <u>opsoil</u> - Aeolian
		Z	м	<u>1</u> .0 - 2.0 - <u>3</u> .0			SP	SAND - Medium graine	ed, light brow	n/yellow/orange.		L					1. 2 <u>.</u> 3.
		4.5 V		<u>4.0</u>					rading to		+-+		+ -			lapsed ground	- MARINE4. water
V	Nil	Y	w	5.0 6.0 								L	A/B	5.5	back to 3897/107		5. 6 <u>.</u>
				7.0 8.0			SP	yellov	w/light grey.				A	7.0	3897/107	/7.0	7. 8 <u>.</u>
												MD	A	8.5	3897/107		9.
				-				Borehole termin	ated at 10.0	m in sand.				10.0	3697/107	/10.0	10.
				<u>1</u> 1.0													11.
				<u>12</u> .0 													1 <u>2.</u>
				<u>1</u> 3.0 													13. 14 <u>.</u>
				<u>14.</u> 0 15.0													1 <u>4.</u> 15.
				<u>-</u> - 1 <u>6</u> .0													16 <u>.</u>
				 17.0													17.
				 18.0													18.
	X E BH Ba HA Ha S S CC Co V V-	atural Existing ackhoe and au pade oncrete Bit ngster	expos g exca e buck iger e Core	sure SI vation So set RI Ni	JPPORT H Shoring C Shotcre B Rock Bo I No sup	ete X Not olts <u>¥</u> Wa port √ Wa ┣ Wa	ie obse measu ter leve ter out ter infle	ured M Moist L Low el W Wet M Mode Wp Plastic limit H High flow WI Liquid limit R Refu:	NCE VS V S S Stal F F St Si Sal VSt V H H F Fr	STENCY DENSITY ery Soft VL Very Lo oft L Loose irm MD Medium iff D Dense ery Stiff VD Very Der ard able	ose A Au B Bu Dense U Un D Dis Ise M Mo Ux Tu	ger san lk samp disturbed sturbed isture c be sam	ble ed sample sample ontent ple (x mm	PF S D D) FI W	Standard S Vane sh CP Dynam penetro D Field der /S Water sa	iic cone ometer hsity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural
4		/					514 L									_	
Quality Sheet No	(rte		Ltd . 2014		20 G Phor	George St, Horr ne: (02) 9476 9	SSOCIATES PTY LTD hsby, NSW 2077 Austra 1999 Fax: (02) 9476 8 EB: http://www.marten	alia 767		E	ng	-	ering oreho	y Log - ole

С	LIEN	Т	An	nmos F	Resou	rce Man	agen	nent Pty Ltd	COMMENCED	29/07/14	COMPLETE) 29/07	7/14			REF	BH108
Р	ROJE	ЕСТ						echnical Assessment	LOGGED	GMT/BR	CHECKED	RE					of 1
s	TE		36	31, 367	9 & 3	721 Nels	on B	Bay Rd & 774 Marsh Rd,	GEOLOGY	Aeolian Sand	VEGETATIO	NA NA				PROJECT NO	- P1303897
	UIPME					ruck Mounted		Bobs Farm, NSW	EASTING	NA	RL SURFAC		ox 6m A	HD			
E)						n X 13.0m dej	oth			NA	ASPECT	East				SLOPE	0-2%
⊢	EX			ION DA			7		ERIAL DAT	Α				SA	MPLIN	G & TEST	ING
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	M DRILLING	1 (7)	CLASSIFICATION	MATERIAL SOIL NAME, plasticit colour, secondary moisture condition, c ROCK NAME, grain strength	and minor compo onsistency/relative	cteristics, nents, e density,	CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)	A		TS AND BSERVATIONS
V	Nil	Ν	М	0.4			SP			/light grey,		VL					- TOPSOIL _
							SP		or organics.	/	1	VL A 0.5 3897/				/0.5	- AEOLIAN
				1.0			4 S	+	SAND - Medium grained, light grey Grading to							·	- AEOLIAN1.0
				-			2		Grading to								-
				<u>2.</u> 0			2										2.0
				-			SP	' light gre	ey and brown			L	A	2.5	3897/108	/2.5	-
				3.0	8												3.0
		$\frac{3.5}{\underline{V}}$		- - 3.5											- Ground	water at 3.5m.	-
				E –					rading to		F - T		† —				- MARINE
				<u>4.</u> 0 													4 <u>.0</u> –
				F			SP		brown.								-
				5.0					510WH.			MD					5.0
				_									A	5.5	3897/108	/5.5	-
				6.0	80 80						\vdash $ \downarrow$		L				6.0
				_				G	rading to								- MARINE
Ň	Nil	Y	W	7.0													7.0
							2										-
							Ś					L					-
				<u>8.</u> 0 													8 <u>.0</u> –
				F									A	8.5	3897/108	/8.5	-
				9.0			N.						ł				9. <u>0</u>
				E			SP	,	grey.								-
				<u>10</u> .0					0,								10 <u>.0</u>
				_		and a second second Second second second Second second											-
				- 11.0													- 11.0
				-								MD					
				E													-
				<u>12</u> .0			24 21										12 <u>.0</u>
				-													-
	_			13.0			2						A	13.0	3897/108	/13.0	13.0
				E				Borehole termin	ated at 13.0m	n in sand.							-
				<u>14</u> .0													14 <u>.0</u>
				- -													-
																	 15.0
				E													
				F													-
				<u>16</u> .0 													1 <u>6.0</u> –
				F													-
				17.0													17.0
				Ē													-
	F.01.115		/	18.0				MOIOTUDE				INC 5 T					
		atural	expos	sure SI	JPPORT H Shorir C Shotc	ng N N	one obs	MOISTURE DRILLING served D Dry RESISTA sured M Moist L Low		ry Soft VL Very Loc	ose A Au	ING & T ger samp k sample	le	pp		enetrometer I penetration tes	CLASSIFICATION SYMBOLS AND t SOIL DESCRIPTION
	BH Ba HA Ha	ackhoe and au	buck	et R	B Rock	Bolts 포 W	ater le	vel W Wet M Mode Wp Plastic limit H High	erate F Fir St Stil	rm MD Medium I ff D Dense	Dense U Un D Dis	disturbed turbed sa	l sample ample	e V	S Vane sh CP Dynam	ear lic cone	
	S SI CC Cc V V-		Core	r			ater ou		Н На			sture cor be sample			penetro D Field der	nsity	N Agricultural
	V V- TC Tu <u>PT Pu</u>	ngster		ide Bit		⊳ v	aterin	10W	г Ffi	able				vv	'S Water sa		
						EXCAVA	TION I	LOG TO BE READ IN CONJUN	CTION WITH A	CCOMPANYING REF	PORT NOTE:	AND A	BBRE	VIAT	IONS		
et No. 4			2	- 4 -						SOCIATES PTY LTD	alia		E	nc	ine	erina	Log -
ty Shee		M	a	rte	ns	5		Phor	ne: (02) 9476 99	sby, NSW 2077 Austra 999 Fax: (02) 9476 87	67		_			-	-
Qualit	(C) Copyright Martens & Associates Pty. Ltd . 2014 Barrens & Associates Pty. Ltd . 2014 Barrens & Associates Pty. Ltd . 2014 Barrens & Associates Pty. Ltd . 2014																

11 Appendix D – DCP Testing Results

Site		51 Nicks	on Bay Road, Bo	bs Farm	1					
Clie			ource Manager							
Logge		7 111100 1103	GMT/BR		Date L	ogged	29/07/2014			
Checke			RE			hecked				
Comm	ents									
pth Interval				TEST DATA						
(m)	DCP 101	DCP 102	DCP 103	DCP 104	DCP 105	DCP 106				
0.15	1	1	1	5 4	1	2				
0.30	2	3	4	4	2	3				
0.45	1	5	4	5	3	3				
0.75	1	4	4	4	4	4				
0.90	1	5	3	5	4	5				
1.05	1	3	3	6	2	5				
1.20	2	4	3	5	3	5				
1.35	3	6	4	5	3	6				
1.50	2	4	4	5	3	8				
1.65	4	4	5	5	2	9				
1.80	4	3	4	5	2	6				
1.95	4	3	4	5	2	6				
2.10	4	5	5	5	2	6				
2.25	4	4	6	4	2	7				
2.40	3	7	10	3	2	8				
2.55	3	4	15	3	2	7				
2.70	3	5	16	5	2	6				
2.85	4	3	14	5	2	5				
3.00	4	5	13	5	2	5				
3.15	4	4	14	5	3	5				
3.30	3	4	13	8	3	6				
3.45	3 4	4	10 8	8	2	6				
3.60	4 5	2	10	6	3	6				
3.75	5	2	10	6	2	7				
4.05	6	1	9	4	2	7				
4.05	5	1	8	3	2	6				
4.35	10	2	8	4	3	8				
4.50	13	2	8	3	2	12				
4.65	12	2	8	3	2	9				
4.80	9	3	9	4	2	9				
4.95	9	7	8	4	2	12				
5.10	11	8	8	5	2	12				
5.25	9	8	8	5	2	15				
5.40	6	11	7	6	3	12				
5.55	6	12	8	7	3	15				
5.70	5	15	7	5	3	11				
5.85	6	16	7	6	3	17				
6.00	6	19	8	7	3	22				
6.15	6	21	8	9	3	19				
6.30	5	24	8	9	3	18				
6.45	6	25	8	9	2	16				
6.60	5	26	7	8	3	25				
6.75	6	25	5	7	3	20				
6.90	5	30	4	7	3	27				
7.05	6	Terminiated	5	6	3	30				
7.20	5	@	5	6	3	25				
7.35	5	6.9 m	9	5	4	15				
7.50	6		8	7	4	20				
7.65	7		9	5	4	17				
7.80	7		18	7 4	4	17				
7.95 8.10	8		25 30	4 5	4 3	18				
8.25	° 9		18	10	4	9				
8.40	9		22	10	4	18				
8.55	8		40	10	4	15				
8.70	9	1	Terminiated	12	4	21				
8.85	9	1	@	13	4	18				
9.00	12		8.55 m	16	5	14	1			
9.15	11	1		10	3	10				
9.30	7			18	4	10	1			
9.45	10			18	5	25				
9.60	10			25	5	35	1			
9.75	9			20	5	39	1			
9.90	6			26	5	40				
10.05	7			29	5	Terminiated				
10.20	8			Terminiated	Terminiated	@				
10.35	8			@	@	9.9 m				
10.50	8			10.05 m	10.05 m					
	Terminiated									
	@									
	10.5 m									

12 Appendix E – Laboratory Certificates

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

96132

Client: Martens & Associates Pty Ltd 6/37 Leighton Place Hornsby NSW 2077

Attention: Ben Rose, Gray Taylor

Sample log in details:

Your Reference:P1303897, Bobs FarmNo. of samples:5 watersDate samples received / completed instructions received23/08/13 / 23/08/13This report replaces the previous R00 report due to the addition of pH results

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details: Date results requested by: / Issue Date: 30/08/13 / 8/01/14 Date of Preliminary Report: Not issued NATA accreditation number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

Ion Balance Our Reference: Your Reference Date Sampled Type of sample	UNITS	96132-1 3897/GMB01 22/08/2013 water	96132-2 3897/GMB02 22/08/2013 water	96132-3 3897/GMB03 22/08/2013 water	96132-4 3897/GMB04 22/08/2013 water	96132-5 3897/GMB05 22/08/2013 water
Date prepared	-	24/08/2013	24/08/2013	24/08/2013	24/08/2013	24/08/2013
Date analysed	-	24/08/2013	24/08/2013	24/08/2013	24/08/2013	24/08/2013
Calcium - Dissolved	mg/L	20	13	1.9	1.0	7.3
Potassium - Dissolved	mg/L	47	57	2.2	1.6	9.7
Sodium - Dissolved	mg/L	28	23	32	26	22
Magnesium - Dissolved	mg/L	16	13	4.0	3.2	7.8
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO3	mg/L	7	7	8	<5	19
Carbonate Alkalinity as CaCO3	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO3	mg/L	7	7	8	<5	19
Sulphate, SO4	mg/L	77	57	11	9	25
Chloride, Cl	mg/L	88	37	54	43	40
Ionic Balance	%	6.1	27	-1.3	1.9	4.4

Miscellaneous Inorganics						
Our Reference:	UNITS	96132-1	96132-2	96132-3	96132-4	96132-5
Your Reference		3897/GMB01	3897/GMB02	3897/GMB03	3897/GMB04	3897/GMB05
Date Sampled		22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
Type of sample		water	water	water	water	water
Date prepared	-	24/08/2013	24/08/2013	24/08/2013	24/08/2013	24/08/2013
Date analysed	-	24/08/2013	24/08/2013	24/08/2013	24/08/2013	24/08/2013
рН	pH Units	5.3	5.4	5.6	5.2	6.0
Electrical Conductivity	μS/cm	500	490	250	190	270
Total Dissolved Solids (grav)	mg/L	310	[NA]	[NA]	[NA]	[NA]
Total Suspended Solids	mg/L	32	[NA]	[NA]	[NA]	[NA]
NOx as N in water	mg/L	16	21	0.01	<0.005	0.86
TKN in water	mg/L	1.9	2.3	0.5	0.3	1.7
Ammonia as N in water	mg/L	0.24	0.78	0.45	0.064	0.65
Nitrate as N in water	mg/L	16	21	0.015	<0.005	0.85

Metals in Water - Dissolved						
Our Reference:	UNITS	96132-1	96132-2	96132-3	96132-4	96132-5
Your Reference		3897/GMB01	3897/GMB02	3897/GMB03	3897/GMB04	3897/GMB05
Date Sampled		22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
Type of sample		water	water	water	water	water
Date digested	-	26/08/2013	26/08/2013	26/08/2013	26/08/2013	26/08/2013
Date analysed	-	26/08/2013	26/08/2013	26/08/2013	26/08/2013	26/08/2013
Phosphorus - Dissolved	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

Metals in Waters - Acid extractable						
Our Reference:	UNITS	96132-1	96132-2	96132-3	96132-4	96132-5
Your Reference		3897/GMB01	3897/GMB02	3897/GMB03	3897/GMB04	3897/GMB05
Date Sampled		22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
Type of sample		water	water	water	water	water
Date prepared	-	26/08/2013	26/08/2013	26/08/2013	26/08/2013	26/08/2013
Date analysed	-	27/08/2013	27/08/2013	27/08/2013	27/08/2013	27/08/2013
Phosphorus - Total	mg/L	0.1	<0.05	<0.05	<0.05	0.07

MethodID	Methodology Summary
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA 22nd ED, 2320-B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 22nd ED, 4110 -B.
Inorg-041	Gravimetric determination of the total solids content of water using APHA 22nd ED 2540B.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA 22nd ED 2510 and Rayment & Lyons.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-5oC.
Inorg-019	Suspended Solids - determined gravimetrcially by filtration of the sample, in accordance with APHA 22nd ED, 2540-D. The samples are dried at 104+/-5oC.
Inorg-055	Nitrate - determined colourimetrically based on EPA353.2 and APHA 22nd ED NO3- F. Soils are analysed following a water extraction.
Inorg-062	TKN - determined colourimetrically based on APHA 22nd ED 4500 Norg.
Inorg-057	Ammonia - determined colourimetrically based on EPA350.1 and APHA 22nd ED 4500-NH3 F, Soils are analysed following a KCI extraction.

Client Reference:

P1303897, Bobs Farm

Client Reference: P1303897, Bobs Farm											
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
Ion Balance						Base II Duplicate II % RPD					
Date prepared	-			26/08/2 013	96132-5	24/08/2013 24/08/2013	LCS-W3	26/08/2013			
Date analysed	-			26/08/2 013	96132-5	24/08/2013 24/08/2013	LCS-W3	26/08/2013			
Calcium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	96132-5	7.3 7.2 RPD:1	LCS-W3	93%			
Potassium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	96132-5	9.7 9.8 RPD:1	LCS-W3	96%			
Sodium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	96132-5	22 23 RPD:4	LCS-W3	93%			
Magnesium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	96132-5	7.8 7.8 RPD:0	LCS-W3	94%			
Hydroxide Alkalinity (OH ⁻) as CaCO3	mg/L	5	Inorg-006	⊲5	96132-5	<5 [N/T]	[NR]	[NR]			
Bicarbonate Alkalinity as CaCO3	mg/L	5	Inorg-006	⊲5	96132-5	19 [N/T]	[NR]	[NR]			
Carbonate Alkalinity as CaCO3	mg/L	5	Inorg-006	⊲5	96132-5	<5 [N/T]	[NR]	[NR]			
Total Alkalinity as CaCO3	mg/L	5	Inorg-006	⊲5	96132-5	19 [N/T]	LCS-W3	104%			
Sulphate, SO4	mg/L	1	Inorg-081	<1	96132-5	25 [N/T]	LCS-W3	99%			
Chloride, Cl	mg/L	1	Inorg-081	<1	96132-5	40 [N/T]	LCS-W3	90%			
Ionic Balance	%		Inorg-041	[NT]	96132-5	4.4 [N/T]	[NR]	[NR]			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
Miscellaneous Inorganics					511#	Base II Duplicate II % RPD		Recovery			
Date prepared	-			24/08/2 013	96132-1	24/08/2013 24/08/2013	LCS-W1	24/08/2013			
Date analysed	-			24/08/2 013	96132-1	24/08/2013 24/08/2013	LCS-W1	24/08/2013			
рН	pHUnits		Inorg-001	[NT]	96132-1	5.3 5.3 RPD:0	LCS-W1	102%			
Electrical Conductivity	µS/cm	1	Inorg-002	<1	96132-1	500 490 RPD: 2	LCS-W1	102%			
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	⊲5	96132-1	310 [N/T]	LCS-W1	95%			
Total Suspended Solids	mg/L	5	Inorg-019	న	96132-1	32 [N/T]	LCS-W1	95%			
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	96132-1	16 15 RPD:6	LCS-W1	90%			
TKN in water	mg/L	0.1	Inorg-062	<0.1	96132-1	1.9 1.9 RPD:0	LCS-W1	96%			
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	96132-1	0.24 0.23 RPD:4	LCS-W1	116%			
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	96132-1	16 15 RPD:6	LCS-W1	90%			

		Cli	ent Referenc	e: P	1303897, Bol	os Farm		
QUALITY CONTROL Metals in Water -	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Dissolved								
Date digested	-			26/08/2 013	96132-5	26/08/2013 26/08/2013	LCS-W3	26/08/2013
Date analysed	-			26/08/2 013	96132-5	26/08/2013 26/08/2013	LCS-W3	26/08/2013
Phosphorus - Dissolved	mg/L	0.05	Metals-020 ICP-AES	<0.05 96132-5		<0.05 <0.05	LCS-W3	91%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in Waters - Acid extractable						Base II Duplicate II % RPD		
Date prepared	-			26/08/2 013	[NT]	[NT]	LCS-W1	26/08/2013
Date analysed	-			26/08/2 013	[NT]	[NT]	LCS-W1	26/08/2013
Phosphorus - Total	mg/L	0.05	Metals-020 ICP-AES	<0.05	[NT]	[NT]	LCS-W1	97%
QUALITYCONTROL	UNITS	6	Dup.Sm#		Duplicate			
lon Balance				Base+I	Duplicate + %RF	D		
Date prepared	-		96132-1	24/08/2	013 24/08/201	3		
Date analysed	-		96132-1	24/08/2	013 24/08/201	3		
Calcium - Dissolved	mg/L		96132-1		20 [N/T]			
Potassium - Dissolved	mg/L		96132-1		47 [N/T]			
Sodium - Dissolved	mg/L		96132-1		28 [N/T]			
Magnesium - Dissolved	mg/L		96132-1		16 [N/T]			
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L		96132-1		<5 <5			
Bicarbonate Alkalinity as CaCO3	mg/L	-	96132-1	7	7 RPD:0			
Carbonate Alkalinity as CaCO3	mg/L		96132-1		<5 <5			
Total Alkalinity as CaCO3	mg/L		96132-1	7	7 RPD:0			
Sulphate, SO4	mg/L		96132-1		77 [N/T]			
Chloride, Cl	mg/L		96132-1		88 [N/T]			
Ionic Balance	%		96132-1		6.1 [N/T]			

Report Comments:

Sample#2:The mass inbalance may be caused by other ions that have not been measured.

Asbestos ID was analysed by Approved Identifier:	Not applicable for this job
Asbestos ID was authorised by Approved Signatory:	Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

		1989	
	-	s since	
	Su	ngineers	
	rte	Iting en	
	Jal	consu	
1	D,	1	

1

SOIL ANALYSIS CHAIN OF CUSTODY FORM

Name	3897 – bobs farm	obs farm										
Martens Contact Officer	Ben Rose						Contact Email	mail	brose@martens.com.au	ens.com.au		
	Sample Date	Date	29/07/2014 + 30/07/2014	2014 + 2014	Dispatch Date	Date	1/08/2014	-	Turnaround Time	ime	Standard	~
Sampling and Shipping	Our Reference	rence	P13038	P1303897JCOC01V01			Shipping	Shipping Method (X)	Hand	Post	Ŭ	Courier
	On Ice (X)	Q	×	No Ice (X)		Other (X)						
					Laboratory	itory						
Name	EnviroLab	dr										
Sample Delivery Address	12 Ashle	12 Ashley Street, Chatswood	atswoo	J								
Delivery Contact	Name	Aileen		Phone	9910 6200		Fax		Email			
Piease Send Report By (X)	Post		Fax	Email	×	Reporting Email Address	il Address	brose@martens.com.au rerni@martens.com.au)	brose@martens.com.au (please cc rerni@martens.com.au)	ease cc		

Analysis

Sample ID	Spocus	EC	Dispersion (emerson crumb)
9 3897/101/2.5/	×	×	
/ 3897/101/8.5	×	×	
3897/101/13.0	×	×	×
/3897/102/2.5	×	×	
6 43897/102/5.0	×	×	×
6) J3897/102/7.0	×	×	×
A / 3897/103/2.5	×	×	
(3) /3897/103/8.0	×	х	×
3897/103/10.0	×	x	
/3897/104/2.5	×	х	

Cooling: CEAcepack Security: IdlacdBroken/None Temp: Cool/Ambient

Envirales Services 12 Ashley St

ENTOLA

Chatewood NSW 2067 Ph: (02) 9910 6200

Time Received: 14:30 Date Received: 1/8/14

Received by: PT

> www.martens.com.au MARTENS & ASSOCIATES P/L ABN 85 070 240 890 ACN 070 240 890 > mail@martens.com.au

ACCE ACCE

Unit 6 / 37 Leighton Place Hornsby NSW 2077, Australia **Ph** 02 9476 9999 **Fax** 02 9476 8767 Head Office

2 11403 Page of SOIL ANALYSIS CHAIN OF CUSTODY Dispersion (emerson crumb) × × × × × × × × × × × × × S Spocus × × × × × × × × × × × (3897/106/10.0)
 (3897/107/5.5)
 (3897/107/10.0)
 (3897/108/2.5)
 (3897/108/5.5) (1) /3897/104/10.0 /3897/105/2.5 /3897/105/10.0 20 / 3897/108/8.5 / 3897/108/8.5 Sample ID R. C -19

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

114013

Client: Martens & Associates Pty Ltd 6/37 Leighton Place Hornsby NSW 2077

Attention: Ben Rose

Sample log in details:

Your Reference:3897, Bobs FarmNo. of samples:21 SoilsDate samples received / completed instructions received01/08/2014/01/08/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 11/08/14
 / 11/08/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

Client Reference: 3897, Bobs Farm

Miscellaneous Inorg - soil						
Our Reference:	UNITS	114013-1	114013-2	114013-3	114013-4	114013-5
Your Reference		3897/101	3897/101	3897/101	3897/102	3897/102
Depth		2.5	8.5	13.0	2.5	5.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/08/2014	04/08/2014	04/08/2014	04/08/2014	04/08/2014
Date analysed	-	05/08/2014	05/08/2014	05/08/2014	05/08/2014	05/08/2014
Electrical Conductivity 1:5 soil:water	µS/cm	13	10	16	13	50
Miscellaneous Inorg - soil						
Our Reference:	UNITS	114013-6	114013-7	114013-8	114013-9	114013-10
Your Reference		3897/102	3897/103	3897/103	3897/103	3897/104
Depth		7.0	2.5	8.0	10.0	2.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/08/2014	04/08/2014	04/08/2014	04/08/2014	04/08/2014
Date analysed	-	05/08/2014	05/08/2014	05/08/2014	05/08/2014	05/08/2014
Electrical Conductivity 1:5 soil:water	µS/cm	24	4	15	19	7
Miscellaneous Inorg - soil						
Our Reference:	UNITS	114013-11	114013-12	114013-13	114013-14	114013-15
Your Reference		3897/104	3897/105	3897/105	3897/106	3897/106
Depth		10.0	2.5	10.0	5.5	10.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/08/2014	04/08/2014	04/08/2014	04/08/2014	04/08/2014
Date analysed	-	05/08/2014	05/08/2014	05/08/2014	05/08/2014	05/08/2014
Electrical Conductivity 1:5 soil:water	µS/cm	5	7	4	12	4
Miscellaneous Inorg - soil						
Our Reference:	UNITS	114013-16	114013-17	114013-18	114013-19	114013-20
Your Reference		3897/107	3897/107	3897/108	3897/108	3897/108
Depth		5.5	10.0	2.5	5.5	8.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/08/2014	04/08/2014	04/08/2014	04/08/2014	04/08/2014
	-	05/08/2014	05/08/2014	05/08/2014	05/08/2014	05/08/2014
Date analysed						

Miscellaneous Inorg - soil		
Our Reference:	UNITS	114013-21
Your Reference		3897/108
Depth		13.0
Type of sample		Soil
Date prepared	-	04/08/2014
Date analysed	-	05/08/2014
Electrical Conductivity 1:5 soil:water	µS/cm	30

Client Reference: 389

sPOCAS						
Our Reference:	UNITS	114013-1	114013-2	114013-3	114013-4	114013-5
Your Reference		3897/101	3897/101	3897/101	3897/102	3897/102
Depth		2.5	8.5	13.0	2.5	5.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Date analysed	-	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
pH kd	pH units	5.0	5.6	5.4	4.6	4.8
TAA pH 6.5	moles H ⁺ /t	5	<5	<5	10	10
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	0.02	0.02
pH ox	pH units	4.4	4.3	5.7	3.5	2.1
TPApH6.5	moles H ⁺ /t	<5	<5	<5	<5	190
s-TPA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	0.30
TSA pH 6.5	moles H ⁺ /t	<5	<5	<5	<5	180
s-TSA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	0.29
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
Skci	%w/w S	<0.005	<0.005	<0.005	<0.005	0.02
Sp	%w/w	<0.005	<0.005	<0.005	<0.005	0.28
Spos	%w/w	<0.005	<0.005	<0.005	<0.005	0.26
a-Spos	moles H ⁺ /t	<5	<5	<5	<5	170
Саксі	%w/w	<0.005	<0.005	<0.005	<0.005	0.06
Сар	%w/w	0.007	<0.005	0.009	0.007	0.06
CaA	%w/w	0.005	<0.005	0.009	<0.005	<0.005
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	0.014
Мgр	%w/w	0.005	<0.005	0.005	0.007	0.016
Mga	%w/w	<0.005	<0.005	<0.005	0.006	<0.005
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	<10	<10	<10	12	180
Liming rate	kg CaCO3/t	<0.75	<0.75	<0.75	0.90	13
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

Client Reference: 3897,

sPOCAS						
Our Reference:	UNITS	114013-6	114013-7	114013-8	114013-9	114013-10
Your Reference		3897/102	3897/103	3897/103	3897/103	3897/104
Depth		7.0	2.5	8.0	10.0	2.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Date analysed	-	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
рН ка	pH units	5.1	5.4	5.0	5.4	5.0
TAA pH 6.5	moles H ⁺ /t	7	5	5	<5	5
s-TAA pH 6.5	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
pH ox	pH units	2.7	4.2	2.5	3.3	4.5
TPApH6.5	moles H ⁺ /t	47	<5	25	12	<5
s-TPA pH 6.5	%w/w S	0.08	<0.01	0.04	0.02	<0.01
TSA pH 6.5	moles H ⁺ /t	40	<5	20	10	<5
s-TSA pH 6.5	%w/w S	0.06	<0.01	0.03	0.02	<0.01
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
Sксі	%w/w S	0.01	<0.005	<0.005	<0.005	<0.005
SP	%w/w	0.10	<0.005	0.05	0.04	<0.005
Spos	%w/w	0.1	<0.005	0.05	0.04	<0.005
a-Spos	moles H ⁺ /t	60	<5	30	26	<5
Саксі	%w/w	0.01	<0.005	0.01	<0.005	<0.005
Сар	%w/w	0.01	<0.005	0.01	0.02	<0.005
Сад	%w/w	<0.005	<0.005	<0.005	0.014	<0.005
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
MgP	%w/w	<0.005	<0.005	<0.005	0.014	<0.005
Mga	%w/w	<0.005	<0.005	<0.005	0.013	<0.005
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	67	<10	35	28	<10
Liming rate	kg CaCO₃/t	5.0	<0.75	2.6	2.1	<0.75
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

Client Reference: 3897,

sPOCAS						
Our Reference:	UNITS	114013-11	114013-12	114013-13	114013-14	114013-15
Your Reference		3897/104	3897/105	3897/105	3897/106	3897/106
Depth		10.0	2.5	10.0	5.5	10.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Date analysed	-	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
рН ка	pH units	5.7	5.2	5.5	5.6	5.2
TAA pH 6.5	moles H ⁺ /t	<5	5	<5	<5	<5
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
pH ox	pH units	5.0	3.9	5.5	5.1	4.7
TPApH6.5	moles H ⁺ /t	<5	<5	<5	<5	<5
s-TPA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
TSA pH 6.5	moles H ⁺ /t	<5	<5	<5	<5	<5
s-TSA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCE	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
SKCI	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
Sp	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Spos	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
a-Spos	moles H ⁺ /t	<5	<5	<5	<5	<5
Саксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Сар	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
СаА	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Mgp	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
MgA	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	<10	<10	<10	<10	<10
Liming rate	kg CaCO₃/t	<0.75	<0.75	<0.75	<0.75	<0.75
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

Client Reference: 3897, B

sPOCAS						
Our Reference:	UNITS	114013-16	114013-17	114013-18	114013-19	114013-20
Your Reference		3897/107	3897/107	3897/108	3897/108	3897/108
Depth		5.5	10.0	2.5	5.5	8.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Date analysed	-	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
рН ка	pH units	5.2	5.2	4.5	5.3	5.2
TAA pH 6.5	moles H ⁺ /t	5	5	10	5	5
s-TAA pH 6.5	%w/w S	<0.01	<0.01	0.02	<0.01	<0.01
pH ox	pH units	6.3	4.0	3.4	5.2	2.8
TPApH6.5	moles H ⁺ /t	<5	<5	22	<5	35
s-TPA pH 6.5	%w/w S	<0.01	<0.01	0.04	<0.01	0.06
TSA pH 6.5	moles H ⁺ /t	<5	<5	12	<5	30
s-TSA pH 6.5	%w/w S	<0.01	<0.01	0.02	<0.01	0.05
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCe	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
Skci	%w/w S	<0.005	<0.005	<0.005	<0.005	0.008
Sp	%w/w	<0.005	<0.005	<0.005	0.01	0.06
Spos	%w/w	<0.005	<0.005	<0.005	0.01	0.06
a-Spos	moles H ⁺ /t	<5	<5	<5	7	36
Саксі	%w/w	<0.005	<0.005	0.006	<0.005	<0.005
Сар	%w/w	0.02	<0.005	0.006	0.01	<0.005
Сал	%w/w	0.016	<0.005	<0.005	0.009	<0.005
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Mgp	%w/w	0.005	<0.005	<0.005	0.013	<0.005
MgA	%w/w	0.005	<0.005	<0.005	0.010	<0.005
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	<10	<10	10	12	41
Liming rate	kg CaCO3/t	<0.75	<0.75	0.75	0.93	3.1
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

Client Reference:

sPOCAS Our Reference: Your Reference	UNITS	114013-21 3897/108
Depth		13.0
Type of sample		Soil
 Date prepared	-	4/8/2014
Date analysed	-	4/8/2014
рН ка	pH units	5.2
TAA pH 6.5	moles H ⁺ /t	<5
s-TAA pH 6.5	%w/w S	<0.01
A Hq	pH units	2.8
TPApH6.5	moles H ⁺ /t	35
s-TPA pH 6.5	%w/w S	0.06
TSA pH 6.5	moles H ⁺ /t	32
s-TSA pH 6.5	%w/w S	0.05
ANCE	%CaCO3	<0.05
a-ANCe	moles H ⁺ /t	<5
s-ANCe	%w/w S	<0.05
SKCI	%w/w S	<0.005
Sp	%w/w	0.06
Spos	%w/w	0.05
a-Spos	moles H ⁺ /t	35
Саксі	%w/w	<0.005
Сар	%w/w	<0.005
CaA	%w/w	<0.005
Мдксі	%w/w	<0.005
Мgр	%w/w	<0.005
MgA	%w/w	<0.005
Fineness Factor	-	1.5
a-Net Acidity	moles H ⁺ /t	37
Liming rate	kg CaCO3/t	2.8
a-Net Acidity without ANCE	moles H ⁺ /t	NA
Liming rate without ANCE	kg CaCO3/t	NA

Method ID	Methodology Summary
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons.
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

Client Reference: 38

Client Reference: 3897, Bobs Farm								
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II % RPD		
Date prepared	-			04/08/2 014	114013-1	04/08/2014 04/08/2014	LCS-1	04/08/2014
Date analysed	-			05/08/2 014	114013-1	05/08/2014 05/08/2014	LCS-1	05/08/2014
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	114013-1	13 12 RPD:8	LCS-1	103%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS						Base II Duplicate II % RPD		
Date prepared	-			4/8/201 4	114013-1	4/8/2014 4/8/2014	LCS-1	4/8/2014
Date analysed	-			4/8/201 4	114013-1	4/8/2014 4/8/2014	LCS-1	4/8/2014
рН ка	pH units		Inorg-064	[NT]	114013-1	5.0 4.9 RPD:2	LCS-1	92%
TAA pH 6.5	moles H⁺/t	5	Inorg-064	ব্য	114013-1	5 5 RPD:0	LCS-1	121%
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	114013-1	<0.01 <0.01	[NR]	[NR]
pH ox	pH units		Inorg-064	[NT]	114013-1	4.4 4.9 RPD:11	LCS-1	96%
TPApH6.5	moles H ⁺ /t	5	Inorg-064	45	114013-1	<5 <5	LCS-1	90%
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	114013-1	<0.01 <0.01	[NR]	[NR]
TSA pH 6.5	moles H⁺/t	5	Inorg-064	ත්	114013-1	<5 <5	LCS-1	89%
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	114013-1	<0.01 <0.01	[NR]	[NR]
ANCE	% CaCO3	0.05	Inorg-064	<0.05	114013-1	<0.05 <0.05	[NR]	[NR]
a-ANCE	moles H ⁺ /t	5	Inorg-064	45	114013-1	<5 <5	[NR]	[NR]
s-ANCE	%w/w S	0.05	Inorg-064	<0.05	114013-1	<0.05 <0.05	[NR]	[NR]
S κcı	%w/w S	0.005	Inorg-064	<0.005	114013-1	<0.005 <0.005	LCS-1	100%
Sp	%w/w	0.005	Inorg-064	<0.005	114013-1	<0.005 <0.005	LCS-1	91%
Spos	%w/w	0.005	Inorg-064	<0.005	114013-1	<0.005 <0.005	LCS-1	89%
a-Spos	moles H ⁺ /t	5	Inorg-064	ব্য	114013-1	<5 <5	LCS-1	90%
Саксі	%w/w	0.005	Inorg-064	<0.005	114013-1	<0.005 <0.005	LCS-1	93%
Сар	%w/w	0.005	Inorg-064	<0.005	114013-1	0.007 0.006 RPD:15	[NR]	[NR]
CaA	%w/w	0.005	Inorg-064	<0.005	114013-1	0.005 0.005 RPD:0	[NR]	[NR]
Мдксі	%w/w	0.005	Inorg-064	<0.005	114013-1	<0.005 <0.005	LCS-1	94%
Mgp	%w/w	0.005	Inorg-064	<0.005	114013-1	0.005 0.009 RPD:57	[NR]	[NR]
MgA	%w/w	0.005	Inorg-064	<0.005	114013-1	<0.005 0.008	[NR]	[NR]
Sнсі	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Snas	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]

			ent Reference	:e: 38	397, Bobs Fa	rm	-	·
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS					511#	Base II Duplicate II % RPD		Recovery
a-Snas	moles	5	Inorg-064	45	[NT]	[NT]	[NR]	[NR]
s-Snas	H⁺/t %w/w	0.01	Inorg-064	<0.01	[NT]	[NT]	[NR]	[NR]
Fineness Factor	S	15	loorg 064	-15	114013-1		[NID]	[NID]
a-Net Acidity	- moles	1.5 10	Inorg-064 Inorg-064	<1.5 <10	114013-1	1.5 1.5 RPD:0 <10 <10	[NR] LCS-1	[NR] 91%
a-Net Actuity	H ⁺ /t	10	11101g-004	<10	114013-1		LC3-1	91%
Liming rate	kg СаСОз /t	0.75	Inorg-064	<0.75	114013-1	<0.75 <0.75	LCS-1	90%
a-Net Acidity without ANCE	moles H ⁺ /t	10	Inorg-064	<10	114013-1	NA NA	[NR]	[NR]
Liming rate without ANCE	kg CaCO3 /t	0.75	Inorg-064	<0.75	114013-1	NA NA	[NR]	[NR]
					Duralianta	Orailtea Orae #		
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS		Dup.Sm#	Base+	Duplicate Duplicate+%RP	Spike Sm# D	Spike % Reco	overy
Date prepared	-	1	14013-11	04/08/2	2014 04/08/201	4 LCS-2	04/08/201	4
Date analysed	-	1	14013-11	05/08/2	2014 05/08/201	4 LCS-2	05/08/201	4
Electrical Conductivity 1:5 soil:water	µS/cn	n 1	14013-11	5	5 RPD:0	LCS-2	102%	
QUALITYCONTROL	UNITS	З [Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
sPOCAS				Base + Duplicate + %RPD		D		
Date prepared	-	1	14013-11	4/8/2014 4/8/2014		LCS-2	4/8/2014	
Date analysed	-	1	14013-11	4/8/2014 4/8/2014		LCS-2	4/8/2014	
pH kd	pH uni	ts 1	14013-11	5.7	5.6 RPD:2	LCS-2	93%	
TAA pH 6.5	moles H ⁺ /t		14013-11		<5 <5	LCS-2	113%	
s-TAA pH 6.5	%w/w	S 1	14013-11	1 <0.01 <0.01		[NR]	[NR]	
рН ох	pH uni	ts 1	14013-11	5.0 4.8 RPD:4		LCS-2	106%	
TPApH6.5	moles H ⁺ /t		14013-11	<5 <5		LCS-2	83%	
s-TPA pH 6.5	%w/w	S 1	14013-11	<	0.01 <0.01	[NR]	[NR]	
TSA pH 6.5	moles H ⁺ /t		14013-11		<5 <5	LCS-2	81%	
s-TSA pH 6.5	%w/w	S 1	14013-11	<	0.01 <0.01	[NR]	[NR]	
ANCE	% CaCO		14013-11	<0.05 <0.05		[NR]		
a-ANCe	moles H⁺/t		14013-11		<5 <5	[NR]	[NR]	
s-ANCE	%w/w		14013-11	<0.05 <0.05		[NR]	[NR]	
SKCI	%w/w	S 1	14013-11	<0.005 <0.005		LCS-2	106%	
Sp	%w/\	<i>N</i> 1	14013-11	<0	.005 <0.005	LCS-2	88%	
Spos	%w/\	<i>N</i> 1	14013-11	<0	.005 <0.005	LCS-2	83%	
a-Spos	moles H ⁺ /t		14013-11		<5 <5	LCS-2	83%	

	<u>г</u>	Client Referen	,		
QUALITY CONTROL sPOCAS	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Саксі	%w/w	114013-11	<0.005 <0.005	LCS-2	100%
Сар	%w/w	114013-11	<0.005 <0.005	[NR]	[NR]
CaA	%w/w	114013-11	<0.005 <0.005	[NR]	[NR]
Мдксі	%w/w	114013-11	<0.005 <0.005	LCS-2	98%
Мgр	%w/w	114013-11	<0.005 <0.005	[NR]	[NR]
MgA	%w/w	114013-11	<0.005 <0.005	[NR]	[NR]
Fineness Factor	-	114013-11	1.5 1.5 RPD:0	[NR]	[NR]
a-Net Acidity	moles H ⁺ /t	114013-11	<10 <10	LCS-2	84%
Liming rate	kg CaCO3 /t	114013-11	<0.75 <0.75	LCS-2	83%
a-Net Acidity without ANCE	moles H⁺/t	114013-11	NA NA	[NR]	[NR]
Liming rate without ANCE	kg CaCO3 /t	114013-11	NA NA	[NR]	[NR]
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate		1
sPOCAS			Base + Duplicate + %RPD		
Date prepared	-	114013-21	4/8/2014 4/8/2014		
Date analysed	-	114013-21	4/8/2014 4/8/2014		
pH kd	pH units	114013-21	5.2 5.3 RPD:2		
TAA pH 6.5	moles H⁺/t	114013-21	<5 <5		
s-TAA pH 6.5	%w/w S	114013-21	<0.01 <0.01		
pH ox	pH units	114013-21	2.8 2.9 RPD:4		
TPApH6.5	moles H ⁺ /t	114013-21	35 22 RPD: 46		
s-TPA pH 6.5	%w/w S	114013-21	0.06 0.04 RPD:40		
TSA pH 6.5	moles H⁺/t	114013-21	32 20 RPD:46		
s-TSA pH 6.5	%w/w S	114013-21	0.05 0.03 RPD:50		
ANCE	% CaCO3	114013-21	<0.05 <0.05		
a-ANCe	moles H ⁺ /t	114013-21	<5 <5		
s-ANCe	%w/w S	114013-21	<0.05 <0.05		
SKCI	%w/w S	114013-21	<0.005 0.007		
Sp	%w/w	114013-21	0.06 0.05 RPD: 18		
Spos	%w/w	114013-21	0.05 0.04 RPD: 22		
a-Spos	moles H ⁺ /t	114013-21	35 25 RPD: 33		
Саксі	%w/w	114013-21	<0.005 <0.005		
Cap	%w/w	114013-21	<0.005 <0.005		
CaA	%w/w	114013-21	<0.005 <0.005		

		Client Reference	e: 3897, Bobs Farm
QUALITY CONTROL sPOCAS	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD
Мдксі	%w/w	114013-21	<0.005 <0.005
Мдр	%w/w	114013-21	<0.005 <0.005
MgA	%w/w	114013-21	<0.005 <0.005
Sнсı	%w/w S	[NT]	[NT]
Snas	%w/w S	[NT]	[NT]
a-Snas	moles H⁺/t	[NT]	[TN]
s-Snas	%w/w S	[NT]	[NT]
Fineness Factor	-	114013-21	1.5 1.5 RPD:0
a-Net Acidity	moles H⁺/t	114013-21	37 27 RPD: 31
Liming rate	kg CaCO3 /t	114013-21	2.8 2.1 RPD: 29
a-Net Acidity without ANCE	moles H⁺/t	114013-21	NA NA
Liming rate without ANCE	kg CaCO3 /t	114013-21	NA NA

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

95948

Client: Martens & Associates Pty Ltd 6/37 Leighton Place Hornsby NSW 2077

Attention: Gray Taylor

Sample log in details:

Your Reference:P12303897, Bobs FarmNo. of samples:27 SoilsDate samples received / completed instructions received21/08/2013 / 21/08/2013

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 29/08/13
 / 28/08/13

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

Client Reference: P12303897, Bobs Farm

sPOCAS						
Our Reference:	UNITS	95948-1	95948-2	95948-3	95948-4	95948-5
Your Reference		3897/BH03	3897/BH03	3897/BH03	3897/BH03	3897/BH03
Depth		+12.5 to +11.5	+6.5 to +5.5	+1.5 to +0.5	-0.5 to -1.1	-1.3 to -1.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
Date analysed	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
рН ка	pH units	4.8	5.4	5.6	5.6	5.4
TAA pH 6.5	moles H ⁺ /t	10	<5	<5	<5	10
s-TAA pH 6.5	%w/w S	0.02	<0.01	<0.01	<0.01	0.02
рН ох	pH units	3.9	4.5	4.5	4.4	3.2
TPA pH 6.5	moles H ⁺ /t	30	<5	<5	10	250
s-TPA pH 6.5	%w/w S	0.05	<0.01	<0.01	0.02	0.40
TSA pH 6.5	moles H ⁺ /t	20	<5	<5	7	240
s-TSA pH 6.5	%w/w S	0.03	<0.01	<0.01	0.01	0.38
ANCE	% CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
S ксі	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
SP	%w/w	<0.005	<0.005	<0.005	<0.005	0.08
Spos	%w/w	<0.005	<0.005	<0.005	<0.005	0.08
a-Spos	moles H ⁺ /t	<5	<5	<5	<5	51
Саксі	%w/w	<0.005	<0.005	<0.005	<0.005	0.12
Сар	%w/w	<0.005	<0.005	<0.005	<0.005	0.13
СаА	%w/w	<0.005	<0.005	<0.005	<0.005	0.014
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	0.15
Mgp	%w/w	<0.005	<0.005	<0.005	<0.005	0.16
Mga	%w/w	<0.005	<0.005	<0.005	<0.005	0.009
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	10	<10	<10	<10	61
Liming rate	kg CaCO3/t	0.75	<0.75	<0.75	<0.75	4.6
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

Client Reference: P12303897, Bobs Farm

sPOCAS						
Our Reference:	UNITS	95948-6	95948-7	95948-8	95948-9	95948-10
Your Reference		3897/BH03	3897/BH03	3897/BH03	3897/BH04	3897/BH04
Depth		-1.3	-3.1	-13	+5.5 to +3.0	+3.3 to +2.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
Date analysed	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
рН ка	pH units	5.2	4.5	5.3	5.2	5.3
TAA pH 6.5	moles H ⁺ /t	10	17	<5	5	<5
s-TAA pH 6.5	%w/w S	0.02	0.03	<0.01	<0.01	<0.01
рН ох	pH units	2.7	2.3	3.3	4.3	4.5
TPApH6.5	moles H ⁺ /t	460	360	27	17	17
s-TPA pH 6.5	%w/w S	0.74	0.58	0.04	0.03	0.03
TSA pH 6.5	moles H ⁺ /t	450	340	25	12	15
s-TSA pH 6.5	%w/w S	0.73	0.55	0.04	0.02	0.02
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCe	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
SKCI	%w/w S	0.005	0.06	<0.005	<0.005	<0.005
Sp	%w/w	0.14	0.56	0.03	<0.005	<0.005
Spos	%w/w	0.13	0.51	0.03	<0.005	<0.005
a-Spos	moles H ⁺ /t	84	320	18	<5	<5
Саксі	%w/w	0.15	0.04	<0.005	<0.005	<0.005
Сар	%w/w	0.15	0.03	<0.005	<0.005	<0.005
Сал	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Мдксі	%w/w	0.15	0.044	<0.005	<0.005	<0.005
MgP	%w/w	0.13	0.036	<0.005	<0.005	<0.005
Mga	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	94	330	21	<10	<10
Liming rate	kg CaCO3/t	7.0	25	1.5	<0.75	<0.75
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

Client Reference: P12303897

P12303897,	Bobs	Farm

spocas						
Our Reference:	UNITS	95948-11	95948-12	95948-13	95948-14	95948-15
Your Reference		3897/BH04	3897/BH04	3897/BH04	3897/BH04	3897/BH04
Depth		+0.8 to +0.5	-0.5 to -1.5	-2.5 to -3.0	-6.0 to -7.5	-11.0 to -13.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
Date analysed	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
рН ка	pH units	4.9	5.3	5.5	5.3	5.4
TAA pH 6.5	moles H ⁺ /t	10	5	<5	<5	<5
s-TAA pH 6.5	%w/w S	0.02	<0.01	<0.01	<0.01	<0.01
pH ox	pH units	3.8	4.4	4.4	3.4	3.8
TPApH6.5	moles H ⁺ /t	37	12	17	27	20
s-TPA pH 6.5	%w/w S	0.06	0.02	0.03	0.04	0.03
TSA pH 6.5	moles H ⁺ /t	27	7	16	26	19
s-TSA pH 6.5	%w/w S	0.04	0.01	0.03	0.04	0.03
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
S ксі	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
SP	%w/w	<0.005	<0.005	<0.005	0.03	0.02
Spos	%w/w	<0.005	<0.005	<0.005	0.02	0.02
a-Spos	moles H ⁺ /t	<5	<5	<5	14	11
Саксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Сар	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Сал	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
MgP	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Mga	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	10	<10	<10	16	12
Liming rate	kg CaCO3/t	0.75	<0.75	<0.75	1.2	0.93
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

Client Reference: P12303

P12303897, Bobs Farm

spocas						
Our Reference:	UNITS	95948-16	95948-17	95948-18	95948-19	95948-20
Your Reference		3897/BH04	3897/BH05	3897/BH05	3897/BH05	3897/BH05
Depth		-13.5 to -12.1	+8.5 to +8.0	+2.0 to +1.0	+0.0 to -0.5	+0.0 to -1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
Date analysed	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
рН ка	pH units	5.4	5.5	5.5	4.4	5.3
TAA pH 6.5	moles H ⁺ /t	<5	<5	<5	7	5
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	0.01	<0.01
pH ox	pH units	3.7	4.6	4.5	3.4	4.5
TPApH6.5	moles H ⁺ /t	20	7	12	47	7
s-TPA pH 6.5	%w/w S	0.03	0.01	0.02	0.08	0.01
TSA pH 6.5	moles H ⁺ /t	17	5	10	40	<5
s-TSA pH 6.5	%w/w S	0.03	<0.01	0.02	0.06	<0.01
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCe	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
Skci	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
Sp	%w/w	0.02	<0.005	<0.005	<0.005	<0.005
Spos	%w/w	0.02	<0.005	<0.005	<0.005	<0.005
a-Spos	moles H ⁺ /t	10	<5	<5	<5	<5
Саксі	%w/w	<0.005	<0.005	<0.005	0.005	<0.005
Сар	%w/w	<0.005	<0.005	<0.005	0.005	<0.005
Сал	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Мgр	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
MgA	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Sнсі	%w/w S	[NT]	[NT]	[NT]	<0.005	[NT]
Snas	%w/w S	[NT]	[NT]	[NT]	<0.005	[NT]
a-Snas	moles H ⁺ /t	[NT]	[NT]	[NT]	<5	[NT]
s-Snas	%w/w S	[NT]	[NT]	[NT]	<0.01	[NT]
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	12	<10	<10	<10	<10
Liming rate	kg CaCO3/t	0.92	<0.75	<0.75	<0.75	<0.75
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

Client Reference: P12303

P12303897, Bobs Farm

spocas						
Our Reference:	UNITS	95948-21	95948-22	95948-23	95948-24	95948-25
Your Reference		3897/BH05	3897/BH05	3897/BH05	3897/BH05	3897/BH05
Depth		-1.1 to -1.5	-1.5 to -2.0	-2.5 to -3.0	-5.0	-5.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
Date analysed	-	22/08/2013	22/08/2013	22/08/2013	22/08/2013	22/08/2013
рН ка	pH units	5.7	5.6	5.6	5.9	7.9
TAA pH 6.5	moles H ⁺ /t	<5	<5	<5	5	<5
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
pH ox	pH units	4.5	4.6	4.4	2.2	4.1
TPApH6.5	moles H ⁺ /t	5	<5	<5	1,500	120
s-TPA pH 6.5	%w/w S	<0.01	<0.01	<0.01	2.4	0.19
TSA pH 6.5	moles H ⁺ /t	<5	<5	<5	1,500	120
s-TSA pH 6.5	%w/w S	<0.01	<0.01	<0.01	2.4	0.19
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCE	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
S ксі	%w/w S	<0.005	<0.005	<0.005	0.13	0.09
SP	%w/w	<0.005	<0.005	<0.005	2.8	1.5
Spos	%w/w	<0.005	<0.005	<0.005	2.6	1.4
a-Spos	moles H ⁺ /t	<5	<5	<5	1,600	870
Саксі	%w/w	<0.005	<0.005	<0.005	0.32	0.39
Сар	%w/w	<0.005	<0.005	<0.005	0.39	1.5
Сал	%w/w	<0.005	<0.005	<0.005	0.075	1.2
Мдксі	%w/w	<0.005	<0.005	<0.005	0.23	0.14
MgP	%w/w	<0.005	<0.005	<0.005	0.28	0.16
Mga	%w/w	<0.005	<0.005	<0.005	0.048	0.014
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	<10	<10	<10	1,600	370
Liming rate	kg CaCO3/t	<0.75	<0.75	<0.75	120	28
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

Client Reference:

P12303897, Bobs Farm

sPOCAS			
Our Reference:	UNITS	95948-26	95948-27
Your Reference		3897/BH05	3897/BH05
Depth		-6.5	-7.5
Type of sample		Soil	Soil
Date prepared	-	22/08/2013	22/08/2013
Date analysed	-	22/08/2013	22/08/2013
рН ка	pH units	7.0	8.1
TAA pH 6.5	moles H ⁺ /t	<5	<5
s-TAA pH 6.5	%w/w S	<0.01	<0.01
рН ох	pH units	2.2	2.9
TPApH6.5	moles H ⁺ /t	820	67
s-TPA pH 6.5	%w/w S	1.3	0.11
TSA pH 6.5	moles H ⁺ /t	820	67
s-TSA pH 6.5	%w/w S	1.3	0.11
ANCE	%CaCO3	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5
s-ANCe	%w/w S	<0.05	<0.05
Sксі	%w/w S	0.08	0.01
SP	%w/w	1.6	0.22
Spos	%w/w	1.5	0.21
a-Spos	moles H ⁺ /t	960	130
Саксі	%w/w	0.37	0.07
Сар	%w/w	0.54	0.10
CaA	%w/w	0.17	0.030
Мдксі	%w/w	0.19	0.016
MgP	%w/w	0.23	0.022
MgA	%w/w	0.039	0.006
Fineness Factor	-	1.5	1.5
a-Net Acidity	moles H ⁺ /t	870	88
Limingrate	kg CaCO3/t	65	6.6
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA

MethodID	Methodology Summary
0	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

Client Reference:

P12303897, Bobs Farm

		Clie	nt Referenc	e: P	12303897, Be	obs Farm		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS						Base II Duplicate II % RPD		
Date prepared	-			22/08/2 013	95948-1	22/08/2013 22/08/2013	LCS-1	22/08/2013
Date analysed	-			22/08/2 013	95948-1	22/08/2013 22/08/2013	LCS-1	22/08/2013
рН ка	pH units		Inorg-064	[NT]	95948-1	4.8 4.8 RPD:0	LCS-1	95%
TAA pH 6.5	moles H⁺/t	5	Inorg-064	-45	95948-1	10 7 RPD:35	LCS-1	129%
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	95948-1	0.02 0.01 RPD:67	[NR]	[NR]
pH ox	pH units		Inorg-064	[NT]	95948-1	3.9 4.0 RPD:3	LCS-1	99%
TPApH6.5	moles H ⁺ /t	5	Inorg-064	45	95948-1	30 12 RPD:86	LCS-1	103%
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	95948-1	0.05 0.02 RPD:86	[NR]	[NR]
TSA pH 6.5	moles H ⁺ /t	5	Inorg-064	ব্য	95948-1	20 5 RPD:120	LCS-1	101%
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	95948-1	0.03 <0.01	[NR]	[NR]
ANCE	% CaCO3	0.05	Inorg-064	<0.05	95948-1	<0.05 <0.05	[NR]	[NR]
a-ANCE	moles H⁺/t	5	Inorg-064	ব্য	95948-1	<5 <5	[NR]	[NR]
s-ANCe	%w/w S	0.05	Inorg-064	<0.05	95948-1	<0.05 <0.05	[NR]	[NR]
Skci	%w/w S	0.005	Inorg-064	<0.005	95948-1	<0.005 <0.005	LCS-1	83%
Sp	%w/w	0.005	Inorg-064	<0.005	95948-1	<0.005 <0.005	LCS-1	79%
Spos	%w/w	0.005	Inorg-064	<0.005	95948-1	<0.005 <0.005	LCS-1	79%
a-Spos	moles H ⁺ /t	5	Inorg-064	⊲5	95948-1	<5 <5	LCS-1	79%
Саксі	%w/w	0.005	Inorg-064	<0.005	95948-1	<0.005 <0.005	LCS-1	89%
Сар	%w/w	0.005	Inorg-064	<0.005	95948-1	<0.005 <0.005	[NR]	[NR]
Сад	%w/w	0.005	Inorg-064	<0.005	95948-1	<0.005 <0.005	[NR]	[NR]
Мдксі	%w/w	0.005	Inorg-064	<0.005	95948-1	<0.005 <0.005	LCS-1	87%
Mgp	%w/w	0.005	Inorg-064	<0.005	95948-1	<0.005 <0.005	[NR]	[NR]
MgA	%w/w	0.005	Inorg-064	<0.005	95948-1	<0.005 <0.005	[NR]	[NR]
S нсі	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Snas	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
a-Snas	moles H ⁺ /t	5	Inorg-064	<5	[NT]	[NT]	[NR]	[NR]
s-Snas	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	[NR]	[NR]
Fineness Factor	-	1.5	Inorg-064	<1.5	95948-1	1.5 1.5 RPD:0	[NR]	[NR]
a-Net Acidity	moles H ⁺ /t	10	Inorg-064	<10	95948-1	10 <10	LCS-1	81%
Limingrate	kg CaCO3 /t	0.75	Inorg-064	<0.75	95948-1	0.75 <0.75	LCS-1	80%

Envirolab Reference: 95948 Revision No: R 00

Client Reference:	
-------------------	--

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
						•		
a-Net Acidity without ANCE	moles H ⁺ /t	10	Inorg-064	<10	95948-1	NA NA	[NR]	[NR]
Liming rate without ANCE	kg CaCO3 /t	0.75	Inorg-064	<0.75	95948-1	NA NA	[NR]	[NR]
QUALITY CONTROL	UNITS	<u> </u>	L Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
sPOCAS			· · ·	Base+I	Duplicate + %RP	-	-,	
Date prepared	-		95948-11	22/08/2	013 22/08/201	3 LCS-2	22/8/2013	3
Date analysed	-	9	95948-11	22/08/2	013 22/08/201	3 LCS-2	22/8/2013	3
рН ка	pH uni	ts	95948-11	4.9	4.9 RPD:0	LCS-2	94%	
TAA pH 6.5	moles H⁺/t	; ! !	95948-11	10	7 RPD:35	LCS-2	113%	
s-TAA pH 6.5	%w/w	S	95948-11	0.02	0.01 RPD:67	[NR]	[NR]	
pH ox	pH uni	ts	95948-11	3.8	3.8 RPD:0	LCS-2	93%	
TPApH6.5	moles H ⁺ /t	; !	95948-11	37	37 RPD:0	LCS-2	102%	
s-TPA pH 6.5	%w/w	S S	95948-11	0.06	0.06 RPD:0	[NR]	[NR]	
TSA pH 6.5	moles H ⁺ /t	; !	95948-11	27	30 RPD:11	LCS-2	101%	
s-TSA pH 6.5	%w/w	S S	95948-11	0.04	0.05 RPD:22	[NR]	[NR]	
ANCE	% CaCO		95948-11	<	0.05 <0.05	[NR]	[NR]	
a-ANCE	moles H ⁺ /t	; !	95948-11		<5 <5	[NR]	[NR]	
s-ANCE	%w/w	S S	95948-11	<(0.05 <0.05	[NR]	[NR]	
SKCI	%w/w	S S	95948-11	<0.	.005 <0.005	LCS-2	87%	
Sp	%w/v	v s	95948-11	<0.	.005 <0.005	LCS-2	86%	
Spos	%w/v	v s	95948-11	<0.	005 <0.005	LCS-2	86%	
a-Spos	moles H ⁺ /t	; !	95948-11		<5 <5	LCS-2	86%	
Сакси	%w/v	v s	95948-11	<0.	005 <0.005	LCS-2	91%	
Сар	%w/v	v s	95948-11		.005 <0.005	[NR]	[NR]	
Сад	%w/v		95948-11		005 <0.005	[NR]	[NR]	
Мдксі	%w/v		95948-11		005 <0.005	LCS-2	88%	
MgP	%w/v		95948-11		005 <0.005	[NR]	[NR]	
MgA	%w/v		95948-11		.005 <0.005	[NR]	[NR]	
Fineness Factor	-		95948-11	1.5	1.5 RPD:0	[NR]	[NR]	
a-Net Acidity	moles H ⁺ /t	; !	95948-11		10 <10	LCS-2	87%	
Liming rate	kg CaCO /t		95948-11	C	.75 <0.75	LCS-2	86%	
a-Net Acidity without ANCE	moles H ⁺ /t	; !	95948-11		NA NA	[NR]	[NR]	
Liming rate without ANCE	kg CaCO /t		95948-11		NA NA	[NR]	[NR]	

		Client Referenc	e: P12303897, Bobs
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
sPOCAS			Base + Duplicate + %RPD
Date prepared	-	95948-21	22/08/2013 22/08/2013
Date analysed	-	95948-21	22/08/2013 22/08/2013
рН ка	pH units	95948-21	5.7 5.6 RPD:2
TAA pH 6.5	moles H⁺/t	95948-21	<5 <5
s-TAA pH 6.5	%w/w S	95948-21	<0.01 <0.01
pH ox	pH units	95948-21	4.5 4.5 RPD:0
TPApH6.5	moles H⁺/t	95948-21	5 <5
s-TPA pH 6.5	%w/w S	95948-21	<0.01 <0.01
TSA pH 6.5	moles H ⁺ /t	95948-21	<5 <5
s-TSA pH 6.5	%w/w S	95948-21	<0.01 <0.01
ANCE	% CaCO3	95948-21	<0.05 <0.05
a-ANCe	moles H⁺/t	95948-21	<5 <5
s-ANCE	%w/w S	95948-21	<0.05 <0.05
SKCI	%w/w S	95948-21	<0.005 <0.005
Sp	%w/w	95948-21	<0.005 <0.005
Spos	%w/w	95948-21	<0.005 <0.005
a-Spos	moles H⁺/t	95948-21	<5∥<5
Саксі	%w/w	95948-21	<0.005 <0.005
Сар	%w/w	95948-21	<0.005 <0.005
Сад	%w/w	95948-21	<0.005 <0.005
Мдксі	%w/w	95948-21	<0.005 <0.005
Мgр	%w/w	95948-21	<0.005 <0.005
MgA	%w/w	95948-21	<0.005 <0.005
Shci	%w/w S	[NT]	[NT]
Snas	%w/w S	[NT]	[NT]
a-Snas	moles H ⁺ /t	[NT]	[NT]
s-Snas	%w/w S	[NT]	[NT]
Fineness Factor	-	95948-21	1.5 1.5 RPD:0
a-Net Acidity	moles H⁺/t	95948-21	<10 <10
Liming rate	kg CaCO3 /t	95948-21	<0.75 <0.75
-Net Acidity without ANCE	moles H⁺/t	95948-21	NA NA
Liming rate without ANCE	kg CaCO3 /t	95948-21	NA NA

Envirolab Reference: 95948 Revision No: R 00

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

82 Plain Street Tamworth NSW 2340
 P 02 6762 1733 F 02 6765 910 9

 admin@eastwestonline.com.au
 www.eastwestonline.com.au
 ABN 82 125 442 382

ANALYSIS REPORT SOIL

Project No: EW140521

Customer: Address: Envirolab Services 12 Ashley St Chatswood NSW 2067

Attention: Phone: Fax:

Email:

Signed:

Aileen Hie

02 9910 6200 02 9910 6201 ahie@envirolabservices.com.au

Date of Issue: 14/08/2014

Report No:1Date Received:5/08/20Matrix:SoilLocation:114013Sampler ID:Client SDate of Sampling:22/07/2Sample Condition:Accepta

5/08/2014 Soil 114013 Client Supplied 22/07/2014 Acceptable

Comments:

Dispersion Index ranges from 0 - 16, with 0 being not dispersive and 16 being completely dispersive.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

Stephanie Cameron Operations Manager

East West is certified by the Australian-Asian Soil & Plant Analysis Council to perform various soil and plant tissue analysis. The tests reported herein have been performed in accordance with our terms of accreditation. This report must not be reproduced except in full and EWEA takes no responsibility of the end use of the results within this report. This analysis relates to the sample submitted and it is the client's responsibility to make certain the sample is representative of the matrix to be tested. Samples will be discarded one month after the date of this report. Please

Samples will be discarded one month after the date of this report. Please advise if you wish to have your sample/s returned.

Document ID: REP-01 Issued By: S. Cameron Issue No: 2 Date of Issue: 15/11/12

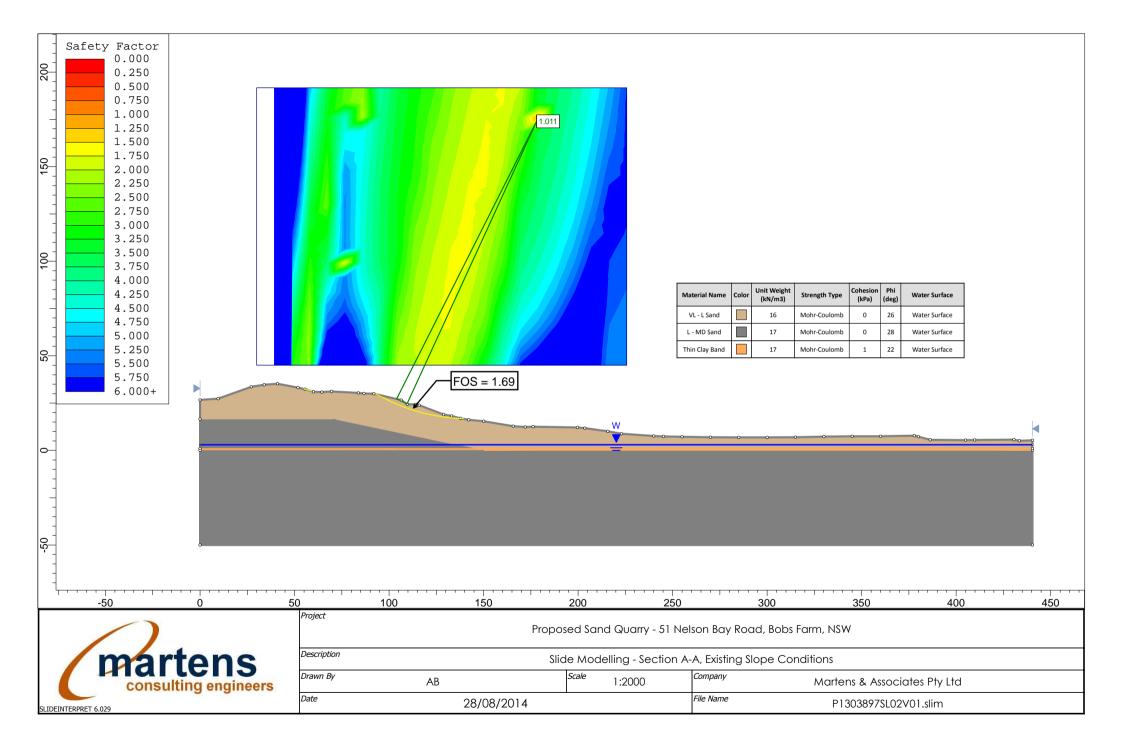
Results you can rely on.

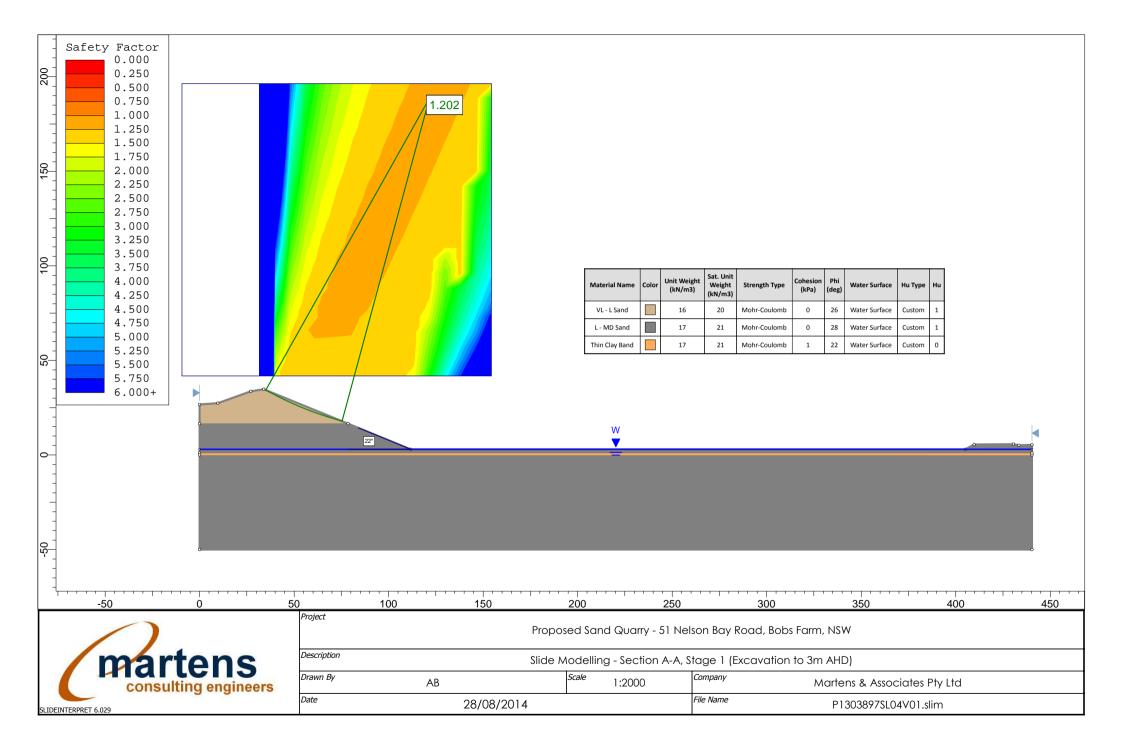
ANALYSIS REPORT

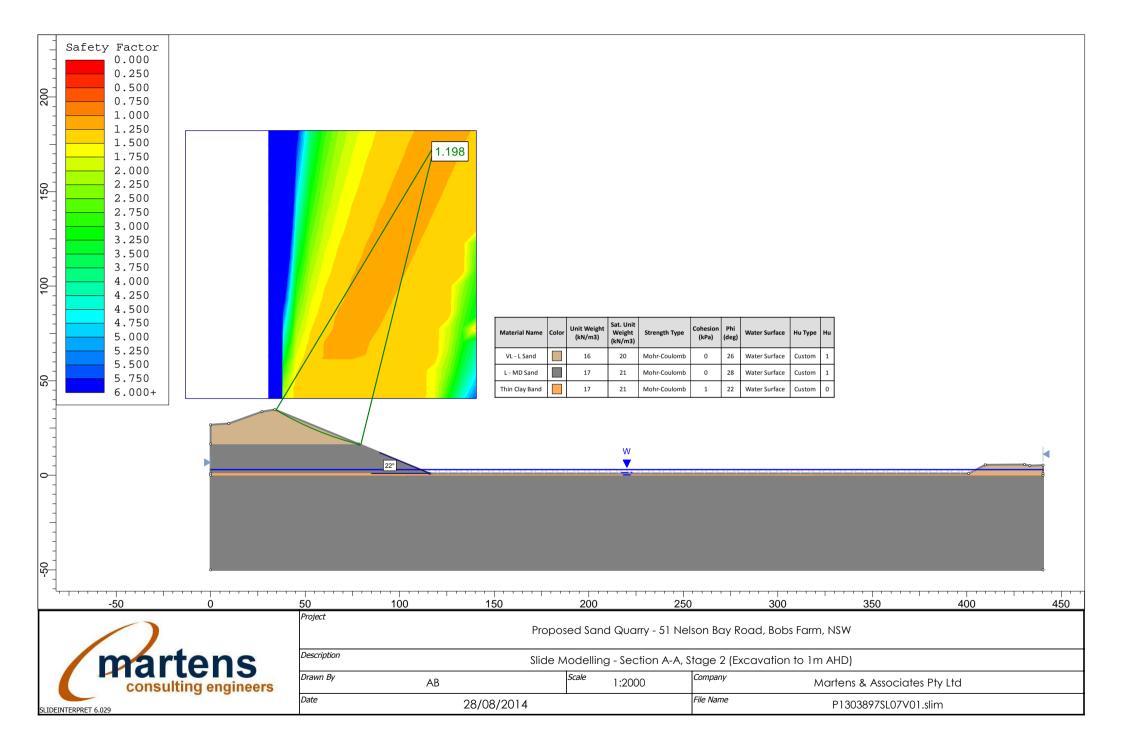
Project No	:						
		Sa	mple ID	114013-3	114013-5	114013-6	114013-8
Test Parameter	Method		Depth cm	-	-	-	-
	Reference	Units	LOR	140521-1	140521-2	140521-3	140521-4
Dispersion Index	Loveday & Pyle	%	na	0	1	0	4

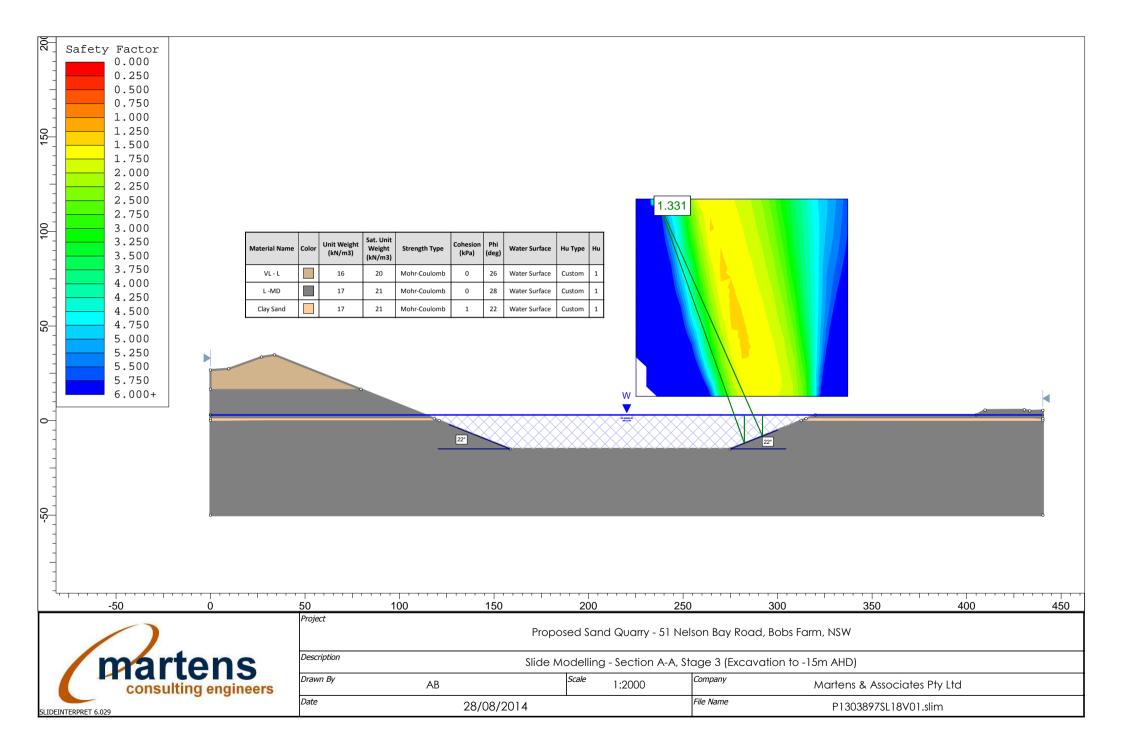
ANALYSIS REPORT

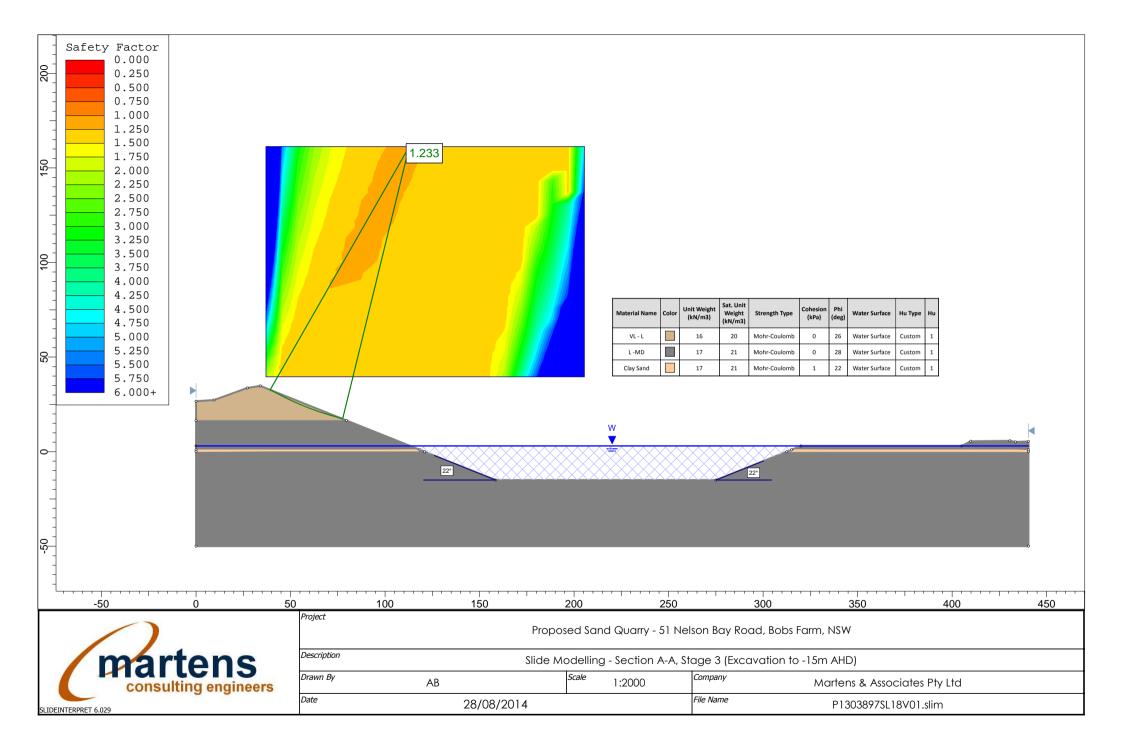
Project No: 140521				Location:	114013	
		Sa	ample ID	114013-19	114013-21	
Test Devemator	Method		Depth cm	-	-	
Test Parameter	Reference	Units	LOR	140521-5	140521-6	
Dispersion Index	Loveday & Pyle	%	na	1	0	


This Analysis Report shall not be reproduced except in full without the written approval of the laboratory.


NB: LOR is the Lowest Obtainable Reading.


DOCUMENT END


13 Appendix F – Slide Modelling Results



14 Appendix G – Risk Evaluation Calculations

Landslide Hazard Evaluation Method based on Walker et al. in AGS Vol 42 No Method ST-24 Revised 20.02.08		ife Assess	sment		m	arter	าร
	6/37	' Leighton Place, Hor	nsby, NSW 2007, Ph: (I	02) 9476 9999 Fax: (02) 9476 8767, mail@m	artens.com.au,www.mart	tens.com
PROJECT DETAILS							
Project		Geo	otechnical Assess	ment	•	Ref. No. P130	03897
Author	G	MT	Reviewed	R	E	Created 17.0	09.14
TEP 1 : ENTER SITE AND DESIGN DATA							
łazard Type	Soil Creep]				
P(H) Annual probability of landslide	0.001						
	INDICATIVE VALUE	RECURRENCE INTERVAL	DESCR	IPTION	DESCRIPTOR	LEVEL	
	10-1	10 years		ed to occur over the In life.	ALMOST CERTAIN	А	
	10 ⁻²	100 years		bably occur under over the design life.	LIKELY	в	
	10 ⁻³	1000 years	The event could oc	cur under tadverse r the design life.	POSSIBLE	с	
	104	10,000 years	The enent might occur circumstances of	r under very adverse /er the design life.	UNLIKELY	D	
	10 ⁻⁵	100,000 years	exceptional circumsta	ances over the design	RARE	E	
	10 ⁶	1,000,000 years		ivable or fanciful over sign life.	BARELY CREDIBLE	F	
Probability of spatial impact impacting building location (S:H) taking into account travel distance and travel direction	0.03		1			<u> </u>	
	FACTOR	DESC	RIPTION	UNITS	VALUE	1	
← W₂ → ↑	W ₁	Likely slid	le/fall width	m	100		
Allotment /	W2	Width of allotment / investigation area		m	700		
Silde/Fall Investigation Area	W ₃		investigation element	 m	60		
← W, →	L _{1Mn}	Minimum run-out length		 m	1		
			un-out length		50		
	L _{1Max}		t / investigation area		700		
$W_3 \rightarrow V_3$		-	investigation element		50		
	L ₃			m			
Dw elling / L ₃	L _{PMn}		ut being 0 - 1 m long	(0 - 1)	0.05		
Investigation Bement	L _{PMax}		t being 0 - 50 m long s slope strike on risk	(0 - 1)	0.95	-	
	WF	ele	ment nslope strike on risk	(0 - 1)	0.23		
	LFMn	element for minim	um run-out distance nslope strike on risk	(0 - 1)	0.07		
	LFMax	element for maxim	um run-out distance	(0 - 1)	0.14		
	L _{F Design}	on risk element	run-out distance	(0 - 1)	0.14	J	
(T:S) Temporal spatial probability given the spatial impact	0.35					_	
	FACTOR	DESCRIPTION		UNITS	VALUE		
	Τ,		person(s) are on-site m		50%		
	T ₂		elling / element that s) occupy	m	70%		
(V:D) Vulnerability of the individual (ie. probability of loss of life given the impact)	0.05						
	CASE	DESCI	RIPTION	RANGE IN DATA	RECOM MENDED VALUE	COMMENTS	Ī
		lf struck b	vy a rockfall	0.1 - 0.7	0.50	May be injured but unlikely to cause death	1
	Person in open space	If buried	by debris	0.8 - 1.0	1.00	Death by asphyxia almost certain	1
	opave	lf not	buried	0.1 - 0.5	0.10	High chance of survival	1
		If vehicle is b	uried / crushed	0.9 - 1.0	1.00	Death is almost certain	1
	Person in a vehicle	If the vehicle is	s damaged only	0.0 - 0.3	0.30	High chance of survival	1
		If the buildi	ng collapses	0.9 - 1.0	1.00	Dealth is almost certain	1
	Persons in	If the building is inun	dated with debris and	0.8 - 1.0	1.00	Death is highly likely	1
	building		n is buried as the building only	0.0 - 0.1	0.05	Very high chance of	1
	L					survival	T
TEP 2 : RISK EVALUATION	5.57E-07]					
	0.01 201						
isk Assessment	Acc	eptable risk for lo	oss of life for the p	erson(s). Risk lev	el suitable for ne	w developments.	

	slide Hazard Evaluation Method based on Walker et al. in AGS Vol 42 No.		ife Assess	sment		m	arte	n
	Method ST-24 Revised 20.02.08	6/37	Leighton Place. Hor	nsby, NSW 2007, Ph: ((02) 9476 9999 Fax: (02	C	artens.com.au,www.m	
ROJECT	DETAILS				<u>, </u>	,,		
	Project Author	GI		Reviewed		E		1404179 3.05.14
			V(I	Keviewed				3.03.14
TEP 1 : EN	NTER SITE AND DESIGN DATA							
azard Ty	/pe	Slide I	Failure					
				-				
(H)	Annual probability of landslide	0.001						
		INDICATIVEVALUE	RECURRENCE INTERVAL		IPTION	DESCRIPTOR	LEVEL	
		10'1	10 years	desiç	ed to occur over the gn life.	ALMOST CERTAIN	А	
		10 ⁻²	100 years		bably occur under over the design life.	LIKELY	в	
		10 ⁻³	1000 years	conditions over	cur under tadverse r the design life.	POSSIBLE	с	
		10-4	10,000 years	circumstances of	ir under very adverse ver the design life.	UNLIKELY	D	
		10 ⁵	100,000 years	exceptional circumsta	ances over the design	RARE	E	
		10 ⁻⁶	1,000,000 years	The event is inconce	ivable or fanciful over sign life.	BARELY CREDIBLE	F	
	Probability of spatial impact impacting building location taking into account travel distance and travel direction	0.02						
-	₩₂→	FACTOR	DESCI	RIPTION	UNITS	VALUE]	
		W1	Likely slid	le/fall width	m	10		
	Allotment / Slide/Fall Investigation	W ₂	Width of allotment	/ investigation area	m	700		
Glubran Prvestgaton Area		W ₃	Width of dw elling / investigation element		m	60		
	← W, →	L _{1Mn}	Minimum run-out length		m	1		
		L _{1Max}	Maximum ru	un-out length	m	100		
		L ₂	Length of allotment	t / investigation area	m	700		
		L ₃	Length of dw elling /	investigation element	m	50		
		L _{PMn}	Probability of runou	ut being 0 - 1 m long	(0 - 1)	0.05		
	Dw elling / L ₃	L _{PMax}	Probability of runout	t being 0 - 100 m long	(0 - 1)	0.95	1	
	Bement	W _F		s slope strike on risk ment	(0 - 1)	0.10	1	
		L _{FMn}	Likelihood of dow nslope strike on risk element for minimum run-out distance		(0 - 1)	0.07		
	· · · · · · · · · · · · · · · · ·	L _{F Max}	Likelihood of dow r	nslope strike on risk um run•out distance	(0 - 1)	0.21	1	
		L _{F Design}	Likelihood of dow nsl	ope strike (integrated) run-out distance	(0 - 1)	0.21		
(T:S)	Temporal spatial probability given the spatial impact	0.35					J	
		FACTOR	DEPOT	RIPTION	UNITS	VALUE	1	
		T ₁		person(s) are on-site	(0-1)	50%		
		T ₁	Percentage of dw elling / element that		(0-1)	70%		
	Vulnerability of the individual (ie. probability of loss of life given the impact)	0.10	person(:	s) occupy	1	<u>I</u>	1	
						RECOMMENDED	001117	
		CASE			RANGE IN DATA	VALUE	COMMENTS May be injured but	_
		Person in open	If struck by a rockfall If buried by debris		0.1 - 0.7	0.50	unlikely to cause deal Death by asphyxia	th
		space			0.8 - 1.0	1.00	almost certain	
				buried	0.1 - 0.5	0.10	High chance of surviv	_
		Person in a vehicle		uried / crushed	0.9 - 1.0	1.00	Death is almost certa	_
				s damaged only	0.0 - 0.3	0.30	High chance of surviv	
		Persons in		ng collapses	0.9 - 1.0	1.00	Dealth is almost certa	_
		Persons in building	the perso	n is buried	0.8 - 1.0	1.00	Death is highly likely	
			If the debris strike	es the building only	0.0 - 0.1	0.05	survival	
TEP 2 : RI	SK EVALUATION							
(D:T)	Risk (annual probability of loss of life of an individual)	7.25E-07						
lisk Asses			L					
(D:T)	Risk (annual probability of loss of life of an individual)	7.25E-07	If the building is inun the perso If the debris strike	ng collapses dated with debris and n is buried	0.9 - 1.0 0.8 - 1.0 0.0 - 0.1	1.00 1.00 0.05	Dealth is almost cer Death is highly like Very high chance survival	rta ely

Preliminary Geotechnical and Acid Sulfate Soils Assessment - Proposed Sand Quarry: Bobs Farm, NSW.