

SMEC Testing Services Pty Ltd

ACN 101 164 792 ABN 22 101 164 792
CONSULTING GEOTECHNICAL & ENVIRONMENTAL ENGINEERS

Phone: (02) 9756 2166 Fax: (02) 9756 1137 Email: enquiries@smectesting.com.au

Unit 14 1 Cowpasture Place WETHERILL PARK NSW 2164

PO BOX 6989 Wetherill Park NSW 2164

FURTHER SITE INVESTIGATION, REMEDIATION AND VALIDATION PROGRAM 27-33 DELHI ROAD, NORTH RYDE, NEW SOUTH WALES

FOR

GOODMAN PROPERTY SERVICES

PROJECT NO. 19257/3243C REPORT NO. 13/1310 **OCTOBER 2013**

TABLE OF CONTENTS PAGE NO.

EXECUTIVE SUMMARY

1.	INTRODUCTION		
2.	REDEVELOPMENT AND PROPOSED LAND USE	2	
3.	SITE IDENTIFICATION	2	
4.	PREVIOUS ENVIRONMENTAL REPORTS	2	
	4.1 Site History Review	3	
	4.2 Underground Petroleum Storage Systems	4	
	4.3 Hazardous Building Materials	5	
	4.4 Soil Sampling and Analysis	6	
	4.5 Groundwater Sampling and Analysis	7	
	4.6 Outcomes of Previous Assessments and Recommendation	ons 8	
5.	SITE FEATURES	9	
6.	GEOLOGY AND HYDROGEOLOGY	11	
7.	GROUND PENETRATING RADAR SURVEY	12	
8.	DATA QUALITY OBJECVTIVES	13	
9.	FIELD INVESTIGATION	15	
	9.1 Sampling Methodology	16	
	9.2 Sample Handling and Equipment Decontamination	17	
	9.3 Analytical Program	17	
	9.4 Soil Vapour Survey	18	
10.	QUALITY ASSURANCE PROGRAM 1		
	10.1 Quality Control Sampling	19	
	10.2 Quality Control Criteria	20	
	10.3 Laboratory Quality Control	21	
11.	ASSESSMENT CRITERIA 2		
	11.1 Criteria for this Assessment	23	

PAGE NO. **TABLE OF CONTENTS (CONT)** 12. ANALYTICAL RESULTS AND INTERPRETATION 25 Polycyclic Aromatic Hydrocarbons 25 12.1.1 Statistical Analyses 26 12.2 Petroleum Hydrocarbons 27 12.2.1 Appraisal of Potential Soil Vapour Impacts at Location BH5 28 Heavy Metals 29 12.3 Recommendations Based on Soil Sampling Results 12.4 29 12.5 **Duty to Report Site Contamination** 30 REMEDIATION AND VALIDATION 13. 31 Remediation of Hydrocarbon Impacted Soil 31 13.1 13.2 Remediation of Bonded Asbestos Materials 32 Clean Up Criteria 13.3 32 Validation Sampling and Analysis Methodology 13.4 32 Validation Soil Vapour Survey 13.5 33 Validation Soil Sampling Results 34 13.6 13.7 Validation of Bonded Asbestos Affected Area 34 14. **EVALUATION OF QUALITY ASSURANCE** 35 Field Duplicate Sample Results 35 14.1 Laboratory Quality Control Program 14.2 35 14.3 Procedure Based Quality Control 35 15. CONCLUSIONS AND RECOMMENDATIONS 36 **LIMITATIONS** 16. 39

DRAWING NO. 13/1310/1 - SITE LOCATION

DRAWING NO. 13/1310/2 - SITE FEATURES AND SAMPLING LOCATIONS

DRAWING NO. 13/1310/3 – AREAS SUBJECT TO GPR SURVEY AND ASBESTOS REMOVAL WORKS

DRAWING NO. 13/1310/4 - REMEDIATION AREA AND VALIDATION SAMPLING LOCATIONS

TABLES OF RESULTS

APPENDIX A: SOIL PROFILE AND SAMPLING LOG SHEETS

APPENDIX B: CHAIN OF CUSTODY DOCUMENTATION

APPENDIX C: ANALYTICAL LABORATORY REPORTS

APPENDIX D: RESULTS OF STATISTICAL ANALYSES

EXECUTIVE SUMMARY

A further site investigation (PSI) was performed for the property at 27-33 Delhi Road, North Ryde, New South Wales (the 'site') for Goodman Property Services. The objectives of the investigation were to determine the potential for environmental exposures at the property due to land contamination that may be significant for a high-density residential land use setting. The investigation was performed in accordance with Environment Protection Authority (EPA) and national guidelines for the assessment and management of site contamination.

The site is approximately 1.8 hectares in area and is known to have been the subject of six previous environmental investigations performed by others between 2002 and 2012. The reports on these investigations were provided for our review. Based on information provided in these reports, the site was developed as a television studio complex in the mid-1960s and this use continued until at least 2002. All previously existing buildings and structures have since been demolished, apart from a small workshop/storage building which remains in the east of the site. Further, a number of potential contamination sources are known to have been present on the site including up to six underground petroleum storage systems (UPSSs), two diesel-containing above ground storage tanks (AGSTs), a substation, a paint shop and a below ground grease trap. Further, the site is known to have been filled with imported soil, and as the origin of the fill cannot be confirmed it had the potential to be chemically contaminated.

Soil sampling was performed from a total of 34 locations across the site as part of the previous assessments, and three on-site groundwater monitoring wells were also installed and sampled. The results of the soil sampling programs show that the concentrations chemical contaminants in the soils across the site are generally low and below criteria that are protective of human-health for a high-density residential land use setting. Further, the results of previous groundwater sampling show that the site is not expected to be the source of any unacceptable groundwater impacts. However, elevated concentrations of light fraction petroleum hydrocarbons (TPH) were measured in the soil at one location in the north-east of the site where two UPSSs previously existed. In addition, soil impacted with heavy fraction TPH was identified in an area where an AGST had previously existed adjacent to the eastern boundary of the property. Elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) were also measured in a number of soil samples retrieved from across the site, and whilst no asbestos fibres were identified in the soil, several fragment of bonded asbestos were identified on the land surface in the north-east of the site.

Our review of available environmental reports has shown that the previous assessments were largely suitable to have confirmed the contamination related risks associated with the site. However, our review identified several minor data gaps in the assessment record. In particular, the location of only five of the six known UPSSs had been confirmed and there was insufficient information to determine the significance of the PAHs in the soil. Further, the extent to which the light fraction petroleum hydrocarbon impacts in the soil may have naturally attenuated over time remained undefined. Therefore, further assessment was recommended, including additional soil sampling and also a ground penetrating radar (GPR) survey to determine if any UPSSs remained on the property.

The GPR survey performed as part of this 2013 investigation did not identify any subsurface anomalies that are consistent with remnant UPSSs. Further, no backfilled pits were identified apart from those at the locations where five UPSSs are known to have previously existed. That is, no UPSSs are expected to remain on the site and it is likely that the sixth UPSS was located in the areas where the other UPSSs are known to have existed and was removed at the same time as these facilities.

Further soil sampling was also performed from a total of 19 locations across the site for this investigation, the results of which show that the concentrations of PAHs and light fraction petroleum hydrocarbons in the soils across the site do not present an unacceptable risk to human-health for a high-density residential land use setting. However, the soils in the vicinity of where the AGST previously existed adjacent to the eastern boundary of the site were confirmed to be impacted with heavy fraction TPH at concentrations that could present a potential risk to human-health. Further, isolated fragments of bonded asbestos were identified on the land surface in the north-east of the site in the area where these materials had previously been identified. In view of this, remediation of the heavy fraction TPH impacted soil and removal of the bonded asbestos would be necessary to make the site suitable for a high density residential land use.

Remedial works were subsequently undertaken as part of this investigation, which involved the excavation and off-site disposal of the TPH impacted soil. Validation soil sampling was performed across the excavated area, the results of which show that the residual concentrations of TPH are below the adopted clean up criteria. The fragments of bonded asbestos have also been removed from the site, and the affected area was validated by way of visual inspection.

Based on the result of this 2013 investigation and validation program, and also those from the previous assessments performed by others, the residual concentrations of chemical contaminants in the soils across the site are not considered to present a risk to human-health for a residential land use setting with limited minimal opportunities for soil access. That is, the site is considered to be suitable for a high-density residential land use in its current condition.

1. INTRODUCTION

SMEC Testing Services Pty Limited (STS) was engaged by Goodman Property Services (Goodman) to undertake a further site investigation (PSI) for the property at 27-33 Delhi Road, North Ryde, NSW (the 'site').

The objectives of the investigation were to provide advice on the potential for environmental exposures at the property due to land contamination that may be significant for a high density residential land use setting. However, in view of hydrocarbon impacted soil and bonded asbestos materials being identified on the site a remediation and validation program was subsequently undertaken, the results of which are included in this report. The investigation was performed in accordance with Environment Protection Authority (EPA) and national guidelines for the assessment and management of site contamination.

The scope of the further investigation, remediation and validation program included:

- Site inspection;
- Review of six environmental assessment reports that were prepared for the site by others between 2002 and 2012;
- Appraisal of local geology and hydrogeology;
- Soil sampling from 19 locations across the site and laboratory analysis of selected soil samples retrieved for key contaminants of concern;
- Assessment of analytical data and quality assurance (QA);
- Appraisal of the contaminant concentrations in the soil on the site based on the
 results of this and previous investigations, including an appraisal of potential harm
 to human-health and the environment, potential exposure pathways and off-site
 impacts;
- Excavation and off-site disposal of hydrocarbon impacted soil identified in the east of the site:
- Validation soil sampling from the excavated area;

SMEC Testing Services

• Removal of residual fragments of bonded asbestos identified on the land surface in the north-east of the site;

• Recommendations for the site in accordance with EPA guidelines; and

• Preparation of a confidential report on the results of the investigation and

remediation program.

2. REDEVELOPMENT AND PROPOSED LAND USE

We understand that the site is proposed to be redeveloped for a high density residential land use, which will likely involve the construction of multi-story unit towers on the land. Further, it is expected that basement car parking facilities would also form part of the

redevelopment.

3. SITE IDENTIFICATION

The site at 27-33 Delhi Road, North Ryde has an area of approximately 1.8 hectares. Further, it is defined as Lot 160 in Deposited Plan (DP) 1136651, Parish of Hunters Hill,

County of Cumberland. The location of the site is shown on Drawing No. 13/1310/1.

4. PREVIOUS ENVIRONMENTAL REPORTS

Six previous environmental reports that were prepared for the site by others were provided

for our review. These were titled:

• Environmental Audit for Due Diligence of Property at 27-37 Delhi Road, North

Ryde, New South Wales, 4 July 2002 (2002 Assessment), prepared by Peter J

Ramsay & Associates Pty Ltd (PJRA);

• Hazardous Materials Survey Report, ING Real Estate, Global TV - Delhi Road,

North Ryde, NSW, Ref: S10028:56796 - Revision No.1, June 2007, prepared by Noel

Arnold & Associates (NAA);

• Targeted Soil Sampling Program at the Property 27-37 Delhi Road, North Ryde,

New South Wales, 20 October 2009 (2009 Assessment), prepared by PJRA;

2

Project No. 19257/3243C Report No. 13/1310 October 2013

- Report on Phase 1 Contamination Assessment, North Ryde Station Precinct, Prepared for Transport Construction Authority, Project 72518.01, August 2011 (2011 Assessment), prepared by prepared by Douglas Partners Pty Ltd (DP);
- UPSS Stage 1 Inspection Program: Global Business Park, 18 November 2011 (2011 Environmental Appraisal), prepared by AECOM Australia Pty Ltd (AECOM); and
- Report on Limited Phase 2 Contamination Assessment, Station Site North, Station Suite South, OSL Site & Part RMS Site of North Ryde Station Precinct, North Ryde, Prepared for Transport for NSW, Document No. ADP-1207-CON-4022, Project 72518.02 Rev 1, November 2012 (2012 Assessment), prepared by DP.

The pertinent information from our review of the available reports is outlined below.

4.1 Site History Review

A review of site's land use history was undertaken as part of PJRA's 2002 Assessment, DP's 2011 Assessment and also AECOM's 2011 Environmental Appraisal. In addition, DP's 2012 assessment report summaries the results of the historical appraisal performed as part of their earlier PSI. The combined site history appraisal completed for the previous assessments has involved a review of a number of key information sources including aerial photographs of the site and surrounds, historical land titles, records held by Ryde City Council, the Department of Energy and Utilities and WorkCover NSW, EPA databases and information provided by the Royal Australian Historical Society. Anecdotal information provided by site occupants was also considered. We consider the available site history information to be comprehensive.

Based on the information provided in the previous assessment reports, the site was developed as a television studio complex in the mid-1960s, a use which continued until at least 2002. A single large studio building was located in the central portion of the site, whilst a smaller workshop/warehouse building was located in the east of the site. The land surrounding the buildings comprised access roads, paved carparks and landscaping/garden areas. However, by the time of PJRA's 2009 Assessment the main studio building had been demolished and the site was unoccupied, although the previously existing access roads and the small workshop/warehouse building remained. Prior to the 1960s the site comprised largely undeveloped rural land, although there is evidence that orchards and market gardens may have been active on the land between the 1940s and early 1960s.

A number of potentially contaminating facilities/installations are also reported to have been located on the site including up to six underground petroleum storage systems (UPSSs), two above ground storage tanks (AGSTs) used to store diesel fuel, a substation, a paint shop and a below ground grease trap. The transformers and one AGST were located adjacent to a workshop/warehouse building in the east of the site, whilst the grease trap was located in the southern portion of a site adjacent to an associated kitchen. The second AGST is reported to have been located in the north-west of the site, and the paint shop is reported to have been located in the north-east of the main studio building. The UPSSs are further discussed in Section 4.2 below.

4.2 Underground Petroleum Storage Systems

The purpose of AECOM's 2011 Environmental Appraisal was to evaluate the presence of UPSSs at the site, and involved a site inspection and review of WorkCover NSW records. Six UPSSs are expected to have been located at the site, and their locations (where known) are shown on Drawing No. 13/1310/2.

Based on the information provided by WorkCover, one UPSS was located immediately to the north of the workshop/warehouse building in the east of the site. PJRA's 2002 Assessment confirmed that this UPSS had a capacity of approximately 27 000 L and contained diesel fuel. However, by the time of PJRA's 2009 Assessment this facility had been removed with the excavated area having been partially backfilled.

SMEC Testing Services

Site plans provided by WorkCover also show that two UPSSs (at least one of which contained petrol) were located beneath a driveway immediately to the west of the abovementioned diesel UPSS. In addition, based on anecdotal information obtain by PJRA in 2002, two additional UPSSs which contained aviation fuel were once located in the north-east of the site (and now removed), and were associated with a helipad located on adjacent land.

The information provided by WorkCover also shows that a sixth UPSS was located on the site, however, the location of this facility cannot be confirmed.

4.3 Hazardous Building Materials

NAA's hazardous materials survey of June 2007 involved an inspection of all built structures of the site for the presence of hazardous building materials including asbestos, polychlorinated biphenyls (PCBs), lead-based paints, synthetic mineral fibres (SMFs) and ozone depleting substances. Laboratory analysis of materials potentially containing asbestos was also performed as part of the survey, as were field swab tests to determine if paints are lead based.

NAA identified asbestos containing materials, synthetic mineral fibres, lead based paint and also polychlorinated biphenyl containing capacitors (in light fittings) within the fabric of the buildings. No lead-based paints were identified. The majority of these materials were present in the main studio building which occupied the site and also in two gatehouses which have since been demolished. However, asbestos cement sheeting was also identified in the small workshop/warehouse building which remains on the site, including in paneling below a window and also in the external eaves. NAA report that approximately 82 m² of asbestos-based sheeting remains in this building. It is also noted that NAA did not identify any SMFs, PCBs or ozone depleting substances in within the building which remains.

Project No. 19257/3243C Report No. 13/1310

4.4 Soil Sampling and Analysis

Soil was sampled from 13 boreholes positioned across the site as part of PJRA's 2002 Assessment, including six across the general site, six positioned in the three areas where UPSSs were confirmed to be/have been located, and one borehole was also targeted to the substation in the east of the site. Sampling from an additional 10 boreholes was subsequently undertaken as part of PJRA's 2009 Assessment, six of which were positioned in and around the footprint of a former studio building which is known to have contained asbestos cement sheeting and one borehole was targeted to the former grease trap. The remaining three sampling points were positioned in and around the pit where the diesel UPSS had been removed.

Sampling from a further 11 locations on the site was later undertaken as part of DP's 2012 Assessment. Six of these sampling points were positioned across the general site, two were targeted to UPSS areas in the east of the site, one was positioned where the paint shop is believed to have been located and two were positioned in the areas where the diesel AGSTs previously existed.

The results of the soil sampling performed by PJRA and DP showed that the concentrations of chemical contaminants in the soils across the site are generally low. However, elevated concentrations of light fraction total petroleum hydrocarbons (TPH C₆-C₉) above the adopted screening criteria were identified (by PJRA in 2002) in the soil in the north east of the site where UPSSs containing aviation fuel were previously located. In addition, the results of DP's 2012 sampling program showed that the soils in the east of the site where the diesel AGST had been located are impacted with petroleum hydrocarbons. Further, elevated polycyclic aromatic hydrocarbon (PAH) concentrations were measured in a number of soil samples retrieved during both PJRA's and DP's assessments, and several heavy metals were also identified in the soil at concentrations exceeding adopted screening criteria. The PAH and metals impacts are expected to be due to imported fill material rather than the contamination point sources.

In addition, during DP's 2012 Assessment a fragment of fibre cement sheeting is reported to have been identified on the land surface in the north-east of the site within the footprint of where the main studio building was located. A sample of this material was collected and analysed, and confirmed to contain asbestos.

It should be noted that the purpose of PJRA's assessments were to evaluate the environmental condition of the site with regard to an ongoing commercial/industrial land use. Further, since both PJRA and DP completed their assessments a new set of screening criteria which are designed to be protective of both human-health and the environment have been released. In view of this, the conclusions and recommendations provided in the previous reports need to be evaluated based on a comparison of the data with regard to the most current screening criteria. An appraisal of the previous assessment results with regard to the current criteria is provided in Section 12 of this report.

4.5 Groundwater Sampling and Analysis

Piezometers were constructed in three boreholes on the site (BH124, BH125 and BH126) as part of DP's 2012 Assessment, and which are reported to have been installed to depths of between 10 m and 13 m. BH124 was positioned in the far north-east of the site in the access road to the property, whilst BH125 was positioned in the east of the site in the vicinity of where three UPSSs are known to have been located. BH126 was positioned further downslope to the south. The wells are considered to be appropriately positioned to determine the extent of groundwater impacts associated with leakage from the UPSS facilities.

The sampling of the wells is reported to have been performed using a low-flow methodology in accordance with EPA guidelines and current best practice, however, due to insufficient water in BH126 the sample was collected using a disposable bailer.

Project No. 19257/3243C Report No. 13/1310

The results of DP's groundwater sampling show that the concentrations of chemical contaminants in the groundwater are generally low and representative of the expected background levels in the regional aquifer. However, elevated xylene concentrations (8 ug/L and 4 ug/L) are reported for wells BH125 and BH126, and an elevated TPH (C₆-C₉) concentration (16 ug/L) was also measured in the sample retrieved from BH126. These impacts are likely to be associated with leakages from the UPSSs on the site. However, the TPH and xylene concentrations measured in the groundwater are very low would be expected to attenuate naturally prior to the groundwater discharging to the nearest downgradient receiving environment at potentially harmful levels, this being Lane Cove River located approximately 730 m to the south-east. That is, the site is not considered to be a source of unacceptable groundwater impacts.

4.6 Outcomes of Previous Assessments and Recommendations

In total, soil sampling was performed at 34 locations across the site as part of the previous assessments, which is considered generally appropriate to screen the 1.8 hectare property for potential contamination. Further, targeted soil sampling has been performed at the potentially contamination sources that have been identified at the site (as defined in Sections 4.1 and 4.2). In addition, the number of samples analysed from each sampling location and the suite of chemical contaminants tested for in the samples is considered to be generally appropriate to have determined the nature and extent of contamination at the site. Also, the groundwater sampling performed as part of DP's 2012 Assessment is considered sufficient to appraise the risks associated with chemically impacted groundwater, and in our opinion the results of the groundwater sampling have demonstrated that the site is not likely to be the source of any unacceptable groundwater impacts. That is, further assessment or remediation of groundwater is not considered necessary.

However, our review of the previous environmental reports has identified some minor data gaps in the assessment record. In particular:

WorkCover records have shown that six UPSSs have been located on the site, whilst
the location of only five UPSSs has been confirmed. That is, one UPSS remains
unaccounted for and could potentially remain on the site;

SMEC Testing Services

• PAHs have been identified as a contaminant of concern at the site, however, an insufficient number of samples have been analysed for PAH to determine the extent

of PAH impacts using a statistically-based approach; and

• There is the potential for the light fraction petroleum hydrocarbon concentrations

identified in the soil during PJRA's 2002 Assessment (at location BH5) to have

attenuated naturally over time. Therefore, further soil sampling would be required to

determine if unacceptable hydrocarbon concentrations remain in the soil at this

location.

In view of these data gaps, further assessment of the site was recommended, including

additional soil sampling and also a ground penetrating radar (GPR) survey to determine if

any UPSSs remain on the property.

5. SITE FEATURES

The site was inspected on 29 July 2013 to confirm the condition of the land and to identify

potential contamination sources. A plan showing the current site configuration is shown on

Drawing No.13/1310/2. The key site features as determined by the site inspection are:

• The site is currently vacant and unoccupied. The footprint of a large former building

is visible in the central portion of the site and which comprises an exposed earth

surface. Given the extent of tree growth within the footprint area it appears that the

building has been demolished for a number of years. A small workshop/warehouse

style building remains in the east of the site, which is in a state of partial demolition.

Remnant asphalt access roads are located around the perimeter of the site and are

interspersed with residual landscaping areas.

Project No. 19257/3243C Report No. 13/1310 October 2013

9

- A partially filled excavation is located immediately to the north of the remnant building, and corresponds to the area where a diesel UPSS is reported to have been removed. Further, a small pit that is located in the south of the site and which has been backfilled with crushed concrete is expected to indicate the area where a below ground grease trap has been removed. In addition, concrete pads are visible behind the building in the east of the site and are expected to be the remnant foundations for the AGST which is was previously at this location. Also, remnant fuel oil pipework which is attached to the building wall is visible at this location.
- Several small fragments of bonded asbestos were observed on the land surface in the north-eastern portion of the large building footprint. This corresponds to the area where DP also identified bonded asbestos during their 2012 Assessment. A thorough inspection of the site was undertaken to identify and locate asbestos materials, and based on the inspection the asbestos impacts appear to be confined to a small 400 m² area (as shown on Drawing No. 13/1310/3)
- A small firewater pumphouse remains in the west of the site, and which contains one small AGST that has been used to store diesel fuel.
- The site has a moderate natural slope to the south, however, the land has a stepped profile which suggests that cutting and filling may have occurred. In particular, a steep scarp extends along the northern margin of the building footprint, and shale/fine grained sandstone bedrock was observed along the face of the scarp, which is evidence of extensive cutting. The southern portion of the site is expected to have been extensively filled, and is expected that the material used for filling has been derived from the site.
- The land to the north-west and east of the site is occupied by commercial/industrial properties, although a parcel of vacant and undeveloped land is also located to the east. The recently constructed North Ryde Station and associated car parking area is located to the north. Epping Road and the M2 Motorway are located on the land to the south and west of the site.

6. GEOLOGY AND HYDROGEOLOGY

The Geological Survey of NSW 1:100,000 Sydney Geological Map (Sheet 9130) shows that the site is located on the boundary between two geological units, these being the underlain by the Middle Triassic Age 'Ashfield Shale' and the 'Hawkesbury Sandstone'. The Ashfield Shale comprises black to dark-grey shale and laminiate, whilst the underlying sandstone unit comprises medium to coarse grained quartz sandstone with minor shale and laminite lenses.

The natural soils encountered on the site during this 2013 further investigation predominantly comprised grey and brown silty clays, although brown sandy clays were also observed at two sampling locations. Similar soils were also encountered during the previous soil sampling programs performed by others. These are consistent with natural soils in-situ weathered from the regional soil formations. In addition, shale bedrock was encountered in two of our bores at depths of 1 m and 2.7 m, whilst sandstone bedrock was also encountered in one bore at a depth of 0.4 m. Both shale and fine grained sandstone was also observed in the walls of the basement area of the former building which has been cut to a depth of approximately 4 m below the natural ground surface. Further, our review of the Acid Sulfate Soil (ASS) risk maps available on the EPA NSW Natural Resources Atlas shows that the site is located in an area that is not likely to be affected by ASSs. This is consistent with the soil profile observed at the site and also the geological map review.

A layer of fill material between 0.2 m and 3.8 m in thickness was also identified at the majority of our sampling locations. The fill was observed to comprise silty clay, sandy clay, sandy gravel and gravelly clay. Similar fill material was also encountered during the soil sampling programs performed as part of PJRA's and DP's previous assessments. Further, much of the fill appears to be locally derived natural soil which has most likely been derived from cutting on the site itself. However, some imported soil material is likely to be present.

A search of the Department Natural Resources (DNR) groundwater database was also performed as part of DP's 2011 Assessment to identify wells in the vicinity of the site. The search results identified 16 registered groundwater monitoring wells located within 1 km of the site, all of which are located up-gradient of the site to the north. The aquifer depths for the wells (where reported) are stated as being between approximately 108 m and 160 m below the ground surface, and the aquifer lithology is reported to comprise and sandstone. Further, the depth to groundwater in the three monitoring wells installed on the site as part of DP's 2012 Assessment is reported to be between approximately 2.7 m, 3.5 m and 10.5 m below the ground surface. The groundwater within the wells is expected to primarily be due to perched water flowing along the soil/bedrock interface.

Based on the observations made during our soil sampling activities, the information contained in the previous environmental assessment reports and our review of the site geology and regional groundwater conditions, a summary of the site hydrogeology is summarised in Table 6.1.

TABLE 6.1 - SITE HYDROGEOLOGY

Depth to Aquifer at Site:	Local Perched Water: Approximately 2-5 m ^{1,2}	
	Regional Aquifer: Approximately 10-20 m ^{1,2}	
Aquifer Type and Lithology:	Clays and shale/sandstone ^{1,2}	
Local Groundwater Flow Direction:	South ¹ , along axis of hillslope	
Regional Groundwater Flow Direction:	South-South-East ¹ , along axis of local and regional hillslope and drainage depressions	
Receiving Environments:	Lane Cove River, located approximately 730 m	
	to the south-east of the site.	

¹ Inferred conditions based on site inspection & geological map/groundwater database review.

7. GROUND PENETRATING RADAR SURVEY

Based on information provided by WorkCover NSW, six UPSSs are likely to have been located on the site. However, the location of only five UPSS facilities has been confirmed based on the site inspections and historical information provided in the previous environmental reports. That is, one UPSS remained unaccounted for.

² Actual conditions based on observations made during on-site drilling.

The site inspections previously performed by others (as documented in the previous reports) did not identify any visual evidence of the sixth UPSS, although AECOM's 2011 Environmental Appraisal does note the presence of a possible backfilled excavation in the main access driveway in the north-east of the site where a UPSS could possibly have been located. However, our review of satellite imagery available on the Google Earth program has shown that this area is in fact the footprint of a former small gatehouse building (now removed).

In order to determine if any UPSSs remain on the property, Geotrace (a specialist services location company) was engaged to undertake a GPR survey. The survey was performed on a close 3 m grid across the majority of the site. The only area excluded from the GPR survey was the basement area of the former studio building, which has been cut into the underlying bedrock. No evidence of UPSS infrastructure or backfilled pits was identified within the former basement area. The areas covered by the GPR survey are shown in Drawing No. 13/1310/3.

The GPR survey, which was undertaken on 29 July 2013, did not identify any sub-surface anomalies that are consistent with remnant UPSSs. Further, no backfilled pits were identified apart from those at the locations where UPSSs are known to have previously existed. That is, no UPSSs are expected to remain on the site and it is likely that the sixth UPSS was located in the areas where the UPSSs are known to have existed and was removed at the same time as these facilities.

8. DATA QUALITY OBJECTIVES

The National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPM), the updated NEPM 2013 and Australian Standard (AS) 4482.1-2005 recommend that data quality objectives (DQOs) be implemented during the investigation of potentially contaminated sites. The DQO process described in AS 4482.1-2005 outlines seven distinct steps which are designed to ensure an investigation is performed in a structured and efficient manner. The seven steps and the associated processes that were implemented to ensure data and decision making quality are outlined below:

SMEC Testing Services

Step 1 – State the Problem

The site is proposed to be redeveloped for high density residential purposes. Prior to this

assessment there was insufficient data to determine if the site is likely to be suitable for this

proposed use.

Step 2 – Identify the Decision

To determine if the concentrations of contaminants in the soil at the site are likely to present

an unacceptable risk to human-health or the environment for a residential land use setting

where the soil is generally not accessible to site users.

Step 3 – Identify Inputs to the Decision

To enable a decision regarding the nature and extent of soil contamination at the site to be

made, the following inputs were required:

• Undertaking a GPR survey to determine if any UPSSs remain on the site;

• Soil sampling from 17 locations across the site, including both general site locations

and locations targeted to specific areas where potentially contaminating facilities

have been located;

Analysis of selected soil samples for key contaminants of concern; and

• Implementation of a quality assurance/quality control (QA/QC) program.

Step 4 – Define the Study Boundaries

The assessment was undertaken within the boundaries of the site located at 27-33 Delhi

Road, North Ryde, NSW. The boundaries of the site are defined in Section 3 and are shown

on Drawing No. 13/1310/2.

Step 5 – Develop a Decision Rule

To determine if any soil impacts at the site are significant for a high density residential land

use setting, data was compared to relevant EPA endorsed criteria. The criteria for this

14

assessment are further discussed in Section 11.

Project No. 19257/3243C Report No. 13/1310 October 2013

Step 6 - Specify Limits on Decision Errors

To ensure the precision, accuracy, completeness and comparability of data a QA program was implemented and acceptable error limits were defined. These are further discussed in Sections 10.2 and 10.3.

Step 7 – Optimize the Design for Obtaining Data

To ensure there are sufficient, reliable data to enable the project objectives to be met the following was implemented:

- Collection, storage and transport of soil samples in an appropriate manner to ensure sample integrity (refer to Section 9.2);
- Obtaining samples from an appropriate number of locations to address the data gaps in the assessment record so that the site has been comprehensively assessed in accordance with EPA guidelines; and
- The collection of an appropriate number of samples from each location and the
 analysis of samples for an appropriate analytical suite to screen the site for potential
 soil contamination, based on the potential contamination sources identified from our
 site inspection and review of previous environmental reports.

9. FIELD INVESTIGATION

The soil sampling activities for the PSI were undertaken by STS on 29 July 2013. The assessment was performed according to:

- EPA guidelines comprising:
 - Contaminated Sites: Guidelines for Assessing Service Station Sites, 1994;
 - Contaminated Sites: Sampling Design Guidelines, 1995;
 - Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, 1997;
 - Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd Edition), 2006;
 - Guidelines for the Assessment and Management of Groundwater Contamination, 2007;
- Guidelines issued under Schedule B of the *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (NEPM), December 1999 and the updated NEPM of April 2013;

Testing Services

• Australian and New Zealand Guidelines for the Assessment and Management of

Contaminated Sites published by the Australian and New Zealand Environment and

Conservation Council/National Health and Medical Research Council, January 1992

(ANZECC Guidelines); and

• Australian Standard 4482.1-2005: Guide to the Investigation and Sampling of Sites

with Potentially Contaminated Soil - Part 1: Non-volatile and Semi-volatile

Compounds, 2 November 2005, Standards Australia.

9.1 Sampling Methodology

The sampling program was specifically designed to address the data gaps in the previous

environmental assessments, and involved the collection of soil samples from 19 locations.

Fifteen of the locations were positioned across the general site. That is, in conjunction with

the 18 general site boreholes drilled for the previous assessments, soil has been sampled

from 33 boreholes general site locations, which is a sufficient number to determine the

nature and extent of soil impacts on a 1.8 hectare property in accordance with EPA

guidelines and NEPM. Further, one borehole (BH1) was positioned in the east of the site

where UPSSs had been located and two sampling points were also targeted to an area

adjacent to the eastern site boundary where a diesel AGST had been previously located. The

sample locations and site features are shown on Drawing No. 13/1310/2.

Locations for soil sampling were identified based on the results of our site inspection and

review of previous environmental reports prepared by others, and the position of on-site

facilities. Sample locations were referenced to existing ground features and positioned

subject to on-site services, subsurface conditions and other constraints, which were

encountered during fieldwork activities.

The samples were collected by qualified and experienced environmental engineers and/or

technicians. A description of all the samples collected and their corresponding sample

16

locations is provided on soil profile log sheets in Appendix A.

Project No. 19257/3243C Report No. 13/1310 October 2013

9.2 Sample Handling & Equipment Decontamination

A drill rig equipped with solid augers was used to obtain the soil samples, and the samples were retrieved directly from the augers by hand using disposable latex gloves. However, a hand auger was used to advance the boreholes at several locations where drill rig access was not possible. For duplicate samples, the soil was placed directly into a stainless steel bowl before being transferred into new clean jars prepared by Australian Laboratory Services (ALS). No sample mixing was carried out to ensure volatile compounds that may be present are not lost. All sampling equipment was decontaminated prior to use and between sampling locations by thoroughly washing with a mixture of water and DECON 90 and rinsing with potable water.

All jars were filled to the rim to minimize head space. The sample jars were then placed into ice-filled chests and transferred to ALS for analysis. Chain of Custody (COC) documentation was used to record and track the samples. COC documentation detailing the required analyses accompanied the samples to the laboratory. The environmental engineer signed the appropriate section of the COC form before providing the samples to the laboratory.

9.3 Analytical Program

The selection of analytes was based on our review of the previous environmental reports observations made during our site inspection and EPA site assessment guidelines. The analytes for the soil samples included polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH) and monocyclic aromatic hydrocarbons (MAH).

The analytical program for the soil samples is outlined in the COC documentation, which is provided in Appendix B. ALS Sydney was selected as the primary laboratory, whilst ALS Brisbane was selected as the secondary laboratory as part of the quality assurance program. Both ALS Sydney and ALS Brisbane are NATA accredited for the analyses performed.

9.4 Soil Vapour Survey

During the soil sampling program the concentrations of ionisable volatile organic compounds (VOCs) released from the soil matrix were measured using a photoionisation detector (PID). This provides a qualitative screen of the degree to which the soil samples may be impacted with VOCs. The screening methodology involved the placement of a small portion of each sample (up to approximately 50g) into a sealed plastic 'snaplock' bag, which is kept at room temperature and out of direct sunlight for 10-20 minutes before the PID reading as taken in the headspace above the sample. The PID was calibrated using a 100 ppm isobutylene span gas prior to use.

The PID readings obtained during the soil vapour survey are presented in the soil sample log sheets (Appendix A). The concentration of ionisable vapours measured in the headspace above the majority of the soil samples ranged from 0.1 ppm to 5.4 ppm (v/v isobutylene equivalent), which is low and suggests that the soil is not significantly impacted with VOCs.

10. QUALITY ASSURANCE PROGRAM

Quality assurance (QA) of data was a key component of this investigation and val; idation sampling program in order to appraise the representativeness and integrity of samples and accuracy and reliability of the analytical results. This is in accordance with the NEPM and AS 4482.1-2005.

The QA procedures, actions and checks implemented during the investigation included:

- The utilisation of appropriate sampling methods in accordance with the EPA requirements, the NEPM and other key guidelines;
- Appropriate sample handling and transportation, and analysis of samples within recommended holding times;
- The collection and analysis of quality control (QC) samples;
- Implementation of internal laboratory QC analyses; and
- The use of National Association of Testing Authorities (NATA) registered laboratories (primary and secondary) and methods.

18

10.1 Quality Control Sampling

Inaccuracies in sampling and analytical programs can result from many causes, including collection of unrepresentative samples, cross contamination between samples, unanticipated interferences between elements during laboratory analyses, equipment malfunctions and operator error. Inappropriate sampling, preservation, handling, storage and analytical techniques can also reduce the precision and accuracy of results.

In order to address these potential data quality issues, a field-based QC program was undertaken to measure the effectiveness of the QA procedures by comparison with acceptance criteria. The NEPM has documented procedures for QC sampling and analysis to ensure that the required degree of accuracy and precision is obtained. The NEPM and EPA guidelines recommend the use of two laboratories for the implementation of a field QC program in addition to the internal QC procedures followed by the laboratories, which are required in accordance with their NATA registration.

According to the NEPM the collection of intra and inter-laboratory duplicate samples is required, along with blank samples. Intra-laboratory and inter-laboratory samples are duplicates of primary samples that are collected in the field. Intra-laboratory samples are analysed by the primary laboratory and are used as a check on the precision of the sampling and analytical procedures. Inter-laboratory samples are analysed by a secondary laboratory and provide a check as to the accuracy of the analytical data. Field blank samples include rinsate blanks and trip blank samples.

Rinsate blanks are samples of water collected from field equipment after decontamination, and are used to determine the effectiveness of the decontamination procedures. Trip blanks are samples of deionised water prepared prior to sampling, and are stored and transported with the samples. They are used to identify laboratory errors or to identify sources of contamination due to sample storage and handling.

SMEC Testing Services

According to the NEPM a split of a minimum of 10% of the primary samples as field

duplicate samples (5% inter-laboratory and 5% intra-laboratory) as well as blanks is

required. Where less than 20 samples are to be analysed, a minimum of two field duplicate

samples (one inter-laboratory and one intra-laboratory) and a blank is generally considered

sufficient. Blanks are generally collected on each day that sampling is performed, and are

analysed where necessary.

For this contamination assessment the following field quality control samples were

collected for analysis:

Three intra-laboratory duplicate samples; and

• Three inter-laboratory duplicate samples.

In view of the rigorous field-based decontamination procedures that were implemented

during the investigation, the collection of rinsate and trip blank samples was not considered

necessary.

10.2 Quality Control Criteria

A check on the comparability of the field duplicate sample results is achieved by calculating

the Relative Percent Difference (RPD). RPDs are calculated as the absolute value of the

difference between the primary and duplicate sample results, divided by the average value,

expressed as a percentage.

According to AS 4482.1-2005 (and referenced in the NEPM) RPDs below 50% are

considered to demonstrate good correlation between duplicate sample results. However,

AS 4482.1-2005 also states that the acceptable variation between results can be higher for

organic analytes than for inorganics, and for low concentrations of analytes. In view of this,

and based on STS's experience, RPDs up to 70% are considered to be acceptable for

organic species. RPDs of 100% or more are generally considered to demonstrate poor

correlation unless results are less than five times the laboratory detection limits.

Project No. 19257/3243C Report No. 13/1310

20

October 2013

SMEC Testing Services

10.3 Laboratory Quality Control

A laboratory QC program involves the preparation and analysis of their own duplicate samples, reagent blanks and control samples (where the analyte concentration is known) or matrix spikes. Duplicate samples are subjected to the same preparation and analytical procedures as primary samples. The laboratories are required to analyse matrix spikes or control samples at a minimum frequency of 5% of the total number of primary samples in each sample batch.

The results of method blanks, duplicates and control sample analyses are compared by the laboratory to established quality assurance criteria for data precision and accuracy. If the results do not meet the criteria, then the analyses should be repeated. The relevant criteria are:

- Method blanks should not return any positives on analysis;
- Duplicate samples should not vary by more than 35% from the mean result; and
- Control samples should generally give a recovery of 75-125%.

11. ASSESSMENT CRITERIA

Current EPA guidelines state that the key criteria for assessing potentially contaminated sites in New South Wales are the Soil Investigation Levels (SILs), which are outlined in *Guidelines for the NSW Site Auditor Scheme, 2nd Edition* (DEC, 2006). The SILs have been adopted from Schedule B(1) of the National Environmental Protection Council document *National Environmental Protection (Assessment of Site Contamination) Measure 1999* (NEPM).

The NEPM criteria comprise Health-Based Investigation Levels (HILs) and the Ecologically-Based Investigation Levels (EILs). The HILs are threshold values that are indicative of potential adverse impacts to human health, whilst the EILs are values that indicate a potential phytotoxic effect to plants.

In recent years the 1999 NEPM has been under review, with an updated draft document being released in 2010. In April 2013 the updated NEPM was officially released and has been endorsed by EPA. The new 2013 NEPM has been developed using essentially the same framework as the 1999 version, however, it does provide updated HIL criteria for a range of chemical contaminants. It also builds on the EILs provided in the 1999 NEPM by outlining a more comprehensive set of environmental screening levels (ESLs), which are designed not only to be indicative thresholds for phytotoxic effects to plants, but to be protective of ecosystems generally. Further, the 2013 NEPM outlines criteria for key volatile hydrocarbon compounds which are designed to be protective of human-health via a soil vapour inhalation exposure pathway (termed Health Screening Levels (HSLs)). The 2013 NEPM criteria should now be used for environmental assessments in the Australian context as they are the most current and comprehensive set of screening criteria available. That is, they are used in preference to the SILs.

There are four main categories of HIL/HSL outlined in the 2013 NEPM, which are each used to appraise the risks posed by site contamination for different land use settings. These include:

Residential A: for a 'standard' residential land use with gardens and accessible soil, including children's day care centres, preschools and primary schools.

Residential B: for a residential land use with minimal opportunities for soil access, including properties with fully and permanently paved yard space such as high-rise apartments and flats

Recreational C: for parks, recreational open space, playing fields, including secondary schools

Commercial/Industrial D: for a commercial/industrial land use.

It is noted that the NEPM HILs do not provide criteria for some petroleum hydrocarbon compounds. In the absence of HIL criteria the 'threshold concentrations for a sensitive land use' (EPA Threshold Concentrations) outlined in EPA's "Guidelines for Assessing Service Station Sites" (EPA, 1994) are used, however, the 1999 NEPM HILs do provide threshold values for hydrocarbon fractions that may be adopted provided that speciation testing is undertaken for specific aromatic and aliphatic components.

SMEC Testing Services

Where a proposed land use will include more than one land use category (e.g. mixed residential/commercial development) the criteria which are protective of the most sensitive of the combined land uses should be adopted.

11.1 Criteria for this Assessment

A high-density residential land use is proposed for the site, which is likely to include the construction of numerous multi-story unit towers. Therefore, the HILs (Residential B) criteria are the most applicable and have been adopted for this investigation. The EPA Threshold Concentrations have also been adopted for petroleum hydrocarbon compounds in the absence of HIL criteria. In addition, the HSLs for vapour intrusion have been considered with regard to a residential land use setting.

Given that landscaping zones may form part of a future redevelopment, the ESLs should also be considered. However, it should be noted that the use of the ESLs with regard to heavy metal contaminants requires soil data for pH and cation exchange capacity (CEC), and that these parameters were not tested for during the previous environmental assessments. In view of this, the phytotoxicity-based investigation levels (PILs) outlined in the *Guidelines for the NSW Site Auditor Scheme*, 2nd Edition (DEC, 2006) have been used. The PILs are generic values that are indicative of potential phytotoxic effect to plants for a sandy loam soil and within an urban context.

The criteria adopted for this investigation are outlined in Table 11.1 below.

23

Project No. 19257/3243C Report No. 13/1310

TABLE 11.1 – SITE SOIL ASSESSMENT CRITERIA

(all concentrations in units of mg/kg) HSL A and B **EPA** Threshold HIL (Low-High Density **PILs** Contaminant (Residential B) Concentrations Residential)³ **Inorganics** 500 Arsenic (total) 20 90 Beryllium 150 Cadmium 3 Chromium 500^{1} 400 Cobalt 600 30000 100 Copper 1200 600 Lead Manganese 14000 500 Mercury 120^{2} 1 Nickel 1200 60 Vanadium Zinc 60000 200 **Organic Contaminants** $TPH(C_6-C_9)$ 65 TPH (C₁₀-C₃₆) 1000 45⁴ F1 TPH F2 TPH 110^{5} Benzene 0.5 1 Toluene 1.4 160 Ethyl benzene 55 3.1 Total Xylenes 40 14 3 Naphthalene Total PAHs 400 Carcinogenic 4 **PAHs** Aldrin + Dieldrin 10 Chlordane 90 DDT+DDD+ DDE 600 Heptachlor 10 **PCBs** 1 Phenols 45000

¹ Criterion for hexavalent chromium

² Criterion for inorganic mercury

³ HSL for sandy soils within 1 m of the land surface

 $^{^4}$ F1 TPH = TPH (C₆-C₉) minus BTEX fraction

⁵ F2 TPH = TPH (C_{10} - C_{16}) minus naphthalene fraction

12. ANALYTICAL RESULTS AND INTERPRETATION

The analytical results for the soil samples retrieved during this investigation are presented in the NATA endorsed laboratory reports included in Appendix C and are summarised in the Table A attached to this report. In addition, the results from the previous assessments have been re-tabulated (in Tables B to D) and compared to the NEPM 2013 criteria. The results exceeding the assessment criteria are highlighted in the tables accordingly.

It should be noted that only the individual, primary sample results for heavy metals, TPH, MAH and PAH from the previous assessments have been re-tabulated, as these were the only contaminants which have been found in the soil at elevated concentrations. As discussed in Section 4.4, the concentrations of other chemical species in the soil are below criteria which are protective of human-health and the environment for a high-density residential land use setting.

An appraisal of the results for each contaminant which has exceeded the adopted assessment criteria is provided below.

12.1 Polycyclic Aromatic Hydrocarbons

The concentrations of PAHs measured in the soil samples retrieved for this 2013 further investigation and also the previous investigations are generally low and below the NEPM 2013 HIL criteria which are protective of human-health for a high density residential land use setting. However, the concentrations of combined carcinogenic PAHs measured in a number of soil samples (4 mg/kg to 8.5 mg/kg) are above these screening criteria.

Project No. 19257/3243C Report No. 13/1310

In order to evaluate whether the elevated carcinogenic PAH concentrations are actually significant for a high density residential land use, the 95% upper confidence limit (UCL) of the arithmetic means of the carcinogenic PAH concentrations in the soil were calculated using the USEPA program 'ProUCL'. This statistical technique in essence models the average contaminant concentrations that site users or occupants may be exposed to during a lifetime of moving about a particular site. It is a methodology that is endorsed by EPA and other international regulatory agencies, such as the USEPA, and is a commonly used a means of evaluating the risks posed by site contamination to human-health.

12.1.1 Statistical Analyses

The combined data from this 2013 further investigation and the previous assessments performed by PJRA and DP shows that PAHs have been tested for in the fill at 36 sampling points evenly spaced across the site. This is a sufficient number of sampling points to characterize the nature and extent of soil contamination for a 1.8 hectare site in accordance with EPA guidelines. Therefore, there is sufficient data to evaluate the potential risks to human-health using a statistical approach. The results of the UCL calculations are presented in Appendix D. It should be noted that where the carcinogenic PAH concentrations have been measured to be below laboratory detection limits, the laboratory detection limit has been used in the statistical calculations, which is adopting a conservative approach.

The 95% UCL for carcinogenic PAHs is calculated to be 3.4 mg/kg based on a gamma data distribution (as recommended by ProUCL). This is below the HIL for a high-density residential land use. That is, the PAH concentrations in the soil do not present an unacceptable risk to human-health for a high density residential land use setting.

12.2 Petroleum Hydrocarbons

The TPH and BTEX concentrations measured in the soils on the site are generally low and below the NEPM HIL screening criteria. However, elevated TPH (C₁₀-C₃₆) concentrations (1 870 mg/kg to 33 700 mg/kg) well above the NSW EPA Threshold Concentration of 1 000 mg/kg have been measured in the near surface soil in the east of the site where a diesel AGST previously existed. Further, the TPH (C₁₀-C₁₆) fraction measured in two samples retrieved from this area (350 mg/kg and 8 579 mg/kg) are above the NEPM HSL criterion of 280 mg/kg for vapour intrusion in clay soils. That is, as the TPH impacted soil is present at the near surface where it may be readily accessible to site users and at concentrations which present a potential risk to human-health, remediation is considered necessary to make the site suitable for a high-density residential land use.

Further, the light fraction TPH (C_6 - C_9) concentrations measured in the soil at one sample location (BH5) from PJRA's 2002 assessment (300 mg/kg) was above the relevant EPA Threshold Concentrations criterion of 65 mg/kg. BH5 was positioned adjacent to where two UPSSs were previously located in the east of the site, and the TPH impacts were measured in samples collected from below 2.5 m depth. The TPH (C_6 - C_{10}) fraction measured in three soil samples retrieved from this location (50 mg/kg, 57 mg/kg and 300-370 mg/kg) are also above the adopted NEPM 2013 HSL criterion of 50 mg/kg for vapour intrusion in clay soils within 1 m of the surface. However, as these soil samples were retrieved from depths greater than 2.5 m, the HSL of 150 mg/kg (for soils 2-4 m depth) should be applied. Therefore, the HSLs are exceeded in only one sample.

Further, a total of four boreholes have been drilled adjacent to the UPSSs in the east of the site, and elevated TPH concentrations have only been detected in BH5 from PJRA's 2002 Assessment. This indicates that the volume of residual TPH impacted soil is this area is likely to be small. Further, BH1 from this 2013 investigation was positioned immediately adjacent to PJRA's BH5, and no elevated TPH concentrations were measured in the soil samples retrieved from this borehole, which also shows that the TPH concentrations are likely to have reduced over time through natural attenuation.

12.2.1 Appraisal of Potential Soil Vapour Impacts at Location BH5

It should be noted that the HSLs are not threshold levels, which when exceeded, are indicative of actual soil gas emissions that would be harmful to human-health. Rather, these criteria are designed to indicate a potential that soil vapour issues may exist and which would then require further consideration.

The samples retrieved from PJRA's BH5 (from the 2002 Assessment) and the other three boreholes targeted to this UPSS area (as part of both DP's 2012 assessment and this 2013 further investigation) were screened with a PID to determine if the soil is emitting volatile organic compounds in gaseous form. The results of the PID surveys are presented on the soil profile logs from PJRA's and DP's previous assessments, and on the soil logs from this assessment provided in Appendix A of this report. These show that whilst elevated PID readings were measured in BH5 at the depths where soil impacts were identified, the readings in the upper 1 m of soil ranged from 1.2 ppm to 2.0 ppm, which is low and suggests that the TPH impacted soil identified below 2.5 m depth is not resulting in vapour impacts at the land surface. Further, the PID readings recorded for the soil samples retrieved from the other three boreholes positioned in the vicinity of BH5 (which were collected between the near surface and 3.6 m depth) ranged from <1 ppm to 3.5 ppm which are low and also suggest that the soil at these locations is not affected by elevated concentrations of hydrocarbon vapours.

In view of the above, and that the volume of TPH affected soil in the vicinity of BH5 is expected to be small (refer to Section 12.2 above), any residual TPH in the soil at this location is not likely to present an unacceptable risk to human-health via a vapour inhalation exposure pathway. That is, active remediation of the hydrocarbon affected soil at location BH5 would not be necessary.

12.3 Heavy Metals

The analytical results from the previous assessments performed by PJRA and DP show that the concentrations of copper (110 mg/kg to 160 mg/kg), manganese (520 mg/kg to 1300 mg/kg) and nickel (61 mg/kg to 150 mg/kg) measured in several soil samples are above their PILs of 100 mg/kg, 850 mg/kg and 60 mg/kg respectively. However, these nickel concentrations are within the NEPM background ranges for Australian soils. Further, the soils derived from Sydney shale landscapes (including the Ashfield Shale) are characterized by naturally elevated natural manganese, often occurring in concentrations up to 10 000 mg/kg. That is, the manganese and nickel concentrations measured in the soils on the site are within the expected range of natural variability for Sydney soils and therefore do not present an unacceptable risk to plant health.

In addition, whilst the copper concentrations which exceed the PIL criteria are also above the expected background ranges for this metal, they only marginally exceed the PILs and have been identified at isolated locations across the site. Further, the vegetation growing on the site was observed to be in a healthy condition and displays no signs of obvious phytotoxic stress. In view of this, the PIL exceedences for copper and not considered to be significant for a high-density residential land use setting.

12.4 Recommendations Based on Soil Sampling Results

Based on the results of this further site investigation and also those from the previous environmental assessments performed by others, the site is considered to be suitable for a high-density residential land use setting provided that the area of heavy fraction petroleum hydrocarbon (TPH C_{10} - C_{36}) impacted soil in the east of the site is remediated and that the fragments of bonded asbestos identified on the land surface in the north-east of the former building footprint are removed.

12.5 Duty to Report Site Contamination

Under the provisions of the *Contaminated Land Management Act 1997* (CLM Act), a site owner or occupant has a duty to notify EPA of any significant contamination that has the potential to cause human-health or environmental impacts. The requirements for reporting contamination are outlined in EPA's Guidelines on the *Duty to Report Contamination Under the Contaminated Land Management Act 1997* (Duty to Report Guidelines), which became effective on 1 December 2009. This guideline outlines the specific triggers which need to be considered for notifiable contamination under the CLM Act.

Where contaminants exceed their SIL criteria by more than 2.5 times or where the average concentrations of contaminants in soil exceed the applicable SILs, EPA must be notified. In the case of asbestos for which no SIL is available, the presence of free asbestos fibres in soil that is accessible to humans and susceptible to the generation of dust would present sufficient risk as to necessitate notification. Further, it should be noted that the Duty to Report Guidelines do not define notification thresholds for all contaminants. EPA has advised that where no criteria are listed, the need to submit a notification (or otherwise) should be based on advice provided by an environmental consultant.

The concentrations of chemical contaminants measured in the soils on the site are below the abovementioned notification thresholds listed in the Duty to Report Guidelines for the current (commercial/industrial) land use and also for a high-density residential land use setting. Whilst there are currently no specific notification thresholds for TPH in soil or in relation to bonded asbestos materials, the TPH impacted soil on the site does present a potential risk to human-health as it is located at the land surface and could therefore be readily accessible to site users. Further, although the presence of bonded asbestos materials does not present an immediate risk to human-health, there is the potential for these materials to break down over time and release asbestos fibres into the environment. However, there would be no need to notify EPA of contamination provided that the TPH impacted soil and bonded asbestos materials are removed from the site/remediated in the short term.

30

13. REMEDIATION AND VALIDATION

STS was subsequently engaged by Goodman to remediation both the petroleum hydrocarbon (TPH C_{10} - C_{36}) impacted soil in the east of the site and the fragments of bonded asbestos which had been identified on the land surface in the north-east of the former building footprint. The approach to the remedial works is outlined below, and the results of the validation program are also discussed.

13.1 Remediation of Hydrocarbon Impacted Soil

Initially, soil was removed to 0.05 m depth over an 8 m² area where heavy fraction petroleum hydrocarbon impacted soil had been identified based on the results of this further investigation and also previous soil sampling performed by DP. The affected area is located on an embankment between the eastern property boundary and the remnant workshop/warehouse building, and corresponds to the area where an AGST which contained diesel fuel was previously located (refer to Drawing No. 13/1310/2). The affected area is also shown in detail on Drawing No. 13/1310/4.

The results of the initial validation sampling showed that a number of samples had failed. Three additional phases of excavation would subsequently be required to remove all the hydrocarbon impacted soil, and validation sampling was performed after each excavation phase. The validation sampling program is further discussed in Sections 13.4 to 13.6.

At the completion of the remedial works, the excavation covered an area approximately 10 m^2 (4 m x 2.5 m) and was between 0.1 m and 0.3 m in depth. In total, approximately 1.8 m^3 of hydrocarbon impacted waste soil was generated, and had been placed directly into a small skip bin provided by Dial a Dump Industries. The bin was subsequently collected by Dial a Dump and disposed of to a licensed landfill facility as General Solid Waste. At the time of writing this report the documentation issued by the landfill confirming the disposal of the waste soil was still pending. This will be provided as soon as it is received.

Project No. 19257/3243C Report No. 13/1310

13.2 Remediation of Bonded Asbestos Materials

The remedial program to remove the bonded asbestos materials involved hand picking the fragments from the land surface across the affected area (defined on Drawing No. 13/1310/3). The methodology comprised dividing the affected area into 1 m grid lines on both a north-south and east-west axis, and walking each grid line three times. All visible bonded asbestos materials were collected on each pass and stored in a sealable plastic bag prior to being removed from the site and placed into a specific asbestos materials bin at SMEC Testing Services' soil and rock laboratory (which is collected periodically by a licensed waste contractor).

13.3 Clean Up Criteria

The adopted clean up criteria were that the residual concentrations of heavy fraction petroleum hydrocarbons (TPH C_{10} - C_{36}) in the soils on the site must below the NEPM 2013 HILs (Residential B) criteria, the EPA Threshold Concentrations and the HSLs for vapour intrusion for a residential land use setting.

With regard to the bonded asbestos materials, the clean-up criteria were that no visible fragments can remain on the land surface.

13.4 Validation Sampling & Analysis Methodology

Validation soil samples were retrieved from across the base of the hydrocarbon remediation area after each phase of excavation works. Eight samples were collected after each of the first two episodes of soil removal, nine were collected after the third phase and six were collected after the final (fourth) phase of excavation. In total, 31 primary soil samples were retrieved. The number of samples retrieved was appropriate to validate a shallow excavation of approximately 10 m² in accordance with EPA guidelines. A description of the samples collected is provided in Appendix A, whilst the validation sample locations are shown on Drawing No. 13/1310/4.

32

The samples were collected directly from the excavation face by hand using a stainless steel trowel, and were placed directly into a new clean jars prepared by Australian Laboratory Services (ALS). No sample mixing was carried out to ensure volatile compounds that may be present are not lost. All sampling equipment was decontaminated prior to use and between sampling locations by washing with a mixture of water and DECON 90 and rinsing with potable water.

All jars were filled to the rim to minimize head space. The sample jars were then placed into ice-filled chests and transferred to ALS for analysis. Chain of Custody (COC) documentation was used to record and track the samples. COC documentation detailing the required analyses accompanied the samples to the laboratory. The environmental engineer signed the appropriate section of the COC form before providing the samples to the laboratory.

Each sample collected was analysed for the contaminants of concern, these being TPH and MAH. The analytical program for the soil samples is outlined in the COC documentation, which is provided in Appendix E. ALS Sydney was selected as the primary laboratory, whilst ALS Brisbane was selected as the secondary laboratory. Both ALS Sydney and ALS Brisbane are NATA accredited for the analyses performed.

13.5 Validation Soil Vapour Survey

During the validation sampling program the concentrations of ionisable volatile organic compounds (VOCs) released from the soil matrix were measured using a photoionisation detector (PID). This provides a qualitative screen of the degree to which the soil samples may be impacted with VOCs. The screening methodology involved the placement of a small portion of each sample (up to approximately 50g) into a sealed plastic 'snaplock' bag, which is kept at room temperature and out of direct sunlight for 10-20 minutes before the PID reading as taken in the headspace above the sample. The PID was calibrated using a 100 ppm isobutylene span gas prior to use.

SMEC Testing Services

The PID readings obtained during the soil vapour survey are presented in the soil sample log sheets (Appendix A). The concentration of ionisable vapours measured in the headspace above the majority of the soil samples ranged from 0.9 ppm to 6.7 ppm (v/v isobutylene equivalent), which is low and suggests that the soil is not significantly impacted with VOCs.

13.6 Validation Soil Sampling Results

The analytical results for the validation sampling program are summarised in the Table E, where the contaminant concentrations in the soil samples have been compared with the designated clean up criteria. The analytical laboratory reports for the validation sampling program are also provided in Appendix C.

The results show that elevated TPH (C_{10} - C_{36}) between 1270 mg/kg and 15 400 mg/kg were measured in the soil during the first three validation sampling episodes, which are above the clean-up criteria. The TPH concentrations were generally decreasing with each sampling event, and after the final (fourth) sampling episode the measured residual concentrations of TPH in the soil samples were all below the clean-up criteria. This demonstrates that the heavy fraction TPH impacted soil identified in the east of the site has been effectively remediated.

13.7 Validation of Bonded Asbestos Affected Area

Twenty one small fragments of bonded asbestos were collected during the remedial program. During the first of the three hand picking events, 17 fragments were retrieved, and four fragments were collected during the second event. No fragments of bonded asbestos were identified during the third and final screening episode. That is, at the completion of the asbestos removal works no visible bonded asbestos materials remained on the land surface in the area where these materials had initially been identified.

Project No. 19257/3243C Report No. 13/1310

14. EVALUATION OF QUALITY ASSURANCE

14.1 Field Duplicate Sample Results

The results of the field intra and inter-laboratory duplicate sample analyses for soils are compared to those of the corresponding primary samples in Table F. The results show that the variations between the primary and duplicate sample results are all below the allowable Relative Percentage Difference (RPD) criteria of 70% for organic species in all but five of the 66 comparable data sets, which is an acceptable rate of correlation.

The discrepancies encountered are expected to be due to the natural heterogeneous distribution of petroleum hydrocarbons in the soil. Further, the higher contaminant concentrations were measured in the primary soil samples, the results for which have been used as the primary data upon which our conclusions have been based. Therefore, the RPD discrepancies do not affect the outcome of the investigation.

14.2 Laboratory Quality Control Program

Our review of the laboratory's internal QC program has shown that the majority of internal duplicate samples, spike recoveries, surrogate standards and laboratory blanks were within the laboratories' recommended range for acceptable reproducibility. Therefore, STS considers the laboratory data obtained in the sampling program to be of acceptable precision, accuracy and reliability and representative of the site conditions encountered.

14.3 Procedure Based Quality Control

An appraisal of the key procedure-based quality control aspects of the investigation are summarized in Table 14.1 below.

35

Project No. 19257/3243C Report No. 13/1310

Table 14.1 Appraisal of Procedure-Based Quality Control

Item	Compliance	Reference/Comments
Appropriate sampling methods adopted?	Yes	Refer to Sections 9.1 and 9.2
Appropriate sample handling and transportation procedures implemented?	Yes	Refer to Sections 9.2 and COC documentation in Appendix B
Samples analysed within recommended laboratory holding times?	Yes	Refer to COC documentation in Appendix B and laboratory reports in Appendix C
NATA accredited laboratory testing methods used?	Yes	Refer to laboratory reports in Appendix C

15. CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this investigation, the following conclusions and recommendations are made:

- The results of previous environmental assessments performed by Peter J Ramsay & Associates Pty Ltd (PJRA), Douglas Partners Pty Ltd (DP) and AECOM Australia Pty Ltd (AECOM) show that the site was developed as a television studio complex in the mid-1960s and this use continued until at least 2002. The previously existing buildings and structures have since been demolished, apart from a small workshop/storage building which remains in the east of the site.
- Based on the site history information provided in the previous reports, the key potential contamination sources which have been located on the land include up to six underground petroleum storage systems (UPSSs), two diesel-containing above ground storage tanks (AGSTs), a substation, a paint shop and a below ground grease trap. Further, the site was confirmed to have been filled with imported soil. As the origin of the fill cannot be confirmed it had the potential to be chemically contaminated.

- Soil sampling was performed from a total of 34 locations across the site as part of PJRA's and DP's previous assessments. DP also installed and sampled three on-site groundwater monitoring wells. The results of the soil sampling programs show that the concentrations chemical contaminants in the soils across the site are generally low and below criteria that are protective of human-health for a high-density residential land use setting. Further, the results of DP's groundwater sampling show that the site is not expected to be the source of any unacceptable groundwater impacts. However, elevated concentrations of light fraction petroleum hydrocarbons (TPH) were measured (by PJRA in 2002) in the soil at one location in the north-east of the site where two UPSSs previously existed. In addition, DP (in 2012) identified the presence of soil impacted with heavy fraction TPH in an area where an AGST had previously existed adjacent to the eastern boundary of the property. Elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) were also measured in a number of soil samples retrieved during both PJRA's and DP's assessments. Also, whilst no asbestos fibres were measured in the soil samples retrieved from the site, DP identified a fragment of asbestos cement sheeting in the north-east of the site within the footprint of a former building. This is expected to have resulted from the demolition of the former buildings, which are known to have contained bonded asbestos materials.
- The previous assessments undertaken by PJRA, DP and AECOM are considered largely suitable to have confirmed the contamination related risks associated with the site. However, our review identified several minor data gaps in the assessment record. In particular, the location of only five of the six known UPSSs had been confirmed and there was insufficient information to determine the significance of the PAHs in the soil. Further, the extent to which the light fraction petroleum hydrocarbon impacts in the soil (identified by PJRA in 2002) may have naturally attenuated over time remained undefined. Therefore, further assessment was recommended, including additional soil sampling and also a ground penetrating radar (GPR) survey to determine if any UPSSs remained on the property.

- The GPR survey performed as part of this 2013 investigation did not identify any sub-surface anomalies that are consistent with remnant UPSSs. Further, no backfilled pits were identified apart from those at the locations where five UPSSs are known to have previously existed. That is, no UPSSs are expected to remain on the site and it is likely that the sixth UPSS was located in the areas where the other UPSSs are known to have existed and was removed at the same time as these facilities.
- The results of our further soil sampling program show that the concentrations of PAHs and light fraction petroleum hydrocarbons in the soils across the site do not present an unacceptable risk to human-health for a high-density residential land use setting. However, the soils in the vicinity of where an AGST previously existed adjacent to the eastern boundary of the site were confirmed to be impacted with heavy fraction TPH at concentrations that present a potential risk to human-health for a residential land use setting. Further, isolated fragments of bonded asbestos were identified on the land surface in the north-east of the site in the area where DP had previously identified these materials. In view of this, remediation of the heavy fraction TPH impacted soil and removal of the bonded asbestos would be necessary to make the site suitable for a high density residential land use.
- Remedial works were subsequently undertaken as part of this investigation, which included the excavation of the soil impacted with heavy fraction TPH and off-site disposal of the material to a licensed landfill facility. Following the removal of the soil, validation sampling was performed across the excavated area, the results of which show that the residual concentrations of TPH are below the adopted clean up criteria. The fragments of bonded asbestos were also removed, and the affected area was validated by way of visual inspection.
- Based on the result of this 2013 investigation and validation program, and also those
 from the previous assessments performed by PJRA, DP and AECOM, the residual
 concentrations of chemical contaminants in the soils across the site are not
 considered to present a risk to human-health for a residential land use setting with
 limited minimal opportunities for soil access. That is, the site is considered to be
 suitable for a high-density residential land use in its current condition.

16. LIMITATIONS

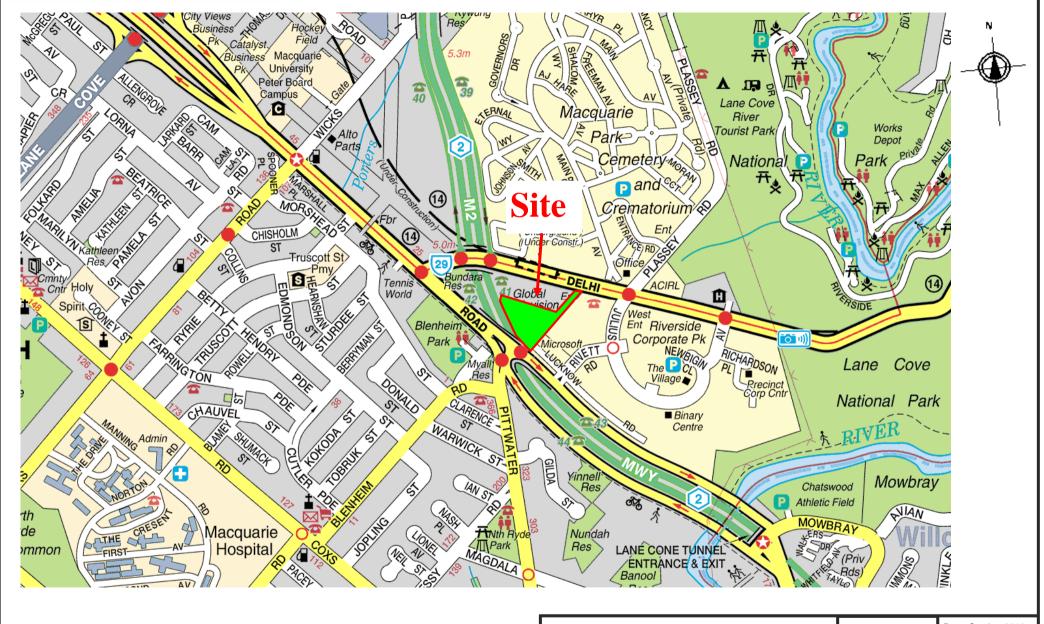
SMEC Testing Services Pty Limited has performed its services for this project in accordance with its current professional standards. Laboratory analyses were undertaken as part of this investigation by Australian Laboratory Services, who are NATA accredited for the analyses performed.

Our opinions outlined in this report are based on the results of soil sampling undertaken by SMEC Testing Services Pty Ltd and also information contained in previous environmental assessment reports prepared by others. SMEC Testing Services Pty Ltd accepts no liability for the reliability or otherwise of data provided other consultants' reports.

When assessing the extent of contamination across a site from a soil sampling program there is the possibility that variations may occur between sample locations and the actual presence of contaminated material at the site may differ from that referred to herein, since no sampling program, no matter how comprehensive, can reveal all anomalies and hot spots that may be present.

The data collected has been used to form an opinion about site contamination with regard to the proposed use of the site, that being a high density residential use. If the nature of the proposed development changes, the conclusions given in this report may need to be revised. Also, regulatory evaluation criteria are constantly changing and as a consequence, concentrations of contaminants presently considered low may, in the future, fall under different regulatory standards that may alter the outcome of this investigation. Opinions and judgments expressed herein, which are based on our understanding and interpretation of current regulatory standards, should not be construed as legal opinions.

This document and the information herein have been prepared solely for the use of Goodman Property Services for the purposes nominated in this report. No person or organization other than Goodman Property Services is entitled to rely on any part of the report without the prior written consent of SMEC Testing Services Pty Ltd. Any third party relying on this report shall have no legal recourse against SMEC Testing Services Pty Ltd or its parent organizations or subsidiaries and shall indemnify and defend them from all and against all claims arising out of, or in conjunction with such use or reliance.


David Yonge (BSc, MSc)

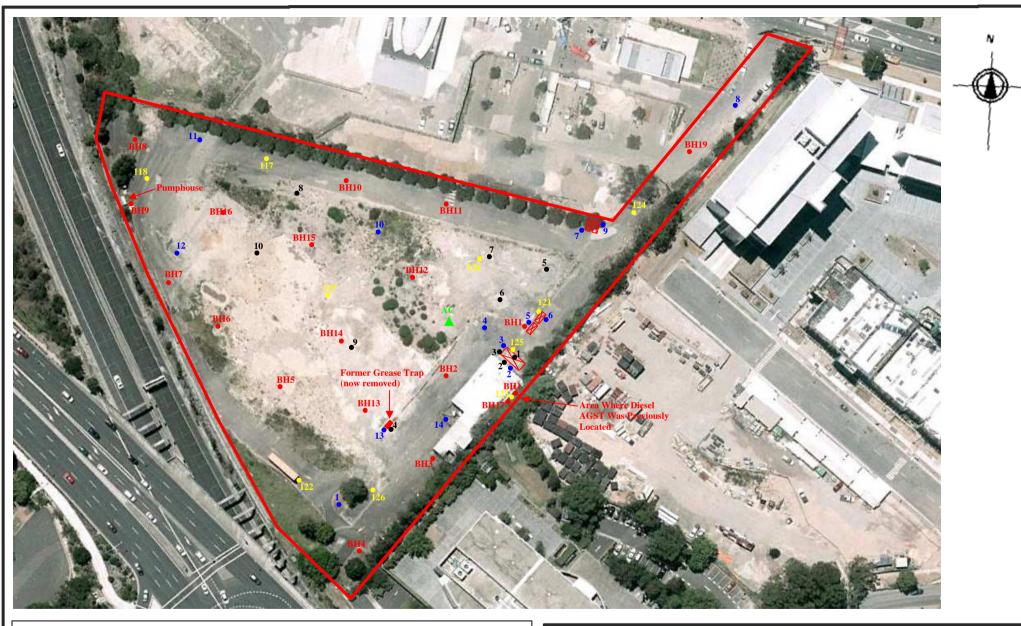
Environmental Manager,

SMEC Testing Services Pty Limited

FIGURES

Map reproduced with permission of UBD. Copyright Universal Publishers Pty. Ltd DG05/04 SMEC TESTING SERVICES Pty Ltd

Scale: 1: 11300 (at A4)


Date: October 2013

Client: Goodman Property Services

Further Site Investigation, Remediation and Validation: Land at 27-33 Delhi Road, North Ryde, NSW - Site Location

Project No. 19257/3243C

Drawing No: 13/1310/1

Boundary of Site

Former Location of UPSS (now removed)

Area Where Asbestos Cement Sheeting Was Identified on the Land Surface

Borehole Number & Location (PJRA 2002)

Borehole Number & Location (PJRA 2009)

Borehole Number & Location (DP 2012)

Borehole Number & Location (STS 2013)

SMEC TESTING SERVICES Pty Ltd

eta Oamela a Dia Lid

Date: October 2013

Scale: 1: 1330 (at A4)

Client: Goodman Property Services Pty Ltd

Further Site Investigation, Remediation and Validation: Land at 27-33 Delhi Road, North Ryde, NSW: Plan Showing Site Features and Soil Sampling Locations

Project No. 19257/3243C

Drawing No: 13/1310/2

 \boxtimes

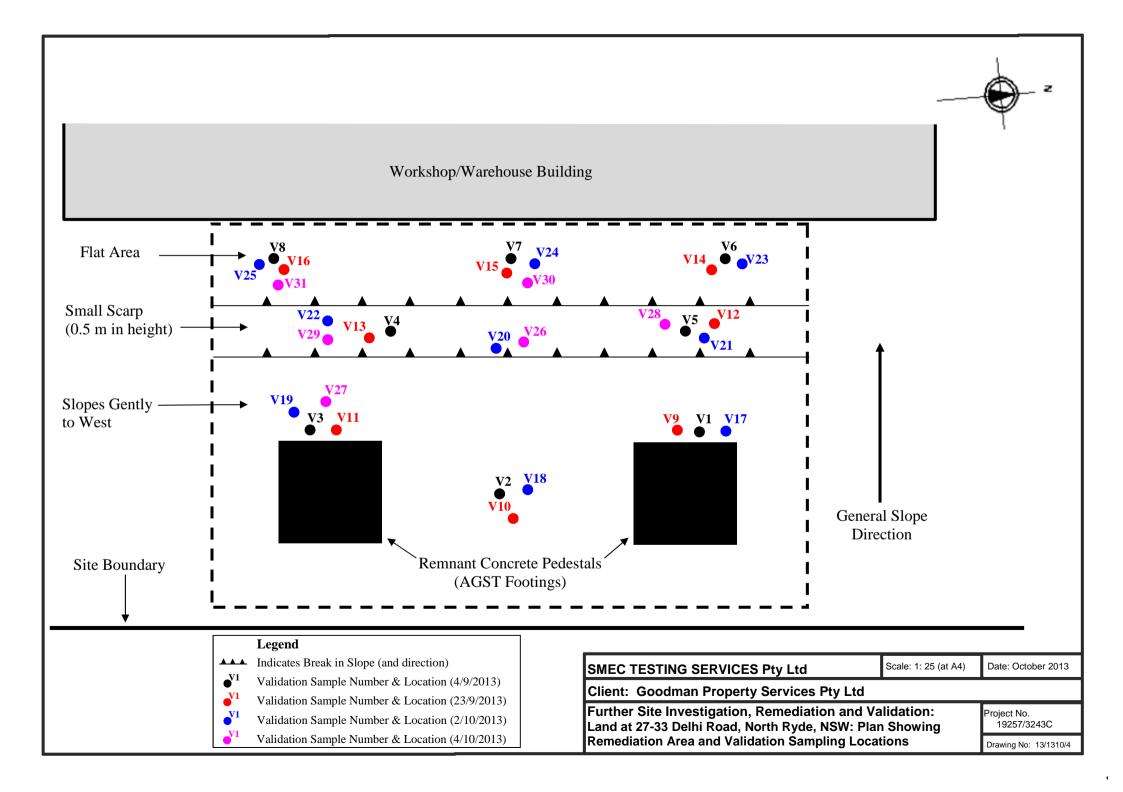
Boundary of Site

Former Location of UPSS (now removed)

Area Where Asbestos Cement Sheeting Was Identified on the Land Surface

Area Subject to Asbestos Removal Works Area Excluded From GPR Survey

SMEC TESTING SERVICES Pty Ltd


Scale: 1: 1330 (at A4)

Date: October 2013

Client: Goodman Property Services Pty Ltd

Further Site Investigation, Remediation and Validation: Land at 27-33 Delhi Road, North Ryde, NSW - Plan Showing Areas Subject to GPR Survey and Asbestos Removal Works Project No. 19257/3243C

Drawing No: 13/1310/3

TABLES OF RESULTS

Analytical Results for Soil Samples - 2013 Further Investigation Table A

													Samp	ole Numi	bers												NEPM Background Ranges	NSW EPA Threshold Concentrations	HIL/HSL Residential B Criteria
	Borehole No.	BH1	BH1	BH1	BH2	внз	BH4	BH5	BH5	BH5	ВН6	вн6	ВН7	ВН8	ВН9	BH10	BH11	BH12	BH13	BH14	BH1	5 BH1	5 BH16	BH17	BH18	BH19	•		
Analytes	Sample No.	S1	S3	S4	S4A	S5	S7	S9	S10	S12	S14	S16	S18	S20	S21	S22	S25	S26	S28	S29	S30	S34	S36	S38	S39	S40			
Monocyclic Aromatic Hydrocarbons	(MAHs)																												
Benzene			<0.2	<0.2											<0.2									<0.2	<0.2			1	0.5 (b)
Ethylbenzene			<0.5	<0.5											<0.5									< 0.5	< 0.5			3.1	55 (b)
Toluene			<0.5	<0.5											<0.5									< 0.5	< 0.5			1.4	160 (b)
Xylenes			<1.0	<1.0											<1.0									<1.0	<1.0			14	40 (b)
Napthalene			<1	<1											<1									<1	<1				3 (b)
otal Petroleum Hydrocarbons (TPH	ls)																												
Total C ₆ -C ₉	-		<10	<10											<10									<10	<10			65	
F1 C ₆ -C ₁₀			<10												<10										<10				50 (b)
F2 C ₁₀ -C ₁₆			<49	<49											<49									8579	129				280 (b)
Total C ₁₀ -C ₃₆				<50											<50										3280			1000	=== (=)
olycyclic Aromatic Hydrocarbons (PAHs)		0	0											.00														
Carcinogenic PAHs ²		<0.6			<0.6	< 0.6	<0.6	<0.6	<0.6	<0.6	< 0.6	<0.6	< 0.6	<0.6		<0.6	<0.6	<0.6	<0.6	<0.6	1.0	<0.6	<0.6			<0.6			4
Total PAHs above detection lin	nits	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.1	<0.5	<0.5				2.7	<0.5	<0.5							<0.5	0.95-5 (a)		400

(a) ANZECC background range used where no NEPM criteria are available (b) NEPM 2013 HSL criterion for vapour intrusion, 0-1 m depth in clay soils

¹ Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

ND = No individual species detected abovelaboratory detection limits.

Results shaded green exceed the NSW EPA threshold concentrations for a sensitive land use.

Results shaded red exceed the NEPM 2013 HILs/HSLs (Residential B) criteria for a residential land use with minimal opportunities for soil access.

Analytical Results for Soil Samples - PJRA 2002 Assessment Table B

										Samp	le Numb	ers								NEPM Background Ranges	NSW EPA PILs	NSW EPA Threshold Concentrations	HIL/HSL Residential B Criteria
	Borehole No.	1	2	2	2	3	3	3	3	3	4	4	5	5	5	5	5	5	5	Ranges		Concentrations	D Citteria
Analytes	Sample No.	1B	2A	2C	2E	3A	3B	3C	3E	3G	4A	4B	5A	5B	5C	5E	5F	5G	51				
Metals																							
Antimony		<2	<2	<2		<2		4.5			<2	<2	<2		<2		<2			4-44 (a)			
Arsenic		5.7	3.5	5.5		2.6		3.9			<2	12	9.7		6.7		5			1-50	20		500
Beryllium		1.1	<1	<1		<1		<1			1	<1	<1		1.1		<1						90
Cadmium		<1	2.4	<1		<1		<1			1.7	<1	<1		<1		<1			1	3		150
Chromium		65	69	13		18		32			140	28	20		35		13			5-1 000	400 (b)		500 (d)
Cobalt		18	18	<2		5.6		7.2			42	2.9	<2		17		5.4				• •		600
Copper		40	66	57		33		160			54	21	13		34		16			2-100	100		30000
Lead		18	82	21		59		84			6.3	28	27		28	46	27	40	22	2-200	600		1200
Manganese		520	590	48		180		270			1300	73	43		520		220			850	500		14000
Mercury	_	0.04	0.15	0.05		0.08		0.11			0.05	0.03	0.06		0.05		0.03			0.001-0.1 (a)	1 (c)		120 (c)
Nickel		60	61	3.9		18		19			150	11	3.6		22		8.2			5-500	60		1200
Selenium		<2	<2	<2		<2		<2			<2	2.2	<<2		<2		<2						1400
Tin		<2	6.9	<2		2.9		77			3.1	<2	<2		<2		<2			1-25 (a)			
Zinc		60	99	28		72		85			94	40	22		76		42			10-300	200		60000
Monocyclic Aromatic Hydrocarbons	(MAHs)																						
Benzene									<0.1	<0.1						<0.1	<0.1	<0.1	0.1			1	0.5 (e)
Ethylbenzene									<0.1	<0.1						<0.1	<0.1	<0.1	<0.1			3.1	55 (e)
Toluene									<0.1	<0.1						<0.1	<0.1	<0.1	<0.1			1.4	160 (e)
Xylenes									< 0.3	< 0.3						< 0.3	<0.3	< 0.3	<0.3			14	40 (e)
Total Petroleum Hydrocarbons (TPI	ls)																						
Total C ₆ -C ₉				<2	<2			<2	<2	<2					<2	<2	300	57	60			65	
F1 C ₆ -C ₁₀				<2	<2			<2	<2	<2					<2	<2	300-370	57	60				50 (e)
F2 C ₁₀ -C ₁₆				<20	<20			<20	<20	<20					<20	<20	70	<20	<20				280 (e)
Total C ₁₀ -C ₃₆				ND	ND			180	180	30					ND	ND	70	ND	ND			1000	
Polycyclic Aromatic Hydrocarbons																							
Carcinogenic PAHs ²		< 0.35				6.7	6.9	6.3	8.5	<1.64				< 0.35			< 0.35						4
Total PAHs above detection li	mits	ND				48	47	42	64	13				ND			<0.5			0.95-5 (a)			400

Results shaded red exceed the NEPM 2013 HILs/HSLs (Residential B) criteria for a residential land use with minimal opportunities for soil access.

- (a) ANZECC background range used where no NEPM criteria are available
- (b) Criterion for total chromium
- (c) Criterion for inorganic mercury.
- (d) Criterion for chromium (VI).
- (e) NEPM 2013 HSL criterion for vapour intrusion, 0-1 m depth in clay soils

¹ Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene ND = No individual species detected abovelaboratory detection limits.

Results shaded yellow exceed the PILs

Results shaded green exceed the NSW EPA threshold concentrations for a sensitive land use.

Analytical Results for Soil Samples - PJRA 2002 Assessment Table B (cont)

									Sam	ple Num	nbers								NEPM Background Ranges	NSW EPA PILs	NSW EPA Threshold Concentrations	HIL/HSL Residential I Criteria
E	Borehole No.	6	6	6	6	6	7	7	7	7	7	9	10	11	11	12	13	14	_ Kanges		Concentrations	Criteria
Analytes	Sample No.	6A	6B	6C	6E	6G	7A	7B	7C	7E	7F	9A	10B	11A	11B	12B	13A	14A				
Metals																						
Antimony		<2	<2		<2			<2		<2		<2	<2		<2			<2	4-44 (a)			
Arsenic		4.3	5		9			6		11		<2	11		7			5	1-50	20		500
Beryllium		<1	<1		1			<1		1		1	<1		<1			<1				90
Cadmium		<1	<1		<1			<1		<1		<1	<1		<1			<1	1	3		150
Chromium		25	12		22			16		10		110	15		17			18	5-1 000	400 (b)		500 (d)
Cobalt		8.8	<2		22			4.3		6.7		34	<2		<2			5.1				600
Copper		46	13		37			53		19		61	24		19			24	2-100	100		30000
Lead		54	23	29	36	24		92		16		4.8	23		21			24	2-200	600		1200
Manganese		360	26		910			180		130		950	31		23			140	850	500		14000
Mercury		0.15	0.02		0.05			0.1		0.04		0.03	0.06		0.03			0.08	0.001-0.1 (a)	1 (c)		120 (c)
Nickel		20	<2		23			12		11		120	4.0		<2			12	5-500	60		1200
Selenium		<2	<2		2			4		<2		<2	<2		<2			<2				1400
Tin		2.6	<2		<2			3.7		<2		<2	<2		<2			<2	1-25 (a)			
Zinc		85	12		76			70		90		59	11		8.1			68	10-300	200		60000
Monocyclic Aromatic Hydrocarbons (M	//AHs)																					
Benzene					<0.1									<0.1			<0.1				1	0.5 (e)
Ethylbenzene					<0.1									<0.1			<0.1				3.1	55 (e)
Toluene					<0.1									<0.1			<0.1				1.4	160 (e)
Xylenes					<0.3									<1.5			<1.5				14	40 (e)
Total Petroleum Hydrocarbons (TPHs)																						
Total C ₆ -C ₉				<2	<2	<2			<2		<2	<2		<2			<2	<2			65	
F1 C ₆ -C ₁₀ ¹				<2	<2	<2			<2		<2	<2		<2			<2	<2				50 (e)
F2 C ₁₀ -C ₁₆				<20	<20	<20			<20		<20	<20		<20			<20	<20				280 (e)
Total C ₁₀ -C ₃₆				ND	ND	ND			30		ND	ND		ND			ND	ND			1000	
Polycyclic Aromatic Hydrocarbons (PA	AHs)																					
Carcinogenic PAHs ²							<0.8						< 0.35									4
Total PAHs above detection lim	its						4.3						ND						0.95-5 (a)			400

Results shaded red exceed the NEPM 2013 HILs/HSLs (Residential B) criteria for a residential land use with minimal opportunities for soil

- (a) ANZECC background range used where no NEPM criteria are available
- (b) Criterion for total chromium
- (c) Criterion for inorganic mercury. (d) Criterion for chromium (VI).
- (e) NEPM 2013 HSL criterion for vapour intrusion, 0-1 m depth in clay soils

¹ Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

ND = No individual species detected abovelaboratory detection limits.

Results shaded yellow exceed the PILs Results shaded green exceed the NSW EPA threshold concentrations for a sensitive land use.

Table C Analytical Results for Soil Samples - PJRA 2009 Assessment

	_							San	nple Nu	mbers							NEPM Background Ranges	NSW EPA PILs	NSW EPA Threshold Concentrations	HIL/HSL Residential E Criteria
Во	rehole No.	1	1	1	1	2	2	2	3	3	3	3	4	4	4	4				200200
Analytes S	ample No.	1A	1C	1E	1H	2B	2E	21	3B	3D	3F	3H	4A	4C	4D	4E	_			
Metals																				
Arsenic		4		4						5			3		5.0		1-50	20		500
Cadmium		< 0.3		< 0.3						< 0.3			0.3		0.4		1	3		150
Chromium		19		16						19			39		30		5-1 000	400 (b)		500 (d)
Copper		45		47						45			26		110		2-100	100		30000
Lead		40		38						45			13		35		2-200	600		1200
Mercury		0.07		0.07						0.06			0.05		0.2		0.001-0.1 (a)	1 (c)		120 (c)
Nickel		20		12						16			42		22		5-500	60		1200
Zinc		78		59						72			76		100		10-300	200		60000
Monocyclic Aromatic Hydrocarbons (Ma	AHs)																			
Benzene		< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			1	0.5 (e)
Ethylbenzene		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			3.1	55 (e)
Toluene		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			1.4	160 (e)
Xylenes		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5			14	40 (e)
Total Petroleum Hydrocarbons (TPHs)																				
Total C ₆ -C ₉		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20			65	
F1 C ₆ -C ₁₀		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20				50 (e)
F2 C ₁₀ -C ₁₆		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20				280 (e)
Total C ₁₀ -C ₃₆		310	490	186	ND	143	ND	ND	230	410	117	ND	410	121	ND	ND			1000	` '
Polycyclic Aromatic Hydrocarbons (PAI	Hs)																			
Carcinogenic PAHs ²		5.2	5.3	2.3			<0.2			6.01										4
Total PAHs above detection limits		44.2	40.5	20.7			ND			44.4							0.95-5 (a)			400

ND = No individual species detected abovelaboratory detection limits.

Results shaded yellow exceed the PILs

Results shaded green exceed the NSW EPA threshold concentrations for a sensitive land use.

Results shaded red exceed the NEPM 2013 HILs/HSLs (Residential B) criteria for a residential land use with minimal opportunities for soil access.

- (a) ANZECC background range used where no NEPM criteria are available
- (b) Criterion for total chromium
- (c) Criterion for inorganic mercury.
- (d) Criterion for chromium (VI).
- (e) NEPM 2013 HSL criterion for vapour intrusion, 0-1 m depth in clay soils

¹ Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

Analytical Results for Soil Samples - DP 2012 Assessment Table D

								S	ample Nu	mbers							NEPM Background Ranges	NSW EPA PILs	NSW EPA Threshold Concentrations	HIL/HSL Residential I Criteria
В	Borehole No.	117	117	118	119	119	120	120	121	122	123	123	124	125	126	126	Ranges		Concentrations	Criteria
Analytes	Sample No.	117-0.1	117-0.4	118-0.3	119-0.1	119-0.2	120-0.1	120-0.5	121-0.1	122-0.3	123-0.05	123-1.2	124-0.1	125-0.15	126-0.2	126-0.3				
Metals																				
Arsenic		<4	<4	6	<4	<4	<4	7	<4	<4	33	7	<4	15	<4	4	1-50	20		500
Cadmium		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	1	3		150
Chromium		8	13	8	6	7	46	10	41	40	34	10	72	13	17	13	5-1 000	400 (b)		500 (d)
Copper		19	6	29	23	27	26	27	28	19	160	24	34	30	51	22	2-100	100		30000
Lead		76	9	14	11	10	9	18	7	8	310	36	13	18	57	22	2-200	600		1200
Mercury		0.3	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	0.001-0.1 (a)	1 (c)		120 (c)
Nickel		3	9	9	5	14	46	6	44	38	11	1	76	8	14	7	5-500	60		1200
Zinc		48	15	21	34	70	48	13	42	32	730	45	48	16	95	35	10-300	200		60000
Monocyclic Aromatic Hydrocarbons (N	MAHs)																			
Benzene		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2			1	0.5 (e)
Ethylbenzene		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			3.1	55 (e)
Toluene		< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5			1.4	160 (e)
Xylenes		<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3			14	40 (e)
Total Petroleum Hydrocarbons (TPHs)																				
Total C ₆ -C ₉		<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25			65	
F1 C ₆ -C ₁₀ '		<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25				50 (e)
F2 C ₁₀ -C ₁₆		<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	350	<50	<50	<50	<50	<u> </u>			280 (e)
Total C ₁₀ -C ₃₆		170	<100	<100	<100	<100	<100	<100	<100	<100	3310	1870	140	<100	<100	<100	·		1000	
Polycyclic Aromatic Hydrocarbons (PA	AHs)																<u> </u>			
Carcinogenic PAHs ²		<1.3	<0.4	<0.2	<0.4	<0.5	<0.2	<0.2	< 0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<1.3	3-4				4
Total PAHs above detection limi	its	8.84	2.09	ND	1.78	2.88	0.56	ND	0.9	ND	0.3	2.8	0.2	ND	7.53	33.2	0.95-5 (a)		·	400

Results shaded yellow exceed the PILs

Results shaded red exceed the NEPM 2013 HILs/HSLs (Residential B) criteria for a residential land use with minimal opportunities for soil access.

(a) ANZECC background range used where no NEPM criteria are available

- (b) Criterion for total chromium
- (c) Criterion for inorganic mercury.
- (d) Criterion for chromium (VI).

 (e) NEPM 2013 HSL criterion for vapour intrusion, 0-1 m depth in clay soils

¹ Calculated in accordance with Table 1A(3) of NEPM 2013

² Combined carcinogenic PAHs with relative potency to benzo(a)pyrene

ND = No individual species detected abovelaboratory detection limits.

Results shaded green exceed the NSW EPA threshold concentrations for a sensitive land use.

Table E Analytical Results for Soil Samples - 2013 Validation Program

																Samı	ole Num	bers															NSW EPA Threshold Concentrations	HIL/HSL Resident B Criteria
	Sample No.	V1*	V2*	V3*	V4*	V5*	V6*	V7*	V8*	V9*	V10*	V11*	V12*	V13*	V14*	V15*	V16*	V17	V18	V19*	V20*	V21*	V22*	V23	V24*	V25*	V26	V27	V28	V29	V30	V31	Concentrations	B Criteria
Analytes	Date Sampled	4/9/13	4/9/13	4/9/13	4/9/13	4/9/13	4/9/13	4/9/13	4/9/13	23/9/13	23/9/13	23/9/13	23/9/13	23/9/13	23/9/13	23/9/13	23/9/13	2/10/13	2/10/13	2/10/13	2/10/13	2/10/13	2/10/13	2/10/13	2/10/13	2/10/13	4/10/13	4/10/13	4/10/13	4/10/13	4/10/13	4/10/13		
Monocyclic Aromatic Hydrocar	bons (MAHs)																																	
Benzene		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1	0.5 (a)
Ethylbenzene		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.1	55 (a)
Toluene		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.4	160 (a)
Xylenes		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	14	40 (a)
Napthalene		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		3 (a)
otal Petroleum Hydrocarbons	(TPHs)																																	
Total C ₆ -C ₉		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	65	
F1 C ₆ -C ₁₀		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		50 (a)
F2 C ₁₀ -C ₁₆		110	230	1560	1220	910	120	210	580	700	1210	4310	900	510	350	540	650	120	150	1140	500	170	190	50	80	360	<50	<50	<50	<50	<50	<110		280 (a)
Total C ₁₀ -C ₃₆		3780	2230	11000	15400	12700	4220	5400	8320	3330	4500	13200	4760	3360	5450	7730	3960	520	840	3670	1880	1270	1520	780	1310	2440	<50	<50	260	180	160	760	1000	

Notes: Results expressed as mg/kg unless otherwise indicated

**Penotes sample removed during subsequent excavation works

**Calculated in accordance with Table 14(3) of NEPM 2013

(a) NEPM 2013 HSL criterion for vapour intrusion, 0-1 m depth in clay soils

**ND = No individual species detected abovelaboratory detection limits.

**Results shaded green exceed the NSW EPA threshold concentrations for a sensitive land use with minimal opportunities for soil access.

**Results shaded green exceed the NSW EPA threshold concentrations for a residential land use with minimal opportunities for soil access.

Table F Results of Quality Control - Intra and Inter Laboratory Duplicate Samples

_									Sampl	e Numbers									
Analyte	S9	S10*	RPD (%)	S9	S11 [#]	RPD	(%)	V1	S100A*	RPD (%)	V1	S101B#	RPD (%)	V12	S102C*	RPD (%)	V12	S103D#	RPD (%)
Monocyclic Aromatic Hydrocarbons (MAHs)																			
Benzene								< 0.2	< 0.2	<70	< 0.2	< 0.2	<70	< 0.2	< 0.2	<70	< 0.2	< 0.2	<70
Ethylbenzene								< 0.5	< 0.5	<70	< 0.5	<0.5	<70	<0.5	< 0.5	<70	< 0.5	<0.5	<70
Toluene								<0.5	<0.5	<70	<0.5	<0.5	<70	<0.5	<0.5	<70	<0.5	<0.5	<70
Xvlenes								< 0.5	<0.5	<70	< 0.5	<0.5	<70	< 0.5	< 0.5	<70	< 0.5	<0.5	<70
Napthalene								<1	<1	<70	<1	<1	<70	<1	<1	<70	<1	<1	<70
Total Petroleum Hydrocarbons (TPHs)																			
Total C ₆ -C ₉								<10	<10	<70	<10	<10	<70	<10	<10	<70	<10	<10	<70
Total C ₁₀ -C ₁₄								<50	<50	<70	<50	<50	<70	210	110	63	210	100	71
Total C ₁₅ -C ₂₈								2410	1790	30	2410	550	126	3740	1440	89	3740	1460	88
Total C ₂₉ -C ₃₆								1370	1070	25	1370	300	128	810	530	42	810	510	45
Polycyclic Aromatic Hydrocarbons (PAHs)																			
Acenaphthene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Acenaphthylene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Anthracene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Benz(a)anthracene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Benzo(a)pyrene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Benzo(b)fluoranthene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Benzo(k)fluoranthene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Benzo(g,h,i)perylene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Chrysene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Dibenzo(a,h)anthracene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Fluoranthene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Fluorene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Indeno(1,2,3-cd)pyrene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Naphthalene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Phenanthrene	< 0.5	< 0.5	<70	< 0.5	< 0.5	<7	0												
Pyrene	<0.5	< 0.5	<70	<0.5	<0.5	<7													

Note: Results expressed as mg/kg dry weight.

^{*} Denotes intra-laboratory duplicate sample analysed by primary laboratory (ALS Sydney)

^{*} Denotes inter-laboratory duplicate sample analysed by secondary laboratory (ALS Brisbane)

RPDs that have been shaded exceed the acceptance criteria

APPENDIX A SOIL PROFILE AND SAMPLING LOG SHEETS

Project:		perty Services Road, North Rycawing No. 13/13		ВО	PREHOLE NO.:	BH 1
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	Sheet 1 of 1 CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S1 @ 0.1 m		ASPHALT/SANDY GRAVEL ${\rm PID} = 0.2~{\rm ppm}$ ${\rm FILL}$			D
	S2	0.5	SILTY CLAY: light grey with orange brown, medium to high plasticity WEATHERED SHALE: light brown with orange brown, clayey seams PID = 0.7 ppm	CL/CH	EXTREMELY	D-M
	@ 1.0 m	1.5			LOW STRENGTH	
	S3 @ 2.0 m	2.0	PID = 0.5 ppm			
NOTES:		d sample	PID = 0.2 ppm BOREHOLE DISCONTINUED AT 3.0 M ON WEATHERED SHALE U - undisturbed tube sample B - bulk sample The standard Penetration Test (SPT)	Contractor:		
	W I - level (of water table or	free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Hole Diam	eter (mm): 100 Vertical (°) 0	

Client:	Goodman Prop	erty Services Road, North Ryd	Project No.: 19257/3243C e Date : 29 July 2013	ВО	REHOLE NO.:	BH 2
Location:	Refer to Dra	wing No. 13/13	10/2 Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S4A @ 0.1 m		ASPHALT/SANDY GRAVEL $\mbox{PID} = 0.3 \mbox{ ppm}$ \mbox{FILL}			D
			SILTY CLAY: light grey with orange brown, medium to high plasticity	CL/CH		D-M
		0.5	HAND AUGER REFUSAL AT 0.3 M ON SHALE BEDROCK			
		1.0				
		1.5				
		2.0				
		2.5				
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample C	ontractor:	STS	
TOTES.		of water table or	free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols H	quipment ole Diam	: Hand Auger eter (mm): 100	

Client:	Goodman Prop	erty Services Road, North Ry	Project No.: 19257/3243C de Date : 29 July 2013	ВС	OREHOLE NO.:	вн з
Location:	Refer to Dra	wing No. 13/13	10/2 Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	consistency (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S5 @ 0.1 m		ASPHALT/SANDY GRAVEL $\mbox{PID} = 0.1 \mbox{ ppm} \label{eq:pid}$ \mbox{FILL}			D
	S6 @ 0.2 m		SILTY CLAY: mottled dark grey with light grey and orange brown, medium plasticity, trace of gravel PID = 0.2 ppm			D-M
		0.5	FILL			
			SILTY CLAY: light grey with orange brown, low plasticity, trace of fine sand, trace of gravel			M
			BOREHOLE DISCONTINUED AT 0.8 M			
		1.0				
		1.5				
		2.0				
		2.5				
NOTES:		d sample		Contractor	r: STS tt: Edson RP70	
	W 1 - ICVCI (n water table of	See explanation sheets for meaning of all descriptive terms and symbols	Hole Dian	neter (mm): 100 m Vertical (°) 0	

	Goodman Prop 27-33 Delhi l			Project No.: 19257/3243C e Date: 29 July 2013		во	REHOLE NO.:	BH 4
Location:	Refer to Dra	awing N	o. 13/13	10/2 Logged: JK			Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S		РТН m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M E C	7 11 13 10	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S7 @ 0.1 m			ASPHALT/SANDY GRAVEL $\mbox{PID} = 0.3 \mbox{ ppm}$ \mbox{FILL}				D
	S8 @ 0.3 m	0.5		SANDY CLAY: dark brown/orange brown, fine to medium grained, low plasticity PID = 0.5 ppm FILL				D-M
		1.0		SILTY CLAY: orange brown with light grey, medium plasticity BOREHOLE DISCONTINUED AT 1.0 M				M
		1.5						
		2.0						
		2.5						
NOTES:	D - disturbe WT - level o			free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Hole D	nent:	STS: Edson RP70 eter (mm): 100 Vertical (°) 0	

Project:		perty Services Road, North Ryd awing No. 13/13		ВО	PREHOLE NO.:	BH 5
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	Sheet 1 of 1 CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S9,S10,S11 @ 0.1 m	0.5	SILTY CLAY: dark brown with light grey and orange brown, medium plasticity, trace of gravel PID = 0.5 ppm			D-M
	S12 @ 1.5 m	1.5	$\mbox{PID} = 0.4 \mbox{ ppm}$ \mbox{FILL}			
	S13 @ 2.0 m	2.0	SILTY CLAY: orange brown with light grey, medium to high plasticity PID = 0.3 ppm BOREHOLE DISCONTINUED AT 2.3 M	CL/CH		M
NOTES:		d sample of water table or	U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Hole Diam	STS: Edson RP70 eter (mm): 100 n Vertical (°) 0	

Client: C	Goodman Prop	erty Services Road, North Ryd	Project No.: 19257/3243C le Date: 29 July 2013	В	OREHOLE NO.:	BH 6
Location:	Refer to Dra	wing No. 13/13	10/2 Logged: JK		Sheet 1 of 2	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	consistency (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S14 @ 0.1 m		ASPHALT/SANDY GRAVEL $\mbox{PID} = 0.2 \mbox{ ppm} \label{eq:pid}$ FILL			D
	\$15 @ 0.3 m	1.0	SILTY CLAY: light brown with orange brown and light grey, medium plasticity PID = 0.2 ppm			M M
	S16 @ 2.3 m		SILTY CLAY: dark grey brown, medium plasticity PID = 0.3 ppm FILL			M
NOTES:		d sample of water table or	free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Hole Diar	r: STS nt: Edson RP70 meter (mm): 100 m Vertical (°) 0	

SMEC Testing Services Pty Ltd

		perty Services Road, North Ryo	Project No.: 19257/3243C de Date: 29 July 2013	ВС	PREHOLE NO.:	BH 6
		awing No. 13/13			Sheet 2 of 2	
W A T T A E B R L E	S A M P L E	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
		3.5	SILTY CLAY: dark brown, medium plasticity FILL			М
	S17 @ 3.8 m	4.0	SILTY CLAY: orange brown and light grey, medium to high plasticity PID = 0.1 ppm BOREHOLE DISCONTINUED AT 4.0 M			M
NOTES:	D - disturbe WT - level o	d sample of water table or	free water N - Standard Penetration Test (SPT) E See explanation sheets for meaning of all descriptive terms and symbols	ole Diam	: STS : Edson RP70 leter (mm): 100	

Project:	Goodman Prop 27-33 Delhi I Refer to Dra	Road, North R		ВС	Sheet 1 of 1	BH 7
W A T T A E B R L E	S A M P L E	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S18 @ 0.1 m		ASPHALT/SANDY GRAVEL $\mbox{PID} = 0.2 \mbox{ ppm} \label{eq:pid}$ \mbox{FILL}			D
	S19 @ 0.2 m	_	SILTY CLAY: dark grey with occasional light grey, medium plasticity, trace of gravel $PID = 0.3 \text{ ppm}$			D-M
		0.5	FILL			
			SILTY CLAY: orange brown with light grey, medium to high plasticity	CL/CH		M
		1.0				
		1.5				
			SILTY CLAY: light grey with orange brown, fine to medium gravel			
		2.0				
			BOREHOLE DISCONTINUED AT 2.0 M			
		2.5				
			- - - -			
NOTES:		d sample of water table of	U - undisturbed tube sample B - bulk sample or free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols		: STS t: Edson RP70 neter (mm): 100	•
			see explanation succes for meaning or an descriptive terms and symbols		n Vertical (°) 0	

Client:	Goodman Prop	perty Services Road, North Ryd	Project No.: 19257/3243C e Date: 29 July 2013	В	OREHOLE NO.:	BH 8
Location:	Refer to Dra	awing No. 13/13	10/2 Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S20 @ 0.1 m		ASPHALT/SANDY GRAVEL $\mbox{PID} = 0.2 \mbox{ ppm} \label{eq:pid}$ FILL			D
			SANDY CLAY: dark brown with orange brown, fine to medium gravel, low plasticity			D-M
		1.0	HAND AUGER REFUSAL AT 0.3 M ON SHALE BEDROCK			
		2.5				
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample	Contract	or: STS	
		of water table or	free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Equipme Hole Dia	ent: Hand Auger umeter (mm): 100 om Vertical (°) 0	

Project:	Goodman Prop 27-33 Delhi l Refer to Dra	perty Services Road, North Ryd awing No. 13/13	Project No.: 19257/3243C e Date: 29 July 2013 10/2 Logged: JK		ВО	REHOLE NO.: Sheet 1 of 1	ВН 9
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)		S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
		(m)	SILTY CLAY: dark brown, low plasticity, trace of gravel PID = 0.1 ppm FILL HAND AUGER REFUSAL AT 0.2 M			gravers)	
NOTES:	D - disturbe	2.5	U - undisturbed tube sample B - bulk sample		ractor:		
	WT - level o	of water table or	free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Hole	Diam	: Hand Auger eter (mm): 100 Vertical (°) 0	

Property 1	Client:	Goodman Prope	rty Services	Project No.: 19257/3243C Date: 29 July 2013	BC	DREHOLE NO.:	BH 10
No. No.	Location:	Refer to Dray	ving No. 13/131	Logged: JK		Sheet 1 of 1	
Size explanation sheets for meaning of all descriptive terms and symbols PID = 0.3 pypa FILL CLAYEY SAND: orange brown, fine to medium grained D.M. CLAYEY SAND: orange brown, fine to medium grained D.M. D.M. D. D. D. D. D. D. D	A T T A E B R L	A M P L E			Y M B O	(cohesive soils) or RELATIVE DENSITY (sands and	O I S T U R
NOTES: D - distarbed sample VT - level of water table or free water U - undisturbed rube sample N- Standard Pencention Test (SFT) See explanation shores for morning of all descriptive terms and symbols FILL D-M D-M D-M D-M D-M D-M D-M D			_				D
NOTES: D - disturbed sample WT - level of sounce table or free water U - undisturbed tube sample WT - level of sounce table or free water N - Standard Penetration Test (SPT) Equipment: Hand Auger Hole Diameter (Imm) 100		@ 0.1 m		FILL			
NOTES: D - disturbed sample WT - level of water table or free water See explanation sheets for meaning of all descriptive terms and symbols U - undisturbed tube sample B - bulk sample N - Standard Penetration Test (SPT) Equipment: Hand Auger Hole Diameter (mm): 100			1.0				D-IVI
WT - level of water table or free water N - Standard Penetration Test (SPT) Equipment: Hand Auger See explanation sheets for meaning of all descriptive terms and symbols Hole Diameter (mm): 100			2.5				
L'Angle from Vertice (701 II	NOTES:			ree water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols H	Equipmen Iole Dian	t: Hand Auger neter (mm): 100	

Client:	Goodman Prop	perty Services Road, North Ryc	Project No.: 19257/3243C e Date: 29 July 2013	ВС	OREHOLE NO.:	BH 11
Location:	Refer to Dra	awing No. 13/13	10/2 Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	consistency (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	\$25 @ 0.1 m		ASPHALT/SANDY GRAVEL $\mbox{PID} = 0.2 \mbox{ ppm} \label{eq:pid}$ \mbox{FILL}			D
		_	CLAYEY SAND: light brown, fine to medium grained HAND AUGER REFUSAL AT 0.4 M ON SHALE BEDROCK			D-M
NOTES:				Contracto		
	WT - level o	of water table or	See explanation sheets for meaning of all descriptive terms and symbols	Hole Diar	nt: Hand Auger meter (mm): 100 m Vertical (°) 0	

Project:	Goodman Prop 27-33 Delhi I Refer to Dra	Road, North	tyde Date: 29 July 2013	В	OREHOLE NO.: Sheet 1 of 1	BH 12
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S26 @ 0.1 m	0.5	GRAVELLY CLAY: dark grey with orange brown, low plasticity, trace of gravel PID = 0.1	ppm		D D-M
	S27 @ 1.0 m	1.0	FILL SILTY CLAY: orange brown with light grey, medium to high plasticity PID = 0.3	ppm CL/C	н	M
		1.5	BOREHOLE DISCONTINUED AT 1.2 M			
		2.0				
North		2.5				
NOTES:			U - undisturbed tube sample or free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Hole Dia	nr: STS nt: Edson RP70 meter (mm): 100 om Vertical (°) 0	

Project:	Goodman Prop	Road, North			DREHOLE NO.:	BH 13
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	Sheet 1 of 1 CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S28 @ 0.1 m		GRAVELLY CLAY: dark grey with dark brown, low plasticity PID =	0.4 ppm		D
		0.5	WEATHERED SANDSTONE: red brown, fine to medium grained		EXTREMELY LOW STRENGTH	M D
		1.0	BOREHOLE DISCONTINUED AT 0.9 M ON WEATHERED SANDSTONE			
		1.5				
		2.0				
		2.5				
NOTES:			U - undisturbed tube sample B - bulk sample N. Standard Population Test (SDT)	Contractor		
	vv 1 - 1evel (or water tabl	or free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Hole Dian	t: Edson RP70 neter (mm): 100 n Vertical (°) 0	

Client:	Goodman Prop	erty Services Road, North Ryc	Project No.: 19257/3243C e Date: 29 July 2013	BO	BOREHOLE NO.:		
Location:	Refer to Dra	wing No. 13/13	10/2 Logged: JK		Sheet 1 of 1		
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	consistency (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E	
	S29 @ 0.1 m		GRAVELLY CLAY: dark brown, low plasticity, gravel $\label{eq:pident} {\rm PID} = 0.2 \; {\rm ppm}$			D	
		0.5	FILL HAND AUGER REFUSAL AT 0.5 M ON WEATHERED SANDSTONE			D-M	
		1.0					
		1.5					
		2.0					
		2.5					
NOTES:	D - disturbe	d sample	U - undisturbed tube sample B - bulk sample	Contractor	: STS		
T.OILD.		of water table or	free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Equipmen Hole Dian	t: Hand Auger meter (mm): 100 m Vertical (°) 0		

Client: G	Goodman Prope	erty Services oad, North Ryde	Project No.: 19257/3243C Date: 29 July 2013	ВС	PREHOLE NO.:	BH 15
		ving No. 13/131			Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S30,S31,S32 @ 0.1 m		SILTY CLAY: dark brown with dark grey, medium plasticity, trace of sand, trace of gravel PID = 0.4 ppm			D-M
		0.5				М
	S33 @ 1.0 m	1.5	PID = 0.3 ppm			
	S34 @ 2.0 m	2.0	$PID = 0.2 \ ppm$ $FILL$			
	\$35 @ 2.5 m		SILTY CLAY: dark grey with light grey and orange brown, medium to high plasticity PID = 0.4 ppm FILL SHALE: dark grey, fine grained			M-W
NOTES:	D - disturbed WT - level of	sample water table or f	BOREHOLE DISCONTINUED AT 3.0 M ON WEATHERED SHALE U - undisturbed tube sample B - bulk sample N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Hole Diam	:: STS :: Edson RP70 heter (mm): 100	

Project:		perty Services Road, North Ryd awing No. 13/13		ВС	Sheet 1 of 1	BH 16
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S36 @ 0.1 m	0.5	GRAVELLY CLAY: dark grey with dark brown, orange brown and light grey, medium plasticity, gravel ${\rm PID} = 0.3 \; {\rm ppm}$			M
	S37 @ 1.0 m		FILL SILTY CLAY: orange brown with light grey, medium to high plasticity PID = 0.1 ppm BOREHOLE DISCONTINUED AT 1.3 M	CL/CH		M
		1.5	BOREHOLE DISCONTINUED AT 1.3 M			
		2.0				
NOTES:	D. dietuske		U - undistruthed tube sample R - bulk sample	Contractor	STS	
NOTES:		of water table or	U - undisturbed tube sample free water B - bulk sample N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Equipmen Hole Dian	: Edson RP70 heter (mm): 100 h Vertical (°) 0	

Project:	Goodman Prop 27-33 Delhi I	perty Services Road, North Ryd awing No. 13/13	Project No.: 19257/3243C e Date: 29 July 2013 Logged: JK	ВО	Sheet 1 of 1	BH 17
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S38 @ 0.1 m		SILTY CLAY: dark grey, low plasticity, trace of gravel PID = 5.4 ppm TOPSOIL/FILL			D
		1.0	HAND AUGER REFUSAL AT 0.3 M			
NOTES:		d sample of water table or	U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SPT)	ntractor:	STS: Hand Auger	<u>I</u>
			See explanation sheets for meaning of all descriptive terms and symbols		eter (mm): 100 n Vertical (°) 0	

Client:	Goodman Prop	perty Services Road, North Ryc	Project No.: 19257/3243C Date: 29 July 2013	ВО	BH 18	
Location:	Refer to Dra	awing No. 13/13	0/2 Logged: JK		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S39 @ 0.1 m		SILTY CLAY: dark brown/grey, low plasticity, trace of gravel PID = 2.5 ppm FILL/TOPSOIL			D
		1.0	HAND AUGER REFUSAL AT 0.2 M			
NOTES:		d sample of water table or	ree water N - Standard Penetration Test (SPT)		t: Hand Auger	•
					neter (mm): 100 n Vertical (°) 0	

Project:	Goodman Prop 27-33 Delhi l Refer to Dra	perty Services Road, North Ryo twing No. 13/13	Project No.: 19257/3243C le Date: 29 July 2013 Logged: JK		во	REHOLE NO.: Sheet 1 of 1	BH 19
W A T T A E B R L E	S A M P L E	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)		S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
	S40 @ 0.1 m		ASPHALT/SANDY GRAVEL $\mbox{PID} = 0.5 \mbox{ ppm} \label{eq:pid}$ \mbox{FILL}				D
		0.5	SILTY CLAY: light grey with orange brown, medium plasticity HAND AUGER REFUSAL AT 0.5 M ON SHALE BEDROCK				D-M
NOTES:			U - undisturbed tube sample B - bulk sample	Contra			
	WT - level o	of water table or	free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	Hole l	Diam	: Hand Auger eter (mm): 100 Vertical (°) 0	

Project No. 19257/3243C

Description: AGST/Petroleum Hydrocarbon Remediation Area Validation

Engineer: DWY

Sample ID	Date Sampled	Depth (m)	Soil Description	PID (ppm)
V1	4/9/13	0.0-0.1	Loamy Sand: grey-brown, organic	3.9
V2	4/9/13	0.0-0.1	Loamy Sand: brown, organic	2.5
V3	4/9/13	0.0-0.1	Silty Sand: brown, organic	5.9
V4	4/9/13	0.0-0.1	Clay: grey-brown	4.6
V5	4/9/13	0.0-0.1	Clay: grey-brown	3.9
V6	4/9/13	0.0-0.1	Loamy Sand: grey-brown, organic	1.5
V7	4/9/13	0.0-0.1	Loamy Sand: grey-brown	2.0
V8	4/9/13	0.0-0.1	Loamy Sand: grey-brown, organic	2.3
V9	23/9/13	0.0-0.1	Clay: grey	3.0
V10	23/9/13	0.0-0.1	Clay: grey	2.7
V11	23/9/13	0.0-0.1	Clay: grey	6.7
V12	23/9/13	0.0-0.1	Clay: grey & orange-brown	3.4
V13	23/9/13	0.0-0.1	Clay: grey & orange-brown	3.7
V14	23/9/13	0.0-0.1	Gravelly Clay: grey & orange-brown	3.2
V15	23/9/13	0.0-0.1	Gravelly Clay: grey & orange-brown	2.2
V16	23/9/13	0.0-0.1	Clay: red-brown & grey	2.5
V17	2/10/13	0.0-0.1	Silty Clay: grey-brown	1.1
V18	2/10/13	0.0-0.1	Silty Clay: grey-brown	1.4
V19	2/10/13	0.0-0.1	Clay: grey-brown & orange-brown	3.0
V20	2/10/13	0.0-0.1	Silty Clay: grey-brown	3.1
V21	2/10/13	0.0-0.1	Clay: grey-brown & orange-brown	2.1
V22	2/10/13	0.0-0.1	Clay: grey-brown & orange-brown	1.9
V23	2/10/13	0.0-0.1	Clayey Gravel: brown & grey	1.5
V24	2/10/13	0.0-0.1	Clayey Gravel: brown & grey	2.0
V25	2/10/13	0.0-0.1	Clayey Gravel: brown & grey	3.1
V26	4/10/13	0.0-0.1	Clay: grey-brown & orange-brown	0.9
V27	4/10/13	0.0-0.1	Clay: grey-brown	1.2
V28	4/10/13	0.0-0.1	Clay: grey-brown & orange-brown	1.0
V29	4/10/13	0.0-0.1	Clay: grey-brown & orange-brown	1.3
V30	4/10/13	0.0-0.1	Clayey Gravel: brown & grey	0.9
V31	4/10/13	0.0-0.1	Clayey Gravel: brown & grey	1.7
S100A ¹	4/9/13	0.0-0.1	Loamy Sand: grey-brown, organic	
S101B ¹	4/9/13	0.0-0.1	Loamy Sand: grey-brown, organic	
$S102C^2$	23/9/13	0.0-0.1	Clay: grey & orange-brown	
$S103D^2$	23/9/13	0.0-0.1	Clay: grey & orange-brown	

¹ Intra-laboratory duplicate sample of primary sample V1 ² Inter-laboratory duplicate sample of primary sample V12

APPENDIX B CHAIN OF CUSTODY DOCUMENTATION

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield

WETHERILL PARK NSW, AUSTRALIA NSW Australia 2164

2164

 E-mail
 : dyonge@smectesting.com.au
 E-mail
 : sydney@alsglobal.com

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C Page : 1 of 3

Order number : 10297

C-O-C number : P19257 - COC1 Quote number : ES2013SMETES0267 (EN/025/13)

Site : ---

Sampler : ---- QC Level : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Dates

Delivery Details

Mode of Delivery: Client Drop offTemperature: 12.8'CNo. of coolers/boxes: 2 HARDNo. of samples received: 38Security Seal: N/ANo. of samples analysed: 25

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Samples S11, S24 and S32 to be forwarded to ALS Brisbane.
- Samples received in appropriately pretreated and preserved containers.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

: 01-AUG-2013 18:46 Issue Date

Page : 2 of 3 Work Order · FS1317190

ES1317190-035

29-JUL-2013 15:00

✓

Client : SMEC TESTING SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component. SOIL - EP075 SIM PAH No analysis requested OIL - EA055-103 Noisture Content PAH only Matrix: SOIL On Hold) SOIL SOIL - S-04 TPH/BTEX Client sample ID Laboratory sample Client sampling date / time ID ES1317190-001 29-JUL-2013 15:00 ES1317190-002 29-JUL-2013 15:00 S2 ES1317190-003 29-JUL-2013 15:00 ✓ ES1317190-004 29-JUL-2013 15:00 ES1317190-005 29-JUL-2013 15:00 S4A ES1317190-006 29-JUL-2013 15:00 S5 ES1317190-007 29-JUL-2013 15:00 ES1317190-008 29-JUL-2013 15:00 S7 ES1317190-009 29-JUL-2013 15:00 ✓ ES1317190-010 29-JUL-2013 15:00 ES1317190-011 29-JUL-2013 15:00 S10 ES1317190-012 29-JUL-2013 15:00 ES1317190-013 29-JUL-2013 15:00 S13 ✓ ES1317190-014 29-JUL-2013 15:00 ES1317190-015 29-JUL-2013 15:00 S15 ✓ ES1317190-016 29-JUL-2013 15:00 ✓ ✓ ES1317190-017 29-JUL-2013 15:00 S17 ✓ ES1317190-018 29-JUL-2013 15:00 S19 ES1317190-019 29-JUL-2013 15:00 ✓ ES1317190-020 29-JUL-2013 15:00 ✓ ✓ ES1317190-021 29-JUL-2013 15:00 ✓ S21 ES1317190-022 29-JUL-2013 15:00 ✓ ✓ ES1317190-023 29-JUL-2013 15:00 ✓ ES1317190-024 29-JUL-2013 15:00 ✓ ES1317190-025 29-JUL-2013 15:00 ✓ ✓ ES1317190-026 29-JUL-2013 15:00 ✓ ES1317190-027 29-JUL-2013 15:00 ✓ ES1317190-028 29-JUL-2013 15:00 ✓ ES1317190-029 29-JUL-2013 15:00 ✓ ✓ ES1317190-030 29-JUL-2013 15:00 ✓ ES1317190-031 29-JUL-2013 15:00 ✓ ES1317190-032 29-JUL-2013 15:00 ✓ ✓ ES1317190-033 29-JUL-2013 15:00 ✓ ES1317190-034 29-JUL-2013 15:00 ✓ ✓

Issue Date : 01-AUG-2013 18:46

Page : 3 of 3 Work Order : ES1317190

			(On Hold) SOIL No analysis requested	SOIL - EA055-103 Moisture Content	SOIL - EP075 SIM PAH only SIM - PAH only	SOIL - S-04 TPH/BTEX	
ES1317190-036	29-JUL-2013 15:00	S38				✓	
ES1317190-037	29-JUL-2013 15:00	S39				✓	
ES1317190-038	29-JUL-2013 15:00	S40		✓	1		

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	accounts@smectesting.com.au
ALL REPORTS		
- *AU Certificate of Analysis - NATA (COA)	Email	enquiries@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	enquiries@smectesting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	enquiries@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	enquiries@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	enquiries@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	enquiries@smectesting.com.au
DAVID YONGE		
- *AU Certificate of Analysis - NATA (COA)	Email	dyonge@smectesting.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	dyonge@smectesting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	dyonge@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN	Email	dyonge@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	dyonge@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	dyonge@smectesting.com.au

CHAIN OF CUSTODY RECORD

Job No: 19257/3243C Order No: 10297

ANALYSIS

PO Box 6989 (postal)

SMEC Testing Services Pty Ltd

14/1 Cowpasture Place (office), Wetherill Park NSW 2164

E-Mail: dyonge@smectesting.com.au elephone: (02) 9756 2166

Laboratory:

Laboratory number

Sample number | bottle | bag

S4A

 \mathfrak{P} င္သ S2

S

S7 8

S8

[elephone: (02) 8784 8555

Fax:

(02) 9756 1137

Contact: David Yonge

277-289 Woodpark Road, SMITHFIELD NSW 2164 ALS Laboratory Group - Sydney Environmental Division 29/07/2013 Date sampled 29/07/2013 29/07/2013 29/07/2013 29/07/2013 29/07/2013 29/07/2013 29/07/2013 29/07/2013 29/07/2013 29/07/2013 (02) 8784 8500 Composite Sample number type Contact: Jacob Waugh soil \$<u>O</u> soil soil soil soil Soil Soil <u>soil</u> SOI soil Comments Н∀Ч × × ZS ۲S ×

Please forward to ALS Brisbane

Environmental Division Work Order Sydney

7

ŵ

29/07/2013 29/07/2013 29/07/2013

Please forward to ALS Brisbane

29/07/2013

C

S19 S20

29/07/2013 29/07/2013 29/07/2013 29/07/2013 29/07/2013

29/07/2013

soit soil soil \$Oi soi SO. SO <u>so</u> soil <u>so</u>

S22 S21

29/07/2013 29/07/2013

soil soil soil

S24

S25

29/07/2013 29/07/2013 29/07/2013

SO! soil S18 S16 S17 <u>S15</u> S14 S13 S12 S11 S10

۷

6

g

ES1317190

Telephone: +61-2-8784 8555

Page 2 of 2

			ľ			l		ĺ		Pageot
SMEC Testin	SMEC Testing Services Pty Ltd		Job No:		19257/3243C Orde	Order No: 10297				ANALYSIS
PO Box 6989 (postal)	(postal)	<u>:</u> :	; I				SARC S			
The Company	The Composition hace (office), wednestill Fain NOVY 2 tot	4400.00	Till Tata	14044 710-	#		人となる。		-	
Telephone: ₤-Mail: dyong	Telephone: (02) 9756 2166 E-Mail: dyonge@smectesting.com.au	om.au	Fax:	(02) 9 Contact: I	(02) 9756 1137 Contact: David Yonge			·		
Laboratory:	ALS Laborato	Jy Grot	b-Syd	ney Enviro	ALS Laboratory Group - Sydney Environmental Division	¥	<			
277-289 Woo	277-289 Woodpark Road, SMITHFIELD NSW 2164	TFIEL	WSN	2164						
Telephone:	(02) 8784 8555		Fax	(02) 8784 8500	8500	Contact: Jacob Waugh	augh			
Laboratory	Sample number	jar/ bottle	baq	Date sampled	Composite	Sample	Comments	.S ł∀d	'S	
2.5	S26	_	_	29/07/2013	╛	Soil		1	Þ	
26	S27	_		29/07/2013	ω,	soil				
27	S28	_		29/07/2013		soil		×		
35	S29	_		29/07/2013	w.	soil		×		
24	S30	1		29/07/2013	3	soil		×		
ος	S31			29/07/2013	3	soil				
1	S32	_		29/07/2013	3	soil	Please forward to ALS Brisbane			
ار ا	S33			29/07/2013	3	soil				
32	S34	1		29/07/2013	<u> </u>	soil		×		
44	\$35	1		29/07/2013	3	soil				
٦	S36	1		29/07/2013	3	soil		×		
3>	S37	1		29/07/2013	3	soil				
36	S38	1		29/07/2013	3	soil			×	
37	\$39	٠.		29/07/2013	3	soil			×	
S	S40	_		29/07/2013	3	soil		×		
IATOT		5								
Released by	Released by SMEC Testing Services	rvices			Date:	Time:		COC !	CoC Number: P19257 - COC1	257 - COC1
Signed:	David Yonge		Z	10	1/08/2013		12530 PM	Your qu	Your quotation: S	SMEC 2012 (EN/025/12)
Received by: Signed:	Danid	\ .		<i>\}</i>	Date:	Time	1300	Prelimi	St	y: Final results by: Thurs 8 August 2013
Comments:	ø	tandare	Detect	tion Limit	s Apply, Stand	ard Turna	Standard Detection Limits Apply, Standard Turnaround Required on Results			
	-	İ						Ì		

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield

WETHERILL PARK NSW, AUSTRALIA NSW Australia 2164

2164

 E-mail
 : dyonge@smectesting.com.au
 E-mail
 : sydney@alsglobal.com

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C Page : 1 of 2

Order number : 10373

C-O-C number : P19257-COC2 Quote number : ES2013SMETES0267 (EN/025/13)

Site : ----

Sampler : ---- QC Level : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Dates

Delivery Details

Mode of Delivery: Client Drop offTemperature: 13.2'CNo. of coolers/boxes: 1 HARDNo. of samples received: 9Security Seal: N/ANo. of samples analysed: 9

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample 101B forward to ALS Brisbane as per COC
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Issue Date : 05-SEP-2013 19:22

Page : 2 of 2 Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

Matrix: SOIL			S-04 TEXN
Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - S-04 TRH/BTEXN
ES1319673-001	04-SEP-2013 15:00	V1	✓
ES1319673-002	04-SEP-2013 15:00	V2	✓
ES1319673-003	04-SEP-2013 15:00	V3	✓
ES1319673-004	04-SEP-2013 15:00	V4	✓
ES1319673-005	04-SEP-2013 15:00	V5	✓
ES1319673-006	04-SEP-2013 15:00	V6	✓
ES1319673-007	04-SEP-2013 15:00	V7	✓
ES1319673-008	04-SEP-2013 15:00	V8	✓
ES1319673-009	04-SEP-2013 15:00	100A	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL INVOICES

- A4 - AU Tax Invoice (INV)	Email	accounts@smectesting.com.au
ALL REPORTS		
 *AU Certificate of Analysis - NATA (COA) 	Email	enquiries@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	enquiries@smectesting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	enquiries@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	enquiries@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	enquiries@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	enquiries@smectesting.com.au
- EDI Format - ESDAT (ESDAT)	Email	enquiries@smectesting.com.au
DAVID YONGE		
 *AU Certificate of Analysis - NATA (COA) 	Email	dyonge@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	dyonge@smectesting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	dyonge@smectesting.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN 	Email	dyonge@smectesting.com.au
- A4 - AU Tax Invoice (INV)	Email	dyonge@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	dyonge@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	dyonge@smectesting.com.au
- EDI Format - ESDAT (ESDAT)	Email	dyonge@smectesting.com.au

ES1319673

CHAIN OF CUSTODY RECORD

SMEC Testing Services Pty Ltd PO Box 6989 (postal) Job No: 19257/3243C Order No: 10373

E-Mail: dyonge@smectesting.com.au 14/1 Cowpasture Place (office), Wetherill Park NSW 2164 Telephone: (02) 9756 2166 Fax:

Laboratory number

Sample number

bottle

bag

sampled

Date

Composite

Sample

Contact: Jacob Waugh

number

so<u>i</u>

soi! <u>so:</u>

≲ S ≤ 277-289 Woodpark Road, SMITHFIELD NSW 2164

Fax:

(02) 8784 8500

ALS Laboratory Group - Sydney Environmental Division

Laboratory:

(02) 9756 1137

Contact: David Yonge

Telephone: +61-2-8784 8555

NALYSIS

Please forward sample 101B to ALS Brisbane for Analysis Standard Detection Limits Apply, Standard Turnaround Required on Results Please forward to ALS Brisbane Comments Preliminary results by. Your quotation: SMEC 2012 (EN/025/12) CoC Number: P19257 - COC2 ₽S × × × × × × × Mon 16 Sept 2013 Final results by: Mon 16 Sept 2013

Signed:

Received by: SSG Vap in

Date:

5/09/2013

Time:

5/9/13

Comments:

Signed:

Released by SMEC Testing Services

David Yonge

TOTAL

5

Wa

 \leq ⋦

6 5 <4

4/097/2013

4/097/2013 4/097/2013 4/097/2013 4/097/2013

4/097/2013

101B 100A

4/097/2013

<u>so:</u> soil SO. soil soil SOil soil

4/097/2013 4/097/2013 4/097/2013

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield

WETHERILL PARK NSW, AUSTRALIA NSW Australia 2164

2164

Telephone : +61 02 9756 2166 Telephone : +61-2-8784 8555
Facsimile : +61 02 9756 1137 Facsimile : +61-2-8784 8500

Project : 19257 3243C Page : 1 of 2

Order number : 10479

C-O-C number : P19257-COC3 Quote number : ES2013SMETES0267 (EN/025/13)

Site : ----

Sampler : ---- QC Level : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Dates

Delivery Details

Mode of Delivery: Client Drop offTemperature: -1.6'CNo. of coolers/boxes: 1 HARDNo. of samples received: 14Security Seal: N/ANo. of samples analysed: 9

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Issue Date : 24-SEP-2013 15:47

Page : 2 of 2 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

M	latr	ix:	SO	IL
IVI	au	IX:	50	ш

Laboratory sample ID	Client sampling date / time	Client sample ID	(On Hold) No analys	SOIL - S-(TRH/BTE)
ES1321000-001	23-SEP-2013 15:00	V9		✓
ES1321000-002	23-SEP-2013 15:00	V10		✓
ES1321000-003	23-SEP-2013 15:00	V11		✓
ES1321000-004	23-SEP-2013 15:00	V12		✓
ES1321000-005	23-SEP-2013 15:00	V13		✓
ES1321000-006	23-SEP-2013 15:00	V14		✓
ES1321000-007	23-SEP-2013 15:00	V15		✓
ES1321000-008	23-SEP-2013 15:00	V16		✓
ES1321000-009	23-SEP-2013 15:00	102C		✓
ES1321000-010	23-SEP-2013 15:00	A1	1	
ES1321000-011	23-SEP-2013 15:00	A2	✓	
ES1321000-012	23-SEP-2013 15:00	A3	1	
ES1321000-013	23-SEP-2013 15:00	A4	✓	
ES1321000-014	23-SEP-2013 15:00	A5	1	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

- A4 - AU Tax Invoice (INV)	Email	accounts@smectesting.com.au
ALL REPORTS		
- *AU Certificate of Analysis - NATA (COA)	Email	enquiries@smectesting.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	enquiries@smectesting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	enquiries@smectesting.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	enquiries@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	enquiries@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	enquiries@smectesting.com.au
- EDI Format - ESDAT (ESDAT)	Email	enquiries@smectesting.com.au
DAVID YONGE		
- *AU Certificate of Analysis - NATA (COA)	Email	dyonge@smectesting.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	dyonge@smectesting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	dyonge@smectesting.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN 	Email	dyonge@smectesting.com.au
- A4 - AU Tax Invoice (INV)	Email	dyonge@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	dyonge@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	dyonge@smectesting.com.au
- EDI Format - ESDAT (ESDAT)	Email	dyonge@smectesting.com.au

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

: ES1321593 Work Order

SMEC TESTING SERVICES PTY LTD Client Laboratory : Environmental Division Sydney

: DAVID YONGE : Client Services Contact Contact

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield

> WETHERILL PARK NSW, AUSTRALIA NSW Australia 2164

2164

E-mail : dyonge@smectesting.com.au F-mail : sydney@alsglobal.com Telephone : +61 02 9756 2166 Telephone : +61-2-8784 8555 : +61 02 9756 1137 **Facsimile** : +61-2-8784 8500

Project : 19257 3243C Page : 1 of 2

Order number : 10481

Quote number C-O-C number : P19257-COC4 : ES2013SMETES0267 (EN/025/13)

Site

Sampler QC Level : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Dates

Facsimile

Date Samples Received Issue Date 02-OCT-2013 16:33 : 02-OCT-2013 Client Requested Due Date Scheduled Reporting Date : 04-OCT-2013 04-OCT-2013

Delivery Details

Mode of Delivery : Carrier Temperature : 6.9'C No. of coolers/boxes : 1 HARD No. of samples received : 9 Security Seal No. of samples analysed : Intact. : 9

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Issue Date : 02-OCT-2013 16:33

Page : 2 of 2 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

Matrix: SOIL			S-04 TEXN
Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - S-04 TRH/BTEXN
ES1321593-001	02-OCT-2013 15:00	V117	✓
ES1321593-002	02-OCT-2013 15:00	V118	✓
ES1321593-003	02-OCT-2013 15:00	V119	1
ES1321593-004	02-OCT-2013 15:00	V120	✓
ES1321593-005	02-OCT-2013 15:00	V121	1
ES1321593-006	02-OCT-2013 15:00	V122	✓
ES1321593-007	02-OCT-2013 15:00	V123	1
ES1321593-008	02-OCT-2013 15:00	V124	✓
ES1321593-009	02-OCT-2013 15:00	V125	1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL INVOICES

- A4 - AU Tax Invoice (INV)	Email	accounts@smectesting.com.au
ALL REPORTS		
- *AU Certificate of Analysis - NATA (COA)	Email	enquiries@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	enquiries@smectesting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	enquiries@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	enquiries@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	enquiries@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	enquiries@smectesting.com.au
- EDI Format - ESDAT (ESDAT)	Email	enquiries@smectesting.com.au
DAVID YONGE		
- *AU Certificate of Analysis - NATA (COA)	Email	dyonge@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	dyonge@smectesting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	dyonge@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN	Email	dyonge@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	dyonge@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	dyonge@smectesting.com.au
- EDI Format - ESDAT (ESDAT)	Email	dyonge@smectesting.com.au

Comments: Signed: Signed: 277-289 Woodpark Road, SMITHFIELD NSW 2164 Received by: Released by SMEC Testing Services E-Mail: dyonge@smectesting.com.au 14/1 Cowpasture Place (office), Wetherill Park NSW 2164 SMEC Testing Services Pty Ltd **CHAIN OF CUSTODY RECORD** elephone: _aboratory: PO Box 6989 (postal) _aboratory number TOTAL Œ David Yonge (02) 8784 8555 Sample number | bottle | bag | Date sampled ALS Laboratory Group - Sydney Environmental Division (02) 9756 2166 V125 V124 V122 V121 V120 **Y119** V118 V123 48 Hr Turnaround Required on Results Fax: Fax: Job No: 2/10/2013 2/10/2013 2/10/2013 2/10/2013 2/10/2013 2/10/2013 2/10/2013 2/10/2013 2/10/2013 Contact: David Yonge (02) 8784 8500 (02) 9756 1137 19257/3243C Order No: 10481 Standard Detection Limits Apply Date: Date: Composite number 2/10/2013 1/0//3 Sample Contact: Jacob Waugh type soil soil <u>so:</u> soil soi soil <u>soi</u> <u>©</u> SOI l ime: Time: 14:40 2530PM Comments CoC Number: P19257 - COC4 × × ₽S Preliminary results by: Your quotation: SMEC 2012 (EN/025/12) × Fri 4 Oct 2013 **ANALYSIS** নিnুal results by: Telephone: +61-2-8784 8555 Environmental Division Sydney ES1321593 Fri 4 Oct 2013 Work Order

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield

WETHERILL PARK NSW, AUSTRALIA NSW Australia 2164

2164

 E-mail
 : dyonge@smectesting.com.au
 E-mail
 : sydney@alsglobal.com

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C Page : 1 of 2

Order number : 10484

C-O-C number : P19257-COC5 Quote number : ES2013SMETES0267 (EN/025/13)

Site : ----

Sampler : ---- QC Level : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Dates

Delivery Details

Mode of Delivery: Client Drop offTemperature: 10.6'CNo. of coolers/boxes: 2 HARDNo. of samples received: 6Security Seal: Not intact.No. of samples analysed: 6

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Issue Date : 04-OCT-2013 19:53

Page : 2 of 2 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

Matrix: SOIL

Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - TPH/B
ES1321841-001	04-OCT-2013 15:00	V26	✓
ES1321841-002	04-OCT-2013 15:00	V27	✓
ES1321841-003	04-OCT-2013 15:00	V28	✓
ES1321841-004	04-OCT-2013 15:00	V29	✓
ES1321841-005	04-OCT-2013 15:00	V30	✓
ES1321841-006	04-OCT-2013 15:00	V31	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL INVOICES

- A4 - AU Tax Invoice (INV)	Email	accounts@smectesting.com.au
ALL REPORTS		
- *AU Certificate of Analysis - NATA (COA)	Email	enquiries@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	enquiries@smectesting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	enquiries@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	enquiries@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	enquiries@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	enquiries@smectesting.com.au
- EDI Format - ESDAT (ESDAT)	Email	enquiries@smectesting.com.au
DAVID YONGE		
 *AU Certificate of Analysis - NATA (COA) 	Email	dyonge@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	dyonge@smectesting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	dyonge@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN	Email	dyonge@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	dyonge@smectesting.com.au
- EDI Format - ENMRG(ENMRG)	Email	dyonge@smectesting.com.au
- EDI Format - ESDAT (ESDAT)	Email	dyonge@smectesting.com.au

CHAIN OF CUSTODY RECORD

			\int						Page Cof
SMEC Testing Services Pty Ltd	es Pty Ltd		dob	Job No: 19257/3243C		Order No: 10484	84 C V		ANALYSIS
PO Box 6989 (postal) 14/1 Cowpasture Place (office), Wetherill Park NSW 2164) ce (office),	Wether	rill Parl	k NSW 2164			OWEC SO		
relephone: (02) 9756 2166 E-Mail; dyonge@smectesting.com.au	(02) 9756 2166 smectesting.com	i6 vm.au	Г ах:	(02) 9756 1137 Contact: David Yonge	56 1137 ivid Yonge		Services		
Laboratory: AL	S Laborato	ry Grot	ys - dr	ALS Laboratory Group - Sydney Environmental Division	nental Divisio	-) }		
277-289 Woodpark Road, SMITHFIELD NSW 2164	toad, SMIT	HFIELL	NSN C	72164					
Telephone: (02) 878	(02) 8784 8555		Fax:	(02) 8784 8500	500	Contact:	Contact: Jacob Waugh		-
Laboratory Sample	Sample number	jar/ bottle bag	bag	Date sampled	Composite	Sample type	Comments	S ²	Environmental Division Sydney
	V26	1		4/10/2013		soil		×	Work Order
7 7	V27	1		4/10/2013		soil		×	FC1321841
3 1	V28	1		4/10/2013		soil		×	101701
7	V29	1		4/10/2013		soil		×	
4	V30	1		4/10/2013		soil		×	
2	V31	1		4/10/2013		soil		×	
									Telephone: +61-2-8784 8555
TOTAL		9						9	
Released by SMEC Testing Services David Yonge	Festing Ser onge	vices	ا گر		Date: 4/10/2013	513	Time: S.Co.DW	CoC Number: P19257 - COC5	9002
- 1	0	,	X	\		:		Your quotation: SMEC	SMEC 2012 (EN/025/12)
Received by: XQS	3 Z Z	K N	Ą		Date: OCy /10//	3	Time: 1745 18-56	Preliminary results by:	Final results by:
Signed:	7	Z			-			. Wed 9 Oct 2013	Wed 9 Oct 2013
Comments:									
				Stand	Standard Detection Limits Apply	n Limits A	ylqq		
>	ERY UF	3GEN	`` <u> </u>	VERY URGENT - 24 HR TURNAROUND	RNAROU	_	REQUIRED ON RESULTS		

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia

WETHERILL PARK NSW, AUSTRALIA 4053

2164

Telephone : +61 02 9756 2166 Telephone : +61 7 3243 7222
Facsimile : +61 02 9756 1137 Facsimile : +61 7 3243 7218

Project : 19257 3243C Page : 1 of 2

Order number : 10297

Sampler : --- QC Level : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Dates

Delivery Details

Mode of Delivery : Carrier Temperature : 0.9°C - Ice present

No. of coolers/boxes : 1 MEDIUM No. of samples received : 3 Security Seal : Intact. No. of samples analysed : 1

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Discounted Package Prices apply only when specific ALS Group Codes ("W", 'S", 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Matt Goodwin.
- Analytical work for this work order will be conducted at ALS Brisbane.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Issue Date : 02-AUG-2013 15:58

Page : 2 of 2 Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling SOIL - EP075 SIM PAH only date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown No analysis requested bracketed without a time component. SOIL - EA055-103 On Hold) SOIL Matrix: SOIL Laboratory sample Client sampling Client sample ID ID date / time EB1318541-001 29-JUL-2013 15:00 S11 EB1318541-002 29-JUL-2013 15:00 EB1318541-003 29-JUL-2013 15:00 S32

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

•		
ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	accounts@smectesting.com.au
ALL REPORTS		
 *AU Certificate of Analysis - NATA (COA) 	Email	enquiries@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	enquiries@smectesting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	enquiries@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	enquiries@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	enquiries@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	enquiries@smectesting.com.au
- EDI Format - XTab (XTAB)	Email	enquiries@smectesting.com.au
DAVID YONGE		
 *AU Certificate of Analysis - NATA (COA) 	Email	dyonge@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	dyonge@smectesting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	dyonge@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN	Email	dyonge@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	dyonge@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	dyonge@smectesting.com.au
- EDI Format - XTab (XTAB)	Email	dyonge@smectesting.com.au

EC Teetir	ng Services Pty Ltd		lah	No: 19257/	3243C Ord	er No: 405	0.7				44	IALYS		- of 2	7
Box 6989		i	300	NO. 192577	3243C OIU	e No. 102	SMEC .		T		ΤΪ		TT	TTTT	
	sture Place (office)	Wethe	erill Pa	rk NSW 2164											
ephone:	(02) 9756 210	66	Fax	(02) 975	56 1137									 	DEO!
/lail: dyon	ge@smectesting.c	om.au		Contact: Da	vid Yonge		Pervices								E og 5
oratory:	ALS Laborate	ory Gro	up - S	dney Environi	mental Divisi	on						-		Attach By	Connote / Con
-289 Wo	odpark Road, SMIT	HFIEL	D NŞV	V 2164										B	
ephone:	(02) 8784 8555		Fax	(02) 8784 8	3500	Contact:	lacob Waugh							7	PE E
boratory		jar/		Date	Composite	Sample		PAH		<u>, </u>				1 9	a
umber	Sample number	bottle	bag	sampled	number	type	Comments		S7	- 4					By S
2	S1	1		29/07/2013		soil		X		+	+				Date:
	\$2 	1	ļ	29/07/2013		soil				, 	+++	$\dashv \dashv$	++		Date:
١	S3 S4	1		29/07/2013 29/07/2013		soil			-	X	+++	\dashv			+ 3 N 2
<u>4</u>		<u> </u>				soil			4	X					
5	S4A	1		29/07/2013		soil		X	\dashv		++	++			
6	S5	1		29/07/2013		soil		X			+++			2000	
7	\$6	1		29/07/2013		soil		-	-			++			2
	\$7 59	1	 	29/07/2013 29/07/2013		soil		X			+++			1 t	
9	S8 S9	1	ļ			soil	* 4.	- ,	\dashv		+++	\dashv			
10	S10	1		29/07/2013 29/07/2013		soil		X		++	+++	\dashv		 	\sqrt{\omega}
**	S10 S11	1	-	29/07/2013		soil	Disease formulate ALC Deletere	$\frac{1}{x}$	_	++	+++	+i			\sim
12	S11	1		29/07/2013		soil	Please forward to ALS Brisbane	$\frac{1}{x}$			+++			-	
13	S12	1	├	29/07/2013		soil .					+++	+			ental Division sbane
	S13	1		29/07/2013		soil		$\frac{1}{x}$	-	+	++-+		-		k Order
14	S14 S15	1		29/07/2013		soil		+^+	-+		+++	+	ر 🕂	VVOI:	R Older
1)	S16	1		29/07/2013		soil		X	+		+++	\dashv	- Job	EB1	318541
16	S10 S17	1		29/07/2013		soil		- ^ 	\dashv		+++	++	┤ _"		11 2 (1 1 1) 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17	S17	1	-	29/07/2013		soil		$\frac{1}{x}$	\dashv		+++	$\dashv \dashv$			
18	S10 S19	1		29/07/2013		soil		+^+	_	++	+++	+	- ∦		
19	S20	1		29/07/2013		soil		X			+++	\dashv	¦ ∥		
<u>20</u>	S21	1		29/07/2013		soil		+-		$\frac{1}{x}$	+++	++		Telephone : -	+ 61-7-3243 722
	S21	1	-	29/07/2013	· ·	soil		X	+	^ -	+++	++	-		
22	S23	1		29/07/2013	•	soil	:	+	+	++	+++	+		++++	1
	S24	1		29/07/2013		soil	Please forward to ALS Brisbane	\dashv	\dashv	++		++	++		
29	S25	1		29/07/2013		soil	. Icase forward to ALO Disballe	$\frac{1}{x}$	\dashv	+	+++				

REC: 000 04 02/08/13 09:10 De- e 1/8 1300

	ng Services Pty Ltd	1	Job	No: 19257	/3243C Ord	der No: 1	0297							NAL	YSIS	}				
PO Box 6989 14/1 Cowpas	9 (postal) sture Place (office)	, Wethe	erill Pa	ark NSW 2164			The state of the s													
Telephone:	(02) 9756 21		Fax	: (02) 97	756 1137		(Besting													
E-Mail: dyon	ige@smectesting.c	om.au		Contact: D	avid Yonge		Services													
Laboratory:				ydney Environ	mental Divisi	on														
277-289 Wo	odpark Road, SMIT	THFIEL	D NS	N 2164							ŀ									١.
Telephone:	(02) 8784 8555	Т	Fax	(02) 8784	8500	Contac	t: Jacob Waugh													
Laboratory number	Sample number	jar/ bottle	bag	Date sampled	Composite number	Sample type	Comments	PAH	S7	ç										
52	S26	1		29/07/2013		soil		T _X		4	-	╁	+	\vdash	+	++	+	+	\forall	+-
26	S27	1		29/07/2013		. soil		1-			_	_	+	H	+	++	+	+	$\vdash \vdash$	+-
27	S28	1		29/07/2013		soil		X	H		$^{-+}$	+	+	H	+	++	+	+-	╁	+
28	S29	1		29/07/2013		soil		X	\Box		\dashv	\top	+	\vdash	+	$\dagger \dagger$	+	+	\vdash	+
24	S30	1		29/07/2013		soil		x		_	\neg	\perp	+-	\vdash	+	H	+	+	$\vdash \vdash$	+
30	S31	1		29/07/2013		soil			\neg	$\neg \uparrow$	\dashv	+	+		+	++	+	+	-	+-
-	S32	1		29/07/2013		soil	Please forward to ALS Brisbane			7	\dashv	+		\vdash	+	+	+	+-	\vdash	+-
31	S33	1		29/07/2013		soil		\forall		7			+	\vdash	+	\vdash	+	+	\vdash	+
22	S34	1		29/07/2013		soil		x			+	╁	\Box		+	\vdash	+	+	\vdash	
23	S35	1		29/07/2013		soil	4.		_	_	\dashv	+	+	+	+	$\vdash \vdash$	+		+	+
3પ	S36	1		29/07/2013		soil		x	_	_	\top	+		+	+-	\vdash		+	+	+-
35	S37	1		29/07/2013		soil		$\dagger \dagger$	+	\dashv	+	+	+-	+	+	H	+	+-	+	+
36	S38	1		29/07/2013		soil		\vdash	+	\overrightarrow{x}	十	_	††	+	+	十	+	+	+	+
37	S39	1		29/07/2013		soil				x	\top	\dagger	H	+	+-	\vdash	+	+	+	+
38	S40	1		29/07/2013		soil		х	_	十			\Box	+	+	\sqcap	+	+		\forall
TOTA:													\Box	\top	1		\top	\Box	\top	\top
TOTAL Peleased by	SMEC Testing Ser	40						21	7	5					T			П	\top	
	David Yonge	vices	7/2	e	Date: 1/08/20	013	Time: (2530 PM	<u> </u>						OC1						
Received by:		,	/V		Date:		Time:	You				_	_		2 (EN			8,	4	
Signed:	David				1/2		1300			_		ts by t 201	- 1	∹ınaı	resu	its by irs 8 /		ust 2	013	
Comments:		1																		
·	Sta	andard	Detec	ction Limits A	Apply, Standa	ard Turna	round Required on Results													

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia

WETHERILL PARK NSW, AUSTRALIA 4053

2164

Telephone : +61 02 9756 2166 Telephone : +61 7 3243 7222
Facsimile : +61 02 9756 1137 Facsimile : +61 7 3243 7218

Project : 19257 3243C Page : 1 of 2

Order number : 10373

C-O-C number : P19257 - COC2 Quote number : FS2013SMFTFS0267 (

Sampler : ---- QC Level : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Dates

Delivery Details

Mode of Delivery : Carrier Temperature : 2.7, 2.1, 2.6°C - Ice present

 No. of coolers/boxes
 : 3 MEDIUM
 No. of samples received
 : 1

 Security Seal
 : Intact.
 No. of samples analysed
 : 1

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' etc. suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Matt Goodwin.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958),
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Issue Date : 10-SEP-2013 14:10

Page : 2 of 2 Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

Matrix: SOIL

Laboratory sample Client sampling ID date / time

Client sample ID

EB1321915-001 04-SEP-2013 15:00 101B

SOIL - S-04 TRH/BTEXN

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL INVOICES	ALL	INVOICES
--------------	-----	----------

- A4 - AU Tax Invoice (INV)	Email	accounts@smectesting.com.au
ALL REPORTS		
- *AU Certificate of Analysis - NATA (COA)	Email	enquiries@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	enquiries@smectesting.com.au
*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	enquiries@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	enquiries@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	enquiries@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	enquiries@smectesting.com.au
DAVID YONGE		
 *AU Certificate of Analysis - NATA (COA) 	Email	dyonge@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	dyonge@smectesting.com.au
*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	dyonge@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN	Email	dyonge@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	dyonge@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	dyonge@smectesting.com.au

Bir

Environmental Division Brisbane

Work Order

M

EB1321915

Page 1 of 1

PO Box 6989 (postal)	CHAIN OF	COSTODY RE	CORL									11)	1111		NAL	YSIS	3				
1411 Compasture Place (office), Wetherull Park NSW 2164 Telephone: (02) 9756 2166 Fax: (02) 9756 1137 Contact: David Yonge Cont	SMEC Testing Services Pty Ltd Job No: 19257/3243C Order No: 10373															\top			T		
Telephone: (02) 9756 2166 Fax: (02) 9756 1137 E-Mail: dyong@smeclesting.com au Contact: David Yonge Laboratory: ALS Laboratory Group - Sydney Environmental Division 277-289 Woodpark Road, SMITHFIELD NSW 2164 Telephone: (02) 8784 8555 Fax: (02) 8784 8500 Contact: Jacob Waugh Laboratory number Sample number bottle bag sampled number type number soil bottle bag sampled number type number soil bottle bag sampled number soil type number (02) 8784 8500 Contact: Jacob Waugh 2 V2 1 4/097/2013 Soil X X X Attact; 5 V V / Important States (12) 1 V / Important	PO Box 6989 (postal) 14/1 Cowpasture Place (office), Wetherill Park NSW 2164 Telepl										61.7.0	1040	7000								
Laboratory ALS Laboratory Group - Sydney Environmental Division				Fax:				Services	Jophor	,	~ ~	مام	vra .	N. Y	DITY	var	dL				W
Total	Control Division										1 1		- 1								14
Composite Composite Sample Composite Sample Comments Comments Comments Sample Comments C						nentai Divisit	.				19	rga	nist		By	<u>/</u> p	ate	1.4		<u>B</u>	¥/\$
Laboratory Sample number bottle bag Sampled Sample Comments			CIFICL			÷500	Contact:	Jacob Waugh										ate) *4 ****	mo en e	
Note		(04) 0104 0000	ior/	1 87.				*								trie	100	+-	· · · · · · · · · · · · · · · · · · ·	- 100 mg/s	
V1		Sample number	: · I	bag	{			Comments							1		<u> </u>	4-4	=	7 -3	m (mr) 10000 es
2 V2 1 4/997/2013 Soli X							soil				At	CAC.		¥ k		/ 11	uter	7300	S	relet	Australia p
3	2	V2	1		4/097/2013		soil				+-+	_	+	+	+-	$\vdash \vdash$	+	+-	$\vdash \vdash$	+	++
V4			1		4/097/2013	-	soil				1-1	+	+	+	+-	$\vdash \vdash$	+	++	$\vdash \vdash$		++
V5		V4	1		4/097/2013		soil				11	\dashv		+	4	$\vdash \vdash$	+	+	-	+	++
V6			1	1: .	4/097/2013		soil				1	_	+	+	+-	\vdash	+	+-	\vdash	+	++
V7	7	V6	1		4/097/2013		soil				1-1	_	-	+	+	\vdash	+	+	\vdash	+	++
V8			1	†	4/097/2013		soil				+-+	_		\bot	+	\vdash	+	-	╁┼	+	+-+
100A	-2		1	T	4/097/2013		soil				11	\bot	_	1	4-	\sqcup	+	4	++	+	++
TOTAL Released by SMEC Testing Services David Yonge Signed: Received by: Date: Signed: Signed: Standard Detection Limits Apply, Standard Turnaround Required on Results Please forward to ALS Brisbane X CoC Number: X CoC Number: P19257 - COC2 Your quotation: SMEC 2012 (EN/025/12) Preliminary results by: Mon 16 Sept 2013 Mon 16 Sept 2013			1	 	4/097/2013		soil				1		_	4	-	-	\dashv	+	+	-	++
TOTAL Released by SMEC Testing Services David Yonge Signed: Received by: Soft Standard Detection Limits Apply, Standard Turnaround Required on Results Time: Standard Detection Limits Apply, Standard Turnaround Required on Results 10 CoC Number: P19257 - COC2 Your quotation: SMEC 2012 (EN/025/12) Final results by: Mon 16 Sept 2013 Mon 16 Sept 2013			1	1	4/097/2013		soil	Please forward to ALS Brisbane		X L	11	4		+	4	\sqcup	_	+	1-1	+	\dashv
TOTAL Released by SMEC Testing Services David Yonge Signed: Received by: SUPPROBLEM Signed: Signed: Signed: Standard Detection Limits Apply, Standard Turnaround Required on Results Time: Time: 3:30 PM Coc Number: P19257 - COC2 Your quotation: SMEC 2012 (EN/025/12) Final results by: Mon 16 Sept 2013 Mon 16 Sept 2013			+	+				·		\bot	1	\bot	\bot	4	+	\vdash	_	+	+-+	+	++
Released by SMEC Testing Services Date: Date: 5/09/2013 Date: Time: 7/00r quotation: SMEC 2012 (EN/025/12) Preliminary results by. Final results by: Mon 16 Sept 2013 Comments: Standard Detection Limits Apply, Standard Turnaround Required on Results	TOTAL		10	+					1				لل	لِ	لِ	ليل			Ш		
Signed: Received by: Soft and Standard Detection Limits Apply, Standard Turnaround Required on Results Your quotation: SMEC 2012 (EN/025/12) Your quotation: SMEC 2012 (EN/025/12) Preliminary results by: Mon 16 Sept 2013 Mon 16 Sept 2013		SMEC Testing Se			<u> </u>		<u> </u>	Time:	7	CoC I	Numb	er: 1	P192	57 -	- CO	C2					
Signed: Received by: Soft of the Date: Time: Signed: Signed: Signed: Soft of the Sig				12.	5/09/	2013	3:30PM			guotat	tion:	S	ME	C 20	112 (EN/0	25/1	2)			
Received by: SCA YOF 488 Date: Time: Signed: SAA Sig				Detai		Time															
Signed: S G G G G G G G G G G G G G G G G G G				1 .	<i>(</i>)	1 200	1		_						Moi	า 16	Sep	t 201	3		
Standard Detection Limits Apply, Standard Turnaround Required on Results		190	<u> </u>			15191	13	1 1545 135													
Standard Detection Limits Apply, Standard Turnaround Required on Results Please forward sample 101B to ALS Brisbane for Analysis	Comments:				•																
Please forward sample 101B to ALS Brisbane for Analysis	Standard Detection Limits Apply, Standard Turnaround Required on Results																				
I IGGO IOI MAIN OMINIPIO TO		Plea	se fo	rwa	rd sample	101B to	ALS B	risbane for Analysis					بسنديين								

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia

WETHERILL PARK NSW, AUSTRALIA 4053

2164

Telephone : +61 02 9756 2166 Telephone : +61 7 3243 7222
Facsimile : +61 02 9756 1137 Facsimile : +61 7 3243 7218

Project : 19257 3243C Page : 1 of 2

Order number : 10479

Sampler : David Yonge : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Dates

Delivery Details

Mode of Delivery : Carrier Temperature : 3.0°C, 3.3°C - Ice present

No. of coolers/boxes : 1 MEDIUM, 1 SMALL No. of samples received : 1 Security Seal : Intact. No. of samples analysed : 1

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' etc. suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Matt Goodwin.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958),
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

: 25-SEP-2013 23:09 Issue Date

Page : 2 of 2 : EB1323381 Work Order

Client : SMEC TESTING SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

Matrix: SOIL

Laboratory sample Client sampling ID

Client sample ID

date / time

23-SEP-2013 15:00 103D EB1323381-001

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ΔΙΙ	INVO	CES

- A4 - AU Tax Invoice (INV)	Email	accounts@smectesting.com.au
ALL REPORTS		
- *AU Certificate of Analysis - NATA (COA)	Email	enquiries@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	enquiries@smectesting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	enquiries@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	enquiries@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	enquiries@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	enquiries@smectesting.com.au
DAVID YONGE		
 *AU Certificate of Analysis - NATA (COA) 	Email	dyonge@smectesting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	dyonge@smectesting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	dyonge@smectesting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN	Email	dyonge@smectesting.com.au
- Chain of Custody (CoC) (COC)	Email	dyonge@smectesting.com.au
- EDI Format - ENMRG (ENMRG)	Email	dyonge@smectesting.com.au
- EDI Format - XTab (XTAB)	Email	dyonge@smectesting.com.au

Sing.

Subcon (Forward Las) Split W.C. Lab / Analysis: Britonian Joseph of J.

CHAIN OF	CUSTODY RE	CORI	D					ab/A								e 🚣	_of <u>U</u>				
INIEC IESIIIU JEIVICES FIV LIU JUDINU. 13231/32430 CIUCI NO. 104/3 ************************************									ganised By / Date Analysis												
PO Box 6989 (postal) 4/1 Cowpasture Place (office), Wetherill Park NSW 2164									e i	C	ouk	-	ì	e: _							
elephone: -Mail: dyon	(02) 9756 216 ge@smectesting.c		Fax	: (02) 97 Contact: Da	56 1137 avid Yonge						o/	To	ter:	12] (She	nt.					
aboratory. 77-289 Woo	ALS Laborato odpark Road, SMIT	•		ydney Environi N 2164	mental Divisio	on •									 ===================================	 	.			ł	
elephone:	(02) 8784 8555		Fax	(02) 8784 8	3500	Contact:	Jacob Waugh		Ast						⊨nvi		nenta risba	al Di	VISIO	n	
Laboratory number	Sample number	jar/ bottle	bag	Date sampled	Composite number	Sample type	Comments	S4	Asbestos				_			Wo	ork O	rder			
1	V9	1		23/09/2013		soil		X	<u> </u>		_	_	_		E	<i>B1</i>	32	?33	181	1	
2	V10	1		23/09/2013		soil		X				\bot	_								
3	V11	1		23/09/2013		soil		∕′X												l	
٦	V12	1		23/09/2013		soil		X												ı	
5	V13	1		23/09/2013		soil		X												J	
6	V14	1		23/09/2013		soil		X	1				\perp	1	Teleph	one	: +61	-7-324	43 722	22	
7	V15	1		23/09/2013		soil		X						LL						_	
8	V16	1		23/09/2013		soil		Х													
9	102C	1		23/09/2013		soil		Х												1	
<u> </u>	103D	1		23/09/2013		soil	Please forward to ALS Brisbane	Х												╛	
١٥	A1		1	23/09/2013		materials			Π											╛	
11	A2		1	23/09/2013		materials															
12	A3		1	23/09/2013		materials		· Al	1					grace Show	care promote a	-		and	See See See	AND DESCRIPTION OF	
13	A4		1	23/09/2013		materials	UNUL		3						216.2018					A Charles	
١٧	A5		1	23/09/2013		materials									200	-	/ 4-			September 1	
^			1.7						Γ									A.			
TOTAL		10						10								7]	
Released by	SMEC Testing Se	rvices		•	Date:	·	Time:	Co	C N	umb	er:	P192	257 -	COC	3		٠			7	
David Yonge Signed:					24/09/2013 10:48AM				Your quotation: SMEC 2012 (EN/025/12)												
Received by:					Date:	Time:	Pre		inary			•	Final	resul	•						
Signed:					27	٦ 	1045		Fr	i 27 :	Sept	201	3		Fr	i 27 \$	Sept 2	:013		_	
Comments: Standard Detection Limits Apply, 3 Day Turnaround Required on Results						/	Rec: 0700 of 25/09/13 08:40														
Please forward sample 103D to ALS Brisbane for Analysis																					

APPENDIX C ANALYTICAL LABORATORY REPORTS

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES1317190** Page : 1 of 11

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

Telephone : +61 02 9756 2166 Telephone : +61-2-8784 8555
Facsimile : +61 02 9756 1137 Facsimile : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : 10297

C-O-C number : P19257 - COC1 Date Samples Received : 01-AUG-2013

Sampler : ---- Issue Date : 08-AUG-2013 Site : ----

Quote number EN/025/13 No. of samples received : 38

Quote number EN/025/13 No. of samples analysed : 25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Nanthini Coilparampil	Laboratory Manager - Inorganics	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics
Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 11 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

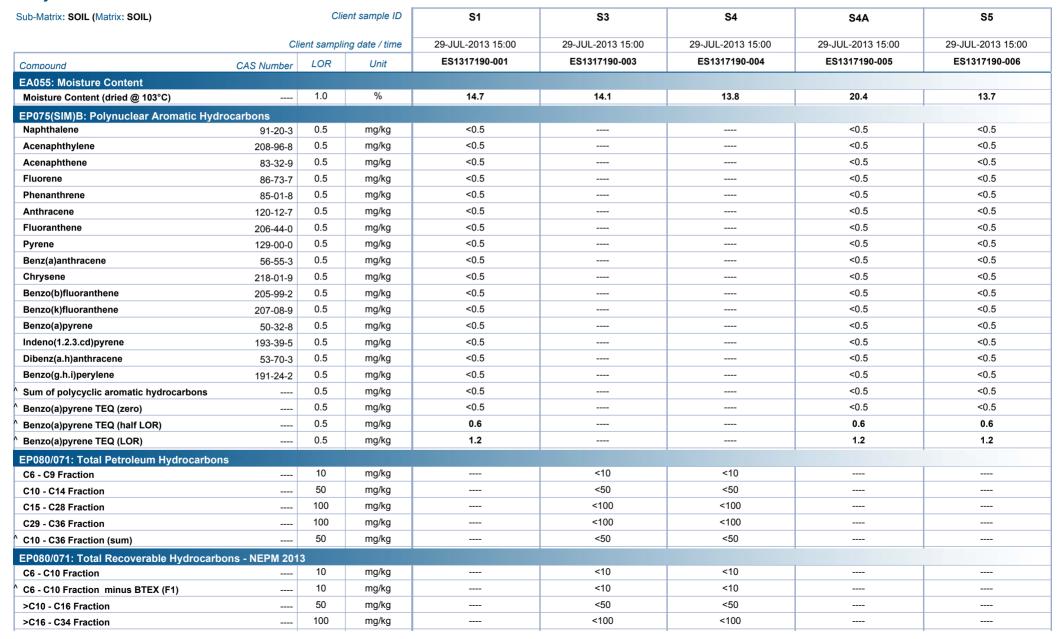
Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.


LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 11 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C

Page : 4 of 11 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Page : 5 of 11 Work Order : ES1317190

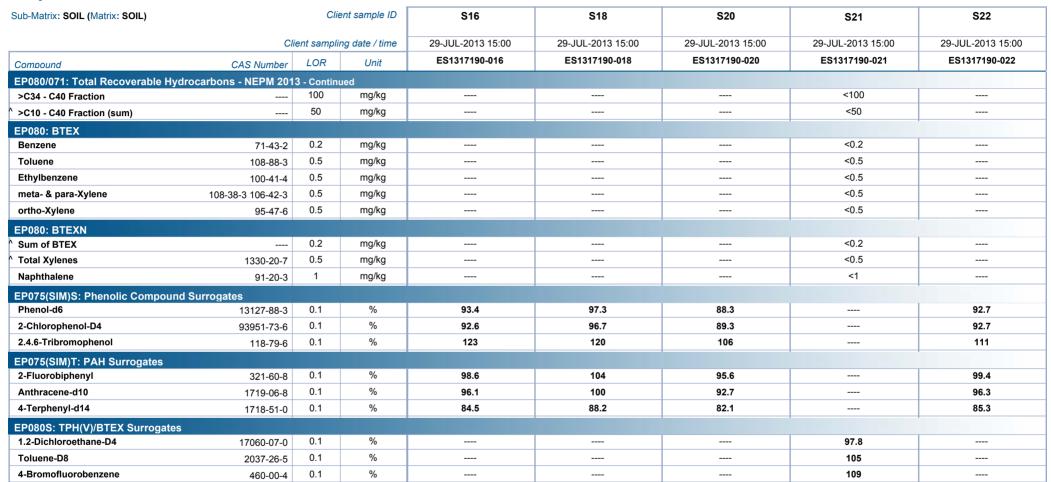
Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C

Page : 6 of 11 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C



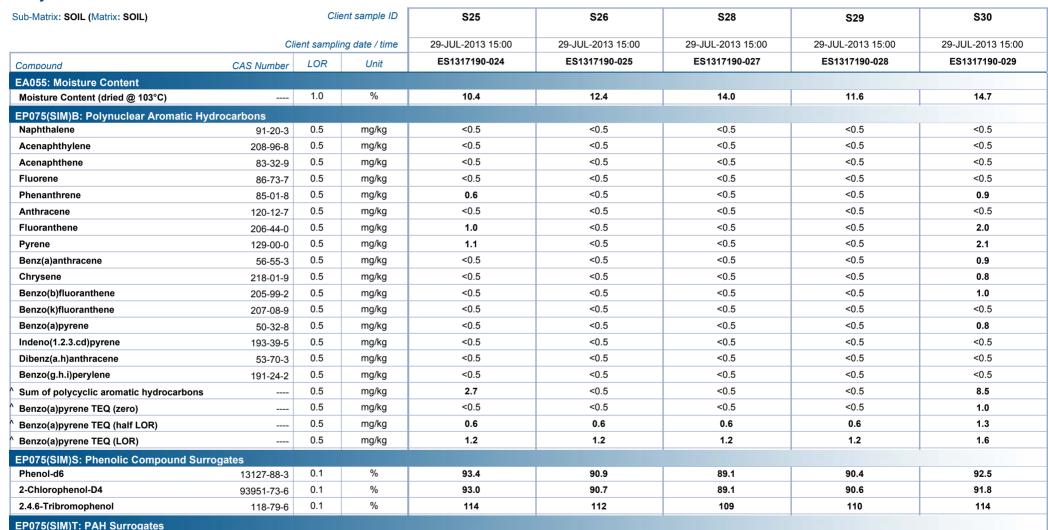
Page : 7 of 11 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Page : 8 of 11 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD


Project · 19257 3243C

Analytical Results

2-Fluorobiphenyl

Anthracene-d10

4-Terphenyl-d14

97.2

94.6

83.4

97.2

94.8

83.8

97.2

94.2

83.1

98.8

96.0

83.8

%

%

100

97.6

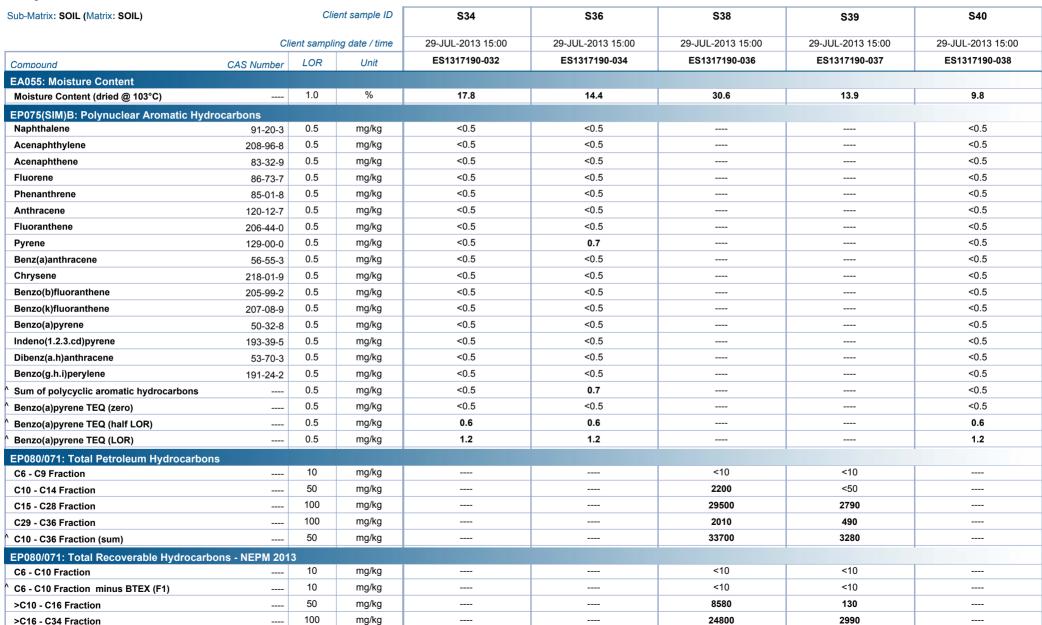
85.8

321-60-8

1719-06-8

1718-51-0

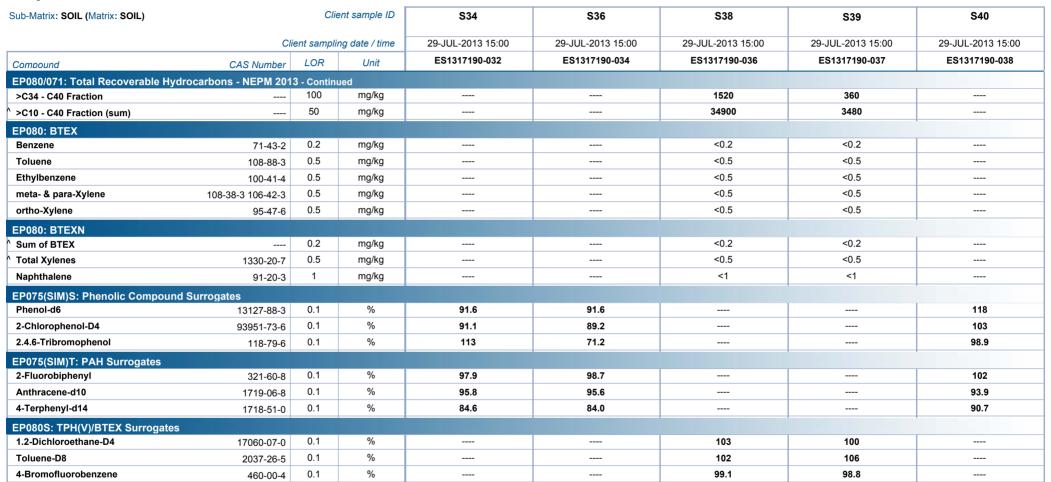
0.1


0.1

Page : 9 of 11 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C



Page : 10 of 11 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Page : 11 of 11 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72.8	133.2
Toluene-D8	2037-26-5	73.9	132.1
4-Bromofluorobenzene	460-00-4	71.6	130.0

Environmental Division

QUALITY CONTROL REPORT

Work Order : **ES1317190** Page : 1 of 10

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ---

C-O-C number : P19257 - COC1 Date Samples Received : 01-AUG-2013

Sampler : ---- Issue Date : 08-AUG-2013

No. of samples received : 38

Quote number : EN/025/13 No. of samples analysed : 25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

: 10297

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Order number

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Nanthini Coilparampil	Laboratory Manager - Inorganics	Sydney Inorganics	
Pabi Subba	Senior Organic Chemist	Sydney Inorganics	
Pabi Subba	Senior Organic Chemist	Sydney Organics	
Pabi Subba	Senior Organic Chemist	Sydney Organics	

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 10 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 10 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	14.1 2.1 0% - 50%			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EA055: Moisture Co	ntent (QC Lot: 2996373)										
ES1317190-004	S4	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	13.8	14.1	2.1	0% - 50%		
ES1317190-021	S21	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	25.6	22.3	13.4	0% - 20%		
EA055: Moisture Co	ntent (QC Lot: 2996374)										
ES1317190-036	S38	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	30.6	29.1	5.0	0% - 20%		
ES1317191-010	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	16.6	15.8	4.8	0% - 50%		
EP075(SIM)B: Polyn	uclear Aromatic Hydrocar	bons (QC Lot: 2995348)									
ES1317194-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		hydrocarbons									
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
ES1317194-009	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		

Page : 4 of 10 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2995348) - continued							
ES1317194-009	Anonymous	EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2995384)							
ES1317190-008	S7	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES1317190-024	S25	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	0.6	0.6	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	1.0	1.0	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	1.1	1.1	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page : 5 of 10 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Laboratory sample ID		Laboratory Duplicate (DUP) Report							
	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polynu	uclear Aromatic Hydroca	rbons (QC Lot: 2995384) - continued							
ES1317190-024	S25	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	2.7	2.7	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (C	QC Lot: 2994674)							
ES1317190-003	S3	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1317191-006	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons(C	QC Lot: 2995349)							
ES1317194-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES1317194-009	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbons	- NEPM 2013 (QC Lot: 2994674)							
ES1317190-003	S3	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1317191-006	Anonymous	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbons	- NEPM 2013 (QC Lot: 2995349)							
ES1317194-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
	7oyouo	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES1317194-009	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC I	l ot: 2994674)								
ES1317190-003	S3	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		El 666. Meta a para Ayione	106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES1317191-006	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						

Page : 6 of 10 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EP080: BTEXN (QC L	ot: 2994674) - continued											
ES1317191-006	Anonymous	EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit			
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit			

Page : 7 of 10 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons (QCLot: 2995348)									
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	110	80	124		
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	110	77	123		
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	109	79	123		
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	110	77	123		
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	102	79	123		
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	101	79	123		
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	99.2	79	123		
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	100	79	125		
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	111	73	121		
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	111	81	123		
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	109	70	118		
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	104	77	123		
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	107	76	122		
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	103	71	113		
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	103	71.7	113		
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	102	72.4	114		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons (QCLot: 2995384)									
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	98.5	80	124		
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	96.9	77	123		
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	95.8	79	123		
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	98.2	77	123		
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	99.5	79	123		
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	99.3	79	123		
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	97.8	79	123		
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	101	79	125		
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	90.1	73	121		
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	94.0	81	123		
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	89.2	70	118		
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	96.6	77	123		
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	92.1	76	122		
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	87.2	71	113		
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	87.8	71.7	113		
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	84.2	72.4	114		

Page : 8 of 10 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons	(QCLot: 2994674) - continued							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	106	68.4	128
EP080/071: Total Petroleum Hydrocarbons	(QCLot: 2995349)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	102	71	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	119	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	110	64	128
EP080/071: Total Recoverable Hydrocarbons	s - NEPM 2013 (QCLot: 2994674	4)						
EP080: C6 - C10 Fraction		10	mg/kg	<10	31 mg/kg	107	68.4	128
EP080/071: Total Recoverable Hydrocarbons	s - NEPM 2013 (QCLot: 2995349))						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	250 mg/kg	104	70	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	128	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100				
		50	mg/kg		150 mg/kg	116	63	131
EP080: BTEXN (QCLot: 2994674)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	104	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	105	62	128
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	98.6	58	118
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	106	60	120
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	105	60	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	95.4	62	138

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ма	trix Spike (MS) Report	•	
				Spike	SpikeRecovery(%)	Recovery Li	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 2995348)						
ES1317194-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	106	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	110	70	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 2995384)						
ES1317190-008	S7	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	100	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	114	70	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 2994674)						
ES1317190-003	S3	EP080: C6 - C9 Fraction		32.5 mg/kg	108	70	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 2995349)						

Page : 9 of 10 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2995349) - continued						
ES1317194-001	Anonymous	EP071: C10 - C14 Fraction		640 mg/kg	97.0	73	137
		EP071: C15 - C28 Fraction		3140 mg/kg	117	53	131
		EP071: C29 - C36 Fraction		2860 mg/kg	91.9	52	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 29946	74)					
ES1317190-003	S3	EP080: C6 - C10 Fraction		37.5 mg/kg	106	70	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 29953	49)					
ES1317194-001	Anonymous	EP071: >C10 - C16 Fraction		850 mg/kg	122	73	137
		EP071: >C16 - C34 Fraction		4800 mg/kg	110	53	131
		EP071: >C34 - C40 Fraction		2400 mg/kg	61.3	52	132
EP080: BTEXN (Q	CLot: 2994674)						
ES1317190-003	S3	EP080: Benzene	71-43-2	2.5 mg/kg	92.7	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	86.1	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	92.0	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	89.9	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	94.3	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	90.5	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (N	(S) and Matrix S	oike Duplicate	(MSD) Repor	t	
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RP	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total F	etroleum Hydrocarbons (QCLot: 2994674									
ES1317190-003	S3	EP080: C6 - C9 Fraction		32.5 mg/kg	108		70	130		
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 2994674)								
ES1317190-003	S3	EP080: C6 - C10 Fraction		37.5 mg/kg	106		70	130		
EP080: BTEXN (Q	CLot: 2994674)									
ES1317190-003	S3	EP080: Benzene	71-43-2	2.5 mg/kg	92.7		70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	86.1		70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	92.0		70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	89.9		70	130		
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	94.3		70	130		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	90.5		70	130		

Page : 10 of 10 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Sub-Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD	Os (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot:	2995348)								
ES1317194-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	106		70	130		
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	110		70	130		
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 2995349									
ES1317194-001	Anonymous	EP071: C10 - C14 Fraction		640 mg/kg	97.0		73	137		
		EP071: C15 - C28 Fraction		3140 mg/kg	117		53	131		
		EP071: C29 - C36 Fraction		2860 mg/kg	91.9		52	132		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013(QCLot: 2995349)								
ES1317194-001	Anonymous	EP071: >C10 - C16 Fraction		850 mg/kg	122		73	137		
		EP071: >C16 - C34 Fraction		4800 mg/kg	110		53	131		
		EP071: >C34 - C40 Fraction		2400 mg/kg	61.3		52	132		
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot:	2995384)								
ES1317190-008	S7	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	100		70	130		
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	114		70	130		

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

ES1317190 **Work Order** Page : 1 of 6

Client · SMEC TESTING SERVICES PTY LTD Environmental Division Sydney Laboratory

Contact · DAVID YONGE Contact · Client Services

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : P O BOX 6989

WETHERILL PARK NSW. AUSTRALIA 2164

E-mail : dyonge@smectesting.com.au E-mail : sydney@alsglobal.com

Telephone : +61 02 9756 2166 Telephone : +61-2-8784 8555 Facsimile +61 02 9756 1137 Facsimile +61-2-8784 8500

Project QC Level : 19257 3243C : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site

Order number

C-O-C number Date Samples Received : P19257 - COC1 : 01-AUG-2013

Sampler Issue Date : 08-AUG-2013

: 10297 No. of samples received : 38

Quote number : EN/025/13 No. of samples analysed : 25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 6
Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA								
S1,	S3,	29-JUL-2013				02-AUG-2013	12-AUG-2013	✓
S4,	S4A,							
S5,	S7,							
S9,	S10,							
S12,	S14,							
S16,	S18,							
S20,	S21,							
S22,	S25,							
S26,	S28,							
S29,	S30,							
S34,	S36,							
S38,	S39,							
S40								
EP080/071: Total Petroleum Hyd	rocarbons							
Soil Glass Jar - Unpreserved (EPG								
S3,	S4,	29-JUL-2013	05-AUG-2013	12-AUG-2013	✓	05-AUG-2013	14-SEP-2013	✓
S21,	S38,							
S39								
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Soil Glass Jar - Unpreserved (EPG	• "							
S7,	S 9,	29-JUL-2013	02-AUG-2013	12-AUG-2013	✓	05-AUG-2013	11-SEP-2013	✓
S10,	S12,							
S14,	S16,							
S18,	S20,							
S22,	S25,							
S26,	S28,							
S29,	S30,							
S34,	S36							
Soil Glass Jar - Unpreserved (EP0	075(SIM))							
S1,	S4A,	29-JUL-2013	05-AUG-2013	12-AUG-2013	✓	06-AUG-2013	14-SEP-2013	✓
S5,	S40							

Page : 3 of 6
Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Matrix: SOIL					Evaluation:	× = Holding time	breach; ✓ = Withir	holding time.
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEX								
Soil Glass Jar - Unpreserved (EP	2080)							
S3,	S4,	29-JUL-2013	02-AUG-2013	12-AUG-2013	✓	02-AUG-2013	12-AUG-2013	✓
S21,	S38,							
S39								
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP	P080)							
S3,	S4,	29-JUL-2013	02-AUG-2013	12-AUG-2013	✓	02-AUG-2013	12-AUG-2013	✓
S21,	S38,							
S39								
EP080/071: Total Recoverable H	lydrocarbons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP	2080)							
S3,	S4,	29-JUL-2013	02-AUG-2013	12-AUG-2013	✓	02-AUG-2013	12-AUG-2013	✓
S21,	S38,							
S39								

Page : 4 of 6 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

he expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL			Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency wit				
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Actual Expected		
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	4	40	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	4	32	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
ΓPH - Semivolatile Fraction	EP071	2	16	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	19	10.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
_aboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	2	32	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	2	32	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
ΓΡΗ Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	2	32	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
ГРН - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 5 of 6
Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 6 of 6 Work Order : ES1317190

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES1319673** Page : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : 10373

C-O-C number : P19257-COC2 Date Samples Received : 05-SEP-2013

Sampler : ---- Issue Date : 12-SEP-2013
Site : ----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Evie.Sidarta	Inorganic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics
Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 5 Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 5 Work Order : ES1319673

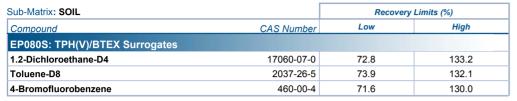
Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C

Page : 4 of 5 Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C



Page : 5 of 5 Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Surrogate Control Limits

Environmental Division

QUALITY CONTROL REPORT

Work Order : **ES1319673** Page : 1 of 7

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ---

C-O-C number : P19257-COC2 Date Samples Received : 05-SEP-2013

Sampler : ---- Issue Date : 12-SEP-2013

Order number : 10373

Quote number : EN/025/13 No. of samples received : 9

Quote number : EN/025/13 No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Evie.Sidarta	Inorganic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics
Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 7
Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 7
Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EA055: Moisture C	ontent (QC Lot: 3048256										
ES1319656-003	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	4.6	4.5	2.6	No Limit		
ES1319673-009	100A	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	12.2	12.6	3.1	0% - 50%		
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 3047977)									
ES1319673-001	V1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
ES1319674-003	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 3048020)									
ES1319673-001	V1	EP071: C15 - C28 Fraction		100	mg/kg	2410	2230	8.0	0% - 20%		
ES 13 19073-001		EP071: C29 - C36 Fraction		100	mg/kg	1370	1210	12.9	0% - 50%		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
ES1319674-003	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	720	730	0.0	No Limit		
		EP071: C29 - C36 Fraction		100	mg/kg	550	580	5.6	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
EP080/071: Total R	ecoverable Hydrocarbon	s - NEPM 2013 (QC Lot: 3047977)									
ES1319673-001	V1	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
ES1319674-003	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
EP080/071: Total R	ecoverable Hydrocarbon	s - NEPM 2013 (QC Lot: 3048020)									
	V1	EP071: >C16 - C34 Fraction		100	mg/kg	3240	3020	6.8	0% - 20%		
		EP071: >C34 - C40 Fraction		100	mg/kg	1060	840	23.4	0% - 50%		
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	110	90	20.3	No Limit		
ES1319674-003	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	1080	1100	2.5	0% - 50%		
		EP071: >C34 - C40 Fraction		100	mg/kg	380	390	2.8	No Limit		
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.0	No Limit		
EP080: BTEXN (Q	C Lot: 3047977)										
ES1319673-001	V1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit		
ES1319674-003	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
			106-42-3								

Page : 4 of 7
Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP080: BTEXN (QC I	_ot: 3047977) - continued										
ES1319674-003	Anonymous	EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit		

Page : 5 of 7 Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3047977)										
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	98.8	68.4	128		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3048020)										
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	98.9	71	131		
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	108	74	138		
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	111	64	128		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (Q	CLot: 30479	77)								
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	99.9	68.4	128		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (Q	CLot: 30480	20)								
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	106	70	130		
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	108	74	138		
EP071: >C34 - C40 Fraction		100	mg/kg	<100						
		50	mg/kg		150 mg/kg	121	63	131		
EP080: BTEXN (QCLot: 3047977)										
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	98.8	62	116		
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	98.0	62	128		
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	96.0	58	118		
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	95.4	60	120		
	106-42-3									
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	96.1	60	120		
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	79.0	62	138		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3047977)							
ES1319673-001	V1	EP080: C6 - C9 Fraction		32.5 mg/kg	109	70	130	
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3048020)							
ES1319674-003	Anonymous	EP071: C10 - C14 Fraction		640 mg/kg	85.8	73	137	
		EP071: C15 - C28 Fraction		3140 mg/kg	88.3	53	131	
		EP071: C29 - C36 Fraction		2860 mg/kg	78.6	52	132	

Page : 6 of 7

Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL				Ma	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total R	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 304797	77)					
ES1319673-001	V1	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	98.1	70	130
EP080/071: Total R	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 304802	20)					
ES1319674-003	Anonymous	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	109	73	137
		EP071: >C16 - C34 Fraction		4800 mg/kg	82.0	53	131
		EP071: >C34 - C40 Fraction		2400 mg/kg	65.2	52	132
EP080: BTEXN (Q	CLot: 3047977)						
ES1319673-001	V1	EP080: Benzene	71-43-2	2.5 mg/kg	95.3	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	101	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	100	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	98.5	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	95.9	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	75.3	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (N	IS) and Matrix S	pike Duplicate	(MSD) Report		
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RP	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3047977									
ES1319673-001	V1	EP080: C6 - C9 Fraction		32.5 mg/kg	109		70	130		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3047977)								
ES1319673-001	V1	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	98.1		70	130		
EP080: BTEXN (QC	CLot: 3047977)									
ES1319673-001	V1	EP080: Benzene	71-43-2	2.5 mg/kg	95.3		70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	101		70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	100		70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	98.5		70	130		
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	95.9		70	130		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	75.3		70	130		
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3048020									
ES1319674-003	Anonymous	EP071: C10 - C14 Fraction		640 mg/kg	85.8		73	137		
		EP071: C15 - C28 Fraction		3140 mg/kg	88.3		53	131		
		EP071: C29 - C36 Fraction		2860 mg/kg	78.6		52	132		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3048020)								

Page : 7 of 7
Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL	-Matrix: SOIL		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPL	Os (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total Re	coverable Hydrocarbons - NEPM 2013(C	QCLot: 3048020) - continued								
ES1319674-003	Anonymous	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	109		73	137		
		EP071: >C16 - C34 Fraction		4800 mg/kg	82.0		53	131		
		EP071: >C34 - C40 Fraction		2400 mg/kg	65.2		52	132		

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1319673** Page : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

Telephone : +61 02 9756 2166 Telephone : +61-2-8784 8555
Facsimile +61 02 9756 1137 Facsimile +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ---

C-O-C number : P19257-COC2 Date Samples Received : 05-SEP-2013

Sampler : --- Issue Date : 12-SEP-2013

Order number : 10373

No. of samples received

Quote number : EN/025/13 No. of samples analysed : 9

No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 5 Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-								
V1,	V2,	04-SEP-2013				06-SEP-2013	18-SEP-2013	✓
V3,	V4,							
V5,	V6,							
V7,	V8,							
100A								
EP080/071: Total Recoverable Hydro	carbons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP071)								
V1,	V2,	04-SEP-2013	06-SEP-2013	18-SEP-2013	✓	06-SEP-2013	16-OCT-2013	✓
V3,	V4,							
V5,	V6,							
V7,	V8,							
100A								
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
V1,	V2,	04-SEP-2013	06-SEP-2013	18-SEP-2013	✓	06-SEP-2013	18-SEP-2013	✓
V3,	V4,							
V5,	V6,							
V7,	V8,							
100A								
EP080/071: Total Recoverable Hydro	carbons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP080)								
V1,	V2,	04-SEP-2013	06-SEP-2013	18-SEP-2013	✓	06-SEP-2013	18-SEP-2013	✓
V3,	V4,							
V5,	V6,							
V7,	V8,							
100A								

Page : 3 of 5 Work Order ES1319673

Client SMEC TESTING SERVICES PTY LTD

: 19257 3243C Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: 🗴 = Quality Co	ntrol frequency n	ot within specification; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	16	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
TPH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
TPH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
TPH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 4 of 5 Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 5 of 5 Work Order : ES1319673

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES1321000** Page : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : 10479

C-O-C number : P19257-COC3 Date Samples Received : 24-SEP-2013

Sampler : ---- Issue Date : 27-SEP-2013
Site : ----

No. of samples received : 14

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

No. of samples analysed

This Certificate of Analysis contains the following information:

· EN/025/13

- General Comments
- Analytical Results
- Surrogate Control Limits

Quote number

release.

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

. 9

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics
Edwandy Fadjar	Organic Coordinator	Sydney Organics
Evie.Sidarta	Inorganic Chemist	Sydney Inorganics
Phalak Inthaksone	Laboratory Manager - Organics	Sydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 5 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 5 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C

Analytical Results

Page : 4 of 5 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C

Analytical Results

Page : 5 of 5 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	72.8	133.2		
Toluene-D8	2037-26-5	73.9	132.1		
4-Bromofluorobenzene	460-00-4	71.6	130.0		

Environmental Division

QUALITY CONTROL REPORT

Work Order : **ES1321000** Page : 1 of 6

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : --

C-O-C number : P19257-COC3 Date Samples Received : 24-SEP-2013

Sampler : ---- Issue Date : 27-SEP-2013

No. of samples received : 14

Quote number : EN/025/13 No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

: 10479

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Order number

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics
Edwandy Fadjar	Organic Coordinator	Sydney Organics
Evie.Sidarta	Inorganic Chemist	Sydney Inorganics
Phalak Inthaksone	Laboratory Manager - Organics	Sydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 6 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 6
Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture C	ontent (QC Lot: 307864	8)							
ES1321000-001	V9	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	13.8	14.4	4.8	0% - 50%
ES1321155-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	2.5	2.6	0.0	No Limit
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 3075847)							
ES1321000-001	V9	EP071: C15 - C28 Fraction		100	mg/kg	3040	3080	1.1	0% - 20%
		EP071: C29 - C36 Fraction		100	mg/kg	140	150	9.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	150	140	0.0	No Limit
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 3076483)							
ES1320884-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1320915-004	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total R	ecoverable Hydrocarbo	ns - NEPM 2013 (QC Lot: 3075847)							
ES1321000-001	V9	EP071: >C16 - C34 Fraction		100	mg/kg	2570	2610	1.4	0% - 20%
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	700	730	3.6	0% - 50%
EP080/071: Total R	ecoverable Hydrocarbo	ns - NEPM 2013 (QC Lot: 3076483)							
ES1320884-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES1320915-004	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (Q	C Lot: 3076483)								
ES1320884-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES1320915-004	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 4 of 6 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP080/071: Total Petroleum Hydrocarbons (QCLo	ot: 3075847)									
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	95.9	71	131		
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	100	74	138		
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	97.7	64	128		
EP080/071: Total Petroleum Hydrocarbons (QCLc	ot: 3076483)									
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	106	68.4	128		
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 (QCLot: 3075847	<u>')</u>								
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	98.0	70	130		
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	99.8	74	138		
EP071: >C34 - C40 Fraction		100	mg/kg	<100						
		50	mg/kg		150 mg/kg	89.2	63	131		
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 (QCLot: 3076483	3)								
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	107	68.4	128		
EP080: BTEXN (QCLot: 3076483)										
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	99.2	62	116		
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	97.9	62	128		
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	94.1	58	118		
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	95.5	60	120		
	106-42-3									
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	96.7	60	120		
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	80.6	62	138		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Recovery Li	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3075847)						
ES1321000-001	V9	EP071: C10 - C14 Fraction		640 mg/kg	82.6	73	137
		EP071: C15 - C28 Fraction		3140 mg/kg	89.8	53	131
		EP071: C29 - C36 Fraction		2860 mg/kg	72.9	52	132
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3076483)						
ES1320884-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	120	70	130

Page : 5 of 6
Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL				Ma	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 30758	17)					
ES1321000-001	V9	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	111	73	137
		EP071: >C16 - C34 Fraction		4800 mg/kg	79.9	53	131
		EP071: >C34 - C40 Fraction		2400 mg/kg	55.0	52	132
EP080/071: Total	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 30764	33)					
ES1320884-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	120	70	130
EP080: BTEXN (C	CLot: 3076483)						
ES1320884-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	87.2	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	90.9	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	93.1	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	97.0	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	96.0	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	89.1	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (I	(IS) and Matrix S	pike Duplicate	(MSD) Repor	t	
			Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPL	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound CAS Number	r Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 307584								
ES1321000-001	V9	EP071: C10 - C14 Fraction	- 640 mg/kg	82.6		73	137		
		EP071: C15 - C28 Fraction	- 3140 mg/kg	89.8		53	131		
		EP071: C29 - C36 Fraction	- 2860 mg/kg	72.9		52	132		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3075847)							
ES1321000-001	V9	EP071: >C10 - C16 Fraction >C10_C1	850 mg/kg	111		73	137		
		EP071: >C16 - C34 Fraction	- 4800 mg/kg	79.9		53	131		
		EP071: >C34 - C40 Fraction	- 2400 mg/kg	55.0		52	132		
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 307648								
ES1320884-001	Anonymous	EP080: C6 - C9 Fraction	- 32.5 mg/kg	120		70	130		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3076483)							
ES1320884-001	Anonymous	EP080: C6 - C10 Fraction C6_C1	37.5 mg/kg	120		70	130		
EP080: BTEXN (Q	CLot: 3076483)								
ES1320884-001	Anonymous	EP080: Benzene 71-43-	2.5 mg/kg	87.2		70	130		
		EP080: Toluene 108-88-	3 2.5 mg/kg	90.9		70	130		
		EP080: Ethylbenzene 100-41-	2.5 mg/kg	93.1		70	130		

Page : 6 of 6
Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPDs (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
EP080: BTEXN (QC	Lot: 3076483) - continued										
ES1320884-001	Anonymous	EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	97.0		70	130			
			106-42-3								
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	96.0		70	130			
		EP080: Naphthalene	91-20-3	2.5 mg/kg	89.1		70	130			

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

·ES1321000 **Work Order** Page : 1 of 5

Client · SMEC TESTING SERVICES PTY LTD Environmental Division Sydney Laboratory

Contact · DAVID YONGE Contact · Client Services

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : P O BOX 6989

WETHERILL PARK NSW. AUSTRALIA 2164

E-mail : dyonge@smectesting.com.au E-mail : sydney@alsglobal.com

Telephone : +61 02 9756 2166 Telephone : +61-2-8784 8555 Facsimile +61 02 9756 1137 Facsimile +61-2-8784 8500

Project QC Level : 19257 3243C : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site

Order number

C-O-C number Date Samples Received : P19257-COC3 : 24-SEP-2013

Sampler Issue Date : 27-SEP-2013 : ----

: 10479 No. of samples received : 14

Quote number : EN/025/13 No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 5 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation:	× = Holding time	breach ; ✓ = Withir	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-103)								
V9,	V10,	23-SEP-2013				26-SEP-2013	07-OCT-2013	✓
V11,	V12,							
V13,	V14,							
V15,	V16,							
102C								
EP080/071: Total Recoverable Hydrocart	pons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP071)								
V9,	V10,	23-SEP-2013	25-SEP-2013	07-OCT-2013	✓	25-SEP-2013	04-NOV-2013	✓
V11,	V12,							
V13,	V14,							
V15,	V16,							
102C								
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
V9,	V10,	23-SEP-2013	25-SEP-2013	07-OCT-2013	✓	25-SEP-2013	07-OCT-2013	✓
V11,	V12,							
V13,	V14,							
V15,	V16,							
102C								
EP080/071: Total Petroleum Hydrocarbo	ns							
Soil Glass Jar - Unpreserved (EP080)								
V9,	V10,	23-SEP-2013	25-SEP-2013	07-OCT-2013	✓	25-SEP-2013	07-OCT-2013	✓
V11,	V12,							
V13,	V14,							
V15,	V16,							
102C								

Page : 3 of 5 Work Order ES1321000

Client SMEC TESTING SERVICES PTY LTD

19257 3243C Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	18	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	9	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
TPH - Semivolatile Fraction	EP071	1	9	11.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
TPH - Semivolatile Fraction	EP071	1	9	11.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
TPH - Semivolatile Fraction	EP071	1	9	11.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 4 of 5 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 5 of 5 Work Order : ES1321000

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

CERTIFICATE OF ANALYSIS

Work Order : **ES1321593** Page : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW. AUSTRALIA 2164

 E-mail
 : dyonge@smectesting.com.au
 E-mail
 : sydney@alsglobal.com

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Facsimile : +61 02 9756 1137 Facsimile : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : 10481

C-O-C number : P19257-COC4 : 02-OCT-2013

Sampler : ---- Issue Date : 04-OCT-2013

Site : ----

No. of samples received : 9

Quote number : EN/025/13 No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics
Edwandy Fadjar Organic Coordinator Sydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 |
Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 5 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

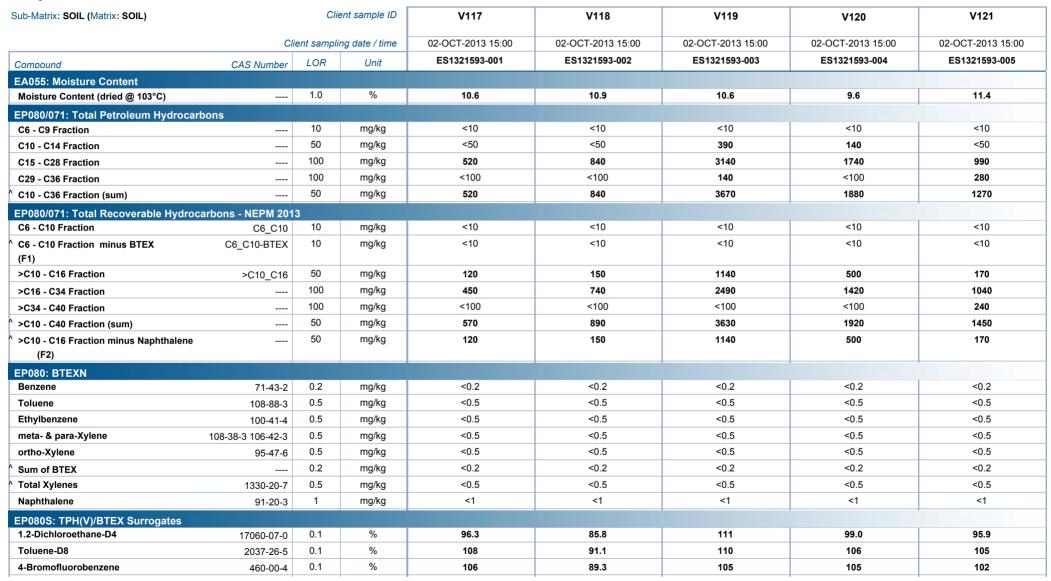
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

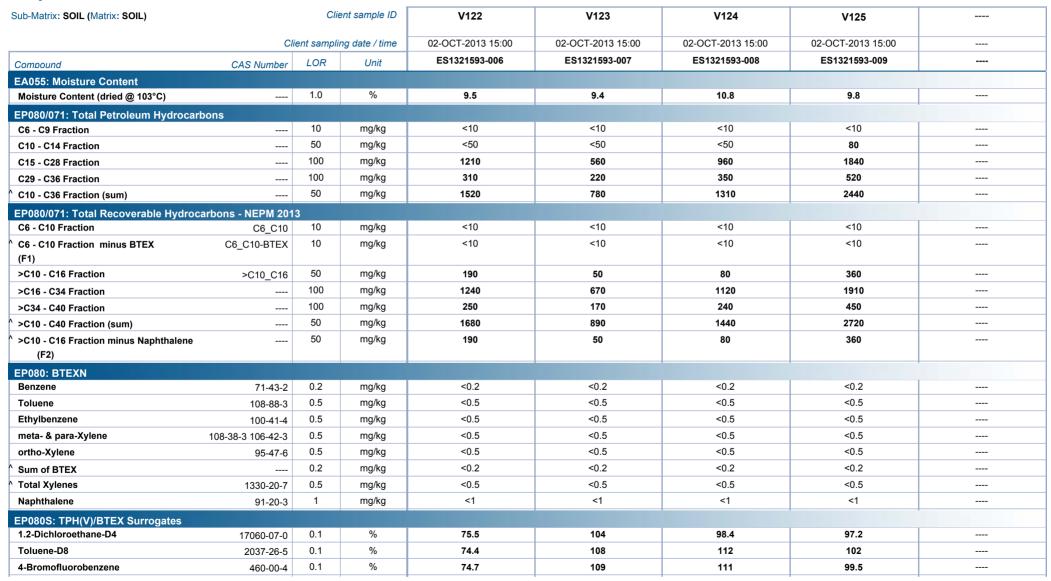

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 5 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C

Analytical Results

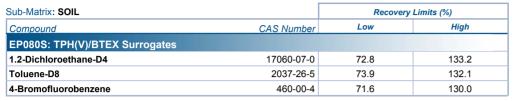


Page : 4 of 5 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C

Analytical Results



Page : 5 of 5 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Surrogate Control Limits

QUALITY CONTROL REPORT

: ES1321593 **Work Order** Page : 1 of 6

Client SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact DAVID YONGE Contact · Client Services

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : P O BOX 6989

WETHERILL PARK NSW. AUSTRALIA 2164

E-mail : dyonge@smectesting.com.au E-mail : sydney@alsglobal.com

Telephone +61 02 9756 2166 +61-2-8784 8555 Telephone Facsimile +61 02 9756 1137 Facsimile +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site

C-O-C number **Date Samples Received** : 02-OCT-2013 : P19257-COC4

Sampler Issue Date : 04-OCT-2013 ٠ ----

: 10481 No. of samples received

Quote number : EN/025/13 No. of samples analysed . 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

Accredited for

compliance with

ISO/IEC 17025.

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Order number

NATA Accredited Laboratory 825

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 9

Signatories Position Accreditation Category

Alex Rossi Organic Chemist **Sydney Organics** Edwandy Fadjar Organic Coordinator Sydney Inorganics

> Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 6 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 6 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (QC Lot: 3089008	3)							
ES1321400-004	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	10.0	9.8	2.8	0% - 50%
ES1321593-004	V120	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	9.6	10.1	5.1	0% - 50%
EP080/071: Total Pe	etroleum Hydrocarbons	(QC Lot: 3089010)							
ES1321593-001	V117	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1321593-008	V124	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 3089016)							
ES1321593-001	V117	EP071: C15 - C28 Fraction		100	mg/kg	520	530	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarbor	ns - NEPM 2013 (QC Lot: 3089010)							
ES1321593-001	V117	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES1321593-008	V124	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarbor	ns - NEPM 2013 (QC Lot: 3089016)							
ES1321593-001	V117	EP071: >C16 - C34 Fraction		100	mg/kg	450	440	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	120	120	0.0	No Limit
EP080: BTEXN (QC	Lot: 3089010)	The state of the s							
ES1321593-001	V117	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES1321593-008	V124	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 4 of 6 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 3089010)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	122	68.4	128
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 3089016)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	106	71	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	107	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	96.6	64	128
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 (QCLot: 3089010))						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	120	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 (QCLot: 3089016	5)						
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	102	70	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	106	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100				
		50	mg/kg		150 mg/kg	79.3	63	131
EP080: BTEXN (QCLot: 3089010)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	108	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	102	62	128
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	101	58	118
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	99.2	60	120
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	98.4	60	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	94.4	62	138

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3089010)							
ES1321593-001	V117	EP080: C6 - C9 Fraction		32.5 mg/kg	106	70	130	
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3089016)							
ES1321593-001	V117	EP071: C10 - C14 Fraction		640 mg/kg	77.4	73	137	
		EP071: C15 - C28 Fraction		3140 mg/kg	74.1	53	131	
		EP071: C29 - C36 Fraction		2860 mg/kg	74.1	52	132	

Page : 5 of 6
Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL			Ī	Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total R	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 30890	10)					
ES1321593-001	V117	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	103	70	130
EP080/071: Total R	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 30890	(6)					
ES1321593-001	V117	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	91.8	73	137
		EP071: >C16 - C34 Fraction		4800 mg/kg	72.2	53	131
		EP071: >C34 - C40 Fraction		2400 mg/kg	66.4	52	132
EP080: BTEXN (Q	CLot: 3089010)						
ES1321593-001	V117	EP080: Benzene	71-43-2	2.5 mg/kg	84.8	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	89.5	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	91.3	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	93.4	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	90.4	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	82.6	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Red	overy (%)	Recovery	Limits (%)	RP	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 3089010)								
ES1321593-001	V117	EP080: C6 - C9 Fraction		32.5 mg/kg	106		70	130		
EP080/071: Total Re	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3089010)								
ES1321593-001	V117	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	103		70	130		
EP080: BTEXN (QC	CLot: 3089010)									
ES1321593-001	V117	EP080: Benzene	71-43-2	2.5 mg/kg	84.8		70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	89.5		70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	91.3		70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	93.4		70	130		
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	90.4		70	130		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	82.6		70	130		
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 3089016)								
ES1321593-001	V117	EP071: C10 - C14 Fraction		640 mg/kg	77.4		73	137		
		EP071: C15 - C28 Fraction		3140 mg/kg	74.1		53	131		
		EP071: C29 - C36 Fraction		2860 mg/kg	74.1		52	132		
EP080/071: Total Re	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3089016)								

Page : 6 of 6 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
			Spike	Spike Recovery (%)		Recovery Limits (%)		RPDs (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3089016) - continued										
ES1321593-001	V117	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	91.8		73	137		
		EP071: >C16 - C34 Fraction		4800 mg/kg	72.2		53	131		
		EP071: >C34 - C40 Fraction		2400 mg/kg	66.4		52	132		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1321593** Page : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : P19257-COC4 Date Samples Received : 02-OCT-2013

Sampler :---- Issue Date : 04-OCT-2013

Order number : 10481

No. of samples received : 9

Quote number : EN/025/13 No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 5 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	× = Holding time	breach ; ✓ = Withir	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-103)								
V117,	V118,	02-OCT-2013				03-OCT-2013	16-OCT-2013	✓
V119,	V120,							
V121,	V122,							
V123,	V124,							
V125								
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP071)								
V117,	V118,	02-OCT-2013	03-OCT-2013	16-OCT-2013	✓	03-OCT-2013	12-NOV-2013	✓
V119,	V120,							
V121,	V122,							
V123,	V124,							
V125								
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
V117,	V118,	02-OCT-2013	03-OCT-2013	16-OCT-2013	✓	03-OCT-2013	16-OCT-2013	✓
V119,	V120,							
V121,	V122,							
V123,	V124,							
V125								
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080)								
V117,	V118,	02-OCT-2013	03-OCT-2013	16-OCT-2013	✓	03-OCT-2013	16-OCT-2013	✓
V119,	V120,							
V121,	V122,							
V123,	V124,							
V125								

Page : 3 of 5 Work Order ES1321593

Client SMEC TESTING SERVICES PTY LTD

19257 3243C Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within spe							
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Moisture Content	EA055-103	2	18	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
TPH - Semivolatile Fraction	EP071	1	9	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	2	12	16.7	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Laboratory Control Samples (LCS)									
TPH - Semivolatile Fraction	EP071	1	9	11.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	1	12	8.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Method Blanks (MB)									
TPH - Semivolatile Fraction	EP071	1	9	11.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	1	12	8.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Matrix Spikes (MS)									
TPH - Semivolatile Fraction	EP071	1	9	11.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	1	12	8.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		

Page : 4 of 5 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 5 of 5 Work Order : ES1321593

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

CERTIFICATE OF ANALYSIS

Work Order : **ES1321841** Page : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW. AUSTRALIA 2164

Facsimile : +61 02 9756 1137 Facsimile : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : 10484

C-O-C number : P19257-COC5 Date Samples Received : 04-OCT-2013

Sampler : ---- Issue Date : 09-OCT-2013

Site : ----

No. of samples received : 6

Quote number : EN/025/13 No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Phalak Inthaksone
 Laboratory Manager - Organics
 Sydney Inorganics

 Phalak Inthaksone
 Laboratory Manager - Organics
 Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 5 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 5 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C

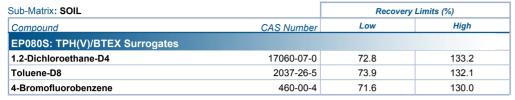
Analytical Results

Page : 4 of 5 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analytical Results



Page : 5 of 5 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Surrogate Control Limits

QUALITY CONTROL REPORT

Work Order : **ES1321841** Page : 1 of 6

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services
Address POROX 6989 Address : 277-289 Woods

: P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ---

C-O-C number : P19257-COC5 Date Samples Received : 04-OCT-2013

Sampler : ---- Issue Date : 09-OCT-2013

No. of samples received : 6

Quote number : EN/025/13 No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

: 10484

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Order number

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Phalak InthaksoneLaboratory Manager - OrganicsSydney InorganicsPhalak InthaksoneLaboratory Manager - OrganicsSydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 |
Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group | An ALS Limited Company

Page : 2 of 6 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 6
Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)				
EA055: Moisture Co	ntent (QC Lot: 3095839)												
ES1321840-016	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	5.8	6.2	6.1	No Limit				
ES1321851-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	4.9	5.2	6.3	No Limit				
EP080/071: Total Pe	P080/071: Total Petroleum Hydrocarbons (QC Lot: 3093219)												
ES1321841-001	V26	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit				
EP080/071: Total Pe	troleum Hydrocarbons (Q	C Lot: 3094927)											
ES1321840-002	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit				
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit				
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit				
EP080/071: Total Re	coverable Hydrocarbons	- NEPM 2013 (QC Lot: 3093219)											
ES1321841-001	V26	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit				
EP080/071: Total Re	coverable Hydrocarbons	- NEPM 2013 (QC Lot: 3094927)											
ES1321840-002	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit				
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit				
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.0	No Limit				
EP080: BTEXN (QC	Lot: 3093219)												
ES1321841-001	V26	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit				
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit				
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit				
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit				
			106-42-3										
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit				
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit				

Page : 4 of 6 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 3093219)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	107	68.4	128
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 3094927)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	103	71	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	118	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	107	64	128
EP080/071: Total Recoverable Hydrocarbons - NEI	PM 2013 (QCLot: 3093219)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	106	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEI	PM 2013 (QCLot: 3094927	')						
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	108	70	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	130	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100				
		50	mg/kg		150 mg/kg	101	63	131
EP080: BTEXN (QCLot: 3093219)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	102	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	98.0	62	128
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	95.9	58	118
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	92.0	60	120
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	95.3	60	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	88.7	62	138

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3093219)						
ES1321841-001	V26	EP080: C6 - C9 Fraction		32.5 mg/kg	109	70	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3094927)						
ES1321840-002	Anonymous	EP071: C10 - C14 Fraction		640 mg/kg	77.4	73	137
		EP071: C15 - C28 Fraction		3140 mg/kg	82.4	53	131
		EP071: C29 - C36 Fraction		2860 mg/kg	74.3	52	132

Page : 5 of 6
Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL				Ma	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 (QCLot: 309321	9)					
ES1321841-001	V26	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	105	70	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 (QCLot: 309492	7)					
ES1321840-002	Anonymous	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	98.6	73	137
		EP071: >C16 - C34 Fraction		4800 mg/kg	77.1	53	131
		EP071: >C34 - C40 Fraction		2400 mg/kg	56.1	52	132
EP080: BTEXN (Q	CLot: 3093219)						
ES1321841-001	V26	EP080: Benzene	71-43-2	2.5 mg/kg	92.2	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	89.3	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	89.2	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	88.3	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	86.8	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	84.6	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (N	IS) and Matrix Spi	ke Duplicate	e (MSD) Repor	t	
				Spike	Spike Red	overy (%)	Recovery	Limits (%)	RP	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 3093219									
ES1321841-001	V26	EP080: C6 - C9 Fraction		32.5 mg/kg	109		70	130		
EP080/071: Total Re	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3093219)								
ES1321841-001	V26	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	105		70	130		
EP080: BTEXN (QC	CLot: 3093219)									
ES1321841-001	V26	EP080: Benzene	71-43-2	2.5 mg/kg	92.2		70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	89.3		70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	89.2		70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	88.3		70	130		
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	86.8		70	130		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	84.6		70	130		
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 3094927									
ES1321840-002	Anonymous	EP071: C10 - C14 Fraction		640 mg/kg	77.4		73	137		
		EP071: C15 - C28 Fraction		3140 mg/kg	82.4		53	131		
		EP071: C29 - C36 Fraction		2860 mg/kg	74.3		52	132		
EP080/071: Total Re	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3094927)								

Page : 6 of 6
Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL	Sub-Matrix: SOIL					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPL	Os (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit			
EP080/071: Total Re	coverable Hydrocarbons - NEPM 2013(C	QCLot: 3094927) - continued											
ES1321840-002	Anonymous	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	98.6		73	137					
		EP071: >C16 - C34 Fraction		4800 mg/kg	77.1		53	131					
		EP071: >C34 - C40 Fraction		2400 mg/kg	56.1		52	132					

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1321841** Page : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Sydney

Contact : DAVID YONGE Contact : Client Services

Address : P O BOX 6989 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61-2-8784 8500

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : P19257-COC5 Date Samples Received : 04-OCT-2013

 Sampler
 : -- Issue Date
 : 09-OCT-2013

 Order number
 : 10484

No. of samples received : 6

Quote number : EN/025/13 No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 5 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: x = Holding time	breach; ✓ = Within	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055	-103)							
V26,	V27,	04-OCT-2013				08-OCT-2013	18-OCT-2013	✓
V28,	V29,							
V30,	V31							
EP080/071: Total Petroleum Hydroc	arbons							
Soil Glass Jar - Unpreserved (EP071)							
V26,	V27,	04-OCT-2013	08-OCT-2013	18-OCT-2013	✓	08-OCT-2013	17-NOV-2013	✓
V28,	V29,							
V30,	V31							
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080))							
V26,	V27,	04-OCT-2013	04-OCT-2013	18-OCT-2013	✓	04-OCT-2013	18-OCT-2013	✓
V28,	V29,							
V30,	V31							
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 2010 Draft							
Soil Glass Jar - Unpreserved (EP080))							
V26,	V27,	04-OCT-2013	04-OCT-2013	18-OCT-2013	✓	04-OCT-2013	18-OCT-2013	✓
V28,	V29,							
V30,	V31							

Page : 3 of 5 Work Order ES1321841

Client SMEC TESTING SERVICES PTY LTD

: 19257 3243C Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency n	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Noisture Content	EA055-103	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	10	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	6	16.7	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
PH - Semivolatile Fraction	EP071	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
ΓΡΗ Volatiles/BTEX	EP080	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PH - Semivolatile Fraction	EP071	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PH - Semivolatile Fraction	EP071	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	6	16.7	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 4 of 5 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 5 of 5 Work Order : ES1321841

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EB1318541** Page : 1 of 4

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia 4053

WETHERILL PARK NSW, AUSTRALIA 2164

Telephone : +61 02 9756 2166 Telephone : +61 7 3243 7222
Facsimile : +61 02 9756 1137 Facsimile : +61 7 3243 7218

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : 10297

C-O-C number : P19257-COC1 Date Samples Received : 02-AUG-2013

Sampler : --- Issue Date : 08-AUG-2013

Site : ----

No. of samples received : 3

Quote number : EN/025/13 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Matt Frost	Senior Organic Chemist	Brisbane Inorganics
Matt Frost	Senior Organic Chemist	Brisbane Organics

Address 2 Byth Street Stafford QLD Australia 4053 | PHONE +61-7-3243 7222 | Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 4 Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 4 Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analytical Results

Page : 4 of 4 Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	34.8	154.5
2-Chlorophenol-D4	93951-73-6	41.9	152.8
2.4.6-Tribromophenol	118-79-6	26.0	156.8
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	33.8	156.5
Anthracene-d10	1719-06-8	36.9	153.1
4-Terphenyl-d14	1718-51-0	41.8	172.2

Environmental Division

QUALITY CONTROL REPORT

Work Order : **EB1318541** Page : 1 of 6

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia 4053

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61 7 3243 7222

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61 7 3243 7218

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ---

C-O-C number : P19257-COC1 Date Samples Received : 02-AUG-2013

Sampler : --- Issue Date : 08-AUG-2013

No. of samples received : 3

Quote number : EN/025/13

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

: 10297

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Order number

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Matt Frost Matt Frost	Senior Organic Chemist Senior Organic Chemist	Brisbane Inorganics Brisbane Organics

Address 2 Byth Street Stafford QLD Australia 4053 | PHONE +61-7-3243 7222 | Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 6 Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 6 Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ntent (QC Lot: 2997634)								
EB1318620-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	19.3	19.3	0.0	0% - 50%
EB1318632-016	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	6.5	6.2	3.8	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydrocarb	ons (QC Lot: 2997608)							
EB1318632-017	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EB1318632-022	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	0.7	1.0	31.7	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	0.7	1.0	27.8	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	0.5	0.7	27.4	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	0.6	22.4	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	0.7	1.0	32.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	0.5	0.6	22.1	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page : 4 of 6
Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EP075(SIM)B: Polynu	ıclear Aromatic Hydrocarbo	ns (QC Lot: 2997608) - continued										
EB1318632-022	Anonymous	EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	0.6	0.8	22.3	No Limit			

Page : 5 of 6 Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound CA	S Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 299	7608)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	5.0 mg/kg	87.1	71	119	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	5.0 mg/kg	90.9	67	118	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	5.0 mg/kg	101	83	121	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	5.0 mg/kg	105	76	116	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	5.0 mg/kg	106	72	117	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	5.0 mg/kg	112	70	115	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	5.0 mg/kg	# 133	69	116	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	5.0 mg/kg	109	69	134	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	5.0 mg/kg	109	61	120	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	5.0 mg/kg	96.9	62	119	
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	5.0 mg/kg	128	49	129	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	5.0 mg/kg	102	64	129	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	5.0 mg/kg	112	65	121	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	5.0 mg/kg	96.3	51	135	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	5.0 mg/kg	94.7	45	134	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	5.0 mg/kg	99.9	53	133	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL	ub-Matrix: SOIL					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	imits (%)				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EP075(SIM)B: Poly	rnuclear Aromatic Hydrocarbons (QCLot: 2997608)										
EB1318541-001	S11	EP075(SIM): Acenaphthene	83-32-9	2.5 mg/kg	104	70	130				
		EP075(SIM): Pyrene	129-00-0	2.5 mg/kg	124	70	130				

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report					
				Spike	Spike Red	overy (%)	Recovery	Limits (%)	RPI	Os (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit

Page : 6 of 6 Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL	Sub-Matrix: SOIL			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Red	overy (%)	Recovery	Limits (%)	RPD	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP075(SIM)B: Polyr	nuclear Aromatic Hydrocarbons (QCLot:	2997608)								
EB1318541-001	S11	EP075(SIM): Acenaphthene	83-32-9	2.5 mg/kg	104		70	130		
		EP075(SIM): Pyrene	129-00-0	2.5 mg/kg	124		70	130		

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

 Work Order
 : EB1318541
 Page
 : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia 4053

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61 7 3243 7222

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61 7 3243 7218

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : P19257-COC1 Date Samples Received : 02-AUG-2013

 Sampler
 : -- Issue Date
 : 08-AUG-2013

 Order number
 : 10297

No. of samples received : 3

Quote number : EN/025/13 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 5 Work Order EB1318541

Client SMEC TESTING SERVICES PTY LTD

Project 19257 3243C

Matrix: SOIL

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation

EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103)							
S11	29-JUL-2013				05-AUG-2013	12-AUG-2013	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))						'	
S11	29-JUL-2013	06-AUG-2013	12-AUG-2013	1	07-AUG-2013	15-SEP-2013	1

Page : 3 of 5 Work Order EB1318541

Client SMEC TESTING SERVICES PTY LTD

19257 3243C Project

Matrix: SOIL

Evaluation: **x** = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to

the expected r	ate. A listing	of breaches	is provided	in the S	Summary of	Outliers.

Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	18	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	2	14	14.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
DAH/Phanala (SIM)	EDOZE(CIM)	1	1.4	7.4	E 0	_	NEDM 2013 Schedule P(3) and ALS OCS3 requirement

Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	14	7.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	14	7.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	14	7.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 4 of 5 Work Order : EB1318541

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
Preparation Methods	Method	Matrix	Method Descriptions
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page 5 of 5 Work Order EB1318541

SMEC TESTING SERVICES PTY LTD Client

Project

19257 3243C

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	3567730-002		Fluoranthene	206-44-0	133 %	69-116%	Recovery greater than upper control
							limit

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : EB1321915 Page : 1 of 4

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia 4053

WETHERILL PARK NSW, AUSTRALIA 2164

Telephone : +61 02 9756 2166 Telephone : +61 7 3243 7222
Facsimile : +61 02 9756 1137 Facsimile : +61 7 3243 7218

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : 10373

C-O-C number : P19257 - COC2 Date Samples Received : 10-SEP-2013

Sampler : ---- Issue Date : 16-SEP-2013
Site : ----

Quote number : EN/025/13 No. of samples received : 1

No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryMatt FrostSenior Organic ChemistBrisbane OrganicsMatt FrostSenior Organic ChemistBrisbane OrganicsStephen HislopSenior Inorganic ChemistBrisbane Inorganics

Address 2 Byth Street Stafford QLD Australia 4053 | PHONE +61-7-3243 7222 | Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 4
Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

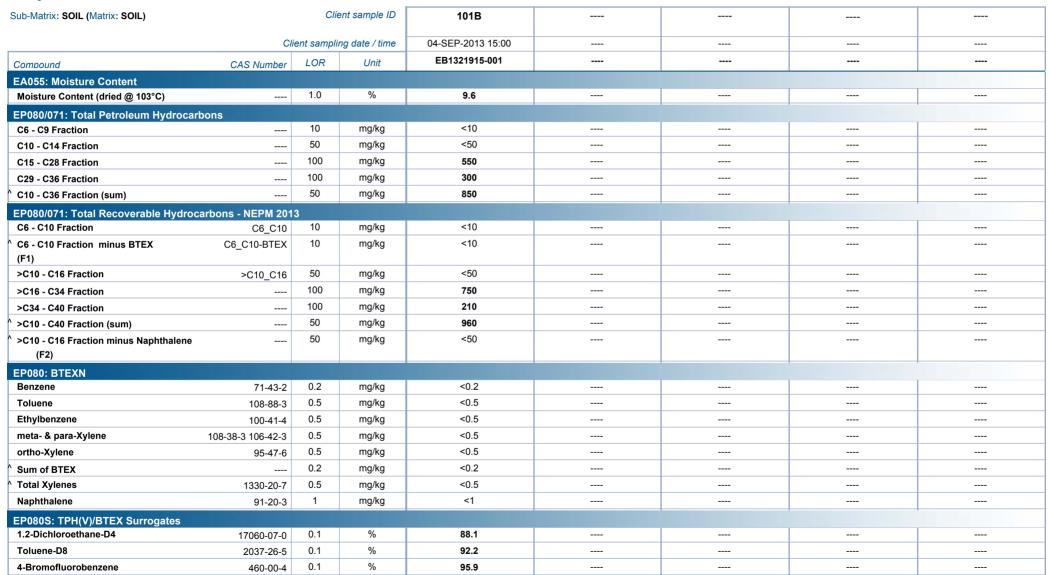
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting


• EP071 (TPH/TRH): Particular sample shows poor matrix spike recovery due to sample heterogeneity. Confirmed by visual inspection.

Page : 3 of 4 Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project · 19257 3243C

Analytical Results

Page : 4 of 4 Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)				
Compound	CAS Number	Low	High		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	52.7	133.7		
Toluene-D8	2037-26-5	60.3	131.1		
4-Bromofluorobenzene	460-00-4	59.2	126.6		

Environmental Division

QUALITY CONTROL REPORT

Work Order : **EB1321915** Page : 1 of 6

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia 4053

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61 7 3243 7222

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61 7 3243 7218

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : --

C-O-C number : P19257 - COC2 Date Samples Received : 10-SEP-2013

Sampler : ---- Issue Date : 16-SEP-2013

Order number : 10373

Quote number : EN/025/13 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

No. of samples received

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1

Signatories	Position	Accreditation Category
Matt Frost	Senior Organic Chemist	Brisbane Organics
Matt Frost	Senior Organic Chemist	Brisbane Organics
Stephen Hislop	Senior Inorganic Chemist	Brisbane Inorganics

Address 2 Byth Street Stafford QLD Australia 4053 | PHONE +61-7-3243 7222 | Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 6
Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 6 Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method; Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EA055: Moisture C	ontent (QC Lot: 3053710	0)									
EB1321847-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	16.2	16.2	0.0	0% - 50%		
EB1321885-006	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	21.2	21.2	0.0	0% - 20%		
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 3053694)									
EB1321729-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
EB1321885-017	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 3053698)									
EB1321729-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	620	380	47.5	No Limit		
		EP071: C29 - C36 Fraction		100	mg/kg	410	280	39.9	No Limit		
	EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit			
EB1321913-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	620	780	22.5	No Limit		
		EP071: C29 - C36 Fraction		100	mg/kg	360	520	36.9	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
EP080/071: Total R	Recoverable Hydrocarboi	ns - NEPM 2013 (QC Lot: 3053694)									
EB1321729-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
EB1321885-017	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
EP080/071: Total R	Recoverable Hydrocarboi	ns - NEPM 2013 (QC Lot: 3053698)									
EB1321729-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	910	570	45.7	No Limit		
		EP071: >C34 - C40 Fraction		100	mg/kg	210	150	29.6	No Limit		
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	60	<50	0.0	No Limit		
EB1321913-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	900	1170	26.5	0% - 50%		
		EP071: >C34 - C40 Fraction		100	mg/kg	150	250	50.9	No Limit		
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	50	<50	0.0	No Limit		
EP080: BTEXN (Q	C Lot: 3053694)										
EB1321729-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		, ,	106-42-3								
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit		
EB1321885-017	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
			106-42-3								

Page : 4 of 6
Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL	ub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP080: BTEXN (QC I	ot: 3053694) - continued									
EB1321885-017	Anonymous	EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit	

Page : 5 of 6 Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	AS Number LOR Unit		Result	Concentration	LCS	Low	High		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3053694)										
EP080: C6 - C9 Fraction		10	mg/kg	<10	16 mg/kg	88.2	66	124		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3053698)										
EP071: C10 - C14 Fraction		50	mg/kg	<50	312 mg/kg	96.8	84	117		
EP071: C15 - C28 Fraction		100	mg/kg	<100	500 mg/kg	93.0	80	118		
EP071: C29 - C36 Fraction		100	mg/kg	<100						
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013(Q	CLot: 305369	94)								
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	18.5 mg/kg	87.1	66	126		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013(Q	CLot: 305369	98)								
	>C10_C16	50	mg/kg	<50	413 mg/kg	98.6	86	117		
EP071: >C16 - C34 Fraction		100	mg/kg	<100	360 mg/kg	95.3	72	113		
EP071: >C34 - C40 Fraction		100	mg/kg	<100						
EP080: BTEXN (QCLot: 3053694)										
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	84.8	73	108		
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	79.0	73	111		
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	90.0	67	110		
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	88.3	66	112		
	106-42-3									
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	84.2	68	110		
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	92.4	72	115		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3053694)						
EB1321729-002 Anonymous EP080: C6 - C9 Fraction 8 mg/kg 82.9 70							
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3053698)						
EB1321729-002	Anonymous	EP071: C10 - C14 Fraction		312 mg/kg	102	70	130
		EP071: C15 - C28 Fraction		500 mg/kg	# 139	70	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 (QCLot: 305369	4)					

Page : 6 of 6 Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Sub-Matrix: SOIL			Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)	
Laboratory sample ID	Client sample ID	Method: Compound CA	AS Number	Concentration	MS	Low	High	
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 (QCLot: 305369	4) - continued						
EB1321729-002	Anonymous	EP080: C6 - C10 Fraction	6_C10	8 mg/kg	91.4	70	130	
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 (QCLot: 305369	8)						
EB1321729-002	Anonymous	EP071: >C10 - C16 Fraction >C	C10_C16	413 mg/kg	107	70	130	
		EP071: >C16 - C34 Fraction		360 mg/kg	# 174	70	130	
EP080: BTEXN (Q	CLot: 3053694)							
EB1321729-002	Anonymous	EP080: Benzene 71	1-43-2	2 mg/kg	80.6	70	130	
		EP080: Toluene 10	08-88-3	2 mg/kg	79.4	70	130	

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (N	IS) and Matrix Sp	ike Duplicate	(MSD) Report		
				Spike	Spike Red	overy (%)	Recovery	Limits (%)	RPD	Os (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3053694)								
EB1321729-002	Anonymous	EP080: C6 - C9 Fraction		8 mg/kg	82.9		70	130		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3053694)								
EB1321729-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	8 mg/kg	91.4		70	130		
EP080: BTEXN (Q	CLot: 3053694)									
EB1321729-002	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	80.6		70	130		
		EP080: Toluene	108-88-3	2 mg/kg	79.4		70	130		
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3053698)								
EB1321729-002	Anonymous	EP071: C10 - C14 Fraction		312 mg/kg	102		70	130		
		EP071: C15 - C28 Fraction		500 mg/kg	# 139		70	130		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013(QCLot: 3053698)								
EB1321729-002	Anonymous	EP071: >C10 - C16 Fraction	>C10_C16	413 mg/kg	107		70	130		
		EP071: >C16 - C34 Fraction		360 mg/kg	# 174		70	130		

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **EB1321915** Page : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia 4053

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61 7 3243 7222

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61 7 3243 7218

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : P19257 - COC2 Date Samples Received : 10-SEP-2013

 Sampler
 : -- Issue Date
 : 16-SEP-2013

 Order number
 : 10373

No. of samples received : 1

Quote number : EN/025/13 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 5 Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation:	x = Holding time	breach ; ✓ = Within	holding time.	
Method	Sample Date	Ex	traction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-103) 101B	04-SEP-2013				10-SEP-2013	18-SEP-2013	✓	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013								
Soil Glass Jar - Unpreserved (EP071) 101B	04-SEP-2013	12-SEP-2013	18-SEP-2013	✓	12-SEP-2013	22-OCT-2013	✓	
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080) 101B	04-SEP-2013	10-SEP-2013	18-SEP-2013	1	11-SEP-2013	18-SEP-2013	✓	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013								
Soil Glass Jar - Unpreserved (EP080) 101B	04-SEP-2013	10-SEP-2013	18-SEP-2013	✓	11-SEP-2013	18-SEP-2013	✓	

Page : 3 of 5 Work Order EB1321915

Client SMEC TESTING SERVICES PTY LTD

19257 3243C Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Evaluation: 🗴 = Qualit	y Control frequenc	y not within specification	; ✓ = Quality	Control frequ	ency within specification.

Matrix: SOIL				Evaluation	n: 🗴 = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	19	10.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	2	13	15.4	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	13	15.4	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
TPH - Semivolatile Fraction	EP071	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
TPH - Semivolatile Fraction	EP071	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
TPH - Semivolatile Fraction	EP071	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 4 of 5 Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 5 of 5

Work Order : EB1321915

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP080/071: Total Petroleum Hydrocarbons	EB1321729-002	Anonymous	C15 - C28 Fraction		139 %	70-130%	Recovery greater than upper data
							quality objective
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	EB1321729-002	Anonymous	>C16 - C34 Fraction		174 %	70-130%	Recovery greater than upper data
							quality objective

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EB1323381** Page : 1 of 4

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia 4053

WETHERILL PARK NSW, AUSTRALIA 2164

Telephone : +61 02 9756 2166 Telephone : +61 7 3243 7222
Facsimile : +61 02 9756 1137 Facsimile : +61 7 3243 7218

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : 10479

 C-O-C number
 : P19257/COC3
 Date Samples Received
 : 25-SEP-2013

 Sampler
 : David Yonge
 Issue Date
 : 27-SEP-2013

Site : ----

No. of samples received : 1

Quote number : EN/025/13 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryMinh WillsOrganic ChemistBrisbane OrganicsMinh WillsOrganic ChemistBrisbane OrganicsStephen HislopSenior Inorganic ChemistBrisbane Inorganics

Address 2 Byth Street Stafford QLD Australia 4053 | PHONE +61-7-3243 7222 | Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 4 Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 4
Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analytical Results

Page : 4 of 4 Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	52.7	133.7	
Toluene-D8	2037-26-5	60.3	131.1	
4-Bromofluorobenzene	460-00-4	59.2	126.6	

Environmental Division

QUALITY CONTROL REPORT

Work Order : **EB1323381** Page : 1 of 4

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia 4053

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61 7 3243 7222

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61 7 3243 7218

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ---

 C-O-C number
 : P19257/COC3
 Date Samples Received
 : 25-SEP-2013

 Sampler
 : David Yonge
 Issue Date
 : 27-SEP-2013

Order number : 10479

Quote number : EN/025/13 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1

 Signatories
 Position
 Accreditation Category

 Minh Wills
 Organic Chemist
 Brisbane Organics

 Minh Wills
 Organic Chemist
 Brisbane Organics

 Stephen Hislop
 Senior Inorganic Chemist
 Brisbane Inorganics

No. of samples received

Address 2 Byth Street Stafford QLD Australia 4053 | PHONE +61-7-3243 7222 | Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 4 Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 4
Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL	-Matrix: SOIL			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 3078816)									
EB1323381-001	103D	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 3078823)									
EB1323381-001	103D	EP071: C15 - C28 Fraction		100	mg/kg	1460	1170	22.5	0% - 50%		
		EP071: C29 - C36 Fraction		100	mg/kg	510	380	28.1	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	100	90	12.9	No Limit		
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 (QC Lot: 3078816)									
EB1323381-001	103D	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 (QC Lot: 3078823)									
EB1323381-001	103D	EP071: >C16 - C34 Fraction		100	mg/kg	1520	1170	25.9	0% - 50%		
		EP071: >C34 - C40 Fraction		100	mg/kg	440	330	27.4	No Limit		
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	380	340	11.4	No Limit		
EP080: BTEXN (QC	Lot: 3078816)										
EB1323381-001	103D	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
	EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit			
		ED000, ortho Vulono	106-42-3 95-47-6	0.5	ma/ka	<0.5	<0.5	0.0	No Limit		
		EP080: ortho-Xylene	91-20-3	1	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Naphthalene	91-20-3	ı	mg/kg		<u>``</u>	0.0	INO LIITIIL		

Page : 4 of 4

Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound CAS Num	ber LOR	Unit	Result	Concentration	LCS	Low	High		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3078816)									
EP080: C6 - C9 Fraction -	10	mg/kg	<10	16 mg/kg	102	66	124		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3078823)									
EP071: C10 - C14 Fraction -	50	mg/kg	<50	312 mg/kg	89.6	84	117		
EP071: C15 - C28 Fraction -	100	mg/kg	<100	500 mg/kg	92.8	80	118		
EP071: C29 - C36 Fraction -	100	mg/kg	<100						
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3	78816)								
EP080: C6 - C10 Fraction C6_C	10 10	mg/kg	<10	18.5 mg/kg	100	66	126		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3	78823)								
EP071: >C10 - C16 Fraction >C10_C	16 50	mg/kg	<50	413 mg/kg	95.3	86	117		
EP071: >C16 - C34 Fraction -	100	mg/kg	<100	360 mg/kg	91.5	72	113		
EP071: >C34 - C40 Fraction -	100	mg/kg	<100						
EP080: BTEXN (QCLot: 3078816)									
EP080: Benzene 71-43	-2 0.2	mg/kg	<0.2	1 mg/kg	88.2	73	108		
EP080: Toluene 108-88	-3 0.5	mg/kg	<0.5	1 mg/kg	96.6	73	111		
EP080: Ethylbenzene 100-41	-4 0.5	mg/kg	<0.5	1 mg/kg	99.2	67	110		
EP080: meta- & para-Xylene 108-38-	·	mg/kg	<0.5	2 mg/kg	88.2	66	112		
106-42	-								
EP080: ortho-Xylene 95-47		mg/kg	<0.5	1 mg/kg	88.4	68	110		
EP080: Naphthalene 91-20	-3 1	mg/kg	<1	1 mg/kg	84.6	72	115		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) Results are required to be reported.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

 Work Order
 : EB1323381
 Page
 : 1 of 5

Client : SMEC TESTING SERVICES PTY LTD Laboratory : Environmental Division Brisbane

Contact : DAVID YONGE Contact : Customer Services

Address : P O BOX 6989 Address : 2 Byth Street Stafford QLD Australia 4053

WETHERILL PARK NSW, AUSTRALIA 2164

 Telephone
 : +61 02 9756 2166
 Telephone
 : +61 7 3243 7222

 Facsimile
 : +61 02 9756 1137
 Facsimile
 : +61 7 3243 7218

Project : 19257 3243C QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : P19257/COC3
 Date Samples Received
 : 25-SEP-2013

 Sampler
 : David Yonge
 Issue Date
 : 27-SEP-2013

Order number : 10479

No. of samples received : 1

Quote number : EN/025/13

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 5 Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation:	x = Holding time	breach ; ✓ = Withir	holding time.
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103) 103D	23-SEP-2013				26-SEP-2013	07-OCT-2013	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP071) 103D	23-SEP-2013	26-SEP-2013	07-OCT-2013	✓	26-SEP-2013	05-NOV-2013	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) 103D	23-SEP-2013	26-SEP-2013	07-OCT-2013	✓	26-SEP-2013	07-OCT-2013	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP080) 103D	23-SEP-2013	26-SEP-2013	07-OCT-2013	✓	26-SEP-2013	07-OCT-2013	✓

Page : 3 of 5 Work Order EB1323381

SMEC TESTING SERVICES PTY LTD Client

19257 3243C Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specific								
Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification		
Analytical Methods	Method	ОС	Regular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
TPH - Semivolatile Fraction	EP071	1	1	100.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	1	1	100.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Laboratory Control Samples (LCS)									
TPH - Semivolatile Fraction	EP071	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Method Blanks (MB)									
TPH - Semivolatile Fraction	EP071	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
TPH Volatiles/BTEX	EP080	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		

Page : 4 of 5 Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 5 of 5 Work Order : EB1323381

Client : SMEC TESTING SERVICES PTY LTD

Project : 19257 3243C

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

APPENDIX D RESULTS OF STATISTICAL ANALYSES

General UCL Statistics for Full Data Set - Carcinogenic PAHs

WorkSheet.wst

OFF

97.5% Chebyshev(Mean, Sd) UCL

Use 97.5% Chebyshev (Mean, Sd) UCL

99% Chebyshev(Mean, Sd) UCL

3.362

4.485

3.362

User Selected Options From File

Assuming Gamma Distribution

95% Approximate Gamma UCL

95% Adjusted Gamma UCL

Potential UCL to Use

1.947

1.964

Full Precision

ruii Fiecision		OFF	
Confidence Coefficient		95%	
Number of Bootstrap Operations		2000	
		General Statistics	
Number of Valid Observations		50 servations	19
Raw Statistics		Log-transformed Statistics	
Minimum	0.2	Minimum of Log Data	-1.609
Maximum	8.5	Maximum of Log Data	2.14
Mean	1.469	Mean of log Data	-0.324
Median	0.6	SD of log Data	1.089
SD	2.144		
Coefficient of Variation	1.459		
Skewness	2.03		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.595	Shapiro Wilk Test Statistic	0.837
Shapiro Wilk Critical Value	0.947	Shapiro Wilk Critical Value	0.947
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	1.977	95% H-UCL	1.915
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	2.324
95% Adjusted-CLT UCL	2.061	97.5% Chebyshev (MVUE) UCL	2.773
95% Modified-t UCL	1.992	99% Chebyshev (MVUE) UCL	3.656
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.797	Data do not follow a Discernable Distribution	on (0.05)
Theta Star	1.843		
MLE of Mean	1.469		
MLE of Standard Deviation	1.646		
nu star	79.69		
Approximate Chi Square Value (.05)	60.12	Nonparametric Statistics	
Adjusted Level of Significance	0.0452	95% CLT UCL	1.968
Adjusted Chi Square Value	59.62	95% Jackknife UCL	1.977
		95% Standard Bootstrap UCL	1.954
Anderson-Darling Test Statistic	5.174	95% Bootstrap-t UCL	2.104
Anderson-Darling 5% Critical Value	0.789	95% Hall's Bootstrap UCL	1.991
Kolmogorov-Smirnov Test Statistic	0.347	95% Percentile Bootstrap UCL	1.985
Kolmogorov-Smirnov 5% Critical Value	0.13	95% BCA Bootstrap UCL	2.05
Data not Gamma Distributed at 5% Significan	nce Level	95% Chebyshev(Mean, Sd) UCL	2.79