The Commonwealth Environment Protection and Biodiversity Conservation Act 1999 provides protection for items of national significance. The Act requires a separate Commonwealth approval to be obtained where an action is likely to have significant impacts on items of national environmental significance. Items of national environmental significance include, amongst other things, nationally threatened animal and plant species and ecological communities. The Commonwealth Department of the Environment and Water Resources should be contacted for further advice.

General Manager

Per:

End of Certificate

RESULTS TABLE APPENDIX VI Telephone: NSW: (02) 9648 6669 Internet: site: www.ADenvirotech.com.au Queensland Office: ABN:

Project 7773 / DSI Eastern Creek NSW

Juli Kesulis	Soil	Results	
--------------	------	---------	--

	Health-based Investigation Levels, HIL D Criteria ^{1,2}	Ecological Screening / Investigation Levels ¹ Commercial and Industrial														
Sample ID	mg/kg	mg/kg	7773-C1	7773-C2	7773-C3	7773-C4	7773-C5	7773-C6	7773-C7	7773-C8	7773-C9	7773-C10	7773-C11	7773-C12	7773-C13	7773-C14
Sumple 15	5/ %5	6/ %	7773-BH01-A	7773-BH02-A	7773-BH03-A	7773-BH04-A	7773-BH05-A	7773-BH06-A	7773-BH07-A	7773-BH08-A	7773-BH09-A	7773-BH10-A	7773-BH11-A	7773-BH12-A	7773-BH13-A	7773-BH14-A
Date of Sampling			25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014
Depth(m)			0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Inorganics																
Arsenic	3000	1604	10.2	19.5	11.0	14.1	10.3	9.1	11.9	3.8	8.1	8.1	2.4	8.3	2.0	6.5
Cadmium	900.00		0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Chromium (total)	3600		31.2	22.8	18.5	18.0	12.6	25.4	140.1	20.3	23.4	14.4	17.9	14.4	19.8	16.7
Copper	240 000		35.3	13.0	25.6	23.2	71.9	67.3	30.0	14.6	15.2	18.0	14.3	19.2	48.2	9.5
Lead	1 500		36.6	20.7	24.2	28.3	160.3	38.1	27.2	28.1	29.3	31.2	21.5	32.4	23.5	27.4
Mercury	730		0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nickel	6 000		33.9	12.0	15.7	19.3	10.0	27.9	130.0	18.0	15.2	15.6	10.0	12.0	18.6	10.0
Zinc	400 000		100.0	27.2	48.4	38.6	240.0	55.9	52.9	39.4	36.3	41.9	27.5	36.0	47.0	21.4
*****			-25	-25	I -25	-25	-25	-25	-25	-25	-25	-25	-25	-25	-25	-25
TRH C6-C10 TRH C10-C16		215 170	<35 <50													
TRH C16-C34		170	<100	<100	<100	<100	140	<50 <100	<100	<100	<100	<100	<100	<100	<100	<100
TRH C34-C40		3 300	<100	<100	<100	<100	160	<100	<100	<100	<100	<100	<100	<100	<100	<100
DAIL		3 300	<100	<100	100	<100	100	\100	\100	\100	<100	\100	100	\100	<100	\100
Benzo(a)pyrene		1.40	<3	<3	<3	<3	0.56	<3	<3	<3	<3	<3	<3	<3	<3	<3
Carcinogenic PAHs		1.40	\ <u>3</u>	\ <u></u>	- 3		0.30	- 3	,	\3	\	\ <u></u>	\ \	\ <u>\</u>	- '3	<u> </u>
(as BaP TEQ) ³	40		<0.73	<0.73	<0.73	<0.73	1.08	<0.73	<0.73	<0.73	<0.73	<0.73	<0.73	<0.73	<0.73	<0.73
Total PAH ³	4 000		<4.8	<4.8	<4.8	<4.8	7.04	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8
Naphthalene	4 000	370	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
OCPs		570	10.5	10.5	10.5	10.5	10.5	10.5	40.5	40.5	40.5	10.5	10.5	10.5	10.5	10.5
Aldrin	45#		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	45***		<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1		1	<0.1	<0.1	<0.1	1
Chlordane	530		<0.1	<0.1	<0.1	<0.1 <2	<0.1	<0.1	<0.1	<0.1 <2	<0.1 <2	<0.1 <2	<0.1	<0.1	<0.1	<0.1 <2
DDT+DDD+DDE	3 600		<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
DDT	3 000	640	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Endosulfan	2 000	040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Heptachlor	50		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
OPPs			-				_			_						
chlorpyrifos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion			<0.1	<0.1	<0.1	<0.1	0.32	0.30	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
prophos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenols			-													
Phenols	240 000		NT													
Pentachlorophenal	660		NT													
Cresols	25 000		NT													
PCBs																
PCBs (total)	7		NT													
Notes to table:																

Indicates contaminant above HIL D criteria

Indicates contaminant above Ecological Screening Levels
1 NEPM Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater, 2013

2 NSW DEC Guidelines for the NSW Site Auditor Scheme, 2006

3 PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF.

The maximum allowable if dieldrin is not present

The maximum allowable if aldrin is not present

Results caluclated as average value of sample triplicate

Total concentrations were calculated using the detection limit integer where one or more sample results used in the calculation were below the detection limit for the method.

Project 7773 / DSI Eastern Creek NSW Soil Results

Soil Results			•						
	NSW DECC								
	Health-based								
	Investigation Levels,	51i1 6i / I							
	HIL D	Ecological Screening / Investigation Levels ¹ Commercial and Industrial							
	Criteria ^{1, 2}	Commercial and industrial							
	Citteria								
Sample ID	mg/kg	mg/kg	7773-C15	7773-C16	7773-C17	7773-C18	7773-C19	7773-C20	7773-C21
			7773-BH15-A	7773-BH16-A	7773-SP1-01A	7773-SP1-02A	7773-SP1-03A	7773-SP2-01A	7773-SP2-02A
Date of Sampling			25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014
Depth(m)			0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Inorganics									
Arsenic	3000	1604	11.3	25.2	4.3	3.9	5.0	3.6	9.2
Cadmium	900.00		0.30	0.30	0.30	0.30	0.30	0.30	0.30
Chromium (total)	3600		13.0	21.0	15.9	18.8	36.0	28.7	20.7
Copper	240 000		14.2	21.0	31.7	86.4	38.3	24.3	14.2
Lead	1 500		24.8	28.0	29.1	27.6	26.7	21.0	18.5
Mercury	730		0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nickel	6 000		10.0	26.8	17.2	20.0	46.4	19.9	13.1
Zinc	400 000		37.8	39.7	45.0	51.3	61.5	78.4	29.4
TRH									
TRH C6-C10		215	<35	<35	<35	<35	<35	<35	<35
TRH C10-C16		170	<50	<50	<50	<50	<50	<50	<50
TRH C16-C34		1 700	<100	<100	<100	<100	<100	<100	<100
TRH C34-C40		3 300	<100	<100	<100	<100	<100	<100	<100
PAH		1.40					0.44	0.00	
Benzo(a)pyrene		1.40	<3	<3	<3	<3	0.44	0.30	<3
Carcinogenic PAHs			0.70	0.70	0.70	0.70		0.70	0.70
(as BaP TEQ) ³ Total PAH ³	40		<0.73	<0.73	<0.73	<0.73	0.91	<0.73	<0.73
Naphthalene	4 000	370	<4.8 <0.3	<4.8 <0.3	<4.8 <0.3	<4.8 <0.3	7.29 <0.3	<4.8 <0.3	<4.8 <0.3
OCPs COPS		370	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	#								
Aldrin	45#		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	45**		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlordane	530		<2	<2	<2	<2	<2	<2	<2
DDT+DDD+DDE DDT	3 600	640	<3 <1	<3 <1	<3 <1	<3 <1	<3	<3 <1	<3 <1
Endosulfan	2 000	640	<5	<5	<5	<5	<1 <5	<5	<5
Heptachlor	50		<2	<2	<2	<2	<2	<2	<2
OPPs	30		``	\ <u>^</u>	``	. ``	1 1	``	``
chlorpyrifos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
prophos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenols			-						-
Phenols	240 000		NT	NT	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenal	660		NT	NT	<1	<1	<1	<1	<1
Cresols	25 000		NT	NT	<1.5	<1.5	<1.5	<1.5	<1.5
PCBs									
PCBs (total)	7		NT	NT	<0.5	<0.5	<0.5	<0.5	<0.5
Notes to table:						-	•		

Indicates contaminant above HIL D criteria
Indicates contaminant above Ecological Screening Levels
1 NEPM Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater, 2013
2 NSW DEC Guidelines for the NSW Site Auditor Scheme, 2006

3 PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF.

The maximum allowable if dieldrin is not present

The maximum allowable if aldrin is not present

Results calculated as average value of sample triplicate

Total concentrations were calculated using the detection limit integer where one or more sample results used in the calculation were below the detection limit for the method.

Project 7773 / DSI Eastern Creek NSW

Sediment Results

	Interim Sediment Quality Guidelines- Low ¹	Interim Sediment Quality Guidelines- High ¹	Ecological Screening / Investigation Levels ³ Commercial and Industrial				
Sample ID	mg/kg	mg/kg	mg/kg	7773-C22	7773-C23	7773-C24	7773-C25
				SS-01	SS-02	SS-03	SS-04
Date of Sampling				25.06.2014	25.06.2014	25.06.2014	25.06.2014
Texture				Silty loam	Silty loam	Silty loam	Silty loam
Metals							
Arsenic	20.0	70.0		5.37	22.49	9.19	<2
Cadmium	1.5	10.0		<0.3	<0.3	<0.3	<0.3
Chromium (total)	80	370		15.55	36.72	16.97	10.06
Copper	65	270		19.79	19.89	22.62	27.31
Lead	50	220		16.97	30.60	26.87	24.44
Mercury	0.15	1.0		<0.2	<0.2	<0.2	<0.2
Nickel	21	52		19.79	29.07	16.97	15.81
Zinc	200.0	410.0		35.35	53.54	29.70	44.56
TRH							
TRH C6-C10	-	-	215	<35	<35	<35	<35
TRH C10-C16	-	-	170	<50	<50	<50	<50
TRH C16-C34	-	-	1 700	<100	<100	<100	<100
TRH C34-C40	-	-	3 300	<100	<100	<100	<100
РАН							
Napthalene	160	2100		<0.3	<0.3	<0.3	<0.3
Benzo(a)pyrene	430	1600		<0.3	<0.3	<0.3	<0.3
B(a)P TEQ ²	-	-		<0.73	<0.73	<0.73	<0.73
Total PAH	4000	45000		<4.8	<4.8	<4.8	<4.8

No Investigation Level Assigned
Indicates contaminant above ISQG Low (trigger level)
Indicates contaminant above ISQG High

Total concentrations were calculated using the detection limit integer where one or more sample results used in the calculation were below the detection limit for the method.

¹ ANZECC Guildelines for Water Quality, 2000

² Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF.

³ NEPM Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater, 2013

Project 7773 / DSI Eastern Creek NSW

Surface Water Results

Adjusted ANZECC 95% Species Protection

Sample ID	μg/L	7773-C22	7773-C23	7773-C24	7773-C25
		SS-01	SS-02	SS-03	SS-04
Date of Sampling		25.06.2014	25.06.2014	25.06.2014	25.06.2014
Matrix		Water	Water	Water	Water
Metals					
Arsenic	13	<1	<1	<1	<1
Cadmium	23.0	0.10	0.10	0.10	0.10
Chromium (total)	8.4 ^{e3}	<1	<1	<1	<1
Copper	12.6 ³	1	2	3	3
Lead	90.8 ³	<1	<1	<1	<1
Mercury	0.06 ^b	<0.1	<0.1	<0.1	<0.1
Nickel	99 ³	1	2	1	2
Zinc	72 ^{c3}	<5	<5	<5	<5
TRH					
TRH C10-C16		<50	<50	<50	<50
TRH C16-C34	600 ²	<100	<100	<100	<100
TRH C34-C40		<100	<100	<100	<100
РАН					
Napthalene	16	<0.1	<0.1	<0.1	<0.1
Anthracene	0.01 a, b	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.6 a, b	<0.1	<0.1	<0.1	<0.1
Fluoranthene	1.0 a, b	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	0.1 ^{a, b}	<0.1	<0.1	<0.1	<0.1

Notes to table:

No Investigation Level Assigned

Indicates contaminant above ANZECC Guidelines (trigger level)

¹ Trigger values adopted (level of protection: 95% of species for slightly-moderately disturbed systems), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council, 2000

a. In the absence of a high reliability concentration, the moderate or low reliability guideline concentration has been adopted.

- b. Due to the potential for the chemical to bioaccumulate, a 99% percent protection level has been adopted.
- c. Figure may not protect key species from chronic toxicity, ANZECC 2000.
- $d. \ As \ total \ concentration \ was \ reported \ for \ the \ analyte, \ the \ most \ stringent \ valence \ threshold \ was \ adopted.$
- e. As total Arsenic is provided in analytical results, the most stringent criteria of As III and As V has been adopted.

² Maximum of 600 µg/l for sum of TRH>C10-C40 (adapted from Netherlands Intervention Values).

³ Adjusted trigger value for 'Extremely Hard' water (>400 mg/L CaCo3)

APPENDIX VII ANALYTICAL REPORTS Telephone: NSW: (02) 9648 6669 Internet: site: www.ADenvirotech.com.au New South Wales Office: Queensland Office: ABN: 520 934 529 50

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 7773-3

Customer: A. D. Envirotech Australia Pty. Ltd.

Attention: Thomas Lobsey

Sample Log In Details

 Your reference:
 7773-3

 No. of Samples:
 6

 Date Received:
 27.06.2014

 Date completed instructions received:
 27.06.2014

 Date of analysis:
 27.06-04.07.2014

Report Details

Report Date: 04.07.2014

Method number**: ESA-P-ORG3
ESA-P-ORG04
ESA-P-ORG05
ESA-P-ORG08
ESA-P-ORG12

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM)

Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		7773-C33	7773-C34	7773-C35	7773-C36	7773-C37	7773-C38
Lab ID	PQL (μg/L)						
		Rinsate-01	Rinsate-02	VOC blank 1	VOC spike 1	VOC blank 2	VOC spike 2
PAH							
Acenaphthene	0.1	<0.1	<0.1	NT	NT	NT	NT
Acenaphthylene	0.1	<0.1	<0.1	NT	NT	NT	NT
Anthracene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[a]anthracene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[a]pyrene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[b]fluoranthene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[g,h,i]perylene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[k]fluoranthene	0.1	<0.1	<0.1	NT	NT	NT	NT
Chrysene	0.1	<0.1	<0.1	NT	NT	NT	NT
Dibenzo[a,h]anthracene	0.1	<0.1	<0.1	NT	NT	NT	NT
Fluoranthene	0.1	<0.1	<0.1	NT	NT	NT	NT
Fluorene	0.1	<0.1	<0.1	NT	NT	NT	NT
Indeno(1,2,3-cd)pyrene	0.1	<0.1	<0.1	NT	NT	NT	NT
Naphthalene	0.1	<0.1	<0.1	NT	NT	NT	NT
Phenanthrene	0.1	<0.1	<0.1	NT	NT	NT	NT
Pyrene	0.1	<0.1	<0.1	NT	NT	NT	NT
p-Terphenyl-d14	surr.	63%	69%	NT	NT	NT	NT
TRH							
>C10-C16	50	<50	<50	NT	NT	NT	NT
>C16-C34	100	<100	<100	NT	NT	NT	NT
>C34-C40	100	<100	<100	NT	NT	NT	NT
BTEX							
Benzene	1	NT	NT	<1	112%	<1	112%
Toluene	1	NT	NT	<1	106%	<1	108%
Ethylbenzene	1	NT	NT	<1	108%	<1	109%
m, p- Xylene(s)	2	NT	NT	<2	108%	<2	108%
o-Xylene	1	NT	NT	<1	111%	<1	110%
Fluorobenzene	surr.	NT	NT	106%	110%	105%	110%

	ı				1	1 .	
			Batch Blank	Batch	Batch	Batch	Batch
		1	spike 1	Matrix		Duplicate 1 -	Duplicate 1
Lab ID	PQL (μg/L)			spike 1	Value 1	Value 2	
PAH							
Acenaphthene	0.1	<0.1	97%	107%	<0.1	<0.1	ACCEPT
Acenaphthylene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Anthracene	0.1	<0.1	97%	100%	<0.1	0.2	ACCEPT
Benzo[a]anthracene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[a]pyrene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[b]fluoranthene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[g,h,i]perylene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[k]fluoranthene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Chrysene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Dibenzo[a,h]anthracene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Fluoranthene	0.1	<0.1	98%	102%	<0.1	<0.1	ACCEPT
Fluorene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Indeno(1,2,3-cd)pyrene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Naphthalene	0.1	<0.1	104%	106%	<0.1	<0.1	ACCEPT
Phenanthrene	0.1	<0.1	98%	102%	<0.1	0.2	ACCEPT
Pyrene	0.1	<0.1	97%	102%	<0.1	<0.1	ACCEPT
p-Terphenyl-d14	surr.		69%	70%	71%	70%	N/A
· ,							ĺ
TRH							
>C10-C16	50	<50	84%	86%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	1	<1	103%	104%	<1	<1	ACCEPT
Toluene	1		98%	98%	<1	1.1	ACCEPT
Ethylbenzene	1		98%	99%	<1	<1	ACCEPT
m, p- Xylene(s)	2		101%	99%	<2	<2	ACCEPT
o-Xylene	1		99%	100%	<1	<1	ACCEPT
Fluorobenzene	surr.	`-	103%	104%	98%	106%	N/A
	3411.		103/0	10-70	5070	100/0	14//1

		Ta 11 . a		
		Duplicate 2		Duplicate 2
		Value 1	Value 2	
Lab ID	PQL (μg/L)			
PAH				
Acenaphthene	0.	1 <0.1	<0.1	ACCEPT
Acenaphthylene	0.	1 <0.1	<0.1	ACCEPT
Anthracene	0.	1 <0.1	<0.1	ACCEPT
Benzo[a]anthracene	0.	1 <0.1	<0.1	ACCEPT
Benzo[a]pyrene	0.	1 <0.1	<0.1	ACCEPT
Benzo[b]fluoranthene	0.	1 <0.1	<0.1	ACCEPT
Benzo[g,h,i]perylene	0.	1 <0.1	<0.1	ACCEPT
Benzo[k]fluoranthene	0.	1 <0.1	<0.1	ACCEPT
Chrysene	0.	1 <0.1	<0.1	ACCEPT
Dibenzo[a,h]anthracene	0.	1 <0.1	<0.1	ACCEPT
Fluoranthene	0.	1 <0.1	<0.1	ACCEPT
Fluorene	0.	1 <0.1	<0.1	ACCEPT
Indeno(1,2,3-cd)pyrene	0.	1 <0.1	<0.1	ACCEPT
Naphthalene	0.	1 <0.1	<0.1	ACCEPT
Phenanthrene	0.	1 <0.1	<0.1	ACCEPT
Pyrene	0.	1 <0.1	<0.1	ACCEPT
p-Terphenyl-d14	surr.	65%	63%	N/A
TRH				
>C10-C16	5	0 NT	NT	NT
>C16-C34	10	0 NT	NT	NT
>C34-C40	10	0 NT	NT	NT
		Batch	Batch	Batch
		Duplicate 2	Duplicate 2 -	Duplicate 2
		Value 1	Value 2	
ВТЕХ				
Benzene		1 <1	<1	ACCEPT
Toluene		1 <1	<1	ACCEPT
Ethylbenzene		1 <1	<1	ACCEPT
m, p- Xylene(s)		2 <2	<2	ACCEPT
o-Xylene		1 <1	<1	ACCEPT
Fluorobenzene	surr.	116%	106%	N/A

General Comments and Glossary

Samples are analysed on "as received" basis.

Samples were delivered chilledYesSamples were preserved in correct mannerYesSample containers for volatile analysis were received with minimal headspaceYesSamples were analysed within holding timeYesSome samples have been subcontractedNo

- 1. All samples are tested in batches of 20.
- 2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.
- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated, samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate:** This is the complete duplicate analysis of a sample from the process batch. If possible, the sample

selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix

spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test

>: Greater than

LCS: Laboratory Control Sample

NT: Not tested <: Less than

RPD: Relative Percent Difference

NA: Test not required

PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates : Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL: RPD must lie between 0-50%

Results >20 times the PQL: RPD must lie between 0-30%

 $\textbf{Surrogate Recoveries}: Recoveries \ must lie \ between \ 50-150\% - Phenols \ 20-130\%.$

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations and/or
measurements included in this document are traceable
to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG3	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
*pH test	

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with $\ensuremath{^*}$.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 7773-2

Customer: A. D. Envirotech Australia Pty. Ltd.

Attention: Thomas Lobsey

Sample Log In Details

Your reference: 7773-2
No. of Samples: 5
Date Received: 27.06.2014
Date completed instructions received: 27.06.2014

Date completed instructions received:27.06.2014Date of analysis:27.06-04.07.2014

Report Details

 Report Date:
 04.07.2014

 Method number**:
 ESA-P-ORG3

 ESA-P-ORG04
 ESA-P-ORG04

ESA-P-ORG05 ESA-P-ORG12

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM)

Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with $\ensuremath{^*}$.

		7773-C28	7773-C29	7773-C30	7773-C31	7773-C32
		7773 020	7775 625	7775 656	7775 651	7775 652
Lab ID	PQL (μg/L)					
	. (1 0/ /	SW-01	SW-02	SW-03	SW-04	7773-SW-
						BR1
PAH						
Acenaphthene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[a]anthracene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[a]pyrene	0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Benzo[b]fluoranthene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[k]fluoranthene	0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Chrysene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo[a,h]anthracene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Fluorene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene	0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Phenanthrene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p-Terphenyl-d14	surr.	71%	74%	73%	72%	72%
TRH						
>C10-C16	50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100

		Blank 1	Blank spike	Matrix spike 1	Duplicate 1 -	Duplicate 1 -	Duplicate 1
Lab ID	PQL (μg/L)						
PAH							
Acenaphthene	0.1	<0.1	97%	107%	<0.1	<0.1	ACCEPT
Acenaphthylene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Anthracene	0.1	<0.1	97%	100%	<0.1	0.2	ACCEPT
Benzo[a]anthracene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[a]pyrene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[b]fluoranthene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[g,h,i]perylene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[k]fluoranthene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Chrysene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Dibenzo[a,h]anthracene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Fluoranthene	0.1	<0.1	98%	102%	<0.1	<0.1	ACCEPT
Fluorene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Indeno(1,2,3-cd)pyrene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Naphthalene	0.1	<0.1	104%	106%	<0.1	<0.1	ACCEPT
Phenanthrene	0.1	<0.1	98%	102%	<0.1	0.2	ACCEPT
Pyrene	0.1	<0.1	97%	102%	<0.1	<0.1	ACCEPT
p-Terphenyl-d14	surr.		69%	70%	71%	70%	N/A
·							
TRH							
>C10-C16	50	<50	84%	86%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT

General Comments and Glossary

Samples are analysed on "as received" basis.

Samples were delivered chilledYesSamples were preserved in correct mannerYesSample containers for volatile analysis were received with minimal headspaceYesSamples were analysed within holding timeYesSome samples have been subcontractedNo

- 1. All samples are tested in batches of 20.
- 2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.
- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated, samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate:** This is the complete duplicate analysis of a sample from the process batch. If possible, the sample

selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix

spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test

>: Greater than

LCS: Laboratory Control Sample

NT: Not tested <: Less than

RPD: Relative Percent Difference

NA: Test not required

PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates : Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL: RPD must lie between 0-50%

Results >20 times the PQL: RPD must lie between 0-30%

 $\textbf{Surrogate Recoveries}: Recoveries \ must lie \ between \ 50-150\% - Phenols \ 20-130\%.$

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations and/or
measurements included in this document are traceable
to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG3	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
*pH test	

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with $\ensuremath{^*}$.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 7773-1

Customer: A. D. Envirotech Australia Pty. Ltd.

Attention: Thomas Lobsey

Sample Log In Details

 Your reference:
 7773-1

 No. of Samples:
 27

 Date Received:
 27.06.2014

 Date completed instructions received:
 27.06.2014

 Date of analysis:
 27.06-04.07.2014

Report Details

Report Date: 04.07.2014
Method number**: ESA-MP-01

ESA-MP-02 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM)

Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		7773-C1	7773-C2	7773-C3	7773-C4	7773-C5
Lab ID	PQL (mg/kg)					
		7773-BH-01A	7773-BH-02A	7773-BH-03A	7773-BH-04A	7773-BH-05A
Sample Name						
PAH						
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	0.5
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3	0.6
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	0.9
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3	0.5
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	0.7
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3	0.5
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3	0.7
p-Terphenyl-d14	surr.	89%	87%	85%	86%	85%
OCPs						
aldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1
heptachlor heptachlor epoxide	0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TCMX	surr.	105%	106%	104%	108%	109%
	54	103/0	100/0	10-7/0	100/0	103/0
OPPs						
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1	<0.1	0.3
prophos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

		7773-C1	7773-C2	7773-C3	7773-C4	7773-C5
Lab ID	PQL (mg/kg)					
		7773-BH-01A	7773-BH-02A	7773-BH-03A	7773-BH-04A	7773-BH-05A
Sample Name						
TRH						
>C6-C10	35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	140
>C34-C40	100	<100	<100	<100	<100	160
Metals						
Arsenic	2	10	20	11	14	10
Beryllium	5	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	31	23	19	18	13
Cobalt	5	NT	NT	NT	NT	NT
Copper	5	35	13	26	23	72
Lead	10	37	21	24	28	160
Manganese	5	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	0.3
Nickel	10	34	12	16	19	<10
Selenium	2	NT	NT	NT	NT	NT
Zinc	5	100	27	48	39	240
Moisture	%	26%	8%	30%	22%	21%

		7773-C6	7773-C7	7773-C8	7773-C9	7773-C10
Lab ID	PQL (mg/kg)					
		7773-BH-06A	7773-BH-07A	7773-BH-08A	7773-BH-09A	7773-BH-10A
Sample Name						
DALL						
PAH Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	87%	93%	85%	88%	84%
OCPs						
aldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD 4,4'-DDE	0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.1	<0.1	<0.1	<0.2	<0.1
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TCMX	surr.	107%	114%	104%	108%	104%
OPPs						
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	0.3	<0.1	<0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

		7773-C6	7773-C7	7773-C8	7773-C9	7773-C10
Lab ID	PQL (mg/kg)					
		7773-BH-06A	7773-BH-07A	7773-BH-08A	7773-BH-09A	7773-BH-10A
Sample Name						
TRH						
>C6-C10	35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100
Metals						
Arsenic	2	9.1	12	3.8	8.1	8.1
Beryllium	5	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	25	140	20	23	14
Cobalt	5	NT	NT	NT	NT	NT
Copper	5	67	30	15	15	18
Lead	10	38	27	28	29	31
Manganese	5	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	28	130	18	15	16
Selenium	2	NT	NT	NT	NT	NT
Zinc	5	56	53	39	36	42
Moisture	%	21%	30%	11%	15%	17%

		7773-C11	7773-C12	7773-C13	7773-C14	7773-C15
Lab ID	PQL (mg/kg)					
		7773-BH-11A	7773-BH-12A	7773-BH-13A	7773-BH-14A	7773-BH-15A
Sample Name						
PAH						
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	92%	84%	84%	91%	86%
OCPs						
aldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane) cis-chlordane	0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
trans-chlordane	0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TCMX	surr.	112%	102%	104%	112%	105%
OPPs						
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			L			

		7773-C11	7773-C12	7773-C13	7773-C14	7773-C15
Lab ID	PQL (mg/kg)					
		7773-BH-11A	7773-BH-12A	7773-BH-13A	7773-BH-14A	7773-BH-15A
Sample Name						
TRH						
>C6-C10	35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100
Metals						
Arsenic	2	2.4	8.3	<2	6.5	11
Beryllium	5	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	18	14	20	17	13
Cobalt	5	NT	NT	NT	NT	NT
Copper	5	14	19	48	10	14
Lead	10	21	32	23	27	25
Manganese	5	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	<10	12	19	<10	<10
Selenium	2	NT	NT	NT	NT	NT
Zinc	5	27	36	47	21	38
Moisture	%	16%	17%	19%	16%	15%

	1	7772 646	7772 647	7772 640	7772 640	7772 620	7772 624
		7773-C16	7773-C17	7773-C18	7773-C19	7773-C20	7773-C21
1-k ID	DOI (/I)						
Lab ID	PQL (mg/kg)	7773-BH-16A	SP1-01A	SP1-02A	SP1-03A	SP2-01A	SP2-02A
		7773-BH-10A	3F1-01A	3F1-02A	3F1-03A	3F2-01A	3FZ-0ZA
Sample Name							
Sample Name							
PAH							
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	0.5	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	0.5	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	0.4	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	0.5	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	0.4	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	1.2	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3 <0.3	<0.3	<0.3 <0.3	<0.3 1.0	<0.3 <0.3	<0.3 <0.3
Pyrene p-Terphenyl-d14	+	85%	89%	85%	81%	86%	68%
р-тегрпенуі-ш14	surr.	63/0	03/0	6370	01/0	80%	0876
OCPs							
aldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
heptachlor heptachlor epovide	0.1						
heptachlor epoxide hexachlorobenzene	0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TCMX	surr.	104%	109%	105%	101%	106%	96%
		20 170	103/0	203/0	101/0	20070	50/0
OPPs							
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
proprios							

		7773-C16	7773-C17	7773-C18	7773-C19	7773-C20	7773-C21
Lab ID	PQL (mg/kg)						
		7773-BH-16A	SP1-01A	SP1-02A	SP1-03A	SP2-01A	SP2-02A
Sample Name							
TRH					_	_	_
>C6-C10	35	<35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100	<100
Metals							
Arsenic	2	25	4.3	3.9	5.0	3.6	9.2
Beryllium	5	NT	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	21	16	19	36	29	21
Cobalt	5	NT	NT	NT	NT	NT	NT
Copper	5	21	32	86	38	24	14
Lead	10	28	29	28	27	21	19
Manganese	5	NT	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	27	17	20	46	20	13
Selenium	2	NT	NT	NT	NT	NT	NT
Zinc	5	40	45	51	61	78	29
Moisture	%	14%	24%	20%	14%	9%	8%

		7773-C22	7773-C23	7773-C24	7773-C25	7773-C26	7773-C27
		7773-022	7773-023	7773-024	7773-023	7773-020	7773-027
Lab ID	PQL (mg/kg)						
Eas is	I QL (IIIg/Kg)	SS-01	SS-02	SS-03	SS-04	7773-BR1	7773-BR2
		55 01	33 32	35 05	35 0 .	7770 5.1.1	7770 5.1.2
Sample Name							
, , , , , , , , , , , , , , , , , , ,							
PAH							
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	69%	68%	66%	68%	67%	68%
OCPs							
aldrin	0.1	NT	NT	NT	NT	<0.1	<0.1
a-BHC	0.1	NT	NT	NT	NT	<0.1	<0.1
b-BHC	0.1	NT	NT	NT	NT	<0.1	<0.1
d-BHC	0.1	NT	NT	NT	NT	<0.1	<0.1
g-BHC (lindane)	0.1	NT	NT	NT	NT	<0.1	<0.1
cis-chlordane	0.1	NT	NT	NT	NT	<0.1	<0.1
trans-chlordane	0.1	NT	NT	NT	NT	<0.1	<0.1
4,4'-DDD 4,4'-DDE	0.1	NT	NT	NT	NT	<0.1	<0.1
4,4'-DDE 4,4'-DDT		NT	NT	NT	NT	<0.1	<0.1
dieldrin	0.1	NT NT	NT NT	NT NT	NT NT	<0.1 <0.1	<0.1 <0.1
endosulfan I	0.1	NT	NT	NT	NT	<0.1	<0.1
endosulfan II	0.2	NT	NT	NT	NT	<0.2	<0.2
endosulfan sulfate	0.1	NT	NT	NT	NT	<0.1	<0.1
endrin	0.1	NT	NT	NT	NT	<0.1	<0.1
endrin aldehyde	0.1	NT	NT	NT	NT	<0.1	<0.1
endrin ketone	0.1	NT	NT	NT	NT	<0.1	<0.1
heptachlor	0.1	NT	NT	NT	NT	<0.1	<0.1
heptachlor epoxide	0.1	NT	NT	NT	NT	<0.1	<0.1
hexachlorobenzene	0.1	NT	NT	NT	NT	<0.1	<0.1
methoxychlor	0.1	NT	NT	NT	NT	<0.1	<0.1
TCMX	surr.	NT	NT	NT	NT	95%	96%
OPPs							
chlorpyrifos	0.1	NT	NT	NT	NT	<0.1	<0.1
chlorpyrifos methyl	0.1	NT	NT	NT	NT	<0.1	<0.1
diazinon	0.1	NT	NT	NT	NT	<0.1	<0.1
fenchlorphos	0.1	NT	NT	NT	NT	<0.1	<0.1
methyl parathion	0.1	NT	NT	NT	NT	<0.1	<0.1
prophos	0.1	NT	NT	NT	NT	<0.1	<0.1
tributylphosphorotrithioite	0.1	NT	NT	NT	NT	<0.1	<0.1

		7773-C22	7773-C23	7773-C24	7773-C25	7773-C26	7773-C27
Lab ID	PQL (mg/kg)						
		SS-01	SS-02	SS-03	SS-04	7773-BR1	7773-BR2
Sample Name							
TRH							
>C6-C10	35	<35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100	<100
Metals							
Arsenic	2	5.4	22	9.2	<2	7.4	9.7
Beryllium	5	NT	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	16	37	17	10	30	31
Cobalt	5	NT	NT	NT	NT	NT	NT
Copper	5	20	20	23	27	16	21
Lead	10	17	31	27	24	38	26
Manganese	5	NT	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	20	29	17	16	25	32
Selenium	2	NT	NT	NT	NT	NT	NT
Zinc	5	35	54	30	45	47	39
Moisture	%	29%	35%	29%	30%	11%	15%

		Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Lab ID	POL (mg/kg)				value 1	value 2	
Lab ID	PQL (mg/kg)						
Sample Name							
PAH							
Acenaphthene	0.3	<0.3	106%	108%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	108%	110%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	112%	113%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	108%	110%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	110%	112%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	107%	108%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	<0.3	84%	86%	87%	90%	N/A
OCPs							
aldrin	0.1	<0.1	119%	121%	<0.1	0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	92%	105%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	108%	110%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT 1019/	NT 1039/	<0.1	<0.1	ACCEPT
TCMX	surr.	<0.1	101%	102%	106%	105%	N/A
	†		1		1		
OPPs			1				
chlorpyrifos	0.1	<0.1	108%	108%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	100%	103%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT

		Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Lab ID	PQL (mg/kg)						
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	106%	109%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
Metals							
Arsenic	2	<2	100%	96%	20	16	ACCEPT
Beryllium	5	NT	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	103%	103%	<0.3	<0.3	ACCEPT
Chromium	5	<5	100%	103%	23	15	ACCEPT
Cobalt	5	NT	NT	NT	NT	NT	NT
Copper	5	<5	98%	109%	13	11	ACCEPT
Lead	10	<10	105%	104%	21	15	ACCEPT
Manganese	5	NT	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	96%	97%	<0.2	<0.2	ACCEPT
Nickel	10	<10	99%	119%	12	<10	ACCEPT
Selenium	2	NT	NT	NT	NT	NT	NT
Zinc	5	<5	94%	90%	27	21	ACCEPT
Moisture	%						

		Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Lab ID	PQL (mg/kg)			
Sample Name				
PAH				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	86%	92%	N/A
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I endosulfan II	0.2	<0.2	<0.2 <0.2	ACCEPT ACCEPT
endosulfan sulfate	0.2	<0.1	<0.2	ACCEPT
endrin	0.1	<0.1	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
TCMX	surr.	107%	112%	N/A
				//-
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT

		Duplicate 2-	Duplicate 2-	Duplicate 2
		Value 1	Value 2	
Lab ID	PQL (mg/kg)			
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
Metals				
Arsenic	2	2.4	4.5	ACCEPT
Beryllium	5	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	18	19	ACCEPT
Cobalt	5	NT	NT	NT
Copper	5	14	13	ACCEPT
Lead	10	21	21	ACCEPT
Manganese	5	NT	NT	NT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Selenium	2	NT	NT	NT
Zinc	5	27	27	ACCEPT
Moisture	%			

		Blank 2	Blank spike 2	Matrix spike 2	Duplicate 3 - Value 1	Duplicate 3- Value 2	Duplicate 3
Lab ID	PQL (mg/kg)				1 2 =		
	(,8),8)						
Sample Name							
PAH							
Acenaphthene	0.3	<0.3	82%	82%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	84%	84%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT NT	NT NT	<0.3 <0.3	<0.3 <0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT ACCEPT
Benzo[g,h,i]perylene Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	86%	87%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	82%	82%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	85%	84%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	83%	83%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	<0.3	61%	61%	69%	72%	N/A
, ,							,
OCPs							
aldrin	0.1	<0.1	93%	91%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin andrin aldahuda	0.2	<0.2	76%	73%	<0.2	<0.2	ACCEPT
endrin aldehyde endrin ketone	0.1	<0.1 <0.1	NT NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
heptachlor	0.1	<0.1	NT	NT NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	75%	68%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
TCMX	surr.	<0.1	80%	79%	92%	98%	N/A
		-5.1	2070	.570	32/0	33/0	,,,
OPPs chlorpyrifos	0.1	<0.1	89%	90%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	83%	83%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
. / P							- 2

		Blank 2	Blank spike 2	Matrix spike 2	Duplicate 3 - Value 1	Duplicate 3- Value 2	Duplicate 3
Lab ID	PQL (mg/kg)						
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	115%	117%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
Metals							
Arsenic	2	<2	94%	100%	5.4	11	ACCEPT
Beryllium	5	NT	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	105%	103%	<0.3	<0.3	ACCEPT
Chromium	5	<5	101%	123%	16	40	ACCEPT
Cobalt	5	NT	NT	NT	NT	NT	NT
Copper	5	<5	100%	110%	20	25	ACCEPT
Lead	10	<10	103%	121%	17	23	ACCEPT
Manganese	5	NT	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	101%	96%	<0.2	<0.2	ACCEPT
Nickel	10	<10	101%	119%	20	34	ACCEPT
Selenium	2	NT	NT	NT	NT	NT	NT
Zinc	5	<5	95%	101%	35	51	ACCEPT
Moisture	%						

General Comments and Glossary

Samples are analysed on "as received" basis.

Samples were delivered chilled

Samples were preserved in correct manner

Sample containers for volatile analysis were received with minimal headspace

Samples were analysed within holding time

Some samples have been subcontracted

No

- 1. All samples are tested in batches of 20.
- 2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.
- **3.** However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated, samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- **7.** QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate:** This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample):** This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test

>: Greater than

LCS: Laboratory Control Sample

NT: Not tested <: Less than

RPD: Relative Percent Difference

NA: Test not required

PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL : RPD must lie between 0-50% $\,$

Results >20 times the PQL : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	$\label{thm:continuous} \textbf{Determination of the particle size distribution of a soil-Standard method of analysis by sieving}$
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete

^{*}Texture Assessment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with $\ensuremath{^*}$.

 $[\]hbox{*ElectroConductivity testing with Aqua CPA Conduct./pH meter} \\$

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 7773-4

Customer: A. D. Envirotech Australia Pty. Ltd.

Attention: Evan Webb

Sample Log In Details

Your reference: 7773-4
No. of Samples: 4

Date Received:21.07.2014Date completed instructions received:21.07.2014Date of analysis:21.07.2014

Report Details

Report Date: 21.07.2014
Method number**: *pH test

*ElectroConductivity testing with Aqua CPA Conduct./pH meter

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM)

Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations and/or
measurements included in this document are traceable
to Australian/national standards.

Tests not covered by NATA are denoted with st.

		7773-C39	7773-C40	7773-C41	7773-C42
Lab ID	PQL (μg/L)				
		7773-SW-01A	7773-SW-01B	7773-SW-02A	7773-SW-02B
pH		7.98	7.21	7.48	7.50
EC	[dS/m]	2.67	4.84	2.60	2.69

General Comments and Glossary

Samples are analysed on "as received" basis.

Samples were delivered chilledYesSamples were preserved in correct mannerYesSample containers for volatile analysis were received with minimal headspaceYesSamples were analysed within holding timeYesSome samples have been subcontractedNo

- 1. All samples are tested in batches of 20.
- 2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.
- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated, samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. **Matrix Spike:** A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix

spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample):** This comprises either a standard reference material or a control matrix (such as a blank

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test

>: Greater than

LCS: Laboratory Control Sample

NT: Not tested

<: Less than

RPD: Relative Percent Difference

NA: Test not required

PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates : Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL: RPD must lie between 0-50%

Results >20 times the PQL: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG3	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS

*ElectroConductivity testing with Aqua CPA Conduct./pH meter

*pH test

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with $\ensuremath{^*}$.

This document shall not be reproduced, except in full.

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: P Edmunds

Report 423371-S
Client Reference 7773
Received Date Jun 27, 2014

7773-SP1-01A **Client Sample ID** 7773-SP1 7773-SP1-02A 7773-SP1-03A **Sample Matrix** Soil Soil Soil Soil Eurofins | mgt Sample No. S14-Jn24360 S14-Jn24365 S14-Jn24366 S14-Jn24367 **Not Provided Not Provided Not Provided Date Sampled Not Provided** Test/Reference LOR Unit **Total Recoverable Hydrocarbons - 1999 NEPM Fractions** TRH C6-C9 mg/kg < 20 TRH C10-C14 mg/kg < 20 TRH C15-C28 < 50 50 mg/kg < 50 TRH C29-C36 50 mg/kg < 50 TRH C10-36 (Total) 50 mg/kg **Total Recoverable Hydrocarbons - 2013 NEPM Fractions** Naphthalene^{N02} mg/kg < 0.5 TRH C6-C10 20 mg/kg < 20 TRH C6-C10 less BTEX (F1)N04 20 < 20 mg/kg TRH >C10-C16 50 mg/kg < 50 TRH >C10-C16 less Naphthalene (F2)N01 < 50 50 mg/kg TRH >C16-C34 100 mg/kg < 100 TRH >C34-C40 100 mg/kg < 100 **Polycyclic Aromatic Hydrocarbons** 0.5 < 0.5 Acenaphthene mg/kg Acenaphthylene 0.5 mg/kg < 0.5 Anthracene 0.5 mg/kg < 0.5 Benz(a)anthracene 0.5 mg/kg < 0.5 Benzo(a)pyrene 0.5 mg/kg < 0.5 Benzo(b&j)fluorantheneN07 0.5 mg/kg < 0.5 Benzo(g.h.i)perylene 0.5 mg/kg < 0.5 < 0.5 0.5 Benzo(k)fluoranthene mg/kg Chrysene 0.5 mg/kg < 0.5 Dibenz(a.h)anthracene 0.5 mg/kg < 0.5 Fluoranthene 0.5 mg/kg < 0.5 Fluorene 0.5 mg/kg < 0.5 Indeno(1.2.3-cd)pyrene 0.5 mg/kg < 0.5 < 0.5 Naphthalene 0.5 mg/kg Phenanthrene 0.5 mg/kg < 0.5 Pyrene 0.5 mg/kg < 0.5 Total PAH 0.5 mg/kg < 0.5 Benzo(a)pyrene TEQ (lower bound)* 0.5 mg/kg < 0.5 Benzo(a)pyrene TEQ (medium bound)* 0.5 0.6 mg/kg Benzo(a)pyrene TEQ (upper bound)* 0.5 1.2 mg/kg 2-Fluorobiphenyl (surr.) % 93 1 p-Terphenyl-d14 (surr.) 1 % 113

In	nat
- 11	121
	.0.

Client Sample ID			7773-SP1	7773-SP1-01A	7773-SP1-02A	7773-SP1-03A
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S14-Jn24360	S14-Jn24365	S14-Jn24366	S14-Jn24367
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
•	1.00	1.1	Not Frovided	Not Frovided	Not Flovided	Not Flovided
Test/Reference	LOR	Unit				
Organochlorine Pesticides	<u> </u>	1				
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Dibutylchlorendate (surr.)	1	%	120	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	95	-	-	-
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Total PCB	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	-	78	119	127
Speciated PhenoIs						
2.4-Dichlorophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2.4.6-Trichlorophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Phenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
3&4-Methylphenol (m&p-Cresol)	1	mg/kg	-	< 1	< 1	< 1
2-Chlorophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2-Nitrophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Pentachlorophenol	1	mg/kg	_	< 1	< 1	< 1
Phenol-d5 (surr.)	1	%	-	76	96	88

Client Sample ID			7773-SP1	7773-SP1-01A	7773-SP1-02A	7773-SP1-03A
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S14-Jn24360	S14-Jn24365	S14-Jn24366	S14-Jn24367
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Organophosphorus Pesticides (OP)	<u>'</u>	ļ.				
Chlorpyrifos	0.5	mg/kg	< 0.5	-	-	-
Coumaphos	0.5	mg/kg	< 0.5	-	-	-
Demeton (total)	1	mg/kg	< 1	-	-	-
Diazinon	0.5	mg/kg	< 0.5	-	-	-
Dichlorvos	0.5	mg/kg	< 0.5	-	-	-
Dimethoate	0.5	mg/kg	< 0.5	-	-	-
Disulfoton	0.5	mg/kg	< 0.5	-	-	-
Ethoprop	0.5	mg/kg	< 0.5	-	-	-
Fenitrothion	0.5	mg/kg	< 0.5	-	-	-
Fensulfothion	0.5	mg/kg	< 0.5	-	-	-
Fenthion	0.5	mg/kg	< 0.5	-	-	-
Methyl azinphos	0.5	mg/kg	< 0.5	-	-	-
Malathion	0.5	mg/kg	< 0.5	-	-	-
Methyl parathion	0.5	mg/kg	< 0.5	-	-	-
Mevinphos	0.5	mg/kg	< 0.5	-	-	-
Monocrotophos	10	mg/kg	< 10	-	-	-
Parathion	0.5	mg/kg	< 0.5	-	-	-
Phorate	0.5	mg/kg	< 0.5	-	-	-
Profenofos	0.5	mg/kg	< 0.5	-	-	-
Prothiofos	0.5	mg/kg	< 0.5	-	-	-
Ronnel	0.5	mg/kg	< 0.5	-	-	-
Stirophos	0.5	mg/kg	< 0.5	-	-	-
Trichloronate	0.5	mg/kg	< 0.5	-	-	-
Triphenylphosphate (surr.)	1	%	84	-	-	-
Heavy Metals						
Arsenic	2	mg/kg	9.4	-	-	-
Cadmium	0.4	mg/kg	< 0.4	-	-	-
Chromium	5	mg/kg	23	-	-	-
Copper	5	mg/kg	21	-	-	-
Lead	5	mg/kg	13	-	-	-
Mercury	0.05	mg/kg	< 0.05	-	-	-
Nickel	5	mg/kg	23	-	-	-
Zinc	5	mg/kg	42	-	-	-
% Moisture	0.1	%	13	24	11	13

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			7773-SP2-01A Soil S14-Jn24368 Not Provided	7773-SP2-02A Soil S14-Jn24369 Not Provided
Test/Reference	LOR	Unit		
Polychlorinated Biphenyls (PCB)				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID Sample Matrix			7773-SP2-01A Soil	7773-SP2-02A Soil
Eurofins mgt Sample No.			S14-Jn24368	S14-Jn24369
Date Sampled			Not Provided	Not Provided
Test/Reference	LOR	Unit		
Polychlorinated Biphenyls (PCB)				
Total PCB	0.5	mg/kg	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	120	119
Speciated PhenoIs				
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5
2.4.5-Trichlorophenol	0.5	mg/kg	< 0.5	< 0.5
2.4.6-Trichlorophenol	0.5	mg/kg	< 0.5	< 0.5
Phenol	0.5	mg/kg	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.5	mg/kg	< 0.5	< 0.5
3&4-Methylphenol (m&p-Cresol)	1	mg/kg	< 1	< 1
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5
2-Nitrophenol	0.5	mg/kg	< 0.5	< 0.5
4-Chloro-3-methylphenol	0.5	mg/kg	< 0.5	< 0.5
Pentachlorophenol	1	mg/kg	< 1	< 1
Phenol-d5 (surr.)	1	%	85	91
% Moisture	0.1	%	7.9	7.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jul 01, 2014	14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 01, 2014	14 Day
- Method: LM-LTM-ORG2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Jul 01, 2014	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	Jun 30, 2014	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	Jul 01, 2014	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Speciated Phenols	Sydney	Jul 01, 2014	14 Day
- Method: E008 Speciated Phenols			
Organophosphorus Pesticides (OP)	Sydney	Jul 01, 2014	14 Day
- Method: E014 Organophosphorus Pesticides (OP)			
Metals M8	Sydney	Jun 30, 2014	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
% Moisture	Sydney	Jun 30, 2014	28 Day

- Method: E005 Moisture Content

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Company Name: AD Envirotech Aust Pty Ltd Order No.: Received: Address:

Unit 4/ 10-11 Millenium Court Report #: 423371 Due: Jul 7, 2014 Silverwater Phone: 02 9400 7711 Priority: 5 Day NSW 2128 Fax: 02 9401 0097 **Contact Name:** D. Jones

Client Job No.: 7773

Eurofins | mgt Client Manager: Mary Makarios

Jun 27, 2014 4:30 PM

		Sample Detail			% Moisture	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	Polychlorinated Biphenyls (PCB)	Speciated Phenols	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons
Laboratory who	ere analysis is co	onducted											Ш
			1271										\sqcup
					X	Х	Х	Х	Χ	Х	Х	Х	Х
		te # 20794											\sqcup
External Labor	atory		1										\sqcup
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
7773-SP1	Not Provided		Soil	S14-Jn24360	Х	Х	Х	Х				Х	Х
7773-SW-01	Not Provided		Water	S14-Jn24361					Χ				
7773-SW-02	Not Provided		Water	S14-Jn24362					Χ				
7773-SW-03	Not Provided		Water	S14-Jn24363					Χ				
7773-SW-04	Not Provided		Water	S14-Jn24364					Χ				
7773-SP1-01A	Not Provided		Soil	S14-Jn24365	Х					Х	Х		Ш
7773-SP1-02A	Not Provided		Soil	S14-Jn24366	X					Х	Х		Ш
7773-SP1-03A	Not Provided		Soil	S14-Jn24367	Х					Х	Х		
7773-SP2-01A	Not Provided		Soil	S14-Jn24368	X					Х	Х		
7773-SP2-02A	Pre analysis is conducted Pre analysis is conducted			S14-Jn24369	Х					Х	Х		

Eurofins | mgt Unit F6, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977

Page 6 of 16

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

AD Envirotech Aust Pty Ltd

Unit 4/ 10-11 Millenium Court

Silverwater NSW 2128

7773 Client Job No.:

Company Name:

Address:

Order No.: Report #:

423371

web : www.eurofins.com.au

Phone: 02 9400 7711 Fax: 02 9401 0097 Received: Jun 27, 2014 4:30 PM

Due: Jul 7, 2014 Priority: 5 Day **Contact Name:** D. Jones

Eurofins | mgt Client Manager: Mary Makarios

		Sample Detail			% Moisture	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	Polychlorinated Biphenyls (PCB)	Speciated PhenoIs	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons
Laboratory who	ere analysis is co	onducted											
Melbourne Lab	oratory - NATA S	Site # 1254 & 14	271										
Sydney Labora	tory - NATA Site	# 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Labor	ratory - NATA Si	te # 20794											
External Labora	atory												
7773-SW-BR1	Not Provided		Water	S14-Jn24370					Х				
7773- RINSATE-01	Not Provided		Water	S14-Jn24371					Х				

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Report Number: 423371-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Polychlorinated Biphenyls (PCB)					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Speciated Phenols					
2.4-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5	0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4.6-Trichlorophenol	mg/kg	< 0.5	0.5	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.5	0.5	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 1	1	Pass	
2-Chlorophenol	mg/kg	< 0.5	0.5	Pass	
2-Nitrophenol	mg/kg	< 0.5	0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 0.5	0.5	Pass	
Pentachlorophenol	mg/kg	< 1	1	Pass	
Method Blank					
Organophosphorus Pesticides (OP)					
Chlorpyrifos	mg/kg	< 0.5	0.5	Pass	
Coumaphos	mg/kg	< 0.5	0.5	Pass	
Demeton (total)	mg/kg	< 1	1	Pass	
Diazinon	mg/kg	< 0.5	0.5	Pass	
Dichlorvos	mg/kg	< 0.5	0.5	Pass	
Dimethoate	mg/kg	< 0.5	0.5	Pass	
Disulfoton	mg/kg	< 0.5	0.5	Pass	
Ethoprop	mg/kg	< 0.5	0.5	Pass	
Fenitrothion	mg/kg	< 0.5	0.5	Pass	
Fensulfothion	mg/kg	< 0.5	0.5	Pass	
Fenthion	mg/kg	< 0.5	0.5	Pass	
Methyl azinphos	mg/kg	< 0.5	0.5	Pass	
Malathion	mg/kg	< 0.5	0.5	Pass	
Methyl parathion	mg/kg	< 0.5	0.5	Pass	
Mevinphos	mg/kg	< 0.5	0.5	Pass	
Monocrotophos	mg/kg	< 10	10	Pass	
Parathion	mg/kg	< 0.5	0.5	Pass	
Phorate	mg/kg	< 0.5	0.5	Pass	
Profenofos	mg/kg	< 0.5	0.5	Pass	
Prothiofos	mg/kg	< 0.5	0.5	Pass	
Ronnel	mg/kg	< 0.5	0.5	Pass	
Stirophos	mg/kg	< 0.5	0.5	Pass	
Trichloronate	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals	1				
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	1gg			1 1100	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				T	
TRH C6-C9	%	102	70-130	Pass	
TRH C10-C14	%	76	70-130	Pass	
LCS - % Recovery	70	70	1 70 100	1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				I	
Naphthalene	%	125	70-130	Pass	
TRH C6-C10	%	95	70-130	Pass	
		1			
TRH >C10-C16	%	80	70-130	Pass	
LCS - % Recovery		T T			
Polycyclic Aromatic Hydrocarbons	24	107	70.400	 	
Acenaphthene	%	107	70-130	Pass	
Acenaphthylene	%	97	70-130	Pass	
Anthracene	%	116	70-130	Pass	
Benz(a)anthracene	%	82	70-130	Pass	
Benzo(a)pyrene	%	89	70-130	Pass	
Benzo(b&j)fluoranthene	%	95	70-130	Pass	
Benzo(g.h.i)perylene	%	97	70-130	Pass	
Benzo(k)fluoranthene	%	108	70-130	Pass	
Chrysene	%	116	70-130	Pass	
Dibenz(a.h)anthracene	%	95	70-130	Pass	
Fluoranthene	%	106	70-130	Pass	
Fluorene	%	100	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	95	70-130	Pass	
Naphthalene	%	103	70-130	Pass	
Phenanthrene	%	88	70-130	Pass	
Pyrene	%	105	70-130	Pass	
LCS - % Recovery	<u> </u>			•	
Organochlorine Pesticides					
Chlordanes - Total	%	97	70-130	Pass	
4.4'-DDD	%	103	70-130	Pass	
4.4'-DDE	%	105	70-130	Pass	
4.4'-DDT	%	94	70-130	Pass	
a-BHC	%	103	70-130	Pass	
Aldrin	%	99	70-130	Pass	
b-BHC	%	98	70-130	Pass	
d-BHC	%	100	70-130	Pass	
Dieldrin	%	100	70-130	Pass	
Endosulfan I	%	98	70-130	Pass	
Endosulfan II	%	98	70-130	Pass	
	%	1			
Endosulfan sulphate		96	70-130	Pass	
Endrin	%	98	70-130	Pass	
Endrin aldehyde	%	102	70-130	Pass	
Endrin ketone	%	91	70-130	Pass	
g-BHC (Lindane)	%	97	70-130	Pass	
Heptachlor	%	96	70-130	Pass	
Heptachlor epoxide	%	102	70-130	Pass	
Hexachlorobenzene	%	127	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Methoxychlor			%	94	70-130	Pass	
LCS - % Recovery					•		
Polychlorinated Biphenyls (PCB)							
Aroclor-1260			%	89	70-130	Pass	
LCS - % Recovery							
Speciated Phenols							
2.4-Dimethylphenol			%	77	30-130	Pass	
2.4.5-Trichlorophenol			%	95	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	100	30-130	Pass	
2-Chlorophenol			%	100	30-130	Pass	
LCS - % Recovery				•			
Organophosphorus Pesticides (OP)							
Chlorpyrifos			%	116	70-130	Pass	
Coumaphos			%	98	70-130	Pass	
Dichlorvos			%	75	70-130	Pass	
Dimethoate			%	96	70-130	Pass	
Disulfoton			%	116	70-130	Pass	
Ethoprop			%	118	70-130	Pass	
Fensulfothion			%	128	70-130	Pass	
Fenthion			%	118	70-130	Pass	
Methyl azinphos			%	91	70-130	Pass	
Malathion			%	89	70-130	Pass	
Methyl parathion			%	107	70-130	Pass	
Mevinphos			%	98	70-130	Pass	
Monocrotophos			%	97	70-130	Pass	
Parathion			%	81	70-130	Pass	
Phorate			%	117	70-130	Pass	
Prothiofos			%	128	70-130	Pass	
Ronnel			%	116	70-130	Pass	
Stirophos			%	128	70-130	Pass	
Trichloronate			%	84	70-130	Pass	
LCS - % Recovery				<u> </u>		1 3.55	
Heavy Metals							
Arsenic			%	96	70-130	Pass	
Cadmium			%	95	70-130	Pass	
Chromium			%	96	70-130	Pass	
Copper			%	93	70-130	Pass	
Lead			%	99	70-130	Pass	
Mercury			%	97	70-130	Pass	
Nickel			%	95	70-130	Pass	
Zinc			%	102	70-130	Pass	
	Lab Sample ID	QA	Units	Result 1	Acceptance Limits	Pass	Qualifying
Spike - % Recovery	-	Source			Lillits	Limits	Code
Total Recoverable Hydrocarbons - 1	999 NEPM Fract	ions		Result 1			
TRH C6-C9	S14-Jn25737	NCP	%	90	70-130	Pass	
TRH C10-C14	S14-Jn25737	NCP	%	81	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons - 2	013 NEPM Fract	ions		Result 1			
Naphthalene	S14-Jn25737	NCP	%	122	70-130	Pass	
TRH C6-C10	S14-Jn25737	NCP	%	82	70-130	Pass	
TRH >C10-C16	S14-Jn25737	NCP	%	84	70-130	Pass	
Spike - % Recovery	3320101	,,	,,				
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S14-JI00343	NCP	%	107	70-130	Pass	
Chiordanes - Total	S14-JIUU343	NCP	%	107	/0-130	rass	

mgt

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDD	S14-Jl00343	NCP	%	123	70-130	Pass	
4.4'-DDE	S14-Jn25737	NCP	%	129	70-130	Pass	
4.4'-DDT	S14-Jl00343	NCP	%	91	70-130	Pass	
a-BHC	S14-JI00343	NCP	%	113	70-130	Pass	
Aldrin	S14-JI00343	NCP	%	110	70-130	Pass	
b-BHC	S14-JI00343	NCP	%	115	70-130	Pass	
d-BHC	S14-JI00343	NCP	%	116	70-130	Pass	
Dieldrin	S14-JI00343	NCP	%	111	70-130	Pass	
Endosulfan I	S14-JI00343	NCP	%	104	70-130	Pass	
Endosulfan II	S14-Jl00343	NCP	%	108	70-130	Pass	
Endosulfan sulphate	S14-Jl00343	NCP	%	121	70-130	Pass	
Endrin	S14-JI00343	NCP	%	105	70-130	Pass	
Endrin aldehyde	S14-JI00343	NCP	%	112	70-130	Pass	
Endrin ketone	S14-JI00343	NCP	%	113	70-130	Pass	
g-BHC (Lindane)	S14-JI00343	NCP	%	114	70-130	Pass	
Heptachlor	S14-JI00343	NCP	%	100	70-130	Pass	
Heptachlor epoxide	S14-JI00343	NCP	%	113	70-130	Pass	
Hexachlorobenzene	S14-JI00343	NCP	%	128	70-130	Pass	
Methoxychlor	S14-JI00343	NCP	%	96	70-130	Pass	
Spike - % Recovery				•			
Heavy Metals				Result 1			
Arsenic	S14-Jn25736	NCP	%	93	70-130	Pass	
Cadmium	S14-Jn25736	NCP	%	99	70-130	Pass	
Chromium	S14-Jn25736	NCP	%	103	70-130	Pass	
Copper	S14-Jn25736	NCP	%	92	70-130	Pass	
Lead	S14-Jn25736	NCP	%	100	70-130	Pass	
Mercury	S14-Jn25736	NCP	%	113	70-130	Pass	
Nickel	S14-Jn25736	NCP	%	96	70-130	Pass	
Zinc	S14-Jn25736	NCP	%	92	70-130	Pass	
Spike - % Recovery	01101120100		, 0		10.00		
Polychlorinated Biphenyls (PC	:B)			Result 1			
Aroclor-1260	S14-JI00343	NCP	%	86	70-130	Pass	
Spike - % Recovery	1 014 0100040	1401	70	1 00	70 100	1 455	
Polycyclic Aromatic Hydrocarl	none			Result 1			
Acenaphthene	S14-Jn24366	СР	%	92	70-130	Pass	
Acenaphthylene	S14-Jn24366	CP	%	91	70-130	Pass	
Anthracene	S14-Jn24366	CP	%	98	70-130	Pass	
Benz(a)anthracene	S14-Jn24366	CP	%	90	70-130	Pass	
Benzo(a)pyrene	S14-Jn24366	CP	%	86	70-130	Pass	
Benzo(b&j)fluoranthene	S14-Jn24366	CP	%	79	70-130	Pass	
Benzo(g.h.i)perylene	S14-Jn24366	CP	%	87	70-130	Pass	
Benzo(k)fluoranthene	S14-Jn24366	CP	%	97	70-130	Pass	
Chrysene	S14-Jn24366	CP	%	100	70-130	Pass	
Dibenz(a.h)anthracene	S14-Jn24366			1	70-130		
Fluoranthene	S14-Jn24366 S14-Jn24366	CP CP	% %	89 97	70-130	Pass Pass	
	S14-Jn24366	CP	%	1	70-130	Pass	
Fluorene	S14-Jn24366	CP	%	93 87	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S14-Jn24366 S14-Jn24366	CP	%	94	70-130	Pass	
Naphthalene				1			
Phenanthrene	S14-Jn24366	CP	%	96	70-130	Pass	
Pyrene Spike % Becausers	S14-Jn24366	CP	%	99	70-130	Pass	
Spike - % Recovery				Don't 4			
Speciated Phenols	044 1-04000	00	0/	Result 1	20.400	D-:	
2.4-Dimethylphenol	S14-Jn24366	CP	%	76	30-130	Pass	
2.4.5-Trichlorophenol	S14-Jn24366	CP	%	89	30-130	Pass	

mgt

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
3&4-Methylphenol (m&p-Cresol)	S14-Jn24366	CP	%	95			30-130	Pass	
2-Chlorophenol	S14-Jn24366	CP	%	93			30-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S14-Jn25736	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S14-Jn24646	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S14-Jn24646	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S14-Jn24646	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S14-Jn25736	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S14-Jn25736	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S14-Jn25736	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S14-Jn24646	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S14-Jn24646	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S14-Jn24646	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S14-JI00343	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%		
Methoxychlor		NCP		1				Pass	
	S14-JI00343	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S14-JI00343	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S14-Jn25735	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S14-Jn25735	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S14-Jn25735	NCP	mg/kg	8.2	7.3	11	30%	Pass	
Copper	S14-Jn25735	NCP	mg/kg	72	7.3	2.0	30%	Pass	
Lead	S14-Jn25735	NCP	mg/kg	< 5	< 5	<u> </u>	30%	Pass	
	S14-Jn25735	NCP		1	< 0.05	<1	30%		
Mercury		NCP	mg/kg	< 0.05				Pass	
Nickel	S14-Jn25735	NCP	mg/kg	64	71	10	30%	Pass	
Zinc	S14-Jn25735	NCP	mg/kg	44	49	11	30%	Pass	

mgt

Duplicate										
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD				
Acenaphthene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Acenaphthylene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Anthracene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benz(a)anthracene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benzo(a)pyrene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benzo(b&j)fluoranthene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benzo(g.h.i)perylene	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benzo(k)fluoranthene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Chrysene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Dibenz(a.h)anthracene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Fluoranthene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Fluorene	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Indeno(1.2.3-cd)pyrene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Naphthalene	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Phenanthrene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Pyrene	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Duplicate										
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD				
Aroclor-1016	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor-1232	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor-1242	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor-1248	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor-1254	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor-1260	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Duplicate										
Speciated Phenols				Result 1	Result 2	RPD				
2.4-Dichlorophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
2.4-Dimethylphenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
2.4.5-Trichlorophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
2.4.6-Trichlorophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Phenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
2-Methylphenol (o-Cresol)	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
3&4-Methylphenol (m&p-Cresol)	S14-Jn24365	CP	mg/kg	< 1	< 1	<1	30%	Pass		
2-Chlorophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
2-Nitrophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
4-Chloro-3-methylphenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Pentachlorophenol	S14-Jn24365	CP	mg/kg	< 1	< 1	<1	30%	Pass		

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Mary Makarios Client Services

James Norford Senior Analyst-Metal (NSW) Ryan Hamilton Senior Analyst-Organic (NSW) Ryan Hamilton Senior Analyst-Volatile (NSW)

Dr. Bob Symons

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | Ingl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infallure to meet deadlines and lost production arising from this report. This documents shall be reported used except in full and retales only to the lients tested. Unless indicated otherwise, the tests were performed on the samples as received in full and retales only to the lients tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 423371-S

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128 NATA Accredited Accreditation Number 1261 Site Number 18217

WORLD RECOGNISED ACCREDITATION

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Certificate of Analysis

Attention: P Edmunds

Report 423371-W
Client Reference 7773

Received Date Jun 27, 2014

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			7773-SW-01 Water S14-Jn24361 Not Provided	7773-SW-02 Water S14-Jn24362 Not Provided	7773-SW-03 Water S14-Jn24363 Not Provided	7773-SW-04 Water S14-Jn24364 Not Provided
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.001	0.002	0.003	0.003
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.001	0.002	0.001	0.002
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			7773-SW-BR1 Water S14-Jn24370 Not Provided	7773- RINSATE-01 Water S14-Jn24371 Not Provided
Test/Reference	LOR	Unit		
Heavy Metals	•	•		
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001
Cadmium (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.004	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.002	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeMetals M8 filteredSydneyJun 27, 201428 Day

- Method: E020/E030 Filtered Metals in Water & E026 Mercury

Report Number: 423371-W

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: AD Envirotech Aust Pty Ltd Address: Unit 4/ 10-11 Millenium Court

> Silverwater NSW 2128

Client Job No.: 7773 Order No.: Report #:

Phone:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

423371 02 9400 7711

web : www.eurofins.com.au

Fax: 02 9401 0097

D. Jones **Eurofins | mgt Client Manager: Mary Makarios**

Jul 7, 2014

5 Day

Jun 27, 2014 4:30 PM

Sample Detail						Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	Polychlorinated Biphenyls (PCB)	Speciated PhenoIs	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons
Laboratory who	ere analysis is co	onducted											
Melbourne Laboratory - NATA Site # 1254 & 14271													
Sydney Labora	ntory - NATA Site	# 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Labo	ratory - NATA Sit	te # 20794											
External Labor	atory												
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
7773-SP1	Not Provided		Soil	S14-Jn24360	Х	Х	Х	Х				Х	Х
7773-SW-01	Not Provided		Water	S14-Jn24361					Х				
7773-SW-02	Not Provided		Water	S14-Jn24362					Х				
7773-SW-03	Not Provided		Water	S14-Jn24363					Х				
7773-SW-04	Not Provided		Water	S14-Jn24364					Х				
7773-SP1-01A	Not Provided		Soil	S14-Jn24365	Х					Х	Χ		
7773-SP1-02A	Not Provided		Soil	S14-Jn24366	Х					Х	Χ		
7773-SP1-03A	Not Provided		Soil	S14-Jn24367	X					Х	Χ		
7773-SP2-01A	Not Provided		Soil	S14-Jn24368	Х					Х	Χ		
7773-SP2-02A	Not Provided		Soil	S14-Jn24369	Х					Х	Х		

Eurofins | mgt Unit F6, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977

Page 3 of 7

7773

Client Job No.:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Company Name: AD Envirotech Aust Pty Ltd Order No.: Received: Jun 27, 2014 4:30 PM

Address: Unit 4/ 10-11 Millenium Court Report #: 423371 Due: Jul 7, 2014 Silverwater Phone: 02 9400 7711 Priority: 5 Day

NSW 2128 Fax: 02 9401 0097 **Contact Name:** D. Jones

Eurofins | mgt Client Manager: Mary Makarios

Sample Detail					% Moisture	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	Polychlorinated Biphenyls (PCB)	Speciated Phenols	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons
Laboratory who	ere analysis is c	onducted											
Melbourne Lab	oratory - NATA S	Site # 1254 & 14	271										
Sydney Labora	tory - NATA Site	# 18217			Χ	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Labor	Brisbane Laboratory - NATA Site # 20794												
External Laboratory													
7773-SW-BR1	7773-SW-BR1 Not Provided Water S14-Jn24370								Х				
7773- RINSATE-01	Not Provided		Water	S14-Jn24371					Х				

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Report Number: 423371-W

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic (filtered)				< 0.001			0.001	Pass	
Cadmium (filtered)			mg/L	< 0.0001			0.0001	Pass	
Chromium (filtered)			mg/L	< 0.001			0.001	Pass	
Copper (filtered)			mg/L	< 0.001			0.001	Pass	
Lead (filtered)			mg/L	< 0.001			0.001	Pass	
Mercury (filtered)			mg/L	< 0.0001			0.0001	Pass	
Nickel (filtered)			mg/L	< 0.001			0.001	Pass	
Zinc (filtered)			mg/L	< 0.005			0.005	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic (filtered)			%	104			70-130	Pass	
Cadmium (filtered)			%	106			70-130	Pass	
Chromium (filtered)			%	103			70-130	Pass	
Copper (filtered)			%	103			70-130	Pass	
Lead (filtered)			%	112			70-130	Pass	
Mercury (filtered)			%	107			70-130	Pass	
Nickel (filtered)			%	106			70-130	Pass	
Zinc (filtered)			%	115			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic (filtered)	S14-Jn24361	CP	%	116			70-130	Pass	
Cadmium (filtered)	S14-Jn24361	CP	%	110			70-130	Pass	
Chromium (filtered)	S14-Jn24361	CP	%	105			70-130	Pass	
Copper (filtered)	S14-Jn24361	CP	%	97			70-130	Pass	
Lead (filtered)	S14-Jn24361	CP	%	105			70-130	Pass	
Mercury (filtered)	S14-Jn24361	CP	%	105			70-130	Pass	
Nickel (filtered)	S14-Jn24361	CP	%	101			70-130	Pass	
Zinc (filtered)	S14-Jn24361	CP	%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S14-Jn25742	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S14-Jn25742	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Chromium (filtered)	S14-Jn25742	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S14-Jn25742	NCP	mg/L	0.0030	0.0033	3.0	30%	Pass	
Lead (filtered)	S14-Jn25742	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S14-Jn25742	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S14-Jn25742	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S14-Jn25742	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Organic samples had Teflon liners
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised By

Mary Makarios Client Services

James Norford Senior Analyst-Metal (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 423371-W

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128 NATA

WORLD RECOGNISED

ACCREDITATION

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Evan Webb

Report 425789-W
Client Reference 7773
Received Date Jul 21, 2014

Client Sample ID Sample Matrix Eurofins mgt Sample No.			7773-SW-01A Water S14-JI18243	7773-SW-01B Water S14-JI18244	7773-SW-02A Water S14-JI18245	7773-SW-02B Water S14-JI18246
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Alkali Metals	·					
Calcium	0.5	mg/L	63	64	70	72
Magnesium	0.5	mg/L	60	120	65	67
Hardness Set						
Hardness mg equivalent CaCO3/L	1	mg/L	410	640	450	460

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Hardness Set			
Calcium	Sydney	Jul 21, 2014	180 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY IC	CP-MS		
Magnesium	Sydney	Jul 21, 2014	180 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY IC	CP-MS		
Hardness mg equivalent CaCO3/L	Sydney	Jul 21, 2014	28 Day

⁻ Method: E020.1 Hardness in water

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com.au

Hardness

Set

web: www.eurofins.com.au

Company Name: AD Envirotech Aust Pty Ltd Address: Unit 4/ 10-11 Millenium Court

> Silverwater NSW 2128

Client Job No.: 7773

Laboratory where analysis is conducted

Melbourne Laboratory - NATA Site # 1254 & 14271

Order No.:

Report #: 425789 Phone: 02 9400 7711 Fax: 02 9401 0097 Received: Jul 21, 2014 3:10 PM

Due: Jul 22, 2014 **Priority:** 1 Day P Edmunds **Contact Name:**

Eurofins | mgt Client Manager: Mary Makarios

Sample Detail

Sydney Laboratory - NATA Site # 18217							
Brisbane Laboratory - NATA Site # 20794							
External Laboratory							
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
7773-SW-01A	Not Provided		Water	S14-JI18243	Х		
7773-SW-01B	Not Provided		Water	S14-JI18244	Х		
7773-SW-02A	Not Provided		Water	S14-JI18245	Х		
7773-SW-02B	Not Provided		Water	S14-JI18246	Х		

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water. $% \label{eq:case_eq} % \label{eq:case_eq}$

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Quality Control Results

Test				Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Alkali Metals									
Calcium			mg/L	< 0.5			0.5	Pass	
Magnesium			mg/L	< 0.5			0.5	Pass	
LCS - % Recovery									
Alkali Metals									
Calcium				95			70-130	Pass	
Magnesium				107			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Alkali Metals				Result 1					
Calcium	M14-JI14208	NCP	%	87			70-130	Pass	
Magnesium	M14-JI14208	NCP	%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	S14-JI18246	CP	mg/L	72	71	1.0	30%	Pass	
Magnesium	S14-JI18246	CP	mg/L	67	67	1.0	30%	Pass	
Duplicate									
Hardness Set				Result 1	Result 2	RPD			
Hardness mg equivalent CaCO3/L S14-JI18246 CP			mg/L	460	450	1.0	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Organic samples had Teflon liners
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised By

Mary Makarios Client Services

Ivan Taylor Senior Analyst-Metal (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 7773 ASB 1

 Date Received:
 27.06.2014

 Date Analysed:
 27.06.2014

 Report Date:
 30.06.2014

Client: The Next Generation

Job Location: Eastern Creek NSW

Analytical method: Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

CAo jtalovice

Dominika Woitalewicz (MRACI CCHI

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA aproved asbestos identifier Results Authorised By:

Ao jrakvice

Dr Dominika Wojtalewicz (MRACI CCHEM)

Laboratory Manager/Principal Chemist

NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with $*$.

Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
7773-Asb1 Soil		45 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb2	Soil	40 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb3 Soil	52 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.	
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb4	Soil	62 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb5	Soil	45 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb6	Fibre Cement	2.4 x 2.3 x 0.4	Chrysotile asbestos detected	Nil
			Amosite asbestos NOT detected	Nil
			Crocidolite asbestos detected	Nil
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil

General Comments:

All samples are analysed as received.

Samplig performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared specroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

APPENDIX VIII BOREHOLE LOGS Telephone: NSW: (02) 9648 6669 Internet: site: www.ADenvirotech.com.au New South Wales Office: Queensland Office: ABN: 520 934 529 50

BC	BOREHOLE LOG			Borehole No		BH04A			
Cli	ient	DA	DI			Projec	t No.	777	/3
Proj	ject	EI				Stage		II	
Locat	tion	-33.	801712 S, 150.82632	9 E		Date		25.0	06.2014
Metho		Han N/A	d Auger	Casing type	N/A	Screen type Screen length		N/A	
Diame Auger		N/A		Casing length Casing diam.	N/A N/A	Screen		N/A N/A	
Consu			ones	Logged by		Signatu		D. San	
Depth, m	Sample ID	Graphic log	Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks
	BH04A		Dark brown silty l	oam					0 -
			Light brown medi		ticity				
$\vdash \exists$			End of Boreh					_	
F, F]]
									1 -
╘╛									
⊦⊣									-
ĿЫ]
+									-
ĿЫ									
⊦⊣									-
F 🗆									
ĿЫ]
F∃									_
\vdash \dashv									
F∃] =
╘╡									=
\vdash \dashv									-
FΪ									
$\vdash \dashv$									-
F 🗓									
ᆫᅥ									
\vdash					o4o olo A 4 1º	D4= T 4 1			<u> </u>
	A. D. Envirotech Australia Pty Ltd								

BO	RE	HOLE LO	OG		Boreho	ole No.	BHO)3A	
Clie	nt D	ADI			Projec	t No.	777	3	
Proje	ct E	I			Stage		II		
Locatio	on -3	3.801588 S, 150.82585	1 E		Date		25.06.2014		
Method		and Auger	Casing type	N/A	Screen		N/A		
Diamete Auger ty		/A /A	Casing length Casing diam.	N/A N/A	Screen length N/A Screen diam. N/A				
Consulta		. Jones	Logged by	14/14	Signatu		TVA		
		Graphic log Description			Munsell colour index	РШ, ррт	SWL, moisture	Remarks	
- 0 - BF	103A	Dark brown silty l					0 - - - - -		
F		End of Boreh	ole					_	
LΙ									
+									
								1 —	
F' =								_	
ĖΞ									
\vdash \dashv								_	
ĿЫ									
F ¬								_	
\vdash , \dashv								_	
\vdash \dashv								_	
LΙ								_	
\vdash								_	
Ьd								_	
F 7								_	
\vdash , \dashv								<u> </u>	
								_	
\vdash \dashv								_	
L I									
$\vdash \dashv$								_	
LJ									
F 7								_	
								-	
F"]								_	
\vdash \dashv								_	
$\vdash \dashv$								_	
								_	
D) A DEC	A. D. Envirotech Australia Pty Ltd								

BO	OR	EF	OLE LO	OG		Boreho	ole No.	вно)2 A	
Cli	ient	DAI	DI			Projec	t No.	777	73	
Pro	ject	EI				Stage		II	П	
Loca	tion	-33.8	800936 S, 150.82588	2 E		Date		25.0	06.2014	
Metho			nd Auger	Casing type	N/A	Screen		N/A		
Diame Auger		N/A N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A		
Consu		D. Jo		Logged by	14/21	Signatu		TVIA		
Depth, m	Sample ID	Graphic log Description				Munsell colour index	РШ, ррт	SWL, moisture	Remarks	
- 0 - 	вно2А		Dark brown silty l					0 —		
FF			End of Boreh	ole					_	
上 ゴ										
+, $+$										
									1 –	
F' =									_	
									=	
$\vdash \dashv$									<u> </u>	
上 ゴ										
\vdash \dashv									_	
上,二									_	
									_	
\vdash \dashv									_	
\Box									_	
\vdash \dashv									_	
LΙ										
\vdash \dashv									_	
									_	
$E_3 \exists$									_	
\vdash \dashv									_	
$F \dashv$									_	
\vdash \dashv									_	
ĖΪ										
$\vdash \dashv$									_	
									_	
F 7] =	
$\vdash \dashv$									_	
FΙ] =	
$\vdash \dashv$									-	
ᄃᅼ										
DIADEC	A. D. Envirotech Australia Pty Ltd									

BO	OR	EF	HOLE LO	OG		Boreho	ole No.	вно	01A	
Cli	ient	DAI	DI			Projec	t No.	777	73	
Proj	ject	EI				Stage		II	П	
Locat	tion	-33.8	800585 S, 150.82586	6 E		Date		25.0	06.2014	
Metho			nd Auger	Casing type	N/A	Screen type		N/A		
Diame Auger		N/A N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A		
Consu		D. J.		Logged by	11/11	Signatu		TVIA		
Depth, m	Sample ID	Description				Munsell colour index	РШ, ррт	SWL, moisture	Remarks	
- 0 - 	BH01A		Dark brown silty l					0 —		
FF			End of Boreh	ole					_	
ᅡᆿ										
+, $+$										
									1 –	
\vdash \dashv									_	
F' =									=	
\vdash \dashv									<u> </u>	
\vdash \dashv									_	
上,二									<u> </u>	
									_	
\vdash \dashv									_	
\vdash \dashv									_	
									_	
\vdash \dashv									_	
上,一									<u> </u>	
E, \									_	
\vdash \dashv									_	
$F \dashv$									_	
\vdash \dashv									_	
ĖΪ										
\vdash \dashv									_	
									_	
F 7] =	
\vdash \dashv									_	
F∃] =	
$\vdash \dashv$									-	
F-I										
DIADEC	A. D. Envirotech Australia Pty Ltd									

BOR	EF	HOLE LO	OG		Boreho	ole No.	SP2	-02A	
Client	DA	DI			Projec	t No.	777	3	
Project	EI				Stage		II		
Location	-33.	801147 S, 150.824900	6 E		Date		25.0	06.2014	
Method		d Auger	Casing type	N/A	Screen type Screen length		N/A		
Diameter Auger type	N/A N/A		Casing length Casing diam.	N/A N/A	Screen		N/A N/A	N/A	
Consultant	D. Jones Logged by			Signatu		7			
Depth, m Sample ID	Graphic log	Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks	
- 0 - SP2-02A 								ASB5 —	
		End of Bor	ehole					$\overline{}$	
							_		
								1 – 1 –	
F' -									
$\vdash \dashv \mid$									
F I								_	
								_	
+ $+$ $+$								_	
								_	
는 크								_	
F - I								_	
FII								_	
는 <u> </u>								_	
\vdash \vdash \vdash								_	
- 3 -								_	
$\vdash \exists \mid $								_	
$F \dashv I$								_	
								_	
├ ┤ │								_	
F I								_	
								_	
								_	
F 🗐 📗								_	
<u>├</u>									
	A. D. Envirotech Australia Pty Ltd								

_B(BOREHOLE LOG				Boreho	ole No.	SP2	-01A		
Cl	ient	DA	DI			Projec	t No.	777	73	
Pro	ject	EI				Stage		II		
Loca	tion	-33.	801139 S, 150.82481	2 E		Date		25.0	06.2014	
Metho Diamo		Han N/A	nd Auger	Casing type Casing length	N/A N/A	Screen type Screen length		N/A N/A		
Auge		N/A		Casing diam.	N/A	Screen		N/A		
Consu		D. J	D. Jones Logged by			Signatu		7		
Depth, m	Sample ID	Graphic log	Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks	
-0-	SP2-01 <i>A</i>		Light brown sandy					ASB4 —		
$\vdash \exists$			End of Bor	ehole					-	
ĻΙ										
╘╻╛									1 _	
$F^{ullet}F$									-	
ᅡᆿ									l ⊐	
⊦⊣									-	
F∃]	
┝╶┤										
F∃]	
トゴ										
┝╶┤										
F∃									_	
ĿΉ										
┝╶┤									_	
トコ										
╘╛										
┝┦									-	
ᅡᆿ										
⊦∃									-	
╞╡										
ᅥ									_	
	A. D. Envirotech Australia Pty Ltd									

B	BOREHOLE LOG				Borehole No.		SP1	-03A	
Cl	lient	DA	DI			Projec	t No.	777	3
Pro	oject	EI				Stage		II	
Loca	ation	-33.	801132 S, 150.82584	1 E		Date		25.0	06.2014
Meth Diam		Han N/A	nd Auger	Casing type Casing length	N/A N/A	Screen type Screen length		N/A N/A	
	er type	N/A		Casing diam.	N/A	Screen		N/A	
	ultant	D. J	D. Jones Logged by			Signatu	re	75	
Depth, m	Sample ID	Graphic log	Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks
-0-	SP1-03A								ASB3 —
 			End of Boreh	ole					
-1 <i>-</i> 									1 —
E									\exists
⊢ -									
<u> </u>									
	1								
F =									=
<u> </u>									
╘╶									
F -									_
-3 -									
F -									-
⊢ −									l ∃
F \exists									
L =									
-4-									⊣
F =									
ᅡᆿ									
 									⊣
\vdash				:		<u> </u>			
	A. D. Envirotech Australia Pty Ltd								

BOR	EHOLE LO	\mathbf{OG}		Boreho	ole No.	SP1	-02A		
Client	DADI			Projec	t No.	777	3		
Project	EI			Stage		II			
Location	-33.801182 S, 150.82578	66 E		Date		25.0	06.2014		
Method Diameter	Hand Auger N/A	Casing type Casing length	N/A N/A	Screen Screen		N/A N/A			
Auger type	N/A	Casing diam.	N/A	Screen	diam.	N/A			
Consultant	D. Jones Logged by			Signatu	re	25			
Depth, m Sample ID	Graphic log Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks		
- 0 - SP1-02A						ASB2 —			
F	End of Borel	nole					_		
E						_			
							1-		
							_ _		
F =							_		
F 🗇							_		
							_		
L d							_		
$\vdash \exists$							_		
E							_		
							<u> </u>		
F3-							_		
FF							_		
FF							-		
F =							_		
F . -									
 							_		
上士							_		
<u> </u>							_		
	A. D. Envirotech Australia Pty Ltd								

BOR	REH	OLE LO	OG		Boreho	ole No.	SP1	-01A	
Client	DAI	OI			Projec	t No.	777	3	
Project	EI				Stage		II	П	
Location	-33.8	801337 S, 150.82573	8 E		Date		25.06.2014		
Method		d Auger	Casing type	N/A	Screen type		N/A		
Diameter Auger type	N/A N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A		
Consultant		D. Jones Logged by			Signatu		775		
Depth, m Sample ID	Graphic log	Description			Munsell colour index	РШ, ррт	SWL, moisture	Remarks	
- 0 - - SP1-01	A							ASB1 — —	
		End of Boreh	ole					_	
<u> </u>								_	
├								1 -	
F' ¬									
L								_	
\vdash \dashv								=	
F∃								_	
								_	
F								_	
								_	
ĿЫ								_	
F -								_	
FI								_	
ĿЫ								_	
 								_	
3								_	
$\vdash \exists$								_	
\vdash								_	
F 7								_	
L								_	
F. F								_	
								_	
$\vdash \exists$								_	
FF								_	
F								_	
	A. D. Envirotech Australia Pty Ltd								

BOF	REF	HOLE LO	OG		Boreho	ole No.	BH1	6		
Client	DA	DI			Projec	t No.	777	3		
Project	EI				Stage		II	П		
Location	-33.	.804252 S, 150.82290	8 E		Date		25.0	06.2014		
Method		nd Auger	Casing type	N/A	Screen		N/A			
Diameter Auger type	N/A N/A		Casing length Casing diam.	N/A N/A	Screen Screen			N/A N/A		
Consultant	D. Jones Logged by			11/11	Signatu		DE			
Depth, m Sample ID	Graphic log				Munsell colour index	РШ, ррт	SWL, moisture	Remarks		
- 0 - BH16		Brown clay loam						0 — BR2, SP1 —		
		End of Boreh	ole					_		
ĿЫ								_		
\vdash \vdash										
								1-		
E =								_		
								_		
\vdash \dashv								- - -		
F 7								_		
ĿЭ								_		
2								_		
<u> </u>										
\vdash								_		
トコ								_		
\vdash \dashv								_		
F ¬								_		
								_		
F " -								_		
								_		
F -								-		
ΕĪ								_		
ĿℲ								_		
\vdash \dashv								=		
								-		
F -								_		
Ė 🖠										
$\vdash \dashv$								_		
								_		
A. D. Envirotech Australia Pty Ltd										

BOR	EHOLE LO	\mathbf{OG}		Boreho	ole No.	BH1	15	
Client	DADI			Projec	t No.	777	73	
Project	ЕІ			Stage		II		
Location	-33.804545 S, 150.82417	'6 E		Date		25.0	06.2014	
Method Diameter	Hand Auger N/A	Casing type Casing length	N/A N/A	Screen type N/A Screen length N/A				
Auger type	N/A	Casing diam.	N/A	Screen diam. N/A			1	
Consultant	D. Jones Logged by			Signatu	re	ة م		
Depth, m Sample ID	Oraphic log Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks	
-0- BH15	Brown clay loam					0 —		
F	End of Borel	nole						
							1-	
F ¬								
F∃								
F ¬								
F =							=	
 							_	
F =							_	
 							_	
							_	
L d								
L d								
							_	
							_	
$L_{A}J$							_	
F							_	
F							_	
FF							-	
	A D Envirotech Australia Ptv I td							
A. D. Envirotech Australia Pty Ltd								

BOR	EHOLE LO	OG		Boreho	ole No.	BH1	4	
Client	DADI			Projec	t No.	777	3	
Project	EI			Stage		II	П	
Location	-33.803612 S, 150.82260	5 E		Date		25.06.2014		
Method	Hand Auger N/A	Casing type	N/A	Screen type Screen length		N/A		
Diameter Auger type	N/A	Casing length Casing diam.	N/A N/A	Screen		N/A N/A		
Consultant	D. Jones	Logged by		Signatu		25		
Depth, m Sample ID	Graphic log Description			Munsell colour index	РШ, ррт	SWL, moisture	Remarks	
— 0 — — — BH14 — —	Brown silty loam					0 - - - - -		
F = F	End of Boreh	ole					_	
							_	
							1_	
-								
\vdash \dashv							=	
							_	
$F \dashv I$							_	
							_	
\vdash \dashv \mid							_	
							_	
$\vdash \dashv \mid$							_	
							_	
는 를 기							_	
-3-							-	
\vdash \dashv \mid							_	
는 크								
$F \dashv I$							_	
							_	
F -							_	
F 7							7	
D:\ADEforms\hh fl	A. D. Envirotech Australia Pty Ltd							

BO)R	EF	HOLE LO	OG		Boreho	ole No.	BH1	13
Cli	ent	DA	DI			Projec	t No.	777	3
Proj	ect	EI				Stage		II	
Locat	tion	-33.	802837 S, 150.82339	4 E		Date		25.0	06.2014
Metho			nd Auger	Casing type	N/A	Screen		N/A	
Diame Auger		N/A N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A	
Consul			ones	Logged by	14/12	Signatu			
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	РШ, ррт	SWL, moisture	Remarks
	вн13		Brown silty loam						0 —
$\vdash \dashv$			Light brown sandy loam						_
F			End of I						_
ЬJ									_
-1-									1-
ĻΙ									_
\vdash \dashv									
F∃									_
ᅡᆿ									_
\vdash \dashv									_
									_
ЬJ									<u> </u>
F 7									_
L d									
\vdash \dashv									_
F 7									_
									<u> </u>
E, \(\)									_
ĖΪ									_
⊢⊢									_
F 7									_
\vdash \dashv									_
F =									_
									-
\vdash \dashv									_
									_
$\vdash \dashv$									_
ᄃᅼ						D . 7 : =			_
				A. D. Envir	otech Australia	Pty Ltd			

BO	OR	EH	OLE LO	OG		Boreho	ole No.	BH1	2
Cli	ient	DAI	DI			Projec	t No.	777	3
Proj	ject	EI				Stage		II	
Locat	tion	-33.8	302644 S, 150.82262	5 E		Date		25.0	06.2014
Metho			d Auger	Casing type	N/A	Screen		N/A	
Diame Auger		N/A N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A	
Consu		D. Jo	ones	Logged by		Signatu		25	
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	РШ, ррт	SWL, moisture	Remarks
- 0 - - 1	ВН12		Brown silty loam						0 -
FF			End of Boreh	ole					_
LΙ									_
\vdash \vdash									
- '-									' <u>-</u>
ĖΞ									
\vdash \dashv									
╘╛									
\vdash \dashv									_
F∃									_
									_
$F \dashv$									_
LЫ									<u> </u>
\vdash \dashv									_
E I									_
\vdash \dashv									_
									_
F									_
$F \dashv$									_
LЫ									
\vdash \dashv									_
F 1									_
F*1									
$\vdash \dashv$									_
F∃									_
$\vdash \dashv$									_
\vdash						<u> </u>			
D:\ADEfor				A. D. Envir	otech Australia	a Pty Ltd			

ProjectEISLocation-33.802318 S, 150.821970 EDMethodHand AugerCasing typeN/ADiameterN/ACasing lengthN/AAuger typeN/ACasing diam.N/A	creen ty creen le creen di ignature	ype ength liam.	II 25. N/A N/A N/A	06.2014				
Location -33.802318 S, 150.821970 E Method Hand Auger Casing type N/A Casing length N/A Auger type N/A Consultant D. Jones Description Brown silty loam Brown silty loam	Date creen ty creen distinguishment	ength liam.	25.I N/A N/A N/A	Remarks				
Method Hand Auger Casing type N/A Sometime N/A Casing length N/A Sometime N/A Casing diam. N/A Sometime N/A So	creen ty creen de creen di dignature	ength liam.	N/A N/A N/A	Remarks				
Diameter N/A Casing length N/A Set Auger type N/A Casing diam. N/A Set Consultant D. Jones Logged by Single	creen le creen di ignature	ength liam.	N/A N/A	Remarks				
Auger type N/A Casing diam. N/A Sconsultant D. Jones Logged by Single Description We have a single diam. N/A Sconsultant D. Jones Description Brown silty loam Brown silty loam	ignature	liam. re	N/A	Remarks				
Munsell	ndex			Remarks				
Brown silty loam	colour index	PID, ppm	SWL, moisture					
Brown silty loam				0 -				
End of Borehole				_				
-1				_				
				1-				
 				_				
 				-				
 				_				
				_				
				_				
-2 -				-				
				_				
<u>-</u>				_				
				-				
				=				
				_				
-3-				<u>-</u>				
				-				
<u></u>				-				
				-				
				=				
4				-				
				-				
				=				
<u>-</u> -								
A. D. Envirotech Australia Pty								

Client DADI Project EI Stage Location -33.804667 S, 150.825407 E Method Diameter N/A Casing type N/A Casing length N/A Consultant D. Jones Logged by Description Brown clay loam End of Borehole End of Borehole Find of Borehole Project N Stage Date N/A Screen typ N/A Screen typ Signature Description Brown clay loam End of Borehole). BH	Boreho	10		
Location -33.804667 S, 150.825407 E Method Hand Auger Casing type N/A Casing length N/A Screen type Auger type N/A Consultant D. Jones Description Brown clay loam Brown clay loam Date Dat	777	Project	73		
Method Hand Auger Casing type N/A Screen type Diameter N/A Casing length N/A Screen length auger type Auger type N/A Casing diam. Consultant D. Jones Logged by Signature W type Screen diam Signature Brown clay loam Brown clay loam Brown clay loam	II	Stage			
Diameter N/A Casing length N/A Screen length Auger type N/A Casing diam. N/A Screen diam Consultant D. Jones Logged by Signature ##### Description Description	25.	Date	.06.2014		
Auger type N/A Casing diam. N/A Screen diam Consultant D. Jones Logged by Signature W type Q and D an	N/A N/A				
Open index Brown clay loam Brown clay loam Brown clay loam		Screen o			
Brown clay loam		Signatu	Sans		
Brown clay loam	SWL, moisture	Munsell colour index	Remarks		
End of Borehole			0 —		
			_		
			1 —		
			_		
			_		
			_		
			_		
			_		
			_		
-3- 					
			_		
			_		
			_		
			_		
			_		
			_		
├ 					
<u> </u>					
A. D. Envirotech Australia Pty Ltd		D4v, T 4.3	<u> </u>		

BC	R	EF	HOLE LO	OG_		Boreho	ole No.	вно)9
Clie	ent	DA	DI			Projec	t No.	777	/3
Proj	ect	EI				Stage		II	
Locati	ion	-33.	801861 S, 150.82309	1 E		Date		25.0	06.2014
Method Diamet		Han N/A	d Auger	Casing type	N/A	Screen		N/A	
Auger		N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A	
Consul			ones	Logged by		Signatu		25	
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
- 0 - 	вн09		Dark brown silty l						0 -
FF			End of Boreh	ole					_
上ゴ									
L₁∃									
F'7									1 * 1
$\vdash \exists$									l ∃
F∃									1 7
Lβ									
+									-
									1 7
L 1									
\vdash \dashv									l ∃
F∃									1 7
									L
F]
ĿЫ									l ∃
F∃]
F"Ŧ									
<u> </u>									
									
F∃									7
				A. D. Enviro	otech Australia	Pty Ltd			

BOR	EHOLE LO	OG		Boreho	ole No.	BH0	98A
Client	DADI			Projec	t No.	777	3
Project	EI			Stage		II	
Location	-33.801572 S, 150.82211	1 E		Date		25.0	06.2014
Method Diameter	Hand Auger N/A	Casing type Casing length	N/A N/A	Screen Screen		N/A N/A	
Auger type	N/A	Casing diam.	N/A	Screen	diam.	N/A	.
Consultant	D. Jones	Logged by		Signatu	re	9	
Depth, m Sample ID	Graphic log	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
BH08A, BR01	Brown silty loam Light brown sand	v loam					0
	End of Borel	ole					_
 -1- 							1 — 1 — – –
							- - - -
 							- - - -
							- -
 _ 4 _ 							- - - -
-							- - -
		A. D. Envir	otech Australia	Pty Ltd			

BO	RE	HOLE LO	OG		Boreho	ole No.	вно)7
Clier	nt DA	ADI			Projec	t No.	777	/3
Projec	et EI				Stage		II	
Locatio	on -3:	3.803061 S, 150.82506	9 E		Date		25.0	06.2014
Method Diameter		and Auger	Casing type Casing length	N/A N/A	Screen Screen		N/A	
Auger ty	pe N/	A	Casing diam.	N/A	Screen	diam.	N/A	\
Consulta	ant D.	Jones	Logged by		Signatu	ire	ම	
	Sample ID Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
— 0 — — — вн — — —	107	Dark brown medit	ım clay					0 -
		End of Boreh	ole					_
1-1-								1 —
Εđ								
ЕЭ								l ∃
Е 🗄								\vdash
\vdash \dashv								l ∃
								1 7
F =]
FF								
FF]
F 7								
-3								
<u> </u>								
<u> </u>								
F'-								
F 🗐								
FI								-
<u> </u>								
D:\ADEforms			A. D. Envir	otech Australia	Pty Ltd			

BC	RI	EHOLE LO)G		Boreho	ole No.	BHO	06A
Clie	ent	DADI			Projec	t No.	777	3
Proje	ect	EI			Stage		II	
Locati	ion	-33.801746 S, 150.824828	B E		Date		25.0	06.2014
Method		Hand Auger	Casing type	N/A	Screen		N/A	
Diamet Auger t		N/A N/A	Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A	
Consult		D. Jones	Logged by	1 1/1 1	Signatu		TVA	
Depth, m		gol	escription		Munsell colour index	РШ, ррт	SWL, moisture	Remarks
- 0 - B 	H06A	Dark brown silty lo	oam					0 -
FT		End of Boreh	ole					_
ĖΪ								
+ $+$ $+$								
								1 –
F' =								_
ĖΪ								
\vdash \dashv								_
\vdash \dashv								_
L, \(\)								_
								_
\vdash \dashv								_
\vdash \dashv								_
LΙ								
F 7								_
上,士								_
E, \								_
\vdash \dashv								_
F 7								
\vdash \dashv								_
ĖΙ								
$\vdash \dashv$								_
F"¬								
\vdash \dashv								-
$\vdash \dashv$								-
$\vdash \bot$								_
D:\ADEform			A. D. Envir	otech Australia	Pty Ltd			

BO	REH (OLE LO)G		Boreho	ole No.	BHO	95A
Clien	t DADI				Projec	t No.	777	3
Projec	t EI				Stage		II	
Location	n -33.8014	474 S, 150.823834	ΙE		Date		25.0	06.2014
Method	Hand A	auger	Casing type	N/A	Screen		N/A	
Diameter Auger typ			Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A	
Consultar		s	Logged by	17/11	Signatu		TVA	
	Graphic log		escription		Munsell colour index	РШ, ррт	SWL, moisture	Remarks
- 0 - BHO	55A Da	ark brown silty lo	oam (fill)					0 —
		End of Boreho	ole					_
LΙ								_
+								_
								1 —
F' = -								_
L J								
\vdash \dashv								_
\vdash \dashv								_
\Box								_
+								_
								_
\vdash \dashv								_
ヒゴ								
\vdash \dashv								_
\vdash \dashv								_
+								_
								_
\vdash \dashv								_
L J								
\vdash								_
\vdash \dashv								_
ΓŢ								
+ $+$								_
								_
\vdash \dashv								-
ĿℲ								
$\vdash \exists$								_
D:\ADEforms\l			A. D. Envir	otech Australia	Pty Ltd			

COVER CONTAMINATED GO	OODS SEARCH	

Our Ref: D14/050150 Your Ref: Evan Webb

24 April 2014

Attention: Evan Webb AD Envirotech Australia Pty Ltd 4/10-11 Millenium Ct Silverwater NSW 2128

Dear Mr Webb,

RE SITE: Lots 2 & 3 DP 1145808 Eastern Creek NSW

I refer to your site search request received by WorkCover NSW on 17 April 2014 requesting information on licences to keep dangerous goods for the above site.

Enclosed are copies of the documents that WorkCover NSW holds on Dangerous Goods Licence 35/012865 relating to the storage of dangerous goods at the above-mentioned premises, as listed on the Stored Chemical Information Database (SCID).

If you have any further queries please contact the Dangerous Goods Licensing Team on (02) 4321 5500.

Yours Sincerely

Brent Jones

Senior Licensing Officer

Dangerous Goods Notification Team

MIP

Licence No. 35/012865

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/012865 to 29/11/2004. I confirm that all the licence details shown below are correct (amend if necessary).

(Signature)

GLENN TROM
(Please print name)

2 7 03 (Date signed)

for: PIONEER CONSTRUCTION MATERIALS PTY LTD

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales Dangerous Goods Licensing Section Enquiries:ph (02) 43215500 fax (02) 92875500

LOCKED BAG 2906 LISAROW NSW 2252

Details of licence on 2 July 2003

Licence Number 35/012865

Expiry Date 29/11/2003

Licensee PIONEER CONSTRUCTION MATERIALS PTY LTD ACN 009 679 734 WALLGROVE QUARRY

Postal Address: WALLGROVE QUARRY P O BOX 3042 MOUNT DRUITT VILLAGE NSW 2770

Licensee Contact DAVID BOLTON (MANAGER) Ph. 02 9625 0444 Fax. 02 9625 2435

Premises Licensed to Keep Dangerous Goods

PIONEER CONSTRUCTION MATERIALS PTY LTD WALLGROVE QUARRY LOT 11 OLD WALLGROVE RD EASTERN CREEK 2766

Nature of Site GRAVEL AND SAND QUARRYING

Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site DAVID BOLTON Ph. 0417-242-044

Site staffing 24 HRS 7 DAYS

GLENN TROY

0409080749

Details of Depots

Depot No. Depot Type Goods Stored in Depot

Qty

1	MAGAZINE	Class 1.1D	4000 KG	
	UN 0042 BOOSTERS		200 NO.	
	UN 0241 EXPLOSIVE, BL	ASTING, TYPE E	1000 KG	
2	MAGAZINE	Class 1.1B	1100 NO.	
	UN 0029 DETONATORS,	NON-ELECTRIC		300 NO.
	UN 0360 DETONATOR A		ELECTRIC	400 NO.
5	ABOVE-GROUND TANK	Class C1	100000 L	
	UN 00C1 DIESEL		40000 I	

Licence No. 35/012865

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER WALES

DECLARATION: Please renew licence number 35/012865 to 29/11/2002. I confirm that all the licence details shown below are correct (amend if necessary).

Signature)

(Please print name)

for: PIONEER CONSTRUCTION MATERIALS PTY LTD

THIS SIGNED DECLARATION SHOULD BE RETURNED TO: (please do not fax)

WorkCover New South Wales

Enquiries: ph (02) 9370 5187

fax (02) 9370 6104

Dangerous Goods Licensing Section

GPO BOX 5364 SYDNEY 2001

Details of licence on 31 October 2001

Licence Number 35/012865

Expiry Date 29/11/2001

Licensee

PIONEER CONSTRUCTION MATERIALS PTY LTD ACN 009 679 734

WALGROVE QUARRY

G WALLBROVE 5

3042.

Postal Address: WALGROVE QUARRY BOX \$\textstyle P O MOUNT DRUITT VILLAGE NSW 2770

Licensee Contact BINURARMENTER (MANAGER), Ph. 02 9625 0444 Fax. 02 9625 2435

Premises Licensed to Keep Dangerous Goods

PIONEER CONSTRUCTION MATERIALS PTY LTD WALGROVE QUARRY

LOT 11 OLD WALLGROVE RD EASTERN CREEK 2766

Nature of Site GRAVEL AND SAND QUARRYING

Major Supplier of Dangerous Goods VARIOUS

Ph. 02 4261 2249 DAVID BOLTON Emergency Contact for this Site BILL PARMENTER (HOME)

Site staffing 24 HRS 7 DAYS

Ph: 0417242044.

Details of Depots

Depot No.	Depot Type	Goods Stored in Depot	Qty
1	MAGAZINE	Class 1.1D	4000 KG
	UN 0042 BOOSTER	200 NO.	
	UN 0241 EXPLOSIV	VE, BLASTING, TYPE E	1000 KG
2	MAGAZINE	Class 1.1B	1100 NO.
	UN 0029 DETONAT	TORS, NON-ELECTRIC	300 NO.
	UN 0360 DETONAT	TOR ASSEMBLIES, NON-ELECTRIC	400 NO.
5	ABOVE-GROUND TANK		100000 L
	UN 00C1 DIESEL		40000 L

over New South Wales, 400 Kent Street, Sydney 2000, Telephone, 9370 5000 ALL MAIL TO G.P.O. BOX 5364 SYDNEY 2001. SCIENTIFIC SERVICES BRANCH 5/012865

Dangerous Goods Licensing ph. (02) 9370 5187 fax (02) 9370 6105 WORKCOVER e-mail: scid@workcover.nsw.gov.au NEW SOUTH WALES

Attn: FRANK CALABRIA

Licensee: PIONEER CONSTRUCTION MATERIALS PTY LTD ACN 009 679 734

LEVEL 5, 75 GEORGE ST PARRAMATTA NSW 2150

LICENCE FOR THE KEEPING OF DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATIONS THEREUNDER

Licence Number 35/012865

Expiry Date 30/11/1999

No. of Depots 5

Licensee Contact FRANK CALABRIA Ph. 9354 2607 Fax. 9354 2699

Premises Licensed to Keep Dangerous Goods

PIONEER CONSTRUCTION MATERIALS PTY LTD

LOT 11 OLD WALLGROVE RD

FASTERN CREEK 2766

Nature of Site GRAVEL AND SAND QUARRYING

Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site MARTIN MENOLE Ph. 9625 5946 BILL PARMENTER 03926630

Site staffing 24 HRS 7 DAYS

Details of	Depots	160 July 160 July 200 (2)	Oth
Depot No.	Depot Type	Goods Stored in Depot	Qty
1	MAGAZINE	Class 1.1D	4000 KG 200 NO.
	UN 0042 BOOSTER UN 0241 EXPLOSIV	E, BLASTING, TYPE E	1000 KG
2	MAGAZINE UN 0029 DETONAT	Class 1.1B ORS, NON-ELECTRIC	1100 NO. 300 NO. 400 NO.
		OR ASSEMBLIES, NON-ELECTRIC	15000 L
3	UNDERGROUND TANK UN 1203 PETROL	Class 3 — DELITTE	14700 L
4	UNDERGROUND TANK UN 1203 PETROL	Class 3 - DALATE.	15000 L 14000 L
5	ABOVE-GROUND TANK	Class C1	100000 L

THROA TWO MIKS (3 MO 4) HAVE BRIEN REMOVED FROM SITTE.

PLEASE RETAIN AS PROOF OF LICENCE Issued by Workcover Authority of New South Wales on 29 January 1999

Work Cover New South States 1200 of the Street, Sydney 2000. Tel: 9370 5000 Fax: 9370 5999 ALL MAIL TO G.P.O. BOX 5364 SYDNEY 2001

REMINDER NOTICE

APPLICATION FOR RENEWAL

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/012865 to 2001/2002. I confirm that all the licence details shown below are correct (amend if necessary).

(Signature)

(Please print name)

for: PIONEER CONSTRUCTION MATERIALS PTY LTD

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales

Dangerous Goods Licensing Section

GPO BOX 5364

SYDNEY 2001

Enquiries: ph (02) 9370 5187

fax (02) 9370 6104

Details of licence on 8 August 2000

Licence Number 35/012865

Expiry Date 30/11/1999

No. of Depots 3

PIONEER CONSTRUCTION MATERIALS PTY LTD ACN 009 679 734

WALGROVE QUARRY

Postal Address: WALGROVE QUARRY BOX V42 P O MOUNT DRUITT VILLAGE NSW 2770

Licensee Contact BILL PARMENTER(MANAGER) Ph. 02 9625 0444 Fax. 02 9625 2435

Premises Licensed to Keep Dangerous Goods

PIONEER CONSTRUCTION MATERIALS PTY LTD WALGROVE QUARRY

LOT 11 OLD WALLGROVE RD

EASTERN CREEK 2766

Nature of Site GRAVEL AND SAND QUARRYING

Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site BILL PARMENTER (HOME) Ph. 02 4261 2249 - 6407 926630

Site staffing 24 HRS 7 DAYS

Details of Depots

Depot No.	Depot Type	Goods Stored in Depot	Qty
1	MAGAZINE	Class 1.1D	4000 KG
	UN 0042 BOOSTE	RS	200 NO.
	UN 0241 EXPLOSI	VE, BLASTING, TYPE E	1000 KG
2	MAGAZINE	Class 1.1B	1100 NO.
	UN 0029 DETONA	TORS, NON-ELECTRIC	300 NO.
	UN 0360 DETONA	TOR ASSEMBLIES, NON-ELECTRIC	400 NO.
5	ABOVE-GROUND TANK	Class C1	100000 L
	UN 00C1 DIESEL		40000 L

Application for Licence to Keep Dangerous Goods

new licence

pplication for

amendment

renewal of expired licence

30.11.90 EXPIM: PART A - Applicant and site information See page 2 of Guidance Notes. Name of applicant 009 679 734 Pioneer Construction Materials Pty Limited Postcode Suburb/Town-Postal address of applicant Parramatta 2150 LVI 5 75 George Street Trading name or site occupier's name Pioneer Construction Materials Pty Limited Contact for licence inquiries Name Phone Frank Calabria (02) 9354 2607 (02)9354 2699 5 Previous licence number (if known) 35/012865 Pioneer Concrete (NSW) Pty Ltd Previous occupier (if known) Site to be licensed Street Lof 11. Old Wallgrove Road Postcode Suburb / Town 2766 Eastern Creek Gravel & Sand quarying Main business of site Days per week 9 Site staffing: Hours per day 24 10 Site emergency contact Name Phone Martin Menole 9625 5946 11 Major supplier of dangerous goods Various 12 If a new site or for amendments to depots - see page 4 of Guidance Notes. Name of Accredited Consultant Date stamped Plan stamped by: I certify that the details in this application (including any accompanying computer disk) are correct and cover all licensable quantities of dangerous goods kept on the premises. Printed name 13 Signature of applicant CALABRIA FRANK

transfer

Please send your application, marked CONFIDENTIAL, to:

Dangerous Goods Licensing, Level 3, Locked Bag 10, Clarence Street, SYDNEY NSW 2000

Application for Licence to Keep Dangerous Goods

Please send your application, marked CONFIDENTIAL, to:

SYDNEY NSW 2000

Dangerous Goods Licensing, Level 3, Locked Bag 10, Clarence Street,

oplication for new lice		ment tra	ansfer	renewal of	expired licence
GKP clare 30/11/9					
PART A - Applicant	and site infor	mation See	page 2 of G AC		es.
Name of applicant	ONCRETE NO	5W Pty Ltz	800000000000000000000000000000000000000	000 301 8	79
	VI STANDARD STANDARD	300 F19 E12	Suburb/Tov		Postcode
Postal address of applican	o. Mt Druit	†	Mt Di		2770
Trading name or site occup	TO SERVICE STORY OF THE SERVICE STORY				
PIONEER CO		ISW PIL			
Contact for licence inquirie Phone Fax	es de la company	Name			
02) 9\$25 -3030	02) 9832 1026	Dennis	Dobson		
Previous licence number (i	if known) 35/ O	12865		RECE	IVED
Previous occupier (if know	vn) 5ar	ne		0 5 80	Y 1998
Site to be licensed P Str	reet				a computer -
(Lot 11)	old Wallgr	ove Road		SCIENTIFI	O DEUAIDED F
Suburb / Town			Po	stcode	Lilongo
	Eastern Cre	ek		27 66	order ite
Main business of site	Gravel . S	Sand Quan	rying		Literia 31.8.9
Site staffing: Hours per da	ay 10	Days per w	reek	6	
0 Site emergency contact Phone		Name			
02) 9625 -3	3030	Denni	s Dubson		
11 Major supplier of dangero	ous goods Ai	MPOL			
12 If a new site or for amend Plan stamped by: Nar	me of Accredited Co	onsultant	uidance Notes Da	ate stamped	
	Barry Be	né		18/5/98	3
certify that the details in this icensable quantities of dange	erous goods kept on	the premises.	ying compute		ect and cover all
13 Signature of applicant	Pri			THE RESERVE OF THE PARTY OF THE	Jaic
13 Signature of applicant		nted name	DOBSON		21.5.98

What- a depot? See page 5 of the Guidance Notes.

PART C - Dangerous Goods Storage Complete one section per depot.

If you have more denote than the space provided inhotocopy sufficient cheets first

Above Ground Tank	B C1			
the state of the s		100 00	DO L	
PG Proper Shipping Name Class (I, II, III)	Produc common		Typical quantity	Unit, e.g L, kg, m
DIESEL FUEL 3 CI	DIESEL		40,000	· L
Type of depot (see page 5)	Depot Class			
Proper Shipping Name Class (I, II, III)	Produc		Typical quantity	Unit, e.g L, kg, m
Type of depot (see page 5)	Depot Class			
Proper Shipping Name Class (I, II, III)			Typical quantity	Unit, e.ç L, kg, n
Type of depot (see page 5)	Depot Class			
PG Proper Shipping Name Class (I, II, III)	Produc		Typical quantity	Unit, e.ç L, kg, n
	Proper Shipping Name Class (I, II, III) Type of depot (see page 5) Proper Shipping Name Class (I, II, III) Type of depot (see page 5)	Type of depot (see page 5) Proper Shipping Name Class (I, II, III) Depot Class Proper Shipping Name Class (I, II, III) Depot Class Proper Shipping Name Class (I, II, III) Depot Class Product Common Class (I, II, III) Type of depot (see page 5) Depot Class Product Common Class (I, II, III) Depot Class	Type of depot (see page 5) PG Product or common name Type of depot (see page 5) Depot Class storage PG Product or common name PG Product or common name PG Product or common name PG Product or common name	Type of depot (see page 5) PG Proper Shipping Name Class (I, II, III) Type of depot (see page 5) Depot Class storage capacity Proper Shipping Name Class (I, II, III) PG Product or Common name Typical quantity Proper Shipping Name Class (I, II, III) Depot Common name Typical quantity Type of depot (see page 5) Depot Class Storage capacity PG Product or Typical Type of depot (see page 5) Depot Class Storage capacity

Reference

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION:

Please renew licence number 35/012865 to 1997. I confirm that all the licence details shown below are correct (amend if necessary).

(Signature)

(Please print name)

(Date signed)

for: PIONEER CONCRETE (NSW) P/L

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales Dangerous Goods Licensing Section (Level 3) Locked Bag 10

P O CLARENCE STREET 2000

SCIENTIFIC SERVICES

MENCH BRANCH

Details of licence on 14 October 1996

Licence Number 35/012865

Expiry Date 30/11/96 RECEIVED

PIONEER CONCRETE (NSW) P/L ACN 000 301 879 11 ROOM Licensee

Postal Address BOX V42 PO, MOUNT DRUITT VILLAGE 2770 2 OCT 1996
Licensee Contact

Licensee Contact Oreg Leghissa Ph. 625 5946 Fax. 625 2435

Premises Licensed to Keep Dangerous Goods

OLD WALLGROVE RD EASTERN CREEK 2766

Nature of Site CONSTRUCTION MATERIALS NEC - Mining Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site Bob Graham/Martin Mende ph. 625 5946

Site staffing 24 hrs 7 days

Details of Depots

Depot No.	Depot Type	Goods Stored in Depot	Qty
1	MAGAZINE	Class 1.1d UN 0241 EXPLOSIVES BLASTING TY UN 0042 BOOSTERS	4000 kg 1000 kg 200 No.
3	MAGAZINE	Class 1.1b UN 0360 DETONATOR ASSEMBLIES, UN 0029 DETONATORS, NON-ELECTR	1100 No. 400 No. 300 No.
4	UNDERGROUND TANK	Class 3 UN 1203 PETROL	1 5000 L 14700 L
	UNDERGROUND TANK	Class 3 UN 1203 PETROL	15000 L 14000 L

WORKCOVER AUTHORITY

LICENCE TO KEEP DANGEROUS GOODS

(Dangerous Goods Act 1975)

Application for new licence, amendment er transfer

Name of applicant	and S. C.		ACN
PROJET CONO	DETE (CO)) The 120	000-301-879
Site to be licensed No Street		11/11/11	1
mare Own W	ALGROSE (29	
Suburb/Town	24/1/2	Postcode	<u>Harvania a s</u>
EASTERN CREEK		aribb	RECEIVED
Previous licence number (if know	m) 35 019	865	2 5 OCT 1995
Nature of site	OCK CLONDEY	& CROSHNY Plan	SCIENTIFIC SERVICES
Emergency contact on site:	Name		BRANCH
Phone (CR) 625 Septh	BOB GRAM	an MARTIN N	IE-DE
Site staffing: Hours per day	y 24	Days per week	7
			1
	ods ICI + A	MOOL WAD.	
. Major supplier of dangerous goo	The second second		Date stamped
. Major supplier of dangerous goo	ation		Date stamped
Major supplier of dangerous good. If new site or significant modifical Plan stamped by:	ation edited consultant's na	me:	DATA
. Major supplier of dangerous good. If new site or significant modificate Plan stamped by: Accre Number of dangerous goods de	edited consultant's na	me:	Date stamped DATA 30 OCT 1995
. Major supplier of dangerous good. If new site or significant modificate Plan stamped by: Accre Number of dangerous goods de	edited consultant's na	me:	DATA 30 OCT 1995
. Major supplier of dangerous good. If new site or significant modificate Plan stamped by: Accre Number of dangerous goods de	edited consultant's na	me:	30 OCT 1995
. Major supplier of dangerous good. If new site or significant modificate Plan stamped by: Accre Number of dangerous goods de 0.Trading name or occupier's name	edited consultant's na	me:	30 OCT 1995 Postcode
. Major supplier of dangerous good. If new site or significant modificate Plan stamped by: Accre D. Number of dangerous goods de O.Trading name or occupier's name of the control of th	edited consultant's na	me:	30 OCT 1995 Postcode
. Major supplier of dangerous good. If new site or significant modificate Plan stamped by: Accre O. Number of dangerous goods decounted and the control of the control o	edited consultant's na	me: Suburb/Town	30 OCT 1995 Postcode
Major supplier of dangerous good. If new site or significant modificate Plan stamped by: Accre Number of dangerous goods de contrading name or occupier's name of the contrading nam	pots at site A	Suburb/Town Name	30 OCT 1995 Postcode 2770
Major supplier of dangerous good. If new site or significant modificate Plan stamped by: Accre Number of dangerous goods de contrading name or occupier's name of the contrading nam	pots at site A	Suburb/Town	30 OCT 1995 Postcode 2770
7. Major supplier of dangerous goods. 8. If new site or significant modificate Plan stamped by: 9. Number of dangerous goods de plant and the plant and th	pots at site 4	Suburb/Town Name Name	30 OCT 1995 Postcode 2770
9. Number of dangerous goods de 10. Trading name or occupier's name 11. Postal address of applicant 12. Contact for licence enquiries: Phone Fax	pots at site 4	Suburb/Town Name Name Vor the accompanying compu	30 OCT 1995 Postcode 2770

Please complete attached site sketch, depot listing and check sheet (if required) and return to WorkCover Authority in envelope provided.

Form DG1

Site Sketch

If you have more depots than the space provided, photocopy sufficient sheets first.

Depot number	Type of depot		(Class	Licensed maxi storage capa		
1	Explosive Magazia	=	,	1.1	Acco kg		
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	United
02A1	Exaceus Bosting	1.10	~ ~	~ 2	Fauregra Magnes	1000	kg
0042	Boostello w/at Detaurations	Q _{ni}	-/-	~ 0	Permises	200	UNTS

Depot number	Type of depot	Class	Licensed ma storage ca	
2				
UN number	Shipping name	Pkg. Class Group EPG	Product or common name	Typical Unite quantity L, kg, n
	MON SECHLIC	- A-A-A-	Accounts.	
حطده	u u			

Depot number	Type of depot			Class	Licensed maxi storage capa		
3	CARGROUND TAX			3	15 000 L	ances	
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Unit eg L, kg, m
1203	Morae Spierr	3	11	Yes	UNICADED PAROL	14700	-
1205	MOLOS SOLDIA			RES .	CHEADED PAROL	14 100	2

mum acity	
10G.	
Typical quantity	Uniteg L, kg, m
14 000	_
	14.000

If you have more depots than the space provided, photocopy sufficient sheets hist.

Depot number	Type of depot		(Class	Licensed maxi storage capa		
2	Explosive MAGIAZI	プド	1	.1	1100 000		
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Unite L, kg, r
akso	Demande Aderhaus	1.1B	~ ~	7/7	PRINCES DELAYS	200	200
celas		b	~ ~	-12	PRIMADETS	200	しへを
0029	Detarrals	B	~h	~/~	No 8 Dionards	300	ンベマ
	the factor of the second			4		e reserve	200 No. May
	dans Mari				en a constituent de la constitue de la constit	No. of the Control of	
		h 490	s		May 10		

Depot number	Type of depot	Class	Licensed maximum storage capacity
UN number	Shipping name	Pkg. Class Group EPG	Product or Typical Unit eg common name quantity L,kg, m
	ww		

LICENCE TO KEEP DANGEROUS GOODS

(Dangerous Goods Act 1975)

. Name of applic	ant				ACN		
PIONEER CONCRETE (USW) PTY. LTD.					00	00-30	01-87
. Site to be licen	sed Street						-5
NONE	ow w	ALLCROVE	ROND.		1,100		
Suburb/Town	7 / 2			Postcode			100
ENSTERN CREEK				2770			
Previous licendNature of siteEmergency con Phone	HARD RO	nown) 35/01/	7.13-1-1	ING PLAN	۲۰.	\$ 14	404
. Site staffing:	5946 Hours per	808 CR2		Days per week		7	
Site staffing: +SEURITY Major supplier If new site or s	Hours per of dangerous of dangerous of dangerous of the	day 24	+ pw	Days per week	7 34	7	ed
. Site staffing: +Sましにいてイ . Major supplier	Hours per of dangerous of dangerous of dangerous of the	day 24	+ pw	Days per week	[-	7	
. Site staffing: + STUR: Y. Major supplier If new site or s Plan stamped Number of dar O. Trading name	Hours per of dangerous e ignificant modi by: Ac ngerous goods or occupier's n	goods ICI fication ccredited consultant's vication depots at site	name:	Pour CT	7 34	7	
. Site staffing: +SEURITY . Major supplier . If new site or s Plan stamped . Number of dar 0. Trading name	Hours per of dangerous ignificant modi by: Ac ngerous goods or occupier's n	goods ICI fication ccredited consultant's	name:	Days per week	7 34	te stampe	
. Site staffing: + SEURITY . Major supplier . If new site or s Plan stamped . Number of dar 0. Trading name PIONEER 1. Postal address	Hours per of dangerous ignificant modi by: Ac ngerous goods or occupier's n	goods ICI fication ccredited consultant's vication depots at site	name:	Pour CT	DA S JUI Da	te stampe	