ASSESSMENT OF IMPACTS ON SALTWATER INTAKE TUNNELS FOR SSDA6 SYDNEY INTERNATIONAL, EXHIBITION AND ENTERTAINMENT PRECINCT -ICC HOTEL

Prepared for Lend Lease

Report PSM1986-021R – Rev.4

August 2013

CONTENTS

1.	INTR	ODUCTION	1					
	1.1. 1.2. 1.3. 1.4.	Background Site description	1 1 2 3					
2.	SCO	PE OF WORK	4					
3.	EXIS	TING SALTWATER INTAKE TUNNELS	4					
4.	GEO	TECHNICAL MODEL	6					
		Geotechnical units Groundwater	6 7					
5.	ASSESSMENT OF IMPACTS ON SALTWATER INTAKE TUNNELS							
		Physical impact 5.2.1. General 5.2.2. Drilling of pile holes 5.2.3. Trench excavation for stormwater pipe diversion 5.2.4. Pile instability Vibration limits	7 7 8 9 9 10 10 11 12 12 12 13					
6.	CON	CLUSION AND RECOMMENDATIONS	14					

REFERENCES

FIGURES

- 1
- Site plan Geotechnical section 2
- 3 Geotechnical section

APPENDICES

- A B
- Proposed building layout and pile loads Extract from archaeological assessment report
- C D Combined services plan
- Stormwater diversion drawing
- Coffey borehole plan and sections, 2013 investigation Compilation of borehole logs Е
- F

1. INTRODUCTION

This report supports a State Significant Development Application (SSDA) submitted to the Minister for Planning and Infrastructure pursuant to Part 4 of the Environmental Planning and Assessment Act 1979 (EP&A Act).

The Application (referred to as SSDA6) seeks approval for construction of the International Convention Centre (ICC) Hotel component of the Sydney International Convention, Exhibition and Entertainment Precinct (SICEEP) at Darling Harbour.

This SSDA follows SSDA1, which seeks approval for the core convention, exhibition and entertainment facilities of the SICEEP Project; SSDA2, a staged application that sets out a Concept Proposal for a new mixed use neighbourhood at Darling Harbour known as 'The Haymarket'; and a number of detailed proposals (SSDA3, SSDA4, and SSDA5) for use of development plots within The Haymarket. SSDAs 1 and 2 were submitted to the Department of Planning and Infrastructure (DoPI) in March 2013, and the SSDAs 3-5 were submitted in May 2013.

The ICC Hotel forms part of the SICEEP Project, which will deliver Australia's global city with new world class convention, exhibition and entertainment facilities and support the NSW Government's goal to "make NSW number one again".

1.1. <u>Overview of proposed development</u>

The proposal relates to a SSDA for the ICC Hotel component of the SICEEP Project. The hotel is located at the northern end of the precinct and comprises a single building with 656 rooms. The hotel is being developed by Lend Lease and is consistent with Darling Harbour Live's Preferred Precinct Plan.

More specifically, this SSDA seeks approval for the following components of the development:

- Demolition of existing site improvements;
- Associated tree removal and replanting;
- Construction and use of a single hotel tower with 656 rooms and including guest facilities, restaurant and ballroom;
- Public domain improvements including integration with existing / proposed works; and
- Extension, realignment and augmentation of physical infrastructure / utilities as required.

1.2. <u>Background</u>

The NSW Government considers that a precinct-wide renewal and expansion of the existing convention, exhibition and entertainment centre facilities at Darling Harbour is required, and is committed to Sydney reclaiming its position on centre stage for hosting world-class events with the creation of the Sydney International Convention, Exhibition and Entertainment Precinct.

Following an extensive and rigorous Expressions of Interest and Request for Proposals process, a consortium comprising AEG Ogden, Lend Lease, Capella Capital and Spotless was announced by the NSW Government in December 2012 as the preferred proponent to transform Darling Harbour and create SICEEP.

Key features of the Preferred Precinct Plan include:

- Delivering world-class convention, exhibition and entertainment facilities, including:
 - Up to 40,000 m² exhibition space;
 - Over 8,000 m² of meeting rooms space, across 40 rooms;
 - Overall convention space capacity for more than 12,000 people;
 - A ballroom capable of accommodating 2,000 people; and
 - A premium, red-carpet entertainment facility with a capacity of 8,000 persons.
- Providing a hotel complex at the northern end of the precinct, immediately adjacent to the new International Convention Centre.
- A vibrant and authentic new neighbourhood at the southern end of the precinct, called 'The Haymarket', including apartments, student accommodation, community facilities, shops, cafes and restaurants.
- Renewed and upgraded public domain that has been increased by a hectare, including an outdoor event space for up to 27,000 people at an expanded Tumbalong Park.
- Improved pedestrian connections linking to the proposed Goods Line (formerly Ultimo Pedestrian Network) drawing people between Central, Chinatown and Cockle Bay Wharf as well as east-west between Ultimo/Pyrmont and the City.

1.3. <u>Site description</u>

The SICEEP Site is located within Darling Harbour. Darling Harbour is a 60 hectare waterfront precinct on the south-western edge of the Sydney Central Business District that provides a mix of functions including recreational, tourist, entertainment and business.

With an area of approximately 20 hectares, the SICEEP Site is generally bound by the Light Rail Line to the west, Harbourside shopping centre and Cockle Bay to the north, Darling Quarter, the Chinese Garden and Harbour Street to the east, and Hay Street to the south. The SICEEP Site has been divided into three redevelopment areas – Bayside, Darling Central and The Haymarket.

The ICC Hotel Site (refer to figure below):

- is located within the northern end of the Bayside precinct;
- is bound by Harbourside Shopping Centre to the north and east, the International Convention Centre to the south and Darling Drive to the west; and
- occupies an area of approximately 3,730 m².

1.4. Planning approvals strategy

The SICEEP Project will result in the lodgement of numerous SSDAs for the various components of the redevelopment project. SSDAs have already been lodged for the PPP component of the SICEEP Project (comprising the convention centre, exhibition centre, entertainment facility and ancillary commercial premises and associated public domain upgrades), the Stage 1 Concept Proposal for The Haymarket, and the Stage 2 detailed proposals for three of the development plots within The Haymarket. Future applications will be lodged for the remaining development plots within The Haymarket Site.

This Application relates to a SSDA6 for the ICC Hotel component of the SICEEP Project and is consistent with Darling Harbour Live's Preferred Precinct Plan.

2. <u>SCOPE OF WORK</u>

This report presents a preliminary assessment of the impacts of the proposed hotel development on the existing historic saltwater intake tunnels which are located adjacent to the site.

This work was undertaken by Pells Sullivan Meynink (PSM) for Lend Lease Development Pty Ltd (Lend Lease).

It is noted that PSM has previously undertaken an initial assessment for a different proposed development of the site (Ref. PSM1986-011R). The current proposal differs in regards to the building size and footing layout.

Documents provided by Lend Lease and relied upon in undertaking this work are included in the appendices.

3. EXISTING SALTWATER INTAKE TUNNELS

The saltwater intake tunnels are located immediately to the north of the hotel site, as shown in Figure 1. The crown level (top) of the tunnel excavations are located approximately 6 m below the existing surface level.

These tunnels were completed by about 1928 and provided cooling water from Darling Harbour for the Ultimo Power House (now the Powerhouse Museum). The infrastructure is included in the Sydney Harbour Foreshore Authority's Heritage and Conservation Register.

It is noted that saltwater intakes considered in this report were a later addition to the Ultimo Power House, and that the original intake conduits had been completed by about 1899, though along a different alignment.

The intake tunnels comprise twin 1.8 m diameter pipes which run parallel to each other along most of their 850 m alignment. They run from the Powerhouse Museum northwards parallel to Darling Drive, and then turn east towards Darling Harbour. Approximately 50 m from the harbour the tunnels diverge, and each terminates in a substantial concrete intake structure located beneath Wharf 37 and Wharf 39.

Based on the historical records summarised in the Archaeological Assessment and Impact Statement prepared by Casey & Lowe Pty Ltd (Reference 1, extract of which is included in Appendix B), for the majority of their length the pipes were laid within a tunnel excavated in sandstone bedrock. Figure 2.45 in the report shows a dimensioned cross section of the tunnel which indicates an excavated height of 2.4 m and a span of 4.2 m. The historical photos in the report do not show any indications of structural support installed within the tunnel (e.g. timbering), which suggests that the rock conditions encountered were good enough to be self-supporting (at least in the locations shown in the photos). Some of the photos also suggest that the crown may have been excavated

higher than indicated by the dimensioned drawing, possibly as a result of over-break along pre-existing defects in the rock.

Where the pipes enter the harbour they are understood to be supported by concrete piles. The location of the end of the tunnel and start of the underwater section is not known with any certainty, though is probably located near where the tunnels diverge (see Figure 1).

The intake pipes each comprise steel reinforced concrete pipes with an internal diameter of 1.8 m, and a wall thickness of 75 mm at the springline (sides) and 100 mm in the crown and invert (top and bottom). They were constructed off site in 7.6 m lengths, then manoeuvred into position within the tunnels and placed on a concrete footing. The weight of each length is approximately 30 tonnes.

The pipes are referred to as 'Monier' pipes, which is a trade name for an early reinforced concrete manufacturing technique. Gummow Forrest and Company imported a Monier pipe making machine from Europe in 1897 and set up a business near Darling Harbour (http://www.austehc.unimelb.edu.au/tia/848.html). The 22 June 1899 edition of the Sydney Morning Herald contains proceedings of the Engineering Section of the Royal Society, which included a précis of a paper by Mr Gummow entitled "Manufacture of Monier pipes". The article describes manual placement of cement grout and mortar on a form, followed by tensioned netting and a spiral wound wire. A second layer of grout and mortar is applied, and then a second spiral wire, and a third and final layer of mortar applied to achieve the required thickness. This may have been the process used in the construction of the original intake conduits (i.e. installed by about 1899).

Gummow Forrest and Company Ltd were purchased by the NSW Government in 1915 and became Monier State Pipe and Reinforced Concrete Works. A further refinement to the construction process was the introduction of 'vibra-spinning' which allowed simultaneous vibration while spinning of the pipe, which improved concrete quality.

The space in the tunnel between the pipes and rock was manually filled with rubble and poor quality concrete. Figure 2.47 from the archaeological assessment shows hand-packing of rubble around the pipes, which suggests that the rubble was not compacted, and used merely to ensure that the pipes remained on their footings.

Service drawings prepared by Lend Lease (Appendix C) indicate the approximate location of the tunnels. These drawings show two existing easements for the tunnel as shown in Figure 1. The easement dimensions are as follows:

- Easement on west side of Darling Drive is:
 - o upper limit RL -3.00 m AHD
 - o lower limit RL 5.70 m AHD (i.e. easement height of 2.70 m)
 - o width 4.0 m
- Easement on east side of Darling Drive is:
 - o upper limit RL -2.33 m AHD
 - \circ lower limit RL 4.72 m AHD (i.e. easement height of 2.39 m)
 - o width 4.7 m

Therefore the tunnel dimensions are larger than some of the dimensions of the existing easements, suggesting that the easement details provide only an approximate indication of the structure's size and location.

Note that there is currently no easement for the 65 m long section of the tunnel alignment which passes closest to the hotel.

For the purpose of this report it is assumed that the tunnels are centred within the existing easements and run in a straight line between them.

4. <u>GEOTECHNICAL MODEL</u>

4.1. <u>Geotechnical units</u>

A geotechnical model was prepared for the site based on a range of geotechnical data provided by Lend Lease, as well as from ten boreholes drilled for the hotel site by Coffey Geotechnics between May and June 2013 (Reference 2). The location of the boreholes is shown in Appendix D, and selected borehole logs are included in Appendix E.

The hotel is located on land reclaimed from Darling Harbour, as indicated by the location of the 1822 and 1854 shorelines shown on Figure 1.

The recent geotechnical investigation includes boreholes BH201 and BH202 drilled in the immediate vicinity of the saltwater intake tunnels. These indicate relatively good rock conditions, with bedrock occurring at about a metre depth.

Figure 2 and Figure 3 present two geotechnical sections extracted from the 2013 Coffey report, with the inferred location of the saltwater intake tunnels also shown.

Assessed geotechnical units, levels, and thicknesses for the site are shown in Table 1 below.

GEOTECHNICAL UNIT	REDUCED LEVEL OF TOP OF UNIT RL (m) AHD	THICKNESS (m)
FILL, ALLUVIUM	2.1 to 3.2	3 to 11
CLASS III SANDSTONE	2 to -8	1 to 3
SHALE INTERBED (CLASS III)	-6 to -7 (absent in places)	0.5 to 1
CLASS II SANDSTONE	-3 to -10	3
CLASS I SANDSTONE	-5 to -10	> 20

TABLE 1 GEOTECHNICAL MODEL

Note: 1. Rock has been classified in accordance with Reference 3.

Inferred bedrock surface contours are also shown in Figure 1. These indicate that the rock levels drop from the west to the east by about 10 m over a distance of roughly 80 m.

4.2. <u>Groundwater</u>

Groundwater levels encountered in borehole investigations in the immediate vicinity of the shoreline have been measured at levels of between RL 1.25 m and RL -0.7 m.

It is noted that tide levels rarely exceed the range between RL -1.0 m and RL 1.2 m (Fort Denison), and therefore the intake tunnels would be permanently immersed.

5. ASSESSMENT OF IMPACTS ON SALTWATER INTAKE TUNNELS

5.1. Adverse mechanisms

Potential adverse effects on the saltwater intake tunnels have been considered in terms of those arising from the proposed hotel construction:

- Damage to the tunnel and pipes by physical impact from the drilling of pile holes.
- Damage to the tunnel and pipes by physical impact from the excavation of the trench for the diverted stormwater pipe.
- Damage to the tunnel and pipes caused by instability of the loaded pile (i.e. failure of the pile into the adjacent tunnel excavation).
- Damage to pipes from vibration caused by pile excavation.
- Deformation of the intake tunnel and pipes due to settlement of the hotel pile foundations.
- Vibration from excavation of trench for diverted stormwater pipe.

The following sections present an assessment of the above effects.

5.2. Physical impact

5.2.1. General

The pile layout plan provided to PSM does not indicate pile lengths or founding levels. The closest pile to the intake tunnels is of 900 mm diameter and from the indicative basement plan included in Appendix A is shown to be located 4 m from the centreline of the saltwater tunnel easement.

As noted previously in Section 3, the location of the saltwater intake tunnel is only known approximately.

5.2.2. Drilling of pile holes

The actual distance between the closest proposed pile and the existing tunnel excavation is related to the following construction tolerances:

- pile location in plan,
- pile verticality, and
- excavated tunnel size (i.e. compared to the design drawing)

Based on previous piling experience, for a deep pile drilled with an auger and coring bucket, the out-of-plan deviation at 8 m depth may be in the order of 0.3 m.

Tunnels are frequently excavated larger than the design dimensions. For the purpose of this assessment an allowance for 0.5 m lateral over-excavation is considered appropriate, which corresponds to an overall tunnel span of 5.2 m.

In addition, because the location of the tunnel is only approximately known, the actual plan location could be different to that assumed at present. It is proposed that an allowance of 1 m be provided to account for this uncertainty.

For the anticipated rock conditions, a pillar width of at least 0.5 m is considered necessary between the side of the closest pile and the excavated tunnel wall. This width is to prevent excessive disturbance of the rock pillar located between the pile hole and the tunnel excavation.

Adding the above considerations results in a separation distance of 4.4 m between the centreline of the tunnel and the side of the closest pile (4.2/2 + 0.5 + 1.0 + 0.5 + 0.3). Note that this is in regards to physical impact only, and does not consider vibration effects or pile settlement, which are addressed in the following sections.

As noted above, the closest proposed pile is located closer to the tunnel than the proposed set-back distance. Therefore additional precautions are proposed to ensure that the pile hole does not strike or disturb the tunnel excavation:

- Drill a small diameter cored pilot hole (i.e. using a geotechnical investigation drilling rig) to check the location of the tunnel prior to the commencement of pile hole excavation. This would be located 0.5 m from the proposed side of the pile, and drilled vertically, to confirm the presence of at least 0.5 m rock between the pile and the tunnel.
- Undertake additional checks on the set-out position of the pile.
- Employ additional checks on the verticality of the pile.

5.2.3. Trench excavation for stormwater pipe diversion

A drawing showing the proposed stormwater pipe diversion is included in Appendix D, and shows that this involves:

- New 1500 mm diameter stormwater pipe
- Invert RL -0.4 m (Approx.)
- Clearance from top of intake tunnel to bottom of pipe 1.7 m (Approx.)

There is a potential for the trench excavation to intersect the tunnel excavation of the intake tunnel.

The base of the trench excavation is likely to be about 0.7 m below the invert level of the pipe (i.e. about RL -0.7 m where it passes over the existing tunnels).

The top of the tunnel easement on the east side of Darling Drive is at RL -2.33 m, and the easement height is 2.39 m. This compares to the dimensioned drawings which show a tunnel height of 2.4 m, and historic photos, some of which indicate the tunnel crown could be 0.5 m higher. Therefore the tunnel crown could be at RL -1.8 m, and possibly even higher.

Therefore the thickness of the rock between the tunnel crown and the base of the trench is likely to be 1.1 m or less. To manage to risk of intersecting the tunnel excavation, the following measures are proposed:

- Minimise the depth of trench excavation.
- Drill a small diameter cored pilot hole (as described above) to confirm the rock cover above the tunnel crown.

5.2.4. Pile instability

Where the pile toe level is located above the invert (floor) level of the adjacent tunnel, there is a potential for failure of the pile into the tunnel. Therefore it is recommended that the pile toe levels be such that they are located at least 1 m below a 45° 'line of influence' projecting upwards from the side of the tunnel.

This may result in the lengths of piles located near the tunnel being greater than would otherwise be required.

5.3. <u>Vibration limits</u>

The published literature provides some guidance in regards to the tolerable vibration limits for various types of structure:

- 4 mm/s for structurally unsound structures under heritage protection (West German vibration criterion for blasting, Reference 6).
- 12 mm/s for old residential structures in very poor condition (Chae, Reference 7)
- 2 mm/s up to 30 mm/s for historic buildings in other countries (Reference 6).
- 30 mm/s for well-braced structures with heavy elements, structurally sound (West German vibration criterion for blasting, Reference 6).

The pipes at the time of construction are likely to be fairly robust, such that they could readily tolerate vibration of 30 mm/s. As described in the previous section, the condition of the 85 year old reinforced concrete pipes is uncertain.

For the purposes of this assessment, an acceptable vibration limit in the order of 15 mm/s is proposed. This is about half of the value which would apply for the pipes at the time when they were constructed.

5.4. <u>Tolerable stress limits</u>

5.4.1. 'Reverse engineering' of pipe design

Details of the pipe reinforcing details are not shown in the available documents, though the basic pipe construction methodology is described above in Section 3. It is inferred from the pipe thickness that the prestressed reinforcing wires would be located about 50 mm from the inside face of the pipes so as to provide at least 20 mm cover to the outer wires. This implies that the inner 50 mm of concrete is maintained in compression by the tensioned wires.

In order to form some understanding of the likely structural capacity of the pipes, it is necessary to undertake 'reverse engineering' from the details that are known or inferred. This is to facilitate assessment of the forces and stresses for which the pipe was designed, and so permit a more realistic assessment of the capacity of the pipes when subjected to additional deformation or loads.

Several loading scenarios are considered below, with stresses in the pipe calculated for each. Note that the calculated stresses do not consider the effect of prestressing. The effect of prestressing forces (i.e. from the tensioned spiral wound wire) would result in the actual stresses being more compressive than the calculated stresses. This effect is considered in the assessment of acceptable limits.

It is frequently the case for precast concrete elements that the critical loading conditions they experience is during their handling and transporting between the factory and their final position. These conditions also include the case where the concrete is not fully cured and is thus relatively weak. There may also be dynamic loading conditions such as due to lifting and transportation.

Current precast concrete is regularly constructed with compressive strengths in excess of 60 MPa (http://www.cpaa.asn.au). In the 1920s, it is estimated that the 'vibra-spun' Monier pipes may have achieved a somewhat lower strength, say in the order of 25 MPa to 30 MPa. The working stress would probably be no greater than half this value, say 10 MPa (compression).

Based on the review of the various loads the original designers may have considered, and the proposed working stress of 10 MPa, it seems probable that the prestress would have been designed to achieve a hoop compressive stress in the order of 2 MPa. It is estimated that this would apply for the inner 50 mm wall thickness of the pipe. The implications of this in regards to steel quantity have been checked and appear realistic (i.e. 5 mm diameter wires spaced at about 20 mm, and stressed to 150 MPa).

Therefore to avoid cracking of the prestressed lining of the pipe (at the time of construction), tensile stresses on the inside face would need to be limited to less than about 4 MPa (i.e. 2 MPa prestress plus 2 MPa tensile strength of concrete). This assessment appears consistent with the various loading scenarios considered and other pipe details.

TABLE 3 PIPE SERVICE LOADING CONDITIONS AND ASSESSED WALL STRESSES

		CALCULATED WALL STRESSES ^(1.)			
	LOADING CONDITION	INSIDE FACE	OUTSIDE FACE		
		(MPa)	(MPa)		
	Pipe placed on flat surface.	+0.7	+0.7		
c	Stresses calculated from Phase ² analysis.	-0.8	-0.6		
atio	Pipe placed on timbers.	+1.4	+1.4		
Handling and transportation	Extrapolation based on Phase ² analysis of continuously supported pipe.	-1.6	-1.2		
and tra	Pipe section suspended from two slings (Ref. Figure 2.51 of heritage report).	+0.5 -0.5	+0.5 -0.5		
ndling a	Hand calculation based on pipe geometry and weight.	(longitudinal stresses)	(longitudinal stresses)		
Har	Dynamic loading condition.	+2.8	+2.8		
	Arbitrarily assumed to be about double the (static) loading conditions considered above.	-3.2	-2.4		
	Pipe installed in tunnel and buried by 0.5 m of rubble filling.	+1.8 -1.6	+1.6 -1.3		
Φ	Stresses calculated from Phase ² analysis.	-1.0	-1.3		
Service	Pipe dewatered for inspection or maintenance (i.e. by operation of the valve at the inlet structure beneath the wharves). External water pressures correspond to a phreatic surface at RL 1.0 m.	+0.7 (hoop stress)	+0.7 (hoop stress)		
	Hand calculation based on pipe geometry.				

Notes: 1. +ve = compression, -ve = tension.

2. Calculated stresses ignore effect of prestressing.

5.4.2. Tolerable stresses

The above considerations are for the pipe at the time of construction, not after 85 years of service. The current condition of the pipes is unknown, other than they were used for training purposes by police divers in the 1990's. It is also understood that they are still used to supply cooling water to the Powerhouse Museum.

Present day suppliers of reinforced concrete pipes quote a service life of 100 years or more. It seems improbable that the intake pipes installed in a relatively aggressive environment (i.e. saltwater), would have survived 85 years without some degree of deterioration. The form of deterioration considered most likely to occur is corrosion of

the steel wire and associated spalling of the layers of concrete between the wire and the outside surface of the pipe. This type of degradation would reduce the strength of the pipe, in particular the beneficial effect of prestressing.

For the purposes of this preliminary assessment, the following stresses have been adopted as acceptable limits:

- Compressive stress, $\sigma_c \leq 5 \text{ MPa}$
- Tensile stress, $\sigma_t \leq 2 \text{ MPa}$

These stresses are in the circumferential direction and are about half the values which would apply for the pipes at the start of their service life.

5.5. Impact from hotel construction

5.5.1. Vibration from bored pile construction

Vibration magnitude for various construction activities are described in Reference 7. For bored pile construction in rock, the resulting vibration characteristics are considered to be represented by the pseudo-steady-state conditions described in the reference.

Vibration data from pile excavation is not provided. This is likely to be because this type of vibration is typically negligible and does not result in adverse effects.

Vibration from other excavation activities, including "caisson drilling" and "jack hammers" are provided, and these are considered to be rough analogues for pile excavation using an auger fitted with tungsten points, as is often used in Sydney. For a distance of 2 m, vibration values (peak particle velocity) of between 6 mm/s and 15 mm/s are given for these plant types.

When a pile core barrel is employed for drilling rock it is often necessary to use the piling rig's kelly bar to break off the cored rock from the bottom of the pile hole. Much larger vibration is expected to result from this practice compared to the values presented above.

Based on the above discussion of vibration limits and likely magnitude, it is considered that vibration from excavation of bored piles presents a moderate risk to the historic intake tunnels. Therefore a vibration trial would need to be undertaken to establish a 'site law' for vibrations from the proposed piling rig, construction method, and separation distance between the pile and tunnel. This trial would then allow an appropriate construction methodology to be developed.

5.5.2. Vibration from trench excavation for stormwater pipe diversion

Reference to the inferred top of rock level contours shown in Coffey's Figure 2 (Appendix E), suggests a rock level at about RL 1.5 m at the location where the proposed stormwater pipe passes over the existing saltwater intake tunnels. Therefore the trench excavation for the diverted pipe is likely to involve about 2 m depth of excavation in bedrock.

Borehole BH202 is located about 15 m from this location. The engineering log for this borehole (included in Appendix F) shows that rock levels in the upper 2 m comprise slightly weathered to fresh sandstone, of medium to high strength.

Excavation of the rock could be undertaken by a variety of techniques, including:

- Excavator-mounted rock breaker,
- Excavator-mounted rotary grinding head, or
- Saw cutting and hydraulic splitting.

Reference 7 (Wiss, 1981) would indicate a peak particle velocity for rock breaker (assumed similar to pavement breaker) of about 70 mm/s for 2 m separation. Reference 8 (Hackney, 2002) provides specific data for a range of rock breaker sizes. For a 1000 kg to 1500 kg breaker, the extrapolated peak particle velocity is approximately 20 mm/s to 50 mm/s for 2 m separation. The monitoring data in Reference 8 also shows that smaller breakers result in less vibration.

Reference 8 also includes limited data for rotary rock grinders. This indicates peak particle velocities of approximately 2 mm/s to 50 mm/s for 2 m separation.

It is noted that actual vibration effects will be dependent on equipment details and how it is used, as well as geotechnical conditions.

Based on the above discussion of vibration limits and likely magnitude, it is considered that where the trench excavation approaches the saltwater intake tunnel, that vibration levels could potentially result in damage to the pipes, even for relatively delicate techniques such as rotary grinding. We are unaware of any data relating to vibration from the use of rock saws and hydraulic splitting, though expect that this technique would cause less vibration than the other methods considered.

Therefore, as per the previous discussion for pile construction, a vibration trial would need to be undertaken to establish a 'site law' for vibrations from the proposed excavation plant, construction method, and separation distance between to the tunnel. This trial would then allow an appropriate construction methodology to be developed.

5.5.3. Deformation due to hotel foundation settlement

A finite element analysis was previously undertaken for an earlier proposed hotel detail. This was done to calculate the stresses experienced by the intake tunnels due to deformation of the bedrock beneath the hotel piled foundations. Note that the currently proposed building applies a total vertical pile working load of only about 85% of the previous proposal.

It is considered appropriate that the results from the previous analysis be used to assess the current hotel detail.

The software package Phase², produce by Rocscience Inc was used for finite element analysis. The model included the saltwater intake tunnels, as well as the northern hotel foundation. Phase² is use to analyse two-dimensional problems, through the hotel footing only occurs over a relatively small area. To avoid an excessively conservative

assessment, the pile loads were adjusted based on the pile geometry relative to the intake tunnel alignment.

The Phase² analysis included several construction stages, including:

- 1. Pre-development
- 2. Intake tunnel excavation
- 3. Placement if intake pipes
- 4. Backfilling around pipes
- 5. Installation of hotel piles
- 6. Loading of piles

The analysis indicated that excavation of the tunnel resulted in significant redistribution of stresses in the surrounding rock, with high compressive stresses in the invert and crown of the tunnel. Lateral convergence movement in the order of 3 mm was also calculated.

Once the hotel piles are installed and loaded, the calculated stresses in the pipes were:

٠	Compressive stress,	σ_{c}	=	1.8 MPa	(inside face)
			=	1.6 MPa	(outside face)
•	Tensile stress,	σ_{t}	=	1.6 MPa	(inside face)
			=	1.3 MPa	(outside face)

These values are somewhat smaller than the adopted limits discussed previously, and are similar to the service loading conditions shown in Table 3.

The analysis indicates overall pipe movement in the order of 0.4 mm.

This assessment indicates that rock deformation due to the service loading of the proposed hotel piled foundation will have no adverse effect on the intake tunnels. This assessment is contingent on the application of the set-back distances noted in Section 5.2.

6. <u>CONCLUSION AND RECOMMENDATIONS</u>

The assessment described in this report demonstrates that the proposed hotel development can be constructed so as to achieve acceptable impacts on the existing saltwater intake tunnels.

The hotel building is to be supported on piled foundations which will be founded in Hawkesbury sandstone bedrock.

The saltwater intake tunnel is overlain by about 6 m thickness of sandstone bedrock and fill, and is located within a few metres of the closest proposed hotel pile. The intake tunnel was constructed in about 1928 and houses twin 1.8 m diameter reinforced concrete pipes.

To control physical impacts from the closest pile on the tunnel, a set-back distance is proposed. A restriction on the pile toe level is also proposed to avoid potential pile toe instability from the adjacent tunnel excavation, as summarised in Table 4 below.

POTENTIAL HAZARD	RECOMMENDATIONS	REPORT REFERENCE			
	Maintain a separation distance of 4.4 m between the edge of the pile holes and the assumed centreline of the tunnel (refer also to 5.5.1 relating to the impact of vibration)				
Drilling of pile holes	Drill a small cored pilot hole at 0.5 m from the edge of the pile hole to confirm at least 0.5 m rock to the edge of the tunnel	5.2.2			
	Undertake additional checks on the set out of the pile location and the verticality of the pile				
Excavation of trench for stormwater pipe diversion	 The thickness of the rock between the bottom of the trench and the tunnel crown is likely to be less than 1.1 m, therefore: Minimise the depth of trench excavation Drill a small cored pilot hole to confirm the rock cover 	5.2.3			
Instability of piles	Pile toe levels should be located at least 1 m below a 45 degree 'line of influence' projecting upwards from the base of the side of the tunnel	5.2.4			
Vibration from bored pile construction	Vibration from bored pile construction represents a moderate risk to the tunnel. Therefore a vibration trial would need to be undertaken to establish a site law for vibrations from the proposed piling rig, construction method, and separation distance between the piles and the tunnel.	5.5.1			
Vibration from trench excavation for stormwater pipe diversion	Excavation for the stormwater pipe diversion represents a moderate risk to the tunnel. Therefore a vibration trial would need to be undertaken to establish a site law for vibrations from the proposed excavation plant, construction method, and separation distance to the tunnel.	5.5.2			

TABLE 4 SUMMARY OF RECOMMENDATIONS

Where piles are to be installed near the proposed set-back distance, the drilling of a small diameter cored pilot hole is recommended to check the location of the tunnel prior to the commencement of pile hole excavation. Additional checks during construction are proposed in regards to pile installation tolerances (Ref. Table 4).

An assessment of vibrations caused by the excavation of pile holes was undertaken, and it was concluded that monitoring be undertaken to check vibration impacts prior to excavating piles close to the tunnel. This may lead to restrictions on the type of piling plant employed and construction methods.

An assessment of the structural capacity of the intake pipes has been performed. This was based on the available historical data, and from consideration of the manufacturing method and estimated design loads. The current condition of the pipes is not known, and hence an arbitrary 50% reduction in capacity has been adopted to account for possible deterioration of the 85 year old pipes. This analysis suggests that cracking of the lining would occur when the compressive stresses exceed 5 MPa, or the tensile stresses exceed 2 MPa. Assessment of the proposed hotel development and the tunnels indicates that the pipe stresses are not significantly affected by the hotel loads, and that the induced stresses are acceptable in comparison to the adopted limits.

The hotel development will also require diversion of an existing 900 mm diameter stormwater pipe. The relocated pipe will pass over the top of the existing tunnels, and is expected to require about 2 m of excavation in sandstone bedrock. To ensure that the trench excavation does not intersect the tunnel, probe drilling is proposed to check the thickness of rock above the crown of the existing tunnels, as summarised in Table 4 above.

Vibration from plant used to excavate the stormwater trench could potentially damage the intake tunnels. Monitoring is recommended to be undertaken to check vibration impacts prior to the trench excavation approaching the tunnel. This may lead to restrictions to the type of excavation plant employed and construction methods.

In summary, subject to the constraints and recommendations presented in this report, PSM is satisfied that the proposed hotel building can be developed adjacent to the existing saltwater intake tunnel without causing adverse structural impacts.

For and on behalf of PELLS SULLIVAN MEYNINK

STRATH CLARKE

REFERENCES

- 1. Casey & Lowe Pty Ltd report "Sydney International Convention, Exhibition and Entertainment Precinct (SICEEP), Non-indigenous Archaeological Assessment and Impact Statement for SSDA1", March 2013.
- 2. Coffey Geotechnics Pty Ltd report, Ref. GEOTLCOV24303AH-AF, "SICEEP -International Convention Centre Hotel, Geotechnical Investigation Report, Darling Harbour, NSW", July 2013.
- 3. Pells, P.J.N., and Mostyn, G., and Walker, B.F., "Foundations on sandstone and shale in the Sydney Region", Australian Geomechanics Journal, 1998.
- 4. Pells, P.J.N, "EH Davis memorial lecture Rock mechanics and engineering geology in the design of underground works", 1993.
- 5. Pells, P.J.N, "Substance and mass properties for the design of engineering structures in the Hawkesbury sandstone", Vol. 39, No.3, Australian Geomechanics Journal, September 2004.
- 6. Rainer, J.H., "Effect of vibrations on historic buildings: An overview", Paper No. 1091, Division of Building Research, National Research Council, Canada, 1982.
- 7. Wiss, J.F., "Construction vibrations: State-of-the-art", Journal of the Geotechnical Engineering Division, February 1991.
- Hackney, G.A., "Excavation induced vibration in Sydney sandstones", Proceedings of the 5th ANZ Young Geotechnical Professionals Conference, Rotorua, New Zealand, March 2002.
- 9. Australian Standard AS 2187.2-2006 "Explosives Storage and use, Part 2: use of explosives".

0 2 4 6 8 10 Scale (m)

Pells Sullivan Meynink

Notes: 1) Section extracted from Coffey Geotechnics Report, 11 July 2013 2) Soltwater Inteke Twent Interference and the section of the sect

2) Saltwater Intake Tunnel location is approximate

ND
CONCRETE
FILL
SANDSTONE
SHALE
ASPHALT
SAND
INTERLAMINATED SILTSTONE & SANDSTONE
SILTY SAND
INTERBEDDED SHALE & SANDSTONE
NO CORE
CLAYEY SAND
INTERBEDDED SILTSTONE & SANDSTONE
WEATHERING (SEE EXPLANATION SHEETS)
STANDARD PENETRATION TEST RESULT

Lend Lease Development Pty Ltd Darling Harbour Redevelopment Hotel Development

MODIFIED CROSS SECTION COFFEY SECTION B-B' 2013

PSM1986-021F	5
--------------	---

FIGURE 2

APPENDIX A

PROPOSED BUILDING LAYOUT AND PILE LOADS

1:100 @ B1 1:250 @ A3

NOTE: ISSUED FOR DEVELOPMENT APPLICATION ONLY

Architects

Landscape Architect

Project Number

Drawing Number

DA004

Revision

А

erty of Ler	nd Lease and must ion of Lend Lease.	
TO 'CC ECT N	OFFEY o.	
/E A D	ESIGN	
	Date	
	Lend Lease	
	Lend Lease	
	Lend Lease	
www.l	endlease.com	
IEN	Т	
	1:100	
	ng Status LIMINARY	
0	Revision	
		I

				I	BORED PILE S	CHEDULE											
	PILE DIAMETER		CONCRETE	REINFORCEMENT	WORKING	SHORT TERM S LOAD (k		LONG TERM	ULTIMATE LC	AD (kN)	ULTIMATE LATERAL						
PILE MARK	PILE MARK	(mm)			DESCRIPTION STRENGHT (MPa)	DESCRIPTION	STRENGHT (MPa) RATE (Kg/m	RATE (Kg/m)	RATE (Kg/m)	Pa) RATE (Kg/m)	LOAD (kN)	COMPRESSION	TENSION	SERVICE LOAD (kN)	COMPRESSION	TENSION	LOAD (kN
BP1	900	BORED PILE	40 MPa		6000	5700		5400	7500		187.5						
BP2	900	BORED PILE	40 MPa		4250	3900		3560	5400		135						
BP3	750	BORED PILE	40 MPa		700	630		570	900		22.5						
BP4	900	BORED PILE	40 MPa		2600	2380		2170	3350		83.75						
BP5	1500	BORED PILE	65 MPa		34000	32250		30700	42100		1053						
BP6	1200	BORED PILE	50 MPa		9970	18370	2300	8820	23130	2550	450						
BP7	1500	BORED PILE	65 MPa		32890	31960		31030	40400		5040						
BP8	1200	BORED PILE	65 MPa							5624	4970						
BP9	1200	BORED PILE	65 MPa							8240	4970						

Grand total: 72

NOTES: PILE 'P7' TO BE DESIGNED FOR ULTIMATE MOMENT OF M* = 8200 kNm (INCLUDING 75mm OUT OF POSITION PILE TOLERENCE). PILES 'P8 & P9' TO BE DESIGNED FOR AN ULTIMATE MOMENT OF M* = 4545 kNm (INCLUDING 75mm OUT OF POSITION PILE TOLERENCE).

PILES TO BE SOCKETED INTO UNIT 4B & 4D MATERIAL (TBA), REFER TO "COFFEY GEOTECHNICS" REPORT MAXIMUM LONG TERM SETTLEMENT AT THE PILE HEAD = 10mm

These de not be us	signs, plans, specifications & copyright therein are the prope ed, reproduced or copied wholly or in part without the written
Kov	Plan
ĸey	Plan
Rev	Revision Description
۹	
1	end Lease
	nu lease
Develope	r
Project M	anagement & Construction
Design	
Archit Name	lect ∋ I Principal Architect I Reg No.
	tural Engineer
	anical, Electrical, Hydraulic, Fire Services Engineering inability
Lend	Lease Design
30 Th	97 000 098 162 le Bond, 30 Hickson Road s Point, NSW, 2000
Client	
LEN	ND LEASE
Project	
ICC	HOTEL DEVELOPM
Title	
FO	OTING DETAILS - SH
Scale 0	1M
	@ B1
Drawn	Checked Approved
T.Bosn Project N	I I
-, INI	2661 SD1000020

C:\Revit Local Files\ICC-SM-20130718_bost948.rvt

APPENDIX B

EXTRACT FROM ARCHAEOLOGICAL ASSESSMENT REPORT

2.8 Ultimo Power House Cooling System

The Ultimo Power House is considered one of the oldest and most important industrial buildings in Sydney. It is historically significant as the original generating station for the supply of electricity for the Sydney electric tramway network and for the general reticulation of electrical power. It opened in 1899 and for many years was the largest and most important power generating station in NSW. Now housing the Powerhouse Museum, these buildings lie to the southwest, outside the SICEEP study area. Water conduits associated with water cooling system run between the power house and Darling Harbour, once supplying salt water for the condensers, and are within the study area. Water inlet and outlet conduits dating from 1899 to the 1920s follow different routes through the study area. The main focus here is the cooling system and its infrastructure in the vicinity of the study area. A brief timeline for the Ultimo Power House is provided in Appendix D.

The location selected for the Ultimo Power House in 1896 was based on multiple factors including the distribution of electrical current, coal supply and disposal of ashes, water supply, room for future expansion, cost of land, the foundations, and availability of a labour force. The Ultimo site near Darling Harbour met these criteria, with close proximity to a supply of salt water for the condensers.¹⁰²

An Act of Parliament on 8 May 1896 allowed for the construction of a power house for the George Street and Harris Street Electric Tramway. By June 1897 many of the tenders had been let and a short time later Contract No 18, for the conduit from the boiler house to Darling Harbour supplying seawater for condensing, was awarded to Justin McSweeny. By mid-1898 good progress had been made in the sinking of the shafts and by mid 1899 the water conduits were complete. The inlet conduit was estimated at 950 feet (289.5m) long although a later report describes it as 1,000 feet (304.8m) in length and 3 feet 3 inches (1.01m) in diameter.¹⁰³ The heated condenser water was discharged back into the Harbour not far from the intake.¹⁰⁴ The 1899 outlet and inlet conduits are shown in a diagram produced in 1933 (Figure 2.44). The material used for the conduits is not known and plans and specifications for this work have not been located. Precast concrete pipes were used in Public Works Department projects in the 1890s and it is possible that they were specified for this project.

The water cooling system consisted of three electrically driven centrifugal circulating pumps for the Wheeler-type surface condensers, each capable of delivering 2,000 gallons per minute (150 litres/sec) against a head of 36 feet (11m). Each pump was directly coupled to 50 horse power motor with two pumps run in parallel, the third being a reserve. Water was discharged from the pumps through a Reeves filter before passing into the boilers.¹⁰⁵

Extensions to the Ultimo Power House by the Railway Department, including new equipment, were carried out from 1902 to 1905.¹⁰⁶ In 1907-8 a new conduit was constructed, and additional pumps installed in anticipation of the installation of new generating units taking the rated capacity of the Ultimo Power House to 19,400 kW. Details of the construction of the new length of conduit are not known. The Railway Commissioners documentation of post-1898 alterations and additions to the Ultimo Power House was less detailed than work documented by the 1890s Public Works

¹⁰² DM Godden et al, *History and Technology of the Ultimo Power House, Sydney*, NSW PWD, nd [1982]: 27.

¹⁰³ Department of Public Works Report, y.e 30 Jun 1897, 1898: 26; Department of Public Works Report, y.e. 30 Jun 1898, 1899: 23-24; Department of Public Works Report, y.e. 30 Jun 1899, 1900: 21; Department of Public Works Report, y.e. 30 Jun 1900, 1901: 22, 23.

¹⁰⁴ JW Thomson, L Glendenning & W Upton, *The Power House Ultimo: The Tram Depot Ultimo History*, report to Public Works Department of New South Wales, Sydney, 1982: 22.

¹⁰⁵ *Public Works Report,* y.e. 30 Jun 1900, 1901: 23.

¹⁰⁶ Godden et al [1982]: 59.

Figure 2.44: Plan showing the shoreline in relation to circulating water ducts and conduits inlets and outlet used in 1899 and those constructed in the mid 1920s. The location of intake sumps, valves and screens is also shown. Myers 1933: 255.

Department. Scientific and engineering journals provide many of the accounts of the site under Railway Department management.¹⁰⁷

Plans for the reclamation of Darling Harbour commencing in the 1920s resulted in the installation of new and considerably longer intake and outlet conduits for the Ultimo Power House. The Railway Commissioners started the project in c1923-24, running the conduit to the point where the parallel pipelines diverged. The Sydney Harbour Trust completed the lines from this point into the harbour. This work was of considerable magnitude, requiring the Harbour Trust to sink a shaft down to the lengths of conduit already installed by the Railway Department and extending it by means of two lines of precast Monier concrete pipes with screening chambers at the end. The lines extended beyond the reclamation and out into the deep water of Darling Harbour. Each 25 ft (7.62m) long section of pipe was 6 ft (1.83m) in diameter weighing approximately 30 tons (30.481 tonnes). The conduits were laid on concrete piers at a maximum depth of 47 feet (14.33m) underwater. The 'faulty' nature of the foundations for the pipes resulted in extensive underwater concrete work done by divers, who also constructed the timberwork of the coffer dam. Wharf No. 39 was later constructed above the conduit.¹⁰⁸

The construction work for the conduits was described in a later engineering journal as:

tunnelled through solid sandstone rock, a single tunnel being formed, and the Monier pipes laid side by side with the spaces around and between filled in with rubble.¹⁰⁹

Photographs showing the installation of the intake conduits are reproduced below (Figure 2.45, Figure 2.46, Figure 2.47, Figure 2.48, Figure 2.49, Figure 2.50, Figure 2.51 and Figure 2.52).

Figure 2.45: Typical cross section of Intake channels for Ultimo Power House. State Rail Photos Series: 17420 Item: 364/49 SRNSW.

¹⁰⁷ Godden *et al* [1982]: 54, 62.

¹⁰⁸ Sydney Harbour Commissioners Report, NSW Legislative Assembly, Sydney, 1927: 3 & 1928: 3; WH Myers, ¹⁰⁸ (Reconstruction of Ultimo Power Station, Sydney, *Journal of the Institution of Engineers Australia*, Sydney, 1933: 262.

Figure 2.46: Excavation under Darling Harbour for the installation of water conduits for Ultimo Power House. State Rail Photos Series: 17420 Item: 364/44 SRNSW.

Figure 2.47: Pair of RC Monier conduits being installed in the sandstone tunnel under Darling Harbour. Rubble is stacked ready for packing around the 6 ft diameter pipes. State Rail Photos Series: 17420 Item: 364/45 SRNSW.

Figure 2.48: Rails in the foreground were used to cart rubble fill to the pipes. State Rail Photos Series: 17420 Item: 364/46 SRNSW.

Figure 2.49: Joints between the sections of conduit are visible along the length of the water supply pipe. State Rail Photos Series: 17420 Item: 364/47 SRNSW.

Figure 2.50: Coffer dam and formwork for the installation of conduits. State Rail Photos Series: 17420 Item: 364/48A SRNSW.

Work on the outlet conduit for the power house is poorly documented. A newspaper report in May 1924 reveals that it was to be constructed in a 34 ft (10.36m) wide open-cut trench but that work had not yet commenced.¹¹⁰ Figure 2.42 above shows the outlet conduit running parallel with a stormwater line and might have been laid in conjunction with work done by the Metropolitan Sewerage and Drainage Board. The reclamation of Darling Harbour resulted in extensions to the sewerage and stormwater lines in the area and it would have been economical to run the lines in a single trench.

The new inlet conduits, and presumably the outlets also, were completed in 1928.¹¹¹ As shown in Figure 42 above, two inlet conduits drew water from the west side of Darling Harbour under Wharf No 37, converging at a point west of the jetty in the vicinity of the former shoreline. They then ran in parallel to the screening chambers on the east side of Murray Street, Pyrmont. From this point the conduits followed a line along Pyrmont Street to the power house. The outlet conduit followed a similar route to the 1899 outlet conduit up to the former shoreline. It then followed a new line to the east side of the harbour where it was paired with a stormwater line.

The power house upgrade work resulted in a sufficient condensing capacity for the new 20,000 kW turbines. Although the construction of new water supply conduits were partly influenced by the Darling Harbour reclamation work, the replacement of much of the power house equipment in the 1920s was timely, resulting in substantial improvements in efficiency and economy.¹¹²

The new circulating water system was far more extensive than the original ones, with the new inlet conduits measuring 2770 feet (845m). The conduits were constructed with bypasses so that either inlet conduit could be used temporarily, and for the purposes of scouring after heating, as a discharge conduit.¹¹³

New equipment installed in conjunction with the water supply system included 'trash racks', a water jet cleaning system, revolving screens capable of being raised for maintenance, and a dewatering system. The revolving screens and screening well or cistern for the new circulating water system were located to the east of Murray Street, Pyrmont outside of the study area. Fouling of the conduits by marine growth was a constant problem and methods of killing the growth or

¹¹⁰ SMH 22 May 1924: 10.

¹¹¹ Sydney Harbour Commissioners Report, NSW Legislative Assembly, Sydney, 1928: 3.

¹¹² Myers 1933: 262; Godden *et al* [1982]: 35.

¹¹³ Myers 1933: 262.

scouring it out were tried. If left uncleaned for 12 months the conduit head loss increased from 24 kpa (3.5 ft) to 50 kpa (7.2 ft). The fouling problem was compounded by low tide when the head loss increased and air was drawn into the circulating water pump suction. Air intake contributed to corrosion of the condenser and a major failure of the second large turbo-alternator (installed 1931). Curved cones ('hydraucones') fitted to the pump suction pipe to reduce velocity losses solved the air intake problem. Further technical details about the makers and functions of the water circulating system equipment are detailed in Walter Myers' 1933 report, 'The Construction of Ultimo Power Station, Sydney'.¹¹⁴

The 'Water Cooling System and Manifold' of the former Ultimo Power House are included in the Sydney Harbour Foreshore Authority's Heritage and Conservation Register. It is described as:

Underground conduits possibly built of sandstone taking cool water to the Powerhouse from Darling Harbour waters edge and hot water from the Powerhouse to the waters edge. The remains of the engineering equipment/manifold of this cooling system are located in the carpark of the Novotel accessed from Murray Street.

The Police utilised the water-cooling system conduits between the disused power station and Darling Harbour in Police Rescue Squad training until c1991.

¹¹⁴ Myers 1933: 262-3.

APPENDIX C

COMBINED SERVICES PLAN

DARLING HARBOUR LIVE

REFERENCE MAP					CLIENT		CIVIL / TRAFFIC / FACADES
	 NOTES: 1. DO NOT SCALE FROM DRAWINGS. WORK TO WRITTEN DIMENSIONS ONLY. 2. ALL DIMENSIONS IN METRES UNLESS NOTED OTHERWISE. 3. ALL COORDINATES TO MGA. ALL LEVELS TO AHD. 				Lend Lease	EVEL 4, THE BOND, 30 HICKSON RD /ILLERS POINT, NSW 2000	HYDER CONSULTING PTY L ABN 76 104 485 289 LEVEL 5, 141 WALKER ST, NORTH SYDNEY NSW 2060 AUSTRALIA
	4. ALL DIMENSIONS, COORDINATES AND LEVELS TO BE VERIFIED ON				CONSULTANTS		Tel: +61 (0)2 8907 9000
	SITE BEFORE PROCEEDING WITH WORK. HYDER SHALL BE NOTIFIED IN WRITING OF ANY DISCREPANCIES.					ARCHITECT	Fax: +61 (0)2 8907 9001
	5. THIS DRAWING MUST BE READ IN CONJUNCTION WITH ALL RELEVANT	09	ARCHITECTURAL BASE UPDATED	21/08/2013	LEND LEASE DESIG	N LEVEL 4, THE BOND, 30 HICKSON RD MILLERS POINT, NSW 2000	© Copyright reserved
	CONTRACTS, SPECIFICATIONS AND DRAWINGS.		AMENDED AS PER CLIENT REQUEST	19/08/2013		WILLERG FORMT, NOW 2000	5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		07	AMENDED AS PER CLIENT REQUEST	15/08/2013			
		06	ISSUE FOR DEVELOPMENT APPLICATION	09/08/2013		ARCHITECT	PROJECT
		05	ISSUE FOR INFORMATION	01/08/2013	fimt	Level 5, 70 King Street Sydney NSW 2000	SICEEP
		04	ISSUE FOR INFORMATION	26/07/2013	francis-jones morehen thorp		SICEEF
		03	ELECT AND COMMS AMENDED (PER PROJ WEB COR 1453)	18/07/2013			DARLING HARE
	0 5 10 15 20 25m	02	STORMWATER ADDED	18/07/2013		LANDSCAPE ARCHITECT	
		01	ISSUE FOR REVIEW	17/07/2013	HASSELL	Level 2, Pier 8/9, 23 Hickson Road	ICC HOTEL
	1 : 250	REV	DESCRIPTION	DATE		Millers Point NSW 2000	

Date Plotted: 21 Aug 2013 - 12:44PM File Name: F:\AA004399\E-CAD\C-Civil\D-Final\C-Hotel\HO-CI-0701-CombinedServicesPlan.dwg

EXISTING	SERVICES LEGEND
s1	150-300 SEWER MAIN
s2	375-450 SEWER MAIN
—— s3 ——	525-1000 SEWER MAIN
,	812×1219, 1016×1270, 1016×1778,
s4	1300×1750 SEWER MAIN
sr1	375 SEWER RISING MAIN
sr2	600 SEWER RISING MAIN
——————————————————————————————————————	DISUSED SEWER MAIN
w1	100, 150 POTABLE WATER MAIN
w2	200, 225 POTABLE WATER MAIN
— w3	250, 300 POTABLE WATER MAIN
—— w4 ——	375, 500 POTABLE WATER MAIN
w5	600 POTABLE WATER MAIN
g1	SECONDARY MAIN 1050 kPa
g2	210 kPa
—— Ед ———	7 kPa
g4	PROPOSED MAIN 2kPa
a1	AAPT DUCT
a2	NON-AAPT DUCT (LIKELY FALSE)
n1	NEXTGEN CABLE
—— n2 ——	NEXTGEN THIRD PARTY
o1	OPTUS
o2	OPTUS IN OTHER UTILITY'S DUCT
t1	TELSTRA 1-4 CONDUITS
t2	TELSTRA MAJOR SERVICE
t3	TELSTRA AERIAL CABLE
v1	VERIZON DUCT
v2	TELSTRA DUCT (LIKELY FALSE)
pn	PIPE NETWORKS DUCT
e1	ELECTRICAL 1–5 CONDUITS
—— e2 ——	ELECTRICAL 6-12 CONDUITS
—— е3 ——	ELECTRICAL13-20 CONDUITS
—— e4 ——	ELECTRICALRAILWAY CABLES
e5	ELECTRICALTRANSMISSION CABLES

Original Sheet Size A1 - 841 x 594mm

APPENDIX D

STORMWATER DIVERSION DRAWING

DARLING HARBOUR LIVE

Date Plotted: 31 Jul 2013 - 11:42AM File Name: F:\AA004399\E-CAD\C-Civil\B-Sketches\SKCHO017-AA004399-NSX-00-SaltwaterIntakeChannelSection.dwg

		CLIENT		CIVIL / TRAFFIC / FACADES	DRAWING TITLE	
		Lend Lease	PROJECT MANAGEMENT & CONSTRUCTION LEVEL 4, THE BOND, 30 HICKSON RD MILLERS POINT, NSW 2000	HYDER CONSULTING PTY LTD ABN 76 104 485 289 LEVEL 5, 141 WALKER ST, NORTH SYDNEY NSW 2060 AUSTRALIA	SALTWATER	INTAKE CHANNEL SECTION
)RAFT		CONSULTANTS	ARCHITECT V LEVEL 4, THE BOND, 30 HICKSON RD MILLERS POINT, NSW 2000	Tel: +61 (0)2 8907 9000 Fax: +61 (0)2 8907 9001 www.hyderconsulting.com © Copyright reserved	STATUS	
		fimt	ARCHITECT	PROJECT	PRELIMINAR	YONLY
		fjmt	Level 5, 70 King Street Sydney NSW 2000	SICEEP	SCALE @ A1 AS SHOWN	DRAWN DESIGNED REVIEWED APPROVED
				DARLING HARBOUR		
	31/07/2013	HASSELL	LANDSCAPE ARCHITECT Level 2, Pier 8/9, 23 Hickson Road	HOTEL		
DESCRIPTION	DATE		Millers Point NSW 2000		AA004399	SKCHO017 01
						Original Sheet Size A1 - 8/1 v 59/mm

APPENDIX E

COFFEY BOREHOLE PLAN AND SECTIONS 2013 INVESTIGATION

client:	LEND LEASE DEVELOPMENT PTY LTD								
project:	ct: GEOTECHNICAL REPORT FOR SSDA6 SYDNEY INTERNATIONAL CONVENTION EXHIBITION AND ENTERTAINMENT PRECINCT (SICEEP) - ICC HOTEL								
title:									
project n	^{0:} GEOTLCOV24303AH-AF	figure no: FIGURE 1							

NOTES:

- 1. INFERRED ROCK LEVEL CONTOURS ARE APPROXIMATE ONLY. VARIATIONS MAY OCCUR DUE TO GEOLOGICAL FEATURES AND MAN-MADE EXCAVATIONS.
- 2. ACTUAL ROCK LEVELS ARE LIKELY TO OCCUR AS A SERIES OF STEPS AND BENCHES RATHER THAN GRADUAL SLOPE CHANGE

client:	ent: LEND LEASE DEVELOPMENT PTY LTD							
project:	ECT: GEOTECHNICAL REPORT FOR SSDA6 SYDNEY INTERNATIONAL CONVENTION EXHIBITION AND ENTERTAINMENT PRECINCT (SICEEP) - ICC HOTEL							
title:								
project n	^{0:} GEOTLCOV24303AH-AF	figure no: FIGURE 2						

	description	drawn	approved	date		drawn	MG / LH		client:	LEND LEASE DEVELOPM	IENT PTY LTD
c	A - APPROXIMATE SITE BOUNDARY AMMENDED	AW	MG	26/07/13	2.5 0 5 10	approved	MG	coffey	project	GEOTECHNICAL REPOR SYDNEY INTERNATIONAL CON	
evision						date	26/07/13	geotechnics		AND ENTERTAINMENT PRE - ICC HOTE	
9					Scale (metres) 1:250	scale	1:250	SPECIALISTS MANAGING THE EARTH	title:	SECTION A-	Α'
						original size	A3		project	no: GEOTLCOV24303AH-AF	figure no: FIGURE 3

LEGEND

revision	description A - APPROXIMATE SITE BOUNDARY AMMENDED	drawn AW	approved MG	date 26/07/13	2.5 0 5 10	drawn approved date scale original size	MG/LH MG 26/07/13 1:250 A3	coffey geotechnics specialists managing the earth
----------	--	-------------	----------------	------------------	------------	--	--	--

LEGEND

$\overline{\Delta}$	CONCRETE
\bigotimes	FILL
	SANDSTONE
	SHALE
	ASPHALT
	SAND
····	INTERLAMINATED SILTSTONE & SANDSTONE
	SILTY SAND
	INTERBEDDED SHALE & SANDSTONE
	NO CORE
	CLAYEY SAND
	INTERBEDDED SILTSTONE & SANDSTONE
DX	WEATHERING (SEE EXPLANATION SHEETS)
N*=17	STANDARD PENETRATION TEST RESULT

client:	LEND LEASE DEVELOPMENT PTY LTD								
project:	ct: GEOTECHNICAL REPORT FOR SSDA6 SYDNEY INTERNATIONAL CONVENTION EXHIBITION AND ENTERTAINMENT PRECINCT (SICEEP) - ICC HOTEL								
title:	title: SECTION B-B'								
project n	^{0:} GEOTLCOV24303AH-AF	figure no: FIGURE 4							

APPENDIX F

COMPILATION OF BOREHOLE LOGS

		-					chnics rehole		Bore shee	hole ID. t:		BH201 1 of 4			
Liigi									proje	ct no.		GEOTLCOV24303AH			
client:	Ler	nd Leas	se D	evelo	opme	ent P	ty Ltd		date	started:		28 May 2013			
principal:									date	complet	ed:	28 May 2013			
project:	SIC	EEP - I	Inte	rnatio	onal	Conv	vention Centre (ICC) Hotel		logge	ed by:		DB			
location:	Dai	rling Ha	arbo	our, S	Sydn	ey			chec	ked by:		DS			
position:	E: 3	33,368.70;	N: 6,2	250,526	6.40 (Da	atum No	t Specified)Inface elevation : 2.97m (Datum Not Specifi	ed)angle	e from h	orizontal:	90°				
drill model: [erial sub	mounting: Track	hole	diamete	er : 100 mr	m				
drilling info	mau						material description		∖			structure and			
method & support 1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	penetro- meter (kPa) ୁ ରୁ ରୁ ରୁ ବୁ		additional observations			
				_			BRICK PAVERS: 0.08m.	D	/		<u> </u>				
		E		-			CONCRETE: 0.04m.	M				BILISED ROADBASE			
		<u>E</u>	-2	1.0-			FILL: Gravelly SAND: medium to coarse, pale-grey to dark brown, sub-angular, sandstone gravel, trace clay. FILL: SAND: fine to medium, pale-brown to pale-grey, trace fine to medium grained, dark grey				FILL	• Oppm at 1.0m, no odour or			
- AU/		E		-			to pale-grey sandstone and shale gravel. trace fine metal chicken wire and rubber fragments,				PID =	• Oppm at 1.6m, no odour or			
		SET 1/50mm HB	-1	2.0-			observed at base of auger/					ROCK bouncing at 1.95m			
			-0 1 2 3 4												
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	rewing one e ol ger		M C pen	■ 10-0 leve	I	ater e shown	U## undisturbed sample D disturbed sample B bulk disturbed sample E environmental sample HP hand penetrometer (kPa) N standard penetration test (SPT) D M	soil d based	ition sym lescriptic a on Unifi ation Sys	o n ed	CO VS F St VS H Fb VL L D VD VD	soft firm stiff very stiff hard friable very loose loose 0 medium dense dense			

El clier prin	nt: cipa	gin		y	geotech									
clier prin proj	nt: cipa		EE	rin	g Log - Corec		nole	9			Boreho sheet:		BH201 2 of 4 GEOTLCOV24	13034H
prin proj	cipa ject:				se Development Pty Lt						project date st		28 May 2013	<u>505A1</u> 1
proj	ect:					-						ompleted:	28 May 2013	
			SICE	FP -	International Conventi	on Centre (l	ICC)	Hotel			logged	•	DB	
					arbour, Sydney	011 00111 0 (1					checke	-	DS	
posi				-	N: 6,250,526.40 (Datum Not Spec	cifie d urface elevatio	on: 2.9	7m (Datum	Not Specifie	ed)angle		,	20	
1 ·		el: DP				mounting: Trac		,		, .	diameter			
drill	ling i	inform	ation	mate	rial substance material descriptio	n	øð	estimated	samples,	rock	mass def defect	-	dditional observations and	
method & support	water	RL (m)	depth (m)	graphic log	ROCK TYPE: grain charac colour, structure, minor con	cterisics,	weathering 8 alteration	strength & Is50 ×= axial; ○= diametral ▷ ⊐ 팣 ∓ 높	field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	spacing (mm)	(type, inclin	defect descriptions ation, planarity, roughness, thickness, other)	coating, general
		-2										-		
		-1	2.0		start coring at 2.20m							-		-
		0	-		SANDSTONE: medium grained, orange-white, indistinctly cross b with some dark grey laminae at 0	edded at 0-10°,	lded at 0-10°,					PT, 0°, PL	L, 25mm, HP Clay -, Clay CO -, RO, Clay CO	-
		-	3.0									— PT, 5°, Pl	., RO, CO, Carbon	-
		1	- 4.0 — -						a=2.25 d=2.13	90%			U, RO, Clay CO 'L, RO, CN	-
		2	- - 5.0-						a=1.38 d=2.01			— PT, 5°, Pl	., RO, Clay CO	-
ט <u>ריין יי</u> שאיני יהובי נוטן כטר פטאבורטוב: כטירבט סבטורכטיעצאטאיר פורטי אבאינאיז איז איז איז איז איז איז איז איז אווער – – אווער		-	-		5.2 - 6.2m: massive		5.2 - 6.2m: massive							-
		3	6.0						a=1.74 d=1.67			PT, 0 - 5°	, PL, RO, Clay CO	-
		4	- - 7.0-						a=1.53	96%		— PT, 5°, Pl	., RO, CO, Carbon	-
044		- $ -$ SHALE: dark gray, indicting the badded at 0.5°					-		d=1.64			PT, 0°, PL	., RO, Clay CO L, 20mm, HP Clay	-
		-	SANDSTONE: medium to coarse grained, pak										0°, IR, 15mm, HP Clay L, 25mm, HP Clay	
me	 thod -	& supp	ort		grey, pebbly water	graphic log / cor	e recove	ry	weathering	& altera	ition*	defect type	e planarity	
DT AS AD RR CB W NM NQ HQ PQ SP	a a r c v V ILC N v v v v v T s	diatube auger s auger d roller/trio claw or washbo NMLC o wireline wireline wireline	crewing rilling cone blade bi	t .9 mm) 7.6mm) 3.5mm) 5.0mm)	10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss water pressure test result (lugeons) for depth (lugeons) for depth	core rec (graphic syn no core core run & RQD	core recovered (graphic synbols indicate material) no core recovered NW moder SW slightly FR fresh Wrenbead with				ed hered athered red	CS crushe SM seam DB drilling roughness	CU curvec UN undula surface ST steppe ed seam IR Irregul pbreak coating ensided CN clean hed SN stain th VN venee	ting d ar

				-	geotechnics	-					Borehol sheet:	e ID.	BH201 3 of 4	
E	ng	jin	ee	rin	g Log - Cored Borel	lor	e				project	no	GEOTLCO	V24303AI
clier	nt:	L	.end	Leas	se Development Pty Ltd						date sta		28 May 201	
prin	cipa	l:									date co	mpleted:	28 May 201	13
	ect:		ICE	EP -	International Convention Centre (ICC)	Hot	tel			logged	bv:	DB	
	ation				arbour, Sydney	,					checked	•	DS	
posit				-	N: 6,250,526.40 (Datum Not Specified) rface elevati	on: 2.9	97m (Datum	Not Specifie	ed)angle		<u> </u>	20	
		el: DP			mounting: Trac		,			, .	diameter :			
drill	ing i	nform	ation	mate	rial substance material description		est	imated	samples,	rock	mass defe defect	1	ditional observations	and
metnoa &	water	(m)	depth (m)	graphic log	ROCK TYPE : grain characterisics, colour, structure, minor components	weathering & alteration	sti 8 ×	rength Is50 = axial; diametral	field tests & Is(50) (MPa) a = axial:	core run & RQD	spacing (mm)	(type, inclina	defect descriptions ation, planarity, rough thickness, other)	ness, coating,
5 3	ÿ	RL	ğ	5		≩πे FR	ر لا ا	≥ ⊥ 5 ≞ Xo	d = diametral		30 ⁰⁰ ⁰⁰ ⁰⁰ ⁰⁰ ⁰⁰ ⁰⁰	particular — PT, 5°, PL	, VR, CO, Carbon	general
			-		SANDSTONE: medium grained, pale-grey to orange-white, indistinctly cross bedded at 0-10°, with grant dark and a service of the service of t				d=1.35	96%				-
		_	-	· · · · ·	with some dark grey laminae									-
		6	-	· · · · ·										-
		-0	9.0-											-
		_	-											-
			-	· · · · ·										-
		7	10.0					ok	a=0.93 d=0.60	100%				_
			-	· · · · ·					u 0.00		iiii			
		-	-											-
			-					dx	a=1.21					-
		8	11.0 —					x	d=0.85 a=1.49					_
			-						d=1.00			PT, 0 - 10	°, PL, RO, Sandy clay	/ CO
		-	-											-
2		9	-		SANDSTONE: medium grained, pale-grey to orange-white, massive, with some carbonaceous									-
		-5	12.0		flecks < 25mm diameter			Ø	a=1.45 d=1.48					-
		_	-	· · · · ·										-
			-				lii							-
		10	- 13.0 —	· · · · ·				8	a=1.54	100%				-
			-	· · · · ·					d=1.64	100 //				-
		╞												-
			-											-
		11	14.0									— JT, 35°, IR	R, VR, CN	—
														-
		F	-									IT 050 -		-
		_ 12	-		shale breccia - 25mm thickness shale breccia - 50mm thickness			x	a=1.31 d=1.64			JT, 25°, PI JT, 35°, PI	L, RO, CN L, RO, CN	-
		12	15.0											-
		Ļ	-		SANDSTONE: fine grained, pale-grey to grey,	-				94%	<u> </u>	PT, 0°, PL	, RO, Clay CO	-
			-		indistinctly bedded at 0°, with some dark grey laminations	-								-
								8	weathoring	& altor	 	defect turc	nlano	rity
DT AS AD RR CB W NM NQ	d a r c LC N	auger d oller/tri alaw or vashbo MLC o vireline	crewing rilling cone blade b re core (51 core (4	it .9 mm) 7.6mm)	water inflow	covered mbols indicat	e materia	i)	HW highly DW disting MW model	al soil nely wea weather tly weath rately we y weather ith A for a	thered ed nered athered rred	defect type PT parting JT joint SZ shear 3 CS crushe SM seam DB drilling roughness SL slicke	PL p CU c zone UN u surface ST s d seam IR Ir	lanar urved ndulating tepped regular
HQ PQ SPT	w w Ts	vireline vireline	core (6 core (8 d penet	3.5mm) 5.0mm)	water pressure test result (lugeons) for depth interval shown	vithdrawr Jality Des		on (%)	L low M mediur H high VH very hig EH extrem	n gh		POL polish SO smoo RO rough VR very r	th SN s CO c	tain

				J	geotech						Borehol	e ID.	BH201	
F	nr	nin		rin	g Log - Corec	d Roroh	പ	د			sheet:		4 of 4	
	ΠĘ							7			project	no.	GEOTLCOV24	303AI
clie	ent:	L	.end	Leas	se Development Pty Lt	d					date sta	arted:	28 May 2013	
prir	ncipa	ıl:									date co	mpleted:	28 May 2013	
pro	ject:	S	SICE	EP - 1	International Conventi	on Centre (I	CC) I	Hotel			logged	by:	DB	
loca	ation	: /	Darliı	ng Ha	arbour, Sydney						checked	d by:	DS	
	ition:			368.70;	N: 6,250,526.40 (Datum Not Spec			7m (Datum	Not Specifi	, .				
		el: DP nform		mate	rial substance	mounting: Track	2			-	diameter :			
					material descriptio		مې D	estimated strength	samples, field tests		defect spacing	1	dditional observations and defect descriptions	
support		(E	depth (m)	graphic log	ROCK TYPE: grain charac colour, structure, minor con		weathering 8 alteration	& Is50 ×= axial; O = diametral	& ls(50) (MPa)	core run & RQD	(mm)	(type, inclin	thickness, other)	coating,
sup.	water	RL	depi	grap				J⊇ ± ₹		COTE & FI	30 300 300 300 300 300 300 300 300 300	particular		general
			-	· · · · ·	SANDSTONE: medium to coarse pale-grey, indistinctly bedded at (FR		a=1.41 d=1.53					-
		-	-		dark grey laminae (continued)				a=1.78 d=2.24				CU, VR, CN PL, RO, Clay CO	-
										94%				-
		14	17.0 —											-
			-	· · · · ·										-
		-	-	· · · · ·					a=1.70 d=2.39					-
			-	· · · · ·					0 2.00					-
		15	18.0	· · · · ·					a=2.70 d=3.18					_
- NMLC				· · · · ·									L, RO, Clay CO	-
			-	· · · · ·										-
		16	- 19.0	· · · · ·					- 0.00					-
			-	· · · · ·					a=2.38 d=2.22	100%				-
		_	-									PT, 0°, P	L, RO, Clay CO	-
				· · · · ·										-
		17	20.0	· · · · ·					a=2.70					_
			-	· · · · ·					d=1.82					-
,		-	-											
			-		Borehole BH201 terminated at 20	0.60 m								-
		18	21.0											-
			-											-
		ſ	-											-
		19	- 22.0											_
														-
		_	-											-
														-
		20	23.0											_
			-											-
		-	-											-
			-											-
me	ethod	& sup	oort		water	graphic log / core	recove	ry	weathering RS residu	& alter al soil	ation*	defect type PT partin		
DT AS	- c 6 a	liatube auger s	crewing		10/10/12, water level on date shown	core reco	overed	-	XW extremed HW highly	nely wea	red	JT joint SZ shear	zone CU curved VN undulat	
AD RF) a ? r	auger o oller/tri	rilling cone		water inflow	(graphic sym	ools indicate		DW distin MW mode	ctly weat rately we	thered eathered	SS shear CS crush	surface ST stepped ed seam IR Irregula	d
CB W NN	V	vashbo	blade bi re core (51		complete drilling fluid loss partial drilling fluid loss	no core r	ecovere	a	SW slight FR fresh *W replaced v strength	y weath			g break	
NG HG	ע ג ג ג	vireline vireline	core (4 core (6	7.6mm) 3.5mm)		core run & RQD	hdrawn		VL very lo			SL slicker POL polis	ensided CN clean	
PC			core (8 d penet		ukater pressure test result (lugeons) for depth		-		M mediu	n		SO smo		

						chnics		Bore	hole ID.	BH202
Indi	noorin	~	~		Da	rabala		shee	t:	1 of 4
ingi	neerin	<u>g</u> L	-0	<u>J</u> -	в0	rehole		proje	ct no.	GEOTLCOV24303
ient:	Lend Lea	se De	evelo	opme	ent Pi	ty Ltd		date	started:	23 May 2013
incipal:								date	complet	red: 23 May 2013
oject:	SICEEP -	Inter	natio	onal	Conv	vention Centre (ICC) Hotel		logge	ed by:	CL
cation:	Darling H	arbou	ur, S	Sydne	ey			chec	ked by:	DS
sition:	E: 333,384.50	; N: 6,2	50,527	'.50 (Da	atum No	ot Specified)urface elevation : 3.00m (Datum Not Speci	fied)an	gle from h	orizontal:	90°
ill model: [mate	rial sub	mounting: Track	Ca	sing Diam	eter : HQ	
rilling info ਨ						material description		sity	hand	structure and
support 1 2 penetration	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE : plasticity or particle characteristic, colour, secondary and minor components	moisture	consistency / relative density	penetro- meter (kPa)	additional observations
	E	3	-	\otimes			/ D			
HQ Casing			-			Gravelly SAND: fine coarse, dark grey, fine to	1-			PID = 0.4ppm at 0.2m
1 123123			-		SP	Gravelly SAND: fine coarse, grey mottled brown,	í	D		FILL PID = 0ppm at 0.5m
V	15/100mm N*=R	/	-1.0			SAND: fine, orange brown, with a trace of sandstone gravel.	/] [[]			RESIDUAL SOIL
			-			SANDSTONE: pale grey mottled orange brown, moderately weathered to slightly weathered,				BEDROCK
		-	-			medium strength. Borehole BH202 continued as cored hole	/			
			-							
- Li i i		-1	2.0 —						liii	
			-							
		-	-							
			2.0							
		-0	3.0-							
			-							
			-							
		1	4.0							
			-							
		-	-							
111			-							
		2	5.0							
			-							
			-							
		3	- 6.0 —							
			0.0							
			-							
			-							
		4	7.0							
			-							
i i i		$\left - \right $	-							
			-							
ethod D auger di S auger so R roller/tric / washboi T cable to A hand au T diatube	crewing* cone re ol	* M mud N nil ng* C casing Denetration penetration no resistance ranging to resistance ranging to resistance ranging to water (N* SPT - sample recovered W water 0-Oct-12 water N c SPT with solid cone						cation syn I descriptic ed on Unifi ification Sys	ed	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Eb friable
blank bit	t		10-0	- Oct-12 wa	ater	Nc SPT with solid cone W	moist wet			Fb friable VL very loose
V DI						VS vane shearpeak/remouded (uncorrected kPa)				L loose MD medium dense

		_	-	5	geotechnic:						Boreh	ole ID.	BH202	
Er	າດ	in	ee	rin	g Log - Cored Bo	reh	ole	9			sheet:		3 of 4	001/04000
	_				se Development Pty Ltd						projec			COV24303A
clien			ena	Leas	se Development Fly Llu							tarted:	23 May	
orinc					l	4		1-4-1				ompleted:	23 May	2013
oroje					International Convention Cen	itre (I	CC)	Hotel			logged	-	CL	
ocat				-	arbour, Sydney						check	,	DS	
oositio drill m		: DP		384.50	N: 6,250,527.50 (Datum Not Specified) rface mountin	elevatio ng: Track		um (Datum	NOT Specifi	, .	ng Diame			
drilliı	ng ir	form	ation	mate	rial substance					rock	mass de	_		
8			Ê	bol :	material description ROCK TYPE: grain characterisics,		ering & on	estimated strength & Is50	samples, field tests & ls(50)	50	defect spacing (mm)		dditional observa defect descrip ation, planarity, i	
support	water	RL (m)	depth (m)	graphic log	colour, structure, minor components		weathering	X=axial; O=diametral ⊐ ≂ ≖ ≍ ⊞	(MPa) a = axial; d = diametral	core run & RQD	30 300 1000		thickness, of	
	>	-5			INTERLAMINATED SHALE (80%) &		XW / HW			70%			I W, 350 mm	3
		_	-		SANDSTONE (20%): shale dark grey, sandstone fine grained, grey (continued)	/	FR					PT, 0°, P	L, RO, CO	
			-		SANDSTONE: fine grained, pale grey, with or grey laminae, distinctly cross bedded at 0-1	5°			a=1.49					
	-	6	9.0						d=1.46					
			-	· · · · ·										
		-	-											
			-	· · · · ·				 X0	a=0.80	94%				
		7	10.0						d=0.88					
			-											
		-	-						0-1.47				L, RO, CO	
		8			SANDSTONE: fine to medium grained, pale grey, with some carbonaceous flecks, mass				a=1.47 d=1.65 a=1.38			SM XW,	30 mm	
			-	· · · · ·					d=1.50					
		-	-											
			-											
- NMLC		9	12.0						a=1.36 d=1.56	100%				
			-	· · · · ·										
		-	-	· · · · ·										
		10	- 13.0 —											
			-											
		-	-											
			-						a=2.08					
		11	14.0 —	· · · · ·					d=2.14	99%				
			-							99%				
		-	-	· · · · ·										
		12	- 15.0 —						a=1.85 d=1.89					
			-		√ 15.21m to 15.24m: shale band	_						PT, 0°, P	L, RO, CN	
		-	-		INTERLAMINATED SHALE (30%) & SANDSTONE (70%): fine grained, pale grey	/							L, RO, CN	
			-		shale is dark grey	,			a=2.85 d=1.51	96%				
meth	nod 8	supp	ort	F	water graphic	log / core	recove	<u>ry</u>	weathering RS residu		ation*	defect typ PT partin		p lanarity PL planar
DT AS	a		crewing		10/10/12, water level on date shown	(10/12, water el on date shown							zone l	CU curved JN undulating
AD RR CB	ro cl		cone blade bi	t	► water inflow	lov 10/12, water level on date shown water inflow complete drilling fluid loss							ed seam I	ST stepped R Irregular
W NML NQ	.C N	ashbo MLC c		.9 mm)	partial drilling fluid loss core run				FR fresh *W replaced v strength	y weathe vith A for a		roughness	g break	coating
HQ PQ	w	reline reline	core (6 core (8	3.5mm) 5.0mm)	water pressure test result	barrel wit	thdrawn		VL very lo L low M mediui	w		SL slick POL polis SO smo	ensided (hed S	CN clean SN stain /N veneer
SPT	st te		d penet	ration		Rock Qua	ality Des	ignation (%)	H high VH very hi			RO roug		CO coating

5

				-				_			Boreho	e ID.	BH202 4 of 4	
	ng	JIN	ee	rin	g Log - Corec	a Borer	1016	9			project	no.	GEOTLC	OV24303A
clie	nt:	L	.end	Leas	se Development Pty Lt	d					date sta	arted:	23 May 20	013
prin	icipa	l:									date co	mpleted:	23 May 20	013
oroj	ject:	S	SICE	EP -	International Conventi	on Centre (l	CC) I	Hotel			logged	by:	CL	
002	ation	: [Darlii	ng Ha	arbour, Sydney						checke	d by:	DS	
	tion:	l l: DP		384.50;	N: 6,250,527.50 (Datum Not Spec			0m (Datum	Not Specifie	, .				
		nform		mate	erial substance	mounting: Trac	N.				ing Diamete mass defe			
ð				bo	material descriptio ROCK TYPE: grain charac		a gr	estimated strength	samples, field tests		defect spacing		ditional observatio defect descriptio	ns
support	water	(E	depth (m)	graphic log	colour, structure, minor con		weathering a	& Is50 × = axial; o = diametral	& ls(50) (MPa) a = axial;	core run & RQD	(mm)		ation, planarity, rou thickness, othe	
s	Š	13 13	de		SANDSTONE: fine to medium gra	ained, pale	¥ t ë FR		d = diametral	S ∞ 	3000 300 30	particular SM, 10 mr	n	general
			-	· · · · ·	grey, with pale grey laminae, dist bedded at 0-10°							PT, 0°, PL		-
		-	-	· · · · ·						96%		PT, 0°, PL		-
									a=2.66 d=1.90			,.,.	,,	-
		14	17.0 -	· · · · ·					a=1.70 d=1.96			— JT, 35°, P	L, RO, CN	-
		_	-	· · · · ·								PT, 0°, PL	, RO, CN	-
			-	· · · · ·								- PT, 0°, PL		-
		15	18.0 -											_
			-											-
		-	-	· · · · ·										-
			-						a=2.08	95%				-
		16	19.0 -						d=2.39 a=2.40 d=2.23			PT, 0°, PL	, RO, CO	_
		L	-									└-JT, 10°, P	L, RO, CO	-
				· · · · ·										-
		17	20.0	· · · · ·										_
<u>*</u>					Borehole BH202 terminated at 20	0.20 m								
		-	-											-
		10	-											-
		18	21.0 -											-
		_	-											-
			-											-
		19	22.0 -											_
														-
		-	-											-
			-											-
		20	23.0 -											-
		_	-											-
			-											-
me	thod	& supp	ort		water	graphic log / cor	e recove		weathering	& alter		defect type		narity
DT AS	d	liatube			1 🔽 10/10/12, water			.,	RS residu XW extrer	ial soil nely wea weathe	athered	PT parting JT joint SZ shear:	PL CU	planar curved undulating
AD RR	a ro	uger d oller/tri	rilling cone		level on date shown water inflow	(graphic syn	nbols indicate		DW distine MW mode	ctly weat rately we	hered eathered	SS shears CS crushe	surface ST	stepped Irregular
CB W NM	W	vashbo	blade b re core (51		complete drilling fluid loss partial drilling fluid loss		recovere	d	SW slightl FR fresh *W replaced w strength	y weath		SM seam DB drilling		41-r - r
NQ HQ	2 V	vireline vireline	core (4 core (6	7.6mm) 3.5mm)		core run & RQD	ithdrawn		strength VL very lo L low			SL slicke POL polish	nsided CN	ting clean stain
PQ			core (8 d penet		J water pressure test result (lugeons) for depth			gnation (%)	M mediur	n		SO smoo RO rough	th VN	veneer coating

C	0	f	fe	V	geotech	nnics								
					g Log - Coreo		nole	9			Boreho sheet:		BH203 2 of 4	} COV24303A
clier	_	,			se Development Pty Lt						project date sta		24 May	
prine						-						mpleted:	24 May	
proje	•			FP.	International Conventi	on Centre (l	CC)	Hotel			logged	•	CL	2010
loca					arbour, Sydney	on ochire (i	00)	Totol			checke		DS	
positi				-	N: 6,250,513.50 (Datum Not Spec	ifie d)urface elevatio	n : 31	0m (Datum	Not Specifi	ed`analı		-	03	
•		el: DP			, ,,	mounting: Trac					diameter :			
drilli	ing i	nform	ation	mate	erial substance material descriptio	n		estimated	samples,	rock	defect	1	ditional observ	rations and
method & support	water	RL (m)	depth (m)	graphic log	ROCK TYPE: grain charac colour, structure, minor con	terisics,	weathering & alteration	strength & Is50 ×= axial; O = diametral	field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	spacing (mm)	(type, inclina	defect descr	iptions roughness, coating, other)
E 13	>		ŏ	6			ਯ <		d = diametral	<u>8</u> ∞	3 2 8 2 8	particular		general
		2	- - - 1.0 —									-		- - - -
		-	- - - 2.0-									_		- - -
		-1	-											
		-0	3.0											-
			-											-
		1	4.0-		start coring at 4.10m	ained note	1.0.4/							
		_	-		SANDSTONE: fine to medium gr. grey, with some grey laminae dis bedded at 0-5°		HW FR		a=0.90 d=0.41	100%		PT, 0°, PL, PT, 0°, PL,		-
		2	5.0 -									— XW SM, 10	Omm	-
		-	-		SANDSTONE: fine to medium gr grey, with a trace of sideritic fleck			ok 	a=1.12 d=0.67			— PT, 0°, PL,	RO, CN	
		3	6.0											-
			-											
		[a=0.86	99%				-
		4	7.0	· · · · ·	SANDSTONE: medium to coarse grey, with some orange brown la				d=0.90					-
			-	· · · · ·	across bedded at 0-5°							PT, 0°, PL,	RO, CN	-
		-	-	· · · · ·	becoming with dark grey shale le	nticles			d=0.22				RO, CN	-
							HW		weathering	64%		PT, 0°, PL,	RO, CN	planarity
DT AS AD RR CB W	d a n c v v v v v v v v v v v v v v v v v v	auger d oller/trie claw or vashbo VMLC o vireline vireline vireline	crewing rilling cone blade bi	.9 mm) 7.6mm) 3.5mm) 5.0mm)	water	no core	covered nbols indicate recovere ithdrawn	e material) ed	RS residu XW extrem HW highly DW distinu MW mode	ual soil mely weather ctly weather rately we ly weather with A for a ww m	athered red hered eathered ered	A struct type PT parting JT joint SZ shear z SC scrusher SM seam DB drilling t roughness SL slicker POL polishe SO smooti RO rough VR very rc	one urface d seam break nsided ed h	PL planar CU curved UN undulating ST stepped IR Irregular Coating CN clean SN stain VN veneer CO coating

С	C)f	fe	Y:	geotech	nnics								
				J							Borehol	e ID.	BH20	3
F	nc	nin	ee	rin	g Log - Cored	d Boreh	ol	e			sheet:		3 of 4	
	-	_			<u> </u>			<u> </u>			project			LCOV24303AI
clie	nt:	L	.ena	Leas	se Development Pty Lt	a					date sta	arted:	-	y 2013
prin	cipa										date co	mpleted:	24 Ma	y 2013
proj	ect:	5	SICE	EP -	International Conventi	on Centre (I	CC)	Hotel			logged	by:	CL	
loca	tion	n: L	Darli	ng H	arbour, Sydney						checked	d by:	DS	
posi		el: DF		395.70	; N: 6,250,513.50 (Datum Not Spec	,		0m (Datum	Not Specifi	, .	e from horiz diameter :			
			ation	mate	erial substance	mounting: Tracl	`			-	mass defe			
				bc	material descriptio		s D	estimated strength	samples, field tests		defect spacing		defect des	
method & support	ter	(E	depth (m)	graphic log	ROCK TYPE: grain character colour, structure, minor cor		weathering alteration	& Is50 × = axial; O = diametral	& ls(50) (MPa)	core run & RQD	(mm)	(type, inclina	ation, planarit thickness	y, roughness, coating, , other)
ang	water	RL L	dep			/\ e	alte ve	⋽⋾⋾⋷⋽⋼	a = axial; d = diametral	°. S≪	3000	particular		general
		5			INTERLAMINATED SHALE (80%) SANDSTONE (20%): shale is da sandstone is fine grained, pale g	rk grey,						PT, 0°, PL XW SM, 1		-
					laminated at 0° (continued)		FR							-
			.		NO CORE: 0.08 m SANDSTONE: fine grained, pale	grey, pebbly		x	a=1.15	64%				-
		6	9.0 -		SANDSTONE: fine grained, pale laminations, distinctly cross bedo	grey, with grey led at 0-5°			d=1.50					_
											╵╵╵╵			-
		-		· · · · ·				×	a=0.66 d=0.51			→ PT, 0°, PL → JT, 10°, P		-
			10.0 -						-1 50					-
		7	10.0						a=1.50 d=1.34					-
				· · · · ·	SANDSTONE: fine to medium gr grey, with some carbonaceous fl									-
		-												-
		8	11.0 -							94%				-
				· · · · ·										-
		-										JT, 45°, P	. RO. CN	-
									a=1.38 d=1.30			→ JT, 25°, P		-
		9	12.0 -											
												PT, 0°, PL		-
		-							a=1.45 d=1.35	100%		F1, 0 , FL	, NO, ON	-
			13.0 -						d=1.40					-
		10												-
														-
			.											-
		11	14.0 -											_
				1										-
		F								98%				-
			15.0 -		SANDSTONE: fine to medium gr grey, with grey laminae, distinctly				a=1.36					-
		12	13.0 -		at 0-5°				d=1.16 a=2.36		╵╵╵╵╹	JT, 10°, P	L, RO, CN	-
			.		with some dark grey shale				a=2.36 d=1.46			— XW SM, 1		=
		F										DT OU DI	DO 011	-
me	thod	8 eur			shale band	graphic log / com	recover		weathering		ation*	defect type		planarity
DT AS	c	& supp diatube			water	graphic log / core		n y	RS residu	ual soil mely wea	thered	PT parting JT joint SZ shear		PL planar CU curved UN undulating
AD RR	6	auger o oller/tri	Irilling		 level on date shown water inflow 	(graphic sym		e material)	DW distin	ctly weat		SS shears CS crushe	surface	ST stepped IR Irregular
CB W	c v	claw or vashbo	blade b ore		complete drilling fluid loss partial drilling fluid loss	no core	recovere	ed	SW slight	y weathe	ered	SM seam DB drilling		-
NM NQ HQ	V	wireline		.9 mm) 7.6mm) 3.5mm)		core run & RQD	thdrawe		*W replaced v strength VL very lo	W			nsided	coating CN clean
PQ SP	v Ts	wireline standa		5.0mm)	water pressure test result (lugeons) for depth	RQD = Rock Qu			L low M mediur H high	m		POL polish SO smoo RO rough	th	SN stain VN veneer CO coating
	t	est			interval shown				VH very hi EH extrem			VR very r		

С	\mathbf{O}	f	fe	V	geotech	nnics								
					g Log - Cored		nole	e			Boreho sheet:		BH20 4 of 4	
clier	_	·			se Development Pty Lt			-			project date st		24 May	_COV24303AI
			.enu	Lea	be bevelopment i ty Et	.u						ompleted:	24 May 24 May	
prin proj	•			FD.	International Conventi	ion Contro (l		Hotol			logged		CL	2015
loca					arbour, Sydney	on oenae (i		noter			checke	•	DS	
posit				-	N: 6,250,513.50 (Datum Not Spec	cifie d iurface elevatio	on: 3.1	0m (Datum	Not Specifi	ed`anale		,	03	
		I: DP			, .,,	mounting: Trac				, .	diameter :			
drill	ing iı	nform	ation	mate	rial substance material descriptio	'n	ళ	estimated	samples,	rock	mass def defect		dditional obser	vations and
method & support	water	RL (m)	depth (m)	graphic log	ROCK TYPE: grain charac colour, structure, minor con	cterisics,	weathering 8 alteration	strength & Is50 ×= axial; ○= diametral	field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	spacing (mm)	(type, inclin	defect desc	riptions /, roughness, coating,
	1	13	-		SANDSTONE : fine to medium gr grey, with grey laminae, distinctly at 0-5° <i>(continued)</i>		FR		a=1.39 d=0.96	100%		۲I, 0°, PI -	_, RO, CN	
		14	17.0 — - - -						a=2.23 d=2.07	96%				
		15	18.0						a=1.95			— XW SM,	Clay, 20mm	
		16							d=1.42					- - -
		- 17	- - 20.0 — -		uith dath ann aideiliú lasing a	nd national of			d=1.30	97%		— JT, 45°, F ─ PT, 0°, PI	PL, RO, CN -, RO, CN	- - -
		_	-		with dark grey sideritic laminae a siderite Borehole BH203 terminated at 2	-			a=2.02 d=2.10					
		18	21.0											
		19	22.0	-										
		20	- 23.0											-
			-											-
DT AS AD RR CB W	d a rc c W LC W W W S	uger o oller/tri law or /ashbo /ineline /ireline /ireline	crewing Irilling cone blade b	it .9 mm) 7.6mm) 3.5mm) 5.0mm)	water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss partial drilling fluid loss water pressure test result (lugeons) for depth interval shown	core run & RQD	covered mbols indicate recovere vithdrawn	e material) ed	HW highly DW distine MW mode	ual soil mely weat weather ctly weather rately we y weathe vith A for al w m gh	thered ed hered athered red	CS crushe SM seam DB drilling roughness SL slicke POL polis SO smoo RO roug	zone surface ed seam j break ensided hed oth	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stain VN veneer CO coating

-	·						chnics		Bore	hole ID.	BH204
Enai	no	orin	а I		N.	R^	rehole		shee	t:	1 of 1
Engi	ne	enn	<u>y</u> ı	LOĆ	<u>J -</u>	DU	renoie		proje	ct no.	GEOTLCOV24303A
client:	Le	nd Leas	se D	evelo	opme	ent P	ty Ltd		date	started:	14 May 2013
orincipal:									date	complet	ed: 14 May 2013
project:	SIC	CEEP -	Inte	rnati	onal	Con	vention Centre (ICC) Hotel		logge	ed by:	JW
ocation:	Da	rling Ha	arbo	our, S	Sydne	ey			chec	ked by:	DS
osition:	E: 3	33,405.80;	N: 6,2	250,490).50 (Da	atum No	ot Specifie d)rface elevation:3.00m (Datum Not Spe	cified)ang	le from h	orizontal:	90°
drill model:					i		mounting: Track	hole	diamete	er : 100 mi	n
drilling inf	ormat	on			mate		ostance		≿	hand	etwisting and
method & support 1 2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	structure and additional observations
		ν E ,	3	_	AA		CONCRETE: 0.15m.		_		
		E	-	-			FILL: SAND: fine, grey, with some fine to medium sandstone gravel.	D			FILL PID = 0.1ppm at 0.3m, no odour or staining PID = 0ppm at 0.6m, no odour or
		E		-			FILL: SAND: fine, dark grey, trace of fine gravel.	-			staining PID = 0ppm at 0.8m, no odour or PID = 0ppm at 0.8m, no odour or
_			-2	1.0				M			staining
		SPT 6, 5, 4 N*=9	 - 	-			FILL: SAND: fine, orange brown, trace of high plasticity clay.				PID = 0ppm at 1.3m, no odour or staining
		E	- -1	2.0-			FILL: Clayey SAND: fine to medium, pale grey, orange pink, clay is high plasticity.	_			
		E		-			FILL: CLAY: high plasticity, mottled dark grey,	_	_	liii	
		E		-			orange and red brown, trace of shale gravel.				PID = 0.1ppm at 2.5m, no odour or staining
		SPT 3, 4, 3	-0	3.0-		SP	SAND: medium to coarse, dark grey, black, trace of clay and with some plant roots.	M	MD		ALLUVIUM PID = 0ppm at 3.2m, no odour or
		N*=7	-	-		SP	Clayey SAND: medium to coarse, mottled pale grey, brown and dark red, trace of fine to medium sandstone gravel.		MD / D		
,			1	4.0-							
			-	-			Borehole BH204 terminated at 4.25 m				
			2	5.0							
			3	6.0-							
			_	-							
			4	- 7.0 <i>—</i>							
			-	-							
method AD auger of AS augers RR roller/tr W washb CT cable to HA hand a DT diatube B blank b V V bit T TC bit * bit shor	screwin icone ore ool uger e	-	M C per	leve	I	l ater	N standard penetration test (SPT)	soil base	ation sym descriptic d on Unifie ication Sys	o n ed	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense

		-					chnics rehole			Borel sheet proje		BH204a 1 of 4 GEOTLCOV24303A
client:		nd Leas	<u> </u>								started:	
principal:	-		-								complet	
project:	SI	FEP.	Into	rnati	onal	Con	vention Centre (ICC) Hotel			logge		RC
ocation:		rling Ha									ked by:	DS
position:		-			-	-	ot Specifie d)urface elevation : 3.00m (Datum Not S	necifie	danale			-
drill model:							mounting: Track	poomo	, e		r : 100 mr	
drilling inf	ormat	ion	_	1	mate		ostance				1	
method & support 2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	class ification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components		moisture condition	consistency / relative density	hand penetro- meter (kPa) ≌ ଝ ଝ ଝ	
			3				∖ASPHALT : 0.07m.		D			PAVEMENT
			2				FILL: Gravelly SAND: fine to medium, dark grey cement stabilised.	',				FILL .
			-	-			FILL: SAND: medium, pale brown, trace of white shell fragments.					
			-1	2.0-			FILL: Sandy CLAY: low plasticity, white and pale brown, medium grained sand with some ironstor gravel.	e ne	<wp >Wp</wp 			
		SPT 1, 4, 5 N*=9	-0	3.0			with some dark grey shale rock fragments within	the	W			
		SPT 4, 10, 5 N*=15	-	-			FILL: Silty SAND: medium, dark grey, trace of shells. FILL: MIXTURE OF SAND AND CLAY: fine to medium, low plasticity, brown and grey.	_/	W/ >Wp			
		SPT		-								
		5, 10, 16/30mm \ N*=R	1 /	4.0-		SM	Silty SAND: medium, dark grey, with some shell: SANDSTONE: medium grained, red brown, highl		W	MD / D		ALLUVIUM - BEDROCK
v					· · · · ·		weathered, low strength Borehole BH204a continued as cored hole					
				-	-		Borenole BH204a continued as cored noie					-
			2 -	5.0-								
			3	- 6.0								
			4	- 7.0 - -								
method AD augero AS augers RR roller/tr W washbo CT cable tr HA hand a DT diatube B blank b V V bit T TC bit * bit show	screwir icone ore ool uger t	ıg*	pen wat	■ 10- leve	ı	ater shown	samples & field tests U## undisturbed sample D disturbed sample B bulk disturbed sample E environmental sample HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shearpeak/remouded (uncorrected kPa) R		soil de based Classifica ture ry noist	ion sym escriptio on Unifie ation Sys	n ed	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

CC)f	fe	V	geotech	nnics							
			J							Boreho	le ID.	BH204a
End	air	nee	rin	g Log - Corec	d Boreh	ol	p			sheet:		2 of 4
							.			project		GEOTLCOV24303A
client:		Lena	Leas	se Development Pty Lt	a					date sta		07 Jun 2013
princip											mpleted:	07 Jun 2013
project				International Conventi	on Centre (I	CC)	Hotel			logged	•	RC
locatio			-	arbour, Sydney						checke	-	DS
position: drill mod			405.50	; N: 6,250,490.90 (Datum Not Spec	ifie d)⊮rface elevatic mounting: Tracl		0m (Datum	Not Specifie	• -	e from horiz diameter :		
drilling			mate	erial substance		-			-	mass defe		
×		(бо	material descriptio ROCK TYPE: grain charao		ng &	estimated strength	samples, field tests		defect spacing		dditional observations and defect descriptions
method & support water	E.	depth (m)	graphic log	colour, structure, minor con		weathering alteration	& Is50 X = axial; O = diametral	& ls(50) (MPa) a = axial;	core run & RQD	(mm)		ation, planarity, roughness, coating, thickness, other)
su su	°RL	de	gra			we alt	╡」ゑェ⋛ᇤ	d = diametral	<u>ලි</u> න	3000 3000 300	particular	general
		-	-									-
	-											-
		-	-									
	-2	1.0 -										-
	-	-	-									
	-1	-										
	['	2.0-										
	-0	3.0										-
		-	-									
	-											
	1	4.0										-
				start coring at 4.40m								
Ĩ	-		\geq	SANDSTONE: medium to coarse brown, iron stained, indistinctly c		MW		a=1.67				L, RO, SN
	2	5.0		NO CORE: 0.07 m SANDSTONE: medium to coarse	arained.			d=1.52	74%			L, RO, SN -
				brown and grey, iron stained, ind bedded								
	-										F PT, 20°, F	PL, RO, SN
								a=1.73			-	Libed Stribed
	3	6.0-		SANDSTONE: medium to coarse	arained			d=1.73 d=1.53				– esc e desc
- NMLC	⊲	-		orange brown and red brown, inc bedded at 10°-20°, with some fin	listinctly cross					╺┽┽┛ ╎╎	F	, 5 -
	-			inclusions	- 1 <u>-</u>							are:P
		.						a=1.34 d=1.03	97%			Defects are:PT, 5 - 15°, PL, RO unless otherwise described
	4	7.0-						u=1.03			F	ے آ
	-	-						a=0.94			SM, 5°, P	L, RO, Clay, 5 mm
								d=1.05			4	PL, RO, SN
method DT	l & sup diatube			water	graphic log / core	e recove	ery	weathering RS residu XW extrer	alter al soil nely wea		PT parting JT joint	
AS AD	auger auger	screwing drilling		■ 10/10/12, water level on date shown			e material)	HW highly DW disting	weathe	red hered	SZ shear SS shear	zone UN undulating surface ST stepped
RR CB	roller/ti claw of	icone blade b	it	level on date shown water inflow complete drilling fluid loss						eathered ered	SM seam	ed seam IR Irregular
NMLC NQ	wireline	core (51 e core (4	7.6mm)	partial drilling fluid loss	core run & RQD			*W replaced w strength	vith A for a	alteration	DB drilling	coating
HQ PQ	wirelin	e core (6 e core (8	3.5mm) 5.0mm)	water pressure test result	barrel wi	thdrawn		VL very lo L low M mediur			SL slicke POL polis SO smoo	
	standa test	rd penet	auUN	(lugeons) for depth interval shown	RQD = Rock Qua	ality Des	ignation (%)	H high VH very hi FH extrem	gh Ielv hiah		RO roug	

		-					chnics		Boreh sheet	nole ID.	BH207 1 of 4
Engi	ne	enn	<u>y</u> I	LOĆ	<u>J</u> -	DU	rehole		proje	ct no.	GEOTLCOV24303A
client:	Ler	nd Leas	se D	evel	opme	ent P	ty Ltd		date s	started:	14 May 2013
orincipal:									date o	complet	ted: 15 May 2013
project:	SIC	EEP - I	Inte	rnati	onal	Conv	vention Centre (ICC) Hotel		logge	d by:	JW
ocation:	Dai	rling Ha	arbo	our, S	Sydn	ey			check	ked by:	DS
osition:	E: 3	33,380.80;	N: 6,2	250,502	2.90 (D	atum No	ot Specified)rface elevation : 2.80m (Datum Not Specifie	d)angle	e from ho	orizontal:	90°
Irill model: [mounting: Track	Casi	ng Diame	eter : HQ	1
drilling info	rmati	on			mate		ostance		~		
method & support 2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa) ≌ ୠ ୠ ୠ	
	-	E					BRICK PAVER: 0.1m.	М	-		PAVEMENT
		E	-2	-			FILL: SAND: fine to medium, brown and orange brown. becoming dark brown FILL: SAND: fine to medium, mottled grey, pale grey and brown, with a trace of clay and fine gravel.	111			FILL PID = 0.0ppm at 0.2m, no odour or staining PID = 0.0ppm at 0.5m, no odour or staining
		E	-	1.0-			FILL: SAND: fine to medium, pale orange and brown.				PID = 0.0ppm at 1.1m, no odour or
		675	-	-	XX		with a trace of shell		MD / D		
		SPT 6, 14, 33/120mm	-1	-		00	Clayey SAND: medium to coarse, mottled grey, brown, dark red purple.				
	100	N*=R	-	2.0			SANDSTONE: medium to coarse grained, grey with carbonaceous laminae, highly weathered, low strength				BEDROCK
			-0	3.0-	-		Borehole BH207 continued as cored hole				
			1	4.0-							
			2								
			3	6.0-							· ·
			4	- - 7.0-	-						
			5	-			ck	assifica	tion sym	 	
method AD auger d AS auger si RR roller/trid W washbo CT cable to HA hand au DT diatube B blank bi V V bit T TC bit * bit show	crewing cone re ol ger		M C per	¥_ 10- leve wat	ı	ater e shown	U## undisturbed sample D disturbed sample B bulk disturbed sample E environmental sample HP hand penetrometer (kPa) N standard penetration test (SPT)	soil d based Classific sture dry noist	lescriptio I on Unifie cation Sys	n ed	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense

C	U		IE	;y	geotech	1103								
				-							Borehol	e ID.	BH207	
E	nc	nin	ee	rin	g Log - Cored	d Boreł	nole	9			sheet:			42024
											project		GEOTLCOV2	4303AI
clier			.ena	Lea	se Development Pty Lt	u					date sta		14 May 2013	
prin						.						mpleted:	15 May 2013	
proj	ect:				International Conventi	on Centre (l	ICC) I	Hotel			logged	by:	JW	
loca				-	arbour, Sydney						checked	,	DS	
posit		E el: DP		380.80	; N: 6,250,502.90 (Datum Not Spec	ifie d) irface elevation mounting: Trac		0m (Datum	Not Specifi	, .	e from horiz ng Diamete			
		nform		mate	erial substance	mounting. Huo				1	mass defe			
~				Бc	material descriptio ROCK TYPE: grain charao		ng &	estimated strength	samples, field tests		defect spacing		dditional observations and defect descriptions	
method & support	water	RL (m)	depth (m)	graphic log	colour, structure, minor con	nponents	weathering a	& Is50 × = axial; O = diametral	& Is(50) (MPa) a = axial;	core run & RQD	(mm)	(type, inclin	ation, planarity, roughnes thickness, other)	s, coating,
ang Sup	va	RL	del	gra			we	╡┘ᇗᅚ⋛ᇤ	d = diametral	ତ୍ର જ	8 9 8 9 8 8 9 8 9 8	particular		general
		_	-	-								-		-
												-		-
		-2	-											-
			1.0-									-		-
		-	-											-
			-	-										-
		-1	-	-										
			2.0-											-
		-	-											-
			-		start coring at 2.70m							Linkh for		-
Î		-0	3.0-	· · · · ·	SANDSTONE: medium to coarse with dark grey laminate, indistinc		SW XW		a=0.13	0%		Highly fra SM, 100 r SM, 100 r		-
			3.0 -		0-20°	·	sw		a=1.07 d=0.77			PT, 0°, PL	, RO, Clay CO	-
		-	-	· · · · ·	SANDSTONE: medium to coarse grey brown with some shale bree	cia, iron oxide							_, RO, Fe SN _, RO, Fe SN	-
		1	-		bedding, indistinctly laminated at	10-20				72%		— JT, 20°, P	PL, RO, CN	-
			4.0-			·								
		L	-		SANDSTONE: medium to coarse grey, yellow brown and red brown	n, indistinctly	MW							-
					laminated at 0-20°, heavily iron s	laineu	SW							-
		2	-	· · · · ·						63%		⊢— РТ, 10°, Р	PL, RO, CN	-
			5.0					× 0	a=0.32 d=1.12				PL, RO, CN PL, RO, CN	_
NMLC		_	-									,, .	_,,	-
īz 							MW	×	a=2.18			— CS, 10 m		-
		3	-						d=1.48			PT, 0 - 10)°, IR, RO, Fe SN	-
			6.0-						a=1.25 d=1.35				_, RO, Fe SN	_
		F	-							97%				-
			-			analas							RO, Fe SN	-
		4	7.0-		SANDSTONE: medium to coarse with carbonaceous laminae, and indistinctly bedded		FR					— PT, 10°, II — PT, 5°, IR	R, RO, X VN	-
							HW		d=0.51					-
		Ē	-		INTERBEDDED SHALE AND SA shanle is dark grey, sandstone is grained nale grey					AE0/		- SM, Clay,	480 mm	-
		5	-	<u> </u>	grained, pale grey					45%		∐ 		-
									weathoring	1 & altor		— PT, 0 - 5° defect type	, IR - PL, SO, CN	
DT AS AD RR CB W NM	c a r c v LC N	auger d oller/tri claw or vashbo NMLC o	crewing rilling cone blade b re core (51	it .9 mm)	water Image: 10/10/12, water Ievel on date shown water inflow complete drilling fluid loss partial drilling fluid loss	no core	covered mbols indicate	material)	HW highly DW distine MW mode	ual soil mely wea v weather ctly weather rately we ly weather	athered red hered eathered ered	PT parting JT joint SZ shear SS shear	g PL plana CU curve zone UN undu surface ST stepp ed seam IR Irregu j break	ed lating oed
NQ HQ PQ SPT	v v Ts	vireline vireline	core (4 core (6 core (8 d penet	3.5mm) 5.0mm)	ے water pressure test result C (lugeons) for depth انnterval shown) → partial drilling fluid loss) → → → → → → → → →						SL slicke POL polisi SO smoo RO rougi VR very	hed CN clear hed SN stain oth VN vene h CO coati	er

					geotech g Log - Cored		nole	9			Borehol sheet:		BH207 4 of 4	
clier	_				se Development Pty Lt						project date sta		GEOTLCOV2 14 May 2013	4303AF
prin			.enu	Leas	se Development i ty Li	u						mpleted:	14 May 2013 15 May 2013	
proj				FP -	International Conventi	ion Centre (I		Hotal			logged		JW	
	tion				arbour, Sydney	on ochac (i	00)				checked		DS	
posit				-	N: 6,250,502.90 (Datum Not Spec	cifie d)urface elevatio	on: 2.8	0m (Datum	Not Specifi	ed)angle		-	20	
drill r	node	el: DF	520			mounting: Track	k	,		Casi	ng Diamete	r : HQ		
drill	ing i	nform	nation	mate	rial substance material descriptio	n	ళ	estimated	samples,	rock	mass defe defect		dditional observations and	
method & support	ter	(E)	depth (m)	graphic log	ROCK TYPE : grain charac colour, structure, minor cor	cterisics,	weathering a	strength & Is50 ×= axial; O = diametral	field tests & Is(50) (MPa)	core run & RQD	spacing (mm)	(type, inclin	defect descriptions ation, planarity, roughness thickness, other)	, coating,
and s	water	RL	deb	gra	SANDSTONE: medium to coarse	arained pale	alte FR	H H H H H H H H H H H H H H H H H H H	a = axial; d = diametral d=2.04		80 90 90 90 80 90 90 90 90 90	particular		general
		-	-		grey, with dark grey laminae, ind bedded at 0-10° (continued)					100%				-
														-
		14	- 17.0	· · · · ·					a=1.77 d=1.20	100%				-
			-						u=1.20					-
			-											-
		15	-					% 0	a=2.54 d=3.00			— PT, 0°, PI	L, RO, CN, x3	=
NMLC			18.0											_
z 		-	-	· · · · ·					a=2.41	98%		PT_0°PI	L, RO, Clay CO	-
		16	-						d=2.41			F1, U, F1	L, NO, Olay CO	-
		-10	19.0 —						a=3.23					_
		_	-						d=2.33					-
			-											-
		17	- 20.0	· · · · ·					0-2.69	100%				-
			-	· · · · ·					a=2.68 d=1.61					
			-		Borehole BH207 terminated at 2	0.30 m								-
		18	-											-
			21.0											
		-	-											-
		19	-											-
			22.0-	-										_
		-	-											-
			-	-										-
		20	- 23.0											-
		_	-											-
			-											-
		21	-											-
		& sup		•	water	graphic log / core	e recove	ery	weathering RS residu	ual soil		PT parting	g PL plana	
DT AS AD	a	uger o	crewing Irilling		10/10/12, water level on date shown	Core reco (graphic sym		e material)	HW highly DW distine	nely wea weather ctly weat	red hered		surface ST stepp	ating ed
RR CB W	ro C	oller/tri	cone blade bi	it	water inflow complete drilling fluid loss	no core i	recovere	ed	MW mode SW slight	rately we y weathe	eathered ered	CS crushe SM seam	ed seam IR Irregu g break	
NM NQ	LC N W	IMLC vireline	core (51 core (4	7.6mm)	│────│ partial drilling fluid loss	core run & RQD			*W replaced v strength VL very lo		Iteration	roughness		
HQ PQ SP1	W	vireline	core (6 core (8 d penet	5.0mm)	water pressure test result	barrel wi			L low M mediu			POL polis SO smoo	hed SN stain oth VN venee	er
1		est	2 20100		(lugeons) for depth interval shown	RQD = Rock Qua	ality Des	signation (%)	H high VH very hi EH extrem			RO rougi VR very	h CO coatir rough	IJ

							chnics		Boreł	nole ID.	BH208		
Enai	no	orin	~		2	Po	rabala		sheet	t:	1 of 4		
Engi	ne	enn	<u>y</u> I	LO	<u>y -</u>	DU	rehole		proje	ct no.	GEOTLCOV24303A		
client:	Lei	nd Leas	se D	evel	opm	ent P	ty Ltd		date	started:	21 May 2013		
orincipal:									date	complet	ed: 22 May 2013		
project:	SIC	EEP -	International Convention Centre (ICC) Hotel								CL		
ocation:	Da	rling Ha	arbo	our, S	Sydn	ey			checł	ked by:	DS		
osition:			N: 6,2	250,510	0.70 (D	atum N	ot Specified)urface elevation : 2.80m (Datum Not Spec	, .					
drill model:					mate	erial su	mounting: Track	Casi	ng Diam	eter : HQ			
						noi	material description		'' sity	hand	structure and		
method & support 1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	penetro- meter (kPa) ≗ & & & &	additional observations		
	2						BRICK PAVER: 0.1m.	7	01		PAVEMENT		
5	2	E	-			•	CONCRETE: 0.1m.	7			PID = 0 ppm at 0.2m, no staining or-		
-		E				*	ASPHALT: 0.3m. FILL: Gravelly SAND: fine to coarse, brown, fine to	D	-		odour ROADBASE		
			-2		\mathbb{R}		coarse sandstone and igneous rock gravel. from 0.8m - becoming orange brown			iiii	PID = 0 ppm at 0.5m, no staining or odour		
		E		1.0-			FILL: SAND: fine, yellow brown.		L/MD		FILL		
			_	-						liii	PID = 0 ppm at 1m, no staining or		
HQ Casing											odour		
— На с			-1		\mathbb{R}						-		
		E		2.0-	\mathbb{R}			M	_		PID = 0 ppm at 2m, no staining or		
			-								odour		
	-					SP	SAND: fine to medium, brown, trace of fine grained shell fragments.	w	D				
		F	-0	3.0-]								
		SPT 30	1				SANDSTONE: fine to medium grained, orange			$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	PID = 0 ppm at 3m, no staining or -		
		<u></u>		-	1		brown mottled grey and brown, extremely to highly weathered, low strength				BEDROCK		
- <u> </u> []]]			1				Borehole BH208 continued as cored hole						
				4.0-	4								
				-	-								
				-	1						-		
			2		1								
111			-	5.0-	4					<u>liii</u>	_		
					-								
				-	1								
111			3		1					liii			
			3	6.0-							_		
				-	-						-		
			_	-	-								
				-	1								
111			4	7.0-						liii			
					4								
111			-	.	{								
			_	.	1								
			5	-	1								
method	rillie -*			port		انم ا	samples & field tests		ation sym lescriptio		consistency / relative density		
AD auger d AS auger s	crewin	g*		mud casing	N	l nil	U## undisturbed sample ##mm diameter D disturbed sample	based	d on Unifie cation Sys	ed	VS very soft S soft		
RR roller/tri W washbo	re		per	netration ⊢ ∾ ∞			B bulk disturbed sample E environmental sample		Jauon Sys	aciii	F firm St stiff		
CT cable to HA hand au	lger			<u>ع</u> ز	no res rangir	sistance ng to al	N standard penetration test (SPT)	noisture dry			VSt very stiff H hard		
DT diatube B blank b			wat		-Oct-12 w		N* SPT - sample recovered N Nc SPT with solid cone V	1 moist V wet			Fb friable VL very loose		
V V bit T TC bit				- lev	el on date	e shown	VS vane shearpeak/remouded (uncorrected kPa)				L loose MD medium dense		
* hit abou	vn by s	uttix	I 1		ter outflow		R refusal				D dense		

С	O)T	ie	Y	geotech	nnics								
				J							Borehol	e ID.	BH208	
F	nc	nin	66	rin	g Log - Cored	d Borel	nole	C			sheet:		2 of 4	
	_	-									project		GEOTLCOV	
clier			ena	Leas	se Development Pty Lt	a					date sta		21 May 2013	
prin												mpleted:	22 May 2013	
proj					International Convent	on Centre (ICC)	Hotel			logged		CL	
loca				-	arbour, Sydney						checked	-	DS	
posit drill r		el: DP		366.90	; N: 6,250,510.70 (Datum Not Spec	mounting: Trac		0m (Datum	Not Specifi		e from horiz ing Diamete			
drill	ing i	nform	ation	mate	rial substance					rock	mass defe			
~			Ê	bol :	material descriptio ROCK TYPE: grain charao	cterisics,	ring & on	estimated strength & Is50	samples, field tests & Is(50)	5	defect spacing (mm)		dditional observations an defect descriptions ation, planarity, roughnes	
method & support	water	RL (m)	depth (m)	graphic log	colour, structure, minor cor	nponents	weathering	X = axial; O = diametral	(MPa) a = axial:	core run & RQD	3000 3000 3000 3000 3000 3000	particular	thickness, other)	general
= s	5	Ľ.	σ	6			5 N	i I I I I I I I I I I I I I I I I I I I		0.0	<u>8 = 8 = 8</u>	particular		general
		-	-									-		
			-									-		-
		-2	- 1.0 <i>-</i>											-
			-											
			-											-
		-1	-	-										
			2.0									-		-
		-	-											-
			-	-										-
		-0	- 3.0											-
_					start coring at 3.25m									-
Î			-	· · · · ·	SANDSTONE: medium to coarse grey with dark grey laminae, dist	inctly cross	SW FR					PT, 0°, PI	., RO, Fe SN	-
		1	-		bedded at 0-15°, iron stained at s	surrace								-
			4.0 —						a=2.59 d=1.20				., RO, Fe SN PL, RO, CN	
		-	-						a=1.83 d=1.78	97%				-
			-	· · · · ·								PT, 10°, F	PL, RO, CN	-
		2	- 5.0 —		SANDSTONE: fine to medium gr									-
			- 5.0	· · · · ·	indistinctly bedded									-
0			-								╽╎╧╧╧┫╎	SM, Clay, PT, 5°, PI		-
		3							_			., 0, 11		-
			6.0 —	· · · · ·					a=2.56 d=1.59					_
		F	-							87%				-
			-											-
		4	- 7.0 —		SANDSTONE: medium to coarse with some dark grey shale lenticl		1		a=1.39 d=1.22			PT, 5°, PI	., RO, Clay CO ., RO, Clay CO	-
			- 0.1		cross bedded at 0-5°	, 			a=1.86 d=2.05			- PI, 0°, Pl	., RO, Clay CO	-
		[-	· · · · ·						87%				-
		5	-		NO CORE: 0.19 m		xw	╎┼┼╋┼	-		┢╪╤╤┛╷╷	⊨– XW SM, (-	-
met	thod 2	& supp	ort	<u> </u>	water	graphic log / co	re recove	rv	weathering		ation*	defect type		
DT AS AD RR CB W	d a n c V LC V	diatube auger so auger d oller/trio claw or vashbo NMLC o vireline	crewing rilling cone blade bi re core (51 core (4	.9 mm) 7.6mm)	10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss	core re (graphic sy no core core run & RQI	covered mbols indicate e recovere	e material) ed	RS residi XW extrei HW highly DW distin MW mode SW slight FR fresh *W replaced v strength VL very lo	ual soil mely wea y weathe ctly weath rately we ly weath with A for a	athered red hered eathered ered	PT parting JT joint SZ shear SS shear CS crushe SM seam DB drilling roughness	g PL plan CU curv zone UN und surface ST step ed seam IR Irreg break ensided CN clea	ar ed Jlating ped jular n
					water pressure test result (lugeons) for depth interval shown	L low M mediu H high VH very h			SO smoo RO rough VR very	n VN ven VN ven CO coat	eer			

С	C	ſ	fe	V	geotech	nnics								
					g Log - Cored		nole	a			Boreho sheet:	le ID.	BH208 3 of 4	3
		_									project			<u>.COV24303AH</u>
clie	nt:	L	.end	Leas	se Development Pty Lt	d					date sta	arted:	21 May	
prir	ncipa										date co	mpleted:	22 May	2013
pro	ject:	S	SICE	EP -	International Conventi	on Centre (ICC) I	Hotel			logged	by:	CL	
loca	ation	n: /	Darli	ng Ha	arbour, Sydney						checke	d by:	DS	
L.	ition:			366.90	; N: 6,250,510.70 (Datum Not Spec			0m (Datum	Not Specifi					
		el: DP		mate	erial substance	mounting: Trac	K			-	ng Diamete			
				5	material descriptio		ې مې	estimated strength	samples, field tests		defect spacing	a	dditional observ defect descr	
method & support	e.	(E	depth (m)	graphic log	ROCK TYPE: grain charac colour, structure, minor con		weathering	& Is50 × = axial; O = diametral	& ls(50) (MPa)	core run & RQD	(mm)	(type, inclin		roughness, coating,
met	water	RL	deb	gra			1	루그 호 프 루 프	a = axial; d = diametral	core & F	3000 30 40 30 30 30 30 30 30 30 30 30 30 30 30 30	particular		general
		6	- - - -		SANDSTONE: medium to coarse with some dark grey shale lentici distinctly cross bedded at 0-5° (c SANDSTONE: fine grained, grey laminae, distinctly cross bedded	es and clasts, ontinued) with grey	FR		- 470	87%		PT, 0°, PL	., RO, CN	-
			9.0 -						a=1.78 d=0.91					-
		F							a=1.48 d=1.30					1
										100%				-
		7	10.0 -											-
											╎┟┿┫╎	PT, 0°, Pl	, RO, CO, Side	erite _
					SANDSTONE: fine to medium gr		-					PT, 0°, PL SM, Clay,	., RO, Clay CO 20 mm	-
		8			grey with some carbonaceous fle	ecks, massive			0=1.40			JT, 15°, P		1
			11.0 -						a=1.40 d=1.35	100%			L, RO, CN	-
		Ļ												-
									d=1.46]
0		9												-
- NML			12.0 -											-
		F								100%				-
														-
		10	13.0 -						a=1.72					-
									d=2.15					-
			.											-
		11												1
			14.0 -											-
		F			14.2m: some shale clasts up to 5	50mm								-
										100%		DT AS T		
		12							a=1.58			PT, 0°, PL	., RU, CN	-
			15.0 -						d=2.09		İ	CM OF	10 mm	-
		F			SANDSTONE: fine grained, pale laminae, distinctly bedded at 0-5							SM, Clay,	i U IIIM	-
					silty sandstone beds									-
		13		1					a=2.04 d=1.94	0 -1/		408		-
DT AS AC RF CE W NN NO HC	- 6 5 a 7 a 8 r 8 c 8 v 14 10 1 10 1 10 1 10 1 10 1 10 1 10 1 1	auger o roller/tri claw or washbo NMLC wireline wireline	crewing cone blade b ore core (51 core (4 core (6	it .9 mm) 7.6mm) 3.5mm)	water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss	no core	covered mbols indicate recovere	e material) ed	HW highly DW distine MW mode	al soil mely weather ctly weather rately we y weather vith A for a	thered ed nered athered ered	CS crushe SM seam DB drilling roughness	g zone surface ed seam break ensided	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stain
PG SP) v 'Ts	wireline		5.0mm)	water pressure test result (lugeons) for depth interval shown	RQD = Rock Qu			M mediun H high VH very hi EH extrem	gh		SO smoo RO rough	oth	VN veneer CO coating

Inai							chnics			Borer	nole ID.		BH209		
Enai	00	orin	~ I	~	N	D۵	rabala			sheet	:		1 of 1		
	ne	erin	<u>y</u> ı	-0(<u>J</u> -	DU	rehole			proje	ct no.		GEOTLCOV24303A		
ent:	Le	nd Leas	e De	evelo	opme	ent P	ty Ltd			date s	started:		28 May 2013		
incipal:										date o	comple	ted:	28 May 2013		
oject:	SI	CEEP - I	nter	natio	onal	Conv	rention Centre (ICC) Hotel			logge	d by:		DB		
cation:	Da	rling Ha	rbo	ur, S	Sydn	ey				check	ed by:		DS		
sition:	E: 3	333,376.70;	N: 6,2	50,542	2.30 (Da	atum No	t Specified)urface elevation: 3.00m (Datum Not Spe	ecified	l)angle	from ho	orizontal:	90°			
II model:					<u> </u>	<u></u>	mounting:		hole c	liametei	r : 100 m	m			
	Formation			material substance									structure and		
support 1 2 penetration 3	samples & field tests		RL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components		moisture condition	consistency / relative density	hand penetro meter (kPa) ୁ ରୁ ରୁ କ୍ସି		additional observations		
			3	_				-3-	D			PAV	'EMENT		
		E		_			FILL: SAND: medium - coarse, pale brown to		М				BILISED ROADBASE		
				-			FILL: BITUMEN FILL: Gravelly SAND: medium - coarse, dark grey,	, _i[] -			liii	BEC	DROCK		
			-2	1.0-			fine to medium grained subangular gravel with some lime.	, j							
				-			SANDSTONE: medium, orange brown to pale grey, moderately weathered, medium strength.	/							
			-	-			Borehole BH209 terminated at 0.45 m								
				-							liii				
			-1	2.0-											
				-											
			-	-											
				-											
			-0	3.0-											
				-											
				-											
			1	4.0-											
				-											
			_	-							1111				
				_											
			2	5.0-											
				-											
			-	-											
111			_	-							liii				
			3	6.0-											
				-											
				-											
liii			4	7.0-							liii				
				-											
			F	-											
ethod D auger o S auger s R roller/tri / washbo T cable to A hand a	drilling* screwir icone ore ool uger	g*			no res	nil istance g to	N standard penetration test (SPT)	Ci moist	soil de based lassifica	ion sym escriptio on Unifie ation Sys	bol & n d	V S F S	firm t stiff St very stiff		
T diatube blank b			wate		I⊲ refusa Oct-12 wa		N* SPT - sample recovered Nc SPT with solid cone		oist			F	b friable		
V bit TC bit bit show				leve	el on date er inflow		VS vane shearpeak/remouded (uncorrected kPa)					L			