

Proposed Commercial Development 4 Murray Rose Avenue, Sydney Olympic Park

> Prepared for Lend Lease Building Pty Ltd

> > Project 45153.03 November 2013

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	45153.03	Document No.	2
Document title	Report on Detail	ed Site Investigation (Co	ontamination)
	Proposed Comm	nercial Development	
Site address	4 Murray Rose Avenue, Sydney Olympic Park		
Report prepared for	Lend Lease Building Pty Ltd		
Eile nome	P:\45153.03 SYDN	NEY OLYMPIC PARK, 4 Mu	urray Rose PMO\Docs\4 Murray
File name	Rose Contamination Report.docx		

Document status and review

Revision	Prepared by	Reviewed by	Date issued
DRAFT	P Oitmaa	J M Nash	19 November 2013
0	P Oitmaa	J M Nash	26 November 2013

Distribution of copies

Revision	Electronic	Paper	Issued to	
DRAFT	1	1.10	Lend Lease Building Pty Ltd	
0	1		Lend Lease Building Pty Ltd	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author Allata	26.11.2013
Reviewer AM	26-11-2013
\bigcirc	

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Table of Contents

Page

1.	Introdu	uction	.1
2.	Previo	us Investigations	.2
3.	Site De	escription	.2
4.	Regior	nal Geology and Hydrogeology	.3
5.	Scope	of Works	.3
6.	Site Hi	story	.4
	6.1	Historical Land Uses	.4
	6.2	Aerial Photographs	4
	6.3	Contaminated Land Public Register	.4
	6.4	WorkCover Dangerous Goods Licences	4
	6.5	Groundwater Bore Licences	5
7.	Conce	ptual Site Model	5
8.	Selecte	ed Comparative Guidelines	6
9.	Data C	Quality Objectives	6
10.	Field V	Vork Procedures	.6
	10.1	Soils Assessment	6
	10.2	Groundwater Assessment	7
11.	Result	s of Assessment	.8
	11.1	Field Work Results	8
	11.2	Total Photoionisable Compounds Results	8
	11.3	Analytical Results for Soil and Groundwater Samples	8
	11.4	Field and Laboratory Quality Control Procedures	9
12.	Discus	sion of Results	9
	12.1	Soil Contamination	9
	12.2	Groundwater Contamination	9
13.	Conclu	isions and Recommendations1	0
	13.1	Soils1	0
	13.2	Removal of Excavated Materials1	1
	13.3	Groundwater1	1
14.	Refere	nces1	2
15.	Limitat	ions1	2

Appendices

Appendix A:	About this Report
Appendix B:	Drawing
Appendix C:	Site History Information
Appendix D:	Sampling and Analysis Quality Plan
Appendix E:	Field Work Results
Appendix F:	Summary of Laboratory Test Results
Appendix G:	Detailed Laboratory Test Results
Appendix H:	QA/QC Information
Appendix I:	PID Calibration Certificate

Report on Detailed Site Investigation (Contamination) Proposed Commercial Development 4 Murray Rose Avenue, Sydney Olympic Park

1. Introduction

This report presents the results of a Detailed Site Investigation (Contamination) undertaken for a proposed commercial development at 4 Murray Rose Avenue, Sydney Olympic Park. The work was commissioned by Lend Lease Building Pty Ltd, development managers and builders.

The project involves the construction of a six-storey commercial office building over a three-level basement. Bulk excavation to approximately RL 2 relative to Australian Height Datum (AHD) is proposed over the majority of the site (RL 102.078 relative to the Sydney Olympic Park Authority datum).

The detailed contamination assessment was undertaken to:

- Assess the general levels of soil contamination resulting from past and present activities on the site;
- Assess the potential for contaminant migration by examining the groundwater quality on the site;
- Assess the suitability of the site for the proposed commercial development;
- Provide recommendations for remediation works, if required; and
- Provide information on waste classification for the materials that are to be removed from the site during bulk earthworks activities.

The overall approach for the Detailed Site Investigation included a review of available historical information, the drilling of boreholes, the installation of groundwater monitoring wells, soil and groundwater sampling, laboratory analysis and interpretation of the results. Details of the site history, field work and laboratory testing programme are given in this report, as well as comments on the issues outlined above.

The scope of the Detailed Site Investigation has been prepared with reference to the newly adopted National Environment Protection Measure (NEPM) guidelines where possible. However, it is noted that the scope of the investigation was largely prepared prior to the formal adoption of the NEPM guidelines and therefore *Contaminated Sites: Guidelines for the NSW Site Auditor Scheme* (NSW DECC, 2006) has also been used where relevant. This is approach is understood to be acceptable to the NSW EPA as both these guidelines remain current and legally acceptable under the *Contaminated Land Management Act 1997*.

A geotechnical investigation was undertaken at the same time as the Detailed Site Investigation and is reported separately.

2. Previous Investigations

Douglas Partners Pty Ltd has previously undertaken detailed contamination assessments on 3 Murray Rose Avenue and 5 Murray Rose Avenue, which are immediately to the north of the current development site. The details of the previous assessments are provided in the reports for Projects 45153.01 and 45153.02. Information from these previous reports has been used in this current investigation where relevant. These previous sites and the current site were historically known as 7 Parkview Drive.

3. Site Description

The site is near-rectangular and approximately $4,000 \text{ m}^2$ in area. It is bounded by Murray Rose Avenue to the north, a recently demolished commercial building to the east, Parkview Drive to the south, and an on-grade carpark associated with a commercial building to the west. The ground surface on the site currently slopes downwards to the south-east with an overall difference in levels of about 2 m. The western portion of the site has been cut to form a level hardstand area; gravity retaining walls supporting the adjacent land are located in the northern and western extents of the hardstand.

The site is primarily on part of Lot 88 in Deposited Plan 870992 in the Parish of Concord, County of Cumberland. A small portion of the site is on the adjacent Lot 70 in DP 818981, Lot 70 in DP 1134933 and Lot 1 in DP 1122970, although it is understood that the lot boundaries will ultimately be altered to reflect the layout of the new development. A site location plan is shown in Figure 1.

Figure 1: Approximate location of site with respect to current lot boundaries

4. Regional Geology and Hydrogeology

Reference to the *Sydney 1:100 000 Geological Series Sheet* indicates that the site is underlain by Ashfield Shale of the Wianamatta Group. Ashfield Shale typically comprises black to dark grey shale and laminite.

The site is located near the top of a spur that has been created by excavation of the adjacent brick pit. Groundwater is likely to have historically flowed to the east and south-east, into the wetlands at the southern end of Homebush Bay. However, the brick pit may also act as a sump drawing groundwater from the site in a northerly direction. Surface water flows would be expected to follow the surface topography of the site.

5. Scope of Works

The scope of the Detailed Site Investigation was as follows:

- Review various historical documents including title deeds, aerial photographs, WorkCover Dangerous Goods Licences, EPA Remediation Notices and groundwater bore licences to determine the nature of previous activities that may have occurred on the site;
- Prepare a Sampling and Analysis Quality Plan (SAQP) for the investigation;
- Drill 12 boreholes (BH1 to BH12) on the site for both contamination and geotechnical investigation purposes;
- Install four groundwater monitoring wells (BH1, BH2, BH5 & BH6) near the four corners of the site to allow assessment of groundwater quality at the up-gradient and down-gradient site boundaries;
- Collect soil and groundwater samples for analysis at a NATA accredited laboratory for a range of potential contaminants;
- Screen soil samples with a calibrated Photoionisation Detector (PID) to assess the presence of volatile organic compounds;
- Provide a Detailed Site Investigation report which comments on the recorded levels of contamination in the soils and groundwater on the site, the suitability of the site for the proposed development, recommended follow up action, and provides provisional waste classification advice; and
- Store remaining soil and groundwater samples not analysed for a period of one month pending the need for further analysis.

6. Site History

6.1 Historical Land Uses

The title deed records indicate that the lots on which the development is proposed were owned by the Metropolitan Meat Industry Board from 1905. This organisation was responsible for operating an abattoir and meat works in the Homebush Bay area. The title deeds do not indicate whether the actual abattoir was on the current development site or elsewhere. The site was then owned by the Olympic Coordination Authority from 1993 and the registered owners as of 2007, the Sydney Olympic Park Authority, from 2002. The site is now owned by GPT under a 99 year lease. A summary of the title deed records for the main lot is provided in Appendix C.

6.2 Aerial Photographs

A review of available aerial photographs from 1949, 1951, 1961, 1965, 1970, 1982, 1991, 1998, 2009 and 2013 was undertaken to evaluate the changes in land-use patterns on the site during this period. The site was occupied by several large commercial-type buildings in the 1949 photograph. The area to the west of the site appears to have been used as holding-pens for livestock in preparation for slaughter. Additional commercial buildings were constructed since 1949 and exist up to at least 1982 as shown in the 1982 photograph. The commercial buildings have a distinctive 'saw-tooth' pattern which was typical of buildings clad with asbestos-cement sheeting.

The buildings had been demolished by 1991 and the site was vacant and grassed at this time. The newer commercial buildings constructed in the mid-1990s appear in the 1998 photograph. The 2009 photograph shows the building then known as 7 Parkview Drive to the north and the hardstand pavement which currently remains. The 2013 photograph shows the site as it was at the time of the current investigation. The now-decommissioned brick pit to the north of the development site is clearly seen in all photographs that were reviewed.

Scanned images of the aerial photographs are provided in Appendix C.

6.3 Contaminated Land Public Register

A search undertaken on 19 November 2013 indicated that the development site is not on the Public Register of Notices issued under the *Contaminated Land Management Act 1997*. There are numerous current and former notices relating to sites in the Sydney Olympic Park precinct although the development site is not the subject of any current notices. The search results for the Auburn Council area are attached in Appendix C as confirmation of this status.

6.4 WorkCover Dangerous Goods Licences

A search of the WorkCover Dangerous Goods Licences database did not return any evidence of licences having been issued for the development site (formerly known as 7 Parkview Drive). A letter from WorkCover is attached in Appendix C.

6.5 Groundwater Bore Licences

A search of licensed groundwater bores within the Sydney Olympic Park area indicated that no licensed groundwater wells are located within the development site. The nearest wells are located within Bicentennial Park approximately 300 m to the east and south-east of the site and are listed as monitoring wells, presumably part of a monitoring programme for the landfill that underlies the park. Production wells were not listed in the database. The search information is attached in Drawing GW1 in Appendix C.

7. Conceptual Site Model

The site forms part of a former warehouse and office building that was constructed in the mid-1990s. Prior to that, it had been used as part of an abattoir with commercial buildings known to have been present on the site. Previous investigations on adjacent sites to the north have encountered elevated levels of heavy metals in filling, and volatile organic compounds and petroleum hydrocarbons within the groundwater. No on-site sources of the groundwater contamination have been identified.

The Conceptual Site Model (CSM) has therefore been developed on the basis of the information currently available. Potential soil contamination may be present as a result of:

- Placement of filling on the site;
- Previously contaminating activities associated with its former use as part of the abattoir and later as a commercial warehouse; and
- Naturally occurring metals in the soils and rock underlying the site.

Potential groundwater contamination may be present as a result of:

- Storage of chemicals on the site in the past; and
- Migration of diffuse sources of contamination onto the site.

Soil vapour intrusion and/or ground gas is currently considered to be a very low risk on the site and will only be considered if significant concentrations of volatile contaminants are encountered during the assessment.

The human receptors to soil and groundwater contamination are likely to be the occupants of and visitors to the proposed commercial building. Construction personnel and nearby workers may also be receptors during the construction phase of the development project.

The ecological receptors are likely to be limited to the flora and fauna that grow/live on areas of the site in which vegetation is proposed. The area is not known to be ecologically significant.

Exposure pathways are expected to be limited to dermal contact with soils and groundwater on the site by humans, ingestion of soils and vegetation by fauna, and phytotoxic exposure to flora.

8. Selected Comparative Guidelines

The National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1 – Guideline on Investigation Levels for Soil and Groundwater (NEPC, 2013) provides assessment levels for various soil, groundwater and vapour contaminants. The site is assumed to be a commercial/industrial site for the health-based components of the assessment. The site categories for the ecological-based components were determined during the assessment (i.e. determined from soil types, pH and assumed cation exchange capacities of the soils encountered).

The quantitative site assessment criteria adopted are shown in Table F4 (soils) and Table F6 (groundwater) in Appendix F.

9. Data Quality Objectives

The investigation procedures and data quality objectives have been devised in general accordance with the seven-step data quality objective (DQO) process outlined in Australian Standard AS 4482.1 – 2005 *Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds.* The various DQOs and QA/QC procedures adopted for the assessment are outlined in the SAQP which is included in Appendix D. They have not been duplicated within the body of this report.

10. Field Work Procedures

10.1 Soils Assessment

The field work for the Detailed Site Investigation included the drilling of five cored boreholes (BH1 to BH3, BH5 & BH6) and six augered boreholes (BH7 to BH12) at the locations shown on Drawing C1 in Appendix B. Bore BH4 was originally proposed but was not drilled due to access constraints imposed by the Sydney Olympic Park Authority in relation to drilling within the road reserve.

The cored bores were drilled to depths of 15.0 m to 15.2 m using a truck-mounted Scout drilling rig. They were commenced using solid flight augers then continued using rotary wash-boring equipment inside top casing. Standard penetration tests were undertaken within the overburden at regular depth intervals. Soon after rock was encountered, the bores were advanced using NMLC-sized diamond core drilling equipment to obtain 50 mm diameter continuous samples of the rock for identification and strength testing purposes.

The augered bores were drilled to depths of 0.9 m to 3.4 m using an auger mounted on a Bobcat.

Sampling was undertaken from the auger and from the SPTs which were considered appropriate techniques due to the strength of the soils encountered on the site. The mixing of soils from different depth profiles was minimised during sampling by careful drilling and supervision.

Soil sampling for contamination assessment purposes was performed in general accordance with the standard sampling procedures outlined in the *Douglas Partners Field Procedures Manual*. All sampling data were recorded on chain-of-custody information sheets. The sampling generally included:

- Soil sampling using decontaminated and/or disposable equipment;
- Placement of samples into laboratory prepared jars and immediate capping;
- Labelling of sample containers with individual and unique markings including project number, sample location, sample depth and date of sampling; and
- Storage of sample containers in a cooled, insulated container for transport to the laboratory.

The ground surface levels at the bores were measured relative to AHD using an automatic level and benchmark SS 87238 which was listed at RL 11.03 on the Department of Lands survey database. It is noted that the Sydney Olympic Park Authority uses a separate height datum (AHD + 100.078 m), although for the purposes of this report AHD is used.

10.2 Groundwater Assessment

The field work for the groundwater assessment included the installation of four groundwater monitoring wells (BH1, BH2, BH5 and BH6) in the deep boreholes drilled as part of the geotechnical investigation on the site. This involved placing Class 18 uPVC screen and solid casing in each borehole. The screened interval was within the bedrock in all wells to ensure the surface of the groundwater was intercepted by the screen. A gravel pack was placed around the screen and a bentonite plug was placed above the gravel. The remainder of the void was backfilled with drill cuttings and the top of the wells were finished with a steel cover mounted flush with the surface.

Groundwater sampling was performed in general accordance with the standard sampling procedures outlined in the *DP Field Procedures Manual*. All sampling data were recorded on chain-of-custody information sheets. The sampling generally included:

- Development of the wells by pumping the wells practically dry;
- Groundwater sampling using a low-flow pump that had been decontaminated using Decon90 phosphate-free detergent and demineralised water;
- Placement of samples into laboratory prepared and preserved bottles and immediate capping;
- Labelling of sample containers with individual and unique markings including project number, sample location and date of sampling; and
- Storage of sample containers in a cooled, insulated and sealed container for transport to the laboratory.

The field sampling details are provided in Appendix E.

Douglas Partners

11. Results of Assessment

11.1 Field Work Results

The subsurface conditions encountered in the boreholes are presented in the borehole logs in Appendix E. Notes defining descriptive terms and classification methods are included in Appendix A.

The subsurface conditions encountered on the site can be described as:

- FILLING concrete, sandy/silty topsoil, clay, silty clay, clayey silt, shaly clay, gravel, shale and roadbase filling with traces of plastic, wood and hessian to depths of 0.2 m to 3.4 m. BH11 refused on a concrete obstruction at 3.4 depth;
- RESIDUAL SOIL stiff to hard silty clay, clayey silt, gravelly clay and clay with traces of ironstone gravel to depths of 0.6 m to 3.0 m in several boreholes. Residual soil was not encountered in locations where filling was directly underlain by shale bedrock; and
- BEDROCK shale bedrock below depths of 0.25 m to 3.0 m in the locations in which shale was observed.

Free groundwater was not observed during augering and the use of drilling fluid during coring prevented further observations in the deeper cored bores. The water levels measured in the monitoring wells are provided in Table 1.

Table 1: Groundwater Observations in Monitoring Wells (m, AHD)

Date	BH1	BH2	BH5	BH6
8 Nov 2013	6.6	NM	7.6	5.7

Notes: NM = not measured as monitoring well was inaccessible

11.2 Total Photoionisable Compounds Results

Replicate soil samples collected from the boreholes were stored under ambient conditions in resealable bags before screening for Total Photoionisable Compounds (TOPIC) using a calibrated Photoionisation Detector (PID). The results of the screening are shown on the borehole logs in Appendix E. The PID readings were all very low. A calibration certificate for the PID is included in Appendix I.

11.3 Analytical Results for Soil and Groundwater Samples

Envirolab Services Pty Ltd was commissioned to undertake analysis of the majority of the soil samples. Eurofins Environment Testing Australia Pty Ltd was commissioned to undertaken inter-lab QA/QC testing as per the SAQP. Tabulated summaries of the results of the soil and groundwater analysis are provided in Appendix F.

The summaries include Table F1 (Contaminant Concentrations in Soils), Table F2 (Contaminant Concentrations in QA/QC Soil Samples), Table F3 (Statistical Analysis of Soil Contaminant Concentrations), Table F4 (Adopted Comparative Criteria for Soils), Table F5 (Contaminant Concentrations in Groundwater) and Table F6 (Adopted Comparative Criteria for Groundwater).

The detailed analytical results, sample receipts and chain of custody documentation are included in Appendix G.

11.4 Field and Laboratory Quality Control Procedures

The field and laboratory QA/QC procedures adopted for the current assessment are described in Appendix H.

12. Discussion of Results

12.1 Soil Contamination

Twenty-two (22) soil samples (excluding QA/QC samples) were selectively analysed from eleven (11) boreholes on the site. Eleven (11) of these samples were obtained from the filling profile and eleven (11) samples from the natural soils. This testing frequency is considered sufficient for characterising the site. The rationale for selecting the test locations is provided in Section 7 of this report.

All soil samples were within the adopted health-based investigation/screening levels for commercial sites. All soil samples were also within the adopted ecological-based investigation/screening levels. This result differs from the two development sites to the north (3 and 5 Murray Rose Avenue) and is likely to be due to the fact that very little filling was encountered on 4 Murray Rose Avenue when compared to the other sites.

Asbestos was not observed in the auger returns from the boreholes and was not detected in the samples analysed in the laboratory.

12.2 Groundwater Contamination

Groundwater sampling from the monitoring wells was undertaken on 8 November 2013. Well BH2 could not be located and it was thought that this well had been damaged as a result of construction activities on 3 Murray Rose Avenue. Samples were obtained from the other three wells.

The samples contained several volatile organic compounds including chloroform (up to 4 μ g/L), o xylene (3 μ g/L) and cyclohexane (1 μ g/L). The sample from BH6 contained semi-volatile TRH fractions of 63 μ g/L and the sample from BH5 contained a phenol concentration of 60 μ g/L. It is noted that these concentrations are below the newly adopted NEPM guidelines for the compounds in which figures are provided in NEPM.

Page 10 of 12

The PAH, OCP, OPP and PCB concentrations were all below the laboratory detection limits. All heavy metal concentrations were below the adopted hardness-adjusted levels.

It is likely that the contaminants detected in the groundwater are representative of regional groundwater quality in the Sydney Olympic Park area. Investigations on the adjacent sites encountered much higher concentrations of hydrocarbon-related products, the source of which was not apparent at the time of the previous assessments. It is understood that specific sources of hydrocarbons (e.g. underground storage tanks, buried drums etc.) were not encountered during excavation works on the adjacent site, which also supports the regional groundwater argument that there are diffuse sources of these contaminants located within Sydney Olympic Park.

If specific sources are located on the development site then they are likely to be removed during basement excavation works and therefore the groundwater quality should improve. If the source of the contamination is not on the site, as seems likely to be the case, then the concentrations are obviously indicative of more 'regional' levels.

The presence of various contaminants in groundwater should not affect the proposed commercial land use for the site as groundwater will not be harvested for use. Seepage into the basement would be expected to occur and will probably be handled using a subfloor drainage and collection system in a similar manner to 5 Murray Rose Avenue. The quality of groundwater requiring discharge from the site, either during construction or in the longer term, may need assessing to determine appropriate disposal options. If discharge to stormwater is not permitted by the appropriate regulatory authority then a trade waste agreement with Sydney Water may need to be sought.

13. Conclusions and Recommendations

13.1 Soils

The site history information indicates the site was used for commercial or industrial purposes in the past. No specific contaminating activities were identified although industrial processes undertaken on the site may have included the use of selected chemicals such as hydrocarbons. Several buildings constructed in the mid-20th century have also been demolished on the site which indicates the possibility of asbestos being present.

The 22 soil samples analysed from the 11 test locations exhibited contaminant concentrations within the adopted assessment criteria for the site. This result differs from the two development sites to the north (3 and 5 Murray Rose Avenue) and is likely to be due to the fact that very little filling was encountered on 4 Murray Rose Avenue when compared to the other sites.

Asbestos was not observed in the boreholes nor detected in the laboratory samples analysed, although the possibility of asbestos being present on the site should not be discounted due to previous demolition activities that have been undertaken.

On the basis of the results of this Detailed Site Investigation, the soils that will remain on the site following bulk excavation works are considered suitable for the proposed commercial land-use.

13.2 Removal of Excavated Materials

The analytical programme was undertaken with the aim of providing preliminary waste classification advice as well as an assessment of site contamination. Waste classification is required for materials to be removed from a site in accordance with *Waste Classification Guidelines* (DECCW NSW, 2009). These guidelines outline a six-step process for determining an appropriate waste classification for soil materials.

In accordance with the process outlined in the guidelines, the existing filling requires chemical assessment to confirm a waste classification. The results of this testing are outlined in Appendix F and Appendix G of this report.

On the basis of the total contaminant concentrations in the soil samples analysed, the filling materials analysed could be classified as General Solid Waste (non-putrescible) (i.e. CT1 as per Table 1 of *Waste Classification Guidelines Part 1: Classifying Waste*) and would need to be transported to an appropriately licensed landfill.

The results were also used to determine whether the filling may meet the requirements for excavated natural material (ENM) as outlined in *The excavated natural material exemption 2012* issued under the *Protection of the Environment Operations (Waste) Regulation 2005.* The current assessment indicates that providing the pH, EC and foreign material criteria are met, the filling on the site may be able to be described as ENM upon excavation. Additional sampling and analysis would be required during construction to confirm the ENM status as per the requirements of the exemption.

The natural soils and bedrock underlying the site should be able to be disposed of as virgin excavated natural material (VENM) providing they are not cross-contaminated prior to, during or following excavation. Confirmation of VENM status will be required during excavation.

13.3 Groundwater

Groundwater samples were collected from three monitoring wells on the site and analysed for a range of potential contaminants. The samples contained elevated concentrations of several organic compounds, although a specific on-site source of the contaminants is not apparent. The compounds detected included chloroform (up to 4 μ g/L), o xylene (3 μ g/L), cyclohexane (1 μ g/L), semi-volatile TRH fractions (63 μ g/L) and phenol (60 μ g/L).

If the source is found to be on the site (e.g. underground storage tanks, buried drums etc.) then it will be removed as part of the basement excavation works. If the source is not on the site then the quality of the groundwater in the wells is likely to be indicative of regional groundwater quality.

On the basis of the results of this Detailed Site Investigation, the quality of the groundwater should not hinder the proposed redevelopment of the site for commercial purposes provided that disposal of seepage water is undertaken in accordance with regulatory requirements.

14. References

Australian Standard AS 4482.1 – 2005 Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds.

Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (DECC NSW, 2006)

Contaminated Sites: Sampling Design Guidelines (NSW EPA, 1995)

National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1 – Guideline on Investigation Levels for Soil and Groundwater, (NEPC, 2013).

Sydney 1:100 000 Geological Series Sheet 9130, NSW Department of Mineral Resources, 1983.

Waste Classification Guidelines, Department of Environment, Climate Change and Water NSW, 2009.

15. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for a project at 4 Murray Rose Avenue, Sydney Olympic Park in accordance with DP's proposal dated 28 March 2013 and subsequent acceptance received from Lend Lease Building Pty Ltd. The report is provided for the use of Lend Lease Building Pty Ltd for this project only and for the purpose(s) described in the report. It should not be used for other projects or by a third party.

The results provided in the report are indicative of the sub-surface conditions only at the specific sampling or testing locations, and then only to the depths investigated and at the time the work was carried out. Subsurface conditions can change abruptly due to variable geological processes and also as a result of anthropogenic influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be limited by undetected variations in ground conditions between sampling locations. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

This report must be read in conjunction with all of the attached notes and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion given in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

About this Report

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Par

2

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

s Parti

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.	
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable	
Moderately weathered	MW	Staining and discolouration of rock substance has taken place	
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock	
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects	
Fresh	Fr	No signs of decomposition or staining	

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

D

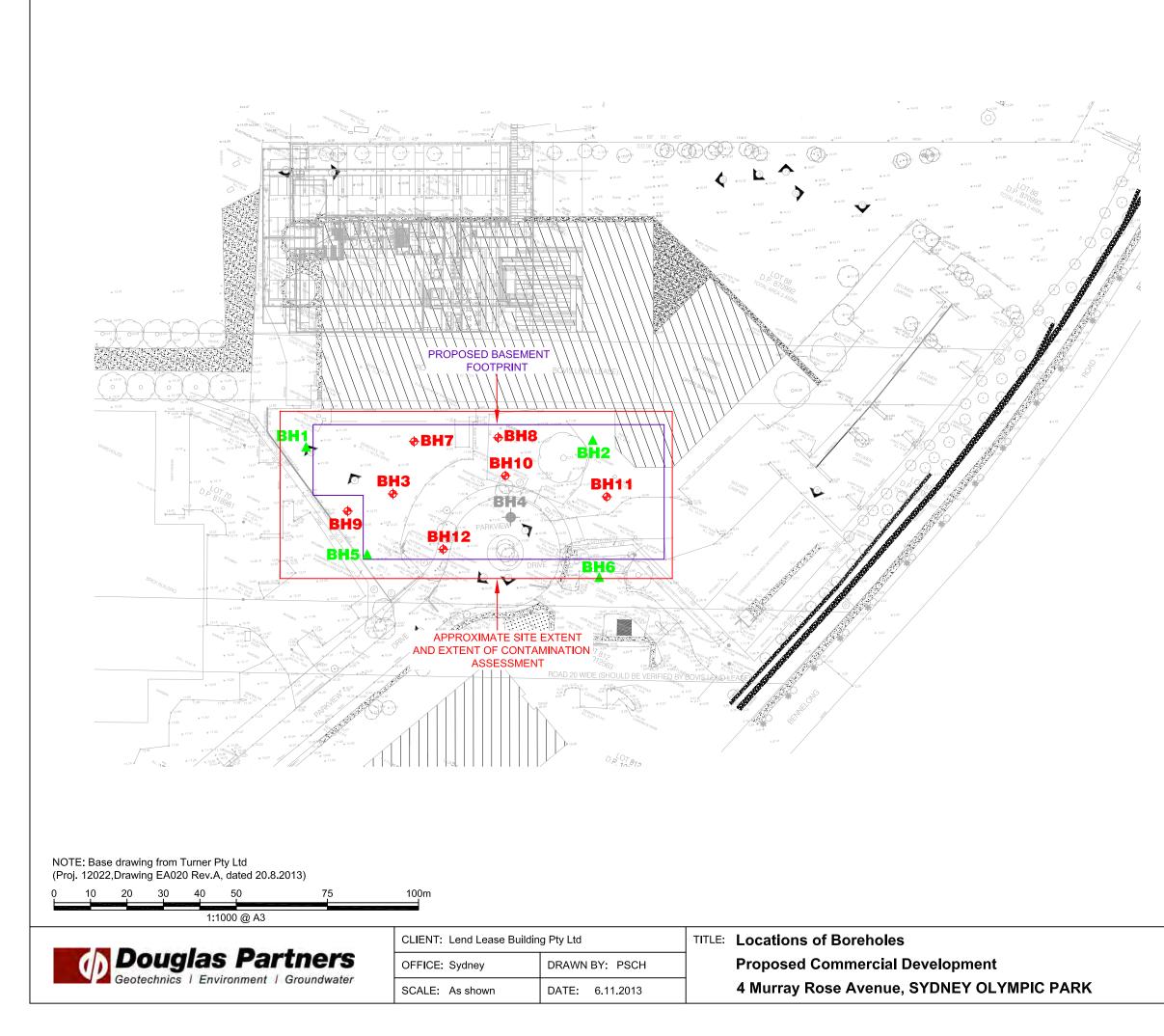
ers

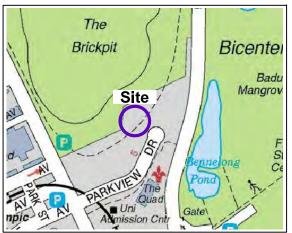
Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.


Stratification Spacing


For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Appendix B

Drawing

Locality Plan

LEGEND

- Borehole and groundwater well location
- Borehole location
- Proposed borehole (not drilled due to access restrictions placed upon drilling by the Sydney Olympic Park Authority. Bore should be drilled once access becomes available).

PROJECT No:	45153.03
DRAWING No:	C1
REVISION:	1

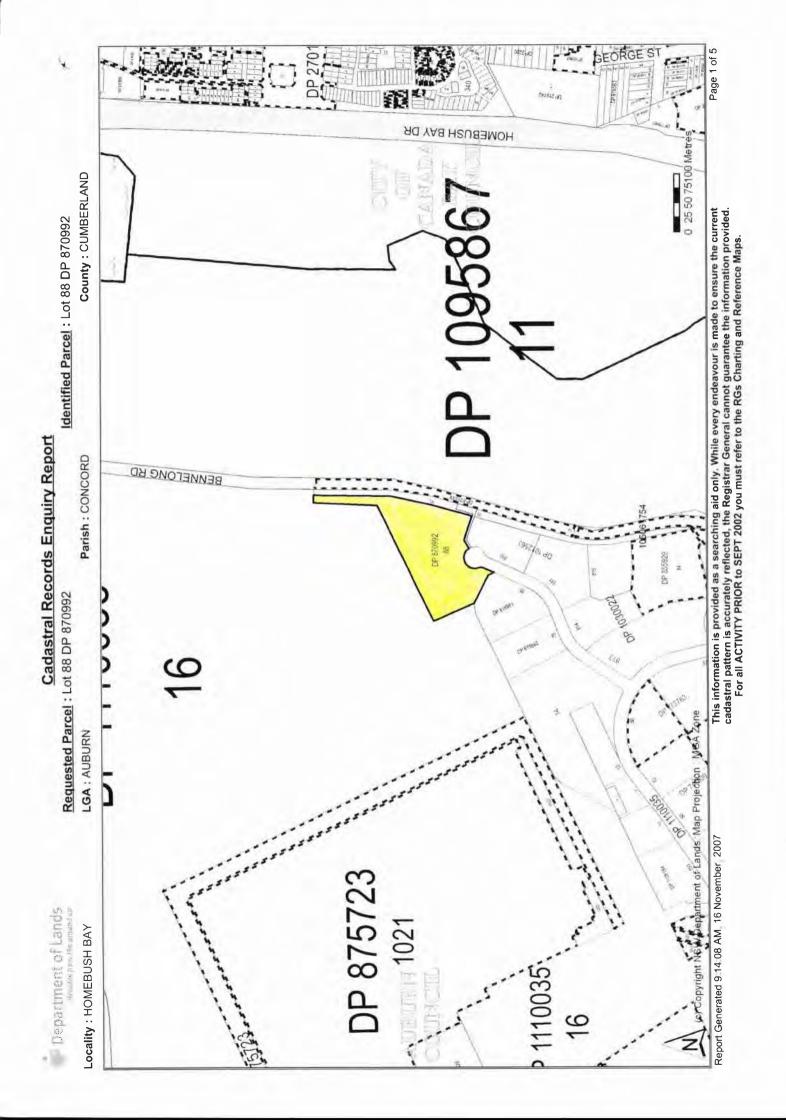
Appendix C

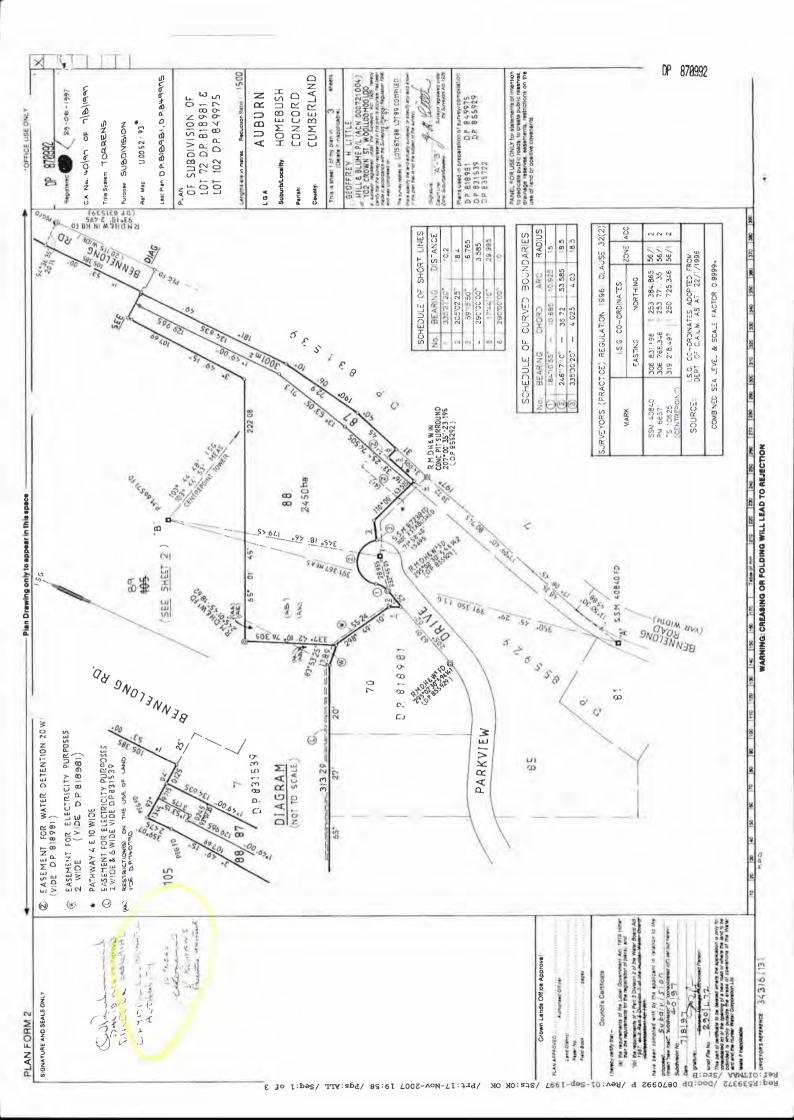
Historical Information

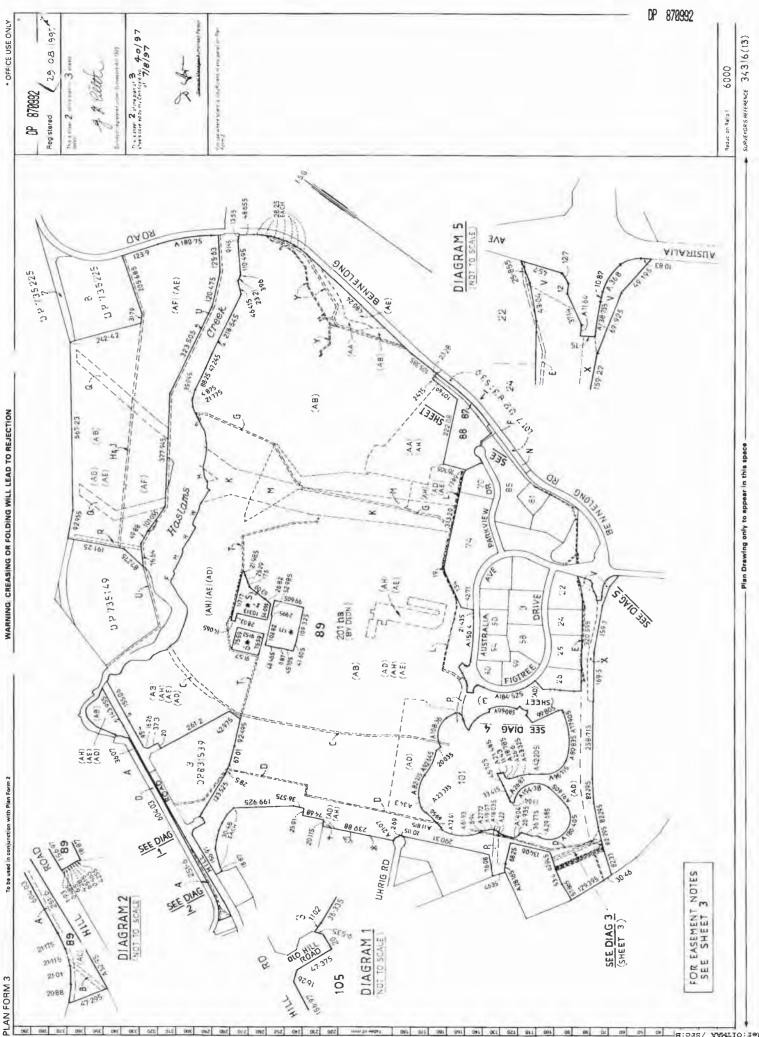
⁵ACN: 093 398 611 ABN: 61 093 412 474 Peter S. Hopley Pty Limited Legal Searchers

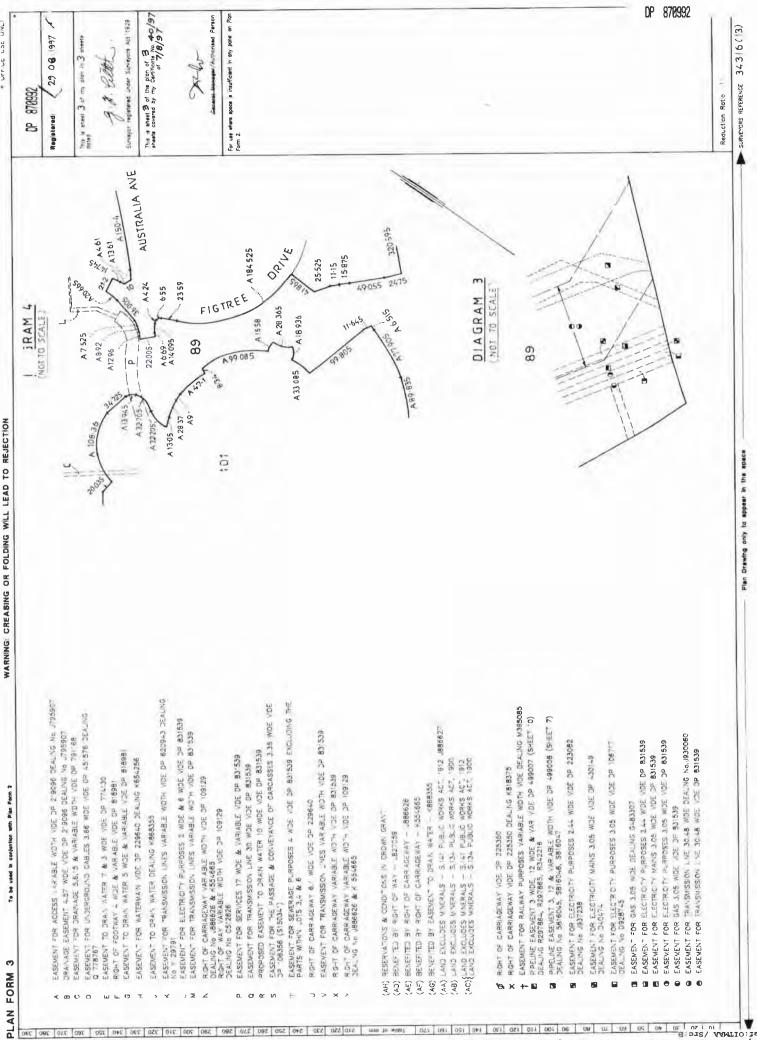
1 Boronia Avenue Mount Annan , NSW , 2567 Mobile: 0412 199 304 Fax 9233 4590 (Attn Box 29)

SUMMARY AS TO OWNERS.

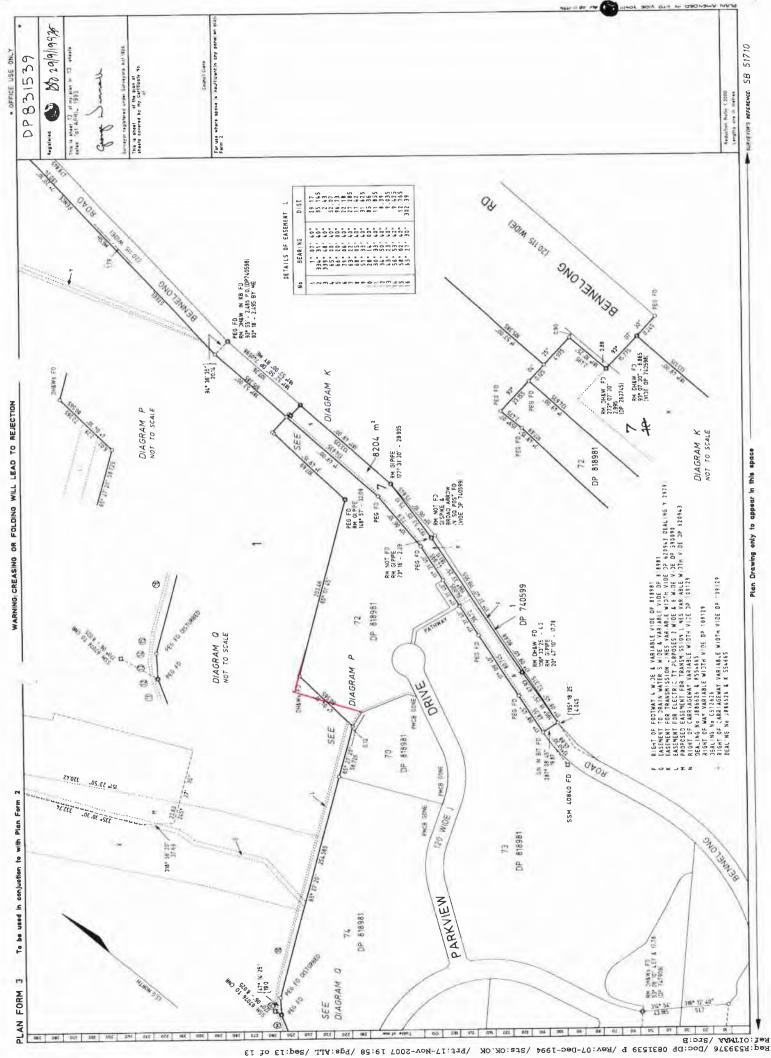

Property: 7 Parkview Drive, Homebush Bay

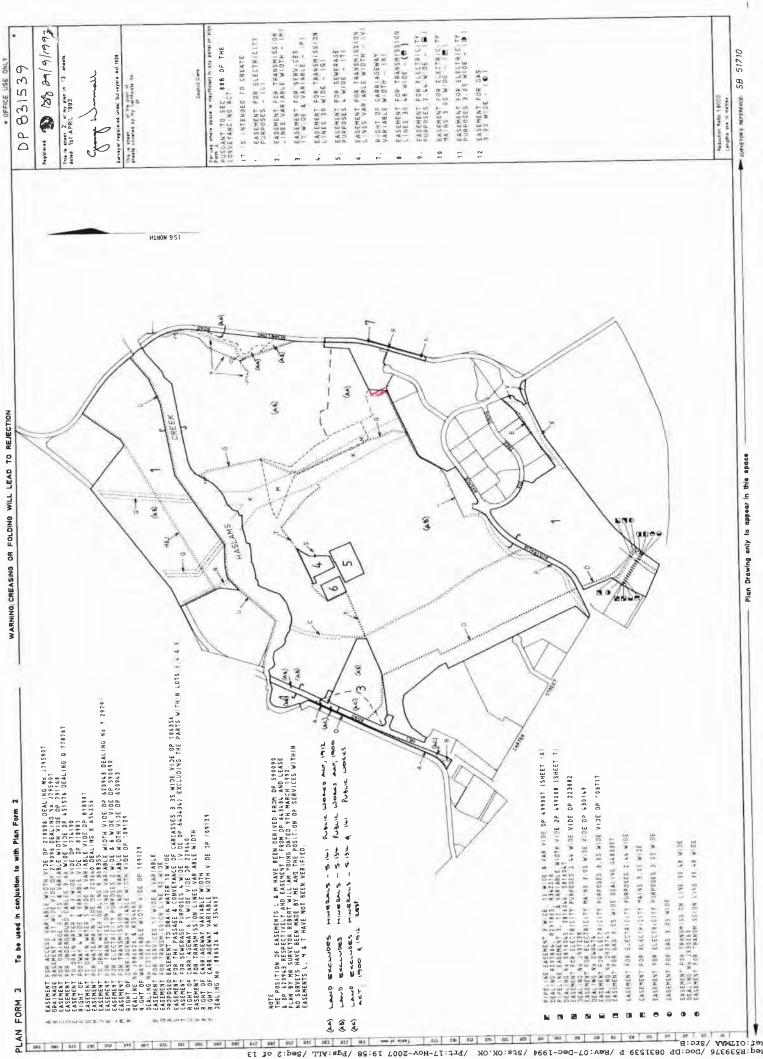

Description: - Lot 88 D.P. 870992


26.10.1905	Metroplotian Meat Industry Board (Then Metroplotian Meat Industry Commissioner) (Then Metroplotian Meat Industry Board) (Now Homebush Abattoir Corporation)	72/818981 & 102/849975
22.09.1993	Olympic Co-Ordination Authority	88/870992
25.01.2002	# Sydney Olympic Park Authority	88/870992

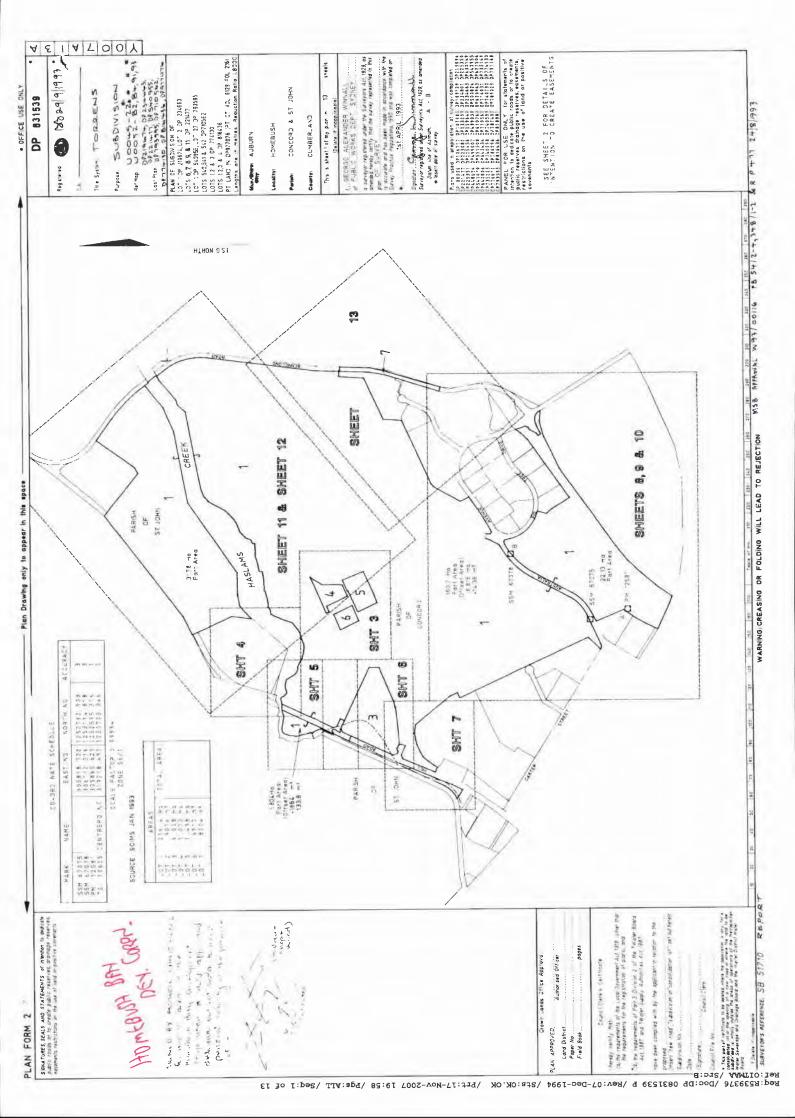

Current Registered Proprietor

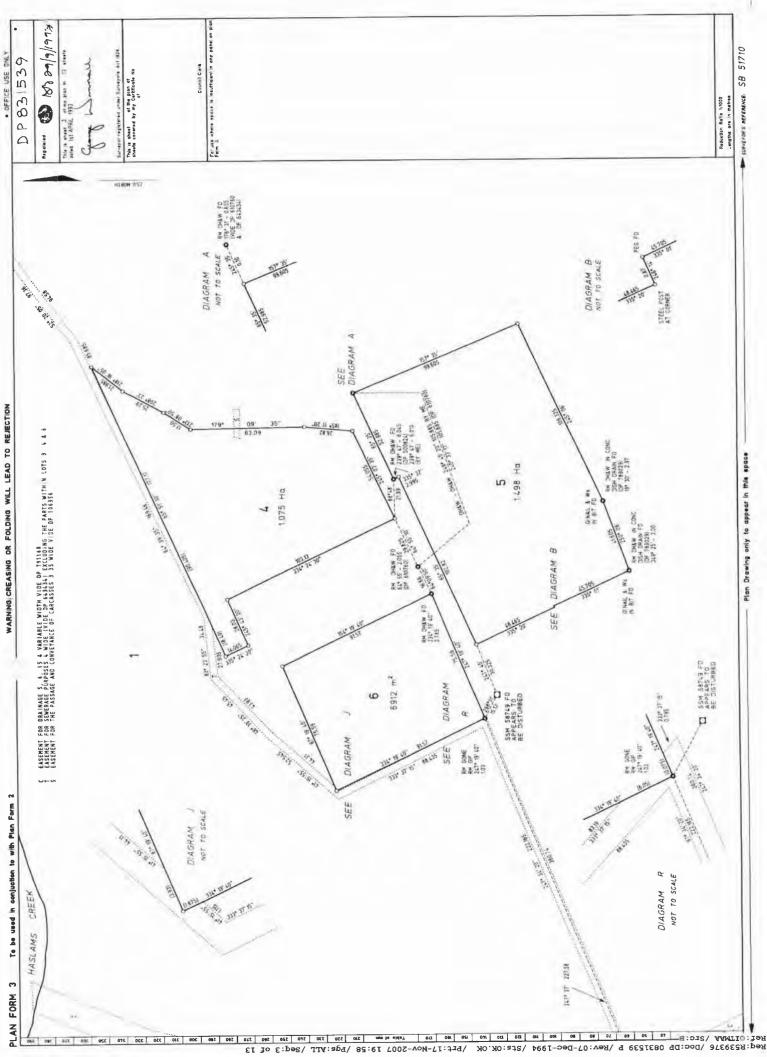
email: grolly1@bigpond.net.au

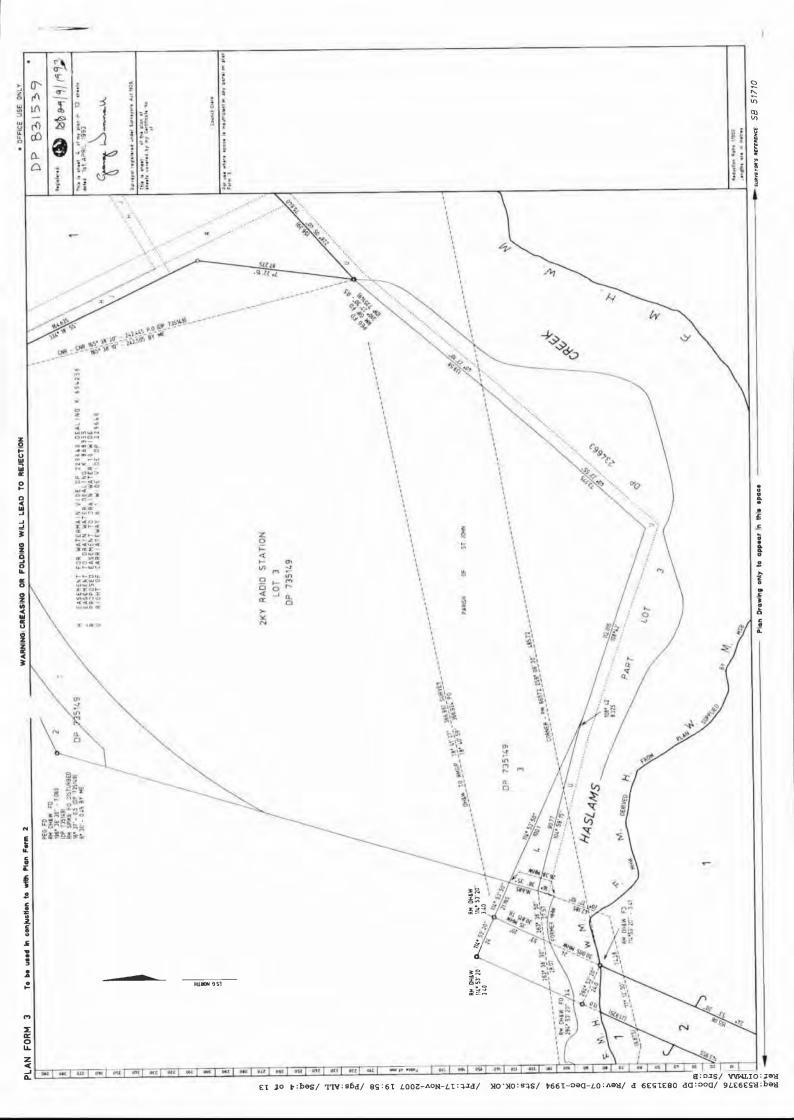


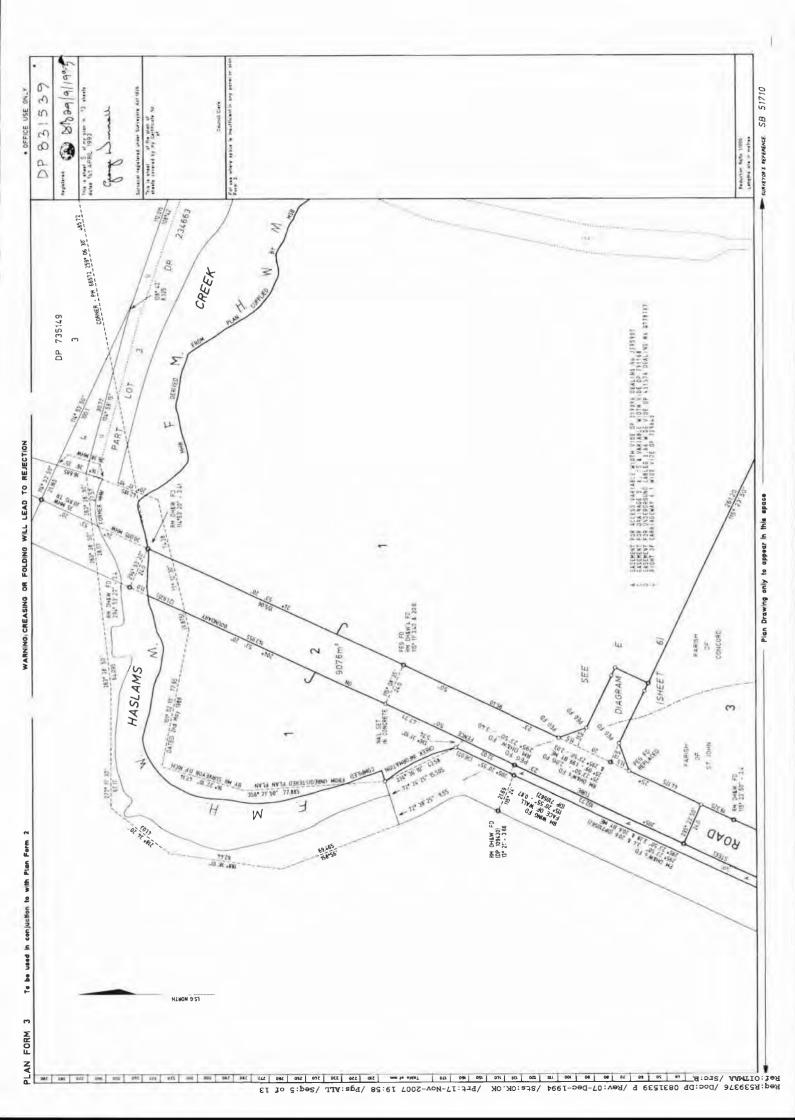


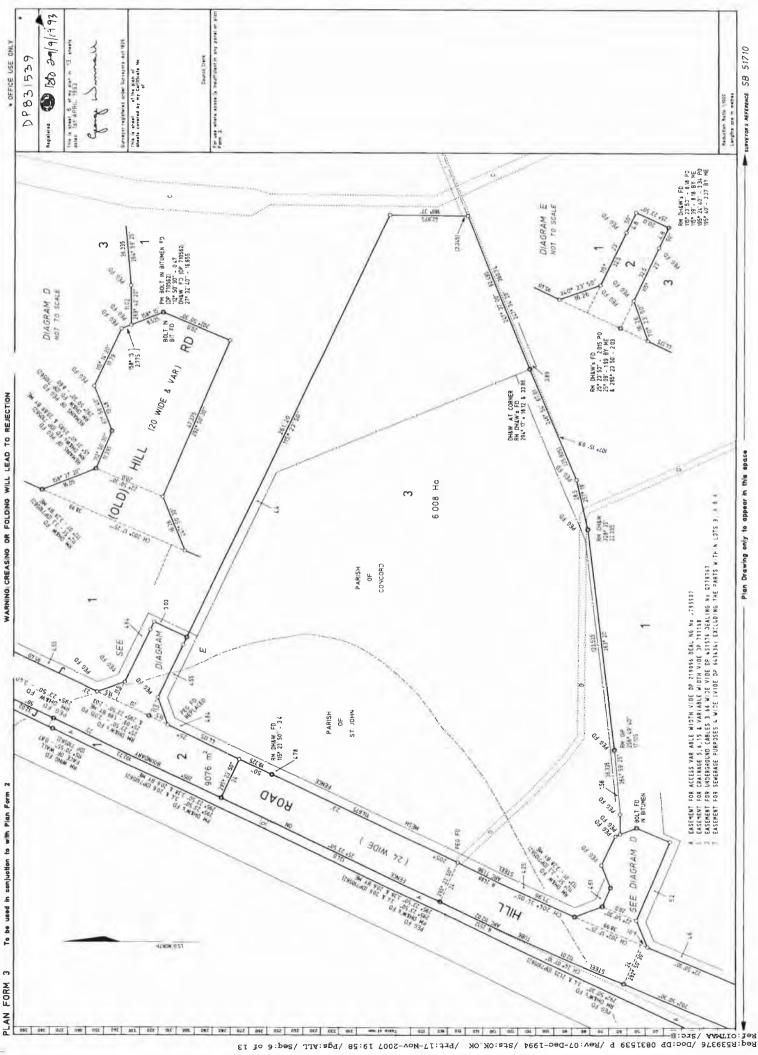
80 30 100 110 130 130 140 120 140 120 200 310 350 510 550 570 5*0 520 500 510 mm to aido l 240 220 280 240 290 /Prt:17-Nov-2007 19:58 /Pgs:ALL /Seq:3 of 3

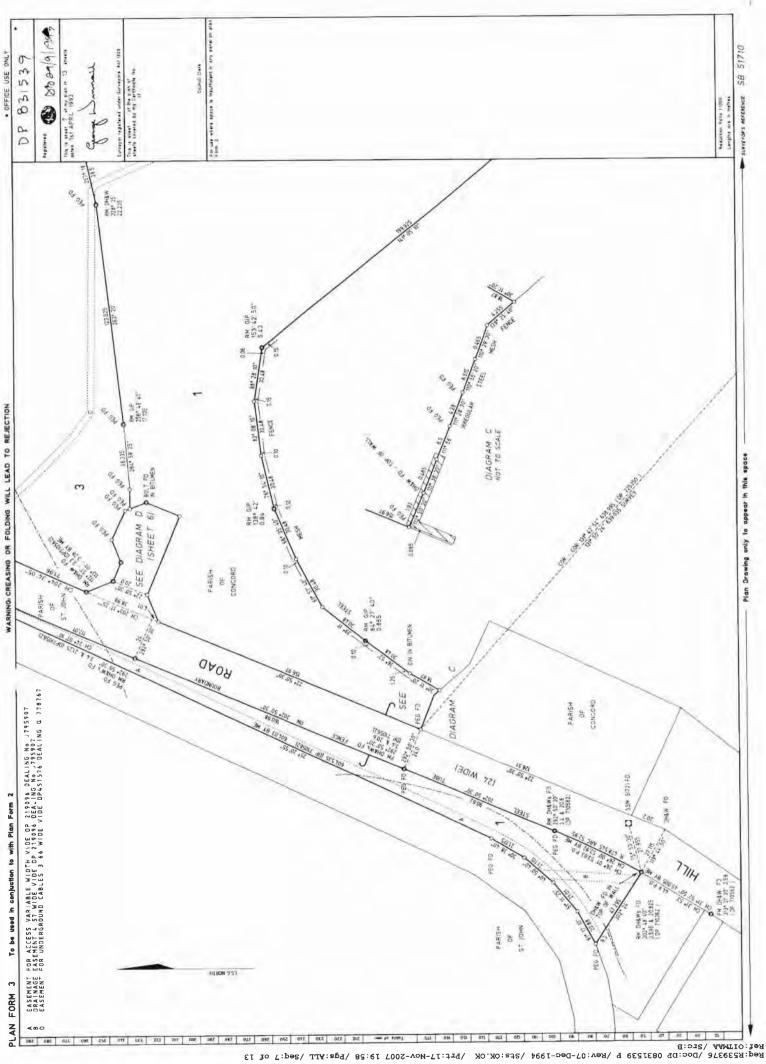

- ULLICE USE UNE

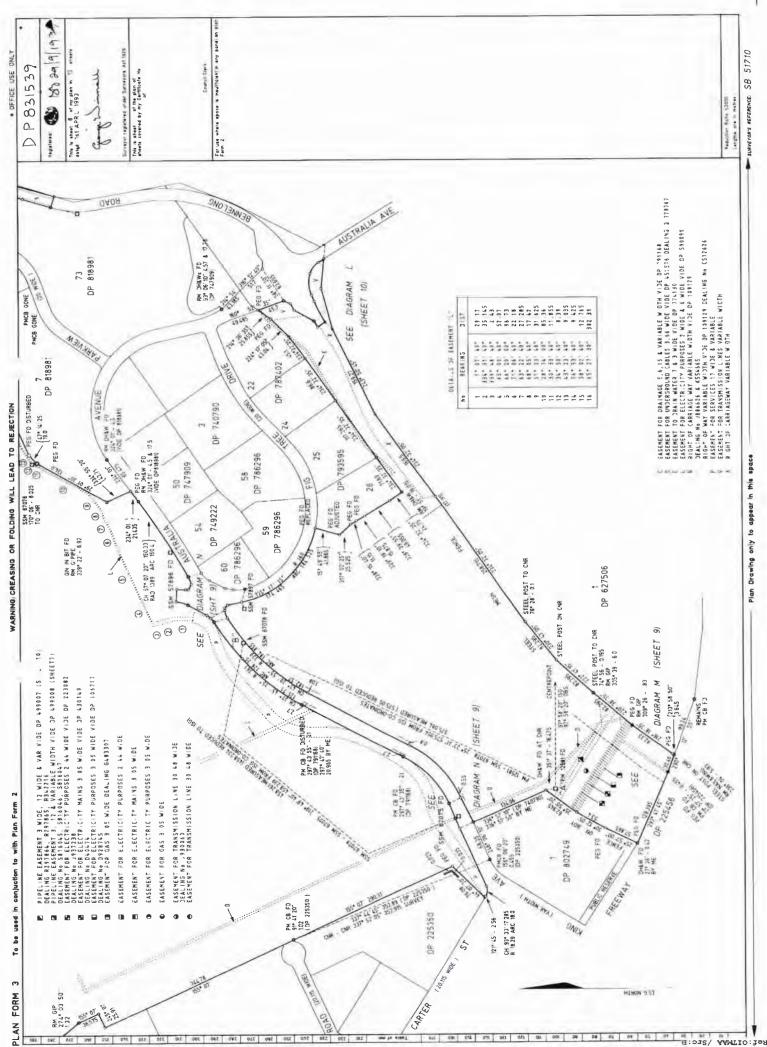


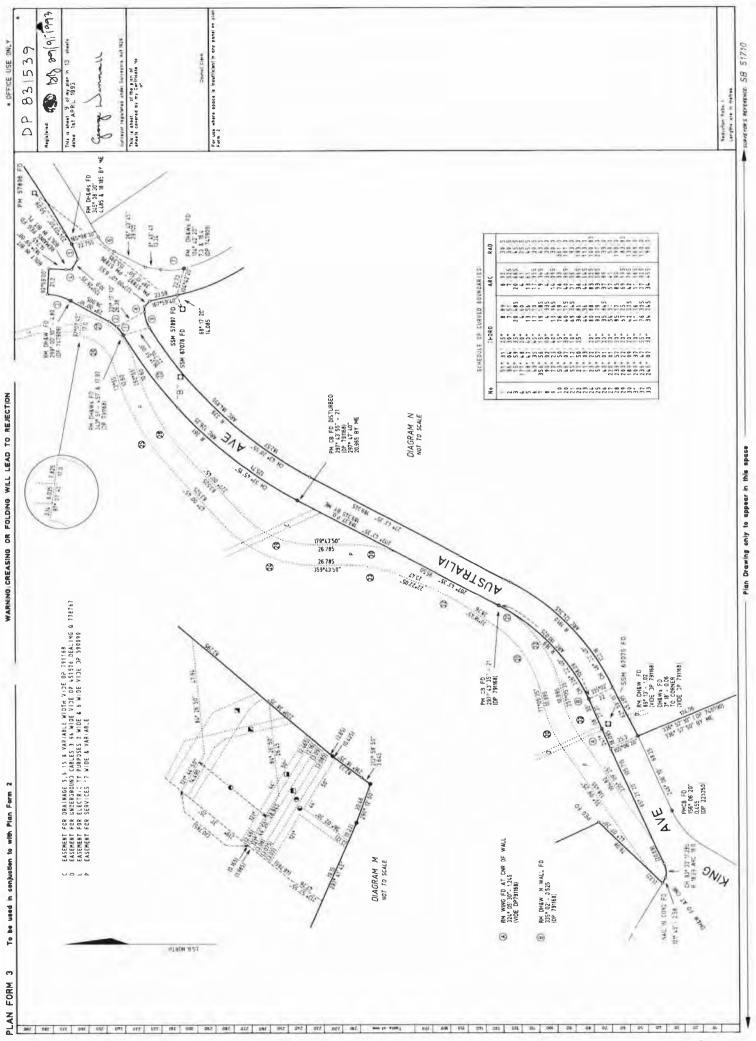

[/]Prt:17-Nov-2007 19:58 /Pgs:ALL /Seq:13 of 13

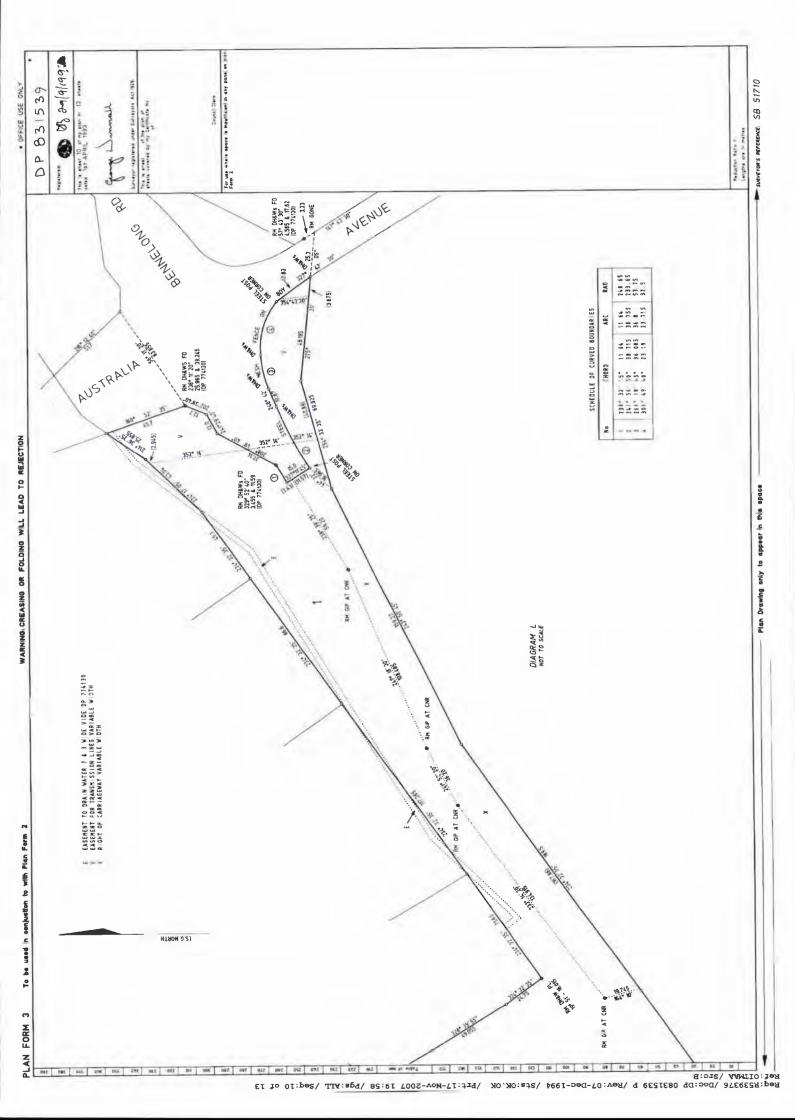


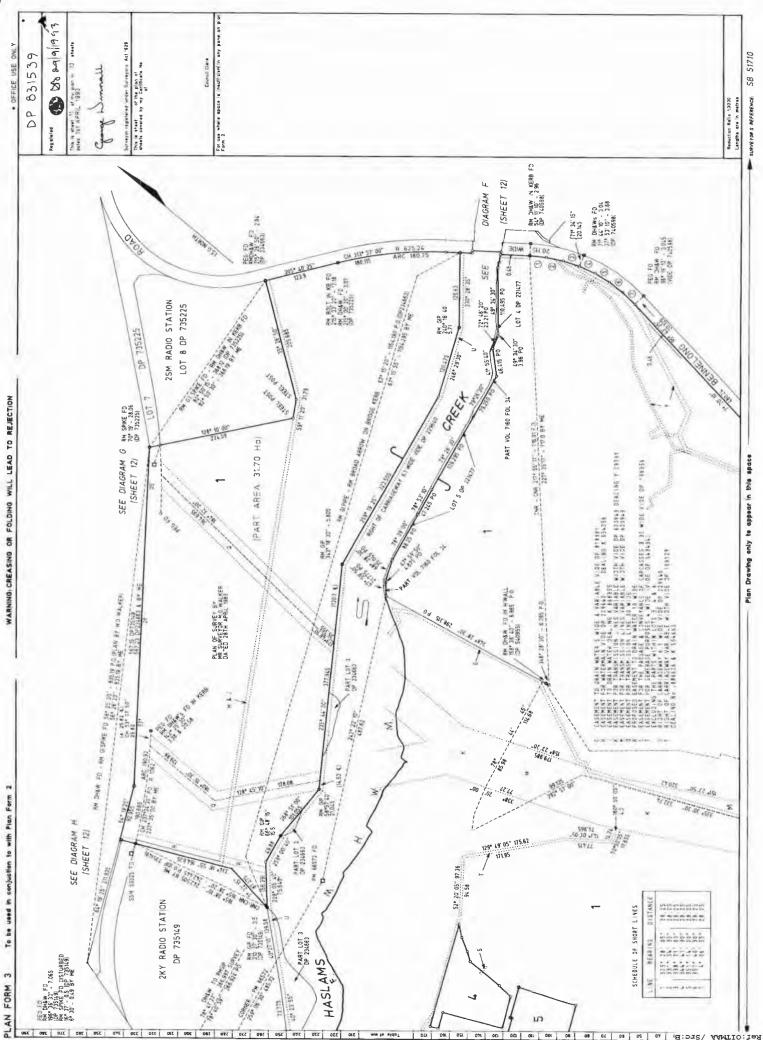

Red:R539376 /Doc:DP 0831539 P /Rev:07-Dec-1994 /Sts:OK.OK /PTt:17-Nov-2007 19:58 /Pgs:ALL /Seq:2 of 13 Ref:017MAA /Stc:B Ref:017MAA /Stc:B



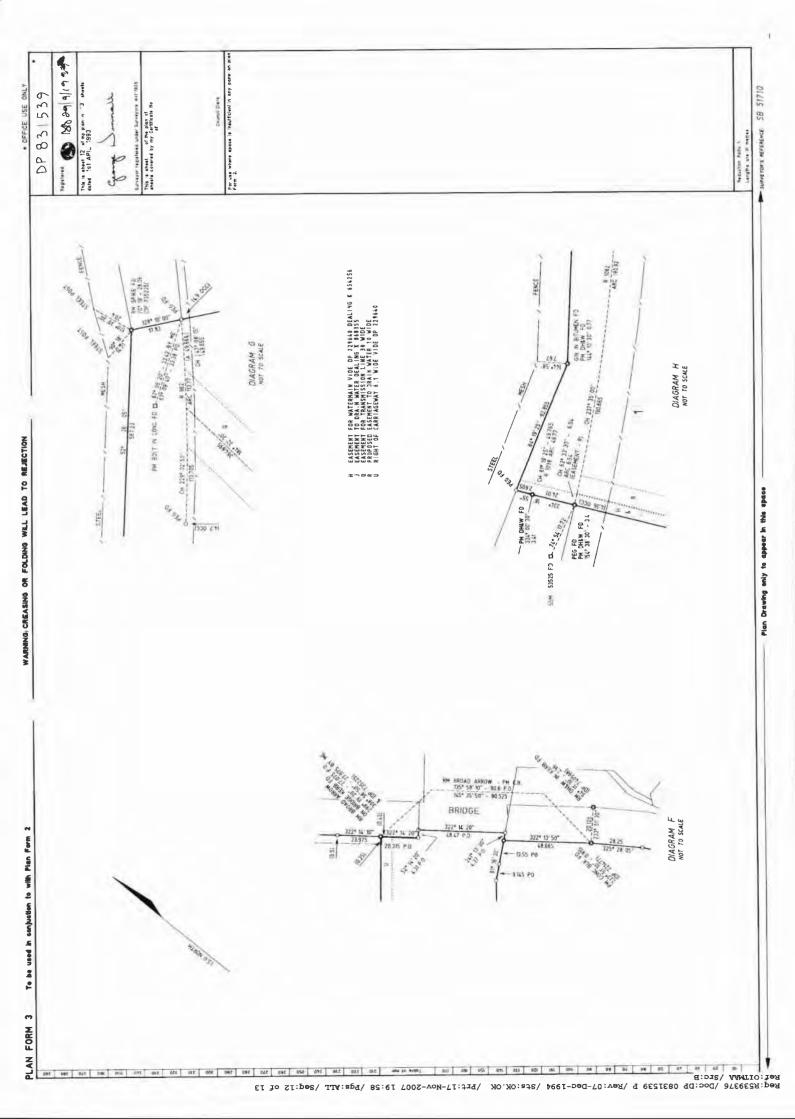


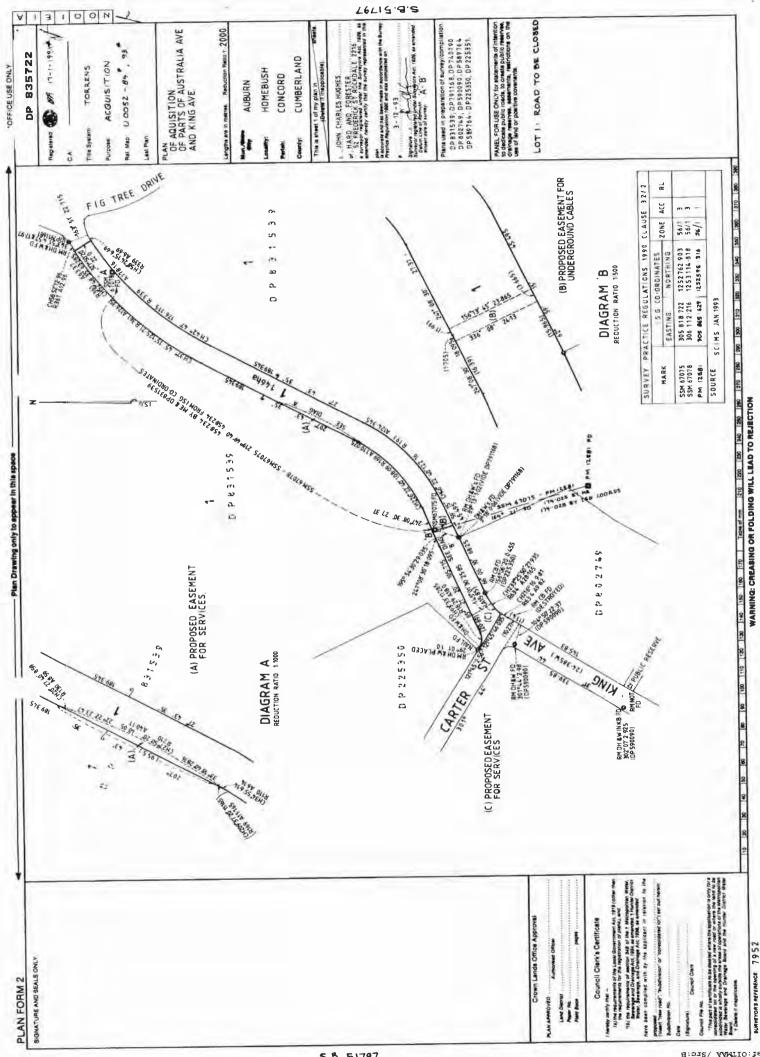


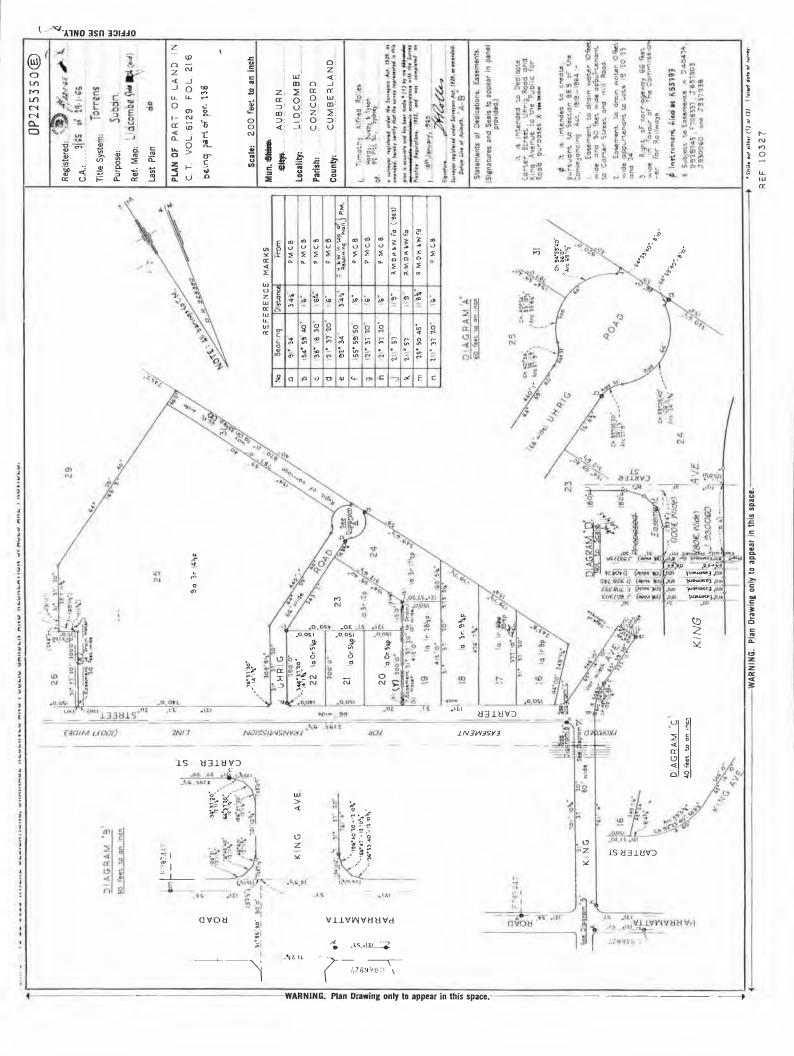


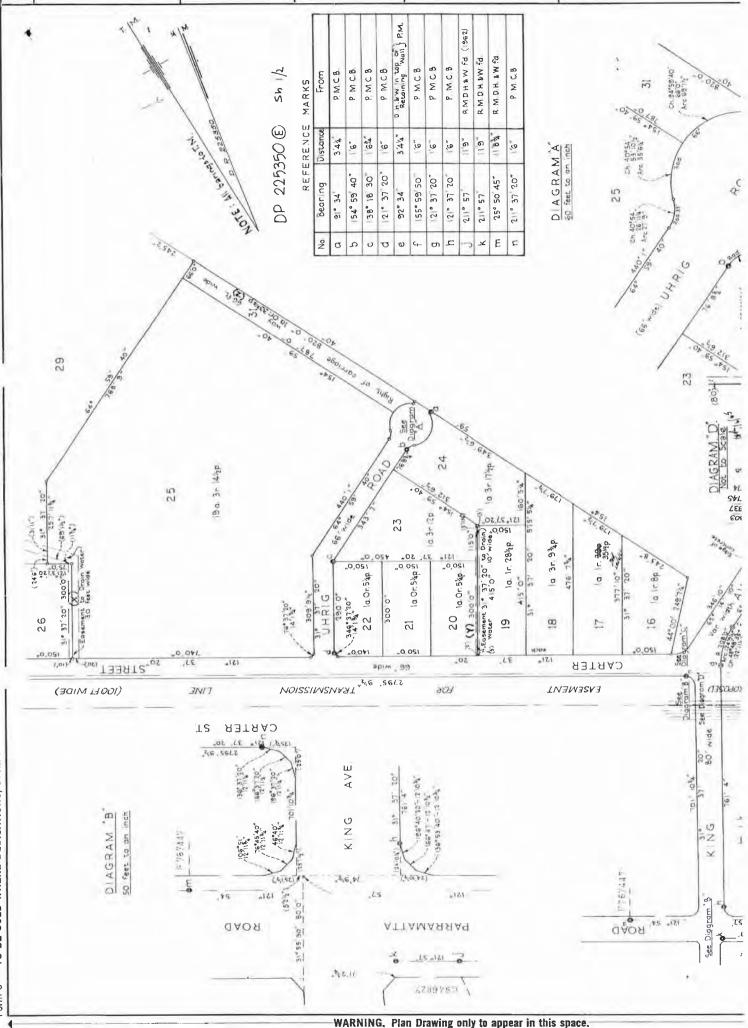


Ref: 0.01MAAA SEC:17 000:01 00831539 P /Rev:07-Dec-1994 /Sts:0K OK /PFt:17-Nov-2007 19:58 /Pgs:ALL /Seq:8 0f 13 Ref: 0.01MAAA SEC:17 000:01 00831539 P /Rev: 07-Dec-1994 /Sts:0K OK /PFt:17-Nov-2007 19:58 /Pgs:ALL /Seq:8 0f 13


-






1

[/]Pgs:ALL /Seq:11 of 13 /Pre:17-Nov-2007 19:58

0 05 à là

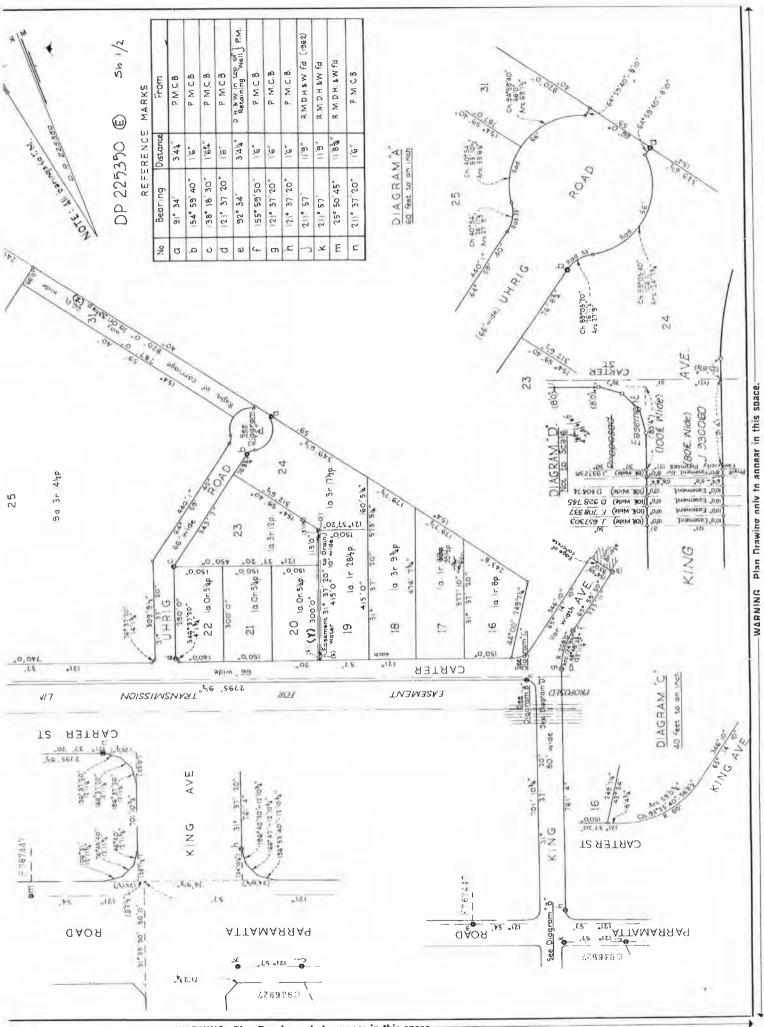
۵., C

2

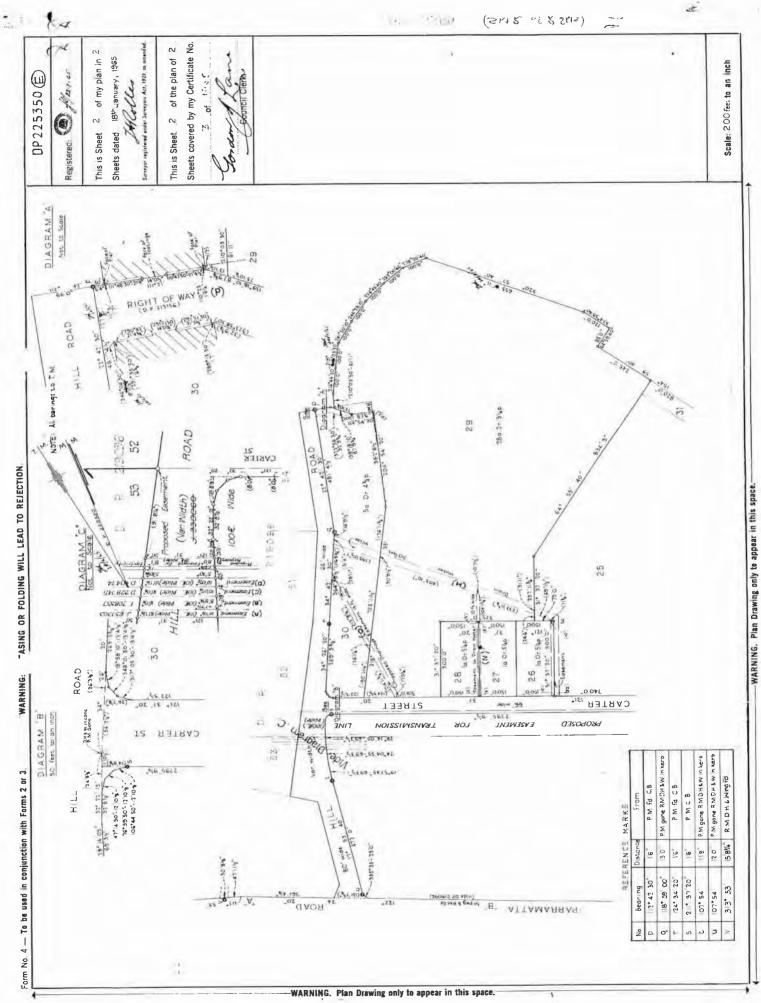
ŝŝ

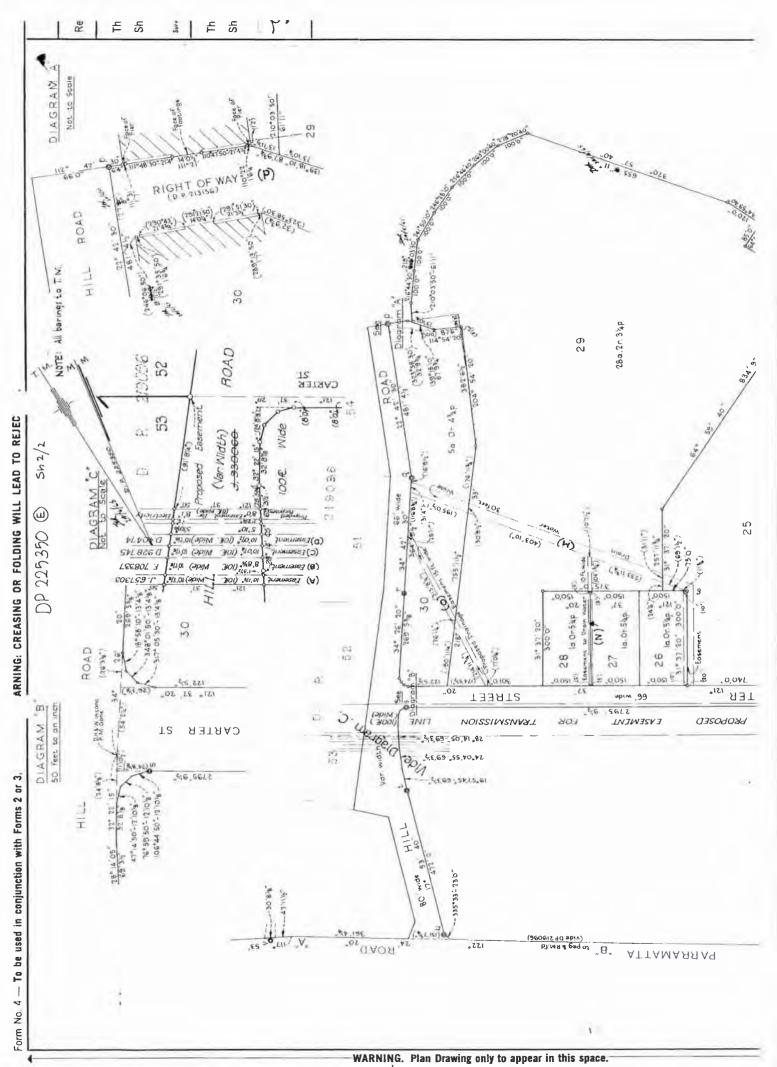
2

-

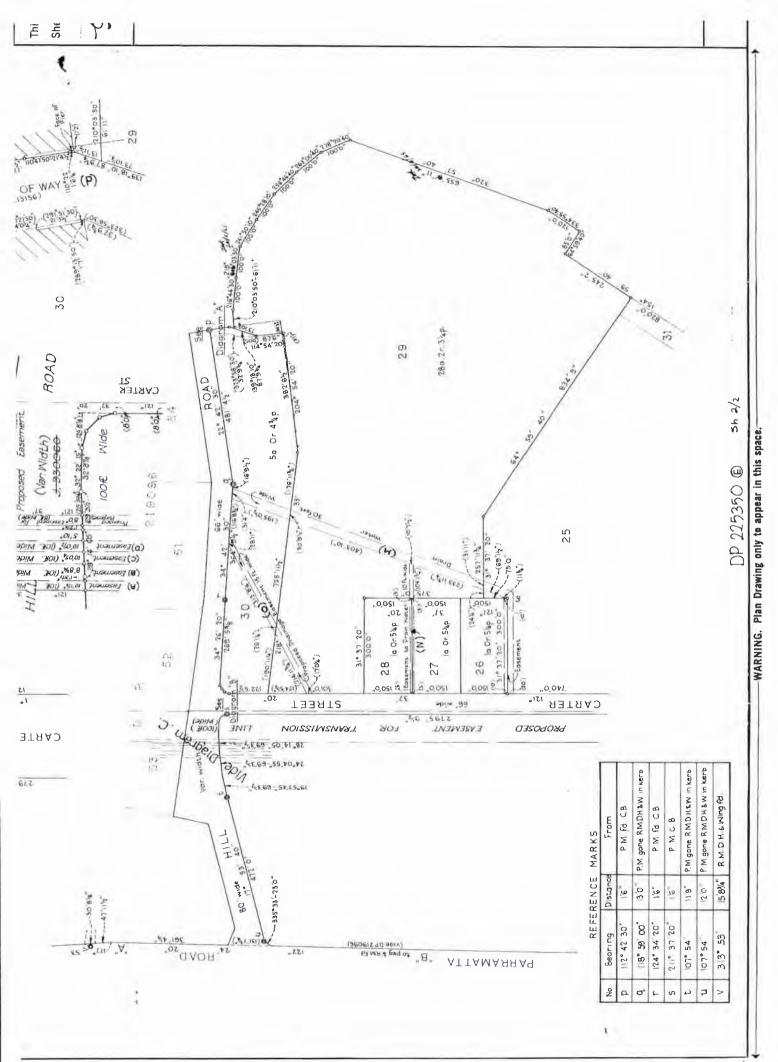

WARNING. Plan Drawing only to appear in this space.

u., œ

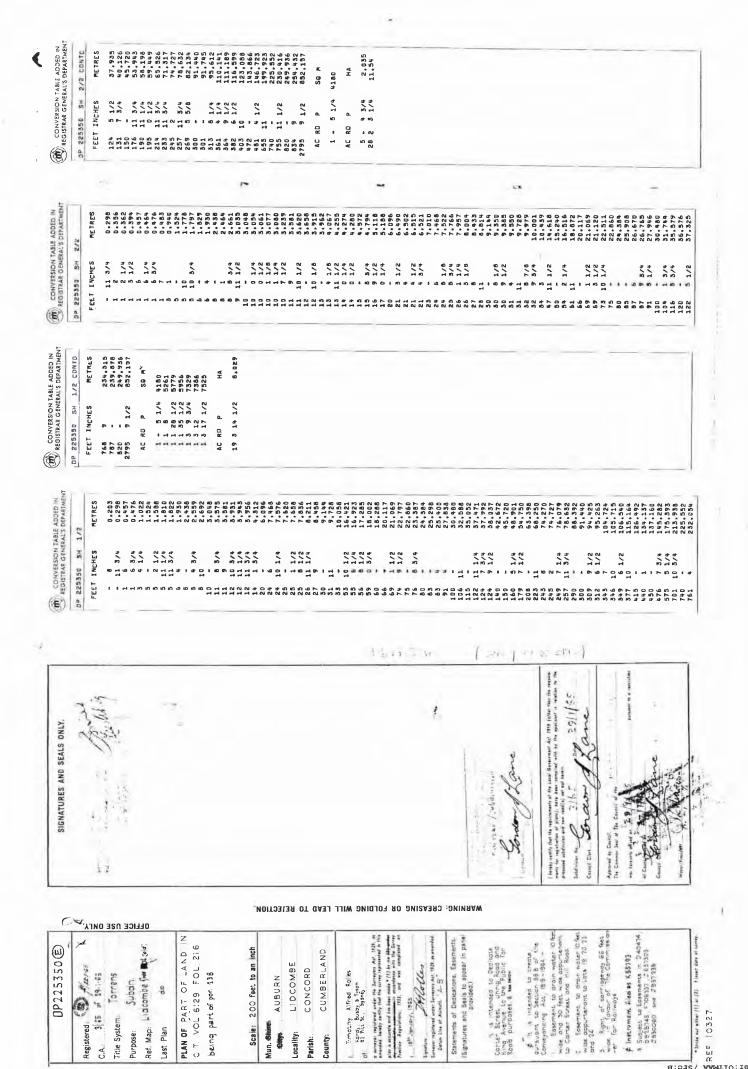

_


۰.

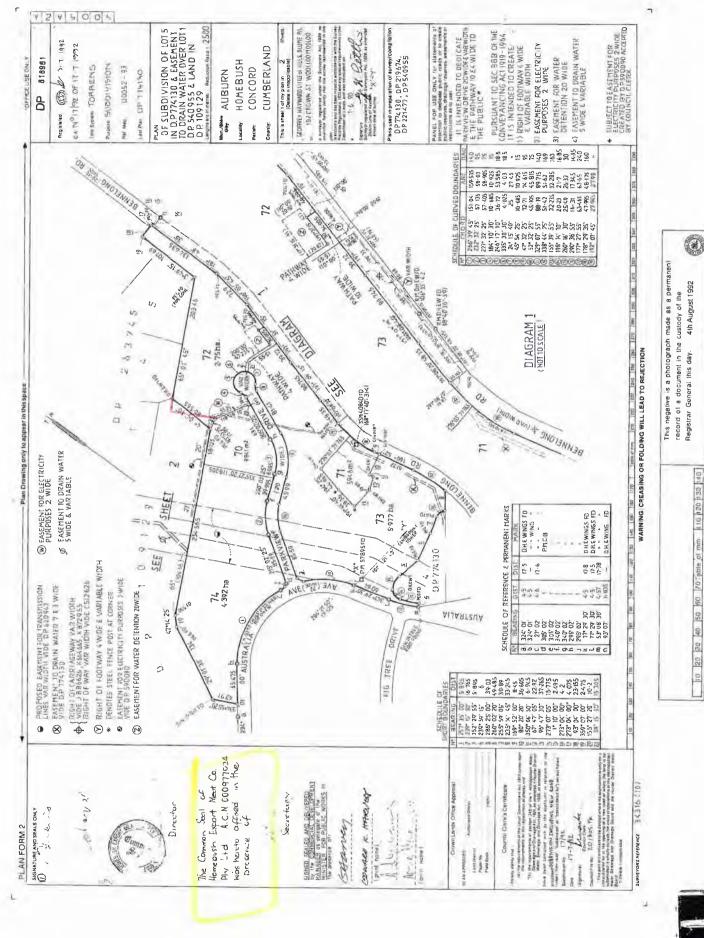
œ O H



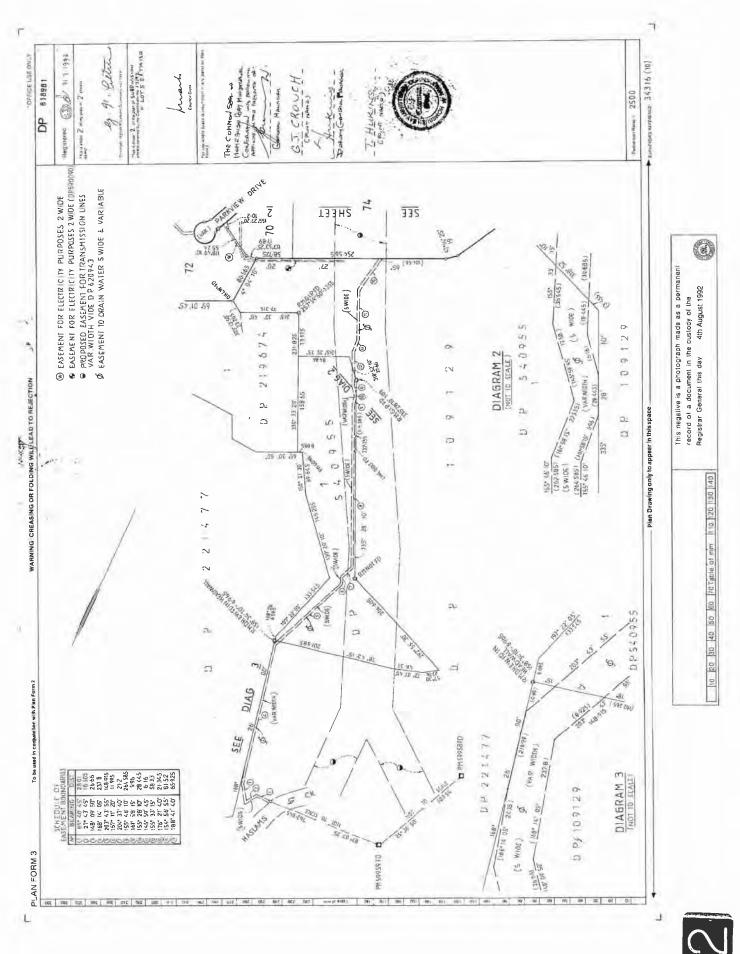
WARNING, Plan Drawing only to appear in this space.

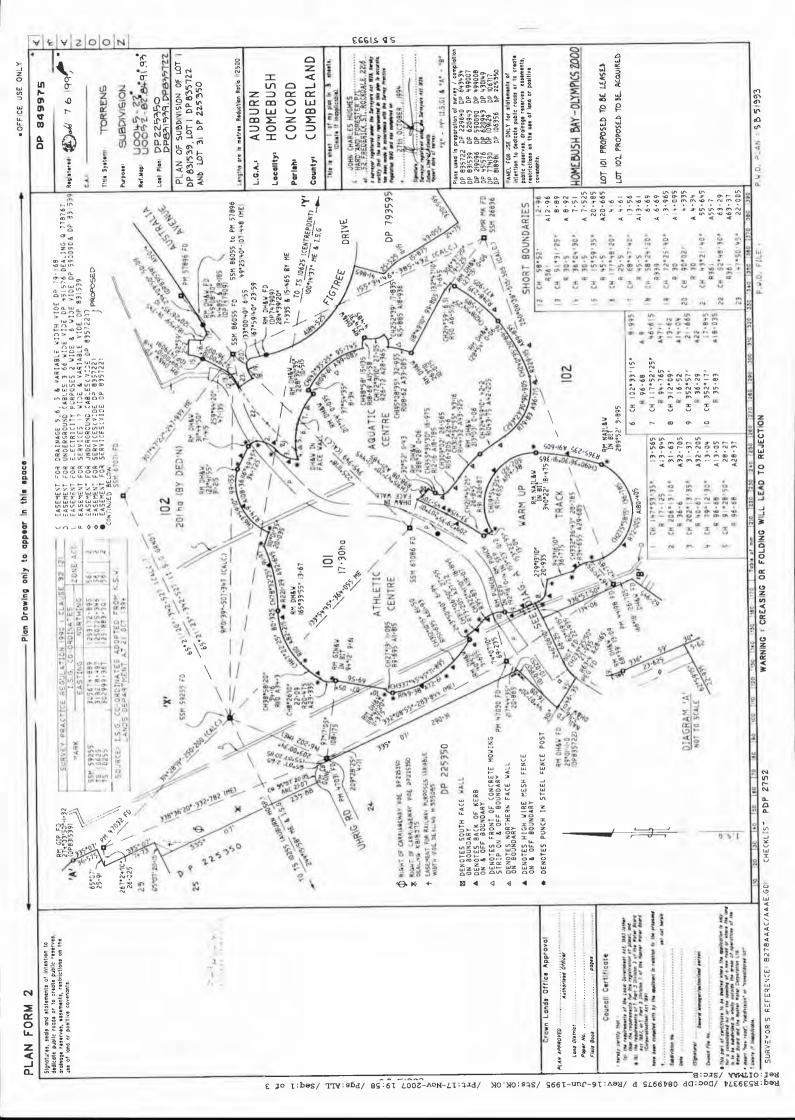


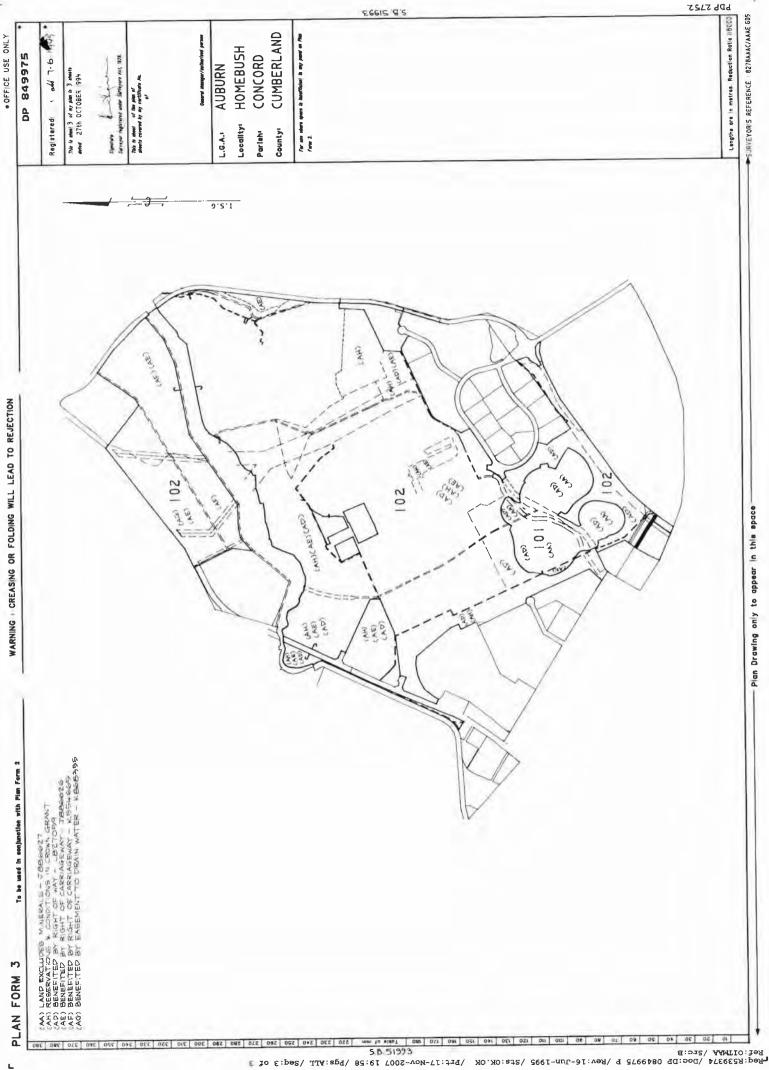
Reg:R533375 /Doc:DP 0225350 P /Rev:16-Peb-1998 /Sts:0K.OK /Prt:17-Nov-2007 19:58 /Pgs:ALL /Seq:5 of 7 Ref:01MAAA /Src:B

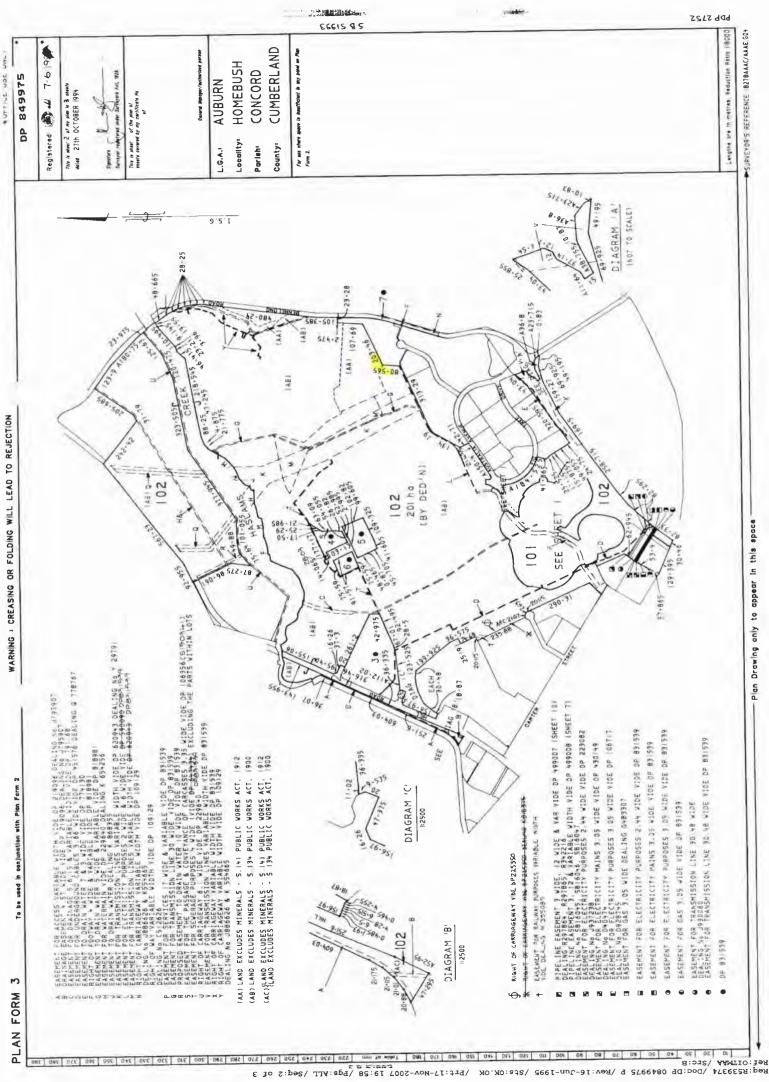


WARNING. Plan Drawing only to appear in this space.


Red:R539375 /Doc:DP 0225350 P /Rev:16-Feb-1998 /Sts:0K 0K /PT:17-Nov-2007 19:58 /Pgs:ALL /Seq:6 of 7 Ref:0ITMAA /Src:B


Red:R539375 /Doc:DP 0225350 P /Rev:16-Feb-1998 /Sts:0X.0K /Prt:17-Nov-2007 19:58 /Pgs:ALL /Seq:7 of 7 Ref:017MAA /Src:B




€

ł

C 10 S:pSk / JA:28 / Press / Sec. 2 of 3

LegalStream Australia Pty .td

ABN: 80 002 801 498 Level 10, 135 King Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY Tel: (02) 9231 0122 Fax: (02) 9233 6411 www.legalstream.com.au

An Approved I PI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH _____ _____

> SEARCH DATE -----20/11/2007 5:47PM

FOLIO: 72/818981

First Title(s): OLD SYSTEM Prior Title(s): 5/774130

Recorded	Number	Type of Instrument	C.T. Issue
3/8/1992	DP818981	DEPOSITED PLAN	FOLIO CREATED EDITION 1
1/10/1992 1/10/1992	E799640 E799641	WITHDRAWAL OF CAVEAT WITHDRAWAL OF CAVEAT	
22/9/1993	I378527	REQUEST	
22/9/1993	1356058	REQUEST	
22/9/1993	1378525	APPLICATION	EDITION 2
8/12/1995	0738097	REQUEST	EDITION 3
25/8/1997	3350461	DEPARTMENTAL DEALING	
29/8/1997	DP870992	DEPOSITED PLAN	FOLIO CANCELLED
	* * *	END OF SEARCH ***	

oitmaa

PRINTED ON 20/11/2007

LEGALSTREAM AUSTRALIA hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act, 1900. *ANY ENTRIES PRECEDED BY AN ASTERIX DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER

LegalStream Australia Pty td

ABN: 80 002 801 498 Level 10, 135 King Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY Tel: (02) 9231 0122 Fax: (02) 9233 6411 www.legalstream.com.au

An Approved I PÍ NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH _____

> SEARCH DATE ------20/11/2007 5:45PM

FOLIO: 88/870992

Firs	st Title(s):	OLD SYSTEM		
Pric	or Title(s):	72/818981	102/849975	
Recorded	Number	Type of Instrument	t	C.T. Issue
1/9/1997		DEPOSITED PLAN		FOLIO CREATED EDITION 1
20/3/1998	3856206	LEASE		EDITION 2
30/12/1999 30/12/1999	6461218 6451582	DEPARTMENTAL DEAL REQUEST	ING	EDITION 3
25/1/2002	8208818	APPLICATION		EDITION 4
5/6/2002 5/6/2002	8631290 8631291	TRANSFER OF LEASE SUB-LEASE		EDITION 5
2/2/2004	AA22827	REQUEST		
15/12/2005	AB885870	APPLICATION		
21/9/2007	AD419866	REQUEST		

*** END OF SEARCH ***

oitmaa

PRINTED ON 20/11/2007

LEGALSTREAM AUSTRALIA hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act, 1900 *ANY ENTRIES PRECEDED BY AN ASTERIX DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER

LegalStream Australia Pty

ABN: 80 002 801 498 Level 10, 135 King Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY Tel: (02) 9231 0122 Fax: (02) 9233 6411 www.legalstream.com.au

An Approved LPI NSW Information Broker

Ltd

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH _____

20/11/2007 5:45 PM 5 5/ LAND LOT 88 IN DEPOSITED PLAN 870992 AT HOMEBUSH LOCAL GOVERNMENT AREA AUBURN PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP870992 FIRST SCHEDULE	DATE 6/2002
20/11/2007 5:45 PM 5 5/ LAND LOT 88 IN DEPOSITED PLAN 870992 AT HOMEBUSH LOCAL GOVERNMENT AREA AUBURN PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP870992 FIRST SCHEDULE SYDNEY OLYMPIC PARK AUTHORITY (AP 6 SECOND SCHEDULE (7 NOTIFICATIONS) 	6/2002
LOT 88 IN DEPOSITED PLAN 870992 AT HOMEBUSH LOCAL GOVERNMENT AREA AUBURN PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP870992 FIRST SCHEDULE SYDNEY OLYMPIC PARK AUTHORITY (AP 8 SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WORK ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAI ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING FART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEAR 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	208818)
LOT 88 IN DEPOSITED PLAN 870992 AT HOMEBUSH LOCAL GOVERNMENT AREA AUBURN PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP870992 FIRST SCHEDULE SYDNEY OLYMPIC PARK AUTHORITY (AP 6 SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WOR ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAI ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING ABS6206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEAR 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	208818)
AT HOMEBUSH LOCAL GOVERNMENT AREA AUBURN PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP870992 FIRST SCHEDULE SYDNEY OLYMPIC PARK AUTHORITY (AP & SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WON ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAI ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP83 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEAR 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	208818)
LOCAL GOVERNMENT AREA AUBURN PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP870992 FIRST SCHEDULE SYDNEY OLYMPIC PARK AUTHORITY (AP & SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WOR ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAI ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEAR 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	208818)
 TITLE DIAGRAM DP870992 FIRST SCHEDULE SYDNEY OLYMPIC PARK AUTHORITY (AP 6) SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WOR ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEAK 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	208818)
 FIRST SCHEDULE SYDNEY OLYMPIC PARK AUTHORITY (AP 8) SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WORK ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	208818)
 SYDNEY OLYMPIC PARK AUTHORITY SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WOR ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	208818)
 SYDNEY OLYMPIC PARK AUTHORITY SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WOR ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	208818)
 SYDNEY OLYMPIC PARK AUTHORITY SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WOR ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	208818)
 SECOND SCHEDULE (7 NOTIFICATIONS) 1 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WON ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	
 LAND EXCLUDES MINERALS (SEE SEC. 134 PUBLIC WORKS ACT, 19 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WOM ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	
 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WON ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	
 AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WON ACT, 1912) AFFECTING THE PART SHOWN SO BURDENED TITLE DIAGRAM L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	
 2 J886627 LAND EXCLUDES MINERALS (SEE SEC. 141 PUBLIC WON ACT, 1912) AFFECTING THE PART SHOWN SO BURDENEL TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAN 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	
 ACT, 1912) AFFECTING THE PART SHOWN SO BURDENEL TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP83 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	
TITLE DIAGRAM 3 L827059 RIGHT OF WAY 20.115 WIDE APPURTENANT TO THE LAN ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP33 LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	
ABOVE DESCRIBED AFFECTING LOTS 11 & 12 IN DP839 LOTS 10, 14 & 15 IN DP778665 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	
LOTS 10, 14 & 15 IN DP778665 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFEC' THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	ID
 4 DP818981 EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE AFFECT THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	1591 &
THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	
 5 DP818981 EASEMENT FOR WATER DETENTION 20 WIDE AFFECTING PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT 	
PART SHOWN SO BURDENED IN THE TITLE DIAGRAM 6 3856206 LEASE TO SAMSUNG ELECTRONICS AUSTRALIA PTY LIM EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	
EXPIRES: 29/10/2096. OPTION OF RENEWAL: 99 YEA 8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	
8631290 TRANSFER OF LEASE 3856206 LESSEE NOW GPT	TED
	≀S.
MANAGEMENT LIMITED	
ACALANI TERRE AT TRACT SAF CAAC TO ANALYNG TITATTAN	
8631291 LEASE OF LEASE 3856206 TO SAMSUNG ELECTRON AUSTRALIA PTY LIMITED EXPIRES: 2/5/2008. O	00
RENEWAL: 4 YEARS.	
AB885870 APPLICATION AFFECTING LEASE 3856206 LESSEE	
GPT RE LIMITED	PTION OF
7 DP831539 EASEMENT FOR SERVICES 17 METRE(S) WIDE AND VAR	PTION OF
APPURTENANT TO THE LAND ABOVE DESCRIBED AFFECT	PTION OF NOW IABLE
LAND DESIGNATED (P) IN DP831539	PTION OF NOW IABLE
6451582 RELEASED IN SO FAR AS IT AFFECTS LOTS 5200 5201 IN DP1009021	PTION C NOW IABLE ING THE

END OF PAGE 1 - CONTINUED OVER

PRINTED ON 20/11/2007

oitmaa

LEGALSTREAM AUSTRALIA hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act, 1900. *ANY ENTRIES PRECEDED BY AN ASTERIX DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER

LegalStream Australia Pty Lto

ABN: 80 002 801 498

Level 10, 135 King Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY Tel: (02) 9231 0122 Fax: (02) 9233 6411 www.legalstream.com.au An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 88/870992

11

PAGE 2

NOTATIONS

NOTE: THE CERTIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES NOT INCLUDE SECURITY FEATURES INCLUDED ON COMPUTERISED CERTIFICATES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS RECOMMENDED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE IDENTITY OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND COMPRISED IN THIS FOLIO.

NOTE: 1997M8 SYDNEY SHOWGROUND & OLYMPIC SITE REFER TO ND13 UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

oitmaa

PRINTED ON 20/11/2007

LEGALSTREAM AUSTRALIA hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act, 1900– *ANY ENTRIES PRECEDED BY AN ASTERIX DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER

CLIENT: Lend Lease Building Pty Ltd DATE:

15-Nov-13

Photo 4: Aerial photo from 1965

Historical PhotographsPROJECT:45153.034 Murray Rose AvenuePLATE No:2Sydney Olympic ParkREV:0CLIENT: Lend Lease Building Pty LtdDATE:15-Nov-13

Photo 7: Aerial photo from 1991

Photo 8: Aerial photo from 1998

Historical Photographs	PROJECT:	45153.03
4 Murray Rose Avenue	PLATE No:	4
Sydney Olympic Park	REV:	0
CLIENT: Lend Lease Building Pty Ltd	DATE:	15-Nov-13

Photo 9: Aerial photo from 2009

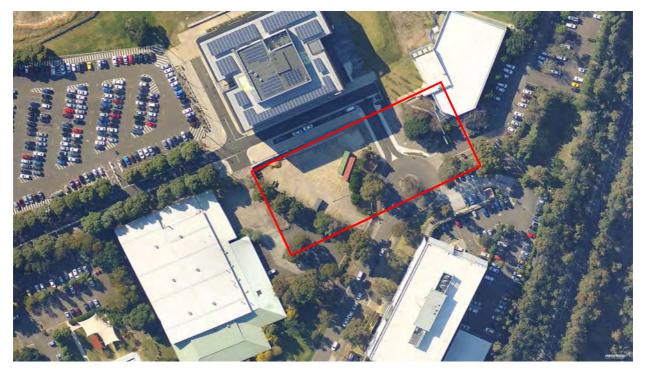


Photo 10: Aerial photo from 2013

Historical PhotographsPROJECT:45153.034 Murray Rose AvenuePLATE No:5Sydney Olympic ParkREV:0CLIENT: Lend Lease Building Pty LtdDATE:15-Nov-13

Healthy Environment, Healthy Community, Healthy Business

You are here: <u>Home</u> > <u>Contaminated land</u> > <u>Record of notices</u>

Search results

Your search	for: LGA: Auburn Council	relating to	Matched 58 notices relating to 12 sites. Search Again	
	DATE: N	R	Refine Search	
Suburb	Address	Site Name	Notices related to this site	
Auburn	Short and Junction Streets	Ajax Chemical Factory	2 former	
Homebush Bay	Olympic Boulevard	Aquatic Centre Car Park	1 current and 8 former	
Homebush Bay	Bennelong Road	Bicentennial Park	1 current and 2 former	
Homebush Bay	Hill Road	Haslams Creek South Area 3	1 current and 3 former	
Homebush Bay	Kevin Coombs Avenue	Haslams Creek South Areas 1 and 2		
Homebush Bay	No specific Street	Homebush Bay General Area	2 former	
Homebush Bay	Australia Avenue	State Sports Centre	1 current and 6 former	
Homebush Bay	25 Bennelong Road	Timber Treatment Plant	4 former	
Newington	Bennelong Road	Landfill - North Newington	2 current and 3 former	
Silverwater	Jamieson Street	Auburn Landfill	2 current and 2 former	
Silverwater	Jamieson Street	Silverwater Transport Unit	1 former	
Silverwater	Silverwater Road	Wilson Park	4 current and 6 former	

Page 1 of 1

NSW Environment Protection /

19 November 2013

Our Ref: D10/144458 Your Ref: Tim Carrick

25 October 2010

Attention: Caitlyn Falla/Scott Easton Douglas Partners Pty Ltd PO Box 472 West Ryde NSW 1685

DOUGLAS PARTNERS

2 6 OCT 2010

Dear Mr Choo,

RE SITE: 7 Parkview Drive Sydney Olympic Park

I refer to your site search request received by WorkCover NSW on 22 October 2010 requesting information on licences to keep dangerous goods for the above site.

A search of the Stored Chemical Information Database (SCID) and the microfiche records held by WorkCover NSW has not located any records pertaining to the above-mentioned premises.

If you have any further queries please contact the Dangerous Goods Licensing Team on (02) 4321 5500.

Yours Sincerely

Brent Jones

Senior Licensing Officer Dangerous Goods Team

WorkCover. Watching out for you.

WorkCover NSW ABN 77 682 742 966 92-100 Donnison Street Gosford NSW 2250 Locked Bag 2906 Lisarow NSW 2252 Telephone 02 4321 5000 Facsimile 02 4325 4145 WorkCover Assistance Service **13 10 50** DX 731 Sydney Website www.workcover.nsw.gov.au

Appendix D

Sampling and Analysis Quality Plan

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Project 45153.03 25 September 2013 PMO

Lend Lease Building Pty Ltd 30 The Bond 30 Hickson Road MILLERS POINT NSW 2000

Attention: Ms Johanna Nolan

Dear Sirs

Sampling and Analysis Quality Plan Proposed Commercial Development 4 Murray Rose Avenue, Sydney Olympic Park

1. Introduction

This Sampling and Analysis Quality Plan (SAQP) has been prepared for a proposed Detailed Site Investigation (Contamination) at 4 Murray Rose Avenue, Sydney Olympic Park. The work was commissioned by Lend Lease Building Pty Ltd, development managers and builders.

The project involves the construction of a five to six-storey commercial office building over a threelevel basement. Bulk excavation to approximately RL 2 relative to Australian Height Datum (AHD) is proposed. Detailed Site Investigation is required to confirm that the site is suitable for the new development and to delineate any areas on the greater site which may require remediation prior to or during the development works.

The scope of the Detailed Site Investigation has been prepared with reference to the newly adopted National Environment Protection Measure (NEPM) guidelines where possible. However, it is noted that the scope of the investigation was largely prepared prior to the formal adoption of the NEPM guidelines and therefore *Contaminated Sites: Guidelines for the NSW Site Auditor Scheme* (NSW DECC, 2006) has also been used where relevant. This is approach is understood to be acceptable to the NSW EPA as both these guidelines remain current and legally acceptable under the *Contaminated Land Management Act 1997*.

2. Purpose of Detailed Site Investigation

A Detailed Site Investigation was commissioned by Lend Lease Building to aid in the management of contamination risks associated with the site. Previous assessments on adjacent sites have indicated the presence of elevated levels of contaminants within filling and groundwater, and confirmation of the contaminant characteristics of the current development site is now required.

 Integrated Practical Solutions

 Brisbane • Cairns • Campbelltown • Canberra • Darwin • Gold Coast • Melbourne • Newcastle • Perth • Sunshine Coast • Sydney • Townsville • Wollongong • Wyong

The proposed investigation components of the Detailed Site Investigation are described in the following sections.

3. Summary of Conceptual Site Model

The site forms part of a former warehouse and office building that was constructed in the mid-1990s. Prior to that, it had been used as part of an abattoir with commercial buildings known to have been present on the site. Previous investigations on adjacent sites to the north have encountered elevated levels of heavy metals in filling, and volatile organic compounds and petroleum hydrocarbons within the groundwater. No sources of the groundwater contamination have been identified.

The Conceptual Site Model (CSM) has therefore been developed on the basis of the information currently available. Potential soil contamination may be present as a result of:

- Placement of filling on the site;
- Previously contaminating activities associated with its previous use as part of the abattoir and later as a commercial warehouse; and
- Naturally occurring metals in the soils and rock underlying the site.

Potential groundwater contamination may be present as a result of:

- Storage of chemicals on the site in the past; and
- Migration of diffuse sources of contamination onto the site.

Soil vapour intrusion is currently considered to be a very low risk on the site and will only be considered if significant concentrations of volatile contaminants are encountered during the assessment.

The human receptors to soil and groundwater contamination are likely to be the occupants of and visitors to the proposed commercial building. Construction personnel and nearby workers may also be receptors during the construction phase of the development project.

The ecological receptors are likely to be limited to the flora and fauna that grow/live on areas of the site in which vegetation is proposed. The area is not known to be ecologically significant.

Exposure pathways are expected to be limited to dermal contact with soils and groundwater on the site by humans, ingestion of soils and vegetation by fauna, and phytotoxic exposure to flora.

4. Data Quality Objectives

This SAQP has been devised in general accordance with the seven-step data quality objective (DQO) process outlined in Australian Standard AS 4482.1 – 2005 *Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds.* The DQO process is outlined below.

(a) <u>State The Problem</u>

The site is to be redeveloped into a multi-storey commercial office building with basement parking levels. Detailed Site Investigation is required to assess the risks associated with redeveloping and continuing to use the site so that appropriate allowances and remediation measures can be provided as part of the works, if necessary.

(b) Identify the Decision

No specific areas of potential concern were identified on the site during the development of this SAQP and therefore a systematic sampling pattern, incorporating sampling in areas of the site that were accessible, was determined to be the most suitable approach for sampling.

The site is near-rectangular and approximately $4,000 \text{ m}^2$ in area. The site is primarily on part of Lot 88 in Deposited Plan 870992 in the Parish of Concord, County of Cumberland. A portion of the site is on the adjacent Lot 70 in DP 818981, Lot 70 in DP 1134933 and Lot 1 in DP 1122970, although it is understood that the lot boundaries will ultimately be altered to reflect the layout of the new development. A site location plan is shown in Figure 1.

Figure 1: Approximate location of site with respect to current lot boundaries

A sampling frequency of 12 sampling points on the 4,000 m² site is considered appropriate based on Table A of *Contaminated Sites: Sampling Design Guidelines* (NSW EPA, 1995). This frequency should be able to detect a contamination hot spot of 22.5 m diameter with 95% confidence.

Further information on the proposed sampling locations and suite of potential contaminants to be analysed is included in Sections 5 to 7 of this SAQP.

(c) Identify Inputs to the Decision

The primary inputs in assessing the presence of contamination on the site will be:

- The information available from previous nearby investigations;
- Field observations;
- Laboratory test results; and
- Published guidelines appropriate for the proposed land use (commercial/industrial).

(d) Define the Boundary of the Assessment

The boundary of the assessment is shown in Figure 1. The portions of the individual lots were identified in (b) above.

(e) <u>Develop a Decision Rule</u>

The decision rule is based on the following documents:

- NSW EPA (1995); Contaminated Sites: Sampling Design Guidelines; and
- NEPC (2013), National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1 – Guideline on Investigation Levels for Soil and Groundwater. The site is assumed to be a commercial/industrial site for the health-based components of the assessment. The site categories for the ecological-based components will be determined during the assessment (i.e. determined from soil types, pH and assumed cation exchange capacities of the soils encountered).

(f) Specify Acceptable Limits on Decision Errors

Appropriate quality assurance and quality control measures will be incorporated into the sampling and testing regime to ensure the quality of the assessment data. These measures are outlined in Section 8 of this SAQP.

(g) Optimise the Design for Obtaining Data

The soil sampling locations have been selected based site accessibility, as described above. Samples will be collected from different depths in the boreholes and samples will be selected for analysis to ensure a spread of depths are analysed, where relevant.

Groundwater wells will be installed in four of the deeper geotechnical bores to enable up-gradient and down-gradient samples to be collected.

The procedures for collecting samples will be in general accordance with NEPM, EPA guidelines and/or industry best-practice. Only laboratories accredited by the National Association of Testing Authorities (NATA) will be used to analyse samples.

5. **Proposed Sampling Locations**

The proposed sampling points are shown on the attached sketch.

6. Proposed Sampling Methodology

Soil samples will be collected at regular depth intervals until natural soils are encountered or the rig refuses. Environmental sampling will be performed in general accordance with the standard procedures outlined in the *Douglas Partners Field Procedures Manual*. All sampling data will be recorded on chain of custody information sheets. The soil sampling programme will generally include:

- Soil sampling using disposable equipment and/or equipment that has been decontaminated using a phosphate-free detergent;
- Placement of soil samples into laboratory prepared jars and immediate capping;
- Labelling of soil sample jars/bags with individual and unique markings including project number, sample location, sample depth and date of sampling; and
- Storage of soil sample jars in a cooled, insulated and sealed container for transport to the laboratory.

The groundwater sampling programme will generally include:

- Water sampling using equipment that has been decontaminated using a phosphate-free detergent;
- Placement of water samples into laboratory prepared bottles with appropriate preservatives (where required) and immediate capping;
- Labelling of water sample bottles with individual and unique markings including project number, sample location and date of sampling; and

• Storage of water sample bottles in a cooled, insulated and sealed container for transport to the laboratory.

In addition, a laboratory prepared blank sample and spiked sample will be collected and carried throughout the field work to provide an indication of the potential loss of volatile hydrocarbons and to assess the adequacy of the sample handling and storage methods adopted for the assessment. Rinsate samples will also be collected by rinsing decontaminated soil and water sampling equipment with demineralised water to assess the effectiveness of the decontamination process.

7. Proposed Laboratory Testing Programme

Selected soil samples collected during the field work will be sent to NATA accredited analytical laboratories and analysed for the following potential contaminants:

- Priority heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn);
- Total recoverable hydrocarbons (TRH);
- Monocyclic aromatic hydrocarbons (BTEX);
- Polycyclic aromatic hydrocarbons (PAH);
- Organochlorine pesticides (OCP);
- Organophosphorus pesticides (OPP);
- Polychlorinated biphenyls (PCB);
- Phenols; and
- Asbestos.

The number of samples tested will depend on the subsurface conditions encountered during the field work. It is envisaged that, on average, two soil samples from each sampling location will be tested.

The water samples will also be tested for the contaminants listed above (excluding asbestos), plus volatile organic compounds (VOC).

8. Quality Assurance Plan

8.1 Quality assurance & quality control in the field

Douglas Partners' quality assurance (QA) and quality control (QC) procedures will be adopted throughout the field sampling programme to ensure sampling precision and accuracy and to prevent cross-contamination. We will check sampling accuracy and precision through the analysis of triplicate samples in the primary analytical laboratory and a secondary analytical laboratory. The potential for

cross-contamination and loss of volatile compounds will be assessed using trip blank and trip spike samples.

Appropriate sampling procedures will be undertaken to ensure that cross-contamination does not occur as outlined in the *Douglas Partners Field Procedures Manual*. This specifies that:

- Standard operating procedures are to be followed;
- Site safety plans are to be developed prior to commencing the works;
- Triplicate field samples are to be collected and analysed;
- Samples are to be stored under secure, temperature-controlled conditions;
- Chain of custody documentation is to be employed for the handling, transport and delivery of samples to the selected laboratory; and
- Contaminated filling, soil and groundwater originating from the site is to be disposed of in accordance with relevant regulatory guidelines.

8.2 Quality assurance & quality control in the laboratory

The analytical laboratories used during the assessment will conduct in-house QA/QC procedures including:

- Analysis of reagent blanks;
- Spike recovery analysis;
- Laboratory duplicate analysis;
- Analysis of control standards;
- Analysis of calibration standards and blanks; and
- Statistical analysis of QC data.

8.3 Data quality indicators

The following data quality indicators (DQIs) will need to be achieved during the analysis of QA/QC samples:

- Conformance with specified holding times;
- Accuracy of spiked samples to generally be in the range of 70% to 130%;
- Field triplicate samples to be collected at a frequency of at least 10% of all samples; and
- Field and laboratory duplicate samples to have a precision average within a 30% relative percent difference (RPD) unless circumstances allow a greater range.

Please contact the undersigned if further information is required.

Yours faithfully, **Douglas Partners Pty Ltd**

lun

Peter Oitmaa Senior Associate

Attachment: Sketch

Appendix E

Field Work Results

SURFACE LEVEL: 11.5 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 1 PROJECT No: 45153.03 DATE: 27/9/2013 SHEET 1 OF 2

\square		Description	Degree of Weathering	ы	Rock Strongth	Fracture	Discontinuities	Sa	ampli	ng & l	In Situ Testing
뇞	Depth (m)	of	vveaulening	Graphic Log		Spacing (m)	B - Bedding J - Joint	e	e %	RQD %	Test Results
	(11)	Strata	H M M M M M M M M M M M M M M M M M M M	<u>م</u> _	Ex Low Very Low Medium High Ex High Ex High		S - Shear F - Fault	Type	Rec	RQ%	& Comments
	0.15	CONCRETE		<u>.</u> 							
-	0.6	SILTY CLAY - very stiff, light grey brown silty clay with a trace of ironstone gravel, moist						E			PID<1 9,16,14
	- 0.0 - - 1	SHALE - extremely low strength, grey brown shale with ironstone						S			N = 30 PID<1
10	- ' - - 1.5	bands					Unless otherwise stated rock is fractured along rough planar bedding dipping 0°-10°	S			7,9,14 N = 23 PID<1
	- - - 1.8	SHALE - very low to low strength, grey shale									
	-2	SHALE - low to medium strength, highly and highly to moderately weathered, fractured, grey brown shale, some very low strength bands					1.9m: B5°, fe 2.0 to 2.5m: B(x3) 0°-5°, cly 2.5 to 2.7m: B(x4) 0°, cly , fe 2.7m: J45° to 55°, cu, ro, cly				PL(A) = 0.3
	- 3						2.75 to 3.0m: B(x5) 0°, fe, cly 3m: J35°, un, ro, fe 3.12m: B5°, fe, cly 10mm 3.17 & 3.23m: B0°, fe 3.4 & 3.5m: J40°, pl, ro, fe	С	100	17	PL(A) = 0.2
	4.7	SHALE - medium strength, fresh					3.68m: B0°, fe, cly 10mm 3.85m: J80°, he 4.07 to 4.7m: B(x13) 0°, cly co 1-2mm 4.7m: J75°, pl, ro, fe				PL(A) = 0.3
	-5	stained then fresh, slightly fractured and unbroken grey shale. Approximately 10% fine grained sandstone laminations. Some high strength siderite bands					4.9 to 5.13m: B(x3) 0°, fe 5.13 & 5.21m: J30°, pl, ro, cln 5.35m: B0°, cly 2mm 5.52m: J45°, pl, ro, cly 5.67m: J75°, pl, ro, fe				PL(A) = 0.4
	-6						5.9m: J55°, un, ro, fe 6.04m: J80°, un, ro, fe 6.28m: J30°, pl, ro, cly 6.35m: J70°-90°, st, he, fe	С	100	92	PL(A) = 1.3
-4-	- 7										PL(A) = 0.9
	- 8						7.94m: J60°, pl, ro, cln 8.1 to 8.65m: J(x3) 20°-30°, pl, sm, cln				
	-9							С	100	96	PL(A) = 0.6 PL(A) = 0.8
	-										1 200 - 0.0

RIG: Scout 1

CLIENT:

PROJECT:

Lend Lease Building Pty Ltd

Proposed Commercial Development

LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

DRILLER: LC

LOGGED: SI

CASING: HW to 1.2m

TYPE OF BORING: Diatube to 0.15m; Solid flight auger to 1.0m; Rotary to 1.8m; NMLC coring to 15.05m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 15.05m (Screen 3.5m to 15.05m; Gravel 1.5m to 15.05m; Bentonite 1.0m to 1.5m; Backfill to Ground Level then Gatic cover)

	SAM	IPLIN(G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
E	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Barren an Barren area
E	LK Block sample	U,	Tube sample (x mm dia.)	PL([D) Point load diametral test Is(50) (MPa)		Indudias Partners
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	4 1	Douglas Partners
1	 Disturbed sample 	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	2	Geotechnics Environment Groundwater

SURFACE LEVEL: 11.5 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 1 PROJECT No: 45153.03 DATE: 27/9/2013 SHEET 2 OF 2

			_	, , ,								
	Donth	Description	Degree of Weathering	pic	Rock Strength	5	Fracture Spacing	Discontinuities	Sa	amplir	ng & I	In Situ Testing
ᆋ	Depth (m)	of		Loc		Vate	(m)	B - Bedding J - Joint	Type	ore c. %	a %	Test Results &
		Strata	HW HW EW	0	Strength Very Low High Very High Very High	1000		S - Shear F - Fault	Ty	Core Rec. %	м,	Comments
		SHALE - medium strength, fresh stained then fresh, slightly fractured and unbroken grey shale. Approximately 10% fine grained sandstone laminations. Some high strength siderite bands							С	100	96	PL(A) = 0.5
-0	- 11	(continued)						11.13m: J35°, pl, ro, cln				PL(A) = 1.5
	- 12							12.15m: J85°, pl, ro, cln	С	100	100	PL(A) = 0.7
	- 13											PL(A) = 0.6
	- 14											
	⁻¹⁵ 15.05								С	100	100	PL(A) = 0.8
-4-		Bore discontinued at 15.05m										
	- 16											
-φ.	- 17											
-φ-												
· · · · · · · · · · · · · · · · · · ·	- 18											
	- 19											
- φ - φ 												
	Scou		FRUIC				FD: SI	CASING: HW				L

RIG: Scout 1

CLIENT:

PROJECT:

Lend Lease Building Pty Ltd

Proposed Commercial Development

LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

DRILLER: LC

LOGGED: SI

CASING: HW to 1.2m

TYPE OF BORING: Diatube to 0.15m; Solid flight auger to 1.0m; Rotary to 1.8m; NMLC coring to 15.05m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 15.05m (Screen 3.5m to 15.05m; Gravel 1.5m to 15.05m; Bentonite 1.0m to 1.5m; Backfill to Ground Level then Gatic cover)

	SAM	MPLING	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	I Dolidiae Partnere
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
Е	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

Rock Strength

Very Low Low Medium Very High Ex High

SURFACE LEVEL: 12.3 AHD EASTING: NORTHING:

Discontinuities

F - Fault

B - Bedding J - Joint

S - Shear

BORE No: 2 PROJECT No: 45153.03 DATE: 30/9/2013 SHEET 1 OF 2

Sampling & In Situ Testing

%

89 0

Core Rec. <u>%</u> RQD

Type

Е

Test Results

&

Comments

PID<1

6.9.11

N = 20

PID<1

3,6,9 N = 15

PID<1

PL(A) = 0.9

Lend Lease Building Pty Ltd **PROJECT: Proposed Commercial Development** LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

Description

of

Strata

TOPSOIL - grey sandy clay topsoil

with some grass rootlets, moist

Degree of Weathering

Graphic

<u>6</u>

EX Low

CLIENT:

Depth

(m)

0.2

പ

~

1

2

- 3

0

DIP/AZIMUTH: 90°/--

Fracture

Spacing

(m)

-G

80 J92

Water

y High

CLAY - very stiff, mottled orange brown clay, moist s 0.8 CLAY - stiff to very stiff, light grey mottled brown clay, moist s Unless otherwise stated 1.8 SHALE - extremely low strength, rock is fractured along light grey brown shale rough planar bedding dipping 0°-10° 2.3 2.4⁄ 2.3m: CORE LOSS: SHALE - very low to low strength, 100mm 2.4 to 3.0m: fg, fe, cly highly weathered, fragmented to highly fractured, light grey brown shale. Some medium strength С bands 3.0 to 3.6m: B5°, fe, cly

-							-				
-4	4.0	SHALE - medium then low to		XP			3.75m: CORE LOSS: 250mm				
		medium strength, moderately weathered, fractured and slightly					^{4.0} to 4.4m: B(x4) 0°, fe				PL(A) = 0.4
-		weathered, fractured and slightly fractured, brown shale					4.4 to 5.3m: B(x18) 0°,				
F							fe, he 4.6m: J35°, pl, ro, fe				
-5							4.85m: J55°, pl, ro, fe				
				크님			5.3m: J45°-50°, he, fe	с	92	51	
-							5.4 to 6.05m: J(x5) 60°-70°, pl, ro, fe				PL(A) = 0.3
Ē											
-6	6.17				╺┛╌┓╎╎│		∖ 6.15m: B0°, fe, cly				
- -		SHALE - medium strength, fresh, slightly fractured, grey shale.	 + + +		╎┎┙		10mm 6.2 to 6.3m: B(x3) 0°, fe				PL(A) = 2.7
-		Approximately 10% fine grained sandstone laminations.		듣님			6.35m: J90°, pl, ro, cln				
-7		Some high strength siderite bands					6.72m: J65° to 70°, cu, sm, cln 7.0 to 7.2m: J80°, un, ro,				
- - 0 -					┊┍┛┊┊╿		cln				
ŀ											PL(A) = 0.6
-						╎╎┏┥┦	7.75 to 7.9m: J45°, pl,				
-8							sm, cln				
*				크				с	100	98	PL(A) = 0.6
-				크님			8.65 to 9.3m: J(x3) 70°,				
ł,							pl, ro, cln				
-9											PL(A) = 0.6
n- -											
-											
F											

RIG: Scout 1

DRILLER: LC

LOGGED: SI

CASING: HW to 1.2m

Solid flight auger to 1.0m; Rotary to 2.3m; NMLC coring to 15.1m TYPE OF BORING:

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 15.1m (Screen 3.1m to 15.1m; Gravel 2.0m to 15.1m; Bentonite 1.5m to 2.0m; Backfill to Ground Level then Gatic cover)

	SAM	IPLIN	G & IN SITU TESTING	LEG	END				
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
	B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		-	Partners	
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)		126	Uarthord	
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	DUUU	103	rai liigi j	
	D Disturbed sample	⊳	Water seep	S	Standard penetration test				÷
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics	1 Enviro	onment Groundwate	r
-						000100111100		onnoni i biounanato	

CLIENT:

PROJECT:

Lend Lease Building Pty Ltd

Proposed Commercial Development

LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

SURFACE LEVEL: 12.3 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 2 PROJECT No: 45153.03 DATE: 30/9/2013 SHEET 2 OF 2

	Description	Degree of	Rock Strength	Fracture	Discontinuities	Sar	mpling &	In Situ Testing
균 Depth (m)		Degree of Weathering	Ex Low Very Low Medium Very High	(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. % RQD %	Test Results & Comments
-N -11 -11.2 -12 -0 -12.25	SHALE - medium to high strength, fresh, slightly fractured, grey shale with high strength siderite bands				10.1 to 10.6m: J(x4) 70°, pl, ro, cln 10.35m: J65°, he 10.97m: J90°, pl, sm, cln 11.65 & 11.71m: J65°, pl, ro, cln 12.2m: J60°, Cz10mm	С	100 <u>93</u> 100 <u>93</u>	PL(A) = 0.8 PL(A) = 1.2 PL(A) = 1
					13.1 & 13.3m: J30°, un, ro, cln 13.6 & 13.85m; J70°, pl, sm, cln 13.9 & 14.33m: B0°-5°, cly 10-20mm	с	100 95	PL(A) = 0.9 PL(A) = 0.6
- 15 - 15 - 15 - 15.1 16 16 17 17 	Bore discontinued at 15.1m	LER: LC		LOGGED: SI	CASING: HW			

TYPE OF BORING: Solid flight auger to 1.0m; Rotary to 2.3m; NMLC coring to 15.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 15.1m (Screen 3.1m to 15.1m; Gravel 2.0m to 15.1m; Bentonite 1.5m to 2.0m; Backfill to Ground Level then Gatic

		cover)						
Γ		SA	MPLING	3 & IN SITU TESTIN	G LEGE	ND	1	
	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
		Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)		
	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)		
	С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
	E	Environmental sample	ž	Water level	V	Shear vane (kPa)		

SURFACE LEVEL: 12.1 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 3 PROJECT No: 45153.03 DATE: 30/9/2013 SHEET 1 OF 2

Π		Description	Degree of			Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
님	Depth	of	Weathering		Water	Spacing (m)	B - Bedding J - Joint			RQD %	
	(m)	Strata	H H K K K K K K K K K K K K K K K K K K	Ex Low Very Low Low Medium High			S - Shear F - Fault	Type	C C	RQ %	& Comments
-01-		CONCRETE	ŭ ± ≥ ò č ī					E			PID<1
	0.16	FILLING - shaly clay filling, damp							-		
		CLAY - very stiff, grey brown clay with a trace of ironstone gravel, moist						s	-		4,9,6 N = 15 PID<1
	-1						Unless otherwise stated rock is fractured along rough planar bedding	s			4,8,20 N = 28 PID<1
	1.5 1.8	SHALE - extremely low strength, light grey brown shale with ironstone \bands					dipping 0°-10° 1.8 to 2.08m: fg, fe				
- ₽	-2	SHALE- low strength, highly					_				
		weathered, fragmented and fractured, light grey brown shale					2.08 to 3.0m: B0°, fe, cly	с	100	0	PL(A) = 0.2
	-3 3.0	SHALE - very low and very low to low strength, highly weathered, light					3.0 to 3.4m: Ds				
		grey and grey shale					3.4m: CORE LOSS: 450mm				
	3.85						4.2 to 4.7m: fg, cly				
	4.7 -5	SHALE - low strength, highly then slightly weathered, slightly fractured, grey brown shale		== ++ i : : : i == ! ! ! ! ! !			5 0 kg 5 00 mg fr	с	85	45	PL(A) = 0.2
		grey brown shale		글!!!!!!			5.0 to 5.06m: fg 5.06m: J35°, pl, ro, fe 5.4m: J90°, pl, ro, cln				PL(A) = 0.2
	-6 6.0	SHALE - medium and medium to high strength, slightly weathered then fresh, slightly fractured and					5.75m: J70°, un, ro, fe, cly 5.85m: B0°, fe and J80°, un, ro, fe 6.1 to 6.4m: B(x6) 0°, fe				PL(A) = 0.6
	- 7	unbroken, grey shale. Approximately 5% fine grained sandstone laminations		킄!!!!!! 킄!!!!!! 킄!!!!!!!			6.55m: J90°, pl, ro, fe 6.75m: B0°, cly				T L(A) = 0.0
- 2 							7.45 to 7.9m: J(x5) 25°-30°, pl, ro, cln				PL(A) = 0.7
-4-	-8							С	100	94	PL(A) = 0.6
 	-9						∖ 9.15m: J60°, pl, ro, cln 9.2m: J85°, un, ro, cln				
							9.67m: J45°, pl, ro, cln	С	100	100	PL(A) = 0.7

RIG: Scout 4

CLIENT:

PROJECT:

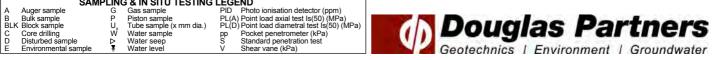
LOCATION:

Lend Lease Building Pty Ltd

Proposed Commercial Development

4 Murray Rose Avenue, Sydney Olympic Park

DRILLER: LC


LOGGED: SI

CASING: HW to 1.8m

TYPE OF BORING: Diatube to 0.16m; Solid flight auger to 1.0m; Rotary to 1.8m; NMLC coring to 15.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

SURFACE LEVEL: 12.1 AHD EASTING: NORTHING: **DIP/AZIMUTH:** 90°/--

BORE No: 3 PROJECT No: 45153.03 DATE: 30/9/2013 SHEET 2 OF 2

			Degree of Weathering Cappic Cappic		Rock Eracture				SHEET 2 0			
		Description	Degree of Weathering	ic	Rock Strength	L	Fracture	Discontinuities	Sa			In Situ Testing
ᆋ	Depth (m)	of	Troutioning	raph Log		Water	Spacing (m)	B - Bedding J - Joint	эе	e%	D D	Test Results
	(,	Strata	M M M M M M M M M M M M M M M M M M M	ō	Ex Low Very Low Medium High Very High		0.10	S - Shear F - Fault	Type	Core Rec. %	R0%	& Comments
	- 11	SHALE - medium and medium to high strength, slightly weathered then fresh, slightly fractured and unbroken, grey shale. Approximately 5% fine grained sandstone laminations <i>(continued)</i>						10.6m: J30°, pl, ro, cln 11.35m: J45°, pl, ro, cln	с	100	100	PL(A) = 1.5 PL(A) = 0.6
	- 12							10 50				PL(A) = 0.6
	- 13							12.52m: J30°, sl, sm, cln 12.9m: J30°, sl, sm, cln				PL(A) = 0.5
	- 14							13.53m: J45°, pl, sm, cln 13.73 to 13.78m: Cz, cly 13.78 to 14.03m: J(x6) 20°-30°, pl, sm	с	100	98	PL(A) = 0.5
 	- 15 15.0	Bore discontinued at 15.0m						14.7m: J50°, pl, sm, cln				
- 4	- 16											
	- 17											
	- 18											
	- 19											
Ė												

RIG: Scout 4

CLIENT:

PROJECT:

LOCATION:

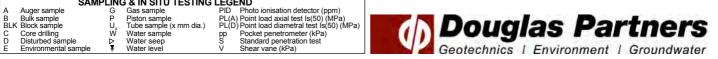
Lend Lease Building Pty Ltd

Proposed Commercial Development

4 Murray Rose Avenue, Sydney Olympic Park

DRILLER: LC

LOGGED: SI


CASING: HW to 1.8m

TYPE OF BORING: Diatube to 0.16m; Solid flight auger to 1.0m; Rotary to 1.8m; NMLC coring to 15.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

CDE

SAMPLING & IN SITU TESTING LEGEND

SURFACE LEVEL: 11.6 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 5 PROJECT No: 45153.03 DATE: 1/10/2013 SHEET 1 OF 2

\square		Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & l	In Situ Testing
RL	Depth (m)	of Strata		Srap Loc	Nate	Spacing (m) 50.0000 50.00000 50.00000 50.00000 50.00000 50.00000 50.00000000	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	0.2	TOPSOIL - grey brown silty clay topsoil with a trace of grass rootlets, moist	-	\mathcal{P}				E			PID<1
11	-	CLAY - very stiff, red brown clay with ironstone bands, moist					Unless otherwise stated rock is fractured along	s			5,7,9 N = 16 PID<1
	-1 1.0	strength, light grey brown shale					rough planar bedding dipping at 0°-10°	s			7,9,25 N = 34 PID<1
10	1.45 	SHALE - low to medium strength, highly to moderately weathered, fractured then slightly fractured, light grey brown shale					1.45 to 1.62m: fg, fe 1.8m: J85°, un, ro, fe				PL(A) = 0.6 PL(A) = 0.3
6	-3						2.4 to 2.81m: J(x3) 55°-70°, pl, ro, cln	С	100	95	
-	- 3.5					; ;; , ; ;; ,	3.3m: J55° & 75°, st, ro, cln				PL(A) = 0.4
	- - - - - - -	SHALE - medium strength, slightly weathered, fractured and slightly fractured, grey brown shale			.		3.8m: J85°, pl, ro, cln 4m: J80°, pl, ro, fe 4.17m: B0°, cly 5mm				PL(A) = 0.5
	-						4.43m: B0°, fe				PL(A) = 0.5
	- 5						4.75m: J30°, pl, ro, fe	С	100	96	PL(A) = 0.5
. 9	- - - -	- high strength siderite band					5.5 to 5.9m: J(x5) 50°-70°, pl, ro, fe				
	-6 6.1	high strength, fresh, slightly	┤╎╎╵┡┿┿			, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6.07m: J75°, un, ro, cln				
	- 7	fractured and unbroken, grey shale. Approximately 5% fine grained sandstone laminations - 6.7m and 10.65m: high strength siderite bands									
							>>	с	100	100	PL(A) = 0.7
3	- 9										PL(A) = 0.6
2	- - - - - -						9.7 to 9.85m: J75°, pl, ro, cln	С	100	100	PL(A) = 0.7
	G: Scou PE OF I	ut 1 DRILI BORING: Solid flight auger to 1.0m	_ER: LC n; Rotary to 1	.45m		GED: SI 15.15m	CASING: HW	/ to 1	.2m		

WATER OBSERVATIONS: No free groundwater observed whilst augering

CLIENT:

PROJECT:

Lend Lease Building Pty Ltd

Proposed Commercial Development

LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

REMARKS: Standpipe installed to 15.15m (Screen 3.15m to 15.15m; Gravel 1.5m to 15.15m; Bentonite 1.0m to 1.5m; Backfill to Ground Level then Gatic cover)

	SAN	IPLIN	G & IN SITU TESTING	LEG	END						
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
	B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)			-			1.1
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)			126	Lai	Thor	-
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Doug	103	rai		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test						
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	1	Geotechnics	1 Envir	onment	Groundwat	er
-											

CLIENT:

PROJECT:

Lend Lease Building Pty Ltd

Proposed Commercial Development

LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

SURFACE LEVEL: 11.6 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 5 PROJECT No: 45153.03 DATE: 1/10/2013 SHEET 2 OF 2

		Description	Degree of Weathering U U U U U U U	Rock Strength ভ	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
R	Depth	of	Weathering		Spacing	B - Bedding J - Joint				
-	(m)	Strata	Gra Gra C	Ex Low Very Low Medium High Ex High Ex High	0.10 0.100 1.00 1.00	S - Shear F - Fault	Type	C Ou	RQD %	& Comments
	·11	SHALE - medium and medium to high strength, fresh, slightly fractured and unbroken, grey shale. Approximately 5% fine grained sandstone laminations <i>(continued)</i>		< C < C < C < C < C < C < C < C <		10.35m: J65°, pl, ro, cln				PL(A) = 0.7
	·12					>>	С	100	100	PL(A) = 2.5
	· 13									PL(A) = 1.2
	- 14					13.6m: J20°, un, ro, cln 14.3m: J80°, pl, ro, cln	С	100	100	PL(A) = 0.6 PL(A) = 0.6
	- 15 15.15 -	Bore discontinued at 15.15m								PL(A) = 0.5
	· 16									
· · · · · · · · · · · · · · · · · · ·	17									
<u> </u>	· 18									
· · · · · · · · · · · · · · · · · · ·	- 19									
RIC	G: Scou	t 1 DRILL	.er: LC	LOGO	GED: SI	Casing: HW	/ to 1	.2m	I	

TYPE OF BORING: Solid flight auger to 1.0m; Rotary to 1.45m; NMLC coring to 15.15m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 15.15m (Screen 3.15m to 15.15m; Gravel 1.5m to 15.15m; Bentonite 1.0m to 1.5m; Backfill to Ground Level then Gatic cover)

	SAN	/IPLIN	G & IN SITU TESTING	LEG	END						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Doug		-		-
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test Is(50) (MPa)			1196	- 63	rtnc	rc
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		DUUU	1143	Га		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Contract of the second	and the set of a			1.00
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	1	Geotechnics	El Envir	onment	Ground	water

SURFACE LEVEL: 10.2 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 6 PROJECT No: 45153.03 DATE: 2/10/2013 SHEET 1 OF 2

Π		Description Degree of Weathering Rock Strata Fracture Spacing Discontinuities of Image: Spacing Image:					Sampling & In Situ Testing				
뉟	Depth	of	Weathering		Spacing (m)	B - Bedding J - Joint	e	% و		Test Results	
	(m)	Strata	EW HW MW SW FR FR	Log Ex Low Very Low Medium High Very High Ex High	0.010	S - Shear F - Fault	Type	Rec.	RQD %	& Comments	
	0.14	CONCRETE									
		FILLING - grey clay and crushed shale filling with some road base gravel and a trace of ash, moist					A			PID<1 4,7,7	
	0.8	CLAY - stiff then very stiff, brown clay with a trace of ironstone gravel,					S			N = 14 PID<1	
-6-		moist					S			3,6,8 N = 14 PID<1	
	-2					Unless otherwise stated rock is fractured along	S			4,7,18 N = 25	
	-3 3.0	SHALE - extremely low strength,				rough planar bedding dipping at 0°-10°				PID<1	
		light grey brown shale									
- 9	-4					3.8m: CORE LOSS: 580mm					
	4.38 -5	SHALE - medium and low to medium strength, highly then slightly weathered, highly fractured to fractured, grey brown to grey shale, some very low strength bands				4.38 to 4.8m: B0°*10°, fe 4.8 to 5.3m: fg	С	60	0	PL(A) = 0.4	
						5.4 to 5.7m: Ds 5.7m: CORE LOSS:					
	-6					530mm					
	6.23 -7					6.23 to 6.37m: fg, fe 6.42 nto 6.57m: J(x3) 30°-35°, pl, ro, fe 6.73 to 6.83m: fg, fe 6.83m: J45°, pl, ro, fe 7.03 & 7.16m: J(x2) 30°,				PL(A) = 0.6	
	7.35	SHALE - medium strength, fresh, slightly fractured and unbroken, grey shale. Approximately 5% fine grained sandstone laminations				pl, sm, cln 7.3 to 7.35m: Cz	С	94	57	PL(A) = 0.6	
										PL(A) = 1	
	-9					9.0 & 10.38m: B0°, cly, vn	С	100	100	PL(A) = 0.7	

RIG: Scout 1

CLIENT:

PROJECT:

Lend Lease Building Pty Ltd

Proposed Commercial Development

LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

DRILLER: LC

LOGGED: SI

CASING: HW to 2.7m

TYPE OF BORING: Diatube to 0.17m; Solid flight auger to 2.5m; Rotary to 3.8m; NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 14.9m (Screen 3.5m to 14.9m; Gravel 3.0m to 14.9m; Bentonite 2.5m to 3.0m; Backfill 2.5m to Ground Level then Gatic cover)

	SAM	IPLIN	G & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	Douolas Pariners
C	Core drilling	VV	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT:

PROJECT:

Lend Lease Building Pty Ltd

Proposed Commercial Development

LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

SURFACE LEVEL: 10.2 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 6 PROJECT No: 45153.03 DATE: 2/10/2013 SHEET 2 OF 2

2 12.0 -	Description of Strata SHALE - medium strength, fresh, slightly fractured and unbroken, grey shale. Approximately 5% fine grained sandstone laminations (continued)	Degree of Weathering Main # Main % Call at the start of the st				Fracture Spacing (m) 5 800 800 1	Discon B - Bedding S - Shear	tinuities J - Joint F - Fault		Core Core Mec. % 100		In Situ Testing Test Results & Comments PL(A) = 0.8
(m) 1 2 12.0 -	SHALE - medium strength, fresh, slightly fractured and unbroken, grey shale. Approximately 5% fine grained sandstone laminations (continued)				—————————————— (кеу ніді) Ех ніді) ———————————————————————————————————	(m)	-					
1 2 12.0 -	SHALE - medium strength, fresh, slightly fractured and unbroken, grey shale. Approximately 5% fine grained sandstone laminations (continued)	EMA EMA EMA EMA EMA EMA EMA EMA					S - Shear	F - Fault				
2 12.0 -	slightly fractured and unbroken, grey shale. Approximately 5% fine grained sandstone laminations (continued)								С	100	100	PL(A) = 0.8
	unbroken light grey and grey laminite with approximately 25% fine				i E li							PL(A) = 0.6
			· · · · · · · · · · · · · · · · · · ·				>>					PL(A) = 1.2
4									с	96	96	PL(A) = 1.8
14.88 - 5 15.0-	- 14.88m to 15.0m: core left down the hole						14.88m: CC ∖120mm	RE LOSS: r				PL(A) = 2
5	bore discontinued at 13.0m							,				
7												
3												
9												
	3	3	5 6 1	5. 5. 6. 7. 7. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9	3	5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	3. 1	3. 1	3 1	5 6 7 8 9 9 9 9 9 9 9	5 6 1 <td>3 3 3 4 1</td>	3 3 3 4 1

TYPE OF BORING: Diatube to 0.17m; Solid flight auger to 2.5m; Rotary to 3.8m; NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 14.9m (Screen 3.5m to 14.9m; Gravel 3.0m to 14.9m; Bentonite 2.5m to 3.0m; Backfill 2.5m to Ground Level then Gatic cover)

	000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	SAM	PLIN	G & IN SITU TESTING	G LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLI	< Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test (\$(50) (MPa)	Indialas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Douglas Partners
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
Е	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater
L					Cectechnics 1 Environment 1 Croundwater

SURFACE LEVEL: 11.5 AHD EASTING: NORTHING:

BOREHOLE LOG

BORE No: 7 PROJECT No: 45153.03 DATE: 11/10/2013 SHEET 1 OF 1

DIP/AZIMUTH: 90°/--Sampling & In Situ Testing Graphic Description Well Water Depth Log of Construction Ъ Depth Type Sample Results & Comments (m) Details Strata CONCRETE 0.16 FILLING - light brown, silty clay filling with some shale 0.2 E* PID<1 gravel, damp 0.3 0.4 SHALE - low strength, light brown, shale 0.5 Е PID<1 0.6 0.8 Е PID<1 0.9 0.9 Bore discontinued at 0.9m 1 - target depth reached -2 -2 3 - 3 4 - 4

RIG: Bobcat DRILLER: DJ TYPE OF BORING: Diatube to 0.16m; Solid flight auger to 0.9m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS: *TS1A/TS1B are triplicate samples of 0.2m to 0.3m

G P U W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

Lend Lease Building Pty Ltd

Proposed Commercial Development

4 Murray Rose Avenue, Sydney Olympic Park

LOGGED: AG

CASING: Uncased

SURFACE LEVEL: 12.7 AHD Easting: Northing:

DIP/AZIMUTH: 90°/--

BOREHOLE LOG

BORE No: 8 PROJECT No: 45153.03 DATE: 11/10/2013 SHEET 1 OF 1

							H: 90°/		SHEET TOP T	
\square		Description	<u>i</u>		Sam	npling &	& In Situ Testing		Well	
RL	Depth	of	Graphic Log	e	ţ	ole		Water	Construction	
	(m)	Strata	Ъ С С	Type	Depth	Sample	Results & Comments	≥	Details	
Н		CONCRETE	<u>.</u>	-		S				
	0.08		\mathbb{X}	E	0.08		PID<1		-	
	. 0.18	Generally 20mm diameter	\bigotimes	E*	0.18 0.2 0.3		PID<1		-	
	.		\bigotimes		0.3				-	
† I	.	FILLING - brown, silty clay filling with some shale gravel/cobbles and sandstone gravel, damp	\bigotimes						-	
			\boxtimes	Е	0.5		PID<1		-	
12-	0.6	SHALE - low strength, light brown, shale			0.6					
	.				0.8				-	
	.			Е	0.9		PID<1		-	
	-1				1.0				-1	
	· 1.1	Bore discontinued at 1.1m		Е	-1.1-		PID<1			
-	.	- target depth reached							-	
$ \cdot $.									
+	.									
	.									
	.								-	
-÷									-	
	-2								-2	
	.								-	
	.								-	
	.								-	
	.								-	
+	.								-	
	.								-	
-9-	.								-	
	•								-	
T I	-3									
	- 3								-3	
	.								-	
	.								-	
	.								-	
	.								-	
$\left \cdot \right $.									
-0	.									
	.								-	
	·									
	-4								-4	
	.									
	.								-	
	.								-	
$\left \cdot \right $.									
-∞	.									
$ \cdot $.								-	
	.									

 RIG:
 Bobcat
 DRILLER:
 DJ

 TYPE OF BORING:
 Diatube to 0.08m;
 Solid flight auger to 1.1m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 *TS2A/TS26 are triplicate samples of 0.2m to 0.3m

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

Lend Lease Building Pty Ltd

Proposed Commercial Development

4 Murray Rose Avenue, Sydney Olympic Park

LOGGED: AG

CASING: Uncased

SURFACE LEVEL: 12.1 AHD EASTING: NORTHING:

BOREHOLE LOG

BORE No: 9 PROJECT No: 45153.03 DATE: 11/10/2013 SHEET 1 OF 1

DIP/AZIMUTH: 90°/--Sampling & In Situ Testing Graphic Description Well Water Depth Log of Construction Ъ Type Depth Sample Results & Comments (m) Details Strata CONCRETE _ 0 15 0.15 FILLING - light brown and orange-brown, ripped shale E* PID<1 0.25 0.3 0.25 ∖filling, humid Е PID<1 SHALE - low strength, light brown, shale 0.4 0.8 Е PID<1 0.9 0.9 Bore discontinued at 0.9m 1 - target depth reached -2 -2 -2 3 - 3 4 - 4

RIG: Bobcat DRILLER: DJ TYPE OF BORING: Diatube to 0.15m; Solid flight auger to 0.9m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS: *TS3A/TS3B are triplicate samples of 0.15m to 0.25m

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

G P U W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

Lend Lease Building Pty Ltd

Proposed Commercial Development

4 Murray Rose Avenue, Sydney Olympic Park

LOGGED: AG

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

SURFACE LEVEL: 12.0 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 10 PROJECT No: 45153.03 DATE: 11/10/2013 SHEET 1 OF 1

_						/ ~~~ 11		H: 90°/		SHEET 1 OF 1
	_		Description	Jic		Sam		& In Situ Testing	Ļ	Well
R	De (n	pth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
[0.05	¬ FILLING - grey-brown, silty sand (topsoil) filling with some	$\overline{\times}$	_E_	0.0 0.05		PID<1		
[-	0.2	\rootlets and clay, humid	XX	E*	0.1 0.2		PID<1		
ł	-	0.3	Critical FILLING - brown, clayey silt filling with some fine ironstone		E	0.3		PID<1		-
-	-		CLAYEY SILT - very stiff, brown, clayey silt with some fine ronstone gravel, humid		E	0.4 0.5		PID<1		-
	-		GRAVELLY CLAY - hard, brown, gravelly (ironstone) clay with some silt, humid							-
ł	-				E	0.8		PID<1		-
Ę	- 1			5) {}		0.9				-1
ł	-				E	1.1		PID<1		-
	-	1.2-	Bore discontinued at 1.2m - target depth reached			-1.2-				-
ŀ	-									-
ļ	-									-
ł	-									-
-ę	-2									-2
ł	-									-
ŀ	_									-
ł	-									-
-	-									-
ł	-									-
+	-									-
-0	-3									-3
ŀ	-									-
ł	-									
ŀ	-									
ŀ	-									
-	-									
	- - 4									- 4
ŀ	-									-
ţ	-									-
ŀ	-									-
ļ	-									
ŀ	-									-
ļ	-									
L										

RIG: Bobcat

CLIENT:

PROJECT:

Lend Lease Building Pty Ltd

Proposed Commercial Development

LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

DRILLER: DJ TYPE OF BORING: Solid flight auger to 1.2m

LOGGED: AG

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** *TS4A/TS4B are triplicate samples of 0.1m to 0.2m

SAMPLING & IN SITU TESTING LEGEND

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)

 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

SURFACE LEVEL: 10.9 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 11 PROJECT No: 45153.03 DATE: 11/10/2013 SHEET 1 OF 1

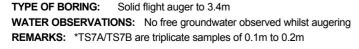
			DIF	/AZII		l: 90°/		SHEET 1 OF 1
	Description	Jic _		Sam		In Situ Testing		Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	FILLING - brown, orange-brown and grey, clay filling with some ironstone gravel/cobbles, damp		E*	0.1 0.2		PID<1		-
- 0.3 -	FILLING - brown, silty clay filling with some fine ironstone gravel and shale gravel, damp - with some plywood fragments		E	0.5 0.6		PID<1		
- 0.7 - - - 1	FILLING - brown, silty clay filling with some fine ironstone gravel and sand, damp - with some plastic fragments		E	0.8 0.9		PID<1		-1
-			E	1.4 1.5		PID<1		
-2			E	1.9 2.0		PID<1		-2
- 2.3 -	FILLING - dark grey-brown, silty clay filling with some fine ironstone gravel, damp - with some wet bands		E	2.4 2.5		PID<1		-
- 2.9 - - 3 -	FILLING - dark grey, gravel (blue metal) filling, damp - hessian at 2.9m		E^	3.2 3.3		PID<1		-3
- 3.4 -	Bore discontinued at 3.4m - refusal on possible concrete obstruction			3.3				
- 4 - 4 -								-4
»-	at DRILLER: D.I			GED				Incased

RIG: Bobcat

CLIENT:

PROJECT:

Lend Lease Building Pty Ltd


LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

Proposed Commercial Development

DRILLER: DJ

LOGGED: AG

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 11.1 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 12 PROJECT No: 45153.03 DATE: 11/10/2013 SHEET 1 OF 1

				DIF	'/AZI	WUT	H: 90°/		SHEET 1 OF 1
		Description	lic		Sam		& In Situ Testing	_	Well
교 Dep (m	oth 1)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.1	FILLING - brown, orange-brown and grey, silty clay filling with some fine ironstone gravel and rootlets, humid //	\bigotimes	Е	0.0 0.1		PID<1		-
		FILLING - brown, clayey silt filling with some fine ironstone gravel, humid		E*	0.2 0.3		PID<1		-
 				E	0.5 0.6		PID<1		-
 1	0.8-	CLAYEY SILT - very stiff, brown, clayey silt with some fine ironstone gravel, humid		E	0.9 1.0		PID<1		-1
-9-	1.2-	CLAY - very stiff, brown, clay with some fine ironstone gravel, humid			1.4				-
	1.5-	Bore discontinued at 1.5m - target depth reached	<u> </u>	E	-1.5-		PID<1		
2 2 									-2
									-3
									-
RIG: B	ohca	at DRILLER: DJ		1.00	GED	· AG	CASIN	G· I	Incased

RIG: Bobcat

DRILLER: DJ TYPE OF BORING: Solid flight auger to 1.5m

LOGGED: AG

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** *TS6A/TS6B are triplicate samples of 0.2m to 0.3m

SAMPLING & IN SITU TESTING LEGEND

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)

 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

CLIENT: PROJECT:

Proposed Commercial Development LOCATION: 4 Murray Rose Avenue, Sydney Olympic Park

Lend Lease Building Pty Ltd

Groundwater Field Sheet

Groundwater Fleid Sile					
Project and Bore Installation					
Bore / Standpipe ID:	BH1				
Project Name:	Proposed Corr	nmercial Devel	opment		
Project Number:	45153.03				
Site Location:	4 Murray Rose	Avenue, Sydi	ney Olympic Parl	k	
Bore Easting:			Northing:		
Installation Date:	27/09/2013				
GW Level (during drilling):	N/A	m bgl			
Well Depth:	15.05	m bgl			
Screened Interval:	3.5-15.05	m bgl			
Contaminants/Comments:					
Bore Development Details					
Date/Time:	27/09/2013				
Purged By:	AG				
GW Level (pre-purge):	4.9	m bgl			
GW Level (post-purge):	15	m bgl			
PSH observed:	No free phase	product detec	ted by interphase	e metre	
Observed Well Depth:	15	m bgl			
Estimated Bore Volume:	30	L			
Total Volume Purged:	40	L			
Equipment:	Twister				
Micropurge and Sampling De	tails				
Date/Time:	8/11/2013				
Sampled By:	AG				
Weather Conditions:	Sunny				
GW Level (pre-purge):	4.9	m bgl			
GW Level (post sample):	7.4	m bgl			
PSH observed:		0	ted by interphase	e metre	
Observed Well Depth:	12.5	m bgl			
Estimated Bore Volume:	30	L			
Total Volume Purged:	4	L			
Equipment:	Geopump	-			
<u> </u>		Quality Param	eters		
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10 mV
R1	21.8	3.27	6474	6.88	85.5
R2	21.4	25.8	6113	6.9	84.3
R3	21.5	1.7	5898	6.89	89.3
R4	21.4	2.02	5538	6.93	74.8
R5	21.6	2.44	6224	6.96	63.3
	21.0	2.11	0221	0.00	00.0
			<u> </u>		1
			<u> </u>		+
Additional Readings Following	DO % Sat	SPC	TDS		+
stabilisation:	20 /0 Oal	5.0			+
	<u> </u>	Sample Details	<u> </u>		1
Sampling Depth (rationale):	4.9-7.4	m bgl,	<u>.</u>		
Sample Appearance (e.g.		0,			
colour, siltiness, odour):	Relatively clea	r			
Sample ID:	BH1				
QA/QC Samples:	D1/081113				
Sampling Containers and		x 500mL glas	s, 1 x 500mL gla	ss (H2SO4),	2 x 40mL glass
filtration:			c (HCL), 1 x 200		
			plastic (H2SO4)		-
Comments / Observations:					

Groundwater Field Sheet

Gibunuwater Field Sile					
Project and Bore Installation					
Bore / Standpipe ID:	BH5				
Project Name:	Proposed Corr	mercial Devel	opment		
Project Number:	45153.03				
Site Location:	4 Murray Rose	Avenue, Sydi	ney Olympic Parl	ĸ	
Bore Easting:			Northing:		
Installation Date:	1/10/2013				
GW Level (during drilling):	N/A	m bgl			
Well Depth:	15.15	m bgl			
Screened Interval:	3.15-15.15	m bgl			
Contaminants/Comments:					
Bore Development Details					
Date/Time:	1/10/2013				
Purged By:	AG				
GW Level (pre-purge):	4.5	m bgl			
GW Level (post-purge):	15	m bgl			
PSH observed:	No free phase	product detec	ted by interphase	e metre	
Observed Well Depth:	15	m bgl	•		
Estimated Bore Volume:	30	L			
Total Volume Purged:	45	L			
Equipment:	Twister				
Micropurge and Sampling De					
Date/Time:	8/11/2013				
Sampled By:	AG				
Weather Conditions:	Sunny				
GW Level (pre-purge):	4	m bgl			
GW Level (post sample):	6	m bgl			
PSH observed:	-	5	ted by interphase	motro	
Observed Well Depth:	15	m bgl		emene	
Estimated Bore Volume:	30	L			
Total Volume Purged:	30	L			
Equipment:	Geopump	L			
	· · · ·	Quality Param	otors		
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10 mV
R1	21.6	1.47	5384	6.9	75.9
R2	21.0	1.47	5792	6.93	84.2
R3	21.6	30.3	6440	6.88	72.3
R4	21.5	1.93	6892	6.92	64.2
R5	21.6	2.1	6322	6.97	72.9
			├ ────		
	l		ļ		<u> </u>
Additional Readings Following	DO % Sat	SPC	TDS		<u> </u>
stabilisation:					
	-	Sample Details			
Sampling Depth (rationale):	4 to 6	m bgl,			
Sample Appearance (e.g.	Slightly silty				
colour, siltiness, odour):	BH5				
Sample ID:	CDD CDD				
QA/QC Samples:	1 x 11 alooo 1	x 500ml aloo	s, 1 x 500mL gla		2 x 10ml alass
Sampling Containers and			s, 1 x 500mL gia c (HCL), 1 x 200r		
filtration:			plastic (H2SO4)	in piasuo, 1 X	room plastic
Comments / Observations:		4//, T A 200111			

Groundwater Field Sheet

Project and Bore Installation					
Bore / Standpipe ID:	BH6				
	-				
Project Name:	Proposed Com	mercial Devel	opment		
Project Number:	45153.03				
Site Location:	4 Murray Rose	Avenue, Sydi	ney Olympic Parl	K	
Bore Easting:			Northing:		
Installation Date:	2/10/2013				
GW Level (during drilling):	N/A	m bgl			
Well Depth:	14.9	m bgl			
Screened Interval:	3.5-14.9	m bgl			
Contaminants/Comments:					
Bore Development Details					
Date/Time:	2/10/2013				
Purged By:	AG				
GW Level (pre-purge):	5	m bgl			
GW Level (post-purge):	14.5	m bgl			
PSH observed:	No free phase	V	ted by interphase	e metre	
Observed Well Depth:	14.5	m bgl	, ,		
Estimated Bore Volume:	30	L			
Total Volume Purged:	40	L			
Equipment:	Twister	-			
Micropurge and Sampling De					
Date/Time:	8/11/2013				
Sampled By:	AG				
Weather Conditions:	Sunny	and he and			
GW Level (pre-purge):	4.5	m bgl			
GW Level (post sample):	7	m bgl			
PSH observed:		•	ted by interphase	e metre	
Observed Well Depth:	14.5	m bgl			
Estimated Bore Volume:	30	L			
Total Volume Purged:	4	L			
Equipment:	Geopump				
	1	Quality Param			1
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	рН	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10 mV
R1	21.5	2.56	4863	6.98	79.6
R2	21.3	3.96	5264	6.93	83.6
R3	21.6	5.21	5489	6.87	81.6
R4	21.5	2.45	5396	6.93	77.6
R5	21.5	2.3	5264	6.94	72.6
					1
			├		+
Additional Readings Following	DO % Sat	SPC			1
stabilisation:	00 % Sat	JFU	TDS		+
รเลมแรลแบบ.	l	Comple Detail-	<u> </u>		<u> </u>
Complian Death (as the set of	-	Sample Details			
Sampling Depth (rationale):	4 to 6	m bgl,			
Sample Appearance (e.g. colour, siltiness, odour):	Slightly silty				
Sample ID:	BH6				
QA/QC Samples:		x 500ml alas	s, 1 x 500mL gla		2 x 40ml alass
Sampling Containers and			c (HCL), 1 x 200i		
filtration:		•	plastic (H2SO4)		
Comments / Observations:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Diastic (112004)		
	l				

Appendix F

Summary of Laboratory Test Results

Table F1: Contaminant Concentrations in Soils

Sample/	В	Т	E	X	Napth.	F1	F2	+PAH	B.TEQ	OCP	OPP	PCB	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg							
Filling																						
BH3/0.2	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	6	<0.4	7	27	23	<0.1	7	26
BH6/0.2	<0.2	<0.5	<1	<3	<0.1	<25	<50	3.9	1	<2	<0.8	<0.7	<5	NT	6	<0.4	18	49	22	<0.1	28	51
BH6/0.5-0.95	<0.2	<0.5	<1	<3	<0.1	<25	<50	7.2	1	<2	<0.8	<0.7	<5	NT	13	<0.4	17	34	33	<0.1	13	49
BH7/0.2-0.3	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	Ν	<4	<0.4	6	21	16	<0.1	4	19
BH8/0.2-0.3	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	Ν	<4	<0.4	8	22	16	<0.1	11	37
BH8/0.5-0.6	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	<4	<0.4	4	16	16	<0.1	3	19
BH9/0.15-0.25	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	Ν	<4	<0.4	6	25	26	<0.1	8	31
BH10/0.1-0.2	<0.2	<0.5	<1	<3	<0.1	<25	<50	0.66	<0.5	<2	<0.8	<0.7	<5	Ν	6	<0.4	16	20	19	<0.1	14	35
BH11/0.1-0.2	<0.2	<0.5	<1	<3	<0.1	<25	<50	0.2	<0.5	<2	<0.8	<0.7	<5	Ν	<4	<0.4	7	23	21	<0.1	10	45
BH11/1.4-1.5	<0.2	<0.5	<1	<3	<0.1	<25	<50	9	1	<2	<0.8	<0.7	<5	NT	<4	<0.4	8	10	29	<0.1	4	34
BH12A/0.5-0.6	<0.2	<0.5	<1	<3	<0.1	<25	<50	1.6	<0.5	<2	<0.8	<0.7	<5	N	5	<0.4	14	14	24	<0.1	7	22
Natural Soil																						
BH1/0.2	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	5	<0.4	7	31	20	<0.1	5	23
BH1/0.5-0.95	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	14	<0.4	7	40	22	<0.1	6	24
BH2/0.5-0.95	<0.2	<0.5	<1	<3	<0.1	<25	<50	0.55	<0.5	<2	<0.8	<0.7	<5	NT	<4	<0.4	6	27	10	<0.1	3	14
BH2/1-1.45	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	<4	<0.4	4	11	17	<0.1	1	11
BH3/0.5-0.95	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	5	<0.4	15	22	21	<0.1	2	10
BH5/0.2	<0.2	<0.5	<1	<3	<0.1	<25	<50	7	1	<2	<0.8	<0.7	<5	NT	12	<0.4	25	28	47	<0.1	10	79
BH5/1-1.45	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	6	<0.4	15	25	22	<0.1	2	12
BH7/0.5-0.6	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	<4	<0.4	5	28	17	<0.1	6	30
BH9/0.8-0.9	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	<4	<0.4	7	21	22	<0.1	4	23
BH10/0.2-0.3	<0.2	<0.5	<1	<3	<0.1	<25	<50	0.76	<0.5	<2	<0.8	<0.7	<5	NT	5	<0.4	15	16	16	<0.1	18	24
BH12A/1.4-1.5	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	5	<0.4	18	18	20	<0.1	4	12

Notes: B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; Napth. = Naphthalene; F1 = $(C_6 - C_{10}) - BTEX$; F2 = $(C_{11} - C_{16}) - Naphthalene; +PAH = Positive polycyclic aromatic hydrocarbons; B.TEQ = Carcinogenic PAHs (as B(a)P TEQ); OCP = Organochlorine pesticides; OPP = Organophosphorus pesticides; PCB = Polychlorinated biphenyls; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; NT = Not tested$

Sample/	в	т	Е	X	Napth.	F1	F2	+PAH	B.TEQ	ОСР	OPP	PCB	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg							
QA/QC Soil Sample	es																					·
TS1A(BH7/0.2-0.3)	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	<4	<0.4	5	22	17	<0.1	5	22
TS1B(BH7/0.2-0.3)	<0.1	<0.1	<0.1	<0.3	<0.5	<20	<50	NIL	<0.5	<0.5	<20	<3.5	NT	NT	<2	0.4	5.1	24	19	<0.05	5.8	25
TS7A(BH11/0.1-0.2)	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	<2	<0.8	<0.7	<5	NT	5	<0.4	17	25	21	<0.1	4	19
TS7B(BH11/0.1-0.2)	<0.1	<0.1	<0.1	<0.3	<0.5	<20	<50	NIL	<0.5	<0.5	<20	<3.5	NT	NT	<2	0.6	19	33	22	<0.05	10	57
Blank	<0.2	<0.5	<1	<3	<0.1	<25	<50	NIL	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Spike	71%	67%	62%	65%	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
QA/QC Water Sam	ples (µg/L)																					
Rins1	<1	<1	<1	<3	<1	<10	<50	NIL	<5	<4	<1.6	<14	<50	NT	<50	<10	<10	<10	<30	<0.5	<20	<20

Table F2: Contaminant Concentrations in QA/QC Soil Samples

Notes: B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; Napth. = Naphthalene; F1 = $(C_6 - C_{10}) - BTEX$; F2 = $(C_{11} - C_{16}) - Naphthalene; +PAH = Positive polycyclic aromatic hydrocarbons; B.TEQ = Carcinogenic PAHs (as B(a)P TEQ); OCP = Organochlorine pesticides; OPP = Organophosphorus pesticides; PCB = Polychlorinated biphenyls; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; NT = Not tested$

Table F3: Statistical Analysis of Soil Contaminant Concentrations

Sample/	В	Т	E	x	Napth.	F1	F2	+PAH	B.TEQ	OCP	OPP	РСВ	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg							
Statistical Analys	is of Filling	Contamin	ant Conce	entrations	(mg/kg)																	
Maximum	0	0	0	0	0	0	0	9	1	0	0	0	0	N/A	13	0	18	49	33	0	28	51
Average	0	0	0	0	0	0	0	3.8	1	0	0	0	0	N/A	7.2	0	10.1	23.7	22.3	0	9.9	33.5
Std. Deviation	0	0	0	0	0	0	0	3.6	0	0	0	0	0	N/A	3.3	0	5.1	10.6	5.6	0	7.0	11.4
95% UCL	0	0	0	0	0	0	0	N/A	N/A	0	0	0	0	N/A	10.3	0	13.6	29.5	25.3	0	14.6	39.7
Statistical Analys	s of Natura	al Soil Con	taminant	Concentra	tions (mg/	′kg)			·					·								
Maximum	0	0	0	0	0	0	0	7	1	0	0	0	0	N/A	14	0	25	40	47	0	18	79
Average	0	0	0	0	0	0	0	2.8	1	0	0	0	0	N/A	7.4	0	11.3	24.3	21.3	0	5.5	23.8
Std. Deviation	0	0	0	0	0	0	0	3.7	0	0	0	0	0	N/A	3.9	0	6.7	7.9	9.3	0	4.8	19.5
95% UCL	0	0	0	0	0	0	0	N/A	N/A	0	0	0	0	N/A	10.3	0	14.9	28.6	26.3	0	8.9	35.1
Statistical Analys	is of All Pri	mary Soil	Sample Co	ontaminar	nt Concent	rations (m	g/kg)															
Maximum	0	0	0	0	0	0	0	9	1	0	0	0	0	N/A	14	0	25	49	47	0	28	79
Average	0	0	0	0	0	0	0	3.4	1	0	0	0	0	N/A	7.3	0	10.7	24	21.8	0	7.7	28.6
Std. Deviation	0	0	0	0	0	0	0	3.4	0	0	0	0	0	N/A	3.5	0	5.8	9.1	7.5	0	6.3	16.4
95% UCL	0	0	0	0	0	0	0	N/A	N/A	0	0	0	0	N/A	9.1	0	13.7	27.4	24.5	0	10.4	35.2

Notes: $B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; Napth. = Naphthalene; F1 = (C_6 - C_{10}) - BTEX; F2 = (C_{11} - C_{16}) - Naphthalene; +PAH = Positive polycyclic aromatic hydrocarbons; B.TEQ = Carcinogenic PAHs (as B(a)P TEQ); OCP = Organochlorine pesticides; OPP = Organophosphorus pesticides; PCB = Polychlorinated biphenyls; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; NA = Not applicable$

Table F4: Adopted Comparative Criteria for Soils

Sample/	В	т	Е	X	Napth.	F1	F2	+PAH	B.TEQ	OCP	OPP	РСВ	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Adopted Investigation	dopted Investigation/Screening Levels (mg/kg)																					
Health-Based ¹	4	NL	NL	NL	NL	250	NL	4000	40	Various	Various	7	240000		3000	900	3600	240000	1500	730	6000	400000
Ecological ²					370										160		670	280	1820		295	380

Notes: B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; Napth. = Naphthalene; F1 = ($C_6 - C_{10}$) – BTEX; F2 = ($C_{11} - C_{16}$) – Naphthalene; +PAH = Positive polycyclic aromatic hydrocarbons; B.TEQ = Carcinogenic PAHs (as B(a)P TEQ); OCP = Organochlorine pesticides; OPP = Organophosphorus pesticides; PCB = Polychlorinated biphenyls; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc

¹Based on NEPM Commercial/Industrial Sites; ²Based on NEPM ACL and average background concentrations from natural soil samples analysed

Table F5: Contaminant Concentrations in Groundwater

Sample/	в	т	Е	x	Napth.	F1	F2	+PAH	B.TEQ	ОСР	OPP	РСВ	Phenol	+VOC	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
Depth (m)	μg/L	μg/L	μg/L	μ g/L	μ g/L	μg/L	μg/L	μ g/L	μ g/L	μ g/L	μ g/L	μg/L	μ g/L	μ g/L	μg/L	μ g/L	μg/L	μ g/L	μg/L	μ g/L	μ g/L	μg/L
Primary Samples																						
BH1/8 Nov	<1	<1	<1	<3	<1	<10	<50	NIL	<5	NIL	NIL	NIL	<50	2	3	<0.1	<1	<1	<1	<0.05	10	8
BH5/8 Nov	<1	<1	<1	<3	<1	<10	<50	NIL	<5	NIL	NIL	NIL	60	4	2	<0.1	<1	<1	<1	<0.05	3	11
BH6/8 Nov	<1	<1	<1	3	<1	<10	63	NIL	<5	NIL	NIL	NIL	<50	9	7	<0.1	<1	1	<1	<0.05	7	10
QA/QC Sample		·											· · · ·									
D1 (BH1)	<1	<1	<1	<3	<1	<10	<50	NIL	<5	NIL	NIL	NIL	<50	3	6	<0.1	<1	<1	<1	<0.05	11	<1
R1 (Rinsate)	<1	<1	<1	<3	<1	<10	<50	NIL	<5	NT	NT	NT	NT	NT	<1	<0.1	2	<1	<1	<0.05	<1	<1

Notes: $B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; Napth. = Naphthalene; F1 = (C_6 - C_{10}) - BTEX; F2 = (C_{11} - C_{16}) - Naphthalene; +PAH = Positive polycyclic aromatic hydrocarbons; B.TEQ = Carcinogenic PAHs (as B(a)P TEQ); OCP = Organochlorine pesticides;$ OPP = Organophosphorus pesticides; PCB = Polychlorinated biphenyls; +VOC = Positive volatile organic compounds; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; NT = Not tested

Table F6: Adopted Comparative Criteria for Groundwater

Sample/	В	т	Е	X	Napth.	F1	F2	+PAH	B.TEQ	OCP	OPP	РСВ	Phenol	VOC	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
Depth (m)	μg/L	μg/L	μ g/L	μ g/L	μ g/L	μ g/L	μg/L	μg/L	μ g/L	μg/L	μg/L	μ g/L	μ g/L	μg/L	μ g/L	μ g/L	μ g/L	μ g/L				
Adopted Investigat	$\frac{Depth (m)}{\mu g/L} \frac{\mu g/L}{\mu g/L} \frac{\mu g/L}$																					
GILs ¹	30			200	50			50			Various		400	Various	24	7	227	11.7	117	0.1	63	135

B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; Napth. = Naphthalene; F1 = $(C_6 - C_{10}) - BTEX$; F2 = $(C_{11} - C_{16}) - Naphthalene$; +PAH = Positive polycyclic aromatic hydrocarbons; B.TEQ = Carcinogenic PAHs (as B(a)P TEQ); OCP = Organochlorine pesticides; Notes: OPP = Organophosphorus pesticides; PCB = Polychlorinated biphenyls; +VOC = Positive volatile organic compounds; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc ¹Based on NEPM GILs and groundwater vapour intrusion (lower value used). Metal concentrations adjusted for hardness assuming extremely hard conditions based on test results

Appendix G

Detailed Laboratory Test Results

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

98390

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

Sample log in details:

Your Reference:	45153.03, Syd	Iney (Olympic Park
No. of samples:	10 soils		
Date samples received / completed instructions received	02/10/13	/	02/10/13

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 10/10/13
 / 9/10/13

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	98390-1	98390-2	98390-3	98390-4	98390-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth		0.2	0.5-0.95	0.5-0.95	1-1.45	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/201
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C 10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	77	82	79	79	83

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	98390-6	98390-7	98390-8	98390-9	98390-10
Your Reference		BH3	BH5	BH5	BH6	BH6
Depth		0.5-0.95	0.2	1-1.45	0.2	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	78	79	80	79	80

Client Reference:

45153.03, Sydney Olympic Park

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	98390-1	98390-2	98390-3	98390-4	98390-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth		0.2	0.5-0.95	0.5-0.95	1-1.45	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C 10-C 16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	94	96	92	89	93
			[[[
svTRH (C10-C40) in Soil Our Reference:	UNITS	98390-6	98390-7	98390-8	98390-9	98390-10
Your Reference	01113	96390-6 BH3	96390-7 BH5	96390-6 BH5	96390-9 BH6	98390-10 BH6
Depth		0.5-0.95	0.2	1-1.45	0.2	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	130	<100	<100	<100
TRHC29 - C36	mg/kg	<100	120	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	190	<100	<100	100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	93	98	92	93	94

Client Reference: 45153.03

PAHs in Soil						
Our Reference:	UNITS	98390-1	98390-2	98390-3	98390-4	98390-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth		0.2	0.5-0.95	0.5-0.95	1-1.45	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	08/10/2013	08/10/2013	08/10/2013	08/10/2013	08/10/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.11	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQNEPMB1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	0.55	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	94	100	92	94	91

PAHs in Soil						
Our Reference:	UNITS	98390-6	98390-7	98390-8	98390-9	98390-10
Your Reference		BH3	BH5	BH5	BH6	BH6
Depth		0.5-0.95	0.2	1-1.45	0.2	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	08/10/2013	08/10/2013	08/10/2013	08/10/2013	08/10/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	<0.1	0.4
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Fluoranthene	mg/kg	<0.1	0.7	<0.1	0.4	0.9
Pyrene	mg/kg	<0.1	0.9	<0.1	0.6	1.0
Benzo(a)anthracene	mg/kg	<0.1	0.4	<0.1	0.3	0.5
Chrysene	mg/kg	<0.1	0.6	<0.1	0.3	0.6
Benzo(b+k)fluoranthene	mg/kg	<0.2	1.6	<0.2	0.9	1.4
Benzo(a)pyrene	mg/kg	<0.05	0.97	<0.05	0.53	0.92
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.7	<0.1	0.4	0.6
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.9	<0.1	0.5	0.7
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	1	<0.5	1	1
Total +ve PAH's	mg/kg	NIL(+)VE	7.0	NIL(+)VE	3.9	7.2
Surrogate p-Terphenyl-d14	%	88	81	87	88	89

Organochlorine Pesticides in soil						
Our Reference:	UNITS	98390-1	98390-2	98390-3	98390-4	98390-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth		0.2	0.5-0.95	0.5-0.95	1-1.45	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	105	104	98	102

Organochlorine Pesticides in soil						
Our Reference:	UNITS	98390-6	98390-7	98390-8	98390-9	98390-10
Your Reference		BH3	BH5	BH5	BH6	BH6
Depth		0.5-0.95	0.2	1-1.45	0.2	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfanl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	97	104	105	105

Organophosphorus Pesticides						
Our Reference:	UNITS	98390-1	98390-2	98390-3	98390-4	98390-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth		0.2	0.5-0.95	0.5-0.95	1-1.45	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	105	104	98	102
Organization and the mark Departiciples						
Organophosphorus Pesticides Our Reference:	UNITS	98390-6	98390-7	98390-8	98390-9	98390-10
Your Reference	01113	96390-6 BH3	BH5	96390-6 BH5	98390-9 BH6	BH6
Depth		0.5-0.95	0.2	1-1.45	0.2	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	_	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	97	104	105	105

PCBs in Soil						
Our Reference:	UNITS	98390-1	98390-2	98390-3	98390-4	98390-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth		0.2	0.5-0.95	0.5-0.95	1-1.45	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	100	105	104	98	102
PCBs in Soil			1			
Our Reference:	UNITS	98390-6	98390-7	98390-8	98390-9	98390-10
Your Reference	UNITS	96390-6 BH3	96390-7 BH5	90390-0 BH5	96390-9 BH6	98390-10 BH6
Depth		0.5-0.95	0.2	1-1.45	0.2	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
						1

<0.1

<0.1

<0.1

<0.1

94

<0.1

<0.1

<0.1

<0.1

97

<0.1

<0.1

<0.1

<0.1

104

<0.1

<0.1

<0.1

<0.1

105

<0.1

<0.1

<0.1

<0.1

105

Arochlor 1242

Arochlor 1248

Arochlor 1254

Arochlor 1260

Surrogate TCLMX

mg/kg

mg/kg

mg/kg

mg/kg

%

Total Phenolics in Soil						
Our Reference:	UNITS	98390-1	98390-2	98390-3	98390-4	98390-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth		0.2	0.5-0.95	0.5-0.95	1-1.45	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Total Phenolics in Soil						
Our Reference:	UNITS	98390-6	98390-7	98390-8	98390-9	98390-10
Your Reference		BH3	BH5	BH5	BH6	BH6
Depth		0.5-0.95	0.2	1-1.45	0.2	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
Date analysed	-	04/10/2013	04/10/2013	04/10/2013	04/10/2013	04/10/2013
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Acid Extractable metals in soil						
Our Reference:	UNITS	98390-1	98390-2	98390-3	98390-4	98390-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth		0.2	0.5-0.95	0.5-0.95	1-1.45	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Arsenic	mg/kg	5	14	<4	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	7	6	4	7
Copper	mg/kg	31	40	27	11	27
Lead	mg/kg	20	22	10	17	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	6	3	1	7
Zinc	mg/kg	23	24	14	11	26
Manganese	mg/kg	18	23	21	2	43
Acid Extractable metals in soil						
Our Reference:	UNITS	98390-6	98390-7	98390-8	98390-9	98390-10
Your Reference		98390-0 BH3	98390-7 BH5	98390-8 BH5	98390-9 BH6	BH6
Depth		0.5-0.95	0.2	1-1.45	0.2	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Date analysed	-	03/10/2013	03/10/2013	03/10/2013	03/10/2013	03/10/2013
Arsenic	mg/kg	5	12	6	6	13
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	25	15	18	17
Copper	mg/kg	22	28	25	49	34
Lead	mg/kg	21	47	22	22	33
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	10	2	28	13
Zinc	mg/kg	10	79	12	51	49
Manganese	mg/kg	13	450	8	300	240

Moisture						
Our Reference:	UNITS	98390-1	98390-2	98390-3	98390-4	98390-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth		0.2	0.5-0.95	0.5-0.95	1-1.45	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/10/2013	3/10/2013	3/10/2013	3/10/2013	3/10/2013
Date analysed	-	4/10/2013	4/10/2013	4/10/2013	4/10/2013	4/10/2013
Moisture	%	15	11	11	15	9.5
Moisture						
Our Reference:	UNITS	98390-6	98390-7	98390-8	98390-9	98390-10
Your Reference		BH3	BH5	BH5	BH6	BH6
Depth		0.5-0.95	0.2	1-1.45	0.2	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/10/2013	3/10/2013	3/10/2013	3/10/2013	3/10/2013
Date analysed	-	4/10/2013	4/10/2013	4/10/2013	4/10/2013	4/10/2013
Moisture	%	20	13	18	20	17

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-030	Total Phenolics - determined colorimetrically following disitillation, based upon APHA 22nd ED 5530 D.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

		Clie	ent Reference	e: 45	5153.03, Syd	ney Olympic Park		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		
Date extracted	-			03/10/2 013	98390-1	03/10/2013 03/10/2013	LCS-3	03/10/2013
Date analysed	-			04/10/2 013	98390-1	04/10/2013 04/10/2013	LCS-3	04/10/2013
TRHC6 - C9	mg/kg	25	Org-016	<25	98390-1	<25 <25	LCS-3	103%
TRHC6 - C10	mg/kg	25	Org-016	<25	98390-1	<25 <25	LCS-3	103%
Benzene	mg/kg	0.2	Org-016	<0.2	98390-1	<0.2 <0.2	LCS-3	91%
Toluene	mg/kg	0.5	Org-016	<0.5	98390-1	<0.5 <0.5	LCS-3	89%
Ethylbenzene	mg/kg	1	Org-016	<1	98390-1	<1 <1	LCS-3	107%
m+p-xylene	mg/kg	2	Org-016	<2	98390-1	<2 <2	LCS-3	115%
o-Xylene	mg/kg	1	Org-016	<1	98390-1	<1 <1	LCS-3	115%
naphthalene	mg/kg	1	Org-014	<1	98390-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	82	98390-1	77 80 RPD: 4	LCS-3	79%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			03/10/2 013	98390-1	03/10/2013 03/10/2013	LCS-3	03/10/2013
Date analysed	-			04/10/2 013	98390-1	04/10/2013 04/10/2013	LCS-3	04/10/2013
TRHC 10 - C 14	mg/kg	50	Org-003	<50	98390-1	<50 <50	LCS-3	103%
TRHC 15 - C28	mg/kg	100	Org-003	<100	98390-1	<100 <100	LCS-3	112%
TRHC29 - C36	mg/kg	100	Org-003	<100	98390-1	<100 <100	LCS-3	91%
TRH>C10-C16	mg/kg	50	Org-003	<50	98390-1	<50 <50	LCS-3	103%
TRH>C16-C34	mg/kg	100	Org-003	<100	98390-1	<100 <100	LCS-3	112%
TRH>C34-C40	mg/kg	100	Org-003	<100	98390-1	<100 <100	LCS-3	91%
Surrogate o-Terphenyl	%		Org-003	91	98390-1	94 94 RPD:0	LCS-3	114%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			03/10/2 013	98390-1	03/10/2013 03/10/2013	LCS-3	03/10/2013
Date analysed	-			08/10/2 013	98390-1	08/10/2013 08/10/2013	LCS-3	08/10/2013
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	LCS-3	102%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	LCS-3	94%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	LCS-3	104%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	LCS-3	95%

Client	Reference:
Olicili	Reference.

Client Reference: 45153.03, Sydney Olympic Park											
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
PAHs in Soil						Base II Duplicate II % RPD					
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	LCS-3	98%			
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	LCS-3	95%			
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	98390-1	<0.2 <0.2	[NR]	[NR]			
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	98390-1	<0.05 <0.05	LCS-3	94%			
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	85	98390-1	94 96 RPD:2	LCS-3	93%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
Organochlorine Pesticides in soil					Sh#	Base II Duplicate II % RPD		Recovery			
Date extracted	-			03/10/2 013	98390-1	03/10/2013 03/10/2013	LCS-3	03/10/2013			
Date analysed	-			013 04/10/2 013	98390-1	04/10/2013 04/10/2013	LCS-3	04/10/2013			
HCB	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
alpha-BHC	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	93%			
gamma-BHC	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
beta-BHC	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	93%			
Heptachlor	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	108%			
delta-BHC	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
Aldrin	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	96%			
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	91%			
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
Endosulfan I		0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
pp-DDE	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	105%			
	mg/kg										
Dieldrin	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	96%			
	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	94%			
pp-DDD	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	108%			
Endosulfan II	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
pp-DDT	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	LCS-3	117%			
Methoxychlor	mg/kg	0.1	Org-005	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]			
Surrogate TCMX	%		Org-005	93	98390-1	100 96 RPD:4	LCS-3	97%			

Client Reference: 45153.03, Sydney Olympic Park										
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
Organophosphorus Pesticides						Base II Duplicate II % RPD				
Date extracted	acted - 03/10/2 98390-1 03/10/2013 03/10/2013 013		03/10/2013 03/10/2013	LCS-3	03/10/2013					
Date analysed	-			04/10/2 013	98390-1	04/10/2013 04/10/2013	LCS-3	04/10/2013		
Diazinon	mg/kg	0.1	Org-008	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Dimethoate	mg/kg	0.1	Org-008	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Ronnel	mg/kg	0.1	Org-008	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	98390-1	<0.1 <0.1	LCS-3	92%		
Fenitrothion	mg/kg	0.1	Org-008	<0.1	98390-1	<0.1 <0.1	LCS-3	116%		
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Ethion	mg/kg	0.1	Org-008	<0.1	98390-1	<0.1 <0.1	LCS-3	115%		
Surrogate TCMX	%		Org-008	93	98390-1	100 96 RPD:4	LCS-3	105%		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
PCBs in Soil						Base II Duplicate II % RPD				
Date extracted	-			03/10/2 013	98390-1	03/10/2013 03/10/2013	LCS-3	03/10/2013		
Date analysed	-			04/10/2 013	98390-1	04/10/2013 04/10/2013	LCS-3	04/10/2013		
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	98390-1	<0.1 <0.1	LCS-3	113%		
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	98390-1	<0.1 <0.1	[NR]	[NR]		
Surrogate TCLMX	%		Org-006	93	98390-1	100 96 RPD:4	LCS-3	93%		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
Total Phenolics in Soil						Base II Duplicate II % RPD				
Date extracted	-			04/10/2 013	98390-1	04/10/2013 04/10/2013	LCS-1	04/10/2013		
Date analysed	-			04/10/2 013	98390-1	04/10/2013 04/10/2013	LCS-1	04/10/2013		
Total Phenolics (as Phenol)	mg/kg	5	Inorg-030	⊲5	98390-1	<5 <5	LCS-1	88%		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
Acid Extractable metals in soil						Base II Duplicate II % RPD				
Datedigested	-			03/10/2 013	98390-1	03/10/2013 03/10/2013	LCS-2	03/10/2013		
Date analysed	-			03/10/2 013	98390-1	03/10/2013 03/10/2013	LCS-2	03/10/2013		
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	98390-1	5 <4	LCS-2	107%		
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	98390-1	<0.4 <0.4	LCS-2	118%		

	-		Clie	nt Referenc	e: 4	5153.03, Syd	ney Olympic Park		-
QUALITY CONTROL Acid Extractable metals in soil	UNITS	PQI	L	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Chromium	m mg/kg 1 Metals-020 <1 98390-1 7 6 RPD:15		LCS-2	108%					
Copper	mg/kg		1	Metals-020 ICP-AES	<1	98390-1	31 25 RPD: 21	LCS-2	110%
Lead	mg/kg		1	Metals-020 ICP-AES	<1	98390-1	20 19 RPD:5	LCS-2	108%
Mercury	mg/kg		0.1	Metals-021 CV-AAS	<0.1	98390-1	<0.1 <0.1	LCS-2	84%
Nickel	mg/kg		1	Metals-020 ICP-AES	<1	98390-1	5 5 RPD:0	LCS-2	110%
Zinc	mg/kg		1	Metals-020 ICP-AES	<1	98390-1	23 25 RPD:8	LCS-2	110%
Manganese	mg/kg		1	Metals-020 ICP-AES	<1	98390-1	18 14 RPD:25	LCS-2	110%
QUALITY CONTROL Moisture	UNITS	PQI	L	METHOD	Blank			·	
Date prepared	-				[NT]				
Date analysed	-				[NT]				
Moisture	%		0.1	Inorg-008	[NT]				
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNI	TS	[Dup. Sm#	Base+I	Duplicate Duplicate + %RF	Spike Sm# PD	Spike % Reco	overy
Date extracted	-			[NT]	[NT]		98390-2	03/10/201	3
Date analysed	-			[NT]	[NT]		98390-2	03/10/201	3
TRHC6 - C9	mg/	′kg		[NT]		[NT]	98390-2	107%	
TRHC6 - C10	mg/	′kg		[NT]		[NT]	98390-2	107%	
Benzene	mg/	/kg		[NT]		[NT]	98390-2	95%	
Toluene	mg/			[NT]		[NT]	98390-2		
Ethylbenzene			98390-2	111%					
m+p-xylene			[NT]	98390-2	119%				
o-Xylene	mg/			[NT]		[NT]	98390-2	118%	
naphthalene	mg/	-		[NT]		[NT]	[NR]	[NR]	
<i>Surrogate</i> aaa- Trifluorotoluene	%	-		[NT]		[NT]	98390-2	78%	

Client Reference: 45153.03, Sydney Olympic Park											
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery						
Date extracted	-	[NT]	[NT]	98390-2	03/10/2013						
Date analysed	-	[NT]	[NT]	98390-2	04/10/2013						
TRHC 10 - C14	mg/kg	[NT]	[NT]	98390-2	99%						
TRHC 15 - C28	mg/kg	[NT]	[NT]	98390-2	113%						
TRHC29 - C36	mg/kg	[NT]	[NT]	98390-2	93%						
TRH>C10-C16	mg/kg	[NT]	[NT]	98390-2	99%						
TRH>C16-C34	mg/kg	[NT]	[NT]	98390-2	113%						
TRH>C34-C40	mg/kg	[NT]	[NT]	98390-2	93%						
Surrogate o-Terphenyl	%	[NT]	[NT]	98390-2	111%						
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery						
Date extracted	-	[NT]	[NT]	98390-2	03/10/2013						
Date analysed	-	[NT]	[NT]	98390-2	08/10/2013						
Naphthalene	mg/kg	[NT]	[NT]	98390-2	103%						
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]						
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]						
Fluorene	mg/kg	[NT]	[NT]	98390-2	107%						
Phenanthrene	mg/kg	[NT]	[NT]	98390-2	104%						
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]						
Fluoranthene	mg/kg	[NT]	[NT]	98390-2	102%						
Pyrene	mg/kg	[NT]	[NT]	98390-2	105%						
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]						
Chrysene	mg/kg	[NT]	[NT]	98390-2	95%						
Benzo(b+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]						
Benzo(a)pyrene	mg/kg	[NT]	[NT]	98390-2	96%						
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]						
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]						
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]						
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	98390-2	93%						

		Client Reference	ce: 45153.03, Sydney	Olympic Park	
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	98390-2	03/10/2013
Date analysed	-	[NT]	[NT]	98390-2	04/10/2013
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	98390-2	90%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	98390-2	90%
Heptachlor	mg/kg	[NT]	[NT]	98390-2	104%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	98390-2	93%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	98390-2	87%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	98390-2	102%
Dieldrin	mg/kg	[NT]	[NT]	98390-2	92%
Endrin	mg/kg	[NT]	[NT]	98390-2	89%
pp-DDD	mg/kg	[NT]	[NT]	98390-2	104%
EndosulfanII	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	98390-2	113%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	98390-2	93%

		Client Reference	e: 45153.03, Sydney	Olympic Park	
QUALITY CONTROL Organophosphorus	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Pesticides					
Date extracted	-	[NT]	[NT]	98390-2	03/10/2013
Date analysed	-	[NT]	[NT]	98390-2	04/10/2013
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ronnel	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	98390-2	92%
Fenitrothion	mg/kg	[NT]	[NT]	98390-2	133%
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	98390-2	116%
Surrogate TCMX	%	[NT]	[NT]	98390-2	107%
QUALITY CONTROL PCBs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	98390-2	03/10/2013
Date analysed	-	[NT]	[NT]	98390-2	04/10/2013
Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	[NT]	[NT]	98390-2	105%
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	98390-2	97%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Total Phenolics in Soil		·	Base + Duplicate + % RPD	•	
Date extracted	-	[NT]	[NT]	98390-2	04/10/2013
Date analysed	-	[NT]	[NT]	98390-2	04/10/2013
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	98390-2	84%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	[NT]	[NT]	98390-2	03/10/2013
Date analysed	-	[NT]	[NT]	98390-2	03/10/2013
Arsenic	mg/kg	[NT]	[NT]	98390-2	92%
Cadmium	mg/kg	[NT]	[NT]	98390-2	91%
Chromium	mg/kg	[NT]	[NT]	98390-2	93%
Copper	mg/kg	[NT]	[NT]	98390-2	113%
Lead	mg/kg	[NT]	[NT]	98390-2	93%
Mercury	mg/kg	[NT]	[NT]	98390-2	95%
Nickel	mg/kg	[NT]	[NT]	98390-2	89%
Zinc	mg/kg	[NT]	[NT]	98390-2	92%

	Client Reference: 45153.03, Sydney Olympic Park							
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Manganese	mg/kg	[NT]	[NT]	98390-2	102%			

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: No
NA: Test not required	RPD: Relative Percent Difference	NA: Te
<: Less than	>: Greater than	LCS: La

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114 ph: 02 9809 0666 Fax: 02 9809 4095

Attention: Peter Oitmaa

Sample log in details:	
Your reference:	45153.03, Sydney Olympic Park
Envirolab Reference:	98390
Date received:	02/10/13
Date results expected to be reported:	10/10/13

Samples received in appropriate condition for analysis:	YES
No. of samples provided	10 soils
Turnaround time requested:	Standard
Temperature on receipt (°C)	4.8
Cooling Method:	Ice Pack
Sampling Date Provided:	Not Provided on the COC

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

BH5 1-1.45 - actually labelled 0.5-0.95

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

	i
--	----------

Project Project Email:		Pe pe	ter Oitma ter.oitma	aa a@dougl	Mob. Phor aspartners	а-Ł Рмо ne: 0412 57 .com.au Quote No.	4 518			12 Ati Ph	in: Tania No Ione: 02 991	et, Chatswood otaras	d NSW 2 ax: 02 9910	6201
Sample ID	Sample Depth	Lab ID	Sampling Date	sain type Soil Soil Soil Soil Soil Soil Soil Soil	Container type	8 Heavy Metal +	TRH BTEX	ран	ocl	Analyte:		Astestos		Notes
₿ H/	0.2			S	Ja	1					<u> </u>		<u></u>	
BH/	0.5-0.95						+	+	<u> </u>	┼──┼──				· · · · · · · · · · · · · · · · · · ·
BH2	0.5-0.95									┼──┼─			·	
642	1-1.45					<u></u>								
643	0.2								┨── ┨────					
BH3	0.5-0.3						┤─┤──		┣── ┨────					Envirolati Services
BHS	0.2	<u> </u>				+		·	<u> </u>				ENVIRELA	B 12 Ashley St
	┢╼───┤	· <u>···</u>	. 9				+	ļ					Job No:	Ph: (02) 9910 6200
	1-1.45	0.5-	5.95 2	C.										
BHO	0.2			· · · · · · · · · · · · · · · · · · ·										eived: 3-12-13
BHb.	0.5-0.8												Received	eived: 16.20 by: 372-C
							hH	·····						eAcepack
											_ _			ntact/Broken/None
Lab Repo Send Res Relinquishe Relinquishe	uits to: Do ed by: P. C	oudlas	Partners		ss: 96 Hei RUN	rmitage Road	l, West Ry Date & Tir	/de 2114 ne: 2/11	1 0/13 /3	w Rec	eived By: مار	Fax: (02) 9809 06 02) 9809 40 Date & T	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

98975

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

Sample log in details:

Your Reference:44No. of samples:1Date samples received / completed instructions received14

45153.03, Sydney Olympic Park

17 Soils 1 Water 14/10/2013 / 14/10/2013

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 21/10/13
 /
 18/10/13

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	98975-1	98975-2	98975-3	98975-4	98975-5
Your Reference		BH7	BH7	BH8	BH8	BH9
Depth		0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	015-025
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
$vTPHC_6$ - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	91	83	62	91	85

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	98975-6	98975-7	98975-8	98975-9	98975-10
Your Reference		BH9	BH10	BH10	BH11	BH11
Depth		0.8-0.9	0.1-0.2	0.2-0.3	0.1-0.2	1.4-1.5
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	88	71	74	86	86

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	98975-11	98975-12	98975-13	98975-15	98975-16
Your Reference		BH12A	BH12A	TS1A	TS7A	TS
Depth		0.5-0.6	1.4-1.5	-	-	-
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	[NA]
TRHC 6 - C10	mg/kg	<25	<25	<25	<25	[NA]
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	71%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	67%
Ethylbenzene	mg/kg	<1	<1	<1	<1	62%
m+p-xylene	mg/kg	<2	<2	<2	<2	64%
o-Xylene	mg/kg	<1	<1	<1	<1	66%
naphthalene	mg/kg	<1	<1	<1	<1	[NA]
Surrogate aaa-Trifluorotoluene	%	87	88	89	88	77

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	98975-17
Your Reference		TB
Depth		-
Date Sampled		11/10/2013
Type of sample		Soil
Date extracted	-	15/10/2013
Date analysed	-	15/10/2013
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	90

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	98975-1	98975-2	98975-3	98975-4	98975-5
Your Reference		BH7	BH7	BH8	BH8	BH9
Depth		0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	015-025
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	111	112	114	112	106

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	98975-6	98975-7	98975-8	98975-9	98975-10
Your Reference		BH9	BH10	BH10	BH11	BH11
Depth		0.8-0.9	0.1-0.2	0.2-0.3	0.1-0.2	1.4-1.5
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	105	112	108	109	117

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	98975-11	98975-12	98975-13	98975-15	98975-17
Your Reference		BH12A	BH12A	TS1A	TS7A	TB
Depth		0.5-0.6	1.4-1.5	-	-	-
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	104	105	109	105	107

PAHs in Soil						
Our Reference:	UNITS	98975-1	98975-2	98975-3	98975-4	98975-5
Your Reference		BH7	BH7	BH8	BH8	BH9
Depth		0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	015-025
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	101	104	106	102	101

PAHs in Soil						
Our Reference:	UNITS	98975-6	98975-7	98975-8	98975-9	98975-10
Your Reference		BH9	BH10	BH10	BH11	BH11
Depth		0.8-0.9	0.1-0.2	0.2-0.3	0.1-0.2	1.4-1.5
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.8
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	<0.1	0.2	0.1	0.1	1.7
Pyrene	mg/kg	<0.1	0.2	0.2	0.1	1.8
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.8
Chrysene	mg/kg	<0.1	0.1	0.1	<0.1	0.8
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	0.2	<0.2	1.2
Benzo(a)pyrene	mg/kg	<0.05	0.11	0.13	<0.05	0.79
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.1	<0.1	<0.1	0.4
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	1
Total +ve PAH's	mg/kg	NIL(+)VE	0.66	0.76	0.20	9.0
Surrogate p-Terphenyl-d14	%	95	110	113	108	117

PAHs in Soil						
Our Reference:	UNITS	98975-11	98975-12	98975-13	98975-15	98975-17
Your Reference		BH12A	BH12A	TS1A	TS7A	ТВ
Depth		0.5-0.6	1.4-1.5	-	-	-
DateSampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	0.4	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.19	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	1.6	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	114	105	106	114	113

Organochlorine Pesticides in soil						
Our Reference:	UNITS	98975-1	98975-2	98975-3	98975-4	98975-5
Your Reference		BH7	BH7	BH8	BH8	BH9
Depth		0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	015-025
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	16/10/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	110	116	113	110

Organochlorine Pesticides in soil						
Our Reference:	UNITS	98975-6	98975-7	98975-8	98975-9	98975-10
Your Reference		BH9	BH10	BH10	BH11	BH11
Depth		0.8-0.9	0.1-0.2	0.2-0.3	0.1-0.2	1.4-1.5
Date Sampled		11/10/2013 Soil	11/10/2013 Soil	11/10/2013 Soil	11/10/2013 Soil	11/10/2013 Soil
Type of sample		501	501	501	501	501
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	16/10/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	109	122	114	111	120

Organochlorine Pesticides in soil					
Our Reference:	UNITS	98975-11	98975-12	98975-13	98975-15
Your Reference		BH12A	BH12A	TS1A	TS7A
Depth		0.5-0.6	1.4-1.5	-	-
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	113	113	115

Organophosphorus Pesticides						
Our Reference:	UNITS	98975-1	98975-2	98975-3	98975-4	98975-5
Your Reference		BH7	BH7	BH8	BH8	BH9
Depth		0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	015-025
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	16/10/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	110	116	113	110

Organophosphorus Pesticides						
Our Reference:	UNITS	98975-6	98975-7	98975-8	98975-9	98975-10
Your Reference		BH9	BH10	BH10	BH11	BH11
Depth		0.8-0.9	0.1-0.2	0.2-0.3	0.1-0.2	1.4-1.5
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	16/10/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	109	122	114	111	120

Organophosphorus Pesticides					
Our Reference:	UNITS	98975-11	98975-12	98975-13	98975-15
Your Reference		BH12A	BH12A	TS1A	TS7A
Depth		0.5-0.6	1.4-1.5	-	-
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	113	113	115

PCBs in Soil						
Our Reference:	UNITS	98975-1	98975-2	98975-3	98975-4	98975-5
Your Reference		BH7	BH7	BH8	BH8	BH9 015-025
Depth Date Sampled		0.2-0.3 11/10/2013	0.5-0.6 11/10/2013	0.2-0.3 11/10/2013	0.5-0.6 11/10/2013	015-025 11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	_	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	16/10/2013
Arochlor 1016	malka	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	-			-	
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	112	110	116	113	110
PCBs in Soil						
Our Reference:	UNITS	98975-6	98975-7	98975-8	98975-9	98975-10
Your Reference		BH9	BH10	BH10	BH11	BH11
Depth		0.8-0.9	0.1-0.2	0.2-0.3	0.1-0.2	1.4-1.5
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	16/10/2013
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	109	122	114	111	120
PCBs in Soil		000	00077	00077	00077 -	
Our Reference:	UNITS	98975-11	98975-12	98975-13	98975-15	
Your Reference Depth		BH12A 0.5-0.6	BH12A 1.4-1.5	TS1A	TS7A	
Depth		0.5-0.6	11/10/2013	- 11/10/2013	- 11/10/2013	
Type of sample		Soil	Soil	Soil	Soil	
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	1
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	
Surrogate TCLMX	тід/кд %	112	113	113	<0.1 115	
Surroyate TOLMA	/0	112	115	115	115	Ţ

Total Phenolics in Soil						
Our Reference:	UNITS	98975-1	98975-2	98975-3	98975-4	98975-5
Your Reference		BH7	BH7	BH8	BH8	BH9
Depth		0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	015-025
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Total Phenolics in Soil						
Our Reference:	UNITS	98975-6	98975-7	98975-8	98975-9	98975-10
Your Reference		BH9	BH10	BH10	BH11	BH11
Depth		0.8-0.9	0.1-0.2	0.2-0.3	0.1-0.2	1.4-1.5
DateSampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Total Phenolics in Soil						1
Our Reference:	UNITS	98975-11	98975-12	98975-13	98975-15	
Your Reference	00013	BH12A	BH12A	55975-15 TS1A	TS7A	
Depth		0.5-0.6	1.4-1.5	-	-	
DateSampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	
Type of sample		Soil	Soil	Soil	Soil	
Date extracted	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	1
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	

Acid Extractable metals in soil						
Our Reference:	UNITS	98975-1	98975-2	98975-3	98975-4	98975-5
Your Reference		BH7	BH7	BH8	BH8	BH9
Depth		0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	015-025
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	6	5	8	4	6
Copper	mg/kg	21	28	22	16	25
Lead	mg/kg	16	17	16	16	26
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	6	11	3	8
Zinc	mg/kg	19	30	37	19	31
Manganese	mg/kg	31	15	73	17	49

Acid Extractable metals in soil						
Our Reference:	UNITS	98975-6	98975-7	98975-8	98975-9	98975-10
Your Reference		BH9	BH10	BH10	BH11	BH11
Depth		0.8-0.9	0.1-0.2	0.2-0.3	0.1-0.2	1.4-1.5
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Arsenic	mg/kg	<4	6	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	16	15	7	8
Copper	mg/kg	21	20	16	23	10
Lead	mg/kg	22	19	16	21	29
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	14	18	10	4
Zinc	mg/kg	23	35	24	45	34
Manganese	mg/kg	48	200	180	390	150

Acid Extractable metals in soil					
Our Reference:	UNITS	98975-11	98975-12	98975-13	98975-15
Your Reference		BH12A	BH12A	TS1A	TS7A
Depth		0.5-0.6	1.4-1.5	-	-
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil
Date digested	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Arsenic	mg/kg	5	5	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	18	5	17
Copper	mg/kg	14	18	22	25
Lead	mg/kg	24	20	17	21
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	4	5	4
Zinc	mg/kg	22	12	22	19
Manganese	mg/kg	460	42	30	59

Moisture						
Our Reference:	UNITS	98975-1	98975-2	98975-3	98975-4	98975-5
Your Reference		BH7	BH7	BH8	BH8	BH9
Depth		0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	015-025
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	16/10/2013
Moisture	%	16	8.1	14	16	8.4
Moisture						
Our Reference:	UNITS	98975-6	98975-7	98975-8	98975-9	98975-10
Your Reference		BH9	BH10	BH10	BH11	BH11
Depth		0.8-0.9	0.1-0.2	0.2-0.3	0.1-0.2	1.4-1.5
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	15/10/2013
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	16/10/2013
Moisture	%	9.4	12	12	19	16
Moisture						7
Our Reference:	UNITS	98975-11	98975-12	98975-13	98975-15	
Your Reference		BH12A	BH12A	TS1A	TS7A	
Depth		0.5-0.6	1.4-1.5	-	-	
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	
Type of sample		Soil	Soil	Soil	Soil	
 Date prepared	-	15/10/2013	15/10/2013	15/10/2013	15/10/2013	1
Date analysed	-	16/10/2013	16/10/2013	16/10/2013	16/10/2013	
Moisture	%	15	20	15	23	

		1	1	1	1	1
Asbestos ID - soils						
Our Reference:	UNITS	98975-1	98975-3	98975-5	98975-7	98975-9
Your Reference		BH7	BH8	BH9	BH10	BH11
Depth		0.2-0.3	0.2-0.3	015-025	0.1-0.2	0.1-0.2
Date Sampled		11/10/2013	11/10/2013	11/10/2013	11/10/2013	11/10/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	18/10/2013	18/10/2013	18/10/2013	18/10/2013	18/10/2013
Sample mass tested	g	Approx 40g				
Sample Description	-	Brown fine-	Brown fine-	Brown fine-	Dark brown	Dark brown
		grained soil &	grained soil &	grained soil &	fine-grained	fine-grained
		rocks	rocks	rocks	soil & rocks	soil & rocks
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit				
		of 0.1g/kg				
Trace Analysis	-	No respirable				
		fibres	fibres	fibres	fibres	fibres
		detected	detected	detected	detected	detected
Asbestos ID - soils]			
Our Reference:	UNITS	98975-11				
Your Reference		BH12A				
Depth		0.5-0.6				
Date Sampled		11/10/2013				
Type of sample		Soil				
			1			

18/10/2013

Approx 40g Dark brown

fine-grained soil & rocks

No asbestos detected at reporting limit of 0.1g/kg

No respirable

fibres detected

-

g

-

_

Date analysed

Sample mass tested

Sample Description

Asbestos ID in soil

Trace Analysis

vTRH(C6-C10)/BTEXN in Water		
Our Reference:	UNITS	98975-18
Your Reference		Rins1
Depth		-
DateSampled		11/10/2013
Type of sample		Water
Date extracted	-	14/10/2013
Date analysed	-	15/10/2013
TRHC6 - C9	µg/L	<10
TRHC6 - C10	µg/L	<10
TRHC6 - C10 less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	127
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	78

svTRH (C10-C40) in Water		
Our Reference:	UNITS	98975-18
Your Reference		Rins1
Depth		-
Date Sampled		11/10/2013
Type of sample		Water
Date extracted	-	15/10/2013
Date analysed	-	15/10/2013
TRHC 10 - C 14	µg/L	<50
TRHC 15 - C28	µg/L	<100
TRHC29 - C36	µg/L	<100
TRH>C10 - C16	µg/L	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH>C16 - C34	µg/L	<100
TRH>C34 - C40	µg/L	<100
Surrogate o-Terphenyl	%	98

PAHs in Water		
Our Reference:	UNITS	98975-18
Your Reference		Rins1
Depth		-
Date Sampled		11/10/2013 Water
Type of sample		vvater
Date extracted	-	15/10/2013
Date analysed	-	15/10/2013
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	µg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	μg/L	<1
Benzo(b+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL(+)VE
Surrogate p-Terphenyl-d14	%	91

OCP in water Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS	98975-18 Rins1 - 11/10/2013 Water
Date extracted	-	15/10/2013
Date analysed	-	16/10/2013
HCB	µg/L	<0.2
alpha-BHC	µg/L	<0.2
gamma-BHC	µg/L	<0.2
beta-BHC	µg/L	<0.2
Heptachlor	µg/L	<0.2
delta-BHC	µg/L	<0.2
Aldrin	µg/L	<0.2
Heptachlor Epoxide	µg/L	<0.2
gamma-Chlordane	µg/L	<0.2
alpha-Chlordane	µg/L	<0.2
Endosulfan I	µg/L	<0.2
pp-DDE	µg/L	<0.2
Dieldrin	µg/L	<0.2
Endrin	µg/L	<0.2
pp-DDD	µg/L	<0.2
Endosulfan II	μg/L	<0.2
pp-DDT	µg/L	<0.2
Endrin Aldehyde	µg/L	<0.2
Endosulfan Sulphate	µg/L	<0.2
Methoxychlor	µg/L	<0.2
Surrogate TCMX	%	95

OP Pesticides in water		
Our Reference:	UNITS	98975-18
Your Reference		Rins1
Depth		-
Date Sampled		11/10/2013
Type of sample		Water
Date extracted	-	15/10/2013
Date analysed	-	16/10/2013
Diazinon	μg/L	<0.2
Dimethoate	µg/L	<0.2
Chlorpyriphos-methyl	µg/L	<0.2
Ronnel	µg/L	<0.2
Chlorpyriphos	µg/L	<0.2
Fenitrothion	µg/L	<0.2
Bromophos ethyl	μg/L	<0.2
Ethion	µg/L	<0.2
Surrogate TCMX	%	95

PCBs in Water		
Our Reference:	UNITS	98975-18
Your Reference		Rins1
Depth		-
Date Sampled		11/10/2013
Type of sample		Water
Date extracted	-	15/10/2013
Date analysed	-	16/10/2013
Arochlor 1016	µg/L	<2
Arochlor 1221	µg/L	<2
Arochlor 1232	µg/L	<2
Arochlor 1242	µg/L	<2
Arochlor 1248	µg/L	<2
Arochlor 1254	µg/L	<2
Arochlor 1260	µg/L	<2
Surrogate TCLMX	%	95

Total Phenolics in Water		
Our Reference:	UNITS	98975-18
Your Reference		Rins1
Depth		-
Date Sampled		11/10/2013
Type of sample		Water
Date extracted	-	15/10/2013
Date analysed	-	15/10/2013
Total Phenolics (as Phenol)	mg/L	<0.05

Metals in Water - Dissolved		
Our Reference:	UNITS	98975-18
Your Reference		Rins1
Depth		-
Date Sampled		11/10/2013
Type of sample		Water
Date digested	-	15/10/2013
Date analysed	-	15/10/2013
Arsenic - Dissolved	mg/L	<0.05
Cadmium - Dissolved	mg/L	<0.01
Chromium - Dissolved	mg/L	<0.01
Copper - Dissolved	mg/L	<0.01
Lead - Dissolved	mg/L	<0.03
Mercury - Dissolved	mg/L	<0.0005
Nickel - Dissolved	mg/L	<0.02
Zinc - Dissolved	mg/L	<0.02
Manganese - Dissolved	mg/L	<0.01

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-030	Total Phenolics - determined colorimetrically following disitillation, based upon APHA 22nd ED 5530 D.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Org-013	Water samples are analysed directly by purge and trap GC-MS.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
	00	. ~=			Sm#		opino onim	Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		
Date extracted	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-2	15/10/2013
Date analysed	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-2	15/10/2013
TRHC6 - C9	mg/kg	25	Org-016	<25	98975-1	<25 <25	LCS-2	102%
TRHC6 - C10	mg/kg	25	Org-016	<25	98975-1	<25 <25	LCS-2	102%
Benzene	mg/kg	0.2	Org-016	<0.2	98975-1	<0.2 <0.2	LCS-2	91%
Toluene	mg/kg	0.5	Org-016	<0.5	98975-1	<0.5 <0.5	LCS-2	104%
Ethylbenzene	mg/kg	1	Org-016	<1	98975-1	<1 <1	LCS-2	103%
m+p-xylene	mg/kg	2	Org-016	~2	98975-1	<2 <2	LCS-2	107%
o-Xylene	mg/kg	1	Org-016	<1	98975-1	<1 <1	LCS-2	106%
naphthalene	mg/kg	1	Org-014	<1	98975-1	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	91	98975-1	91 76 RPD:18	LCS-2	92%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		,
Date extracted	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-2	15/10/2013
Date analysed	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-2	15/10/2013
TRHC 10 - C 14	mg/kg	50	Org-003	<50	98975-1	<50 <50	LCS-2	117%
TRHC 15 - C28	mg/kg	100	Org-003	<100	98975-1	<100 <100	LCS-2	126%
TRHC29 - C36	mg/kg	100	Org-003	<100	98975-1	<100 <100	LCS-2	98%
TRH>C10-C16	mg/kg	50	Org-003	<50	98975-1	<50 <50	LCS-2	117%
TRH>C16-C34	mg/kg	100	Org-003	<100	98975-1	<100 <100	LCS-2	126%
TRH>C34-C40	mg/kg	100	Org-003	<100	98975-1	<100 <100	LCS-2	98%
Surrogate o-Terphenyl	%		Org-003	108	98975-1	111 111 RPD:0	LCS-2	115%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-2	15/10/2013
Date analysed	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-2	15/10/2013
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	LCS-2	110%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	LCS-2	105%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	LCS-2	103%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	98975-1	<0.1 <0.1	LCS-2	102%

subset

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II %RPD		Recovery
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	LCS-2	105%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	LCS-2	101%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	98975-1	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	98975-1	<0.05 <0.05	LCS-2	100%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	107	98975-1	101 103 RPD:2	LCS-2	111%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-2	15/10/2013
Date analysed	-			013 15/10/2 013	98975-1	16/10/2013 16/10/2013	LCS-2	16/10/2013
HCB	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	LCS-2	108%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	LCS-2	100%
Heptachlor	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	LCS-2	122%
delta-BHC	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	LCS-2	107%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	LCS-2	101%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	LCS-2	104%
Dieldrin		0.1	Org-005	<0.1	98975-1	<0.1 <0.1	LCS-2	104%
Endrin	mg/kg mg/kg	0.1	Org-005	<0.1	98975-1 98975-1	<0.1 <0.1	LCS-2 LCS-2	100%
pp-DDD	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	LCS-2	109%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	LCS-2	124%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	106	98975-1	112 108 RPD:4	LCS-2	106%

Client Reference: 45153.03, Sydney Olympic Park										
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
Organophosphorus Pesticides						Base II Duplicate II % RPD				
Date extracted	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-2	15/10/2013		
Date analysed	-			15/10/2 013	98975-1	16/10/2013 16/10/2013	LCS-2	16/10/2013		
Diazinon	mg/kg	0.1	Org-008	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Dimethoate	mg/kg	0.1	Org-008	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Ronnel	mg/kg	0.1	Org-008	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	98975-1	<0.1 <0.1	LCS-2	85%		
Fenitrothion	mg/kg	0.1	Org-008	<0.1	98975-1	<0.1 <0.1	LCS-2	127%		
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Ethion	mg/kg	0.1	Org-008	<0.1	98975-1	<0.1 <0.1	LCS-2	107%		
Surrogate TCMX	%		Org-008	106	98975-1	112 108 RPD:4	LCS-2	103%		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
PCBs in Soil						Base II Duplicate II % RPD				
Date extracted	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-2	15/10/2013		
Date analysed	-			15/10/2 013	98975-1	16/10/2013 16/10/2013	LCS-2	16/10/2013		
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	98975-1	<0.1 <0.1	LCS-2	104%		
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	98975-1	<0.1 <0.1	[NR]	[NR]		
Surrogate TCLMX	%		Org-006	106	98975-1	112 108 RPD:4	LCS-2	87%		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
Total Phenolics in Soil						Base II Duplicate II % RPD				
Date extracted	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-1	15/10/2013		
Date analysed	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-1	15/10/2013		
Total Phenolics (as Phenol)	mg/kg	5	Inorg-030	45	98975-1	<5 <5	LCS-1	108%		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
Acid Extractable metals in soil						Base II Duplicate II %RPD		,		
Datedigested	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-1	15/10/2013		
Date analysed	-			15/10/2 013	98975-1	15/10/2013 15/10/2013	LCS-1	15/10/2013		
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	98975-1	<4 <4	LCS-1	99%		
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	98975-1	<0.4 <0.4	LCS-1	104%		

Client Reference: 45153.03, Sydney Olympic Park									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Acid Extractable metals in soil						Base II Duplicate II % RPD			
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	98975-1	6 5 RPD:18	LCS-1	102%	
Copper	mg/kg	1	Metals-020 ICP-AES	<1	98975-1	21 22 RPD:5	LCS-1	99%	
Lead	mg/kg	1	Metals-020 ICP-AES	<1	98975-1	16 16 RPD:0	LCS-1	100%	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	98975-1	<0.1 <0.1	LCS-1	90%	
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	98975-1	4 4 RPD:0	LCS-1	101%	
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	98975-1	19 17 RPD:11	LCS-1	103%	
Manganese	mg/kg	1	Metals-020 ICP-AES	<1	98975-1	31 23 RPD: 30	LCS-1	102%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank					
Moisture									
	_			[NT]					
Date prepared	-								
Date prepared Date analysed	-			INTI					
Date prepared Date analysed Moisture	- %	0.1	Inorg-008	[NT] [NT]					
Date analysed	-	0.1 PQL	Inorg-008	[NT] [NT] Blank	-				
Date analysed Moisture	- %		-	[NT]	_				
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils	- %		-	[NT] Blank	-				
Date analysed Moisture QUALITY CONTROL	- % UNITS		-	[NT]	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed	- % UNITS -	PQL	METHOD	[NT] Blank [NT]		Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXN in	- % UNITS -	PQL	METHOD	[NT] Blank [NT]			Spike Sm#		
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXN in Water	- % UNITS -	PQL	METHOD	[NT] Blank [NT] Blank 14/10/2	Sm#	Base II Duplicate II % RPD		Recovery	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXN in Water Date extracted	- % UNITS -	PQL	METHOD	[NT] Blank [NT] Blank 14/10/2 013 15/10/2	Sm#	Base II Duplicate II %RPD [NT]	LCS-W1	Recovery	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXN in Water Date extracted Date analysed	- % UNITS - UNITS -	PQL PQL	METHOD METHOD	[NT] Blank [NT] Blank 14/10/2 013 15/10/2 013	Sm# [NT] [NT]	Base II Duplicate II %RPD [NT] [NT]	LCS-W1	Recovery 14/10/2013 15/10/2013	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXN in Water Date extracted Date analysed TRHC6 - C9	- % UNITS - UNITS - μg/L	PQL PQL 10	METHOD METHOD Org-016	[NT] Blank [NT] Blank 14/10/2 013 15/10/2 013 <10	Sm# [NT] [NT] [NT]	Base II Duplicate II %RPD [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1	Recovery 14/10/2013 15/10/2013 105%	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXNin Water Date extracted Date analysed TRHC6 - C9 TRHC6 - C10	- % UNITS - UNITS - µg/L µg/L	PQL PQL 10 10	METHOD METHOD Org-016 Org-016	[NT] Blank [NT] Blank 14/10/2 013 15/10/2 013 <10 <10	Sm# [NT] [NT] [NT] [NT]	Base II Duplicate II %RPD [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1	Recovery 14/10/2013 15/10/2013 105% 105%	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXNin Water Date extracted Date analysed TRHC6 - C9 TRHC6 - C10 Benzene	- % UNITS - UNITS - UNITS - µg/L µg/L µg/L	PQL PQL 10 10 1	METHOD METHOD Org-016 Org-016 Org-016	[NT] Blank [NT] Blank 14/10/2 013 15/10/2 013 <10 <10 <1	Sm# [NT] [NT] [NT] [NT] [NT]	Base II Duplicate II %RPD [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1	Recovery 14/10/2013 15/10/2013 105% 105% 101%	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXNin Water Date extracted Date analysed TRHC6 - C9 TRHC6 - C10 Benzene Toluene	- % UNITS - UNITS - UNITS - µg/L µg/L µg/L µg/L	PQL PQL 10 10 1 1	METHOD METHOD METHOD Org-016 Org-016 Org-016 Org-016	[NT] Blank [NT] Blank 14/10/2 013 15/10/2 013 <10 <10 <10 <1 <1	Sm# [NT] [NT] [NT] [NT] [NT] [NT] [NT]	Base II Duplicate II %RPD [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1	Recovery 14/10/2013 15/10/2013 105% 105% 101% 104%	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXNin Water Date extracted Date analysed TRHC6 - C9 TRHC6 - C10 Benzene Toluene Ethylbenzene	- % UNITS - UNITS - UNITS - µg/L µg/L µg/L µg/L µg/L µg/L	PQL PQL 10 10 1 1 1 1	METHOD METHOD METHOD Org-016 Org-016 Org-016 Org-016 Org-016	[NT] Blank [NT] Blank 14/10/2 013 15/10/2 013 <10 <10 <10 <10 <1 <1 <1 <1	Sm# [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	Base II Duplicate II %RPD [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1	Recovery 14/10/2013 15/10/2013 105% 105% 101% 104% 103%	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXN in Water Date extracted Date analysed TRHC6 - C9 TRHC6 - C9 TRHC6 - C10 Benzene Toluene Ethylbenzene m+p-xylene	- % UNITS - UNITS - UNITS - µg/L µg/L µg/L µg/L µg/L µg/L µg/L	PQL PQL 10 10 1 1 1 1 2	METHOD METHOD METHOD Org-016 Org-016 Org-016 Org-016 Org-016 Org-016	[NT] Blank [NT] Blank 14/10/2 013 15/10/2 013 15/10/2 013 <10 <10 <10 <10 <1 <1 <1 <1 <2	Sm# [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	Base II Duplicate II % R PD [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1	Recovery 14/10/2013 15/10/2013 105% 105% 101% 104% 103% 108%	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXNin Water Date extracted Date analysed TRHC6 - C9 TRHC6 - C10 Benzene Toluene Ethylbenzene m+p-xylene o-xylene	- % UNITS - UNITS - UNITS - µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	PQL PQL 10 10 1 1 1 1 2 1	METHOD METHOD METHOD Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016	[NT] Blank [NT] Blank 14/10/2 013 15/10/2 013 15/10/2 013 <10 <10 <10 <10 <10 <10 <10 <10 <1 <1 <1 <2 <1	Sm# [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	Base II Duplicate II % R PD [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1	Recovery 14/10/2013 15/10/2013 105% 105% 101% 104% 103% 108% 108%	
Date analysed Moisture QUALITY CONTROL Asbestos ID - soils Date analysed QUALITY CONTROL vTRH(C6-C10)/BTEXN in Water Date extracted Date analysed TRHC6 - C9 TRHC6 - C9 TRHC6 - C10 Benzene Toluene Ethylbenzene m+p-xylene o-xylene Naphthalene Surrogate	- % UNITS - UNITS - UNITS - µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	PQL PQL 10 10 1 1 1 1 2 1	METHOD METHOD METHOD Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-013	[NT] Blank [NT] Blank 14/10/2 013 15/10/2 013 <10 <10 <10 <10 <10 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Sm# [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	Base II Duplicate II %RPD [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 [NR]	Recovery 14/10/2013 15/10/2013 105% 105% 101% 104% 103% 108% 108% [NR]	

			ent Referenc		-	ney Olympic Park	0 1 0 4	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II % RPD		licectory
Date extracted	-			15/10/2 013	[NT]	[NT]	LCS-W1	15/10/2013
Date analysed	-			15/10/2 013	[NT]	[NT]	LCS-W1	15/10/2013
TRHC 10 - C 14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	131%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	124%
TRHC 29 - C 36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	107%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	131%
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	124%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	107%
Surrogate o-Terphenyl	%		Org-003	102	[NT]	[NT]	LCS-W1	96%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
QUILET FOOTTIOE	CI III C	I GL		Diam	Sm#	Duplicate results	Opino Onim	Recovery
PAHs in Water						Base II Duplicate II % RPD		
Date extracted	-			15/10/2 013	[NT]	[NT]	LCS-W1	15/10/2013
Date analysed	-			15/10/2 013	[NT]	[NT]	LCS-W1	15/10/2013
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	87%
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	87%
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	80%
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	78%
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	99%
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	80%
Benzo(b+k)fluoranthene	µg/L	2	Org-012 subset	~2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	78%
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[TN]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	99	[NT]	[TT]	LCS-W1	77%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in water						Base II Duplicate II % RPD		
Date extracted	-			15/10/2 013	[NT]	[NT]	LCS-W1	15/10/2013
Date analysed	-			16/10/2 013	[NT]	[NT]	LCS-W1	16/10/2013
HCB	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	97%
gamma-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
beta-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	101%
Heptachlor	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	94%
delta-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Aldrin	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	96%
Heptachlor Epoxide	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	94%
gamma-Chlordane	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-Chlordane	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan I	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDE	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	97%
Dieldrin	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	94%
Endrin	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	82%
pp-DDD	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	105%
Endosulfan II	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDT	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	93%
Methoxychlor	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	100	[NT]	[NT]	LCS-W1	107%

		Clie	nt Reference	e: 45	5153.03, Syd	ney Olympic Park		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OP Pesticides in water					SII#	Base II Duplicate II %RPD		Recovery
Date extracted	-			15/10/2 013	[NT]	[NT]	LCS-W1	15/10/2013
Date analysed	-			16/10/2 013	[NT]	[NT]	LCS-W1	16/10/2013
Diazinon	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Dimethoate	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Ronnel	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	92%
Fenitrothion	μg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	130%
Bromophos ethyl	μg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Ethion	μg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	113%
Surrogate TCMX	%		Org-008	100	[NT]	[NT]	LCS-W1	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
PCBs in Water						Base II Duplicate II % RPD		
Date extracted	-			15/10/2 013	[NT]	[NT]	LCS-W1	15/10/2013
Date analysed	-			16/10/2 013	[NT]	[NT]	LCS-W1	16/10/2013
Arochlor 1016	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	µg/L	2	Org-006	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	µg/L	2	Org-006	~2	[NT]	[NT]	LCS-W1	87%
Arochlor 1260	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	100	[NT]	[NT]	LCS-W1	88%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Water						Base II Duplicate II % RPD		
Date extracted	-			[NT]	[NT]	[NT]	LCS-W1	15/10/2013
Date analysed	-			[NT]	[NT]	[NT]	LCS-W1	15/10/2013
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-030	<0.05	[NT]	[NT]	LCS-W1	108%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Metals in Water - Dissolved					Sm#	Base II Duplicate II % RPD		Recovery
Date digested	-			15/10/2 013	[NT]	[NT]	LCS-W1	15/10/2013
Date analysed	-			15/10/2 013	[NT]	[NT]	LCS-W1	15/10/2013
Arsenic - Dissolved	mg/L	0.05	Metals-020 ICP-AES	<0.05	[NT]	[NT]	LCS-W1	96%
Cadmium - Dissolved	mg/L	0.01	Metals-020 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	101%
Chromium - Dissolved	mg/L	0.01	Metals-020 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	101%

		Clie	ent Referenc	e: 4	5153.03, Sydi	ney Olympic Park			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %	
Metals in Water - Dissolved					Sm#	Base II Duplicate II % RPD		Recovery	
Copper - Dissolved	mg/L	0.01	Metals-020 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	98%	
Lead - Dissolved	mg/L	0.03	Metals-020 ICP-AES	<0.03	[NT]	[NT]	LCS-W1	97%	
Mercury - Dissolved	mg/L	0.0005	Metals-021 CV-AAS	<0.000 5	[NT]	[NT]	LCS-W1	101%	
Nickel - Dissolved	mg/L	0.02	Metals-020 ICP-AES	<0.02	[NT]	[NT]	LCS-W1	115%	
Zinc - Dissolved	mg/L	0.02	Metals-020 ICP-AES	<0.02	[NT]	[NT]	LCS-W1	100%	
Manganese - Dissolved	mg/L	0.01	Metals-020 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	100%	
QUALITYCONTROL		S I	L Dup. Sm#		Duplicate	Spike Sm#	Spike % Reco	overy	
vTRH(C6-C10)/BTEXNin Soil			·	Base+I	Duplicate + %RF	D	-		
Date extracted	-		98975-11	15/10/2	2013 15/10/201	3 98975-2	15/10/201	3	
Date analysed	-	9	98975-11	15/10/2	2013 15/10/201	3 98975-2	15/10/201	3	
TRHC6 - C9	mg/k	g s	98975-11	<25 <25		98975-2	83%		
TRHC6 - C10	mg/k	g s	98975-11 <2		<25 <25	98975-2	83%		
Benzene	mg/k	g s	98975-11 ·		<0.2 <0.2 98975-2		73%		
Toluene	mg/k	g s	98975-11		<0.5 <0.5 98975-2		85%		
Ethylbenzene	mg/k	g s	98975-11		<1 <1	98975-2	83%		
m+p-xylene	mg/k	g s	98975-11		<2 <2	98975-2	88%		
o-Xylene	mg/k	g s	98975-11		<1 <1	98975-2	86%		
naphthalene	mg/k	g s	98975-11		<1 <1	[NR]	[NR]		
Surrogate aaa- Trifluorotoluene	%	9	98975-11	87	88 RPD:1	98975-2	73%		
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	S I	Dup. Sm#	Base+I	Duplicate Duplicate+%RF	Spike Sm# PD	Spike % Reco	overy	
Date extracted	-		98975-11	15/10/2	2013 15/10/201	3 98975-2	15/10/201	3	
Date analysed	-	9	98975-11	15/10/2	2013 15/10/201	3 98975-2	15/10/201	3	
TRHC 10 - C 14	mg/k	g g	98975-11		<50 <50	98975-2	110%		
TRHC 15 - C28	mg/k	g s	98975-11	<	:100 <100	98975-2	128%		
TRHC29 - C36	mg/k	g s	98975-11	<	:100 <100	98975-2	100%		
TRH>C10-C16	mg/k	g s	98975-11		<50 <50	98975-2	110%		
TRH>C16-C34	mg/k	g s	98975-11	<	:100 <100	98975-2	128%		
TRH>C34-C40	mg/k	g s	98975-11	<	:100 <100	98975-2	100%		
Surrogate o-Terphenyl	%	9	98975-11	104	109 RPD:5	98975-2	98%		

	Client Reference: 45153.03, Sydney Olympic Park						
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery		
Date extracted	-	98975-11	15/10/2013 15/10/2013	98975-2	15/10/2013		
Date analysed	-	98975-11	15/10/2013 15/10/2013	98975-2	15/10/2013		
Naphthalene	mg/kg	98975-11	<0.1 <0.1	98975-2	107%		
Acenaphthylene	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
Acenaphthene	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
Fluorene	mg/kg	98975-11	<0.1 <0.1	98975-2	104%		
Phenanthrene	mg/kg	98975-11	<0.1 <0.1	98975-2	102%		
Anthracene	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
Fluoranthene	mg/kg	98975-11	0.2 0.2 RPD:0	98975-2	101%		
Pyrene	mg/kg	98975-11	0.3 0.2 RPD:40	98975-2	104%		
Benzo(a)anthracene	mg/kg	98975-11	0.1 0.1 RPD:0	[NR]	[NR]		
Chrysene	mg/kg	98975-11	0.2 0.2 RPD:0	98975-2	100%		
Benzo(b+k)fluoranthene	mg/kg	98975-11	0.4 0.3 RPD:29	[NR]	[NR]		
Benzo(a)pyrene	mg/kg	98975-11	0.19 0.20 RPD:5	98975-2	95%		
Indeno(1,2,3-c,d)pyrene	mg/kg	98975-11	0.1 0.1 RPD:0	[NR]	[NR]		
Dibenzo(a,h)anthracene	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
Benzo(g,h,i)perylene	mg/kg	98975-11	0.1 0.1 RPD:0	[NR]	[NR]		
Surrogate p-Terphenyl-d14	%	98975-11	114 112 RPD:2	98975-2	113%		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
Organochlorine Pesticides in soil			Base + Duplicate + % RPD				
Date extracted	-	98975-11	15/10/2013 15/10/2013	98975-2	15/10/2013		
Date analysed	-	98975-11	16/10/2013 16/10/2013	98975-2	16/10/2013		
HCB	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
alpha-BHC	mg/kg	98975-11	<0.1 <0.1	98975-2	113%		
gamma-BHC	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
beta-BHC	mg/kg	98975-11	<0.1 <0.1	98975-2	105%		
Heptachlor	mg/kg	98975-11	<0.1 <0.1	98975-2	128%		
delta-BHC	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
Aldrin	mg/kg	98975-11	<0.1 <0.1	98975-2	106%		
Heptachlor Epoxide	mg/kg	98975-11	<0.1 <0.1	98975-2	111%		
gamma-Chlordane	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
alpha-chlordane	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
Endosulfan I	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
pp-DDE	mg/kg	98975-11	<0.1 <0.1	98975-2	111%		
Dieldrin	mg/kg	98975-11	<0.1 <0.1	98975-2	100%		
Endrin	mg/kg	98975-11	<0.1 <0.1	98975-2	100%		
pp-DDD	mg/kg	98975-11	<0.1 <0.1	98975-2	108%		
Endosulfan II	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
pp-DDT	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
Endrin Aldehyde	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]		
Endosulfan Sulphate	mg/kg	98975-11	<0.1 <0.1	98975-2	133%		

		Client Referen	ce: 45153.03, Sydney	Olympic Park	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil			Base + Duplicate + %RPD		
Methoxychlor	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	98975-11	112 117 RPD:4	98975-2	111%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	98975-11	15/10/2013 15/10/2013	98975-2	15/10/2013
Date analysed	-	98975-11	16/10/2013 16/10/2013	98975-2	16/10/2013
Diazinon	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	98975-11	<0.1 <0.1	98975-2	93%
Fenitrothion	mg/kg	98975-11	<0.1 <0.1	98975-2	136%
Bromophos-ethyl	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	98975-11	<0.1 <0.1	98975-2	122%
Surrogate TCMX	%	98975-11	112 117 RPD:4	98975-2	108%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + % RPD		
Date extracted	-	98975-11	15/10/2013 15/10/2013	98975-2	15/10/2013
Date analysed	-	98975-11	16/10/2013 16/10/2013	98975-2	16/10/2013
Arochlor 1016	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	98975-11	<0.1 <0.1	98975-2	111%
Arochlor 1260	mg/kg	98975-11	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	98975-11	112 117 RPD:4	98975-2	91%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Total Phenolics in Soil			Base + Duplicate + % RPD		
Date extracted	-	98975-11	15/10/2013 15/10/2013	98975-2	15/10/2013
Date analysed	-	98975-11	15/10/2013 15/10/2013	98975-2	15/10/2013
Total Phenolics (as Phenol)	mg/kg	98975-11	<5 <5	98975-2	90%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in			Base + Duplicate + % RPD		
soil					
Date digested	-	98975-11	15/10/2013 15/10/2013	98975-2	15/10/2013
Date analysed	-	98975-11	15/10/2013 15/10/2013	98975-2	15/10/2013
Arsenic	mg/kg	98975-11	5 5 RPD:0	98975-2	80%
Cadmium	mg/kg	98975-11	<0.4 <0.4	98975-2	85%
Chromium	mg/kg	98975-11	14 15 RPD:7	98975-2	83%

		Client Referenc	e: 45153.03, Sydney	Olympic Park	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Copper	mg/kg	98975-11	14 14 RPD:0	98975-2	82%
Lead	mg/kg	98975-11	24 23 RPD:4	98975-2	76%
Mercury	mg/kg	98975-11	<0.1 <0.1	98975-2	70%
Nickel	mg/kg	98975-11	7 7 RPD:0	98975-2	78%
Zinc	mg/kg	98975-11	22 20 RPD:10	98975-2	85%
Manganese	mg/kg	98975-11	460 450 RPD:2	98975-2	77%

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Asbestos ID was analysed by Approved Ide	ntifier:	Alex Tam						
Asbestos ID was authorised by Approved S	vas authorised by Approved Signatory: Matt Mansfield							
INS: Insufficient sample for this test	PQL: Practical Quantita	ation Limit	I					
NA: Test not required	RPD: Relative Percent	Difference	I					

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

<: Less than

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

>: Greater than

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114 ph: 02 9809 0666 Fax: 02 9809 4095

Attention: Peter Oitmaa

Sample log in details:

Your reference: Envirolab Reference: Date received: Date results expected to be reported: **45153.03, Sydney Olympic Park 98975** 14/10/2013 **21/10/13**

Samples received in appropriate condition for analysis:
No. of samples provided
Turnaround time requested:
Temperature on receipt (°C)
Cooling Method:
Sampling Date Provided:

YES 17 Soils 1 Water Standard 10.8 Ice Pack YES

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

					. <u> </u>				·	 	<u> </u>						Ç <i>H</i> /	NN C	FCUSTOD	Y
Project Project Project Email: Date Ro	No:	Pe	ter Oitma ter.oitma	aa	l Dugla	Sampler: Mob. Pho Ispartner: La	one: 04	12 574 au	4 518 	 ••••••••••		To:	12 . Attr Pho	1: Tan one: 02	v Stree lia Not 2 9910	et, Chatswoo aras) 6200 Fa	od NSW 2 ax: 02 9910	2067 6201 ₀	LINTROLAB Chatswoo Ph: (0) Job No: 98975 Date Received: 14/1 Time Received: 14/1	01ab Servic 12 Ashiey Si 24 NSW 2067 2) 9910 6200
				San Ty						 		An	alytes	<u> </u>				n Tr	emp: Cool/Ambiant	-
Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W - water		Container type	8 H me M	leavy tals + n	TRH BTR	ран	OCF OPP	2	rB	Phe	2001	Asbertos			noling: Ice/IceBck :UNOESC/_Iroken/N	опе
вн7	0.2-0.3	1	11 10	5	5	Jar			1				1	1	1			6.	100 8a+M	
BH7	0.5-0.6	2	1	1]							1			· · · · · ·		0,0		Λ
BH 8	0.2-0.3	З						1		 -	┾╸╴╁╸			-					8+m	
вня	0.5-0.6						_	<u> </u>	+										89+M)
BH9	0.15-0.25								╞╴╞	 _	+								8 + M	1
BH 9	0.8-0.9	e		<u>├</u> ···-			-	<u> </u>	<u> </u>	 			+						8a+ M	
BHIO	0.1-0.2	7					_		╏╍╌┠					+	··				8+M	
BHID	0.2-0.3	8						-		 	╞╌┟─			+		~			84+ M	
BHI	0.1-02	9							╞┈┠										8 + N	
BHII	1.4-1.5	10	<u> </u>						+	 						\checkmark			8a+ N	
	0.5-06									 									V	11
BH 12A BH 12A						 -			┝╌╴┠	 						V			89 KN	л
	1.4-1.5	12		L I				<u> </u>											8+N.	Л
Lab Repor			Dt													Phone:	(02) 9809 06	66		
Send Rest Relinguishe		0itm	Partners	<u>s</u> Ao Sigr		s: 96 H	ermitag					- 1	Deco	in a l D			(02) 9809 40	95		1 1 000
Relinquishe		<u></u>		Sigr		nuv			Date &	 	10 14	-30W		ived By: ived By:		1	Date & T		410/13 1	ት ፡ ማወ

		 * OTAN C
Project Name:	Sydney Olympic Park	Envirolab Services
Project No:	45.153.03 Sampler: AG	12 Ashley Street, Chatswood NSW 2067
Project Mgr:	Peter Oitmaa Mob. Phone: 0412 574 518	Attn: Tania Notaras
Email:	peter.oitmaa@douglaspartners.com.au	Phone: 02 9910 6200 Fax: 02 9910 6201
Date Required:	StdLab Quote No.	Email: tnotaras@envirolabservices.com.au

Sample	Comula			Sample Type				·		Analytes	<u>. </u>		·····		
Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W – water	Container type	8 Heavy metals + Mn	TRH BTEX	РАН	OCP OPP	PCB	phenol	Astestos		Notes .	
TSIA	N(4	13	11 10	5	Jar						1	<u> </u>		Gubo 8	
TSIB		14											-	Sed to laborate	
TS7A		15												Ch 8	
1578		1										<u> </u>		Seid to Labrare Contro 8 Serd to Labra	.)_
		16	1010				1 6	Tex on	1LT				<u> </u>		~
TB Rihs I		1817	11					\checkmark							
Rihs /		18	11/10	Ŵ	Various		\checkmark	\checkmark	\checkmark						
· · · · · · · · · · · · · · · · · · ·														98975	
· ·					·				 						
										·					
		-		·			·								
	······	<u> </u>	L												
Lab Report	lts to: D	ouglas	Partners	Addres		mitage Road						Phone: Fax:	(02) 9809 06 (02) 9809 40		
Relinquishe	·	Ditu	aa	Signed:	RUD				0 1430		ived By: PT			Time: 14/10/13 17	00
Relinquishe	ару:			Signed;		I	Date & Tir	ne: `		Recei	ived By:		Date & T		-

m____

Douglas Partners (Syd) 96 Hermitage Road West Ryde NSW 2114

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Peter Oitmaa

Report Client Reference Received Date **396293-S** SYDNEY OLYMPIC PARK 45153.03 Oct 15, 2013

Client Sample ID			TS1B	TS7B
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S13-Oc11156	S13-Oc11157
Date Sampled			Oct 11, 2013	Oct 11, 2013
Test/Reference	LOR	Unit		,
Total Recoverable Hydrocarbons - 1999 NEPM		Offic		
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	110	120
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID Sample Matrix			TS1B Soil	TS7B Soil
Eurofins mgt Sample No.			S13-Oc11156	S13-Oc11157
Date Sampled			Oct 11, 2013	Oct 11, 2013
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ*	0.5	mg/kg	0.6	0.6
2-Fluorobiphenyl (surr.)	1	%	98	94
p-Terphenyl-d14 (surr.)	1	%	74	73
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1
Dibutylchlorendate (surr.)	1	%	85	87
Tetrachloro-m-xylene (surr.)	1	%	94	90
Polychlorinated Biphenyls (PCB)				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	85	87
Organophosphorus Pesticides (OP)				
Chlorpyrifos	0.5	mg/kg	< 0.5	< 0.5
Coumaphos	0.5	mg/kg	< 0.5	< 0.5
Demeton (total)	1	mg/kg	< 1	< 1
Diazinon	0.5	mg/kg	< 0.5	< 0.5
Dichlorvos	0.5	mg/kg	< 0.5	< 0.5
Dimethoate	0.5	mg/kg	< 0.5	< 0.5
Disulfoton	0.5	mg/kg	< 0.5	< 0.5
Ethoprop	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID Sample Matrix			TS1B Soil	TS7B Soil
Eurofins mgt Sample No.			S13-Oc11156	S13-Oc11157
Date Sampled			Oct 11, 2013	Oct 11, 2013
Test/Reference	LOR	Unit		
Organophosphorus Pesticides (OP)				
Fenitrothion	0.5	mg/kg	< 0.5	< 0.5
Fensulfothion	0.5	mg/kg	< 0.5	< 0.5
Fenthion	0.5	mg/kg	< 0.5	< 0.5
Methyl azinphos	0.5	mg/kg	< 0.5	< 0.5
Malathion	0.5	mg/kg	< 0.5	< 0.5
Methyl parathion	0.5	mg/kg	< 0.5	< 0.5
Mevinphos	0.5	mg/kg	< 0.5	< 0.5
Monocrotophos	10	mg/kg	< 10	< 10
Parathion	0.5	mg/kg	< 0.5	< 0.5
Phorate	0.5	mg/kg	< 0.5	< 0.5
Profenofos	0.5	mg/kg	< 0.5	< 0.5
Prothiofos	0.5	mg/kg	< 0.5	< 0.5
Ronnel	0.5	mg/kg	< 0.5	< 0.5
Stirophos	0.5	mg/kg	< 0.5	< 0.5
Trichloronate	0.5	mg/kg	< 0.5	< 0.5
Triphenylphosphate (surr.)	1	%	90	91
Heavy Metals				
Arsenic	2	mg/kg	< 2	< 2
Cadmium	0.4	mg/kg	0.4	0.6
Chromium	5	mg/kg	5.1	19
Copper	5	mg/kg	24	33
Lead	5	mg/kg	19	22
Manganese	5	mg/kg	32	270
Mercury	0.05	mg/kg	< 0.05	< 0.05
Nickel	5	mg/kg	5.8	10
Zinc	5	mg/kg	25	57
% Moisture	0.1	%	3.2	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 16, 2013	14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 16, 2013	14 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	Oct 16, 2013	14 Day
- Method: E029/E016 BTEX			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 16, 2013	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	Oct 16, 2013	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	Oct 16, 2013	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Organophosphorus Pesticides (OP)	Sydney	Oct 16, 2013	14 Day
- Method: E014 Organophosphorus Pesticides (OP)			
Metals M8	Sydney	Oct 16, 2013	28 Day
- Method: E022 Acid Extractable metals in Soils & E026 Mercury			
Heavy Metals	Sydney	Oct 16, 2013	180 Day
- Method: E022 Acid Extractable metals in Soils			
% Moisture	Sydney	Oct 16, 2013	28 Day
- Method: E005 Moisture Content			

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name:Douglas Partners (Syd)Address:96 Hermitage RoadWest Ryde NSW 2114Client Job No.:SYDNEY OLYMPIC PARK 45153.03							Order No.: Report #: Phone: Fax:					0666	i	Received: Due: Priority: Contact Name:	Oct 15, 2013 1:45 PM Oct 22, 2013 5 Day Peter Oitmaa
											Eurofins	mgt Client Manager: Jean Heng			
Sample Detail						Manganese	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	BTEX	Polychlorinated Biphenyls (PCB)	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons		
	ere analysis is o														
	boratory - NATA		4271												
	atory - NATA Sit				Х	Х	Х	Х	Х	Х	Х	Х	Х		
	pratory - NATA S	ite # 20794			-										
External Labo															
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
TS1B	Oct 11, 2013		Soil	S13-Oc11156	Х	Х	Х	Х	Х	Х	Х	Х	Х		
TS7B	Oct 11, 2013		Soil	S13-Oc11157	Х	Х	Х	Х	Х	Х	Х	Х	Х		

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100ml · Most Probable Number of organisms per 100 millilitres	

TERMS

LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) - where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				· ·		
Total Recoverable Hydrocarbons - 1999 NEPM Fra Petroleum Hydrocarbons (TPH)	ctions E004					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank		1				
BTEX E029/E016 BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank		1				
Total Recoverable Hydrocarbons - 2013 NEPM Fra ORG2010	ctions LM-LTM-					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
Polycyclic Aromatic Hydrocarbons E007 Polyaron (PAH)	natic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Organochlorine Pesticides E013 Organochlorine F	Pesticides (OC)					L
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank		• • •			
Polychlorinated Biphenyls (PCB) E013 Polyc (PCB)	hlorinated Biphenyls				
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides (OP) E014 Or Pesticides (OP)	rganophosphorus				
Chlorpyrifos	mg/kg	< 0.5	0.5	Pass	
Coumaphos	mg/kg	< 0.5	0.5	Pass	
Demeton (total)	mg/kg	< 1	1	Pass	
Diazinon	mg/kg	< 0.5	0.5	Pass	
Dichlorvos	mg/kg	< 0.5	0.5	Pass	
Dimethoate	mg/kg	< 0.5	0.5	Pass	
Disulfoton	mg/kg	< 0.5	0.5	Pass	
Ethoprop	mg/kg	< 0.5	0.5	Pass	
Fenitrothion	mg/kg	< 0.5	0.5	Pass	
Fensulfothion	mg/kg	< 0.5	0.5	Pass	
Fenthion	mg/kg	< 0.5	0.5	Pass	
Methyl azinphos	mg/kg	< 0.5	0.5	Pass	
Malathion	mg/kg	< 0.5	0.5	Pass	
Methyl parathion	mg/kg	< 0.5	0.5	Pass	
Mevinphos	mg/kg	< 0.5	0.5	Pass	
Monocrotophos	mg/kg	< 10	10	Pass	
Parathion	mg/kg	< 0.5	0.5	Pass	
Phorate	mg/kg	< 0.5	0.5	Pass	
Profenofos	mg/kg	< 0.5	0.5	Pass	
Prothiofos	mg/kg	< 0.5	0.5	Pass	
Ronnel	mg/kg	< 0.5	0.5	Pass	
Stirophos	mg/kg	< 0.5	0.5	Pass	
Trichloronate	mg/kg	< 0.5	0.5	Pass	
Method Blank				1 400	
Metals M8 E022 Acid Extractable metals in S	oils & E026 Mercury				
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Manganese	mg/kg	< 5	5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Petroleum Hydrocarbons (TPH)	Fractions E004				
TRH C6-C9	%	102	70-130	Pass	
TRH C10-C14	%	85	70-130	Pass	
LCS - % Recovery				•	
BTEX E029/E016 BTEX					
Benzene	%	108	70-130	Pass	
Toluene	%	107	70-130	Pass	
Ethylbenzene	%	99	70-130	Pass	
m&p-Xylenes	%	97	70-130	Pass	
o-Xylene	%	103	70-130	Pass	
Xylenes - Total	%	99	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM ORG2010	Fractions LM-LTM-				
Naphthalene	%	76	70-130	Pass	
TRH C6-C10	%	103	70-130	Pass	
TRH >C10-C16	%	92	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons E007 Polya (PAH)	romatic Hydrocarbons				
Acenaphthene	%	114	70-130	Pass	
Acenaphthylene	%	106	70-130	Pass	
Anthracene	%	110	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	78	70-130	Pass	
Benzo(b&j)fluoranthene	%	87	70-130	Pass	
Benzo(g.h.i)perylene	%	86	70-130	Pass	
Benzo(k)fluoranthene	%	106	70-130	Pass	
Chrysene	%	106	70-130	Pass	
Dibenz(a.h)anthracene	%	98	70-130	Pass	
Fluoranthene	%	98	70-130	Pass	
Fluorene	%	115	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	93	70-130	Pass	
Naphthalene	%	108	70-130	Pass	
Phenanthrene	%	117	70-130	Pass	
Pyrene	%	99	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides E013 Organochlorir	ne Pesticides (OC)				
Chlordanes - Total	%	91	70-130	Pass	
4.4'-DDD	%	96	70-130	Pass	
4.4'-DDE	%	92	70-130	Pass	
4.4'-DDT	%	99	70-130	Pass	
a-BHC	%	93	70-130	Pass	
Aldrin	%	98	70-130	Pass	
b-BHC	%	72	70-130	Pass	
d-BHC	%	81	70-130	Pass	
Dieldrin	%	93	70-130	Pass	
Endosulfan I	%	95	70-130	Pass	
Endosulfan II	%	81	70-130	Pass	
Endosulfan sulphate	%	72	70-130	Pass	
Endrin	%	109	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde			%	72		70-130	Pass	
Endrin ketone			%	74		70-130	Pass	
g-BHC (Lindane)			%	89		70-130	Pass	
Heptachlor			%	95		70-130	Pass	
Heptachlor epoxide			%	92		70-130	Pass	
Hexachlorobenzene			%	89		70-130	Pass	
Methoxychlor			%	79		70-130	Pass	
LCS - % Recovery					I I			
Polychlorinated Biphenyls (PCB) (PCB)	E013 Polychlorina	ted Biphe	nyls					
Aroclor-1260			%	78		70-130	Pass	
LCS - % Recovery				·		•		
Organophosphorus Pesticides (C Pesticides (OP)	P) E014 Organoph	nosphoru	s					
Chlorpyrifos			%	119		70-130	Pass	
Coumaphos			%	106		70-130	Pass	
Diazinon			%	120		70-130	Pass	
Dichlorvos			%	121		70-130	Pass	
Dimethoate			%	112		70-130	Pass	
Disulfoton			%	121		70-130	Pass	
Ethoprop			%	126		70-130	Pass	
Fenitrothion			%	119		70-130	Pass	
Fensulfothion			%	89		70-130	Pass	
Fenthion			%	125		70-130	Pass	
Methyl azinphos			%	78		70-130	Pass	
Malathion			%	122		70-130	Pass	
Methyl parathion			%	130		70-130	Pass	
Mevinphos		%	116		70-130	Pass		
Monocrotophos			%	81		70-130	Pass	
Parathion			%	110		70-130	Pass	
Phorate			%	128		70-130	Pass	
Profenofos			%	111		70-130	Pass	
Prothiofos			%	126		70-130	Pass	
Ronnel			%	120		70-130	Pass	
			%	89		70-130	Pass	
Stirophos			%	123		70-130	Pass	
Trichloronate			70	123		70-130	Pass	
LCS - % Recovery	watala in Osila 0 5	000 11			1	1		
Metals M8 E022 Acid Extractable	metals in Solis & E	U26 Werc		77		70.400	Dese	
Arsenic			%	77		70-130	Pass	
Cadmium			%	88		70-130	Pass	
Chromium			%	85		70-130	Pass	
Copper			%	88		70-130	Pass	
Lead			%	109		70-130	Pass	
Manganese			%	94		70-130	Pass	
Mercury		%	97		70-130	Pass		
Nickel	%	85		70-130	Pass			
Zinc			%	88		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons		1 1		Result 1				
TRH C6-C9	S13-Oc11039	NCP	%	94		70-130	Pass	
TRH C10-C14	S13-Oc10219	NCP	%	94		70-130	Pass	
Spike - % Recovery					1 1	1		
BTEX	1			Result 1				
Benzene	S13-Oc11039	NCP	%	99		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Toluene	S13-Oc11039	NCP	%	97	70-130	Pass	
Ethylbenzene	S13-Oc11039	NCP	%	88	70-130	Pass	
m&p-Xylenes	S13-Oc11039	NCP	%	85	70-130	Pass	
o-Xylene	S13-Oc11039	NCP	%	90	70-130	Pass	
Xylenes - Total	S13-Oc11039	NCP	%	87	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S13-Oc11039	NCP	%	84	70-130	Pass	
TRH C6-C10	S13-Oc11039	NCP	%	91	70-130	Pass	
TRH >C10-C16	S13-Oc10219	NCP	%	104	70-130	Pass	
Spike - % Recovery	010 0010210		70	104	10100	1 400	
Polycyclic Aromatic Hydrocar	hone			Result 1			
· · ·		NCP	%		70.120	Deee	
Acenaphthene	S13-Oc11207			119	70-130	Pass	
Acenaphthylene	S13-Oc11207	NCP	%	116	70-130	Pass	
Anthracene	S13-Oc11207	NCP	%	99	70-130	Pass	
Benz(a)anthracene	S13-Oc11207	NCP	%	94	70-130	Pass	
Benzo(a)pyrene	S13-Oc11207	NCP	%	84	70-130	Pass	
Benzo(b&j)fluoranthene	S13-Oc11207	NCP	%	110	70-130	Pass	
Benzo(g.h.i)perylene	S13-Oc11207	NCP	%	92	70-130	Pass	
Benzo(k)fluoranthene	S13-Oc11207	NCP	%	101	70-130	Pass	
Chrysene	S13-Oc11207	NCP	%	112	70-130	Pass	
Dibenz(a.h)anthracene	S13-Oc11207	NCP	%	100	70-130	Pass	
Fluoranthene	S13-Oc11207	NCP	%	110	70-130	Pass	
Fluorene	S13-Oc11207	NCP	%	94	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-Oc11207	NCP	%	98	70-130	Pass	
Pyrene	S13-Oc11207	NCP	%	112	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls (P	CB)			Result 1			
Aroclor-1260	S13-Oc10219	NCP	%	80	70-130	Pass	
Spike - % Recovery							
Organophosphorus Pesticide	s (OP)			Result 1			
Chlorpyrifos	S13-Oc10170	NCP	%	117	70-130	Pass	
Coumaphos	S13-Oc10170	NCP	%	120	70-130	Pass	
Diazinon	S13-Oc10170	NCP	%	116	70-130	Pass	
Dichlorvos	S13-Oc10170	NCP	%	129	70-130	Pass	
Dimethoate	S13-Oc10170	NCP	%	117	70-130	Pass	
Disulfoton	S13-Oc10170	NCP	%	109	70-130	Pass	
Ethoprop	S13-Oc10170	NCP	%	118	70-130	Pass	
Fenitrothion	S13-Oc10170	NCP	%	118	70-130	Pass	
	S13-Oc10170	NCP	%	113	70-130		
Fensulfothion		1				Pass	
Fenthion	S13-Oc10170	NCP	%	118	70-130	Pass	
Methyl azinphos	S13-Oc10170	NCP	%	130	70-130	Pass	
Malathion	S13-Oc10170	NCP	%	124	70-130	Pass	
Methyl parathion	S13-Oc10170	NCP	%	119	70-130	Pass	
Mevinphos	S13-Oc10170	NCP	%	124	70-130	Pass	
Monocrotophos	S13-Oc10170	NCP	%	92	70-130	Pass	
Parathion	S13-Oc10170	NCP	%	98	70-130	Pass	
Phorate	S13-Oc10170	NCP	%	113	70-130	Pass	
Profenofos	S13-Oc10170	NCP	%	125	70-130	Pass	
Prothiofos	S13-Oc10170	NCP	%	120	70-130	Pass	
Ronnel	S13-Oc10170	NCP	%	120	70-130	Pass	
Stirophos	S13-Oc10170	NCP	%	125	70-130	Pass	
Trichloronate	S13-Oc10170	NCP	%	119	70-130	Pass	
Spike - % Recovery							
Metals M8				Result 1			

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Arsenic	S13-Oc11203	NCP	%	97			70-130	Pass	
Cadmium	S13-Oc11203	NCP	%	85			70-130	Pass	
Chromium	S13-Oc11203	NCP	%	88			70-130	Pass	
Copper	S13-Oc11203	NCP	%	100			70-130	Pass	
Lead	S13-Oc11203	NCP	%	109			70-130	Pass	
Manganese	S13-Oc11207	NCP	%	86			70-130	Pass	
Mercury	S13-Oc11203	NCP	%	94			70-130	Pass	
Nickel	S13-Oc11203	NCP	%	91			70-130	Pass	
Zinc	S13-Oc11203	NCP	%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1	1 1		1		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Oc11039	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S13-Oc11203	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S13-Oc11203	NCP	mg/kg	59	< 50	35	30%	Fail	Q15
TRH C29-C36	S13-Oc11203	NCP	mg/kg	51	57	12	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Oc11039	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S13-Oc11039	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S13-Oc11039	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S13-Oc11039	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S13-Oc11039	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S13-Oc11039	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	S13-Oc11039	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-Oc11039	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Oc11039	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S13-Oc11203	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S13-Oc11203	NCP	mg/kg	110	< 100	17	30%	Pass	
TRH >C34-C40	S13-Oc11203	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	S			Result 1	Result 2	RPD			
Acenaphthene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S13-Oc11207	NCP	mg/kg	2.3	2.2	5.0	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S13-Oc11207	NCP	mg/kg	3.2	3.1	3.0	30%	Pass	
Pyrene	S13-Oc11207	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S13-Oc11156	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	1		3.3	1					1

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
4.4'-DDT	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S13-Oc11156	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S13-Oc11156	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S13-Oc11156	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S13-Oc11156	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S13-Oc11156	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate	. 0.0 0011100						0070		
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S13-Oc11156	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S13-Oc11156	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S13-Oc11156	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S13-Oc11156	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S13-Oc11156	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S13-Oc11156	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	010-0011100	01	iiig/kg	< 0.5	< 0.5		5070	1 435	
Organophosphorus Pesticides (C)P)			Result 1	Result 2	RPD			
Chlorpyrifos	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Coumaphos	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Diazinon	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorvos	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dimethoate	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Disulfoton	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethoprop	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fenitrothion	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fensulfothion	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fenthion	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methyl azinphos	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Malathion	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methyl parathion	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mevinphos	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Monocrotophos	S13-Oc10160	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Parathion	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phorate	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Profenofos	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Prothiofos	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ronnel	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Stirophos	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
· · · · · · · · · · · · · · · · · · ·	S13-Oc10160	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Inchloronale			i iignyg				0070	1 400	
Trichloronate Duplicate									
Duplicate				Result 1	Result 2	RPD			
Duplicate Metals M8	S13-Oc11203	NCP	ma/ka	Result 1	Result 2	RPD	30%	Pase	
Duplicate	S13-Oc11203	NCP	mg/kg	Result 1 < 2	Result 2 < 2	RPD <1	30%	Pass	

uplicate									
Metals M8				Result 1	Result 2	RPD			
Chromium	S13-Oc11203	NCP	mg/kg	10	9.2	12	30%	Pass	
Copper	S13-Oc11203	NCP	mg/kg	10	8.9	15	30%	Pass	
Lead	S13-Oc11203	NCP	mg/kg	11	14	25	30%	Pass	
Manganese	S13-Oc09633	NCP	mg/kg	7.0	11	44	30%	Fail	Q15
Mercury	S13-Oc11203	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S13-Oc11203	NCP	mg/kg	6.1	6.3	4.0	30%	Pass	
Zinc	S13-Oc11203	NCP	mg/kg	34	31	10	30%	Pass	

Comments

Sample Integrity	
Custody Socia Intest (if used)	

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Jean Heng	Client Services
James Norford	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | rigit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rigit be liable for consequential damages including, but not limited to, lost proceed in fallow to there deadlines and lost production arising from this report. The result of the report damages are expenses included to there are expenses inclined to there a

3-5 P Oakl Phor

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Address:	Company Name:Douglas Partners (Syd)Address:96 Hermitage RoadWest Ryde NSW 2114SYDNEY OLYMPIC PARK 45153.03					R P	erder eport hone ax:	t #:		396 02 9	293 1809 (0666		Received: Due: Priority: Contact Name:	Oct 15, 2013 1:45 PM Oct 22, 2013 5 Day Peter Oitmaa s mgt Client Manager: Jean Heng
		Sample Detail			% Moisture	Manganese	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	BTEX	Polychlorinated Biphenyls (PCB)	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons		
Laboratory whe	ere analysis is c	onducted													
	Melbourne Laboratory - NATA Site # 1254 & 14271														
Sydney Laboratory - NATA Site # 18217			X	Х	Х	Х	Х	Х	Х	Х	Х				
Brisbane Laboratory - NATA Site # 20794 External Laboratory				-											
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
TS1B	Oct 11, 2013		Soil	S13-Oc11156	Х	Х	Х	Х	Х	Х	Х	Х	Х		
TS7B	Oct 11, 2013		Soil	S13-Oc11157	Х	Х	Х	Х	Х	Х	Х	Х	Х		

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Company name:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company namer	
Contact name:	Peter Oitmaa
Client job number:	SYDNEY OLYMPIC PARK 45153.03
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Oct 15, 2013 1:45 PM
Eurofins mgt reference:	396293

Douglas Partners (Svd)

Sample information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

web : www.eurofins.com.au

- All samples have been received as described on the above COC.
- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Organic samples had Teflon liners.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Jean Heng on Phone : (+61) (2) 9900 8400 or by e.mail: JeanHeng@eurofins.com.au

Results will be delivered electronically via e.mail to Peter Oitmaa - peter.oitmaa@douglaspartners.com.au.

Eurofins | mgt Sample Receipt

38 Years of Environmental Analysis & Experience

Duci				S. de	A. 0	1	0 1							CH	AIN OF CUSTODY
Project Project Project Email: Date R	: No: : Mgr	•	Pe	ter Oitmi ter.oitma	aa a@dougli	Mob. Phor aspartners	- Park A-4 ne: 0412 57 .com.au Quote No.	4 518			12 / Attr Pho	E Tania No	et, Chatswoo taras	ov: 00.004	
Sample ID	Sai De	mple pth	Lab ID	Sampling Date	Sample Type - soil - S - S	Container type	8 Heavy metals + Mn	TRH BTEX	РАН	OCP OPP	Analytes PCB	T			Notes
TSIA	М	[A	13	11 10	5	Jar	1	11			1				GLO
TSIB		1	ie-	1								-			Gubo 8
TS7A			15												Send to Labrare
T578			围												Gento 8 Send to Labrark
73			16	1010				Ve	TEX ON	eL7					rend to Labriark
TB			羽					$\overline{}$							
Rihs 1			16	11/10	W	Variou	\checkmark	\checkmark		\checkmark					
															98975
			:												
Lab Repo Send Res				Partners		ss: 96 Hei	rmitage Roac	L	1. 	1				(02) 9809 00	
Relinquisne	ed by:	_¥ .	Oim	aa	Signed:	RUO		Date & Tir	me: 14/1	0 1420	Recei	ved By: PT	Fax:	02) 9809 40 Date &	
Relinquishe	ed by:	M	H (els)	Signed:	peri		Date & Tir	me: [<i>S</i> /(a	0/13 17	Recei	Ved By(C) E		Date &	
Form CC	C R	ev0/N	ovembei	· 2006		60							CT 2013 ₪ ∧ D. liY	S	P2/2

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

100526

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

Sample log in details:

Your Reference:	45153.03, Syd	dney (Olympic Park
No. of samples:	5 waters		
Date samples received / completed instructions received	08/11/13	/	08/11/13

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 12/11/13
 / 12/11/13

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

			1		1
VOCs in water		400500.4	400500.0	100500.0	400500.4
Our Reference: Your Reference	UNITS	100526-1 BH1	100526-2 BH5	100526-3 BH6	100526-4 D1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water
Date extracted	-	12/11/2013	12/11/2013	12/11/2013	12/11/2013
Date analysed	_	12/11/2013	12/11/2013	12/11/2013	12/11/2013
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10
Vinyl Chloride	µg/∟ µg/L	<10	<10	<10	<10
Bromomethane		<10	<10	<10	<10
	µg/L			-	
Chloroethane	µg/L	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1	<1
Chloroform	µg/L	2	4	2	3
2,2-dichloropropane	µg/L	<1	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1
Cyclohexane	µg/L	<1	<1	1	<1
Carbon tetrachloride	µg/L	<1	<1	<1	<1
Benzene	µg/L	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1
Bromoform	μg/L	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	3	<1
1,2,3-trichloropropane	μg/L	<1	<1	-1	<1
	P9/L				

Client Reference:

VOCs in water					
Our Reference:	UNITS	100526-1	100526-2	100526-3	100526-4
Your Reference		BH1	BH5	BH6	D1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water
Isopropylbenzene	µg/L	<1	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	3	<1
Tert-butyl benzene	µg/L	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	107	114	110	112
Surrogate toluene-d8	%	89	88	87	90
Surrogate 4-BFB	%	79	71	84	66

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	100526-1	100526-2	100526-3	100526-4	100526-5
Your Reference		BH1	BH5	BH6	D1	R1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/11/2013	12/11/2013	12/11/2013	12/11/2013	12/11/2013
Date analysed	-	12/11/2013	12/11/2013	12/11/2013	12/11/2013	12/11/2013
TRHC6 - C9	μg/L	<10	<10	<10	<10	<10
TRHC 6 - C 10	μg/L	<10	<10	<10	<10	<10
TRHC6 - C10 less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	3	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	107	114	110	112	108
Surrogate toluene-d8	%	89	88	87	90	95
Surrogate 4-BFB	%	79	71	84	66	85

svTRH (C10-C40) in Water						
Our Reference:	UNITS	100526-1	100526-2	100526-3	100526-4	100526-5
Your Reference		BH1	BH5	BH6	D1	R1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Date analysed	-	12/11/2013	12/11/2013	12/11/2013	12/11/2013	12/11/2013
TRHC 10 - C 14	µg/L	<50	<50	56	<50	<50
TRHC 15 - C28	µg/L	<100	<100	<100	<100	<100
TRHC29 - C36	µg/L	<100	<100	<100	<100	<100
TRH>C10 - C16	µg/L	<50	<50	63	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	63	<50	<50
TRH>C16 - C34	µg/L	<100	<100	<100	<100	<100
TRH>C34 - C40	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	93	83	97	100	90

PAHs in Water						
Our Reference:	UNITS	100526-1	100526-2	100526-3	100526-4	100526-5
Your Reference		BH1	BH5	BH6	D1	R1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Date analysed	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Naphthalene	µg/L	<1	<1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	117	129	104	96	129

Total Phenolics in Water					
Our Reference:	UNITS	100526-1	100526-2	100526-3	100526-4
Your Reference		BH1	BH5	BH6	D1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water
Date extracted	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Date analysed	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Total Phenolics (as Phenol)	mg/L	<0.05	0.06	<0.05	<0.05

OCP in water - low level					
Our Reference:	UNITS	100526-1	100526-2	100526-3	100526-4
Your Reference		BH1	BH5	BH6	D1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water
Date extracted	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Date analysed	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013
HCB	µg/L	<0.01	<0.01	<0.01	<0.01
alpha-BHC	µg/L	<0.01	<0.01	<0.01	<0.01
gamma-BHC	µg/L	<0.01	<0.01	<0.01	<0.01
beta-BHC	μg/L	<0.01	<0.01	<0.01	<0.01
Heptachlor	μg/L	<0.01	<0.01	<0.01	<0.01
delta-BHC	μg/L	<0.01	<0.01	<0.01	<0.01
Aldrin	μg/L	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	μg/L	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	μg/L	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	μg/L	<0.01	<0.01	<0.01	<0.01
Endosulfan I	μg/L	<0.01	<0.01	<0.01	<0.01
pp-DDE	μg/L	<0.01	<0.01	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01	<0.01	<0.01
Endrin	μg/L	<0.01	<0.01	<0.01	<0.01
pp-DDD	µg/L	<0.01	<0.01	<0.01	<0.01
Endosulfan II	μg/L	<0.01	<0.01	<0.01	<0.01
DDT	μg/L	<0.01	<0.01	<0.01	<0.01
Endrin Aldehyde	μg/L	<0.01	<0.01	<0.01	<0.01
Endosulfan Sulphate	μg/L	<0.01	<0.01	<0.01	<0.01
Methoxychlor	μg/L	<0.010	<0.010	<0.010	<0.010
Surrogate TCMX	%	78	84	96	87

OP Pesticides in water LL Our Reference: Your Reference Date Sampled Type of sample	UNITS	100526-1 BH1 08/11/2013 Water	100526-2 BH5 08/11/2013 Water	100526-3 BH6 08/11/2013 Water	100526-4 D1 08/11/2013 Water
Date extracted	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Date analysed	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Diazinon	µg/L	<0.01	<0.01	<0.01	<0.01
Dimethoate	µg/L	<0.01	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.01	<0.01	<0.01	<0.01
Ronnel	µg/L	<0.01	<0.01	<0.01	<0.01
Chlorpyriphos	µg/L	<0.01	<0.01	<0.01	<0.01
Fenitrothion	µg/L	<0.01	<0.01	<0.01	<0.01
Bromophos ethyl	µg/L	<0.01	<0.01	<0.01	<0.01
Ethion	µg/L	<0.01	<0.01	<0.01	<0.01
Surrogate TCMX	%	78	84	96	87

PCBs in Water - Low Level					
Our Reference:	UNITS	100526-1	100526-2	100526-3	100526-4
Your Reference		BH1	BH5	BH6	D1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water
Date extracted	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Date analysed	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Arochlor 1016	µg/L	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	µg/L	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	µg/L	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	µg/L	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	µg/L	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	µg/L	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	µg/L	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	78	84	96	87

HM in water - dissolved						
Our Reference:	UNITS	100526-1	100526-2	100526-3	100526-4	100526-5
Your Reference		BH1	BH5	BH6	D1	R1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	11/11/2013	11/11/2013	11/11/2013	11/11/2013	11/11/2013
Date analysed	-	12/11/2013	12/11/2013	12/11/2013	12/11/2013	12/11/2013
Arsenic-Dissolved	µg/L	6	2	7	6	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	2
Copper-Dissolved	µg/L	<1	<1	1	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	10	3	7	11	<1
Zinc-Dissolved	μg/L	8	11	10	<1	<1

Miscellaneous Inorganics					
Our Reference:	UNITS	100526-1	100526-2	100526-3	100526-4
Your Reference		BH1	BH5	BH6	D1
Date Sampled		08/11/2013	08/11/2013	08/11/2013	08/11/2013
Type of sample		Water	Water	Water	Water
Date prepared	-	12/11/2013	12/11/2013	12/11/2013	12/11/2013
Date analysed	-	12/11/2013	12/11/2013	12/11/2013	12/11/2013
Hardness	mgCaCO3 /L	1,800	89	2,000	1,800
Calcium - Dissolved	mg/L	140	13	170	140
Magnesium - Dissolved	mg/L	340	14	390	360

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Inorg-030	Total Phenolics - determined colorimetrically following disitillation, based upon APHA 22nd ED 5530 D.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.

Client Reference:

			nt Referenc	e: 45		ney Olympic Park	1	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		
Date extracted	-			12/11/2 013	[NT]	[NT]	LCS-W1	12/11/2013
Date analysed	-			12/11/2 013	[NT]	[NT]	LCS-W1	12/11/2013
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	124%
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chloroform	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	122%
2,2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	108%
1,1,1-trichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	121%
1,1-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Cyclohexane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromomethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	116%
Bromodichloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	117%
trans-1,3- dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	103%
1,2-dibromoethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	118%
1,1,1,2- tetrachloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromoform	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
m+p-xylene	µg/L	2	Org-013	~2	[NT]	[NT]	[NR]	[NR]
Styrene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
o-xylene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		
1,2,3-trichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
lsopropylbenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-013	126	[NT]	[NT]	LCS-W1	104%
Surrogate toluene-d8	%		Org-013	98	[NT]	[NT]	LCS-W1	106%
Surrogate 4-BFB	%		Org-013	76	[NT]	[NT]	LCS-W1	103%

		Clie	ent Referenc	e: 45	5153.03, Syd	ney Olympic Park		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II %RPD		
Date extracted	-			12/11/2 013	[NT]	[NT]	LCS-W1	12/11/2013
Date analysed	-			12/11/2 013	[NT]	[NT]	LCS-W1	12/11/2013
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	105%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	105%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	93%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	98%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	105%
m+p-xylene	µg/L	2	Org-016	~2	[NT]	[NT]	LCS-W1	111%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	109%
Naphthalene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	126	[NT]	[NT]	LCS-W1	105%
Surrogate toluene-d8	%		Org-016	98	[NT]	[NT]	LCS-W1	87%
Surrogate 4-BFB	%		Org-016	76	[NT]	[NT]	LCS-W1	98%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II % RPD		Recovery
Date extracted	-			11/11/2 013	[NT]	[NT]	LCS-W1	11/11/2013
Date analysed	-			12/11/2 013	[NT]	[NT]	LCS-W1	12/11/2013
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	86%
TRHC 15 - C28	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	101%
TRHC29 - C36	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	104%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	86%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	101%
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	104%
Surrogate o-Terphenyl	ру- %	100	Org-003	92	[NT]	[NT]	LCS-W1	93%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Water	GINITO			Dianix	Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	_			11/11/2	[NT]	[NT]	LCS-W2	11/11/2013
				013				
Date analysed	-			11/11/2 013	[NT]	[NT]	LCS-W2	11/11/2013
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W2	90%
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W2	89%
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W2	84%

Client Reference: 45153.03, Sydney Olympic Park								
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II % RPD		
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W2	74%
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W2	98%
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W2	84%
Benzo(b+k)fluoranthene	µg/L	2	Org-012 subset	~2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W2	83%
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	119	[NT]	[NT]	LCS-W2	90%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Total Phenolics in Water					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			11/11/2 013	[NT]	[NT]	LCS-W1	11/11/2013
Date analysed	-			11/11/2 013	[NT]	[NT]	LCS-W1	11/11/2013
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-030	<0.05	[NT]	[NT]	LCS-W1	97%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in water - low level						Base II Duplicate II % RPD		
Date extracted	-			11/11/2 013	[NT]	[NT]	LCS-W1	11/11/2013
Date analysed	-			11/11/2 013	[NT]	[NT]	LCS-W1	11/11/2013
HCB	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
alpha-BHC	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	103%
gamma-BHC	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
beta-BHC	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	106%
Heptachlor			1	1		[NT]	LCS-W1	117%
rioptaoriioi	μg/L	0.01	Org-005	<0.01	[NT]	[INI]	LC3-W1	
delta-BHC		0.01 0.01	Org-005 Org-005	<0.01 <0.01	[NT] [NT]	[NT]	[NR]	[NR]
	µg/L		-					
delta-BHC	μg/L μg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
delta-BHC Aldrin	μg/L μg/L μg/L	0.01 0.01	Org-005 Org-005	<0.01 <0.01	[NT] [NT]	[NT] [TN]	[NR] LCS-W1	[NR] 104%
delta-BHC Aldrin Heptachlor Epoxide	μg/L μg/L μg/L μg/L μg/L	0.01 0.01 0.01	Org-005 Org-005 Org-005	<0.01 <0.01 <0.01	[NT] [NT] [NT]	[TV] [TV] [TV]	[NR] LCS-W1 LCS-W1	[NR] 104% 105%
delta-BHC Aldrin Heptachlor Epoxide gamma-Chlordane	μg/L μg/L μg/L μg/L	0.01 0.01 0.01 0.01	Org-005 Org-005 Org-005 Org-005	<0.01 <0.01 <0.01 <0.01	[NT] [NT] [NT] [NT]	[NT] [NT] [NT] [NT]	[NR] LCS-W1 LCS-W1 [NR]	[NR] 104% 105% [NR]

		Clie	ent Referenc	e: 45	5153.03, Syd	ney Olympic Park		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in water - low level					5II#	Base II Duplicate II % RPD		Recovery
Dieldrin	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	113%
Endrin	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	107%
pp-DDD	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	103%
Endosulfan II	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
DDT	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	131%
Methoxychlor	µg/L	0.01	Org-005	<0.010	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	78	[NT]	[NT]	LCS-W1	78%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OP Pesticides in water LL						Base II Duplicate II %RPD		
Date extracted	-			11/11/2 013	[NT]	[NT]	LCS-W1	11/11/2013
Date analysed	-			11/11/2 013	[NT]	[NT]	LCS-W1	11/11/2013
Diazinon	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Dimethoate	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Ronnel	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	LCS-W1	101%
Fenitrothion	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	LCS-W1	136%
Bromophos ethyl	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Ethion	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	LCS-W1	110%
Surrogate TCMX	%		Org-008	78	[NT]	[NT]	LCS-W1	83%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Water - Low Level						Base II Duplicate II % RPD		
Date extracted	-			11/11/2 013	[NT]	[TN]	LCS-W1	11/11/2013
Date analysed	-			11/11/2 013	[NT]	[NT]	LCS-W1	11/11/2013
Arochlor 1016	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	LCS-W1	110%
Arochlor 1260	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	78	[NT]	[NT]	LCS-W1	89%

Client Reference:

Г			ent Referenc			ney Olympic Park		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II % RPD		
Date prepared	-			11/11/2 013	100526-1	11/11/2013 11/11/2013	LCS-W1	11/11/2013
Date analysed	-			11/11/2 013	100526-1	12/11/2013 12/11/2013	LCS-W1	12/11/2013
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	100526-1	6 [N/T]	LCS-W1	117%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	100526-1	<0.1 [N/T]	LCS-W1	115%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	100526-1	<1 [N/T]	LCS-W1	113%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	100526-1	<1 [N/T]	LCS-W1	114%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	100526-1	<1 [N/T]	LCS-W1	114%
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	100526-1	<0.05 <0.05	LCS-W1	104%
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	100526-1	10 [N/T]	LCS-W1	115%
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	100526-1	8 [N/T]	LCS-W1	113%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II % RPD		
Date prepared	-			12/11/2 013	[NT]	[NT]	LCS-W1	12/11/2013
Date analysed	-			12/11/2 013	[NT]	[NT]	LCS-W1	12/11/2013
Hardness	mgCaCO 3/L	3		[NT]	[NT]	[NT]	[NR]	[NR]
Calcium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	104%
Magnesium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	106%
QUALITY CONTROL HM in water - dissolved	UNITS	6 1	Dup.Sm#		Duplicate Duplicate + %RP	Spike Sm# D	Spike % Reco	very
 Date prepared			[NT]		[NT]	100526-2	12/11/201:	3
Date analysed	_		[NT]		[NT]	100526-2	12/11/201:	
Arsenic-Dissolved	µg/L		[NT]		[NT]	[NR]	[NR]	
Cadmium-Dissolved	µg/L		[NT]		[NT]	[NR]	[NR]	
Chromium-Dissolved	μg/L		[NT]		[NT]	[NR]	[NR]	
Copper-Dissolved	μg/L		[NT]		[NT]	[NR]	[NR]	
Lead-Dissolved	μg/L		[NT]		[NT]	[NR]	[NR]	
Mercury-Dissolved	μg/L		[NT]		[NT]	100526-2	104%	
Nickel-Dissolved	μg/L		[NT]		[NT]	[NR]	[NR]	
Zinc-Dissolved	µg/L		[NT]		[NT]	[NR]	[NR]	

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: No
NA: Test not required	RPD: Relative Percent Difference	NA: Te
<: Less than	>: Greater than	LCS: La

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114 ph: 02 9809 0666 Fax: 02 9809 4095

Attention: Peter Oitmaa

Sample log in details:	
Your reference:	45153.03, Sydney Olympic Park
Envirolab Reference:	100526
Date received:	08/11/13
Date results expected to be reported:	12/11/13

Samples received in appropriate condition for analysis:	YES
No. of samples provided	5 waters
Turnaround time requested:	48hr
Temperature on receipt (°C)	19.9
Cooling Method:	Ice Pack
Sampling Date Provided:	YES

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

Douglas I Geotechnics - Environn	nent · Ground	water			<u></u>							<u></u>	СНА	IN OF CUSTOD
Project Name: Project No: Project Mgr: Email: Date Required:	Pete	er Oitma er oitma:	a N a@doudla:	lob. Phone spartners.e	A-4 e: 0412 574 com.au Quote No.	· 518 · · · · · · · · ·			12 A Attn Pho	: Tania No ne: 02 991	et, Chat otaras 0 6200	Fa	NSW 20 x: 02 9910 rvices.com	6201
ample Sample D Depth	Lab ID	Sampling Date	Sample Type - vater ≪ Soil	Container type	TRH BTEX	РАН	och och opp PCB	//	Analytes VC	8 Heavy Matel	Hon	drass		Notes
841 N/A 845	12	8 1)	W	Varias										
BH6 D1 R1	m 4 57												ENVIRO	Envirolab Services
														Chatswood NSW 2007 Ph: (02) 9910 6200 100526
· · · · · · · · · · · · · · · · · · ·													Time F Receiv Temp: Coolin	Received: 13:30 red by: AW Dot/Ambient g Iconfeepart 19.9% (
												Phone:	(02) 9809 (D666
Lab Report No. Send Results to: Relinquished by:		is Partne	ers Addr Signed		lermitage Ro	ad, West Date & Date &	Time: 🦿	14 11 3		eceived By:		ax:		4095 Time: <i>8/11/13 15:5</i> Time:

Appendix H

QA/QC Information

Quality Assurance/Quality Control Procedures and Results

Field QA/QC for Soil Samples

The field QA/QC procedures for sampling described in the Douglas Partners *Field Procedures Manual* were followed at all times during the field work.

Laboratory-prepared Trip Blank and Trip Spike soil samples were taken to site during the field work, stored in the same container used to store the field samples, and transported to the laboratory with the field samples selected for analysis. The purpose of the Trip Blank was to determine whether cross-contamination of the samples was likely to have occurred. The purpose of the Trip Spike was to determine whether the significant loss of volatile contaminants may have occurred.

The results for the Trip Blank and Trip Spike soil samples are provided in Table H1.

Semale ID	Total Concentration (mg/kg) or % Recovery								
Sample ID	Benzene	Toluene	Ethyl-benzene	Xylene	TRH C ₆ – C ₉				
Blank	<0.2	<0.5	<1	<3	<25				
Spike	71%	67%	62%	65%	NT				

Table H1: Trip Blank and Trip Spike QA/QC Results for Hydrocarbons in Soils

Notes: TRH = Total recoverable hydrocarbons; NT = Not tested

The concentrations of analytes in the Trip Blank were below the laboratory detection limits which indicates that cross-contamination is unlikely to have occurred. The recovery rates for the Trip Spike analytes were within an acceptable range which indicates that the significant loss of volatile contaminants is unlikely to have occurred. The field sampling protocols are therefore considered appropriate.

A rinsate sample was collected by washing demineralised water over the decontaminated sampling equipment and collecting the rinsate for analysis. The purpose of the rinsate analysis was to determine whether decontamination procedures were adequate.

Selected results for the rinsate analysis are provided in Tables H2 and H3.

Table H2: Rinsate QA/QC Results for Hydrocarbons in Water

Samula ID	Total Concentration (μg/L)							
Sample ID	Benzene	Toluene	Ethylbenzene	Xylene	TRH C ₆ – C ₉			
Rins1	<1	<1	<1	<3	<10			

Notes: TRH = Total recoverable hydrocarbons

Sample	Total Concentration (μg/L)							
ID	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
Rins1	<50	<10	<10	<10	<30	<0.5	<20	<20

Table H3: Rinsate QA/QC Results for Heavy Metals in Water

Notes: As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead, Hg = Mercury; Ni = Nickel; Zn = Zinc

The concentrations of analytes in the rinsate samples were below the laboratory detection limits which indicates appropriate decontamination was undertaken during sampling. The field sampling protocols are therefore considered appropriate.

Field QA/QC for Water Samples

The field QA/QC procedures for sampling described in the Douglas Partners *Field Procedures Manual* were followed at all times during the field work. Groundwater sampling was undertaken using a decontaminated low-flow pump and disposable tubing. A rinsate sample was collected during groundwater sampling by decontaminating the pump with Decon90 phosphate-free detergent and collecting a sample of demineralised water that had been washed through the pump. The sample was analysed for a range of volatile contaminants and heavy metals.

The results for the rinsate sample are provided in Tables H4 and H5.

Table H4: Rinsate QA/QC Results for Hydrocarbons in Water

Comula ID	Total Concentration (μg/L)							
Sample ID	Benzene	Toluene	Ethylbenzene	Xylene	TRH C ₆ – C ₉			
R1	<1	<1	<1	<3	<10			

Notes: TRH = Total recoverable hydrocarbons

Table H5: Rinsate QA/QC Results for Heavy Metals in Water

Sample	Total Concentration (μg/L)							
ID	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
R1	<1	<0.1	2	<1	<1	<0.05	<1	<1

Notes: As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead, Hg = Mercury; Ni = Nickel; Zn = Zinc

The concentrations of analytes in the rinsate sample were either below the laboratory detection limits or were very low which indicates appropriate decontamination was undertaken during sampling. The field sampling protocols for groundwater are therefore considered appropriate.

Intra-Laboratory QA/QC Analysis on Soil Samples

Intra-laboratory analysis of soil samples was conducted as an internal check of the reproducibility of the results from the primary laboratory and as a measure of consistency of sampling techniques. The 'A' series of the triplicate QA/QC samples were analysed by the primary laboratory (Envirolab). The results were compared between the primary and 'A' samples to determine the relative percentage difference (RPD) between the samples. The RPD was then used to determine whether unacceptable errors may be present in the sample data.

Selected comparative results of the analysis of the intra-laboratory soil samples are summarised in Tables H6 to H8.

Comula ID	Total Concentration (mg/kg)								
Sample ID	Benzene	Toluene	Ethylbenzene	m + p xylene	o xylene				
BH7/0.2-0.3	<0.2	<0.5	<1	<2	<1				
TS1A	<0.2	<0.5	<1	<2	<1				
RPD	0%	0%	0%	0%	0%				
BH11/0.1-0.2	<0.2	<0.5	<1	<2	<1				
TS7A	<0.2	<0.5	<1	<2	<1				
RPD	0%	0%	0%	0%	0%				

Table H6: Intra-Laboratory QA/QC Results for BTEX in Soil

Comple ID	Total Concentration (mg/kg)							
Sample ID	$C_{6} - C_{9}$	$C_{10} - C_{14}$	C ₁₅ – C ₂₈	C ₂₉ – C ₃₆				
BH7/0.2-0.3	<25	<50	<100	<100				
TS1A	<25	<50	<100	<100				
RPD	0%	0%	0%	0%				
BH11/0.1-0.2	<25	<50	<100	<100				
TS7A	<25	<50	<100	<100				
RPD	0%	0%	0%	0%				

Sample ID		Total Concentration (mg/kg)							
	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	
BH7/0.2-0.3	<4	<0.4	6	21	16	<0.1	4	19	
TS1A	<4	<0.4	5	22	17	<0.1	5	22	
RPD	0%	0%	18%	5%	6%	0%	22%	15%	
BH11/0.1-0.2	<4	<0.4	7	23	21	<0.1	10	45	
TS7A	5	<0.4	17	25	21	<0.1	4	19	
RPD	22%	0%	83%	8%	0%	0%	86%	81%	

Table H8: Intra-Laboratory QA/QC Results for Heavy Metals in Soil

Notes: As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead, Hg = Mercury; Ni = Nickel; Zn = Zinc

A RPD of \pm 30% is generally considered acceptable for inorganic analytes and a wider range may be acceptable for organic analytes. The RPD values outside the generally acceptable range of \pm 30% are indicated by yellow shading in Table H8. These values are not considered significant due to the relatively small actual differences between the sample pairs and the heterogeneous nature of the filling materials from which the samples were obtained.

It is therefore considered that the results indicate acceptable consistency between the primary and 'A' soil samples, that suitable field sampling methodology was adopted and that adequate laboratory precision was achieved.

Inter-Laboratory QA/QC Analysis on Soil Samples

Inter-laboratory analysis of soil samples was conducted as an internal check of the reproducibility of the results from the laboratories and as a measure of consistency of sampling techniques. The 'B' series of the triplicate QA/QC samples were analysed by the secondary laboratory (Eurofins). The results were compared between the primary and 'B' samples to determine the relative percentage difference (RPD) between the samples. The RPD was then used to determine whether unacceptable errors may be present in the sample data.

Selected comparative results of the analysis of the inter-laboratory soil samples are summarised in Tables H9 to H11.

Samula ID	Total Concentration (mg/kg)							
Sample ID	Benzene	Toluene	Ethylbenzene	m + p xylene	o xylene			
BH7/0.2-0.3	<0.2	<0.5	<1	<2	<1			
TS1B	<0.1	<0.1	<0.1	<0.2	<0.1			
RPD	0%	0%	0%	0%	0%			
BH11/0.1-0.2	<0.2	<0.5	<1	<2	<1			
TS7B	<0.1	<0.1	<0.1	<0.2	<0.1			
RPD	0%	0%	0%	0%	0%			

Table H9: Inter-Laboratory QA/QC Results for BTEX in Soil

Table H10: Inter-Laboratory QA/QC Results for TRH in Soil

Semale ID	Total Concentration (mg/kg)						
Sample ID	$C_{6} - C_{9}$	$C_{10} - C_{14}$	$C_{15} - C_{28}$	$C_{29} - C_{36}$			
BH7/0.2-0.3	<25	<50	<100	<100			
TS1B	<20	<20	<50	<50			
RPD	0%	0%	0%	0%			
BH11/0.1-0.2	<25	<50	<100	<100			
TS7B	<20	<20	<50	<50			
RPD	0%	0%	0%	0%			

Table H11: Inter-Laboratory QA/QC Results for Heavy Metals in Soil

Samula ID		Total Concentration (mg/kg)						
Sample ID	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
BH7/0.2-0.3	<4	<0.4	6	21	16	<0.1	4	19
TS1B	<2	0.4	5.1	24	19	<0.05	5.8	25
RPD	0%	0%	18%	13%	17%	0%	40%	27%
BH11/0.1-0.2	<4	<0.4	7	23	21	<0.1	10	45
TS7B	<2	0.6	19	33	22	<0.05	10	57
RPD	0%	40%	92%	36%	5%	0%	0%	24%

Notes: As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead, Hg = Mercury; Ni = Nickel; Zn = Zinc

A RPD of \pm 30% is generally considered acceptable for inorganic analytes and a wider range may be acceptable for organic analytes. The RPD values outside the generally acceptable range of \pm 30% are indicated by yellow shading in Table H11. These values are not considered significant due to the relatively small actual differences between the sample pairs and the heterogeneous nature of the filling materials from which the samples were obtained.

It is therefore considered that the results indicate acceptable consistency between the primary and 'B' soil samples, that suitable field sampling methodology was adopted and that adequate laboratory precision was achieved.

Intra-Laboratory QA/QC Analysis on Water Samples

Intra-laboratory analysis of a duplicate water sample was conducted as an internal check of the reproducibility of the results from the laboratory and as a measure of consistency of sampling techniques. The results were compared within the duplicate pair to determine the relative percentage difference (RPD) between the samples. The RPD can then be used to determine whether unacceptable errors may be present in the sample data.

Selected comparative results of the analysis of the duplicate water sample are summarised in Tables H12 to H14.

Osmula ID	Total Concentration (μg/L)							
Sample ID	Benzene	Toluene	Ethylbenzene	m + p xylene	o xylene			
BH1	<1	<1	<1	<1	<2			
D1	<1	<1	<1	<1	<2			
RPD	0%	0%	0%	0%	0%			

Table H12: Intra-Laboratory QA/QC Results for BTEX in Water

Table H13: Intra-Laboratory QA/QC Results for TRH in Water

Sample ID				
Sample ID	C ₆ – C ₉	$C_{10} - C_{14}$	C ₁₅ – C ₂₈	C ₂₉ – C ₃₆
BH1	<10	<50	<100	<100
D1	<10	<50	<100	<100
RPD	0%	0%	0%	0%

Ocean la ID		Total Concentration (μg/L)							
Sample ID	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	
BH1	3	<0.1	<1	<1	<1	<0.05	10	8	
D1	6	<0.1	<1	<1	<1	<0.05	11	<1	
RPD	67%	0%	0%	0%	0%	0%	10%	156%	

Table H14: Intra-Laboratory QA/QC Results for Heavy Metals in Water

Notes: As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead, Hg = Mercury; Ni = Nickel; Zn = Zinc

A RPD of \pm 30% is generally considered acceptable for inorganic analytes and a wider range may be acceptable for organic analytes. The RPD values outside the generally acceptable range of \pm 30% are indicated by yellow shading in the tables. These values are not considered significant due to the relatively small actual differences between the contaminant concentrations.

It is therefore considered that the results indicate acceptable consistency between the duplicate water samples, that suitable field sampling methodology was adopted and that adequate laboratory precision was achieved.

Laboratory QA/QC Procedures

Quality control procedures used during the analyses include:

Reagent Blank

A reagent blank sample is prepared and analysed at the beginning of every analytical run, following calibration of the analytical apparatus. The laboratory results for reagent blanks indicated that concentrations of all analytes were below respective laboratory practical quantitation limits.

Duplicate

This is the complete duplicate of a sample from the process batch. The results of the two samples are compared to laboratory acceptance criteria and exceedences highlighted. No exceedences were detected.

Matrix Spike

A portion of a sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and determine whether matrix interference exists. The matrix spike recovery is compared to laboratory acceptance criteria. No exceedences were noted.

Laboratory Control Sample

This is a standard reference sample or control matrix used to check the analytical process. The results were within acceptable limits.

Surrogate Spike

Surrogates are known additions of known compounds to each sample, blank, matrix spike and laboratory control sample. The surrogates are similar to the analyte of interest, however are not expected to be detected in real samples. The results were acceptable.

Appendix I

PID Calibration Certificate

CALIBRATION RECORD

Project:	Sydney Olympic Park
Project Number:	45153.03

Calibrated Equipment

Model:	MiniRAE2000 PID
Serial No.:	110003382
DP Reference:	DP 400
Other:	10.6eV Lamp

Calibration

Date(s):	26 Sep 2013
Operator(s):	AG
Zero Gas:	ambient air
Span Gas:	isobutylene
Span Gas Concentration:	100
Response Factor:	1.0

Approved:	AG
Date:	26 Sep 2013