		Clie	ent Referenc	e: G	EOTL00V043	03AF		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			10/12/2 012	[NT]	[NT]	LCS-8	10/12/2012
Date analysed	-			11/12/2 012	[NT]	[NT]	LCS-8	12/12/2012
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-8	120%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-8	120%
vTPHC6 - C10 less BTEX(F1)	mg/kg	25	Org-016	[NT]	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-8	124%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-8	118%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-8	117%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-8	121%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-8	119%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	112	[NT]	[NT]	LCS-8	118%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			10/12/2 012	[NT]	[NT]	LCS-3	10/12/2012
Date analysed	-			11/12/2 012	[NT]	[NT]	LCS-3	11/12/2012
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	78%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	102%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	93%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	78%
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	[NT]	[NT]	[NT]	[NR]	[NR]
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	102%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	93%
Surrogate o-Terphenyl	%		Org-003	97	[NT]	[NT]	LCS-3	113%

GEOTL00V04303AF

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil					-	Base II Duplicate II % RPD		,
Date extracted	-			10/12/2 012	[NT]	[TN]	LCS-3	10/12/2012
Date analysed	-			11/12/2 012	[NT]	[NT]	LCS-3	12/12/2012
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	102%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	100%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	100%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	100%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	100%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	100%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-3	106%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	93	[NT]	[NT]	LCS-3	102%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals n soil					Sil₩	Base II Duplicate II % RPD		Recovery
Date digested	-			10/12/2 012	[NT]	[NT]	LCS-2	10/12/2012
Date analysed	-			11/12/2 012	[NT]	[TM]	LCS-2	11/12/2012
Arsenic	mg/kg	4	Metals-020 ICP-AES	⊲4	[NT]	[TM]	LCS-2	97%
Cadmium	mg/kg	0.5	Metals-020 ICP-AES	<0.5	[NT]	[TM]	LCS-2	97%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[TM]	LCS-2	101%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[TM]	LCS-2	101%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[TM]	LCS-2	98%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[TM]	LCS-2	99%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[TИ]	LCS-2	101%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[TM]	LCS-2	101%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Date prepared	-			[NT]	1			
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: No
NA: Test not required	RPD: Relative Percent Difference	NA: Te
<: Less than	>: Greater than	LCS: La

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

82992

Client: Coffey Environment

Level 19, Tower B, Citadel Tower 799 Pacific Hwy Chatswood NSW 2067

Attention: Matthew Locke

Sample log in details:

Your Reference:	GEOTLCOV24	4303 <i>A</i>	\F
No. of samples:	1 Soil		
Date samples received / completed instructions received	12/12/2012	/	12/12/2012

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 19/12/12
 /
 17/12/12

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

-Alana Nancy Zhang

Chemist

Kluigh Morgen

Rhian Morgan Reporting Supervisor

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	82992-1
Your Reference		QC15A
Date Sampled		7/12/2012
Type of sample		Soil
Date extracted	-	13/12/2012
Date analysed	-	14/12/2012
TRHC6 - C9	mg/kg	<25
TRHC6 - C 10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	116

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	82992-1
Your Reference		QC15A
Date Sampled		7/12/2012
Type of sample		Soil
Date extracted	-	13/12/2012
Date analysed	-	14/12/2012
TRHC10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC₂ - C₃	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	88

PAHs in Soil		
Our Reference:	UNITS	82992-1
Your Reference		QC15A
Date Sampled		7/12/2012
Type of sample		Soil
Date extracted	-	13/12/2012
Date analysed	-	14/12/2012
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.2
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.3
Pyrene	mg/kg	0.3
Benzo(a)anthracene	mg/kg	0.2
Chrysene	mg/kg	0.2
Benzo(b+k)fluoranthene	mg/kg	0.3
Benzo(a)pyrene	mg/kg	0.18
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1
Benzo(a)pyrene TEQ	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	101

Acid Extractable metals in soil		
Our Reference:	UNITS	82992-1
Your Reference		QC15A
Date Sampled		7/12/2012
Type of sample		Soil
Date digested	-	13/12/2012
Date analysed	-	13/12/2012
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.5
Chromium	mg/kg	13
Copper	mg/kg	30
Lead	mg/kg	37
Mercury	mg/kg	<0.1
Nickel	mg/kg	7
Zinc	mg/kg	35

Moisture		
Our Reference:	UNITS	82992-1
Your Reference		QC15A
Date Sampled		7/12/2012
Type of sample		Soil
Date prepared	-	13/12/2012
Date analysed	-	14/12/2012
Moisture	%	7.2

Client Reference: GEOTLCOV24303AF

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

		Clie	ent Referenc	e: G	EOTLCOV24	303AF		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			13/12/2 012	[NT]	[NT]	LCS-4	13/12/2012
Date analysed	-			14/12/2 012	[NT]	[NT]	LCS-4	14/12/2012
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-4	120%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-4	120%
vTPHC6 - C 10 less BTEX(F1)	mg/kg	25	Org-016	[NT]	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-4	127%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-4	127%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-4	106%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-4	121%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-4	123%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	109	[NT]	[NT]	LCS-4	108%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			13/12/2 012	[NT]	[NT]	LCS-2	13/12/2012
Date analysed	-			14/12/2 012	[NT]	[NT]	LCS-2	14/12/2012
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	79%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	98%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	88%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	79%
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	[NT]	[NT]	[NT]	[NR]	[NR]
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	98%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	88%
Surrogate o-Terphenyl	%		Org-003	94	[NT]	[NT]	LCS-2	120%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			13/12/2 012	[NT]	[NT]	LCS-2	13/12/2012
Date analysed	-			14/12/2 012	[NT]	[NT]	LCS-2	14/12/2012
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	95%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	93%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	96%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	95%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	97%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	95%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-2	103%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[TN]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	103	[NT]	[NT]	LCS-2	98%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
Acid Extractable metals						Base II Duplicate II % RPD		
in soil								
Date digested	-			13/12/2 012	[NT]	[NT]	LCS-3	13/12/2012
Date analysed	-			13/12/2 012	[NT]	[NT]	LCS-3	13/12/2012
Arsenic	mg/kg	4	Metals-020 ICP-AES	≪4	[NT]	[TN]	LCS-3	97%
Cadmium	mg/kg	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-3	98%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	96%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	98%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	95%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-3	90%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	95%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	96%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
Moisture								
Date prepared	-			[NT]	1			
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: No
NA: Test not required	RPD: Relative Percent Difference	NA: Te
<: Less than	>: Greater than	LCS: La

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

83091

Client: Coffey Environment

Level 19, Tower B, Citadel Tower 799 Pacific Hwy Chatswood NSW 2067

Attention: Matthew Locke

Sample log in details:

Your Reference:	GEOTLCOV24303AF			
No. of samples:	1 Soil			
Date samples received / completed instructions received	13/12/12	/ 13/12/12		

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 20/12/12
 / 19/12/12

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Juian Morgen

Rhian Morgan Reporting Supervisor

while Hinoko Mivazaki Chemist

Jeremy Faircloth Chemist

Envirolab Reference: 83091 Revision No: R 00

r		
vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	83091-1
Your Reference		QC19A
Date Sampled		12/12/2012
Type of sample		Soil
Date extracted	-	14/12/2012
Date analysed	-	14/12/2012
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	103

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	83091-1
Your Reference		QC19A
Date Sampled		12/12/2012
Type of sample		Soil
Date extracted	-	14/12/2012
Date analysed	-	15/12/2012
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	94

PAHs in Soil		
Our Reference:	UNITS	83091-1
Your Reference		QC19A
Date Sampled		12/12/2012
Type of sample		Soil
Date extracted	-	14/12/2012
Date analysed	-	14/12/2012
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	#

Acid Extractable metals in soil		
Our Reference:	UNITS	83091-1
Your Reference		QC19A
Date Sampled		12/12/2012
Type of sample		Soil
Date digested	-	14/12/2012
Date analysed	-	14/12/2012
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.5
Chromium	mg/kg	4
Copper	mg/kg	15
Lead	mg/kg	23
Mercury	mg/kg	0.3
Nickel	mg/kg	4
Zinc	mg/kg	25

Moisture		
Our Reference:	UNITS	83091-1
Your Reference		QC19A
Date Sampled		12/12/2012
Type of sample		Soil
Date prepared	-	14/12/12
Date analysed	-	17/12/12
Moisture	%	28

Client Reference: GEOTLCOV24303AF

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

	_	Clie	ent Referenc	e: G	EOTLCOV24	303AF		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		
Date extracted	-			14/12/2 012	[NT]	[NT]	LCS-5	14/12/2012
Date analysed	-			14/12/2 012	[NT]	[NT]	LCS-5	14/12/2012
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-5	120%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-5	120%
vTPHC6 - C10 less BTEX(F1)	mg/kg	25	Org-016	25	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-5	120%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-5	116%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-5	111%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-5	117%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-5	127%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	119	[NT]	[NT]	LCS-5	117%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			14/12/2 012	[NT]	[NT]	LCS-7	14/12/2012
Date analysed	-			15/12/2 012	[NT]	[NT]	LCS-7	15/12/2012
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-7	85%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-7	101%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-7	89%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-7	85%
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	50	[NT]	[NT]	[NR]	[NR]
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-7	101%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-7	89%
Surrogate o-Terphenyl	%		Org-003	102	[NT]	[NT]	LCS-7	85%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			14/12/2 012	[NT]	[NT]	LCS-5	14/12/2012
Date analysed	-			14/12/2 012	[NT]	[NT]	LCS-5	14/12/2012
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	102%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	100%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	103%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	104%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	104%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	98%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-5	104%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	0.5	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	108	[NT]	[NT]	LCS-5	96%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
Acid Extractable metals						Base II Duplicate II % RPD		
in soil								
Date digested	-			14/12/2 012	[NT]	[TN]	LCS-3	14/12/2012
Date analysed	-			14/12/2 012	[NT]	[TM]	LCS-3	14/12/2012
Arsenic	mg/kg	4	Metals-020 ICP-AES	≪4	[NT]	[TИ]	LCS-3	89%
Cadmium	mg/kg	0.5	Metals-020 ICP-AES	<0.5	[NT]	[ТИ]	LCS-3	88%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[T/]	LCS-3	89%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[T/]	LCS-3	90%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[T/]	LCS-3	89%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[T/]	LCS-3	100%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[T/]	LCS-3	90%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[TN]	LCS-3	90%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
Moisture								
Date prepared	-			[NT]	1			
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				

Report Comments:

PAH(in soil)# Percent recovery is not possible to report due to interference from analytes (other than those being tested) in the sample/s.

Asbestos ID was analysed by Approved Identifier:	Not applicable for this job
Asbestos ID was authorised by Approved Signatory:	Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

83249

Client: Coffey Environment

Level 19, Tower B, Citadel Tower 799 Pacific Hwy Chatswood NSW 2067

Attention: Matthew Locke

Sample log in details:

Your Reference:	GEOTLCOV24303AF			
No. of samples:	2 Soils			
Date samples received / completed instructions received	17/12/2012	/	17/12/2012	

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 4/01/13 / 2/01/13 Date of Preliminary Report: Not issued NATA accreditation number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Alana Nancy Zhang

Chemist

Chign Morger

Rhian Morgan Reporting Supervisor

Alex MacLean Chemist

Jeremy Faircloth Chemist

Page 1 of 11

Envirolab Reference: **Revision No:**

83249 R 00

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	83249-1
Your Reference		QC23A
Date Sampled		13/12/2012
Type of sample		Soil
Date extracted	-	18/12/2012
Date analysed	-	19/12/2012
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	99

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	83249-1
Your Reference		QC23A
Date Sampled		13/12/2012
Type of sample		Soil
Date extracted	-	18/12/2012
Date analysed	-	19/12/2012
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	96

PAHs in Soil		
Our Reference:	UNITS	83249-1
Your Reference		QC23A
Date Sampled		13/12/2012
Type of sample		Soil
Date extracted	-	18/12/2012
Date analysed	-	18/12/2012
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.2
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.7
Pyrene	mg/kg	0.8
Benzo(a)anthracene	mg/kg	0.4
Chrysene	mg/kg	0.3
Benzo(b+k)fluoranthene	mg/kg	0.7
Benzo(a)pyrene	mg/kg	0.50
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2
Benzo(a)pyrene TEQ	mg/kg	1
Surrogate p-Terphenyl-d14	%	102

Acid Extractable metals in soil		
Our Reference:	UNITS	83249-1
Your Reference		QC23A
Date Sampled		13/12/2012
Type of sample		Soil
Date digested	-	18/12/2012
Date analysed	-	18/12/2012
Arsenic	mg/kg	7
Cadmium	mg/kg	<0.5
Chromium	mg/kg	11
Copper	mg/kg	50
Lead	mg/kg	75
Mercury	mg/kg	0.2
Nickel	mg/kg	11
Zinc	mg/kg	110

Moisture		
Our Reference:	UNITS	83249-1
Your Reference		QC23A
Date Sampled		13/12/2012
Type of sample		Soil
Date prepared	-	18/12/2012
Date analysed	-	19/12/2012
Moisture	%	7.5

Client Reference: GEOTLCOV24303AF

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

		Clie	ent Referenc	e: G	EOTLCOV24	303AF		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		,
Date extracted	-			18/12/2 012	[NT]	[NT]	LCS-1	18/12/2012
Date analysed	-			19/12/2 012	[NT]	[NT]	LCS-1	19/12/2012
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	115%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	115%
vTPHC6 - C10 less BTEX(F1)	mg/kg	25	Org-016	[NT]	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-1	126%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-1	96%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	105%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-1	121%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	122%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	104	[NT]	[NT]	LCS-1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			18/12/2 012	[NT]	[NT]	LCS-1	18/12/2012
Date analysed	-			19/12/2 012	[NT]	[NT]	LCS-1	19/12/2012
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	91%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	107%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	96%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	140%
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	[NT]	[NT]	[NT]	[NR]	[NR]
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	93%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	96%
Surrogate o-Terphenyl	%		Org-003	96	[NT]	[NT]	LCS-1	105%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			18/12/2 012	[NT]	[NT]	LCS-1	18/12/2012
Date analysed	-			18/12/2 012	[NT]	[NT]	LCS-1	18/12/2012
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	102%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	104%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	106%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	108%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	109%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	103%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-1	108%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	105	[NT]	[NT]	LCS-1	96%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Acid Extractable metals					Sm#	Base II Duplicate II % RPD		Recovery
in soil						Base II Duplicate II %RPD		
Date digested	-			18/12/2 012	[NT]	[NT]	LCS-2	18/12/2012
Date analysed	-			18/12/2 012	[NT]	[ТИ]	LCS-2	18/12/2012
Arsenic	mg/kg	4	Metals-020 ICP-AES	⊲4	[NT]	[TN]	LCS-2	98%
Cadmium	mg/kg	0.5	Metals-020 ICP-AES	<0.5	[NT]	[T/]	LCS-2	99%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	98%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	102%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	95%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-2	99%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	98%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	97%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Date prepared	-			[NT]	1			
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				
Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: No
NA: Test not required	RPD: Relative Percent Difference	NA: Te
<: Less than	>: Greater than	LCS: L

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

83601

Client: Coffey Environment

Level 19, Tower B, Citadel Tower 799 Pacific Hwy Chatswood NSW 2067

Attention: Matthew Locke

Sample log in details:

Your Reference:	GEOTLCOV2	4303AF
No. of samples:	2 Soils	
Date samples received / completed instructions received	21/12/12	/ 21/12/12

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 10/01/13
 / 3/01/13

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Giovanni Agosti Technical Manager

Jeremy Faircloth Chemist

nist

vTRH(C6-C10)/BTEXN in Soil			
Our Reference:	UNITS	83601-1	83601-2
Your Reference		QC33A	QC35A
Date Sampled		17/12/2012	17/12/2012
Type of sample		Soil	Soil
Date extracted	-	28/12/2012	28/12/2012
Date analysed	-	29/12/2012	29/12/2012
TRHC6 - C9	mg/kg	<25	<25
TRHC 6 - C10	mg/kg	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	120	111

svTRH (C10-C40) in Soil			
Our Reference:	UNITS	83601-1	83601-2
Your Reference		QC33A	QC35A
Date Sampled		17/12/2012	17/12/2012
Type of sample		Soil	Soil
Date extracted	-	28/12/2012	28/12/2012
Date analysed	-	02/01/2013	02/01/2013
TRHC10 - C14	mg/kg	<50	<50
TRHC 15 - C28	mg/kg	180	250
TRHC29 - C36	mg/kg	150	180
TRH>C10-C16	mg/kg	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH>C16-C34	mg/kg	270	390
TRH>C34-C40	mg/kg	<100	<100
Surrogate o-Terphenyl	%	122	123

PAHs in Soil			
Our Reference:	UNITS	83601-1	83601-2
Your Reference		QC33A	QC35A
Date Sampled		17/12/2012	17/12/2012
Type of sample		Soil	Soil
Date extracted	-	28/12/2012	28/12/2012
Date analysed	-	28/12/2012	28/12/2012
Naphthalene	mg/kg	1.4	0.3
Acenaphthylene	mg/kg	0.2	0.9
Acenaphthene	mg/kg	0.3	<0.1
Fluorene	mg/kg	0.5	0.3
Phenanthrene	mg/kg	1.6	4.6
Anthracene	mg/kg	0.5	1.4
Fluoranthene	mg/kg	2.1	7.9
Pyrene	mg/kg	2.0	8.0
Benzo(a)anthracene	mg/kg	1.1	4.6
Chrysene	mg/kg	1.0	3.9
Benzo(b+k)fluoranthene	mg/kg	1.8	6.5
Benzo(a)pyrene	mg/kg	1.1	4.7
Indeno(1,2,3-c,d)pyrene	mg/kg	0.7	2.7
Dibenzo(a,h)anthracene	mg/kg	0.1	0.4
Benzo(g,h,i)perylene	mg/kg	0.6	2.1
Benzo(a)pyrene TEQ	mg/kg	2	7.0
Surrogate p-Terphenyl-d14	%	114	117

Moisture			
Our Reference:	UNITS	83601-1	83601-2
Your Reference		QC33A	QC35A
Date Sampled		17/12/2012	17/12/2012
Type of sample		Soil	Soil
Date prepared	-	28/12/12	28/12/12
Date analysed	-	02/01/13	02/01/13
Moisture	%	20	21

Client Reference: GEOTLCOV24303AF

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. $F2 = (>C10-C16)$ -Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

Client Reference: GEOTLCOV24303AF								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II % RPD		
Date extracted	-			28/12/2 012	[NT]	[NT]	LCS-6	28/12/2012
Date analysed	-			29/12/2 012	[NT]	[NT]	LCS-6	29/12/2012
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-6	119%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-6	119%
vTPHC6 - C10 less BTEX (F1)	mg/kg	25	Org-016	[NT]	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-6	125%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-6	119%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-6	111%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-6	119%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-6	122%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	120	[NT]	[NT]	LCS-6	112%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			28/12/2 012	[NT]	[NT]	LCS-6	28/12/2012
Date analysed	-			02/01/2 013	[NT]	[TN]	LCS-6	02/01/2013
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-6	94%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-6	111%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-6	99%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-6	94%
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	[NT]	[NT]	[NT]	[NR]	[NR]
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-6	111%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-6	99%
Surrogate o-Terphenyl	%		Org-003	108	[NT]	[NT]	LCS-6	77%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			28/12/2 012	[NT]	[NT]	LCS-6	28/12/2012
Date analysed	-			28/12/2 012	[NT]	[NT]	LCS-6	28/12/2012
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-6	111%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-6	111%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-6	107%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-6	106%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-6	108%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-6	109%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-6	122%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	121	[NT]	[NT]	LCS-6	117%

QUALITYCONTROL Moisture	UNITS	PQL	METHOD	Blank
Date prepared	-			[NT]
Date analysed	-			[NT]
Moisture	%	0.1	Inorg-008	[NT]

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: No
NA: Test not required	RPD: Relative Percent Difference	NA: Te
<: Less than	>: Greater than	LCS: L

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

83602

Client: Coffey Environment

Level 19, Tower B, Citadel Tower 799 Pacific Hwy Chatswood NSW 2067

Attention: Matthew Locke

Sample log in details:

Your Reference:	GEOTLCOV24303AF, SICEEP
No. of samples:	3 Soils
Date samples received / completed instructions received	21/12/12 / 21/12/12

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 10/01/13
 / 3/01/13

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Kluigh Morgen

Rhian Morgan Reporting Supervisor

Jeremy Faircloth Chemist

Envirolab Reference: 83602 Revision No: R 00

Client Reference: GEOTLCOV24303AF, SICEEP

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	83602-3
Your Reference		QC31A
Date Sampled		17/12/2012
Type of sample		Soil
Date extracted	-	28/12/2012
Date analysed	-	29/12/2012
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	90

GEOTLCOV24303AF, SICEEP

r		
svTRH (C10-C40) in Soil		
Our Reference:	UNITS	83602-3
Your Reference		QC31A
Date Sampled		17/12/2012
Type of sample		Soil
Date extracted	-	28/12/2012
Date analysed	-	02/01/2013
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	100
TRHC29 - C36	mg/kg	330
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	320
TRH>C34-C40	mg/kg	250
Surrogate o-Terphenyl	%	117

GEOTLCOV24303AF, SICEEP

PAHs in Soil		
Our Reference:	UNITS	83602-3
Your Reference		QC31A
Date Sampled		17/12/2012
Type of sample		Soil
Date extracted	-	28/12/2012
Date analysed	-	28/12/2012
Naphthalene	mg/kg	0.5
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.5
Anthracene	mg/kg	0.1
Fluoranthene	mg/kg	0.6
Pyrene	mg/kg	0.6
Benzo(a)anthracene	mg/kg	0.3
Chrysene	mg/kg	0.3
Benzo(b+k)fluoranthene	mg/kg	0.4
Benzo(a)pyrene	mg/kg	0.29
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2
Benzo(a)pyrene TEQ	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	114

Client Reference: GEOTLCOV24303AF, SICEEP

Moisture		
Our Reference:	UNITS	83602-3
Your Reference		QC31A
Date Sampled		17/12/2012
Type of sample		Soil
 Date prepared	-	28/12/12
Date analysed	-	02/01/13
Moisture	%	18

Client Reference: GEOTLCOV24303AF, SICEEP

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#	,		Recovery
/TRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		
Date extracted	-			28/12/2 012	[NT]	[NT]	LCS-3	28/12/2012
Date analysed	-			29/12/2 012	[NT]	[NT]	LCS-3	29/12/2012
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	104%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	104%
vTPHC6 - C10 less BTEX(F1)	mg/kg	25	Org-016	[NT]	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-3	109%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-3	102%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	100%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-3	104%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	105%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	97	[NT]	[NT]	LCS-3	88%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			28/12/2 012	[NT]	[NT]	LCS-3	28/12/2012
Date analysed	-			02/01/2 013	[NT]	[NT]	LCS-3	02/01/2013
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	84%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	100%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	94%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	84%
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	[NT]	[NT]	[NT]	[NR]	[NR]
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	100%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	94%
Surrogate o-Terphenyl	%		Org-003	101	[NT]	[NT]	LCS-3	90%

Client R	eference:
----------	-----------

GEOTLCOV24303AF, SICEEP

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			28/12/2 012	[NT]	[NT]	LCS-3	28/12/2012
Date analysed	-			28/12/2 012	[NT]	[NT]	LCS-3	28/12/2012
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	108%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	104%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	108%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	111%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	111%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	109%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-3	115%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	126	[NT]	[NT]	LCS-3	115%

GEOTLCOV24303AF, SICEEP

QUALITYCONTROL	UNITS	PQL	METHOD	Blank
Moisture				
Date prepared	-			[NT]
Date analysed	-			[NT]
Moisture	%	0.1	Inorg-008	[NT]

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT:
NA: Test not required	RPD: Relative Percent Difference	NA:
<: Less than	>: Greater than	LCS

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Coffey Geotechnics Pty Ltd Chatswood
Contact name:	Matthew Locke
Client job number:	ADDITIONAL: SICEEP GEOTLCOV24303AF
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Dec 17, 2012 3:59 PM
mgt-LabMark reference:	363634

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \checkmark Sample Temperature of a random sample selected from the batch as recorded by mgt-LabMark Sample Receipt : 4 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Organic samples had Teflon liners.
- \times Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Notes

Additional analysis request from reports: 361385, 361703, 361794, 362175, 362306, and 362572

Contact notes

If you have any questions with respect to these samples please contact:

Jean Heng on Phone : (+61) (2) 9900 8400 or by e.mail: jean.heng@mgtlabmark.com.au

Results will be delivered electronically via e.mail to Matthew Locke - Matthew_Locke@coffey.com.

mgt-LabMark Sample Receipt

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

35Years of Environmental Analysis & Experience - fully Australian Owned

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:Matthew Locke

Report

Client Reference Received Date 363634-L ADDITIONAL: SICEEP GEOTLCOV24303AF Dec 17, 2012

BH106_(0.13-BH102_(0.5-BH109_(1.5-BH111_(0.35-**Client Sample ID** 0.6)_A 0.23)_A 1.6) 0.47) TCLP TCLP Sample Matrix TCLP TCLP mgt-LabMark Sample No. S12-De14967 S12-De14968 S12-De14970 S12-De14971 Date Sampled Dec 03, 2012 Dec 03, 2012 Dec 04, 2012 Dec 03, 2012 <u>LO</u>R Test/Reference Unit Polyaromatic Hydrocarbons (PAH) 0.001 < 0.001 Benzo(a)pyrene mg/L -_ -Heavy Metals 0.01 0.03 Lead mg/L 0.06 Nickel 0.05 mg/L 0.12 < 0.05 --% Moisture 0.1 % 4.3 14 11 16 Toxicity Characteristic Leaching Procedure (TCLP) Leachate Fluid^{C01} comment 1.0 1.0 1.0 1.0 pH (TCLP - HCl addition) 0.1 units 1.7 1.6 1.6 1.5 pH (TCLP - initial) 0.1 units 7.7 9.7 4.2 8.9 pH (TCLP - off) 0.1 units 5.1 5.3 4.4 5.3

Client Sample ID Sample Matrix			BH115_(0.33- 0.43) TCLP	BH116_(0.7- 0.8) TCLP	BH127_(0.3- 0.5)_A TCLP	BH129_(0.28- 0.38) TCLP
mgt-LabMark Sample No.			S12-De14972	S12-De14973	S12-De14974	S12-De14975
Date Sampled			Dec 07, 2012	Dec 06, 2012	Dec 10, 2012	Dec 10, 2012
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-	-
Heavy Metals						
Lead	0.01	mg/L	0.17	0.02	-	0.08
Nickel	0.05	mg/L	-	< 0.05	0.08	-
% Moisture	0.1	%	9.4	15	7.0	11
Toxicity Characteristic Leaching Procedure (TCLP)						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (TCLP - HCl addition)	0.1	units	1.5	1.5	1.6	1.6
pH (TCLP - initial)	0.1	units	8.2	8.7	9.2	5.7
pH (TCLP - off)	0.1	units	4.8	4.5	5.5	5.1

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			BH102_(0.5- 0.6)_A	BH101A_(0.12- 0.22)	BH106_(0.13- 0.23)_A	BH107_(0.17- 0.27)
Sample Matrix			ASLP	ASLP	ASLP	ASLP
mgt-LabMark Sample No.			S12-De14976	S12-De14977	S12-De14978	S12-De14979
Date Sampled			Dec 03, 2012	Nov 29, 2012	Dec 03, 2012	Dec 06, 2012
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Cadmium	0.0005	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Chromium	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Copper	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Lead	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc	0.005	mg/L	< 0.005	0.016	< 0.005	< 0.005
% Moisture	0.1	%	4.1	12	15	9.0
Australian Standard Leaching Procedure (ASLP)	1 -				_	
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (ASLP - initial)	0.1	units	8.8	8.6	9.8	10
pH (ASLP - off)	0.1	units	8.8	8.7	9.9	5.5

Client Sample ID			BH109_(1.5- 1.6)	BH110_(0.15- 0.25)	BH111_(0.35- 0.47)	BH112_(0.34- 0.4)
Sample Matrix			ASLP	ASLP	ASLP	ASLP
mgt-LabMark Sample No.			S12-De14981	S12-De14982	S12-De14983	S12-De14984
Date Sampled			Dec 04, 2012	Dec 04, 2012	Nov 30, 2012	Nov 30, 2012
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.001	mg/L	< 0.001	-	-	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	-	-	< 0.001
Anthracene	0.001	mg/L	< 0.001	-	-	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	-	-	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-	< 0.001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.002	mg/L	< 0.002	-	-	< 0.002
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-	< 0.001
Chrysene	0.001	mg/L	< 0.001	-	-	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	-	-	< 0.001
Fluorene	0.001	mg/L	< 0.001	-	-	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-	< 0.001
Naphthalene	0.001	mg/L	< 0.001	-	-	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	-	-	< 0.001
Pyrene	0.001	mg/L	< 0.001	-	-	< 0.001
Total PAH	0.002	mg/L	< 0.002	-	-	< 0.002
2-Fluorobiphenyl (surr.)	1	%	96	-	-	57
p-Terphenyl-d14 (surr.)	1	%	102	-	-	63
Heavy Metals						
Arsenic	0.005	mg/L	< 0.005	< 0.005	0.008	< 0.005
Cadmium	0.0005	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Chromium	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Copper	0.005	mg/L	< 0.005	< 0.005	0.007	< 0.005

Client Sample ID			BH109_(1.5- 1.6)	BH110_(0.15- 0.25)	BH111_(0.35- 0.47)	BH112_(0.34- 0.4)
Sample Matrix			ASLP	ASLP	ASLP	ASLP
mgt-LabMark Sample No.			S12-De14981	S12-De14982	S12-De14983	S12-De14984
Date Sampled			Dec 04, 2012	Dec 04, 2012	Nov 30, 2012	Nov 30, 2012
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc	0.005	mg/L	0.007	< 0.005	< 0.005	< 0.005
% Moisture	0.1	%	19	7.6	9.3	9.1
Australian Standard Leaching Procedure (ASLP)						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (ASLP - initial)	0.1	units	4.5	8.3	8.9	7.5
pH (ASLP - off)	0.1	units	6.4	9.4	8.2	8.9

Client Sample ID			BH115_(1.0- 1.1)	BH116_(0.04- 0.1)	BH117_(0.25- 0.35)	BH117_(0.9- 1.0)
Sample Matrix			ASLP	ASLP	ASLP	ASLP
mgt-LabMark Sample No.			S12-De14985	S12-De14986	S12-De14987	S12-De14988
Date Sampled			Dec 07, 2012	Dec 06, 2012	Dec 05, 2012	Dec 05, 2012
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions					
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	0.1	0.3	< 0.1	0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	0.1	0.3	< 0.1	0.1
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
2-Fluorobiphenyl (surr.)	1	%	110	110	98	84
p-Terphenyl-d14 (surr.)	1	%	122	104	114	104
Heavy Metals		-				
Arsenic	0.005	mg/L	< 0.005	< 0.005	0.008	< 0.005
Cadmium	0.0005	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Chromium	0.005	mg/L	< 0.005	0.014	< 0.005	< 0.005

Client Sample ID			BH115_(1.0- 1.1)	BH116_(0.04- 0.1)	BH117_(0.25- 0.35)	BH117_(0.9- 1.0)
Sample Matrix			ASLP	ASLP	ASLP	ASLP
mgt-LabMark Sample No.			S12-De14985	S12-De14986	S12-De14987	S12-De14988
Date Sampled			Dec 07, 2012	Dec 06, 2012	Dec 05, 2012	Dec 05, 2012
Test/Reference	LOR	Unit				
Heavy Metals						
Copper	0.005	mg/L	< 0.005	< 0.005	0.006	< 0.005
Lead	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc	0.005	mg/L	< 0.005	< 0.005	0.005	< 0.005
% Moisture	0.1	%	11	5.4	10	8.2
Australian Standard Leaching Procedure (ASLP)						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (ASLP - initial)	0.1	units	8.2	10	9.1	7.7
pH (ASLP - off)	0.1	units	8.8	9.8	9.9	8.9

Client Sample ID			BH127_(0.3- 0.5)_A	BH129_(0.28- 0.38)
Sample Matrix			ASLP	ASLP
mgt-LabMark Sample No.			S12-De14989	S12-De14990
Date Sampled			Dec 10, 2012	Dec 10, 2012
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	0.005	mg/L	< 0.005	< 0.005
Cadmium	0.0005	mg/L	< 0.0005	< 0.0005
Chromium	0.005	mg/L	< 0.005	< 0.005
Copper	0.005	mg/L	< 0.005	< 0.005
Lead	0.005	mg/L	< 0.005	< 0.005
Mercury	0.0001	mg/L	< 0.0001	< 0.0001
Nickel	0.005	mg/L	< 0.005	< 0.005
Zinc	0.005	mg/L	< 0.005	< 0.005
% Moisture	0.1	%	6.9	10
Australian Standard Leaching Procedure (ASLP)				
Leachate Fluid ^{C01}		comment	4.0	4.0
pH (ASLP - initial)	0.1	units	9.2	8.0
pH (ASLP - off)	0.1	units	9.4	8.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 20, 2012	7 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Polyaromatic Hydrocarbons (PAH)	Sydney	Dec 20, 2012	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8	Sydney	Dec 18, 2012	28 Day
- Method: E022 Acid Extractable metals in Soils & E026 Mercury			
Heavy Metals	Sydney	Dec 18, 2012	180 Day
- Method: E022 Acid Extractable metals in Soils			
% Moisture	Sydney	Dec 18, 2012	0 Day
- Method: E005 Moisture Content			
Toxicity Characteristic Leaching Procedure (TCLP)	Sydney	Dec 18, 2012	0 Day
Mathadi E010 TOLD Branavatian			

- Method: E019 TCLP Preparation

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address:	s: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067					F	Order Repor Phone Fax:	't #:			634 2 94 2 94			,
Client Job No	o.: ADDITI	ONAL: SICEEP (GEOTLCOV243	03AF										mgt-LabMark Client Manager: Jean Heng
		Sample Detail			% Moisture	Benzo(a)pyrene	Lead	Nickel	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Australian Standard Leaching Procedure (ASLP)	Toxicity Characteristic Leaching Procedure (TCLP)	Metals M8	Polyaromatic Hydrocarbons (PAH)	Polyaromatic Hydrocathors (PAH)
	ere analysis is o													
	ooratory - NATA atory - NATA Sit	Site # 1254 & 1	4271		x	X	x	X	x	Х	Х	Х	x	
	oratory - NATA Sil								^	^	^	^	^	<u>^</u>
External Labo														
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
BH102_(0.5- 0.6)_A	Dec 03, 2012		TCLP	S12-De14967	х			х			х			
BH106_(0.13- 0.23)_A	Dec 03, 2012		TCLP	S12-De14968	х			х			х			
BH107_(1.5- 1.6)	Dec 06, 2012		TCLP	S12-De14969	х			х			х			
BH109_(1.5- 1.6)	Dec 04, 2012		TCLP	S12-De14970	x	х	х				х			
BH111_(0.35- 0.47)	Dec 03, 2012		TCLP	S12-De14971	х		х				х			
BH115_(0.33- 0.43)	Dec 07, 2012		TCLP	S12-De14972	х	x	х				х			

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Address:	Company Name: Coffey Geotechnics Pty Ltd Chatswood Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067 Client Job No.: ADDITIONAL: SICEEP GEOTLCOV24303AF							Order Repor Phone Tax:	t #:			634 2 94(2 94(Received: Due: Priority: Contact Name: mgt-Lal	Dec 17, 2012 3:59 PM Nov 30, 2012 5 Day Matthew Locke bMark Client Manager: Jean Her
	Sample Detail aboratory where analysis is conducted elbourne Laboratory - NATA Site # 1254 & 14271					% Moisture	Benzo(a)pyrene	Lead	Nickel	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Australian Standard Leaching Procedure (ASLP)	Toxicity Characteristic Leaching Procedure (TCLP)	Metals M8	Polyaromatic Hydrocarbons (PAH)		
				71		V										
Sydney Labora Brisbane Labo						X	X	X	X	X	Х	Х	Х	Х		
External Labor			20134													
BH116_(0.7- 0.8)	Dec 06, 201	12	Г	TCLP	S12-De14973	х		x	x			х				
BH127_(0.3- 0.5)_A	Dec 10, 201	12	Г	TCLP	S12-De14974	х			х			х				
BH129_(0.28- 0.38)	Dec 10, 201	12	٦	TCLP	S12-De14975	х		x				х				
BH102_(0.5- 0.6)_A	Dec 03, 201		F	ASLP	S12-De14976	х					х		х			
BH101A_(0.12- 0.22)	Nov 29, 201	12	F	ASLP	S12-De14977	х					х		х			
BH106_(0.13- 0.23)_A	Dec 03, 201	12		ASLP	S12-De14978	х					х		х			
BH107_(0.17- 0.27)	Dec 06, 201	12	A	ASLP	S12-De14979	х					Х		х			

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Client Job No	Chatswood NSW 2067						Order Report Phone Fax:	t #:		+61	634 2 94 2 94			
		Sample Detail			% Moisture	Benzo(a)pyrene	Lead	Nickel	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Australian Standard Leaching Procedure (ASLP)	Toxicity Characteristic Leaching Procedure (TCLP)	Metals M8	Polyaromatic Hydrocarbons (PAH)	55
Laboratory wh														
		A Site # 1254 & 14	271		×	N/			×	~	Ň	~		
Sydney Labora Brisbane Labo					X	Х	X	Х	Х	Х	Х	Х	Х	<u>X</u>
External Labor		Sile # 20754												
BH107_(1.5- 1.6)	Dec 06, 2012		ASLP	S12-De14980	х					х		х	x	X
BH109_(1.5- 1.6)	Dec 04, 2012		ASLP	S12-De14981	х					х		х	х	x
BH110_(0.15- 0.25)	Dec 04, 2012		ASLP	S12-De14982	x					х		х		
BH111_(0.35- 0.47)	Nov 30, 2012		ASLP	S12-De14983	x					х		х		
BH112_(0.34- 0.4)	Nov 30, 2012		ASLP	S12-De14984	х					х		х	х	x
BH115_(1.0- 1.1)	Dec 07, 2012		ASLP	S12-De14985	х				х	х		х	х	x
BH116_(0.04- 0.1)	Dec 06, 2012		ASLP	S12-De14986	x				x	х		х	x	x

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Address:	Company Name: Coffey Geotechnics Pty Ltd Chatswood Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067 Client Job No.: ADDITIONAL: SICEEP GEOTLCOV24303AF						Order No.:Report #:363634Phone:+61 2 9406 1000Fax:+61 2 9406 1002							· · · · · ·
			02012001243	5571										mgt-LabMark Client Manager: Jean Heng
		Sample Det	ail		% Moisture	Benzo(a)pyrene	Lead	Nickel	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Australian Standard Leaching Procedure (ASLP)	Toxicity Characteristic Leaching Procedure (TCLP)	Metals M8	Polyaromatic Hydrocarbons (PAH)	Polvaromatic Hydrocarbons (PAH)
Laboratory wh														
		TA Site # 1254 &	14271											
Sydney Labora					X	X	Х	X	X	Х	Х	Х	Х	X
External Labo		A Site # 20794					+							—
BH117_(0.25- 0.35)	Dec 05, 20 ⁴	12	ASLP	S12-De14987	x				x	х		х	х	x
BH117_(0.9- 1.0)	Dec 05, 207	12	ASLP	S12-De14988	х				х	х		х	х	x
BH127_(0.3- 0.5)_A	Dec 10, 207	12	ASLP	S12-De14989	х					х		х		
BH129_(0.28- 0.38)	Dec 10, 20 ⁴	12	ASLP	S12-De14990	x					Х		х		

mgt-LabMark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

TERMS

IERIVIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC was performed on samples not pertaining to this report, however QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or
- contaminant levels within the sample, high moisture content or insufficient sample provided.
 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test			Units	Result 1	Accept		
Method Blank							
Total Recoverable Hydrocarbons Petroleum Hydrocarbons (TPH)	- 1999 NEPM Fract	ions E00	4				
TRH C10-C14			mg/L	< 0.05	0.05	5 Pass	
TRH C15-C28			mg/L	< 0.1	0.1	Pass	
TRH C29-C36			mg/L	< 0.1	0.1	Pass	
Method Blank				·			
Polyaromatic Hydrocarbons (PAH (PAH)	l) E007 Polyaroma	tic Hydro	carbons				
Acenaphthene			mg/L	< 0.001	0.00	1 Pass	
Acenaphthylene			mg/L	< 0.001	0.00	1 Pass	
Anthracene			mg/L	< 0.001	0.00	1 Pass	
Benz(a)anthracene			mg/L	< 0.001	0.00	1 Pass	
Benzo(a)pyrene			mg/L	< 0.001	0.00	1 Pass	
Benzo(b)fluoranthene & Benzo(k)flu	uoranthene		mg/L	< 0.002	0.00	2 Pass	
Benzo(g.h.i)perylene			mg/L	< 0.001	0.00	1 Pass	
Chrysene			mg/L	< 0.001	0.00		
Dibenz(a.h)anthracene			mg/L	< 0.001	0.00		
Fluoranthene			mg/L	< 0.001	0.00		
Fluorene			mg/L	< 0.001	0.00		
Indeno(1.2.3-cd)pyrene			mg/L	< 0.001	0.00		
Naphthalene			mg/L	< 0.001	0.00		
Phenanthrene			mg/L	< 0.001	0.00		
Pyrene			- V	< 0.001	0.00		
Method Blank			mg/L	< 0.001	0.00	F F 855	
Metals M8 E022 Acid Extractable	motolo in Soilo 9 E	026 More					-
	metais in Solis & E	UZ6 Werc	-	+ 0.005		E Dooo	
Arsenic			mg/L	< 0.005	0.00		
Cadmium			mg/L	< 0.0005	0.000		
Chromium			mg/L	< 0.005	0.00		
Copper			mg/L	< 0.005	0.00		
Lead			mg/L	< 0.005	0.00		
Mercury			mg/L	< 0.0001	0.000		
Nickel			mg/L	< 0.005	0.00		
Zinc			mg/L	< 0.005	0.00	5 Pass	
LCS - % Recovery Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions E004	4			- T	<u> </u>
Petroleum Hydrocarbons (TPH)			01	05			
TRH C10-C14			%	95	70-1		
Test	Lab Sample ID	QA Source	Units	Result 1	Accept Limi	ance Pass ts Limits	Qualifying Code
Spike - % Recovery							
Metals M8				Result 1			
Arsenic	S12-De14977	CP	%	109	70-1	30 Pass	
Cadmium	S12-De14977	СР	%	108	70-13	30 Pass	
Chromium	S12-De14977	CP	%	107	70-1		
Copper	S12-De14977	CP	%	112	70-1		
Lead	S12-De14977	CP	%	107	70-1		
Mercury	S12-De14977	CP	%	95	70-1		
Nickel	S12-De14977	CP	%	107	70-1		
Spike - % Recovery							
Metals M8				Result 1			
Mercury	S12-De14987	CP	%	82	70-1	30 Pass	
Spike - % Recovery	0.2.2011001		70				
Metals M8				Result 1			
Arsenic	S12-De14988	CP	%	107	70-1	30 Pass	
Cadmium	S12-De14988	CP	%	98	70-1		
Caumum	012-0614300		/0	30	70-1	JU Fa55	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chromium	S12-De14988	CP	%	103			70-130	Pass	
Copper	S12-De14988	CP	%	105			70-130	Pass	
Lead	S12-De14988	CP	%	102			70-130	Pass	
Nickel	S12-De14988	CP	%	101			70-130	Pass	
Zinc	S12-De14988	CP	%	108			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate								-	
Metals M8				Result 1	Result 2	RPD			
Arsenic	S12-De14976	CP	mg/L	< 0.005	< 0.005	1.0	30%	Pass	
Cadmium	S12-De14976	CP	mg/L	< 0.0005	< 0.0005	<1	30%	Pass	
Chromium	S12-De14976	CP	mg/L	< 0.005	< 0.005	5.0	30%	Pass	
Copper	S12-De14976	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Lead	S12-De14976	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	S12-De14976	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S12-De14976	CP	mg/L	< 0.005	< 0.005	8.0	30%	Pass	
Zinc	S12-De14976	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate				_				-	
Metals M8				Result 1	Result 2	RPD			
Mercury	S12-De14978	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Duplicate				_				-	
Metals M8				Result 1	Result 2	RPD			
Arsenic	S12-De14987	CP	mg/L	0.008	0.008	<1	30%	Pass	
Cadmium	S12-De14987	CP	mg/L	< 0.0005	< 0.0005	<1	30%	Pass	
Chromium	S12-De14987	CP	mg/L	< 0.005	< 0.005	18	30%	Pass	
Copper	S12-De14987	CP	mg/L	0.006	0.005	9.0	30%	Pass	
Lead	S12-De14987	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nickel	S12-De14987	CP	mg/L	< 0.005	< 0.005	19	30%	Pass	
Zinc	S12-De14987	CP	mg/L	0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0, 2 - pH 2.9, 3 - pH 9.2, 4 - Reagent (DI) water, 5 - Client sample, 6 - other

Authorised By

Jean Heng	Client Services
Ryan Hamilton	Senior Analyst-Organic (NSW)
James Norford	Senior Analyst-Metal (NSW)

Dr. Bob Symons Laboratory Manager Final report - this Report replaces any previously issued Report

That report and report replaced any previously lee

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

mgt-LabMark shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgt-LabMark be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Coffey Geotechnics Pty Ltd Chatswood
Contact name:	Matthew Locke
Client job number:	ADDITIONAL: SICEEP GEOTLCOV24303AF
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Dec 19, 2012 9:27 AM
mgt-LabMark reference:	363811

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by mgt-LabMark Sample Receipt : 4 degrees Celsius.
- \square All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- ☑ Organic samples had Teflon liners.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Original report #362306

Contact notes

If you have any questions with respect to these samples please contact:

Jean Heng on Phone : (+61) (2) 9900 8400 or by e.mail: jean.heng@mgtlabmark.com.au

Results will be delivered electronically via e.mail to Matthew Locke - Matthew_Locke@coffey.com.

mgt-LabMark Sample Receipt

Environmental Laboratory N/ Air Analysis St Water Analysis Tr Soil Contamination Analysis Gr

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

35Years of Environmental Analysis & Experience - fully Australian Owned

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:Matthew Locke

Report

Client Reference

Received Date

363811-L ADDITIONAL: SICEEP GEOTLCOV24303AF Dec 19, 2012

Client Sample ID			BH107_(1.5- 1.6)
Sample Matrix			ASLP
mgt-LabMark Sample No.			S12-De16043
Date Sampled			Dec 06, 2012
Test/Reference	LOR	Unit	
Polyaromatic Hydrocarbons (PAH)			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.002	mg/L	< 0.002
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH	0.002	mg/L	< 0.002
2-Fluorobiphenyl (surr.)	1	%	124
p-Terphenyl-d14 (surr.)	1	%	124
Heavy Metals			
Arsenic	0.005	mg/L	< 0.005
Cadmium	0.0005	mg/L	< 0.0005
Chromium	0.005	mg/L	< 0.005
Copper	0.005	mg/L	< 0.005
Lead	0.005	mg/L	< 0.005
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.005	mg/L	< 0.005
Zinc	0.005	mg/L	< 0.005
% Moisture	0.1	%	10
Australian Standard Leaching Procedure (ASLP)			
Leachate Fluid ^{C01}		comment	4.0
pH (ASLP - initial)	0.1	units	8.3
pH (ASLP - off)	0.1	units	8.4

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Testing Site	Extracted	Holding Time
Polyaromatic Hydrocarbons (PAH)	Sydney	Dec 20, 2012	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8	Sydney	Dec 19, 2012	28 Day
- Method: E022 Acid Extractable metals in Soils & E026 Mercury			
% Moisture	Sydney	Dec 19, 2012	0 Day
- Method: E005 Moisture Content			

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address: Client Job No	Chatswood NSW 2067			Order No.: Report #: Phone: Fax:		t #:	363811 Du +61 2 9406 1000 Pri	eceived: le: lority: ontact Name:	Dec 19, 2012 9:27 AM Jan 2, 2013 5 Day Matthew Locke		
										mgt-Labl	Mark Client Manager: Jean Heng
		Sample Detail			% Moisture	Australian Standard Leaching Procedure (ASLP)	Metals M8	Polyaromatic Hydrocarbons (PAH)			
	ere analysis is c										
	poratory - NATA		271		V			V			
	atory - NATA Site pratory - NATA Si				X	Х	Х	X			
External Labo		18 # 20/94									
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
3H107_(1.5-	Dec 06, 2012		ASLP	S12-De16043	x	х	x	x			

mgt-LabMark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

TERMS

IERIVIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC was performed on samples not pertaining to this report, however QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or
- contaminant levels within the sample, high moisture content or insufficient sample provided.
 Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

	Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Polyaromatic Hydrocarbons (PAH)	(PAH) E007 Polyaromat	tic Hydrod	carbons						
Acenaphthene			mg/L	< 0.001			0.001	Pass	
Acenaphthylene			mg/L	< 0.001			0.001	Pass	
Anthracene			mg/L	< 0.001			0.001	Pass	
Benz(a)anthracene			mg/L	< 0.001			0.001	Pass	
Benzo(a)pyrene			mg/L	< 0.001			0.001	Pass	
Benzo(b)fluoranthene & Benz	ro(k)fluoranthene		mg/L	< 0.002			0.002	Pass	
Benzo(g.h.i)perylene			mg/L	< 0.001			0.001	Pass	
Chrysene			mg/L	< 0.001			0.001	Pass	
Dibenz(a.h)anthracene			mg/L	< 0.001			0.001	Pass	
Fluoranthene			mg/L	< 0.001			0.001	Pass	
Fluorene			mg/L	< 0.001			0.001	Pass	
Indeno(1.2.3-cd)pyrene			mg/L	< 0.001			0.001	Pass	
Naphthalene			mg/L	< 0.001			0.001	Pass	
Phenanthrene			mg/L	< 0.001			0.001	Pass	
			mg/L	< 0.001			0.001	Pass	
Pyrene Method Blank			mg/∟	< 0.001			0.001	F 455	
	table motals in Soils & F	026 More		1					
Metals M8 E022 Acid Extract	table metals in Solis & E	UZ6 Merc		10.005			0.005	Deee	
Arsenic			mg/L	< 0.005			0.005	Pass	
Cadmium			mg/L	< 0.0005			0.0005	Pass	
Chromium			mg/L mg/L	< 0.005			0.005	Pass	
Copper				< 0.005			0.005	Pass	
Lead			mg/L	< 0.005			0.005	Pass	
Mercury			mg/L	< 0.0001			0.0001	Pass	
Nickel			mg/L	0.012			0.005	Fail	
Zinc			mg/L	< 0.005			0.005	Pass	0
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	1 1		I		
Metals M8	1			Result 1					
Arsenic	S12-De15696	NCP	%	106			70-130	Pass	
Cadmium	S12-De15696	NCP	%	97			70-130	Pass	
Chromium	S12-De15696	NCP	%	100			70-130	Pass	
Copper	S12-De15696	NCP	%	95			70-130	Pass	
Lead	S12-De15696	NCP	%	92			70-130	Pass	
Mercury	S12-De15696	NCP	%	94			70-130	Pass	
Nickel	S12-De15696	NCP	%	93			70-130	Pass	
Zinc	S12-De13720	NCP	%	89			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	S12-De13719	NCP	mg/L	< 0.01	< 0.01	5.0	30%	Pass	
Cadmium	S12-De13719	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chromium	S12-De13719	NCP	mg/L	< 0.05	< 0.05	1.0	30%	Pass	
Copper	S12-De13719	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead	S12-De13719	NCP	mg/L	0.26	0.26	1.0	30%	Pass	
Mercury	S12-De15695	NCP	mg/L	< 0.001	< 0.001	280	30%	Fail	Q15
Nickel	S12-De13719	NCP	mg/L	< 0.05	< 0.05	13	30%	Pass	
Zinc	S12-De13719	NCP	mg/L	1.7	1.7	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0, 2 - pH 2.9, 3 - pH 9.2, 4 - Reagent (DI) water, 5 - Client sample, 6 - other

Q15 The RPD reported passes mgt-LabMark's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Jean Heng Ryan Hamilton James Norford Client Services Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Dr. Bob Symons Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

mgt-LabMark shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgt-LabMark be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page <u>7</u> of <u>107203</u>

			Consigning	g Office:	Coffey	Geotech	Cha-	tswood.		
CO	en en	vironments CIALISTS IN ENVIRONMENTAL, IAL AND SAFETY PERFORMANCE	Report Re	sults to:	Matti	ocke		Mobile: 0427252493	Email: Matthew-lockee	@coffey.com
	SOCI	IAL AND SAFETY PERFORMANCE	Invoices to	o:	u 11			Phone:	Email:	@coffey.com
Project	No:GEOTLCOV2	43371 Task No:						Analy	sis Request Section	, , , , , , , , , , , , , , , , , , ,
Project	Name: SICEEP	Laboratory:	MCIT	Lab	mank	•			>///////////	
Sample	r's Name: Priva Dass	Kari Hartig Project Mana	ger: Mat	then	locks	L			///////////////////////////////////////	
Special	Instructions: 24	Laboratory: Kari Hartig Project Mana Mr TAT,								
								5/5/3///		
Lab No.	Sample	ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	12/2/2/2/2/2/2/		NOTES
annananana	MWIS	Salar for any solution and the second s	81113	NUMBER OF STREET, STREE	Water	21,26,10	24hr.		I filtered +	1 unfiltered
	MWIL				1					
	MW20									
43	mula									6
Var	DUPI									
	DUPIA		\checkmark		V	V			Send to E	Envirolab
	<u> </u>									
										S.
								36		
						_				
									Samula Dessint Advise: // ab Use Ontri	
8428 Name:	the second s	LINQUISHED BY	4,		1.11 11		CEIVED BY		Sample Receipt Advice: (Lab Use Only)	ď
	Priva Dass	Date: 8/1/13 Time: 4:16 p.1	- - -	Name:	Mitchell.	1 hyach			All Samples Recieved in Good Condition All Documentation is in Proper Order	
NL	Environments		<u>″.</u> →		1y: 1/4/	LabMark		CONTRACTOR ACTIONS AND ADDRESS OF A DESCRIPTION OF A DESC	Samples Received Properly Chilled	
	21/2	Date: Time:		Name:	Dear	-O.		01915	Lab. Ref/Batch No.	
SNEW Compar				Compar	1491	LabMark			3LUSNG	7
*Contai		Codes: P - Plastic, G- Glass Bottl Ice, ST - Sodium Thiosulfate, NP					eserved, C -	Hydrochloric Acid Preserved,	001/98	
Contraction (Station)	ey Environments					Version:	4	190	lssue [Date: 24/08/2012

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:Coffey Geotechnics Pty Ltd ChatswoodContact name:Matthew LockeClient job number:SICEEP GEOTLCOV24303AFCOC number:107203Turn around time:1 DayDate/Time received:Jan 8, 2013 4:45 PMmgt-LabMark reference:364798

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by mgt-LabMark Sample Receipt : 19 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Organic samples had Teflon liners.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

DUP1A forwarded to Envirolab as requested Samples received by the laboratory after 4pm are deemed to have been received the following working day.

Contact notes

If you have any questions with respect to these samples please contact:

Jean Heng on Phone : (+61) (2) 9900 8400 or by e.mail: jean.heng@mgtlabmark.com.au

Results will be delivered electronically via e.mail to Matthew Locke - Matthew_Locke@coffey.com.

mgt-LabMark Sample Receipt

Environmental Laboratory Air Analysis Stack Water Analysis Trade Soil Contamination Analysis Grour

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

35Years of Environmental Analysis & Experience - fully Australian Owned

NATA

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:Matthew Locke

Report

Client Reference Received Date

364798-W
SICEEP GEOTLCOV24303AF
Jan 08, 2013

MW25 MW16 MW20 MW9 **Client Sample ID** Water (Ultra-Water (Ultra-Water (Ultra-Water (Ultra-Sample Matrix mgt-LabMark Sample No. S13-Ja01340 S13-Ja01341 S13-Ja01342 S13-Ja01343 **Date Sampled** Jan 08, 2013 Jan 08, 2013 Jan 08, 2013 Jan 08, 2013 LOR Unit Test/Reference **Total Recoverable Hydrocarbons - 1999 NEPM Fractions** TRH C6-C9 0.02 mg/L < 0.02 < 0.02 < 0.02 < 0.02 0.05 TRH C10-C14 mg/L < 0.05 < 0.05 < 0.05 < 0.05 TRH C15-C28 mg/L < 0.1 < 0.1 < 0.1 < 0.1 0.1 TRH C29-C36 0.1 mg/L < 0.1 < 0.1 < 0.1 < 0.1 TRH C10-36 (Total) 0.1 < 0.1 < 0.1 < 0.1 < 0.1 mg/L BTEX < 0.001 Benzene 0.001 mg/L < 0.001 < 0.001 < 0.001 Toluene 0.001 mg/L < 0.001 < 0.001 < 0.001 < 0.001 Ethylbenzene 0.001 mg/L < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.002 < 0.002 < 0.002 < 0.002 m&p-Xylenes mg/L 0.001 < 0.001 < 0.001 < 0.001 < 0.001 o-Xylene mg/L Xylenes - Total 0.003 mg/L < 0.003 < 0.003 < 0.003 < 0.003 Total BTEX 0.01 mg/L < 0.01 < 0.01 < 0.01 < 0.01 % 4-Bromofluorobenzene (surr.) 1 120 118 115 116 Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions * Naphthalene^{N02} 0.005 < 0.005 < 0.005 < 0.005 < 0.005 mg/L TRH C6-C10 0.02 mg/L < 0.02 < 0.02 < 0.02 < 0.02 TRH C6-C10 less BTEX (F1)N04 0.02 mg/L < 0.02 < 0.02 < 0.02 < 0.02 TRH >C10-C16 0.05 mg/L < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 TRH >C10-C16 less Naphthalene (F2)^{N01} < 0.05 0.05 mg/L < 0.05 < 0.05 TRH >C16-C34 0.1 mg/L < 0.1 < 0.1 < 0.1 < 0.1 TRH >C34-C40 0.1 mg/L < 0.1 < 0.1 < 0.1 < 0.1 Polyaromatic Hydrocarbons (PAH) 0.00001 0.00002 < 0.00001 < 0.00001 0.00002 Acenaphthene mg/L Acenaphthylene 0.00001 mg/L < 0.00001 < 0.00001 < 0.00001 < 0.00001 Anthracene 0.00001 mg/L 0.00001 < 0.00001 < 0.00001 0.00005 Benz(a)anthracene 0.00001 mg/L 0.00001 < 0.00001 < 0.00001 0.00001 Benzo(a)pyrene 0.00001 mg/L < 0.00001 < 0.00001 < 0.00001 < 0.00001 Benzo(b)fluoranthene & Benzo(k)fluoranthene < 0.00002 0.00002 mg/L < 0.00002 < 0.00002 < 0.00002 < 0.00001 Benzo(g.h.i)perylene 0.00001 mg/L < 0.00001 < 0.00001 < 0.00001 Chrysene 0.00005 mg/L < 0.00005 < 0.00005 < 0.00005 < 0.00005 Dibenz(a.h)anthracene 0.00005 mg/L < 0.00005 < 0.00005 < 0.00005 < 0.00005 Fluoranthene 0.00005 < 0.00005 mg/L < 0.00005 < 0.00005 < 0.00005 Fluorene 0.00005 mg/L < 0.00005 < 0.00005 < 0.00005 < 0.00005 Indeno(1.2.3-cd)pyrene 0.00005 < 0.00005 mg/L < 0.00005 < 0.00005 < 0.00005 Naphthalene 0.00005 mg/L < 0.00005 < 0.00005 < 0.00005 < 0.00005

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Phenanthrene

mg/L

< 0.00005

< 0.00005

0.00005

0.00008

< 0.00005

Client Sample ID			MW25	MW16	MW20	MW9
Sample Matrix			Water (Ultra-	Water (Ultra-	Water (Ultra-	Water (Ultra-
mgt-LabMark Sample No.			S13-Ja01340	S13-Ja01341	S13-Ja01342	S13-Ja01343
Date Sampled			Jan 08, 2013	Jan 08, 2013	Jan 08, 2013	Jan 08, 2013
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Total PAH	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	0.00016
2-Fluorobiphenyl (surr.)	1	%	98	106	86	94
p-Terphenyl-d14 (surr.)	1	%	128	124	112	120
Heavy Metals						
Lead (filtered)	0.001	mg/L	< 0.001	0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.002	0.001	< 0.001	< 0.001
Arsenic (filtered)	0.001	mg/L	0.008	0.001	< 0.001	0.001
Cadmium (filtered)	0.0001	mg/L	0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	0.001	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	0.006	< 0.005	< 0.005

Client Sample ID			DUP 1
Sample Matrix			Water (Ultra-
mgt-LabMark Sample No.			S13-Ja01344
Date Sampled			Jan 08, 2013
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions		
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
втех			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
Total BTEX	0.01	mg/L	< 0.01
4-Bromofluorobenzene (surr.)	1	%	113
Total Recoverable Hydrocarbons - Draft 2010 NEPM	Fractions '	*	
Naphthalene ^{N02}	0.005	mg/L	< 0.005
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
Polyaromatic Hydrocarbons (PAH)			
Acenaphthene	0.00001	mg/L	< 0.00001
Acenaphthylene	0.00001	mg/L	< 0.00001

Client Sample ID			DUP 1
Sample Matrix			Water (Ultra-
mgt-LabMark Sample No.			S13-Ja01344
Date Sampled			Jan 08, 2013
Test/Reference	LOR	Unit	
Polyaromatic Hydrocarbons (PAH)			
Anthracene	0.00001	mg/L	< 0.00001
Benz(a)anthracene	0.00001	mg/L	0.00001
Benzo(a)pyrene	0.00001	mg/L	< 0.00001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.00002	mg/L	< 0.00002
Benzo(g.h.i)perylene	0.00001	mg/L	< 0.00001
Chrysene	0.00005	mg/L	< 0.00005
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005
Fluoranthene	0.00005	mg/L	< 0.00005
Fluorene	0.00005	mg/L	< 0.00005
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005
Naphthalene	0.00005	mg/L	< 0.00005
Phenanthrene	0.00005	mg/L	< 0.00005
Pyrene	0.00005	mg/L	< 0.00005
Total PAH	0.00005	mg/L	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	96
p-Terphenyl-d14 (surr.)	1	%	126
Heavy Metals			
Lead (filtered)	0.001	mg/L	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001
Arsenic (filtered)	0.001	mg/L	< 0.001
Cadmium (filtered)	0.0001	mg/L	< 0.0001
Chromium (filtered)	0.001	mg/L	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Testing Site	Extracted	Holding Time
mgt-LabMark Suite 4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 09, 2013	7 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
BTEX	Sydney	Jan 09, 2013	14 Day
- Method: E029/E016 BTEX			
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions *	Sydney	Jan 09, 2013	7 Day
- Method: LM-LTM-ORG2010			
Polyaromatic Hydrocarbons (PAH)	Sydney	Jan 09, 2013	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8 filtered	Sydney	Jan 09, 2013	28 Day
- Method: E020/E030 Filtered Metals in Water & E026 Mercury			

Oakleigh Phone : +

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Address:Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067Client Job No.:SICEEP GEOTLCOV24303AF					F	Order Repor Phone Fax:	t #:	364798 +61 2 9406 1000 +61 2 9406 1004	Received: Due: Priority: Contact Name:	Jan 8, 2013 4:45 PM Jan 10, 2013 1 Day Matthew Locke Mark Client Manager: Jean Heng	
		Sample Detail			Metals M8 filtered	BTEX	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons		III gr-Labi	wark Client Manager. Jean Hein
	ere analysis is o				_						
	oratory - NATA		4271		X	X	x	x			
	atory - NATA Sit pratory - NATA S				~		×				
External Labor		10 # 20104									
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
MW25	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01340	х	х	х	х			
MW16	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01341	х	х	х	х			
/W20	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01342	х	х	х	х			
/W9	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01343	х	х	х	х			
DUP 1	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01344	х	х	х	x			

mgt-LabMark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

TERMS

IERIVIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC was performed on samples not pertaining to this report, however QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or
- contaminant levels within the sample, high moisture content or insufficient sample provided.
 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

S LabMark Environmental laboratories

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				2	0000
Total Recoverable Hydrocarbons - 1999 NEPM Fractions E0	04				
Petroleum Hydrocarbons (TPH)					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank			1		
BTEX E029/E016 BTEX		10.001	0.001	Deee	
Benzene Toluene	mg/L	< 0.001 < 0.001	0.001	Pass Pass	
Ethylbenzene	mg/L mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.001	0.001	Pass	
o-Xylene	mg/L	< 0.002	0.002	Pass	
Xylenes - Total	mg/L	< 0.003	0.001	Pass	
Total BTEX	mg/L	< 0.01	0.003	Pass	
Nethod Blank	_ mg/∟	< 0.01	0.01	1 835	
Fotal Recoverable Hydrocarbons - Draft 2010 NEPM Fraction	ns * LM-				
-TM-ORG2010	·				
Naphthalene	mg/L	< 0.005	0.005	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank			1 1	[
Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic Hydro (PAH)	ocarbons				
Acenaphthene	mg/L	< 0.00001	0.00001	Pass	
Acenaphthylene	mg/L	< 0.00001	0.00001	Pass	
Anthracene	mg/L	< 0.00001	0.00001	Pass	
Benz(a)anthracene	mg/L	< 0.00001	0.00001	Pass	
Benzo(a)pyrene	mg/L	< 0.00001	0.00001	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/L	< 0.00002	0.00002	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.00001	0.00001	Pass	
Chrysene	mg/L	< 0.00005	0.00005	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.00005	0.00005	Pass	
Fluoranthene	mg/L	< 0.00005	0.00005	Pass	
Fluorene	mg/L	< 0.00005	0.00005	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.00005	0.00005	Pass	
Naphthalene	mg/L	< 0.00005	0.00005	Pass	
Phenanthrene	mg/L	< 0.00005	0.00005	Pass	
Pyrene	mg/L	< 0.00005	0.00005	Pass	
Method Blank					
Metals M8 filtered E020/E030 Filtered Metals in Water & E026	6 Mercury				
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0001	0.0001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
	mg/L	< 0.005	0.005	Pass	
Zinc (filtered) .CS - % Recovery					

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9			%	100		70-130	Pass	
TRH C10-C14			%	90		70-130	Pass	
LCS - % Recovery				1		-		
BTEX E029/E016 BTEX								
Benzene			%	96		70-130	Pass	
Toluene			%	107		70-130	Pass	
Ethylbenzene			%	103		70-130	Pass	
m&p-Xylenes			%	107		70-130	Pass	
o-Xylene			%	103		70-130	Pass	
Xylenes - Total			%	106		70-130	Pass	
LCS - % Recovery					1	1	1	
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fraction	s * LM-					
Naphthalene			%	78		70-130	Pass	
TRH C6-C10			%	112		70-130	Pass	
TRH >C10-C16			%	95		70-130	Pass	
LCS - % Recovery						1	1	
Polyaromatic Hydrocarbons (PAH (PAH)) E007 Polyaromat	tic Hydroo	carbons					
Acenaphthene			%	97		70-130	Pass	
Acenaphthylene			%	88		70-130	Pass	
Anthracene			%	110		70-130	Pass	
Benz(a)anthracene			%	112		70-130	Pass	
Benzo(a)pyrene			%	122		70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)flu	uoranthene		%	117		70-130	Pass	
Benzo(g.h.i)perylene			%	111		70-130	Pass	
Chrysene			%	125		70-130	Pass	
Dibenz(a.h)anthracene			%	108		70-130	Pass	
Fluoranthene			%	122		70-130	Pass	
Fluorene			%	101		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	108		70-130	Pass	
Naphthalene			%	93		70-130	Pass	
Phenanthrene			%	108		70-130	Pass	
Pyrene			%	125		70-130	Pass	
LCS - % Recovery						1	1	
Metals M8 filtered E020/E030 Filte	red Metals in Wate	er & E026						
Lead (filtered)			%	118		70-130	Pass	
Mercury (filtered)			%	98		70-130	Pass	
Nickel (filtered)			%	113		70-130	Pass	
Arsenic (filtered)			%	106		70-130	Pass	
Cadmium (filtered) Chromium (filtered)			%	102 108		70-130 70-130	Pass Pass	
· · · · · · · · · · · · · · · · · · ·								
Copper (filtered) Zinc (filtered)			% %	115 109		70-130 70-130	Pass Pass	
Test	Lab Sample ID	QA	[%] Units	Result 1		Acceptance	Pass	Qualifying
Spike - % Recovery		Source				Limits	Limits	Code
Metals M8 filtered				Result 1				
Lead (filtered)	S13-Ja01341	CP	%	85		70-130	Pass	
Mercury (filtered)	S13-Ja01341	CP	%	92		70-130	Pass	
Nickel (filtered)	S13-Ja01341	СР	%	88		70-130	Pass	
Arsenic (filtered)	S13-Ja01341	СР	%	110		70-130	Pass	
Cadmium (filtered)	S13-Ja01341	СР	%	81		70-130	Pass	
Chromium (filtered)	S13-Ja01341	CP	%	106		70-130	Pass	
Copper (filtered)	S13-Ja01341	CP	%	87		70-130	Pass	
Zinc (filtered)	S13-Ja01341	CP	%	88		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								-	
Metals M8 filtered				Result 1					
Mercury (filtered)	S13-Ja01344	CP	%	105			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				i -	1 1		1	r	
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Ja01228	NCP	mg/L	< 0.02	< 0.02	6.0	30%	Pass	
TRH C10-C14	S13-Ja00854	NCP	mg/L	0.14	0.18	25	30%	Pass	
TRH C15-C28	S13-Ja00854	NCP	mg/L	4.1	5.1	21	30%	Pass	
TRH C29-C36	S13-Ja00854	NCP	mg/L	0.39	0.46	16	30%	Pass	
Duplicate								-	
втех				Result 1	Result 2	RPD			
Benzene	S13-Ja01228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S13-Ja01228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S13-Ja01228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S13-Ja01228	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S13-Ja01228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S13-Ja01228	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Total BTEX	S13-Ja01228	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate								-	
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fractions	S *	Result 1	Result 2	RPD			
Naphthalene	S13-Ja01228	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
TRH C6-C10	S13-Ja01228	NCP	mg/L	< 0.02	< 0.02	8.0	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Ja01228	NCP	mg/L	< 0.02	< 0.02	8.0	30%	Pass	
TRH >C10-C16	S13-Ja00854	NCP	mg/L	0.45	0.54	18	30%	Pass	
TRH >C16-C34	S13-Ja00854	NCP	mg/L	4.4	5.5	21	30%	Pass	
TRH >C34-C40	S13-Ja00854	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Metals M8 filtered				Result 1	Result 2	RPD			
Lead (filtered)	S13-Ja01340	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S13-Ja01340	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S13-Ja01340	CP	mg/L	0.002	0.003	11	30%	Pass	
Arsenic (filtered)	S13-Ja01340	CP	mg/L	0.008	0.008	3.0	30%	Pass	
Cadmium (filtered)	S13-Ja01340	CP	mg/L	0.0001	< 0.0001	<1	30%	Pass	
Chromium (filtered)	S13-Ja01340	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S13-Ja01340	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S13-Ja01340	CP	mg/L	< 0.005	< 0.005	9.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised By

Jean Heng	Client Services
James Norford	Senior Analyst-Metal (NSW)
Laura Schofield	Senior Analyst-Volatile (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

mgh LabMark shail not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgh LabMark be liable for case, using from the use of any information or interpretation given in this report. In no case shall mgh LabMark be liable for case, using from the use of any information or interpretation given in this report. In no case shall mgh LabMark be liable for case, using from the use of any information or interpretation given in this report. In on case shall mgh LabMark be liable for case, using from this report. This document shall not be reproduced except in full and retime tested. Unless indicated of here performed extended.

#364828

Enquiries Syd

From: Sent: To: Cc: Subject: Matthew Locke [Matthew_Locke@coffey.com] Wednesday, 9 January 2013 8:23 AM Enviro Syd; Jean Heng Keri Hartog; Priya Dass RE: mgt-Labmark Sample Receipt Advice - Report 364798 : Site SICEEP GEOTLCOV24303AF

Dear Sample Receipt / Jean,

Further to my email below, I would also request that:

TRH/BTEX/PAH analysis is undertaken as Suite B4. Metals analysis to be undertaken as Suite M8.

Regards,

Matt

-----Original Message-----From: Matthew Locke Sent: Wednesday, 9 January 2013 8:19 AM To: 'enviro.syd@mgtlabmark.com.au'; <u>jean.heng@mgtlabmark.com.au</u> Cc: Keri Hartog; Priya Dass Subject: RE: mgt-Labmark Sample Receipt Advice - Report 364798 : Site SICEEP GEOTLCOV24303AF

Dear Sample Receipt / Jean,

Can you please ensure that both the unfiltered and filtered water samples are analysed for PAH (Ultra Trace).

Please treat this email as an amendment to the COC provided for Report 364798.

Please let me know if there are any queries regarding the above request.

Regards,

Matt

-----Original Message-----From: <u>enviro.syd@mgtlabmark.com.au</u> [<u>mailto:enviro.syd@mgtlabmark.com.au</u>] Sent: Tuesday, 8 January 2013 5:36 PM To: Matthew Locke Cc: Keri Hartog; Priya Dass Subject: mgt-Labmark Sample Receipt Advice - Report 364798 : Site SICEEP GEOTLCOV24303AF

Dear Valued Client,

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chainof-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your mgt-LabMark Client Services Manager as soon as possible to make certain that they get changed. Please send all reply correspondence to <u>enviro.syd@mgtlabmark.com.au</u>

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <u>http://www.symanteccloud.com</u>

Environmental Notice: Please consider the environment before printing this email.

Confidentiality Notice: The content of this message and any attachments may be privileged, in confidence or sensitive. Any unauthorised use is expressly prohibited. If you have received this email in error please notify the sender, disregard and then delete the email. This email may have been corrupted or interfered with. Coffey International Limited cannot guarantee that the message you receive is the same as the message we sent. At Coffey International Limited's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence. No warranty is made that this email and its contents are free from computer viruses or other defects.

CILDISCL0005

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:Coffey Geotechnics Pty Ltd ChatswoodContact name:Matthew LockeClient job number:SICEEP GEOTLCOV24303AFCOC number:107203Turn around time:1 DayDate/Time received:Jan 9, 2013 8:23 AMmgt-LabMark reference:364828

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by mgt-LabMark Sample Receipt : 19 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Organic samples had Teflon liners.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Ultra-trace PAH using filtered amber bottles

Contact notes

If you have any questions with respect to these samples please contact:

Jean Heng on Phone : (+61) (2) 9900 8400 or by e.mail: jean.heng@mgtlabmark.com.au

Results will be delivered electronically via e.mail to Matthew Locke - Matthew_Locke@coffey.com.

mgt-LabMark Sample Receipt

Environmental Laboratory N/ Air Analysis St Water Analysis Tr Soil Contamination Analysis Gr

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

35Years of Environmental Analysis & Experience - fully Australian Owned

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:Matthew Locke

Report

Client Reference Received Date

364828-W
SICEEP GEOTLCOV24303AF
Jan 09, 2013

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			MW25FILT	MW16FILT	MW20FILT	MW9FILT
Sample Matrix			Water (Ultra-	Water (Ultra-	Water (Ultra-	Water (Ultra-
mgt-LabMark Sample No.			S13-Ja01429	S13-Ja01430	S13-Ja01431	S13-Ja01432
Date Sampled			Jan 08, 2013	Jan 08, 2013	Jan 08, 2013	Jan 08, 2013
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Acenaphthylene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Anthracene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benz(a)anthracene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(a)pyrene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.00002	mg/L	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Benzo(g.h.i)perylene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Chrysene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluoranthene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluorene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Naphthalene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Phenanthrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Total PAH	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	114	122	84	128
p-Terphenyl-d14 (surr.)	1	%	128	130	102	130

Client Sample ID Sample Matrix			
•			Water (Ultra-
mgt-LabMark Sample No.			S13-Ja01433
Date Sampled			Jan 08, 2013
Test/Reference	LOR	Unit	
Polyaromatic Hydrocarbons (PAH)			
Acenaphthene	0.00001	mg/L	< 0.00001
Acenaphthylene	0.00001	mg/L	< 0.00001
Anthracene	0.00001	mg/L	< 0.00001
Benz(a)anthracene	0.00001	mg/L	< 0.00001
Benzo(a)pyrene	0.00001	mg/L	< 0.00001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.00002	mg/L	< 0.00002
Benzo(g.h.i)perylene	0.00001	mg/L	< 0.00001
Chrysene	0.00005	mg/L	< 0.00005
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005

Client Sample ID Sample Matrix mgt-LabMark Sample No. Date Sampled			DUP1FILT Water (Ultra- S13-Ja01433 Jan 08, 2013
Test/Reference	LOR	Unit	
Polyaromatic Hydrocarbons (PAH)			
Fluoranthene	0.00005	mg/L	< 0.00005
Fluorene	0.00005	mg/L	< 0.00005
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005
Naphthalene	0.00005	mg/L	< 0.00005
Phenanthrene	0.00005	mg/L	< 0.00005
Pyrene	0.00005	mg/L	< 0.00005
Total PAH	0.00005	mg/L	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	112
p-Terphenyl-d14 (surr.)	1	%	130

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description

Polyaromatic Hydrocarbons (PAH)

- Method: E007 Polyaromatic Hydrocarbons (PAH)

Testing Site Sydney Extracted Jan 09, 2013 Holding Time 7 Day

Oakleigh \ Phone : +6

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address: Client Job No	Level 1 Chatsw NSW 2		lel Tower 799 Pa	cific Highway		Order No.: Report #: Phone: Fax:	364828 +61 2 9406 1000 +61 2 9406 1002	Received: Due: Priority: Contact Name:	Jan 9, 2013 8:23 AM Jan 10, 2013 1 Day Matthew Locke
		Sample Detail			Polyaromatic Hydrocarbons (PAH)			mgt-Lab	Mark Client Manager: Jean Hen
	ere analysis is	conducted Site # 1254 & 14	4271						
	atory - NATA Sit		+271		X				
	ratory - NATA S								
External Labor			-	1					
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
MW25FILT	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01429	х				
MW16FILT	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01430	x				
MW20FILT	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01431	x				
MW9FILT	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01432	x				
DUP1FILT	Jan 08, 2013		Water (Ultra- trace)	S13-Ja01433	x				

mgt-LabMark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

TERMS

IERIVIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC was performed on samples not pertaining to this report, however QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or
- contaminant levels within the sample, high moisture content or insufficient sample provided.
 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic (PAH)	Hydrocarbons				
Acenaphthene	mg/L	< 0.00001	0.00001	Pass	
Acenaphthylene	mg/L	< 0.00001	0.00001	Pass	
Anthracene	mg/L	< 0.00001	0.00001	Pass	
Benz(a)anthracene	mg/L	< 0.00001	0.00001	Pass	
Benzo(a)pyrene	mg/L	< 0.00001	0.00001	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/L	< 0.00002	0.00002	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.00001	0.00001	Pass	
Chrysene	mg/L	< 0.00005	0.00005	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.00005	0.00005	Pass	
Fluoranthene	mg/L	< 0.00005	0.00005	Pass	
Fluorene	mg/L	< 0.00005	0.00005	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.00005	0.00005	Pass	
Naphthalene	mg/L	< 0.00005	0.00005	Pass	
Phenanthrene	mg/L	< 0.00005	0.00005	Pass	
Pyrene	mg/L	< 0.00005	0.00005	Pass	
LCS - % Recovery					
Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic (PAH)	Hydrocarbons				
Acenaphthene	%	90	70-130	Pass	
Acenaphthylene	%	83	70-130	Pass	
Anthracene	%	102	70-130	Pass	
Benz(a)anthracene	%	109	70-130	Pass	
Benzo(a)pyrene	%	115	70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	%	111	70-130	Pass	
Benzo(g.h.i)perylene	%	96	70-130	Pass	
Chrysene	%	105	70-130	Pass	
Dibenz(a.h)anthracene	%	96	70-130	Pass	
Fluoranthene	%	109	70-130	Pass	
Fluorene	%	97	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	97	70-130	Pass	
Naphthalene	%	87	70-130	Pass	
Phenanthrene	%	100	70-130	Pass	
Pyrene	%	110	70-130	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Jean Heng Ryan Hamilton Client Services Senior Analyst-Organic (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

mgt-LabMark shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgt-LabMark be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page _ 1_ of _ 107204

004	Ffey environm SPECIALISTS IN E SOCIAL AND SAFE	Consign	ing Office:	Chatswi	bod					ana ang ang ang ang ang ang ang ang ang	10		
COI	specialists in e	ENVIRONMENTAL, Report	Results to:	Matthew	Locke		Mobi			Email: MC	tthew_1	locke	@coffey.co
	SOCIAL AND SAFI	ETY PERFORMANCE Invoices	to: M	atthew L	ocke		Phon	e:		the second se	tthew_	locke	@coffey.co
							-		Analy	ysis Request Sec	tion	111	//
Project Na	ame: SICEEP Name: Priya/Keri	Laboratory: MGT	LabMo	ink			-		_///				
Sampler's	Name: Friya/Keri	Project Manager:	atthe	w hock	e la	. 21	-		6///		////	////	
	structions: HAH UHRAH UHRAH	Receite Matula	terect	t unfilter	er amb	15	-	13	\$7\$4		////		
DIE	x, (rei) inter droigsis on	Sample	unury	Matrix	Container Type &		1	AN	9///		///	//	
Lab No.	Sample ID	Date	Time	(Soiletc)	Preservative*	(specify)		1/2/			///	N	OTES
	MWIOG	9/1/13		Water	2V, 2G, 1P	24hr	~	1					
	MWIOT	1		1			~	/					
	DUP2				L		V	V					
	MW5				21,1P,24		~	V					
	MWIIT				2V, 1P, 24 2V, 1P		5	~					
	MW104				ZV, IP		V	~					
	MWIOS				2V,1P 2V,1P,29		1	~					
	MW13				· · · · ·		~	V					
	MWIIDA					9	~	~					
	MW30	~		V	\checkmark		\checkmark						
							_						
							_						
				_									
	RELINQUISHED		1		DE/	CEIVED BY				Sample Receipt /		co Onlu)	
Name: T	Fiyd Dass Date:		Name	17 . 1 11 .	Turphy		Date	9-1-	12	All Samples Recie			V
	vironments Time:	4:15p.M.	Compa	ny: MGT L	lurphy abitash			4.150	area.	All Documentatio			
Name:	Date:			Ellen WG				and the second division of the second divisio	or state to a state of the stat	Samples Received			G
Company:			Compa	ny: math	amali		Time:	020	45	Lab. Ref/Batch No			
*Containe	er Type & Preservation Codes: P - P		s Jar, V - Via	al, Z - Ziplock Ba	g, N - Nitric Acid Pr	eserved, C -	L Inchastory				1	54-911	
AND DESCRIPTION OF	nuric Acid Preserved, I - Ice, ST - Soc Environments	aium Thiosulfate, NP - No Pres	ervative, O	P - Other Prese	vative Version:	1				0		Janua Da	to: 24/09/2012
coney	controllinents				version:	4			10			issue Da	te: 24/08/2012

Version: 4

Enquiries Syd

From: Sent: To: Cc: Subject: Attachments: Enquiries Syd Wednesday, 9 January 2013 6:04 PM 'Matthew Locke' 'Priya Dass'; 'Keri Hartog'; Enviro Syd SICEEP GEOTLCOV24303AF 364911_COC.pdf

Hi Matt,

There is not enough sample volume for MW104 to perform TRHC10-C40 & ultra trace PAH, these analysis can be performed at normal levels currently the sample is HOLD awaiting confirmation. Only 4 vials and a metals container were received for MW117 thus only TPHC6-C9/BTEX & M8 can be conducted and no PAH nor TRHC10-C40 cannot be performed.

Also MW5 was not distinguished between filtered & unfiltered thus one will be stated as A the other as B to be able to differentiate between the two.

You may received this email again as it is sitting in my outbox as I am having trouble with my mail please discard it if you receive it from myself.

Could you confirm the above analysis upon the stated.

Thank you

Ellen

It is essential to include all correspondence to: enviro.syd@mgtlabmark.com.au

Kind Regards,

Reception Unit F6, Building F 16 Mars Road Lane Cove West, NSW 2066 T:(+61) (2) 9900 8400 F:(+61) (2) 9420 2977 MX# 364911

Sample Receipt Unit F3, Building F 16 Mars Road Lane Cove West, NSW 2066

Please consider the environment before printing this email

Enquiries Syd

From: Sent: To: Cc: Subject: Keri Hartog [Keri_Hartog@coffey.com] Thursday, 10 January 2013 9:07 AM Enquiries Syd; Matthew Locke Priya Dass; Enviro Syd RE: SICEEP GEOTLCOV24303AF

Hi Ellen,

Matt is out of the office today he asked me to respond regarding the issues.

MW117 don't sample the vials dated 8/1/13 only the ones dated the 9/1/13. Please place the additional vials on hold. Confirming the BTEX an c6-c9 analysis. Additional sample was not able to be taken.

MW104 confirming the regular PAH not enough sample was able to be taken for that one.

MW5 are you able to distinguish any sediment at the base of one of the ambers? Can you confirm this otherwise place the Sample in hold and we will resemble this well.

Please consider this an amendment to the coc

Any questions please don't hesitate to call me. 0409418593

Regards

Keri Hartog

From: Enquiries Syd [Enquiries.Syd@mgtlabmark.com.au] Sent: Wednesday, 9 January 2013 6:04 PM To: Matthew Locke Cc: Priya Dass; Keri Hartog; Enviro Syd Subject: SICEEP GEOTLCOV24303AF

Hi Matt,

There is not enough sample volume for MW104 to perform TRHC10-C40 & ultra trace PAH, these analysis can be performed at normal levels currently the sample is HOLD awaiting confirmation. Only 4 vials and a metals container were received for MW117 thus only TPHC6-C9/BTEX & M8 can be conducted and no PAH nor TRHC10-C40 cannot be performed. Also MW5 was not distinguished between filtered & unfiltered thus one will be stated as A the other as B to be able to differentiate between the two.

You may received this email again as it is sitting in my outbox as I am having trouble with my mail please discard it if you receive it from myself.

Could you confirm the above analysis upon the stated.

Thank you

Ellen

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name: Coffey Geotechnics Pty Ltd Chatswood

Contact name:Matthew LockeClient job number:SICEEP GEOTLCOV24303AFCOC number:107204Turn around time:1 DayDate/Time received:Jan 10, 2013 9:07 AMmgt-LabMark reference:364911

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by mgt-LabMark Sample Receipt : 10 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Organic samples had Teflon liners.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

SRA Re-issued: As per client confirmation - Sample MW104 analysed for TRH/BTEX/PAH and M8 at normal LOR's; Only vials dated 9/1/13 for sample MW117 will be analysed for volatile TPH and BTEX; Sample MW5 was able to be distinguished between filtered & unfiltered and as such ultra-trace PAH can be conducted as originally requested. | Filtered amber container not received for MW104 and MW117 thus ultra trace analysis not conducted | Only 4 x vials and a metals container were received for MW117 hence only TPRHC6-C9/BTEX & M8 can be analysed

Contact notes

If you have any questions with respect to these samples please contact:

Jean Heng on Phone : (+61) (2) 9900 8400 or by e.mail: jean.heng@mgtlabmark.com.au

Results will be delivered electronically via e.mail to Matthew Locke - Matthew_Locke@coffey.com.

Environmental Laboratory N Air Analysis Si Water Analysis Tr Soil Contamination Analysis G

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

35Years of Environmental Analysis & Experience - fully Australian Owned

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood **NSW 2067**

Attention:Matthew Locke

Report

Client Reference

Received Date

Sample Matrix

Date Sampled

Test/Reference

TRH C6-C9

TRH C10-C14

TRH C15-C28

TRH C29-C36

BTEX Benzene

Toluene

o-Xylene

Ethylbenzene

m&p-Xylenes

Xylenes - Total

Naphthalene^{N02}

Total BTEX

364911-W SICEEP GEOTLCOV24303AF Jan 10, 2013

Client Sample ID MW106 MW107 DUP2 MW5 Water (Ultra-Water (Ultra-Water (Ultra-Water (Ultra-S13-Ja01784 S13-Ja01787 mgt-LabMark Sample No. S13-Ja01785 S13-Ja01786 Jan 09, 2013 Jan 09, 2013 Jan 09, 2013 Jan 09, 2013 LOR Unit **Total Recoverable Hydrocarbons - 1999 NEPM Fractions** 0.02 mg/L < 0.02 < 0.02 < 0.02 < 0.02 0.05 < 0.05 mg/L < 0.05 < 0.05 < 0.05 0.1 mg/L < 0.1 0.1 < 0.1 < 0.1 0.1 mg/L < 0.1 < 0.1 < 0.1 < 0.1 TRH C10-36 (Total) 0.1 mg/L < 0.1 0.1 < 0.1 < 0.1 0.001 < 0.001 < 0.001 < 0.001 mg/L < 0.001 0.001 mg/L < 0.001 < 0.001 < 0.001 < 0.001 0.001 mg/L < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.002 < 0.002 < 0.002 < 0.002 mg/L 0.001 < 0.001 < 0.001 < 0.001 < 0.001 mg/L 0.003 mg/L < 0.003 < 0.003 < 0.003 < 0.003 0.01 mg/L < 0.01 < 0.01 < 0.01 < 0.01 4-Bromofluorobenzene (surr.) % 91 1 90 93 92 Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions * 0.005 mg/L < 0.005 < 0.005 < 0.005 < 0.005

TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.00001	mg/L	0.00001	< 0.00001	< 0.00001	< 0.00001
Acenaphthylene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Anthracene	0.00001	mg/L	0.00001	0.00002	0.00002	< 0.00001
Benz(a)anthracene	0.00001	mg/L	< 0.00001	0.00001	0.00001	< 0.00001
Benzo(a)pyrene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.00002	mg/L	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Benzo(g.h.i)perylene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Chrysene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluoranthene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluorene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Naphthalene	0.00005	mg/L	< 0.00005	0.00006	0.00006	< 0.00005
Phenanthrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

G LabMark Environmental Laboratories

Client Sample ID Sample Matrix mgt-LabMark Sample No. Date Sampled Test/Reference	LOR	Unit	MW106 Water (Ultra- S13-Ja01784 Jan 09, 2013	MW107 Water (Ultra- S13-Ja01785 Jan 09, 2013	DUP2 Water (Ultra- S13-Ja01786 Jan 09, 2013	MW5 Water (Ultra- S13-Ja01787 Jan 09, 2013
Polyaromatic Hydrocarbons (PAH)						
Pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Total PAH	0.00005	mg/L	< 0.00005	0.00009	0.00009	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	126	114	110	128
p-Terphenyl-d14 (surr.)	1	%	130	128	126	128
Heavy Metals						
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	0.013	0.012	0.001
Arsenic (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001	0.005
Cadmium (filtered)	0.0001	mg/L	0.0002	0.0004	0.0003	< 0.0001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	0.001	0.002	0.001
Zinc (filtered)	0.005	mg/L	< 0.005	0.007	0.008	0.030

Client Sample ID			MW117	MW104	MW105	MW13
Sample Matrix			Water	Water	Water (Ultra-	Water (Ultra-
mgt-LabMark Sample No.			S13-Ja01788	S13-Ja01789	S13-Ja01790	S13-Ja01791
Date Sampled			Jan 09, 2013	Jan 09, 2013	Jan 09, 2013	Jan 09, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	-	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Total BTEX	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
4-Bromofluorobenzene (surr.)	1	%	90	94	92	91
Total Recoverable Hydrocarbons - Draft 2010 NB	EPM Fractions	*				
Naphthalene ^{N02}	0.005	mg/L	-	< 0.005	< 0.005	< 0.005
TRH C6-C10	0.02	mg/L	-	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	-	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	-	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.001	mg/L	-	< 0.001	0.00012	0.00002
Acenaphthylene	0.001	mg/L	-	< 0.001	0.00001	0.00001

G LabMark Environmental laboratories

Client Sample ID			MW117	MW104	MW105	MW13
Sample Matrix			Water	Water	Water (Ultra-	Water (Ultra-
mgt-LabMark Sample No.			S13-Ja01788	S13-Ja01789	S13-Ja01790	S13-Ja01791
Date Sampled			Jan 09, 2013	Jan 09, 2013	Jan 09, 2013	Jan 09, 2013
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Anthracene	0.001	mg/L	-	< 0.001	0.00005	0.00002
Benz(a)anthracene	0.001	mg/L	-	0.001	0.00001	0.00003
Benzo(a)pyrene	0.001	mg/L	-	< 0.001	0.00001	0.00002
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.002	mg/L	-	< 0.002	0.00002	0.00004
Benzo(g.h.i)perylene	0.001	mg/L	-	< 0.001	< 0.00001	0.00001
Chrysene	0.001	mg/L	-	0.001	< 0.00005	< 0.00005
Dibenz(a.h)anthracene	0.001	mg/L	-	< 0.001	< 0.00005	< 0.00005
Fluoranthene	0.001	mg/L	-	0.002	0.00011	0.00008
Fluorene	0.001	mg/L	-	< 0.001	0.00011	< 0.00005
Indeno(1.2.3-cd)pyrene	0.001	mg/L	-	< 0.001	< 0.00005	< 0.00005
Naphthalene	0.001	mg/L	-	< 0.001	0.00027	< 0.00005
Phenanthrene	0.001	mg/L	-	< 0.001	0.00028	< 0.00005
Pyrene	0.001	mg/L	-	0.002	0.00009	0.00016
Total PAH	0.002	mg/L	-	0.0060	0.0011	0.00039
2-Fluorobiphenyl (surr.)	1	%	-	112	122	116
p-Terphenyl-d14 (surr.)	1	%	-	121	128	127
Heavy Metals						
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.006	0.003	0.005	0.002
Arsenic (filtered)	0.001	mg/L	0.003	0.003	< 0.001	0.004
Cadmium (filtered)	0.0001	mg/L	0.0002	0.0003	0.0003	0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.001	0.004	0.003	< 0.001
Zinc (filtered)	0.005	mg/L	0.006	0.042	0.028	0.008

Client Sample ID Sample Matrix mgt-LabMark Sample No. Date Sampled Test/Reference	LOR	Unit	MW110A Water (Ultra- S13-Ja01792 Jan 09, 2013	MW30 Water (Ultra- S13-Ja01793 Jan 09, 2013	MW106FILT Water (Ultra- S13-Ja01794 Jan 09, 2013	MW107FILT Water (Ultra- S13-Ja01795 Jan 09, 2013
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	1				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	-	-
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	-	-
втех						
Benzene	0.001	mg/L	< 0.001	< 0.001	-	-
Toluene	0.001	mg/L	< 0.001	< 0.001	-	-
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	-	-
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	-	-
o-Xylene	0.001	mg/L	< 0.001	< 0.001	-	-
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	-	-
Total BTEX	0.01	mg/L	< 0.01	< 0.01	-	-
4-Bromofluorobenzene (surr.)	1	%	89	92	-	-

G LabMark Environmental laboratories

Client Sample ID			MW110A	MW30	MW106FILT	MW107FILT
Sample Matrix			Water (Ultra-	Water (Ultra-	Water (Ultra-	Water (Ultra-
mgt-LabMark Sample No.			S13-Ja01792	S13-Ja01793	S13-Ja01794	S13-Ja01795
Date Sampled			Jan 09, 2013	Jan 09, 2013	Jan 09, 2013	Jan 09, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - Draft 2010 NEF						
Naphthalene ^{N02}	0.005	mg/L	< 0.005	< 0.005	_	_
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	-	_
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	_	_
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	-	-
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.00001	mg/L	0.00004	< 0.00001	< 0.00001	< 0.00001
Acenaphthylene	0.00001	mg/L	0.00003	< 0.00001	< 0.00001	< 0.00001
Anthracene	0.00001	mg/L	0.00002	0.00001	< 0.00001	< 0.00001
Benz(a)anthracene	0.00001	mg/L	0.00002	0.00001	< 0.00001	< 0.00001
Benzo(a)pyrene	0.00001	mg/L	0.00002	0.00001	< 0.00001	< 0.00001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.00002	mg/L	0.00004	0.00002	< 0.00002	< 0.00002
Benzo(g.h.i)perylene	0.00001	mg/L	0.00001	< 0.00001	< 0.00001	< 0.00001
Chrysene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluoranthene	0.00005	mg/L	0.00005	< 0.00005	< 0.00005	< 0.00005
Fluorene	0.00005	mg/L	0.00005	< 0.00005	< 0.00005	< 0.00005
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Naphthalene	0.00005	mg/L	0.00006	< 0.00005	< 0.00005	< 0.00005
Phenanthrene	0.00005	mg/L	0.00007	< 0.00005	< 0.00005	< 0.00005
Pyrene	0.00005	mg/L	0.00005	0.00008	< 0.00005	< 0.00005
Total PAH	0.00005	mg/L	0.00046	0.00013	< 0.00005	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	116	124	130	100
p-Terphenyl-d14 (surr.)	1	%	128	130	130	126
Heavy Metals						
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	-	-
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Arsenic (filtered)	0.001	mg/L	0.008	< 0.001	-	-
Cadmium (filtered)	0.0001	mg/L	0.0002	0.0003	-	-
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Copper (filtered)	0.001	mg/L	< 0.001	0.001	-	-
Zinc (filtered)	0.005	mg/L	0.007	0.012	-	-

Client Sample ID Sample Matrix mgt-LabMark Sample No.			DUP2FILT Water (Ultra- S13-Ja01796	MW5FILT Water (Ultra- S13-Ja01797	MW105FILT Water (Ultra- S13-Ja01798	MW13FILT Water (Ultra- S13-Ja01799
Date Sampled			Jan 09, 2013	Jan 09, 2013	Jan 09, 2013	Jan 09, 2013
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Acenaphthylene	0.00001	mg/L	< 0.00001	0.00001	< 0.00001	< 0.00001
Anthracene	0.00001	mg/L	< 0.00001	0.00001	< 0.00001	0.00001
Benz(a)anthracene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
OLCIDATORIES

Client Sample ID Sample Matrix mgt-LabMark Sample No. Date Sampled Test/Reference	LOR	Unit	DUP2FILT Water (Ultra- S13-Ja01796 Jan 09, 2013	MW5FILT Water (Ultra- S13-Ja01797 Jan 09, 2013	MW105FILT Water (Ultra- S13-Ja01798 Jan 09, 2013	MW13FILT Water (Ultra- S13-Ja01799 Jan 09, 2013
Polyaromatic Hydrocarbons (PAH)	LUR	Unit				
Benzo(a)pyrene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.00002	mg/L	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Benzo(g.h.i)perylene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Chrysene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluoranthene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluorene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Naphthalene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Phenanthrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Pyrene	0.00005	mg/L	< 0.00005	0.00026	< 0.00005	< 0.00005
Total PAH	0.00005	mg/L	< 0.00005	0.00028	< 0.00005	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	104	120	110	126
p-Terphenyl-d14 (surr.)	1	%	126	129	130	130

Client Sample ID Sample Matrix			MW110AFILT Water (Ultra-	MW30FILT Water (Ultra-
mgt-LabMark Sample No.			S13-Ja01800	S13-Ja01801
.				
Date Sampled			Jan 09, 2013	Jan 09, 2013
Test/Reference	LOR	Unit		
Polyaromatic Hydrocarbons (PAH)				
Acenaphthene	0.00001	mg/L	< 0.00001	< 0.00001
Acenaphthylene	0.00001	mg/L	< 0.00001	< 0.00001
Anthracene	0.00001	mg/L	< 0.00001	< 0.00001
Benz(a)anthracene	0.00001	mg/L	< 0.00001	< 0.00001
Benzo(a)pyrene	0.00001	mg/L	< 0.00001	< 0.00001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.00002	mg/L	< 0.00002	< 0.00002
Benzo(g.h.i)perylene	0.00001	mg/L	< 0.00001	< 0.00001
Chrysene	0.00005	mg/L	< 0.00005	< 0.00005
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005	< 0.00005
Fluoranthene	0.00005	mg/L	< 0.00005	< 0.00005
Fluorene	0.00005	mg/L	< 0.00005	< 0.00005
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005	< 0.00005
Naphthalene	0.00005	mg/L	< 0.00005	< 0.00005
Phenanthrene	0.00005	mg/L	< 0.00005	< 0.00005
Pyrene	0.00005	mg/L	< 0.00005	< 0.00005
Total PAH	0.00005	mg/L	< 0.00005	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	98	118
p-Terphenyl-d14 (surr.)	1	%	112	130

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Testing Site	Extracted	Holding Time
mgt-LabMark Suite 4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 10, 2013	7 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
BTEX	Sydney	Jan 10, 2013	14 Day
- Method: E029/E016 BTEX			
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions *	Sydney	Jan 10, 2013	7 Day
- Method: LM-LTM-ORG2010			
Polyaromatic Hydrocarbons (PAH)	Sydney	Jan 10, 2013	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8 filtered	Sydney	Jan 10, 2013	28 Day
- Method: E020/E030 Filtered Metals in Water & E026 Mercury			

Oakleigh Phone : -

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Name: Coffey Geotechnics Pty Ltd Chatswood Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067 Client Job No.: SICEEP GEOTLCOV24303AF							Order Repor Phone Fax:			364911 +61 2 9406 1000 +61 2 9406 1002	Received: Due: Priority: Contact Name: mgt-LabM	Jan 10, 2013 9:07 AM Jan 11, 2013 1 Day Matthew Locke Mark Client Manager: Jean Heng
Sample Detail					TRH C6-C9	Metals M8 filtered	BTEX	Polyaromatic Hydrocarbons (PAH)	mgt-LabMark Suite 4			
Laboratory wh	ere analysis is	conducted										
		A Site # 1254 & 14	4271						-			
Sydney Labora					X	Х	X	X	Х			
Brisbane Labo		Site # 20794				<u> </u>						
External Labor Sample ID	Sample Date	e Sampling Time	Matrix	LAB ID								
MW106	Jan 09, 2013		Water (Ultra- trace)	S13-Ja01784		x			х			
MW107	Jan 09, 2013		Water (Ultra- trace)	S13-Ja01785		х			х			
DUP2	Jan 09, 2013		Water (Ultra- trace)	S13-Ja01786		х			х			
MW5	Jan 09, 2013		Water (Ultra- trace)	S13-Ja01787		х			х			
MW117					Х	Х	Х					
MW104	Jan 09, 2013		Water	S13-Ja01789		Х			Х			

Oakleigh Phone : -

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Client Job N	Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067						Order No.: Report #: Phone: Fax:			364911 +61 2 9406 1000 +61 2 9406 1002	Receive Due: Priority: Contact		Jan 10, 2013 9:07 AM Jan 11, 2013 1 Day Matthew Locke
												mgt-Lab	Mark Client Manager: Jean Heng
Sample Detail					TRH C6-C9	Metals M8 filtered	BTEX	Polyaromatic Hydrocarbons (PAH)	mgt-LabMark Suite 4				
		ATA Site # 1254 & 14	271		x	Х	x	x	x				
Sydney Labor		TA Site # 18217			<u> </u>	^	^	<u> </u>	^				
External Labo													
MW105	Jan 09, 201	13	Water (Ultra- trace)	S13-Ja01790		х			x				
MW13	Jan 09, 201	13	Water (Ultra- trace)	S13-Ja01791		х			x				
MW110A	Jan 09, 201	13	Water (Ultra- trace)	S13-Ja01792		х			x				
MW30	Jan 09, 201	13	Water (Ultra- trace)	S13-Ja01793		х			х				
MW106FILT	Jan 09, 201	13	Water (Ultra- trace)	S13-Ja01794				х					
MW107FILT	Jan 09, 201	13	Water (Ultra- trace)	S13-Ja01795				х					
DUP2FILT	Jan 09, 201	13	Water (Ultra- trace)	S13-Ja01796				х					

Oakleigh Phone : -

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 Bris

 Unit F6, Building F
 1/2

 16 Mars Road
 Mu

 Lane Cove West NSW 2066
 Pho

 Phone : +61 2 9900 8400
 NA

 NATA # 1261 Site # 18217
 H217

Address:	Company Name:Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067Client Job No.:SICEEP GEOTLCOV24303AF					Order No.: Report #: Phone: Fax:				364911 +61 2 9406 1000 +61 2 9406 1002	Received: Due: Priority: Contact Name:	Jan 10, 2013 9:07 AM Jan 11, 2013 1 Day Matthew Locke
											mgt-Labl	Mark Client Manager: Jean Heng
	Sample Detail						BTEX	Polyaromatic Hydrocarbons (PAH)	mgt-LabMark Suite 4			
		s conducted A Site # 1254 & 14	1071									
Sydney Labora			+271		Х	x	Х	Х	Х			
Brisbane Labo												
External Labor												
MW5FILT	Jan 09, 2013		Water (Ultra- trace)	S13-Ja01797				х				
MW105FILT	Jan 09, 2013		Water (Ultra- trace)	S13-Ja01798				х				
MW13FILT	Jan 09, 2013		Water (Ultra- trace)	S13-Ja01799				х				
MW110AFILT	/W110AFILT Jan 09, 2013 Water (Ultra- trace) S13-Ja01800					х						
MW30FILT	Jan 09, 2013		Water (Ultra- trace)	S13-Ja01801				х				

mgt-LabMark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

TERMS

IERIVIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC was performed on samples not pertaining to this report, however QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or
- contaminant levels within the sample, high moisture content or insufficient sample provided.
 Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				2	0000
Total Recoverable Hydrocarbons - 1999 NEPM Fractions E	004				
Petroleum Hydrocarbons (TPH)		0.00			
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX E029/E016 BTEX		10.001	0.001	Deee	
Benzene	mg/L	< 0.001 < 0.001	0.001	Pass Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L mg/L	< 0.001	0.001	Pass	
o-Xylene	mg/L	< 0.002	0.002	Pass	
Xylenes - Total	mg/L	< 0.003	0.001	Pass	
Total BTEX	mg/L	< 0.01	0.003	Pass	
Aethod Blank	I IIIg/L	< 0.01	0.01	1 835	
Fotal Recoverable Hydrocarbons - Draft 2010 NEPM Fraction	ons * LM-				
-TM-ORG2010					
Naphthalene	mg/L	< 0.005	0.005	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic Hyd PAH)	rocarbons				
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/L	< 0.002	0.002	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	· · ·		· · · · · · · · · · · · · · · · · · ·		
Metals M8 filtered E020/E030 Filtered Metals in Water & E02	26 Mercury				
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0001	0.0001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
			0.005	Deee	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9			%	111		70-130	Pass	
TRH C10-C14			%	89		70-130	Pass	
LCS - % Recovery				1		1	r	
BTEX E029/E016 BTEX								
Benzene			%	106		70-130	Pass	
Toluene			%	107		70-130	Pass	
Ethylbenzene			%	108		70-130	Pass	
m&p-Xylenes			%	108		70-130	Pass	
o-Xylene			%	105		70-130	Pass	
Xylenes - Total			%	107		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons LTM-ORG2010	- Draft 2010 NEPM	Fractions	s * LM-					
Naphthalene			%	77		70-130	Pass	
TRH C6-C10			%	113		70-130	Pass	
TRH >C10-C16			%	95		70-130	Pass	
LCS - % Recovery								
Polyaromatic Hydrocarbons (PAH (PAH)	I) E007 Polyaromat	ic Hydrod	carbons					
Acenaphthene			%	90		70-130	Pass	
Acenaphthylene			%	82		70-130	Pass	
Anthracene			%	94		70-130	Pass	
Benz(a)anthracene			%	90		70-130	Pass	
Benzo(a)pyrene			%	83		70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fl	uoranthene		%	88		70-130	Pass	
Benzo(g.h.i)perylene			%	79		70-130	Pass	
Chrysene			%	85		70-130	Pass	
Dibenz(a.h)anthracene			%	80		70-130	Pass	
Fluoranthene			%	94		70-130	Pass	
Fluorene			%	91		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	81		70-130	Pass	
Naphthalene			%	89		70-130	Pass	
Phenanthrene			%	92		70-130	Pass	
Pyrene			%	96		70-130	Pass	
LCS - % Recovery				1		1	r	
Metals M8 filtered E020/E030 Filte	red Metals in Wate	r & E026	Mercury					
Lead (filtered)			%	111		70-130	Pass	
Mercury (filtered)			%	81		70-130	Pass	
Nickel (filtered)			%	110		70-130	Pass	
Arsenic (filtered)			%	101		70-130	Pass	
Cadmium (filtered)			%	104		70-130	Pass	
Chromium (filtered)			%	104		70-130	Pass	
Copper (filtered)			%	110		70-130	Pass	
Zinc (filtered)			%	107		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons				Result 1				
TRH C10-C14	S13-Ja01664	NCP	%	92		70-130	Pass	
Spike - % Recovery		Freedier	• *	Deput				
Total Recoverable Hydrocarbons				Result 1		70.400	D-r-	
TRH >C10-C16	S13-Ja01664	NCP	%	98		70-130	Pass	
Spike - % Recovery	N			Pooult 4				
Polyaromatic Hydrocarbons (PAF Acenaphthene	I) S13-Ja02246	NCP	%	Result 1 104		70-130	Pass	
ACEDADDDEDE	1 313-Jau2246			1 104	i I	1 70-130	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Anthracene	S13-Ja02246	NCP	%	109			70-130	Pass	
Benz(a)anthracene	S13-Ja02246	NCP	%	111			70-130	Pass	
Benzo(a)pyrene	S13-Ja02246	NCP	%	102			70-130	Pass	
Benzo(b)fluoranthene &								_	
Benzo(k)fluoranthene	S13-Ja02246	NCP	%	104			70-130	Pass	
Benzo(g.h.i)perylene	S13-Ja02246	NCP	%	91			70-130	Pass	
Chrysene	S13-Ja02246	NCP	%	100			70-130	Pass	
Dibenz(a.h)anthracene	S13-Ja02246	NCP	%	93			70-130	Pass	
Fluoranthene	S13-Ja02246	NCP	%	115			70-130	Pass	
Fluorene	S13-Ja02246	NCP	%	106			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-Ja02246	NCP	%	94			70-130	Pass	
Naphthalene	S13-Ja02246	NCP	%	101			70-130	Pass	
Phenanthrene	S13-Ja02246	NCP	%	107			70-130	Pass	
Pyrene	S13-Ja02246	NCP	%	116			70-130	Pass	
Spike - % Recovery					r		1		
Total Recoverable Hydrocarbor				Result 1					
TRH C6-C9	S13-Ja01785	CP	%	108			70-130	Pass	
Spike - % Recovery									
ВТЕХ		1		Result 1					
Benzene	S13-Ja01785	CP	%	107			70-130	Pass	
Toluene	S13-Ja01785	CP	%	107			70-130	Pass	
Ethylbenzene	S13-Ja01785	CP	%	108			70-130	Pass	
m&p-Xylenes	S13-Ja01785	CP	%	107			70-130	Pass	
o-Xylene	S13-Ja01785	CP	%	106			70-130	Pass	
Xylenes - Total	S13-Ja01785	CP	%	107			70-130	Pass	
Spike - % Recovery					1				
Total Recoverable Hydrocarbor	ns - Draft 2010 NEPM	Fraction		Result 1					
Naphthalene	S13-Ja01785	CP	%	100			70-130	Pass	
TRH C6-C10	S13-Ja01785	CP	%	109			70-130	Pass	
Spike - % Recovery				1	1				
Metals M8 filtered		1		Result 1					
Lead (filtered)	S13-Ja01785	CP	%	85			70-130	Pass	
Mercury (filtered)	S13-Ja01785	CP	%	85			70-130	Pass	
Nickel (filtered)	S13-Ja01785	CP	%	84			70-130	Pass	
Arsenic (filtered)	S13-Ja01785	CP	%	102			70-130	Pass	
Cadmium (filtered)	S13-Ja01785	CP	%	79			70-130	Pass	
Chromium (filtered)	S13-Ja01785	CP	%	98			70-130	Pass	
Copper (filtered)	S13-Ja01785	CP	%	83			70-130	Pass	
Zinc (filtered)	S13-Ja01785	CP	%	82			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		Jource					Linits	Linits	Code
Total Recoverable Hydrocarbor	s - 1000 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Ja01784	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S13-Ja01784	NCP	mg/L	0.30	0.32	7.0	30%	Pass	
TRH C15-C28	S13-Ja01663	NCP	mg/L	0.19	0.32	5.0	30%	Pass	
TRH C29-C36	S13-Ja01663	NCP	mg/L	< 0.1	< 0.1	<u> </u>	30%	Pass	
Duplicate	010-0001000				< 0.1		50 %	1 455	
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Ja01784	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S13-Ja01784	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S13-Ja01784	CP	mg/L	< 0.001	< 0.001	<1 <1	30%	Pass	
	S13-Ja01784	CP		< 0.001	< 0.001		30%	Pass	
m&p-Xylenes			mg/L			<1			
o-Xylene	S13-Ja01784	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total Total BTEX	S13-Ja01784	CP CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
	S13-Ja01784		mg/L	< 0.01	< 0.01	<1	30%	Pass	1

Duplicate				-					
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fraction	s *	Result 1	Result 2	RPD			
Naphthalene	S13-Ja01784	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
TRH C6-C10	S13-Ja01784	CP	mg/L	< 0.02	< 0.02	3.0	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Ja01784	CP	mg/L	< 0.02	< 0.02	3.0	30%	Pass	
TRH >C10-C16	S13-Ja01663	NCP	mg/L	0.18	0.21	15	30%	Pass	
TRH >C16-C34	S13-Ja01663	NCP	mg/L	0.14	0.16	13	30%	Pass	
TRH >C34-C40	S13-Ja01663	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Polyaromatic Hydrocarbons (PA	H)			Result 1	Result 2	RPD			
Acenaphthene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Ja02245	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				-					
Metals M8 filtered		-		Result 1	Result 2	RPD			
Lead (filtered)	S13-Ja01784	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S13-Ja01784	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S13-Ja01784	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Arsenic (filtered)	S13-Ja01784	CP	mg/L	0.001	0.001	<1	30%	Pass	
Cadmium (filtered)	S13-Ja01784	CP	mg/L	0.0002	0.0002	6.0	30%	Pass	
Chromium (filtered)	S13-Ja01784	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S13-Ja01784	CP	mg/L	< 0.001	< 0.001	17	30%	Pass	
Zinc (filtered)	S13-Ja01784	CP	mg/L	< 0.005	< 0.005	7.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised By

Jean Heng	Client Services
Laura Schofield	Senior Analyst-Volatile (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
James Norford	Senior Analyst-Metal (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

mgh LabMark shail not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgh LabMark be liable for case, using from the use of any information or interpretation given in this report. In no case shall mgh LabMark be liable for case, using from the use of any information or interpretation given in this report. In no case shall mgh LabMark be liable for case, using from the use of any information or interpretation given in this report. In on case shall mgh LabMark be liable for case, using from this report. This document shall not be reproduced except in full and retime tested. Unless indicated of here performed extended.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page _____ of ____ 107205

	A		Consignin	g Office:	Coffey	Geotech	cha	tswo	ale								
CO	ffey > envii		Report Re	sults to:	Matthe	Ceotech w Locke	6	Mobile:	042	150 2	2024	193Em	ail: 🕥	atthe	w-loch	ke	@coffey.com
	SOCIAL SOCIAL	AND SAFETY PERFORMANCE	Invoices to	o:	1.0	U)		Phone:				Em	ail:		scoler for the starts of the second		@coffey.com
Project N	NO: CIECTICOV243	CAF Task No:									Analy	sis Requ	lest Sec	tion	, , ,		
Project N	Name: SICEEP	Laboratory:	MCIT	Lak	mark						/ /	//	///	///			
Sampler	's Name: Kovi Hark	9 Priva Broject Mana	ager: 🚺	auth	aw loc	ke			/	///	/ /	//	///	///		//	
Special I	nstructions: PAH ultr	a-trace on bo	th fill	reved	+ unfi	tered am	bers.		101	0/	104	//	///	///	///	1 3	365010
BTEX	,TPH, PAH from B4	suite, Metals from		uite				1	3/3	4/4	//	///	///	///	///		
Lab No.	Sample ID		Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	13	5		//		///	///		NO	TES
	MW8		10/1/13		Water	21,26,1P	24-hV										
	MWIDA				1												
	MWG							//									
	MWS							4									
	MWIZO							//						_			
	TB					2N			//								
	TS		V		V	V											
													_				
														_			
									1.44								
									_								
	RELIN	QUISHED BY				RE	CEIVED BY					Sample	Receipt	Advice: (L	ab Use Only))	
Name:	Priya Dass	Date: 10/1/13	->	Name:	Mitchell	Tupphy		Date: 1	0-1-1	3		All Sam	ples Reci	eved in Go	od Condition	ı	
	invironments	Time: 12:00p.M			ny: MGT L			Time:	12.00			All Doci	umentatio	on is in Pro	oper Order		
Name:		Date:	->	Name:	Ellen	NG		Date:	10011.			Sample	s Receive	d Properly	Chilled		
Compar	iy:	Time:		Compa	ny: Mg.f	blanak		Time:	14:1	0		La <mark>b</mark> . Re	f/Batch N				
*Contai	ner Type & Preservation Co	odes: P - Plastic, G- Glass Bott	le. J - Glass		/		reserved, C -	Hydrochle	oric Acid I	Preserved	d,				369	000)
S - Sul	phuric Acid Preserved, I - Ice	e, ST - Sodium Thiosulfate, N	P - No Prese	rvative, C	P - Other Prese	rvative											
Coff	ey Environments					Version	:4 /	1. hele 11	Marine 10-1	- 13	6°					Issue Date	2: 24/08/2012

Version: 4

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:Coffey Geotechnics Pty Ltd ChatswoodContact name:Matthew LockeClient job number:SICEEP GEOTLCOV24303AFCOC number:107205Turn around time:1 DayDate/Time received:Jan 10, 2013 2:10 PMmgt-LabMark reference:**365010**

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by mgt-LabMark Sample Receipt : 6 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- \checkmark Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- ☑ Organic samples had Teflon liners.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Jean Heng on Phone : (+61) (2) 9900 8400 or by e.mail: jean.heng@mgtlabmark.com.au

Results will be delivered electronically via e.mail to Matthew Locke - Matthew_Locke@coffey.com.

mgt-LabMark Sample Receipt

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:Matthew Locke

Report

Client Reference Received Date

365010-W
SICEEP GEOTLCOV24303AF
Jan 10, 2013

MW8 MW109 MW6 MW120 **Client Sample ID** Water (Ultra-Water (Ultra-Water (Ultra-Water (Ultra-Sample Matrix mgt-LabMark Sample No. S13-Ja02364 S13-Ja02365 S13-Ja02366 S13-Ja02368 **Date Sampled** Jan 10, 2013 Jan 10, 2013 Jan 10, 2013 Jan 10, 2013 LOR Unit Test/Reference **Total Recoverable Hydrocarbons - 1999 NEPM Fractions** TRH C6-C9 0.02 mg/L < 0.02 < 0.02 < 0.02 0.03 0.05 TRH C10-C14 mg/L < 0.05 < 0.05 < 0.05 < 0.05 TRH C15-C28 mg/L < 0.1 < 0.1 < 0.1 < 0.1 0.1 TRH C29-C36 0.1 mg/L < 0.1 < 0.1 < 0.1 < 0.1 TRH C10-36 (Total) 0.1 < 0.1 < 0.1 < 0.1 < 0.1 mg/L BTEX < 0.001 Benzene 0.001 mg/L < 0.001 < 0.001 < 0.001 Toluene 0.001 mg/L < 0.001 < 0.001 < 0.001 < 0.001 Ethylbenzene 0.001 mg/L < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.002 < 0.002 < 0.002 < 0.002 m&p-Xylenes mg/L 0.001 < 0.001 < 0.001 < 0.001 < 0.001 o-Xylene mg/L Xylenes - Total 0.003 mg/L < 0.003 < 0.003 < 0.003 < 0.003 Total BTEX 0.01 mg/L < 0.01 < 0.01 < 0.01 < 0.01 4-Bromofluorobenzene (surr.) 1 % 93 87 89 87 Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions * Naphthalene^{N02} 0.005 < 0.005 < 0.005 < 0.005 < 0.005 mg/L TRH C6-C10 0.02 mg/L < 0.02 < 0.02 0.02 0.03 TRH C6-C10 less BTEX (F1)N04 0.02 mg/L < 0.02 < 0.02 0.02 0.03 TRH >C10-C16 0.05 mg/L < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 TRH >C10-C16 less Naphthalene (F2)^{N01} < 0.05 0.05 mg/L < 0.05 < 0.05 TRH >C16-C34 0.1 mg/L < 0.1 < 0.1 < 0.1 < 0.1 TRH >C34-C40 0.1 mg/L < 0.1 < 0.1 < 0.1 < 0.1 Polyaromatic Hydrocarbons (PAH) 0.00001 < 0.00001 0.00004 < 0.00001 < 0.00001 Acenaphthene mg/L Acenaphthylene 0.00001 mg/L < 0.00001 0.00001 < 0.00001 < 0.00001 Anthracene 0.00001 mg/L < 0.00001 0.00006 < 0.00001 < 0.00001 Benz(a)anthracene 0.00001 mg/L < 0.00001 0.00007 < 0.00001 < 0.00001 Benzo(a)pyrene 0.00001 mg/L < 0.00001 0.00003 < 0.00001 < 0.00001 Benzo(b)fluoranthene & Benzo(k)fluoranthene < 0.00002 0.00002 mg/L < 0.00002 0.00006 < 0.00002 < 0.00001 Benzo(g.h.i)perylene 0.00001 mg/L < 0.00001 0.00001 < 0.00001 Chrysene 0.00005 mg/L < 0.00005 0.00006 < 0.00005 < 0.00005 Dibenz(a.h)anthracene 0.00005 mg/L < 0.00005 < 0.00005 < 0.00005 < 0.00005 Fluoranthene 0.00005 < 0.00005 mg/L < 0.00005 0.00085 < 0.00005 Fluorene 0.00005 mg/L < 0.00005 < 0.00005 < 0.00005 < 0.00005 Indeno(1.2.3-cd)pyrene 0.00005 < 0.00005 < 0.00005 mg/L < 0.00005 < 0.00005 Naphthalene 0.00005 mg/L < 0.00005 < 0.00005 < 0.00005 < 0.00005

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Phenanthrene

mg/L

< 0.00005

0.00011

0.00005

< 0.00005

< 0.00005

G LabMark Environmental Laboratories

Client Sample ID Sample Matrix mgt-LabMark Sample No.			MW8 Water (Ultra- S13-Ja02364	MW109 Water (Ultra- S13-Ja02365	MW6 Water (Ultra- S13-Ja02366	MW120 Water (Ultra- S13-Ja02368
Date Sampled			Jan 10, 2013	Jan 10, 2013	Jan 10, 2013	Jan 10, 2013
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Pyrene	0.00005	mg/L	< 0.00005	0.00073	< 0.00005	< 0.00005
Total PAH	0.00005	mg/L	< 0.00005	0.0020	< 0.00005	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	112	124	122	122
p-Terphenyl-d14 (surr.)	1	%	130	130	130	130
Heavy Metals						
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001	< 0.001
Arsenic (filtered)	0.001	mg/L	0.002	0.001	< 0.001	0.005
Cadmium (filtered)	0.0001	mg/L	0.0002	0.0002	0.0002	0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.003	< 0.001	0.001	0.002
Zinc (filtered)	0.005	mg/L	0.009	< 0.005	< 0.005	< 0.005

Client Sample ID Sample Matrix			MW8FILT Water (Ultra-	MW109FILT Water (Ultra-	MW6FILT Water (Ultra-	MW120FILT Water (Ultra-
mgt-LabMark Sample No.			S13-Ja02369	S13-Ja02370	S13-Ja02371	S13-Ja02373
Date Sampled			Jan 10, 2013	Jan 10, 2013	Jan 10, 2013	Jan 10, 2013
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Acenaphthylene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Anthracene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benz(a)anthracene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(a)pyrene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.00002	mg/L	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Benzo(g.h.i)perylene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Chrysene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluoranthene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluorene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Naphthalene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Phenanthrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Total PAH	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	110	94	118	110
p-Terphenyl-d14 (surr.)	1	%	128	114	129	124

Client Sample ID Sample Matrix mgt-LabMark Sample No. Date Sampled Test/Reference	LOR	Unit	TB Water S13-Ja02374 Jan 10, 2013	TS Water S13-Ja02375 Jan 10, 2013
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions			
TRH C6-C9	0.02	mg/L	< 0.02	-
BTEX				
Benzene	0.001	mg/L	< 0.001	102%
Toluene	0.001	mg/L	< 0.001	102%
Ethylbenzene	0.001	mg/L	< 0.001	98%
m&p-Xylenes	0.002	mg/L	< 0.002	106%
o-Xylene	0.001	mg/L	< 0.001	110%
Xylenes - Total	0.003	mg/L	< 0.003	107%
Total BTEX	0.01	mg/L	< 0.01	104%
4-Bromofluorobenzene (surr.)	1	%	87	99

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Testing Site	Extracted	Holding Time
mgt-LabMark Suite 4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 10, 2013	7 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
BTEX	Sydney	Jan 10, 2013	14 Day
- Method: E029/E016 BTEX			
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions *	Sydney	Jan 10, 2013	7 Day
- Method: LM-LTM-ORG2010			
Polyaromatic Hydrocarbons (PAH)	Sydney	Jan 10, 2013	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8 filtered	Sydney	Jan 10, 2013	28 Day
- Method: E020/E030 Filtered Metals in Water & E026 Mercury			

Oakleigh Phone : +

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 Bri

 Unit F6, Building F
 1/2

 16 Mars Road
 Mu

 Lane Cove West NSW 2066
 Ph

 Phone : +61 2 9900 8400
 NA

 NATA # 1261 Site # 18217
 NA

Company Na Address: Client Job No	Level 18 Chatswo NSW 20	od	el Tower 799 Pao	cific Highway	Order No.: Report #: Phone: Fax:					+6′	5010 1 2 9406 1000 1 2 9406 1002	Received: Due: Priority: Contact Name: mgt-LabM	Jan 10, 2013 2:10 PM Jan 11, 2013 1 Day Matthew Locke Mark Client Manager: Jean Heng
	Sample Detail					TRH C6-C9	Metals M8 filtered	BTEX	Polyaromatic Hydrocarbons (PAH)	mgt-LabMark Suite 4			
	ooratory - NATA		1271								4		
	atory - NATA Site				Х	X	X	X	Х	Х	4		
External Labor	ratory - NATA Si atory	te # 20794									-		
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							-		
MW8	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02364			х			х			
MW109	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02365			х			х			
MW6	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02366			х			х			
MW5	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02367	х								
MW120	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02368			х			х			
MW8FILT	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02369					х				

Oakleigh Phone : +

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Nar Address: Client Job No	Level 18 Chatswo NSW 20		el Tower 799 Pac	ific Highway						+61	010 2 9406 1000 2 9406 1002	Received: Due: Priority: Contact Name: mgt-l abN	Jan 10, 2013 2:10 PM Jan 11, 2013 1 Day Matthew Locke //ark Client Manager: Jean Heng
		Sample Detail			HOLD	TRH C6-C9	Metals M8 filtered	BTEX	Polyaromatic Hydrocarbons (PAH)	mgt-LabMark Suite 4		ingr-Labi	na k Gheilt Mahayer. Jean nelig
Laboratory whe											-		
		Site # 1254 & 14	271		v	v	v			v	-		
Sydney Labora Brisbane Labor					X	X	X	X	X	X	4		
External Laboration		-10 # 201 J4									1		
	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02370					x				
MW6FILT	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02371					х]		
MW5FILT	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02372	х								
MW120FILT	Jan 10, 2013		Water (Ultra- trace)	S13-Ja02373					х				
ТВ	Jan 10, 2013 Water S13-Ja02374			S13-Ja02374		Х		Х					
TS	Jan 10, 2013		Water	S13-Ja02375				Х					

mgt-LabMark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

TERMS

IERIVIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC was performed on samples not pertaining to this report, however QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or
- contaminant levels within the sample, high moisture content or insufficient sample provided.
 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				2	0000
Total Recoverable Hydrocarbons - 1999 NEPM Fractions E0	04				
Petroleum Hydrocarbons (TPH)					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank			1		
BTEX E029/E016 BTEX		10.001	0.001	Deee	
Benzene Toluene	mg/L	< 0.001 < 0.001	0.001	Pass Pass	
Ethylbenzene	mg/L mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.001	0.001	Pass	
o-Xylene	mg/L	< 0.002	0.002	Pass	
Xylenes - Total	mg/L	< 0.003	0.001	Pass	
Total BTEX	mg/L	< 0.01	0.003	Pass	
Nethod Blank	_ mg/∟	< 0.01	0.01	1 835	
Fotal Recoverable Hydrocarbons - Draft 2010 NEPM Fraction	ns * LM-				
-TM-ORG2010	·				
Naphthalene	mg/L	< 0.005	0.005	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank			1 1	[
Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic Hydro (PAH)	ocarbons				
Acenaphthene	mg/L	< 0.00001	0.00001	Pass	
Acenaphthylene	mg/L	< 0.00001	0.00001	Pass	
Anthracene	mg/L	< 0.00001	0.00001	Pass	
Benz(a)anthracene	mg/L	< 0.00001	0.00001	Pass	
Benzo(a)pyrene	mg/L	< 0.00001	0.00001	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/L	< 0.00002	0.00002	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.00001	0.00001	Pass	
Chrysene	mg/L	< 0.00005	0.00005	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.00005	0.00005	Pass	
Fluoranthene	mg/L	< 0.00005	0.00005	Pass	
Fluorene	mg/L	< 0.00005	0.00005	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.00005	0.00005	Pass	
Naphthalene	mg/L	< 0.00005	0.00005	Pass	
Phenanthrene	mg/L	< 0.00005	0.00005	Pass	
Pyrene	mg/L	< 0.00005	0.00005	Pass	
Method Blank					
Metals M8 filtered E020/E030 Filtered Metals in Water & E026	6 Mercury				
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0001	0.0001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
	mg/L	< 0.005	0.005	Pass	
Zinc (filtered) .CS - % Recovery					

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9			%	104		70-130	Pass	
TRH C10-C14			%	102		70-130	Pass	
LCS - % Recovery				1	1 1	1	1	
BTEX E029/E016 BTEX								
Benzene			%	102		70-130	Pass	
Toluene			%	102		70-130	Pass	
Ethylbenzene			%	102		70-130	Pass	
m&p-Xylenes			%	102		70-130	Pass	
o-Xylene			%	101		70-130	Pass	
Xylenes - Total			%	102		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons LTM-ORG2010	- Draft 2010 NEPM	Fraction	s * LM-					
TRH >C10-C16			%	108		70-130	Pass	
LCS - % Recovery								
Polyaromatic Hydrocarbons (PAI (PAH)	H) E007 Polyaroma	tic Hydrod	carbons					
Acenaphthene			%	102		70-130	Pass	
Acenaphthylene			%	94		70-130	Pass	
Anthracene			%	111		70-130	Pass	
Benz(a)anthracene			%	114		70-130	Pass	
Benzo(a)pyrene			%	118		70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)f	luoranthene		%	118		70-130	Pass	
Benzo(g.h.i)perylene			%	100		70-130	Pass	
Chrysene			%	114		70-130	Pass	
Dibenz(a.h)anthracene			%	101		70-130	Pass	
Fluoranthene			%	114		70-130	Pass	
Fluorene			%	109		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	102		70-130	Pass	
Naphthalene			%	100		70-130	Pass	
Phenanthrene			%	108		70-130	Pass	
Pyrene			%	117		70-130	Pass	
LCS - % Recovery			/0	1		10 100	1 400	
Metals M8 filtered E020/E030 Filt	ered Metals in Wate	er & E026	Mercury					
Lead (filtered)			%	111		70-130	Pass	
Mercury (filtered)			%	81		70-130	Pass	
Nickel (filtered)			%	110		70-130	Pass	
Arsenic (filtered)			%	101		70-130	Pass	
Cadmium (filtered)			%	101		70-130	Pass	
Chromium (filtered)			%	104		70-130	Pass	
Copper (filtered)			%	110		70-130	Pass	
Zinc (filtered)			%	107		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance	Pass Limits	Qualifying Code
Spike - % Recovery		000100						5046
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1				
TRH C10-C14	S13-Ja01664	NCP	%	92		70-130	Pass	
Spike - % Recovery			70	52		10100	1 433	
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fraction	s *	Result 1				
TRH >C10-C16	S13-Ja01664	NCP	s%	98		70-130	Pass	
Spike - % Recovery	0100001004		70			10-100	1 435	
Polyaromatic Hydrocarbons (PA				Result 1				
Acenaphthene	S13-Ja02246	NCP	%	104		70-130	Pass	
				95		70-130	Pass	
Acononhthylono								
Acenaphthylene Anthracene	S13-Ja02246 S13-Ja02246	NCP NCP	% %	109		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene	S13-Ja02246	NCP	%	102			70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Ja02246	NCP	%	104			70-130	Pass	
Benzo(g.h.i)perylene	S13-Ja02246	NCP	%	91			70-130	Pass	
Chrysene	S13-Ja02246	NCP	%	100			70-130	Pass	
Dibenz(a.h)anthracene	S13-Ja02246	NCP	%	93			70-130	Pass	
Fluoranthene	S13-Ja02246	NCP	%	115			70-130	Pass	
Fluorene	S13-Ja02246	NCP	%	106			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-Ja02246	NCP	%	94			70-130	Pass	
Naphthalene	S13-Ja02246	NCP	%	101			70-130	Pass	
Phenanthrene	S13-Ja02246	NCP	%	107			70-130	Pass	
Pyrene	S13-Ja02246	NCP	%	116			70-130	Pass	
Spike - % Recovery									
Metals M8 filtered				Result 1					
Lead (filtered)	S13-Ja01590	NCP	%	117			70-130	Pass	
Nickel (filtered)	S13-Ja01590	NCP	%	110			70-130	Pass	
Arsenic (filtered)	S13-Ja01785	NCP	%	102			70-130	Pass	
Cadmium (filtered)	S13-Ja01590	NCP	%	102			70-130	Pass	
Chromium (filtered)	S13-Ja01590	NCP	%	119			70-130	Pass	
Copper (filtered)	S13-Ja01590	NCP	%	110			70-130	Pass	
Zinc (filtered)	S13-Ja01590	NCP	%	112			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1					
TRH C6-C9	S13-Ja02365	CP	%	90			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S13-Ja02365	СР	%	89			70-130	Pass	
Toluene	S13-Ja02365	CP	%	91			70-130	Pass	
Ethylbenzene	S13-Ja02365	CP	%	90			70-130	Pass	
m&p-Xylenes	S13-Ja02365	CP	%	90			70-130	Pass	
o-Xvlene	S13-Ja02365	CP	%	89			70-130	Pass	
Xylenes - Total	S13-Ja02365	CP	%	90			70-130	Pass	
Spike - % Recovery	010 0002000		70	00			10 100	1 455	
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fraction	s *	Result 1					
Naphthalene	S13-Ja02365	CP	3 %	79			70-130	Pass	
TRH C6-C10	S13-Ja02365	CP	%	91			70-130	Pass	
Spike - % Recovery	013-3802303		70	51			70-130	1 835	
Metals M8 filtered				Result 1			1	[
Mercury (filtered)	S13-Ja02365	СР	%	93			70-130	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Ja02364	CP	mg/L	< 0.02	< 0.02	6.0	30%	Pass	
TRH C10-C14	S13-Ja01663	NCP	mg/L	0.30	0.32	7.0	30%	Pass	
TRH C15-C28	S13-Ja01663	NCP	mg/L	0.19	0.20	5.0	30%	Pass	
TRH C29-C36	S13-Ja01663	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Ja02364	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S13-Ja02364	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S13-Ja02364	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
				< 0.002	< 0.002	<1	30%	Pass	
m&p-Xylenes	S13-Ja02364	CP	I MQ/L	< 0.00Z					
m&p-Xylenes		CP CP	mg/L mg/L	1					
· · · · · · · · · · · · · · · · · · ·	S13-Ja02364 S13-Ja02364 S13-Ja02364		mg/L mg/L	< 0.002 < 0.001 < 0.003	< 0.002 < 0.001 < 0.003	<1 <1	30% 30%	Pass Pass	

Duplicate				•					
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fraction	s *	Result 1	Result 2	RPD			
Naphthalene	S13-Ja02364	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
TRH C6-C10	S13-Ja02364	CP	mg/L	< 0.02	< 0.02	6.0	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Ja02364	CP	mg/L	< 0.02	< 0.02	6.0	30%	Pass	
TRH >C10-C16	S13-Ja01663	NCP	mg/L	0.18	0.21	15	30%	Pass	
TRH >C16-C34	S13-Ja01663	NCP	mg/L	0.14	0.16	13	30%	Pass	
TRH >C34-C40	S13-Ja01663	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Polyaromatic Hydrocarbons (PA	H)			Result 1	Result 2	RPD			
Acenaphthene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Ja02245	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S13-Ja02245	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Metals M8 filtered		-		Result 1	Result 2	RPD			
Lead (filtered)	S13-Ja01589	NCP	mg/L	< 0.001	< 0.001	10	30%	Pass	
Mercury (filtered)	S13-Ja02364	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S13-Ja01589	NCP	mg/L	< 0.001	< 0.001	22	30%	Pass	
Arsenic (filtered)	S13-Ja01589	NCP	mg/L	< 0.001	< 0.001	5.0	30%	Pass	
Cadmium (filtered)	S13-Ja01589	NCP	mg/L	0.00017	0.00016	6.0	30%	Pass	
Chromium (filtered)	S13-Ja01589	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S13-Ja01589	NCP	mg/L	< 0.001	0.0011	8.0	30%	Pass	
Zinc (filtered)	S13-Ja01589	NCP	mg/L	0.0050	< 0.005	4.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised By

Jean Heng	Client Services
Laura Schofield	Senior Analyst-Volatile (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
James Norford	Senior Analyst-Metal (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

mgh LabMark shail not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgh LabMark be liable for case, using from the use of any information or interpretation given in this report. In no case shall mgh LabMark be liable for case, using from the use of any information or interpretation given in this report. In no case shall mgh LabMark be liable for case, using from the use of any information or interpretation given in this report. In on case shall mgh LabMark be liable for case, using from this report. This document shall not be reproduced except in full and retime tested. Unless indicated of here performed extended.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

83879

Client: Coffey Environment

Level 19, Tower B, Citadel Tower 799 Pacific Hwy Chatswood NSW 2067

Attention: Matthew Locke

Sample log in details:

Your Reference:	GEOTLCOV	24303AF
No. of samples:	1 water	
Date samples received / completed instructions received	09/01/13	/ 09/01/13

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 10/01/13
 / 10/01/13

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

-Alana Nancy Zhang

Chemist

Khian Morgen

Rhian Morgan Reporting Supervisor

Jeremy Faircloth Chemist

Page 1 of 10

vTRH(C6-C10)/BTEXN in Water		
Our Reference:	UNITS	83879-1
Your Reference		Dup 1A
Date Sampled		08/01/2013
Type of sample		water
Date extracted	-	09/01/2013
Date analysed	-	09/01/2013
TRHC6 - C9	μg/L	<10
TRHC6 - C10	μg/L	<10
TRHC6 - C10 less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	100
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	98

(
svTRH (C10-C40) in Water		
Our Reference:	UNITS	83879-1
Your Reference		Dup 1A
Date Sampled		08/01/2013
Type of sample		water
Date extracted	-	10/01/2013
Date analysed	-	10/01/2013
TRHC 10 - C 14	µg/L	<50
TRHC 15 - C28	µg/L	<100
TRHC29 - C36	µg/L	<100
TRH>C10 - C16	µg/L	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH>C16 - C34	µg/L	<100
TRH>C34 - C40	µg/L	<100
Surrogate o-Terphenyl	%	83

PAHs in Water - Trace Level		
Our Reference:	UNITS	83879-1
Your Reference		Dup 1A
Date Sampled		08/01/2013
Type of sample		water
Date extracted	-	10/01/2013
Date analysed	-	10/01/2013
Naphthalene	µg/L	<0.01
Acenaphthylene	µg/L	<0.01
Acenaphthene	µg/L	<0.01
Fluorene	µg/L	<0.01
Phenanthrene	µg/L	<0.01
Anthracene	µg/L	<0.01
Fluoranthene	µg/L	<0.01
Pyrene	µg/L	<0.01
Benzo(a)anthracene	µg/L	<0.01
Chrysene	µg/L	<0.01
Benzo(b+k)fluoranthene	µg/L	<0.02
Benzo(a)pyrene	µg/L	<0.01
Dibenzo(a,h)anthracene	µg/L	<0.01
Indeno(1,2,3-c,d)pyrene	µg/L	<0.01
Benzo(g,h,i)perylene	µg/L	<0.01
Benzo(a)pyrene TEQ	µg/L	<0.05
Surrogate p-Terphenyl-d14	%	93

HM in water - dissolved		
Our Reference:	UNITS	83879-1
Your Reference		Dup 1A
Date Sampled		08/01/2013
Type of sample		water
Date prepared	-	10/01/2013
Date analysed	-	10/01/2013
Arsenic-Dissolved	µg/L	2
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	<1
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	<1
Zinc-Dissolved	µg/L	1

Client Reference: GEOTLCOV24303AF

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
	01110			Diam	Sm#	Bupilouto roouno	opino onim	Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II %RPD		
Date extracted	-			09/01/2 013	[NT]	[NT]	LCS-W1	09/01/2013
Date analysed	-			09/01/2 013	[NT]	[NT]	LCS-W1	09/01/2013
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	97%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	97%
TRHC6 - C10 less BTEX (F1)	µg/L	10	Org-016	[NT]	[NT]	[NT]	[NR]	[NR]
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	92%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	97%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	98%
m+p-xylene	µg/L	2	Org-016	~2	[NT]	[NT]	LCS-W1	100%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	99%
Naphthalene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	106	[NT]	[NT]	LCS-W1	102%
Surrogate toluene-d8	%		Org-016	100	[NT]	[NT]	LCS-W1	99%
Surrogate 4-BFB	%		Org-016	104	[NT]	[NT]	LCS-W1	95%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH(C10-C40)in Water						Base II Duplicate II % RPD		
Date extracted	-			10/01/2 013	[NT]	[NT]	LCS-W1	10/01/2013
Date analysed	-			10/01/2 013	[NT]	[NT]	LCS-W1	10/01/2013
TRHC 10 - C 14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	70%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	92%
TRHC 29 - C 36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	81%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	70%
TRH>C10 - C16 less Naphthalene (F2)	µg/L	50	Org-003	[NT]	[NT]	[NT]	[NR]	[NR]
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	92%
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	81%
Surrogate o-Terphenyl	%		Org-003	96	[NT]	[NT]	LCS-W1	96%

	-		ent Reference	ce: G	EOTLCOV2	24303AF	-	
QUALITY CONTROL PAHs in Water - Trace Level	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date extracted	-			10/01/2 013	[NT]	[NT]	LCS-W1	10/01/2013
Date analysed	-			10/01/2 013	[NT]	[NT]	LCS-W1	10/01/2013
Naphthalene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	133%
Acenaphthylene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	107%
Phenanthrene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	98%
Anthracene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	84%
Pyrene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	99%
Benzo(a)anthracene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	85%
Benzo(b+k)fluoranthene	µg/L	0.02	Org-012 subset	<0.02	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	105%
Dibenzo(a,h)anthracene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene TEQ	µg/L	0.05	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	118	[NT]	[NT]	LCS-W1	122%

Client	Reference:	
--------	------------	--

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II % RPD		
Date prepared	-			10/01/2 013	[NT]	[NT]	LCS-W1	10/01/2013
Date analysed	-			10/01/2 013	[NT]	[NT]	LCS-W1	10/01/2013
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	92%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-W1	90%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	93%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	88%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	98%
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]	[NT]	LCS-W1	84%
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	90%
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	88%
QUALITYCONTROL	UNITS	в I	Dup. Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
HM in water - dissolved				Base + D	Duplicate + %RP	D		
Date prepared	-		[NT]		[NT]	83879-1	10/01/201	3
Date analysed	-		[NT]		[NT]	83879-1	10/01/201	3
Arsenic-Dissolved	µg/L		[NT]		[NT]	83879-1	108%	
Cadmium-Dissolved	µg/L		[NT]		[NT]	83879-1	98%	
Chromium-Dissolved	µg/L		[NT]		[NT]	83879-1	98%	
Copper-Dissolved	µg/L		[NT]		[NT]	83879-1	88%	
Lead-Dissolved	µg/L		[NT]		[NT]	83879-1	102%	
Mercury-Dissolved	µg/L		[NT]		[NT]	[NR]	[NR]	
Nickel-Dissolved	µg/L		[NT]		[NT]	83879-1	90%	
Zinc-Dissolved	µg/L		[NT]		[NT]	83879-1	100%	

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: No
NA: Test not required	RPD: Relative Percent Difference	NA: Te
<: Less than	>: Greater than	LCS: L

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

83879-A

Client: Coffey Environment

Level 19, Tower B, Citadel Tower 799 Pacific Hwy Chatswood NSW 2067

Attention: Matthew Locke

Sample log in details:

Your Reference:	GEOTLCOV2	4303 <i>A</i>	NF
No. of samples:	1 water		
Date samples received / completed instructions received	09/01/13	/	17/01/13
This sample was filtered by the client			

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 17/01/13
 / 17/01/13

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Manay	
Nancy Zhang	
Chemist	

83879-A R 00

PAHs in Water - Trace Level		
Our Reference:	UNITS	83879-A-1
Your Reference		Dup 1A-
		filtered
Date Sampled		08/01/2013
Type of sample		water
Date extracted	-	17/01/2013
Date analysed	-	17/01/2013
Naphthalene	µg/L	<0.01
Acenaphthylene	µg/L	<0.01
Acenaphthene	μg/L	<0.01
Fluorene	μg/L	<0.01
Phenanthrene	µg/L	<0.01
Anthracene	μg/L	<0.01
Fluoranthene	µg/L	<0.01
Pyrene	µg/L	<0.01
Benzo(a)anthracene	μg/L	<0.01
Chrysene	μg/L	<0.01
Benzo(b+k)fluoranthene	μg/L	<0.02
Benzo(a)pyrene	µg/L	<0.01
Dibenzo(a,h)anthracene	µg/L	<0.01
Indeno(1,2,3-c,d)pyrene	µg/L	<0.01
Benzo(g,h,i)perylene	µg/L	<0.01
Benzo(a)pyrene TEQ	µg/L	<0.05
Surrogate p-Terphenyl-d14	%	93

Client Reference: GEOTLCOV24303AF

MethodID	Methodology Summary
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.

	-		ent Reference	ce: G	EOTLCOV2	24303AF		-
QUALITY CONTROL PAHs in Water - Trace Level	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date extracted	-			17/01/2 013	[NT]	[NT]	LCS-W1	17/01/2013
Date analysed	-			17/01/2 013	[NT]	[NT]	LCS-W1	17/01/2013
Naphthalene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	65%
Acenaphthylene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	77%
Phenanthrene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	83%
Anthracene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	99%
Pyrene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	99%
Benzo(a)anthracene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	78%
Benzo(b+k)fluoranthene	µg/L	0.02	Org-012 subset	<0.02	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	LCS-W1	91%
Dibenzo(a,h)anthracene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	0.01	Org-012 subset	<0.01	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene TEQ	µg/L	0.05	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d ₁₄	%		Org-012 subset	106	[NT]	[NT]	LCS-W1	108%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: No
NA: Test not required	RPD: Relative Percent Difference	NA: Te
<: Less than	>: Greater than	LCS: L

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

