Appendix 15

Remedial Action Plan

CONCRETE RECYCLERS PTY LTD

Remedial Action Plan

7 Montore Road, Minto NSW

E24373.E06_Rev1 24 March, 2020

DOCUMENT CONTROL

Report Title: Remedial Action Plan

Report No: E24373.E06_Rev1

Copies	Recipient	
Soft Copy (PDF – Secured, issued by email)	Anthony Males	
	Concrete Recyclers Pty Ltd	
	14 Thackeray Street,	
	CAMELLIA NSW 2142	
2 Original (Saved to Digital Archives)	El Australia	
S (S ,	Suite 6.01, 55 Miller Street,	
	PYRMONT NSW 2009	

Author

Technical Reviewer

ringer

JOEL HEININGER WARWICK HAYES Environmental Engineer Environmental Scientist		
Details	Date	Amended By
Original	8 January 2020	-
Minor changes	24 March 2020	JH
	ntal Engineer Details Original	ntal EngineerEnvironmental ScientistDetailsDateOriginal8 January 2020

© 2020 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

TABLE OF CONTENTS

1.	INT	RODUC [.]	TION	1
	1.1	Propos	ed Development	1
	1.2	Remed	liation Objective	1
	1.3	Remed	liation Scope	1
	1.4	Regula	2	
	1.5	Deviati	ons from this RAP	2
2.	SITE		RIPTION	3
	2.1	Proper	ty Identification, Location and Physical Setting	3
	2.2	Region	al Setting	3
3.	SITE	E CHAR	ACTERISATION	5
	3.1	Previou	us Investigations	5
4.	CON	NCEPTU	JAL SITE MODEL	7
	4.1		g Site Contamination	7
	4.2		ninants of Potential Concern	7
	4.3	Potenti	al Sources, Exposure Pathways and Receptors	7
5.			ION GOALS AND CRITERIA	9
	5.1		liation Goals	9
	5.2	Remed	liation Criteria	9
6.	QUA		BJECTIVES	10
	6.1		uality Objectives	10
	6.2	Data Q	uality Indicators	11
7.	REN	IEDIATI	ION TECHNOLOGY	12
	7.1	Regula	tory Overview	12
	7.2	Remed	liation Technologies Review	12
	7.3	Preferr	ed Remediation Option	15
	7.4	Site Pro	eparation, Licences and Approvals	15
		7.4.1	Consent Requirements	15
		7.4.2 7.4.3	Development Consent and Control Plans Other Licence Requirements	15 15
		7.4.3	Other Licence Requirements	15
8.				16
	8.1		liation Sequence	16
		8.1.1 8.1.2	Preliminaries / Site Establishment Remedial Works and Validation	17 17
		8.1.2 8.1.3	Remedial Works and Validation Bulk Excavation (Site Wide)	17 18
		8.1.4	Imported Materials	18
		8.1.5	Reporting	18
			lial Contingencies	18

eiaustralia

9.	SITE	MANAGEMENT	20	
	9.1 Roles and Responsibilities			
	9.2	Materials Handling and Management	21	
	9.3	Waste Management	22	
10.	VAL	DATION SAMPLING, ANALYTICAL AND QUALITY PLAN	24	
	10.1	Validation Sampling Methodology	24	
	10.2	Validation Reporting	26	
11.	CON	CLUSIONS	27	
12.	STA	TEMENT OF LIMITATIONS	28	
RE	FERE	NCES	29	
ABBREVIATIONS			31	

Schedule of Tables

Table 2-1	Site Identification, Location and Zoning	3
Table 3-1	Summary of EIS (2018) Works and Findings	5
Table 4-1	Conceptual Site Model	8
Table 5-1	Proposed Remediation Criteria for Soil	9
Table 6-1	Data Quality Objectives	10
Table 6-2	Data Quality Indicators	11
Table 7-1	Remediation Technology Review - Soils	13
Table 7-2	Remediation Works Category Determination	15
Table 8-1	Summary of Remediation Sequence	16
Table 8-2	Remedial Contingencies	18
Table 9-1	Remediation Management Team	20
Table 9-2	Materials Handling and Management Requirements	21
Table 10-1	Validation Sampling Design	24
Table 10-2	Validation Sample Collection and Handling Procedures	25

Appendices

APPENDIX A - FIGURES

- A.1 Site Location Plan
- A.2 Analytical Exceedance Plan
- A.3 Proposed Remediation and Validation Plan

APPENDIX B – PROPOSED DEVELOPMENT PLANS

APPENDIX C – UNEXPECTED FINDS PROTOCOL

1. INTRODUCTION

Concrete Recyclers Pty Ltd (the client) engaged EI Australia (EI) to prepare a Remediation Action Plan (RAP) for the property located at 7 Montore Road, Minto NSW (herein referred to as 'the site'). The purpose of this RAP is to outline the procedures that will render the site suitable for the proposed industrial land use.

The site (see **Figure A.1**) is located within the Local Government Area of Campbelltown City Council, and is further identified as comprising Lot 52 in Deposited Plan (DP) 618900, covering a total area of approximately 23,000m².

Previous investigations completed at the site were:

- EIS (2018) Stage 1 / Stage 2 Environmental Site Assessment; 7 Montore Road, Minto NSW 2566 (Environmental Investigation Services Report E29448KrptRev1, dated 10 January 2018); and
- EI (2020) Additional Site Investigation; 7 Montore Road, Minto NSW (EI Australia Report E24373.E03_Rev1, dated 24 March 2020).

The EIS (2018) site assessment established that the land had been used for a mixture of residential and commercial purposes from 1899 until the present day. Friable and bonded asbestos-containing materials (ACM) were identified in fill soils from the southern portion of the site, as well as within two stockpiles.

The EI (2020) additional investigation confirmed the presence of ACM in southern half of the site and delineated the areas of impact. It was concluded that the ACM posed a moderate to high risk to (future) human receptors. Remediation of the land was therefore necessary, in order for it to be suitable for the proposed (resource recovery facility) development.

1.1 Proposed Development

The following development and survey plans were provided to assist in the writing of this report:

- Proposed Plans, prepared by Martens & Associates Pty Ltd, Project No: 1203464, Release No: R12, dated 2 March 2020; and
- Survey Plan, prepared by William L. Backhouse Pty Ltd, Project Ref: CH5241.001, dated 8 June, 2019.

It was understood that the proposed development involved the construction of a resource recovery facility, with an intended capacity of 450,000 tonnes of bricks, concrete and sand processed per annum. It included site offices, weighbridge and wheel wash facilities, feed concrete and stockpiles, concrete crushing plant, sand washing plant, pug mill, repair workshop, rain and stormwater tanks, an employee carpark and driveway and hardstand areas. Copies of the proposed development and site survey plans are presented in **Appendix B**.

1.2 Remediation Objective

The main objective of this plan is to guide remediation of the site, by providing detailed procedures that comply with relevant guidelines, yet prevent adverse effects on human and environmental receptors.

1.3 Remediation Scope

The remediation objective will be achieved by:

• Outlining the legislative framework relevant to the works;

- Providing a summary of the previous investigations of the site, including the site setting and contamination status;
- Definition of remediation goals and acceptance criteria;
- Review of available remediation technologies, with identification of the most appropriate method of site clean-up;
- Description of work procedures that are compliant with relevant environmental legislation;
- Guidance on approvals and licences required for the remediation works;
- Provision of information to assist the contractor in their preparation of a Work, Health and Safety Plan (WHSP) and other site management/planning documents;
- Identification of the key stakeholders and their responsibilities; and
- Provision of a Sampling and Analytical Quality Plan (SAQP) that will validate the effectiveness of the remediation.

1.4 Regulatory Framework

The following regulatory framework and guidelines were considered during the preparation of this RAP:

- Contaminated Land Management Act 1997;
- Campbelltown Development Control Plan 2015;
- Campbelltown Local Environmental Plan 2015;
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land;
- EPA (1995) Sampling Design Guidelines;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation; and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.5 Deviations from this RAP

During the course of the program, it may be necessary to vary the sequence and/or details of the site remediation and validation works to meet site constraints. If so, any deviation from the methodology specified in this RAP is to be properly documented and approved, as required under the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*.

Performing remedial works without the supervision of a qualified environmental engineer/scientist may lead to project delays and extra costs, due to additional investigation requirements imposed by an independent consultant, or the appointed Site Auditor, to confirm the environmental status of the site.

In worst case scenarios, waste materials removed from the site without proper characterisation and/or tracking, may lead to regulatory action and potential penalties, as described under the *Waste Regulation 2014*, the *Protection of the Environment Operations Act 1997* and the *Contaminated Land Management Act 1997*.

2. SITE DESCRIPTION

2.1 Property Identification, Location and Physical Setting

Table 2-1 Site Identification, Location and Zoning

Attribute	Description
Street Address	7 Montore Road, Minto NSW
Location Description	The site is located within the Minto Industrial Area. It is bound by existing industrial warehouses to the north, east and south, and a drainage easement containing Bow Bowing Creek (canal) to the west. The site itself is comprised of a storage facility in the northern half, leased by Coates Hire, with the southern half of the site unoccupied (and mostly vacant, with the exception of a dilapidated site shed and unused machinery). An access road runs down the eastern boundary of the site.
Site Coordinates	Northeast corner of site (GDA2020-MGA56): Easting: 300092.964 Northing: 6232263.541 (Source: http://maps.six.nsw.gov.au)
Site Area	Approximately 23,000m ² (Source: http://maps.six.nsw.gov.au)
Lot and Deposited Plan (DP)	Lot 52 in DP 618900
State Survey Marks	 Two State Survey (SS) marks are situated in proximity to the site: SS76002: 4m north of the site, in between the boundaries of the site and the neighbouring property; and PM33564: 40m south of the site, within the cul-de-sac of Pembury Road. (Source: <u>http://maps.six.nsw.gov.au</u>)
Local Government Authority	Campbelltown City Council
Parish	Minto
County	Cumberland
Current Zoning	IN1: General Industrial (Campbelltown Local Environment Plan, 2015)

2.2 Regional Setting

Local topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-2**.

Attribute	Description
Topography	The local topography is generally flat; however, strips of land along the northern, western and southern boundaries stepped down at approximately 0.5-1m.
	Area directly to the west of the site slopped downwards to Bow Bowing Creek, within the easement canal (being a bout 5m lower in elevation).
Site Drainage	Rainwater is expected to infiltrate directly into exposed soils. Surface runoff is expected to flow westerly, downslope towards Bow Bowing Creek.
Regional Geology	With reference to the 1:100 000 scale <i>Wollongong-Port Hacking Geological Series Sheet 9029-9129</i> (DMR, 1985), the site is underlain by two lithologies:
	 Holocene and Pleistocene elements of fine-grained sands, silts and clays (Qal), potentially influenced from historical tributary lines of Bow Bowing Creek; and
	 Laminite and dark grey siltstone comprised of Ashfield Shales from the Wianamatta Group (<i>Rwa</i>).
Soil Landscape	The Soil Conservation Service of NSW Soil Landscapes of Penrith 1:100,000 Sheet (Chapman and Murphy, 2002) indicates that the site overlies an interface between residual Blacktown (<i>bt</i>) and alluvial South Creek (sc) landscapes.
	The Blacktown landscape includes gently undulating rises on Wianamatta Group shales. Local relief up to 30 m, with slopes usually broad rounded crests and ridges with gently inclined slopes. Soils are shallow to moderately deep, hard setting, mottled texture contrast soils, including red and brown podzolic soils on crests grading to yellow podzolic soils on lower slopes and in drainage lines.
	The South Creek landscape includes floodplains, valley flats and drainage depressions of the channels on the Cumberland Plain. Usually flat with incised channels and mainly cleared. Soils are often very deep layered sediments over bedrock or relict soils. Where pedogenesis has occurred, structured plastic clays or structured loams occur in and immediately adjacent to drainage lines, red and yellow podzolic soils are most common terraces, with structured grey clays, leached clays and yellow solodic soils.
Acid Sulfate Soil (ASS) Risk	There was no ASS risk map pertaining to the site available through the Department of Land and Water Conservation.
	There was no ASS class map pertaining to the site available on the Campbelltown Local Environmental Plan 2015.
	it was concluded that the presence of ASSs on the site was low and that further related assessment was unwarranted.
Likelihood and Depth of Filling	Based on observations during the investigation phase, fill materials were present on the site, the maximum depth being to 1.0m below ground level (BGL). The average depth was 0.4m BGL.
Typical Soil Profile	Anthropogenic fill, overlying alluvial and residual clays. Shale bedrock is inferred at depth.
Depth to Groundwater	Groundwater was not encountered during the previous investigations.
Groundwaler	Local groundwater was assumed to be reflective of the Bow Bowing Creek channel invert (approximately 5m BGL, or 39.3m Australian Height Datum (AHD)).
Nearest Surface Water Feature	Bow Bowing Creek, located approximately 30m west of the site. Bow Bowing Creek is a major tributary of Bunbury Curran Creek, which joins the Georges River approximately 10km north-east of the site.
Anticipated Groundwater Flow Direction	Groundwater is anticipated to flow west, towards Bow Bowing Creek.

 Table 2-2
 Regional Setting Information

3. SITE CHARACTERISATION

3.1 Previous Investigations

Previous investigations completed at the site were recorded under the following reports:

- EIS (2018) Stage 1 / Stage 2 Environmental Site Assessment; 7 Montore Road, Minto NSW 2566 (Environmental Investigation Services Report E29448KrptRev1, dated 10 January 2018); and
- EI (2020) Additional Site Investigation; 7 Montore Road, Minto NSW (EI Australia Report E24373.E03_Rev1, dated 24 March 2020).

A summary of each report is provided in **Tables 3-1** and **3-2**.

Task	Findings
Objectives of the	 To assess the potential for contamination at the site; and
ESA	 To provide recommendations on the need for further works, as necessary, to make the site suitable for the proposed development.
Scope of the ESA	 Undertake site history searches (title deeds, aerial photographs, NSW WorkCover/Dangerous Goods, council records review);
	 Review available information relating to local geology and groundwater bores;
	 A site inspection, to identify areas of environmental concern;
	 Preparation of a Preliminary Conceptual Site Model;
	 Design and implementation of a sampling, analysis and quality plan (SAQP);
	 Interpretation of the analytical results against the adopted criteria; and
	 Provide a preliminary waste classification for the off-site disposal of soil.
ESA Findings	• The history review suggested the site had been used for a mixture of residential and commercial purposes from 1899 to the present day.
	 Council records established that consent was granted for the erection of a waste recycling depot in 1989 and for the storage, processing and selling of railway sleepers, timber and firewood in 1998.
	 SafeWork NSW records did not identify any licences relating to the storage of dangerous goods.
	 NSW EPA records indicated that the site was formerly regulated under the POEO Act 1997 for waste storage, transfer, separating or processing.
	 Laboratory analytical results for soil samples obtained from 33 test pits all complied with the adopted investigation levels applicable to commercial / industrial land use settings, except for benzo(a)pyrene in samples collected along the northern and eastern boundaries, which exceeded the corresponding ecological criterion. These exceedances were not considered to pose a significant risk in relation to the proposed (resource recovery facility) development, however.
	 Matted (friable) asbestos material was identified within fill at test pit TP14. Bonded asbestos fragments were identified in surface soils from the southern portion of the site (SS01), as well as within the 'Northern Stockpile' and 'Central Stockpile' (neither of which being present by the time of the EI (2020) additional site investigation).
Conclusions and Recommendations	EIS considered the site could be made suitable for future industrial use, provided the following recommendations were implemented:
from the ESA	 Undertake a detailed soil investigation for asbestos;
	 Prepare an Asbestos Management Plan (AMP) for future excavation works; and
	 Prepare an Environmental Management Plan (EMP) for the ongoing management of the site during construction works.

Table 3-1Summary of EIS (2018) Works and Findings

Table 3-2	Summary	of El	(2020)	Works	and	Findings
	oumany		(2020)	TOINS	and	i muniga

Task	Findings
Objectives of the	 To assess the potential for contamination at the site; and
ASI	 To provide recommendations on the need for further works, as necessary, to make the site suitable for the proposed development.
Scope of the ASI	 Review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
	 Review of the previous environmental report relating to the site;
	 Present a conceptual site model, based on the available information;
	 Preparation of a Work, Health, Safety and Environmental Plan (WHSP);
	 Preparation of a fieldwork plan, with proposed test pit / borehole locations;
	 A site inspection, performed in collaboration with a licensed services locator, whom utilised electro-magnetic equipment to search for buried services;
	 Construction of test pits / boreholes at sixty (60) locations, distributed in a triangular grid pattern across the site;
	 Soil sampling at each of the locations;
	 Laboratory analysis of selected soil samples for the contaminants of potential concern (COPC); and
	 Data interpretation and reporting.
ASI Findings	 The sub-surface was comprised of a layer of anthropogenic filling (up to 1m BGL), overlying residual clays (and shale at depth).
	 Two soil stockpiles were present on the southern half of the site (SP1: approximately 125m³; SP2: approximately 250m³), with overgrown vegetation extruding from each.
	 Former stockpiles identified in the EIS (2018) report had either been removed from site to an EPA licensed facility ('Central Stockpile') or flattened for site levelling ('Northern Stockpile').
	 Individual sample concentrations of heavy metals, polycyclic aromatic hydrocarbons, total recoverable hydrocarbons, the monocyclic aromatic hydrocarbons benzene, toluene, ethyl benzene and xylenes, pesticides and polychlorinated biphenyls all complied with the adopted soil investigation levels (SILs) applicable to commercial / industrial land use.
	 Asbestos was identified in fill samples from eight test pits, all of which were within the southern half of the site (TP107, TP114, TP115, TP118, TP123, TP125, TP305 and TP306). Except for TP305_0.2-0.6, the concentration of asbestos in these samples all exceeded the corresponding SIL.
	 The absence of ACM in stockpiles SP1 and SP2 indicated that these materials were General Solid Waste in accordance with the EPA (2014) Waste Classification Guidelines.
	 The asbestos contamination appeared to be limited to the southern half of the
	site. Areas of recommended remediation were delineated.
Conclusions and Recommendations from the ASI	El concluded the ACM at the site posed a moderate to high risk to (future) human receptors. Remediation of the land was therefore necessary, in order for it to be suitable for the proposed (resource recovery facility) development. The following recommendations were to be implemented as part of this process:
	 Preparation of a RAP, the works for which could be integrated into the initial stages of the development. The scope of the RAP was to include:
	 Procedures for effective site clean-up;
	 A SAQP for the validation activities;
	 Waste classification of materials designated for off-site disposal;
	 Work health and safety matters, as well as environmental protection measures, and
	 A contingency plan to address unexpected finds.
	 Preparation of an Asbestos Management Plan (AMP) for the site; and
	 Preparation of a final site validation report by a suitably qualified environmenta consultant, certifying the suitability of site soils for the proposed development.

4. CONCEPTUAL SITE MODEL

In accordance with NEPC (2013) Schedule B2 - Guideline on Site Characterisation and to aid the assessment of data collected for the site, EI developed a conceptual site model (CSM) as part of the investigation phase. The CSM assessed plausible linkages between potential contamination sources, migration pathways and receptors. It concluded that contamination associated with both bonded and friable asbestos remained at the site, requiring remediation.

4.1 Existing Site Contamination

Based on the findings of previous investigations, the following sources of contamination were identified, and considered relevant to this RAP:

Southern Portion of Site

Both bonded and friable asbestos materials were present in the southern portion of the site, at locations:

- SS01 and TP14 (EIS, 2018); and
- TP107, TP114, TP115, TP118, TP125 and TP306, with friable 'rope' materials at TP123 and bonded asbestos fragments at TP305, although concentrations were below the SIL.

A stockpile, identified by EIS (2018) as the 'Central Stockpile', was also found to contain bonded asbestos fragments; however, this stockpile was removed off-site to an EPA licensed waste facility.

A plan showing identified site contamination is presented in Figure A.2.

Northern Portion of Site

EIS (2018) identified bonded asbestos materials within a stockpile along the northern site boundary (identified as the 'Northern Stockpile'). This stockpile was inaccessible by the time of the EI (2020) ASI, with sheds and equipment utilised by Coates Hire covering the area. It was assumed the majority of this stockpile had been flattened out across the site surface. Whilst subsequent intrusive investigations did not identify ACM contamination in this part of the site, it cannot be discounted until the site is completely cleared of buildings etc.

Figure A.2 identifies the area in question.

4.2 Contaminants of Potential Concern

Based on the findings from the investigation phase, ACM was the contaminant of concern for the site (both bonded and friable forms).

4.3 Potential Sources, Exposure Pathways and Receptors

El concluded the ACM at the site posed a moderate to high risk to (future) human receptors. The imported anthropogenic / heterogeneous fill was likely to have contained ACM in portions, and had been spread across the site during levelling / stockpile relocation.

The potential exposure pathways and human and environmental receptors that were considered relevant for the remediation and validation at the site are summarised in **Table 4-1**. This table includes a qualitative assessment of the potential risks posed by complete exposure pathways.

 Table 4-1
 Conceptual Site Model

Potential Sources	Impacted Media	Chemicals of Potential Concern	Transport mechanism	Exposure pathway	Potential receptor
Fill soils of unknown origin, Impacts from uncontrolled demolition of historic site	trolled	Asbestos (bonded/friable)	Disturbance of surface and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment	Ingestion Dermal contact Inhalation of dust particulates	Construction and maintenance workers End users of the site post redevelopment
			Atmospheric dispersion from soil to outdoor and indoor air spaces	Inhalation of dust particulates	_

5. REMEDIATION GOALS AND CRITERIA

5.1 Remediation Goals

The remediation goals for this RAP are consistent with the NSW EPA *SEPP 55* guidelines (DUAP / EPA, 1998) and Council's contaminated land policy, and include:

- Meeting the conditions of the planning consent and to render the site suitable for the proposed land use(s);
- Demonstrating that the proposed remediation strategy for the site is environmentally justifiable practical and technically feasible;
- Adopting clean-up criteria appropriate for the future use of the site to mitigate possible impacts to human health and the environment;
- Consideration of the principles of ecologically sustainable development in line with Section 9 of the Contaminated Land Management Act 1997;
- Minimising waste, as per the Waste Avoidance and Resource Recovery Act 2001;
- To remediate all contamination at the site so there are no unacceptable risks to onsite and offsite receptors; and
- Demonstrating that the plans for site management of remediation work consider work health and safety, environmental management, and site contingencies.

5.2 Remediation Criteria

The remediation criteria proposed for this project are outlined in **Table 5-1**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Adopted Guidelines	Rationale
NEPC (2013)	Soil Health-based Investigation / Screening Levels (HILs / HSLs)
Soil HILs and HSLs	All soil samples will be assessed against the NEPC (2013) <i>HIL-D / HSL-D</i> thresholds for commercial/industrial sites, consisting of single or multi-storey buildings supported by ground-level slabs.
	Since asbestos represents the contaminant of concern for this site, soil asbestos results will be assessed against the NEPC (2013) <i>HSL</i> thresholds for "all forms of asbestos", which are derived from the WADOH (2009) criteria.

 Table 5-1
 Proposed Remediation Criteria for Soil

Prior to being removed from the site, excavated soils must be classified in accordance with the EPA (2014) *Waste Classification Guidelines*. Under these guidelines, fill/soils may be classified into the following groups: *General Solid Waste*, *Restricted Solid Waste*, or *Hazardous Waste*, subject to chemical assessment using NATA-registered laboratory methods for total and leachable (TCLP) contaminant levels. Any soils containing asbestos would also be classified as *Special Waste - Asbestos Waste*. In accordance with the *NSW Waste Regulation 2014*, waste soils must only be disposed to a waste facility that is appropriately licenced to receive the incoming waste. It is therefore recommended that confirmation is obtained from the waste facility prior the materials being removed from the site.

6. QUALITY OBJECTIVES

6.1 Data Quality Objectives

Table 6-1 identifies the Data Quality Objectives (DQO) that will apply for the site remediation and validation phases (NEPC, 2013; EPA, 2017; OEH, 2011).

Table 6-1 Data Quality Objectives

Step	Description
State the Problem	The site is to be rendered suitable for the proposed construction of a resource recovery facility. Previous site investigations (EIS, 2018 and EI, 2020) have indicated the presence of asbestos contamination within fill. In light of the proposed development and current information relating to contamination at the site, the remediation and validation must provide supportive information on the environmental conditions of the site, to determine its suitability for the proposed development.
Identify the Decision	 Based on the remedial objectives outlined in Section 1.2, the following decisions are identified as: Has the nature and extent of soil impacts on-site been defined? Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? and Will further remediation and/or special management be required before the site is suitable for the intended land use?
Identify Inputs to the Decision	 Inputs to the decision process include: Previous investigation works; Details of the proposed site use; Understanding of current site use and historic activities that have occurred, including potential offsite sources of contamination; Geological and hydrogeological data relevant to the area, including physicochemical parameters for calculating ecological criteria; Field screening data and site observations for the presence of visual/olfactory contamination indicators; Contaminant concentrations in soil validation samples confirming effective removal of identified impacts; and Further input to the decision will be sample collection and handling, field and laboratory QAQC and confirmation that data quality indicators (DQIs) were achieved.
Define the Boundary of the Assessment	 Lateral – Works will be limited to the site boundaries (Figure A.2), and within the proposed excavation areas. Vertical – From existing ground surface, underlying fill and natural soil horizons, to the base of contaminated soil and/or bulk excavation level (BEL), including underlying water-bearing zones. Temporal – Results will be valid on the day samples are collected and will remain valid if no changes to site use occur, and contamination (if present) does not migrate from off-site sources. Constraints of sampling requiring consideration include access restrictions (due to site operations and/or conditions) and presence of both above and underground services / structures.

Step	Description		
Develop a Decision Rule	The decision rules for validation are: Is the site suitable for the proposed land use? 		
	If the concentrations of contaminants that remain are below the relevant criteria for the intended land use, then the site will be deemed suitable for the proposed development.		
	Is additional information required to determine the suitability of the site for its proposed use?		
	Should additional information be required, as determined by the conceptual site model (CSM), then appropriate recommendations will be provided.		
	Decision criteria for analytical data are defined by the Data Quality Indicators (DQI) in Table 6-2 .		
Specify Acceptable Limits on Decision Errors	Specific limits for this project will be in accordance with NEPM, appropriate data quality indicators (DQIs) for assessing the useability of the data and EI standard procedures for field sampling and handling.		
	To assess the useability of the data, pre-determined DQIs for completeness, comparability, representativeness, precision, and accuracy, as presented below in Table 6-2 .		
	If any of the DQIs are not met, further assessment will be necessary to determine whether the non-conformance will significantly affect the useability of the data. Corrective actions may include requesting further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re- collection of samples.		
Optimise the Design for Obtaining Data	 Written instructions will be issued to guide field personnel in the required fieldwork activities. 		
0	 Soil excavation is to be performed as per Section 8. Soil validation sampling is to be completed as per the methodology prescribed in Section 10. 		
	 Validation sampling procedures that would be implemented to optimise data collection for achieving the DQOs. 		
	 Review of the results will be undertaken to determine if further excavation and additional sampling is warranted. Additional investigations would be warranted where soil concentrations are found to exceed remediation criteria endorsed by the NSW EPA, relevant to the proposed land use(s). 		

6.2 Data Quality Indicators

To ensure that the validation data are of an acceptable quality, the results will be evaluated against the data quality indicators (DQI) outlined in **Table 6-2**, which will apply to both field and laboratory-based procedures (where applicable).

 Table 6-2
 Data Quality Indicators

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared) Laboratory – Laboratory control spike and matrix spike	< laboratory limit of reporting (LOR) Prescribed by the laboratory
	Field – Split duplicate	<30% relative percentage difference (RPD)
Precision	Field – Blind duplicate Laboratory – Laboratory duplicate and matrix spike duplicate	<30% RPD Prescribed by the laboratory
Representativeness	Field – Rinsate and trip blanks Laboratory – Method blank	< laboratory limit of reporting (LOR) Prescribed by the laboratories
Completeness	Completion (%)	-

7. REMEDIATION TECHNOLOGY

7.1 Regulatory Overview

Under the NEPC (2013) *National Environmental Protection (Assessment of Site Contamination) Amendment Measure*, the preferred hierarchy for site remediation and/or management is:

- On-site treatment of the contamination so that it is destroyed or the associated risk is reduced to an acceptable level; and
- Off-site treatment of excavated soil, so that the contamination is destroyed or the associated risk is reduced to an acceptable level, after which soil is returned to the site; or, if the above are not practicable:
- Consolidation and isolation of the soil on-site by containment with a properly designed barrier; and
- Removal of contaminated material to an approved site or facility, followed, where necessary, by replacement with appropriate material; or
- Where the assessment indicates remediation would have no net environmental benefit or would have a net adverse environmental effect, implementation of an appropriate management strategy.

When deciding which option to choose, the sustainability (environmental, economic, and social) of each option should be considered, in terms of achieving an appropriate balance between the benefits and effects of undertaking the option.

For this site, a number of remediation options were reviewed to examine the suitability of each method, the surrounding properties, geological and hydrogeological limitations and the following considerations:

- Development requirements (industrial, with limited access to soils and landscaped areas);
- Prioritisation of works in areas of most concern;
- Ability of remedial method to treat contamination with respect to material and infrastructure limitations;
- Remedial timetable;
- Defensible method to ensure the site is remediated to appropriate levels / validation criteria; and
- Regulatory compliance.

7.2 Remediation Technologies Review

A number of soil remediation options were reviewed to examine the suitability of each method, with due regard for the surrounding land uses, as well as the (hydro)geological limitations.

Each of the available remediation technologies is summarised in terms of its suitability in **Table 7-1**.

Remediation Methodology	Description	Advantages	Disadvantages	Suitability
No Action	 'No Action' can be considered if: There is no measurable contamination; Contaminant concentrations are below assessment guidelines; Contaminants are not mobile; or Exposure to contaminated soils is unlikely. 	No remediation costs Creates minimal disturbance to the site Retains material on-site	Not applicable to the kind of contamination encountered at the site. Would pose limitations on land use options. May require an Environmental Management Plan and ongoing monitoring.	Not Suitable – As the key objective of the remedial strategy is to make the site suitable for industrial use without the need for ongoing monitoring.
On-site bioremediation	Excavated soils are thoroughly broken down and aerated, mixed with microorganisms and nutrients, stockpiled and aerated in above ground enclosures.	Cost effective if soils are utilised on-site. Lower disposal costs. Limited requirement to import fill material to site. Retains material on-site.	Significant area of site required to land farm material. Undefined remediation timeframe. Potential for odour problems. Not suitable for asbestos contamination.	Not suitable – May be utilised for hydrocarbon impacted soils. As there are currently no hydrocarbon impacted soils requiring remediation on-site, this technology is not suitable. Should hydrocarbon impacted soils be identified, this technology may be reconsidered.
In-situ treatment	<i>In-situ</i> treatment of impacted soils within the smear zone and saturated zone using <i>in-situ</i> treatment methods such as soil vapour extraction, injection of oxidising agents etc.	Creates minimal disturbance to the site (no excavation). Cost effective for large scale site remediation of light to mid-weight petroleum hydrocarbons. Potential to simultaneously remediate dissolved phase hydrocarbons in site groundwater.	Not applicable to the kind of contamination encountered at the site. Expensive establishment costs. Potential for odour problems. Requires detailed design, pilot trials and management.	Not suitable – This method is designed for widespread hydrocarbon impacted soils. Since the present dataset does not provide evidence of widespread hydrocarbon contamination; this is not considered to be an economically viable option.

Remediation Methodology	Description	Advantages	Disadvantages	Suitability
Consolidation and/or capping	Risk minimisation approach where impacted soils are managed on-site by capping the ground surface with a clean, impermeable layer of fill material.	Effectively removes risk to human health by eliminating exposure pathways.	Importance of capping design and materials utilised in the construction of capping layer. Would pose limitations on land use options. Typically requires an Environmental Management Plan and ongoing monitoring.	Potentially suitable – An environmental management plan (EMP) with ongoing monitoring would be required, due to the retention of contaminated materials on the site. There is sufficient space across the site to sufficiently bury impacted soils underneath hardstand.
Excavation and off-site disposal	Excavate impacted materials. Transport directly to a licensed landfill facility. Reinstate site with imported clean fill material.	Fast – impacted material removed immediately, significantly reducing potential for impact to groundwater. No storage or treatment problems. Reduced vapour/odour issues as impacted materials removed from site. Minimal design and management costs.	Transfer of waste to another location (licensed waste facility). High costs associated with the disposal of waste soils and importation of clean backfill). Requires waste classification prior to disposal, keeping of thorough waste records, waste tracking and reporting. Sustainability issues related with disposal to landfill.	Suitable – For meeting the key project objective to make the site suitable for commercial/industrial use without the need for ongoing monitoring. This will remove impacted fill breaking any pollutant linkages present at the site (source removal).
Natural attenuation	Allowing the contaminants to biodegrade naturally following removal of the contamination source.	No remedial excavation of site. Retains materials on site. Sustainable, cost effective remediation method.	Slow process. Potential for contamination to further impact on the groundwater aquifer and nearby environmental receptors. Typically requires an Environmental Management Plan and ongoing monitoring.	Not Suitable – This approach is primarily suited to addressing groundwater contamination, which at the time of this report has not been identified. If groundwater contamination is identified, this remediation technology will be reassessed.

7.3 Preferred Remediation Option

Based on the available remedial technologies, the proposed site development (resource recovery facility) the potential risks to human health and the environment, as well as the relative cost effectiveness of feasible remedial techniques, the preferred remedial option for the site is:

- Offsite disposal of impacted soils to licensed waste facilities. All wastes shall be transported to appropriate, EPA-licensed facilities, after formal classification. All excavated (remediation) areas shall be validated by base and wall, soil sampling; and
- Site reinstatement with validated, imported (or recovered) excavated natural materials (where required).

Note that on-site consolidation (encapsulation) and/or capping of impacted materials will be considered a secondary option, where economic constraints dictate.

7.4 Site Preparation, Licences and Approvals

7.4.1 Consent Requirements

In accordance with SEPP 55 - Remediation of Land, the category of the remediation works defines whether consent is required prior to their commencement. Under SEPP 55, works where there is the potential for significant environmental impact are classed as Category 1 and require development consent. Category 2 works pose a low potential for environmental impact and do not therefore require prior consent. The determination for the subject site is outlined in **Table 7-2**.

Significant Environment Impact	Yes/No	Category
Designated Development or State Significant Development	Yes	1
Critical or threatened species habitat	No	2
Have significant impact on threatened species, populations, ecological communities or their habitats	No	2
In area identified environmental significance such as scenic areas, wetlands (see list*)	No	2
Comply with a policy made under the contaminated land planning guidelines by the council.	Yes	2
Is work ancillary to designated development	Yes	2

Table 7-2 Remediation Works Category Determination

Notes: * Environmental significance list -coastal protection, conservation or heritage conservation, habitat area, habitat protection area, habitat or wildlife corridor, environment protection, escarpment, escarpment protection or escarpment preservation, floodway, littoral rainforest, nature reserve, scenic area or scenic protection, or wetland.

Based on the above determination, the remediation works for the site are considered Category 1 and will require development consent

7.4.2 Development Consent and Control Plans

All works should be in accordance with Campbelltown City Council DCPs and any development consent issued by Council for the development.

7.4.3 Other Licence Requirements

The appointed site contractor should prepare an appropriate Construction Environmental Management Plan (CEMP), health and safety plans, and other plans required by the Council DA and DCPs. Where asbestos removal is required, the contractor must be appropriately licensed to perform such works.

8. REMEDIATION WORKS

Site characterisations revealed the presence of bonded and friable asbestos contamination across the site, which made it unsuitable for the proposed industrial use. The remedial tasks required are as follows:

- Excavation and off-site disposal of friable asbestos materials at locations TP14 (EIS, 2018) and TP123 (EI, 2020); and
- Excavation and off-site disposal of fill materials at locations NS1, NS2 and SS01 (EIS, 2018) and TP107, TP114, TP115, TP118, TP125 and TP306 (EI, 2020), followed by hand picking of asbestos fragments and processing of oversize materials (to remove bricks/concrete).

A qualified environmental scientist, performing the role of Environmental Management Coordinator, will be appointed to the project, to ensure that critical stages of the site remediation are appropriately supervised and documented, with the relevant data collected for environmental reporting purposes. These will include, though not necessarily be limited to, site induction of personnel in relation to contamination hazards and environmental management issues, marking of remediation areas, inspection of environmental monitoring systems, implementation of specified control measures and validation sampling.

8.1 Remediation Sequence

The sequence of work for the remediation is proposed in **Table 8-1**, with an indicative timeframe of each task. Further details are provided in the sections that follow.

Task	Timeframe	Description of Work
Preliminaries/ Site Establishment/ Removal of equipment	Weeks 1-2	 Development of pre-work plans (construction environmental management plan, occupational health and safety plan, hazardous material survey), approvals and permits to commence work. Establishment of site pollution monitoring and control measures to be maintained for the duration of the works as outlined in management plans.
equipment		 Removal of Coates Hire equipment.
Remedial Works and Validation	Weeks 3-5	 Conduct remedial removal works for impacted soils in impacted areas (friable ACM areas). Following excavation of bonded ACM hotspots, conduct emu-pick and mechanical screening. Waste streams to be kept separate to prevent cross-contamination. Sampling of processed stockpiles to confirm absence of ACM. Following removal of fill, natural surfaces are to be inspected and sampled to validate removal of contaminated soils from the site.
Bulk Excavation and Backfill (if required)	Weeks 6-8	 Excavation of the site for soils not required for the proposed development.
Reporting	Weeks 9-11	 All findings and investigation methodologies of the remedial works will be reported within a validation report.

 Table 8-1
 Summary of Remediation Sequence

8.1.1 Preliminaries / Site Establishment

Notice will be given to Council at least 30 days prior to the commencement of remediation works. A list of all required work permits will be obtained from Council and arrangements are to be made to obtain the necessary approvals from the relevant regulatory authorities.

The site itself will be prepared in accordance with the requirements of the Site Management Plan outlined in **Section 9**. The site developer would also need to prepare and implement a Construction Environmental Management Plan (CEMP) and Site Work Health and Safety (WHS) Plan prior to any site works. Establishment of environmental controls, site access, security, fencing, warning signage and preparation of a Health Safety and Environment Plan is required prior to works commencement. A project plan should also be developed to outline engineering design for excavation support (if required), water treatment requirements and design, staging of excavation works, stockpiling, waste stabilisation, waste material loading, traffic management and waste tracking.

As part of the site preparation phase and preliminary tasks a remediation workshop should be conducted with the appointed contractor(s) to further develop any remedial measures, excavation plans and environmental management requirements.

Also prior to commencing work the site contractor is to complete a staging or project plan that outlines the basic stages of the remediation works. The staging plan should include, but not be limited to:

- Staging of the decommissioning and removal of tanks and associated equipment;
- Staging of areas to be excavated;
- Areas designated for waste segregation, screening and storage (stockpiling), amenities, soil and groundwater treatment (if required);
- Truck movements to allow loading to mitigate impacts to surrounding land users and council infrastructure; and
- Proposed environmental mitigation measures.

Removal of all Coates Hire equipment on the site will be required prior to commencing remedial works on-site.

Should unexpected finds be discovered during the course of the site remediation program, then the procedures described under the Contingency Management (**Section 8.2**) and Unexpected Finds Protocol (**Appendix C**) are to be implemented until the site remediation goals have been achieved and the site is deemed suitable for the intended land use.

8.1.2 Remedial Works and Validation

Site characterisation revealed the presence of both bonded and friable asbestos contamination across the site. The quality of soil remaining onsite following remediation requires validation to ascertain site suitability. The remedial methodology should progress in the following stages:

- 1 Excavate hotspots of friable asbestos material at locations TP14 (EIS, 2018) and TP123 (EI, 2020). Conduct classification sampling prior to off-site disposal. Remediation of these areas (identified as 4 and 5 in Figure A.3) is to be performed separately. Excavations of materials should be conducted to natural soils. All resulting stockpiles are to be placed on hardstand or builders plastic and covered to prevent cross contamination.
- 2 Excavate hotspots of bonded asbestos at locations NS1, NS2 and SS01 (EIS, 2018) and TP107, TP114, TP115, TP118, TP125 and TP306 (EI, 2020). Remediation of these areas (identified as 1, 2 and 3 in **Figure A.3**) is to be performed separately. Excavations should be conducted down to natural soils. All resulting stockpiles are to be placed on hardstand or builders plastic and covered to prevent cross contamination.

- 3 Following the excavation of bonded asbestos hotspots (i.e. Areas 1-3), the stockpiles are to be spread out on hardstand or builders plastic, to enable emu-picking for coarse asbestos materials. Following the removal of all visible asbestos materials, oversized products (eg: bricks/concrete) can be screened out.
- 4 Following stockpile processing of bonded hotspots, stockpiles are to be re-assessed for asbestos concentrations using WADOH (2009) sampling methods (%w/w). The validation sampling and analysis quality plan detailing the validation sampling methodology is described in **Section 10.1**.

8.1.3 Bulk Excavation (Site Wide)

Following the remedial excavation of hotspots as outlined in **Section 8.1.2**, remaining fill not suitable to remain on-site from a geotechnical perspective will be classified and disposed off-site.

8.1.4 Imported Materials

Following completion of the bulk excavations, importation of 'clean' materials may be required, to backfill remedial voids and bring the site to the intended finished levels. Imported materials must be previously classified as *virgin excavated natural material* (VENM) or *excavated natural material* (ENM), or deemed suitable under another EPA resource recovery exemption/order. In the absence of suitable validation information (as confirmed by the appointed environmental scientist), imported materials must be sampled and analysed as suitable for on-site use, in accordance with the methodology outlined in **Section 10.1**.

8.1.5 Reporting

All methodologies and findings of remediation / validation phase will be reported within a final report. Should significant contamination be identified, further works will be addressed via an addendum to this RAP. These works <u>may</u> include soil vapour sampling, indoor air quality assessment, active groundwater remediation and bioremediation of significantly contaminated soil.

Once site validation has been achieved, the findings of the work will be reported and conclusions on suitability of the land will be evaluated.

8.2 Remedial Contingencies

At this stage it is anticipated that the proposed remedial technologies will be effective in dealing with the contamination present; however, remedial contingencies may be required should scenarios detailed in **Table 8-2** arise.

Scenario	Remedial Contingencies/Actions Required	
Highly contaminated soils / sludges not identified during previous investigations are encountered, particularly at site boundaries	Work to be suspended until the Environmental Project Manager can assess impacted materials and associated risks. The leachability of contaminants to be assessed, before disposal options are considered. Follow the unexpected finds protocol in Appendix C of this RAP.	
Underground tanks (i.e. USTs that have not been previously identified) are encountered at the site	Should unexpected USTs be identified at the site, a GPR survey and visual inspection may be conducted by a certified and experienced service locator, to confirm the presence / absence of any further UPSS and any unknown subsurface infrastructure.	
	Systems to be removed and the excavations appropriately validated and backfilled by an experienced contractor. Tank removal works to be reported by an appropriate environmental consultant, in accordance with EPA (2014b) <i>Technical Note: Investigation of Service Station Sites</i> and Australian Standard AS4976 (2008). Follow the unexpected finds protocol in Appendix C of this RAP.	

 Table 8-2
 Remedial Contingencies

Scenario	Remedial Contingencies/Actions Required	
Unexpected asbestos wastes are encountered	Work to be suspended and asbestos removed by a suitably qualified contactor, in accordance with SafeWork NSW regulations. Follow the unexpected finds protocol in Appendix C of this RAP.	
Residual soil impacts remain	Assess potential vapour hazard and delineate plume.	
on-site	Should significant soil vapour contamination be identified, consider soil vapour monitoring program and the implementation of a vapour membrane barrier system within the final development design.	
Contaminated groundwater (including LNAPL or DNAPL) encountered	Review groundwater conditions on site (if required) and determine need for further investigation/remediation and/or longer-term management plan. Any dewatering may require approval under the <i>Water Management Act 2000</i> .	
	Remedial options may include natural attenuation, extraction, bioremediation, PSH recovery using active pumping (including hydraulic control), installation of a groundwater permeability barrier, <i>in situ</i> oxidation or stabilisation.	
Contaminated groundwater plume is identified and is migrating off-site, or there are increases in concentration due to increased infiltration	Review contaminant increase and analytes. Review active remediation alternatives (if necessary). Ensure down-gradient monitoring is undertaken. Carry out fate and transport modelling and assess the need for further action.	
Contamination is identified near heritage items or significant trees (if identified)	Stop work. Review contaminant concentrations and risks to heritage items / flora. Assess human health and environmental risks if contamination remains in place. Review natural attenuation options.	
Changes in proposed excavation depth	Review remediation works for the site.	
Changes in proposed land use(s) at the site	Review remediation works for the site.	

9. SITE MANAGEMENT

9.1 Roles and Responsibilities

Roles and responsibilities of key personnel required to complete the remedial works are provided in **Table 9-1**. The details of people responsible should be kept up to date throughout the remedial works.

Team Member	Organisation	Responsibilities
Property Owner	Concrete Recyclers Pty Ltd	 Overall responsibility of site and key liaison for council. Appoint site contractors and all other members of the remediation.
Project Manager – Site Operations	Concrete Recyclers Pty Ltd	 Overall site management and day to day decision maker. Key communicator between site and owner. Ensure relevant control plans are developed and implemented and appoints required staff to the roles required.
Remediation Contractor	ТВА	 Site preparation including the implementation of environmental controls required by the site management plans and relevant legislation. Completion of remedial tasks in accordance with the methods of the RAP and relevant legislation.
		 Ensure consultant is informed of remedial schedules and is employed for key components, such as waste classification and validation.
		 Effectiveness of mitigating measures required for remedia activities.
		 Ensure appropriate handling of all material and correct offsite disposal of waste under appropriate documentation Copies of all waste documents are required by the environmental consultant for inclusion to the site validation report.
		 Reporting any environmental issues, complaints or unexpected finds to the project manager and environmental consultant.
Environmental Scientist / Engineer	ТВА	 Development of the remediation objectives and strategy. Support all other members of RMT in understanding the requirements of the RAP and the potential risks posed should measures not be implemented.
		 Supervision of key remediation components, collection of all environmental samples and provide guidance to ensure the remediation is understood and effective. Complete site validation tasks and detail the works in a validation report concluding on site suitability.
Local Authority	Campbelltown City Council	 Responsible for the granting of all consents and ensuring the recommendations of environmental reports are implemented. Regulator of consent conditions.

Table 9-1 Remediation Management Team

9.2 Materials Handling and Management

Table 9-2 summarises the measures that should be implemented in respect of materials handling during remedial and bulk excavation works at site.

 Table 9-2
 Materials Handling and Management Requirements

Item	Description/ Requirements
Excavation Contractors	Excavation should be completed by a suitably qualified contractor to ensure all staff are aware of the site's environmental and health and safety requirements, and that all adverse effects are mitigated, isolated, or reduced.
Stockpiling of	All stockpiles will be maintained as follows:
Materials	 Present on sealed surfaces such as concrete, asphalt, or high-density polyethylene. If placed on bare soil, the land will be over-excavated to ensure adequate removal of all impacted material and located in areas of the site which do not pose environmental risk (e.g. sheltered areas).
	 No greater than 2m in height, be appropriately battered and sediment measures surrounding each base to manage stormwater runoff. Material will either be covered or kept moist to prevent dust blow.
	 Stockpiles will be in approved locations of the site, selected to mitigate environmental impacts while facilitating material handling requirements. Any contaminated material will only be stockpiled in non-remediated areas of the site of at locations that do not pose any risk (e.g. sheltered areas).
Transport of Material (off-site)	 Material shall be transported via a clearly distinguished haul route defined within construction management plans. All haulage routes for trucks transporting soil, materials, equipment, and machinery shall comply with all road traffic rules.
	 Implementation of sediment measures to reduce the mechanical movement of soil onto public roadways or vehicle wheels is required, such as wheel washing/cleaning facilities placed at each site entry/exit. Any residue from the cleaning facility will be collected and deemed contaminated unless proven otherwise.
	 Spoil material will require offsite disposal. Trucks transporting soils from the site are to be covered with tarpaulins (or equivalent). All deliveries of soil, materials, equipment, or machinery should be completed during the approved hours of remediation and exit the site in a forward direction.
	 Removal of waste materials from the site shall only be carried out by a recognised contractor holding the appropriate EPA NSW licenses, consents, and approvals.
Material Tracking	Materials excavated from the site should be tracked from the time of their excavation until their disposal ("cradle to grave"). Tracking of the excavated materials should be completed by recording the following:
	 Origin of material;
	Material type;
	Approximate volume; and Truck registration number
	 Truck registration number. Disposal locations will be determined by the remediation contractor and the receiving
	facility, weighbridge dockets and waste certification information should be provided to the environmental consultant for validation reporting.

ltem	Description/ Requirements
Importation of Material	Landscaping soil, or material imported as fill for planter boxes, is to be certified as either Virgin Excavated Natural Material (VENM) or Excavated Natural Material (ENM) criteria by the supplying contractor. Copies of certification are to be provided to site management and the Environmental Consultant. Any material outside of these classifications are to be sampled for characterisation, which can be achieved by:
	 Collecting one soil sample per 100m³ of imported soil in deposited areas. Analysis of samples for contaminants of concern, including TRH, BTEX, PAH, Metals / Metalloids, PFAS, OCP / OPP, PCBs and asbestos (at least). Acceptance will be achieved once all contaminant concentrations are reported to be below the site criteria. Analysis results should be presented to the Environmental Consultant for inclusion in the site validation report.
	Visual inspection of the imported material to confirm consistency is recommended, and should excavated materials be identified as potentially contaminated or unsuitable for reuse, the following procedure should be undertaken:
	 Visually assess if the contaminated material can be isolated from other material, and stockpile separately if possible.
	 Stockpile in contaminated material area and sample in accordance with waste classification procedure detailed in Section 10.1.
	 Subject to classification, 'clean' materials may then be reused as filling material on- site or disposed of at an appropriate receiving facility.
Excessive Rainfall	Ensure sediment and surface water controls are operating correctly. If possible, divert surface water away from active work areas or excavations. Stockpiles should be covered to minimise run off.
Excessive Dust	 Use water spray to suppress the dust or stop site activities generating the dust until it settles. Cover all stockpiled soils
Excessive Noise	Identify the source, and isolate if possible. Modify the actions of the source or erect temporary noise barriers if required.
Excessive Odours / Vapours.	Stage works to minimise odours/vapours. If excessive organic odours/vapours are being generated, stop works and monitor ambient air across the site and at site boundaries with a PID. Implement control measures including respirators for on-site workers, use of odour suppressants, wetting down of excavated material

9.3 Waste Management

Prior to any soil material being removed from the site, a formal waste classification certificate shall be completed, in accordance with the EPA (2014a) *Waste Classification Guidelines*.

Soil samples designated for waste classification will be collected at a rate of one sample per 25m³ (minimum of three per stockpile), up to 250m³. For soil exceeding 250m³ but less than 2,500m³, a minimum of 10 samples is required and 95% UCL statistical calculations of contaminant concentrations may be compared to the criteria. Samples are to be analysed for metals / metalloids, total recoverable hydrocarbons (TRH), the monocyclic aromatic hydrocarbons benzene, toluene, ethyl benzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAH), organochlorine / organophosphorus pesticides (OCP / OPP), polychlorinated biphenyls (PCBs) and asbestos.

Any unexpected asbestos identified will be treated as an unexpected find and the unexpected finds protocol (**Appendix C**) will be engaged.

Results of analyses will be compared to the waste classification criteria set out in the NSW EPA (2014) *Waste Classification Guidelines* and a classification certificate will be provided, to enable off-site disposal.

Ensuring that the waste fill/soil streams are kept separate, material will be loaded, transported, and disposed offsite to waste landfill facilities that are appropriately licensed to receive the materials corresponding to the documented waste classifications.

In accordance with the *POEO (Waste)* Regulation 2014, waste movements will be tracked and disposal receipts (dockets) will be maintained by the site manager and copies provided to the Environmental Scientist for final reporting purposes.

10. VALIDATION SAMPLING, ANALYTICAL AND QUALITY PLAN

The remediation of the site will be deemed acceptable based on the achievement of the following validation objectives:

- Remedial Excavations and Stockpiles Validation of all remedial excavation areas and stockpiles where infrastructure or contaminated soils have been removed will involve sampling and analysis to ensure that contaminant concentrations are below the soil remediation criteria (Section 5.2). The sampling frequency will be in accordance with the NEPC (2013) and EPA (1995) Sampling Design Guidelines. All tests shall be performed by NATA-accredited environmental analytical laboratories.
- Backfill Materials Should backfilling be required, validation of imported fill materials used for the backfilling of remediated areas would be required to verify their suitability for the proposed land use.

The sampling, analytical and quality plan (SAQP) will be crucial to the site validation phase. It must ensure that the data collected are representative and provide a robust basis for site decisions.

10.1 Validation Sampling Methodology

The recommended validation methodology for sample collection is presented in Table 10-1.

Remediation Area	Sampling Density	Potential Contaminants
Validation Pits	Wall – 1 sampling location per wall or per 5 m length of excavation wall. Base – 1 sample per 25m ²	Asbestos
Validation Stockpiles	Any soil material stockpiled on- site following contaminant removal and processing, will be sampled for validation purposes at a rate of one per 25m ³ (with a minimum of 3 samples for stockpiles <25m ³).	Asbestos
Stockpiled Materials	Any soil material stockpiled on- site for off-site disposal, will be sampled for waste classification purposes at a rate of one per $25m^3$ (with a minimum of 3 samples for stockpiles <25m ³).	HM, TRH, BTEX, PAHs, OCP, OPP, PCB and asbestos
Imported Fill Materials	If material is required to be sourced from off-site to reinstate excavations, it will be certified suitable for the intended use by sampling at a rate of one per 100m ³ .	HM, TRH, BTEX, PAHs, OCP, OPP, PCB and asbestos

Table 10-1 Validation Sampling Design

Excavation of contaminated material shall continue until the analytical results indicate compliance with the criteria (i.e. either the concentrations of all contaminants are within the criteria, or the 95% UCL average contaminant concentration for each detected parameter is within the criteria). If results indicate that additional excavation is necessary, the excavation shall be extended until the excavation surface samples indicate that the location is validated as meeting the criteria for each respective contaminant.

Soil sampling and handling of the collected samples will be as described in Table 10-2.

 Table 10-2
 Validation Sample Collection and Handling Procedures

Action	Description of Required Works
Sample Collection	Soil validation sampling will be directly from the exposed surface of excavation, or from the material brought to the surface by the backhoe/excavator bucket.
	Bulk soil samples for asbestos analysis are to be prepared in the field using the following protocol:
	 Approximately 10 litres (L) of soil from indicated excavation depths collected into a bulk bag. Soil characteristics recorded (constituents, grain size, etc.).
	 Sample bags sent to the laboratory and a 0.001% detection limit for FA/AF analysis requested and 0.01% detection limit for ACM and asbestos identification, if identified.
Sampling, Handling, Transport and Tracking	 The use of stainless-steel or disposable (one time use) sampling equipment.
	 All sampling equipment (including hand tools or excavator parts) to be washed in a 3% solution of phosphate free detergent (Decon 90), followed by a rinse with potable water prior to each sample being collected.
	 Direct transfer of the sample into new glass jars, bottles, vials or plastic bags is preferred, with each plastic bag individually sealed to eliminate cross contamination during transportation to the laboratory.
	 Label sample containers with individual and unique identification including Project No., Sample No., depth, date and time of sampling;
	 Place sample containers into a chilled, enclosed, and secure container for transport to the laboratory.
	 Provide chain of custody documentation to ensure that sample tracking and custody can be cross-checked at any point in the transfer of samples from the field to the environmental laboratory.
Sample Containers and Holding Times	 Metals - 250g glass jar / refrigeration 4°C / 6 months (maximum holding period).
	 TRH/BTEX - 250g glass jar / refrigeration 4°C / 14 days (maximum holding period).
	 PAH/OCP/OPP - 250g glass jar / refrigeration 4°C / 14 days (maximum holding period).
	 Asbestos – up to a 10 Litre resealable plastic (polyethylene) bag / no refrigeration / indefinite holding time.
Field QA/QC	Quality assurance (QA) and quality control (QC) procedures will be adopted throughout the field sampling program to ensure sampling precision and accuracy, which will be assessed through the analysis of 10% field duplicate/replicate samples.
	Appropriate sampling procedures will be undertaken to prevent cross contamination, in accordance with EI's Standard Operating Procedures Manual. This will ensure:
	 Standard operating procedures are followed;
	 Site safety plans are developed prior to works commencement;
	 Split duplicate field samples are collected and analysed;
	 Samples are stored under secure, temperature-controlled conditions;
	 Chain of custody documentation is employed for the handling,

Action	Description of Required Works	
	transport and delivery of samples to the contracted environmental laboratory; and	
	 Contaminated soil, fill or groundwater originating from the site area is disposed in accordance with relevant regulatory guidelines. 	
	In total, field QA/QC will include one in 10 samples to be tested as intra- laboratory, blind field duplicates, one in 20 samples to be tested as inter- laboratory, split field duplicates, as well as one VOC trip blank, one VOC spike sample and one equipment wash blank sample per sample batch.	
Laboratory Quality Assurance and Quality Control	The contract laboratory will conduct in-house QA/QC procedures involving the routine analysis of:	
	 Reagent blanks; 	
	 Spike recoveries; 	
	 Laboratory duplicates; 	
	 Calibration standards and blanks; 	
	 QC statistical data; and 	
	 Control standards and recovery plots. 	
Achievement of Data Quality Objectives	Data quality objectives (Table 6-1) are to be achieved and an assessment of the overall data quality should be presented in the final validation report, in accordance with the EPA (2017) <i>Guidelines for the NSW Site Auditor Scheme</i> .	

10.2 Validation Reporting

All fieldwork, chemical analyses, discussions, conclusions and recommendations will be documented in a final validation report for the site. The validation report will be prepared in accordance with requirements of the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites* and EPA (2017) *Guidelines for the NSW Site Auditor Scheme* and will confirm that the site has been remediated to a suitable standard for the proposed development.

The Site Validation Report will be submitted for Council and/or Site Auditor review at the completion of the remediation works program.

11. CONCLUSIONS

This RAP has been prepared to inform the remediation works at 7 Montore Road, Minto NSW. Removal of asbestos-contaminated hotspots is required to remediate the site to a condition suitable for the proposed commercial/industrial use.

The preferred approach involves excavation and off-site disposal of impacted fill materials, according to the corresponding waste classification. It is envisaged that the remediation works will be implemented in stages, as follows:

- Preliminaries and site establishment;
- Remedial works and validation;
- Bulk excavation and backfill (if required);
- Reporting.

Material management procedures are provided to characterise soil for off-site disposal, and contingency measures are provided for any unexpected finds. In summary, EI considers that the site can be made suitable for the proposed industrial land use through the implementation of the works described in this RAP.

12. STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of Concrete Recyclers Pty Ltd (the client), being the only intended beneficiary of our work. The scope of the RAP is limited to that agreed with our client.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The methods and conclusions presented in this report are based on a limited investigation of conditions, with specific sampling locations chosen to be as representative as possible under the given circumstances.

El's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. El may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by El.

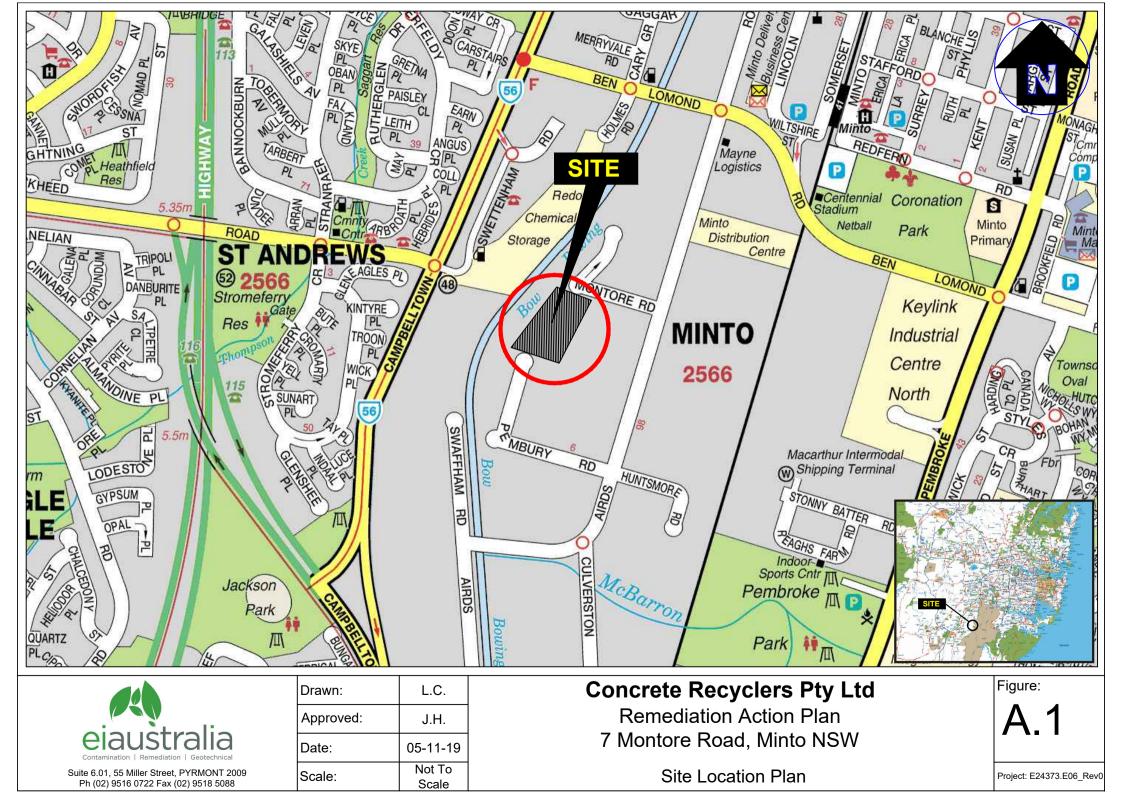
El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during remedial activities. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

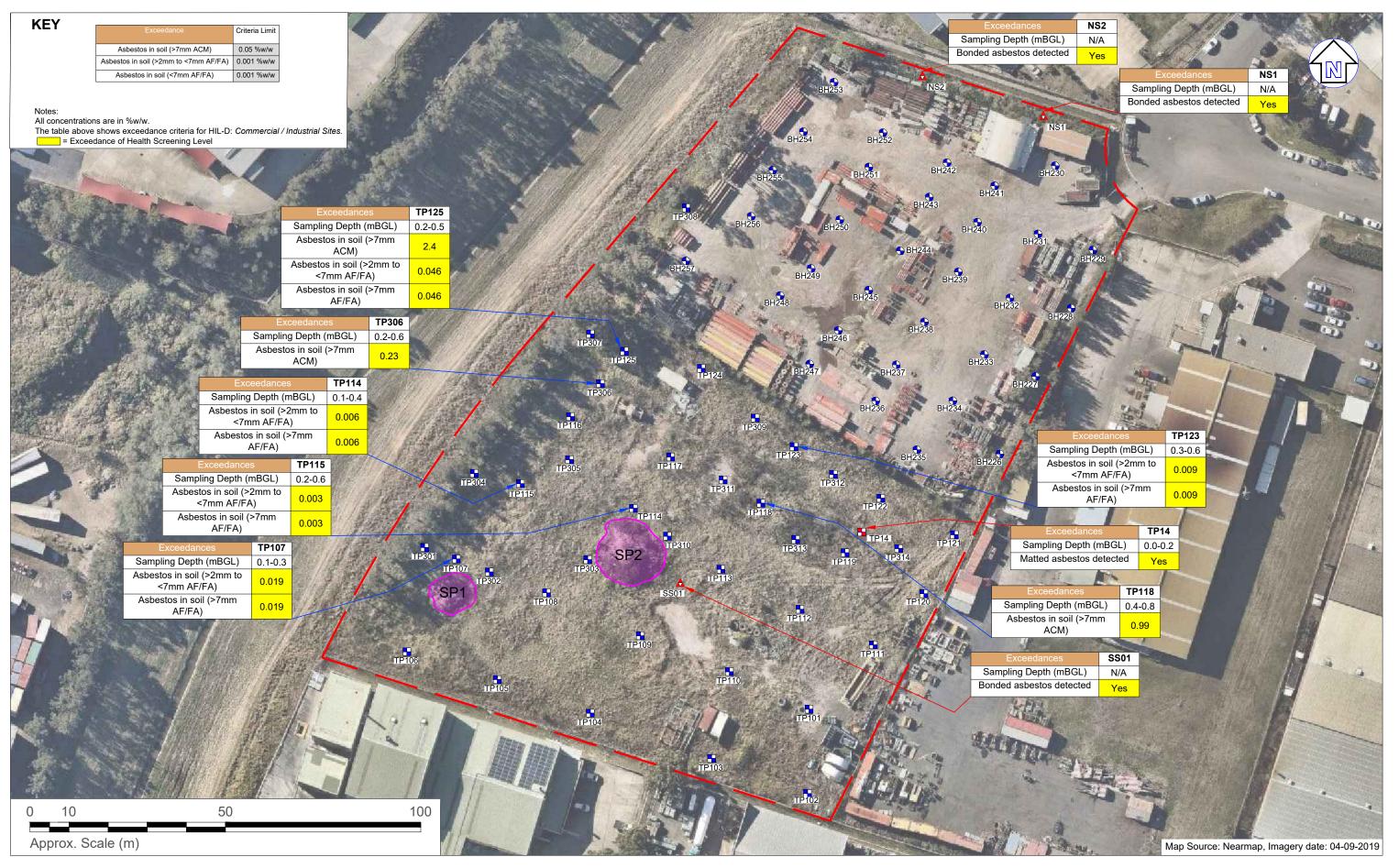
REFERENCES

- Australian Standard (2005) Table E1 Minimum Sampling Points Required for Site Characterisation, in Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil - Part 1: Non-Volatile and Semi-Volatile Compounds, Standards Australia, AS4482.1-2005.
- Chapman GA and Murphy CL (1989) Soil Landscapes of the Sydney 1:100 000 Sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DMR (1985) Wollongong-Port Hacking 1:100,000 Geological Series Sheet 9029-9129 (Edition 1), Geological Survey of New South Wales, Department of Mineral Resources.
- DUAP / EPA (1998) Managing Land Contamination. Planning Guidelines SEPP 55 -Remediation of Land. New South Wales Department of Urban Affairs and Planning / Environment Protection Authority, August 1998.
- EI (2020) Additional Site Investigation, 7 Montore Road Minto NSW, Report Reference: E24373.E03_Rev1, dated 24 March 2020.
- EIS (2018) Stage 1 / Stage 2 Environmental Site Assessment; 7 Montore Road, Minto NSW 2566, Environmental Investigation Services, Report Reference: E29448KrptRev1, 10 January 2018.
- enHealth (2005) Management of Asbestos in the Non-Occupational Environment, Department of Health and Ageing, Canberra, Australia.
- EPA (1995) Sampling Design Guidelines, Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- EPA (2014) Waste Classification Guidelines. Environment Protection Authority of New South Wales, EPA 2014/0796, November 2014.
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition), Environment Protection Authority of New South Wales, EPAP0269, October 2017.
- NEPC (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on Site-Specific Health Risk Assessments, from the National Environmental Protection (Assessment of Site Contamination) Amendment Measure, National Environmental Protection Council, April 2013.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage, OEH 2011/0650, August 2011.
- USEPA (2000a) Guidance for the Data Quality Objectives Process. EPA QA/G-4, United States Environmental Protection Agency, EPA/600/R-96/055, August 2000.
- USEPA (2000b) Data Quality Objectives Process for Hazardous Waste Site Investigations. EPA QA/G-4HW, United States Environmental Protection Agency, EPA/600/R-00/007, January 2000.
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R, USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, Western Australian Department of Health, May 2009.

ABBREVIATIONS


ABC	Ambient Background Concentration
ACL	Added Contaminant Limit
ACM	Asbestos-Containing Materials
AGST	Above-Ground Storage Tank
AS	Australian Standard
ASS	Acid Sulfate Soils
ANZG	Australian and New Zealand and Australian State and Territory Governments
B(a)P	Benzo(a)Pyrene (a PAH compound)
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
CBD	Central Business District
CSM	Conceptual Site Model
CLM	Contaminated Land Management
COC	Chain of Custody
COPC	Contaminants of Potential Concern
cVOCs	Chlorinated Volatile Organic Compounds (a sub-set of the VOC analysis suite)
DA	Development Application
DBYD	Dial Before You Dig
DO	Dissolved Oxygen
DP	Deposited Plan
DSI	Detailed Site Investigation
DQI	Data Quality Indicator
DQO	Data Quality Objective
EIL	Ecological Investigation Level
EPA	NSW Environment Protection Authority
ESL	Ecological Screening Level
F1	C_6 - C_{10} TRH fraction, less sum of BTEX concentrations
F1 F2	
F2 F3	>C ₁₀ -C ₁₆ TRH fraction, less naphthalene
F3 F4	> C_{16} - C_{34} TRH fraction > C_{34} - C_{40} TRH fraction
GPR	Ground Penetrating Radar
HDPE	
HIL	High Density Polyethylene
HSL	Health-based Investigation Level
	Health-based Screening Level
km LNAPL	Kilometres Light Non-Aqueous Phase Liquid (also referred to as PSH)
LOR	Limit of Reporting (of laboratory analytical method)
DNAPL	
	Dense Non-Aqueous Phase Liquid Metres
m mAHD	
	Metres Australian Height Datum
mBGL	Metres Below Ground Level
	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NEPM	National Environmental Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticides
	Organophosphate Pesticides
PAH	Polycyclic Aromatic Hydrocarbons
PCB	Poly-Chlorinated Biphenyls
PFAS	Per or Poly-Fluoroalkyl Substances


PFHxS PFOA PFOS PID pH PSH PQL PSI QA/QC RAP SIL SRA TCLP TEQ TPH TRH UCL UPSS US FPA	Perfluorohexane Sulfonate Perfluorooctanoic Acid Perfluorooctane Sulfonate Photo-ionisation Detector Measure of the acidity or basicity of an aqueous solution Phase-Separated Hydrocarbons (also referred to as LNAPL / DNAPL) Practical Quantitation Limit (limit of detection for laboratory method) Preliminary Site Investigation Quality Assurance / Quality Control Remedial Action Plan Soil Investigation Level Sample Receipt Advice Toxicity Characteristics Leaching Procedure Toxicity Equivalent Quotient Total Petroleum Hydrocarbons (superseded term equivalent to TRH) Total Recoverable Hydrocarbons (non-specific petroleum hydrocarbon fractions) Upper Confidence Limit of the Mean Underground Petroleum Storage System
US EPA UST VOC	United States Environmental Protection Agency Underground Storage Tank Volatile Organic Compounds

Appendix A - Figures

Exceedance	Criteria Limit
Asbestos in soil (>7mm ACM)	0.05 %w/w
Asbestos in soil (>2mm to <7mm AF/FA)	0.001 %w/w
Asbestos in soil (<7mm AF/FA)	0.001 %w/w

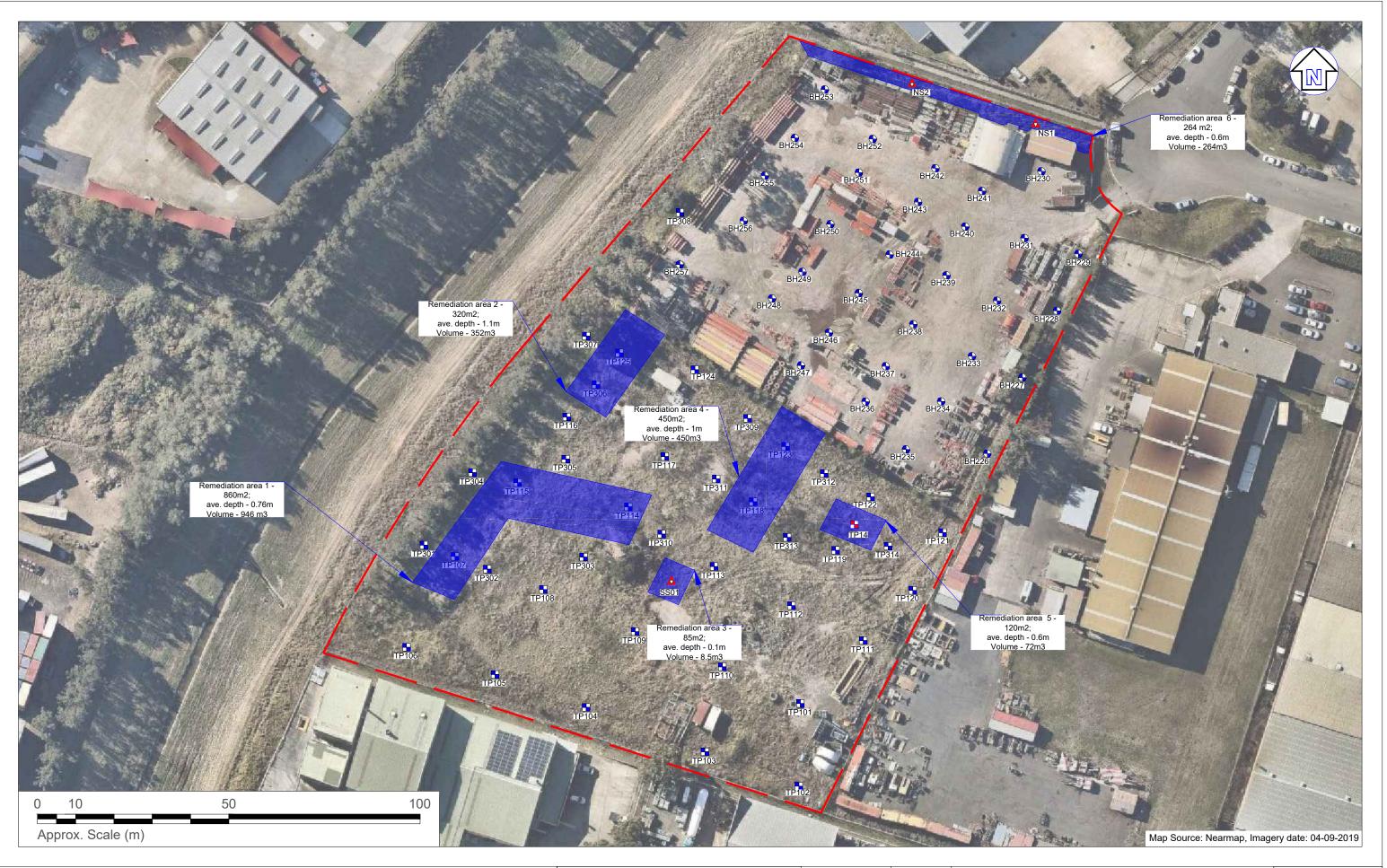
LEGEND

- _ _ _ Approximate site boundary
- Approximate borehole location \oplus
- Approximate test pit location
- Approximate stockpile location
- Approximate surface / stockpile sample location (EIS, 2018)

Approximate test pit location (EIS, 2018)

eiaustralia Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

Drawn:	J.H.	С
Approved:	E.W.	
Date:	18-12-19	


Concrete Recyclers Pty Ltd **Remediation Action Plan** 7 Montore Road, Minto NSW

Analytical Exceedance Plan

A.2

Project: E24373.E06_Rev0

LEGEND

- – Approximate site boundary
- Approximate borehole location (EI, 2019)
- Approximate test pit location (EI, 2019)
- Approximate surface / stockpile sample location (EIS, 2018)
- Approximate test pit location (EIS, 2018)

Drawn:	L.C.	Con
Approved:	J.H.	F 7 N
Date:	18-12-19	Proposed I

ncrete Recyclers Pty Ltd Remediation Action Plan Montore Road, Minto NSW

Remediation and Validation Plan

Figure:

Project: E24373.E06_Rev0

Appendix B – Proposed Development Plans

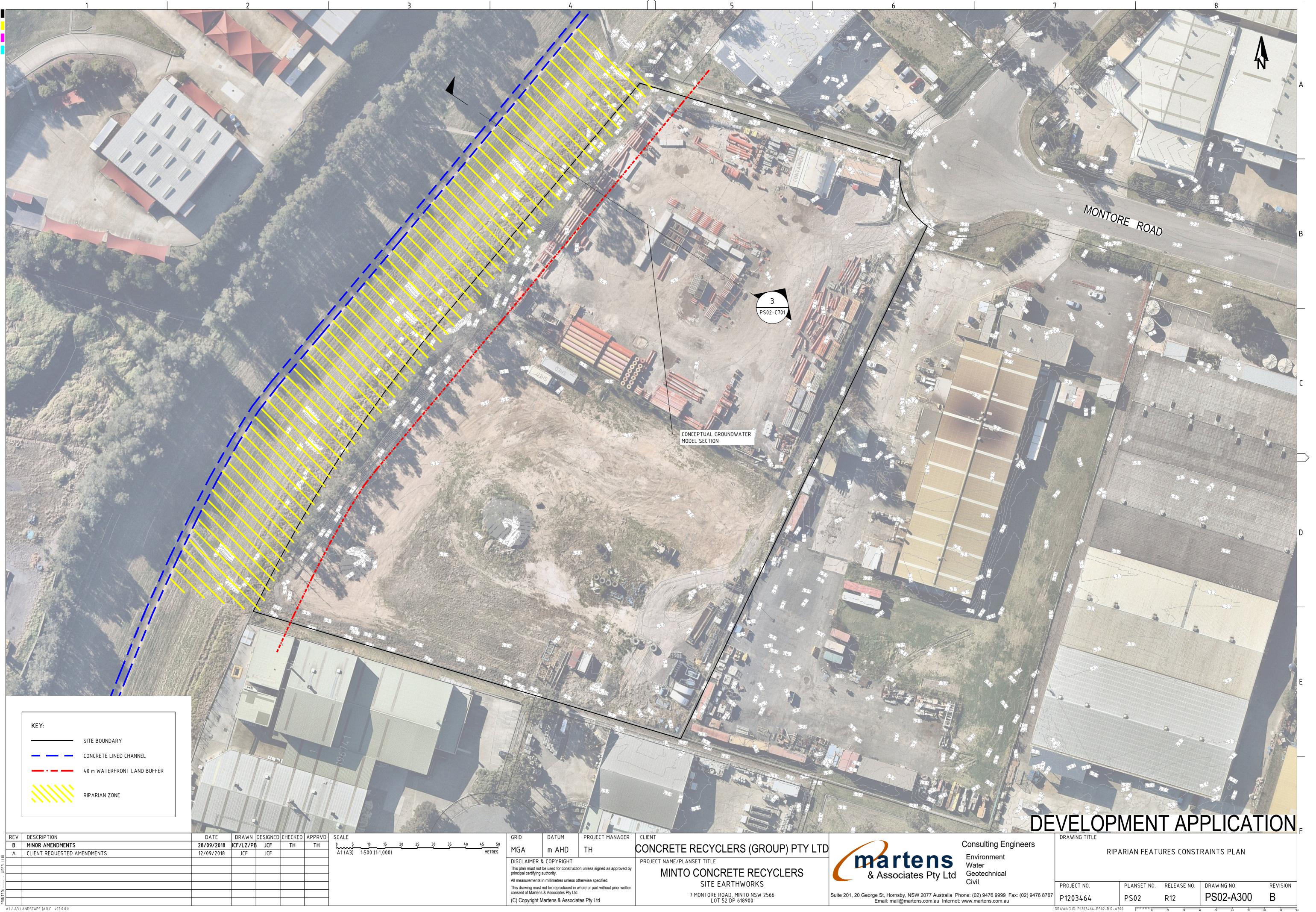
MINTO CONCRETE RECYCLERS PROJECT: SITE EARTHWORKS PLANSET: CONCRETE RECYCLERS (GROUP) PTY LTD CLIENT:

LOCALITY PLAN N.T.S.

LGA: CAMPBELLTOWN

7 MONTORE ROAD, MINTO NSW 2566 LOT 52 DP 618900

REV	DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRV
L	MINOR AMENDMENTS	02/03/2020	LL	EZ	TH	TH
_ K	NEW PAGE ADDED	15/11/2019	RK/LL	EZ	TH	TH
J	MINOR AMENDMENTS	12/10/2018	RK	EZ	TH	TH
USEF	MINOR AMENDMENTS	28/09/2018	JCF/LZ/PE	G/JCF/EZ	ТН	TH
¦ H	AMENDMENTS AS PER CLIENT COMMENTS	20/09/2018	PB/JCF/LZ	JCF	TH	
G	CLIENT REQUESTED AMENDMENTS	12/09/2018	JCF/LZ	JCF		
F	UPDATE	09/08/2018	PB	EZ		
PRIN E	CLIENT REQUESTED AMENDMENTS	03/08/2018	LZ	JCF	TH	TH
A1 / A3 L	ANDSCAPE (A1LC_v02.0.01)					


4

	GRID	DATUM	PROJECT MANAGER	CLIENT		• ··· =	
			TH	CONCRETE RECYCLERS (GROUP) PTY LTD		Consulting En	
F	DISCLAIMER & COPYRIGHT This plan must not be used for construction unless signed as approved by principal certifying authority. All measurements in millimetres unless otherwise specified. This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd. (C) Copyright Martens & Associates Pty Ltd			PROJECT NAME/PLANSET TITLE	martens	Environment Water	
			on unless signed as approved by	MINTO CONCRETE RECYCLERS	& Associates Pty Ltd		
				SITE EARTHWORKS		Civil	
			hole or part without prior written		Suite 201, 20 George St, Hornsby, NSW 2077 Australia P	hone: (02) 9476 9999	
			tes Pty Ltd	LOT 52 DP 618900	Email: mail@martens.com.au Internel		


		DWG TITLE
GENERAL		
PS02-A000	L	COVER SHEET
PS02-A300	В	RIPARIAN FEATURES CONSTRAINTS PLAN
PS02-A400	1	SITE LAYOUT
PS02-AZ00		SITE FENCING, FIRE FIGHTING AND SPRINKLERS PLAN
CONSTRU	ICTION	N MANAGEMENT WORKS
PS02-B300	G	SEDIMENT AND EROSION CONTROL PLAN
PS02-B350	В	SEDIMENT AND EROSION CONTROL DETAILS
EARTHW	ORKS	
PS02-C100	G	EARTHWORKS PLAN - SHEET 01
PS02-C105	С	EARTHWORKS PLAN – SHEET 02
PS02-C600	G	EARTHWORKS CUT & FILL ANALYSIS PLAN
PS02-C700	E	EARTHWORKS SECTIONS - SHEET 01
PS02-C701	E	EARTHWORKS SECTIONS - SHEET 02
ROADWO	RKS	
PS02-DZ01	Н	SWEPT PATH ANALYSIS - SHEET 1 (TURNING MANOEUVRE ON SITE)
PS02-DZ02	Н	SWEPT PATH ANALYSIS - SHEET 2 TURNING MANOEUVRE ON SITE)
PS02-DZ03	E	SWEPT PATH ANALYSIS – SHEET 3 (ENTRANCE AND EXIT MANOEUVRES)
PS03-DZ04	E	SWEPT PATH ANALYSIS - SHEET 4 (TURNING MANEOUVRE ON SITE
PS03-DZ05	E	SWEPT PATH ANALYSIS - SHEET 5 (TURNING MANEOUVRE ON SITE)
PS03-DZ10	E	SITE LOADING AND UNLOADING PLAN
DRAINAG	É	
PS02-E100	J	DRAINAGE PLAN
PS02-E200	D	DRAINAGE DETAILS
PS02-E201	Α	SEDIMENT BASIN CROSS SECTIONS
PS02-E410	A	DRAINS CATCHMENT PLANS
PS02-E600	c	DRAINS MODELLING RESULTS
PS02-E700	Α	WATER QUALITY CATCHMENT PLAN
SITEWOR	KS	
PS02-F101	F	DRIVEWAY PLAN
PS02-F102	F	CARPARK PLAN
PS02-F103	E	DRIVEWAY CROSS SECTION
PS02-F200	G	RETAINING WALL PLAN
PS02-F201	E	RETAINING WALL DETAILS
PS02-F400	C	DRIVEWAY LONGITUDINAL AND TYPICAL CROSS SECTIONS
		D SIGNAGE
PS02-G100	IF	PAVEMENT PLAN

DEVELOPMENT APPLICATION

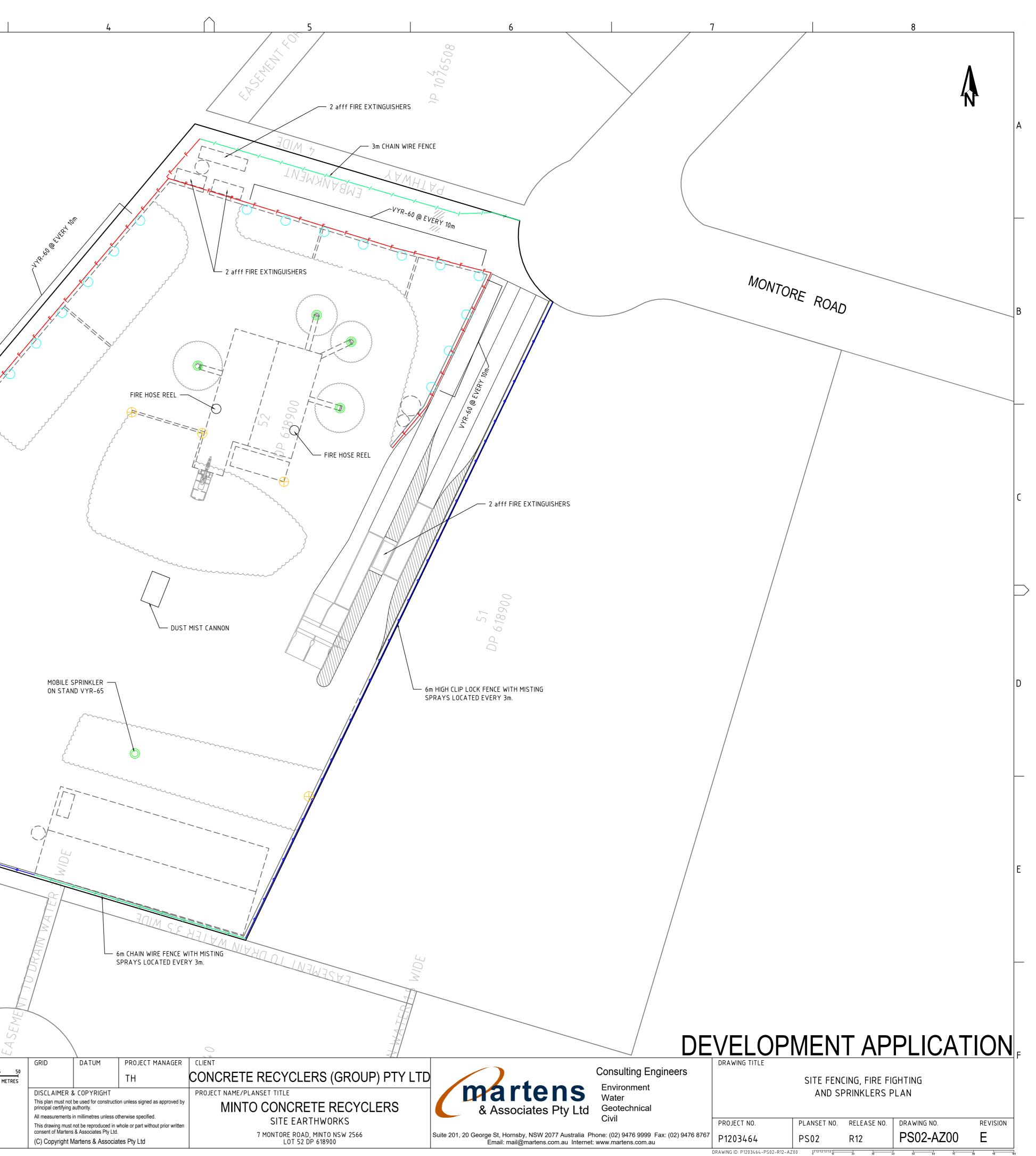
Engineers COVER SHEET PROJECT NO. PLANSET NO. RELEASE NO. DRAWING NO. REVISION 999 Fax: (02) 9476 8767 om.au PS02-A000 P1203464 PS02 R12

A1/A3L	ANDSCAPE ((A1LC_	v02.0.01)

6m HIGH CO WITH MIST			

CONCRETE PANEL FENCE FROM TOP OF YARD LEVEL -STING SPRAYS LOCATED EVERY 3m. 6m HIGH CLIP LOCK FENCE WITH -MISTING SPRAYS LOCATED EVERY 3m.

2 Contraction


KEY	
SITE BOUNDARY	
CONCRETE PANEL FENCE	F
CHAIN WIRE FENCE	/////
CLIP LOCK FENCE	
VYR-60 SPRINKLER	\bigcirc
TORO TG101 OR EQUIVALENT SPRINKLER	\oplus
VYR-65 OR EQUIVALENT SPRINKLER (NOTE: ENDS OF CONVEYORS WILL ALSO HAVE MISTING SPRAYS)	\bigcirc

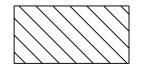
	7
~	
	6
	1
	0

	REV	DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRVD	SCALE	
	E	MINOR AMENDMENTS	02/03/2020	LL	JCF	TH	TH	0 5	10
⊃	D	MINOR AMENDMENTS	28/09/2018	JCF/LZ/PE	JCF	TH	TH	A1 (A3)	1:500 (1:1
USER: LLIU	C	AMENDMENTS AS PER CLIENT COMMENTS	20/09/2018	PB/JCF/LZ	JCF	TH			
USEF	В	CLIENT REQUESTED AMENDMENTS	12/09/2018	JCF/LZ	JCF				
1	Α	CLIENT REQUESTED AMENDMENTS	03/08/2018	LZ	JCF	TH	TH		
PRINTED:									
PRIN									

SCALE <u>
 5 10 15 20 25 30 35 40 45 50</u> A1 (A3) 1:500 (1:1,000) METRES

A1 / A3 LANDSCAPE (A1LC_v02.0.01)

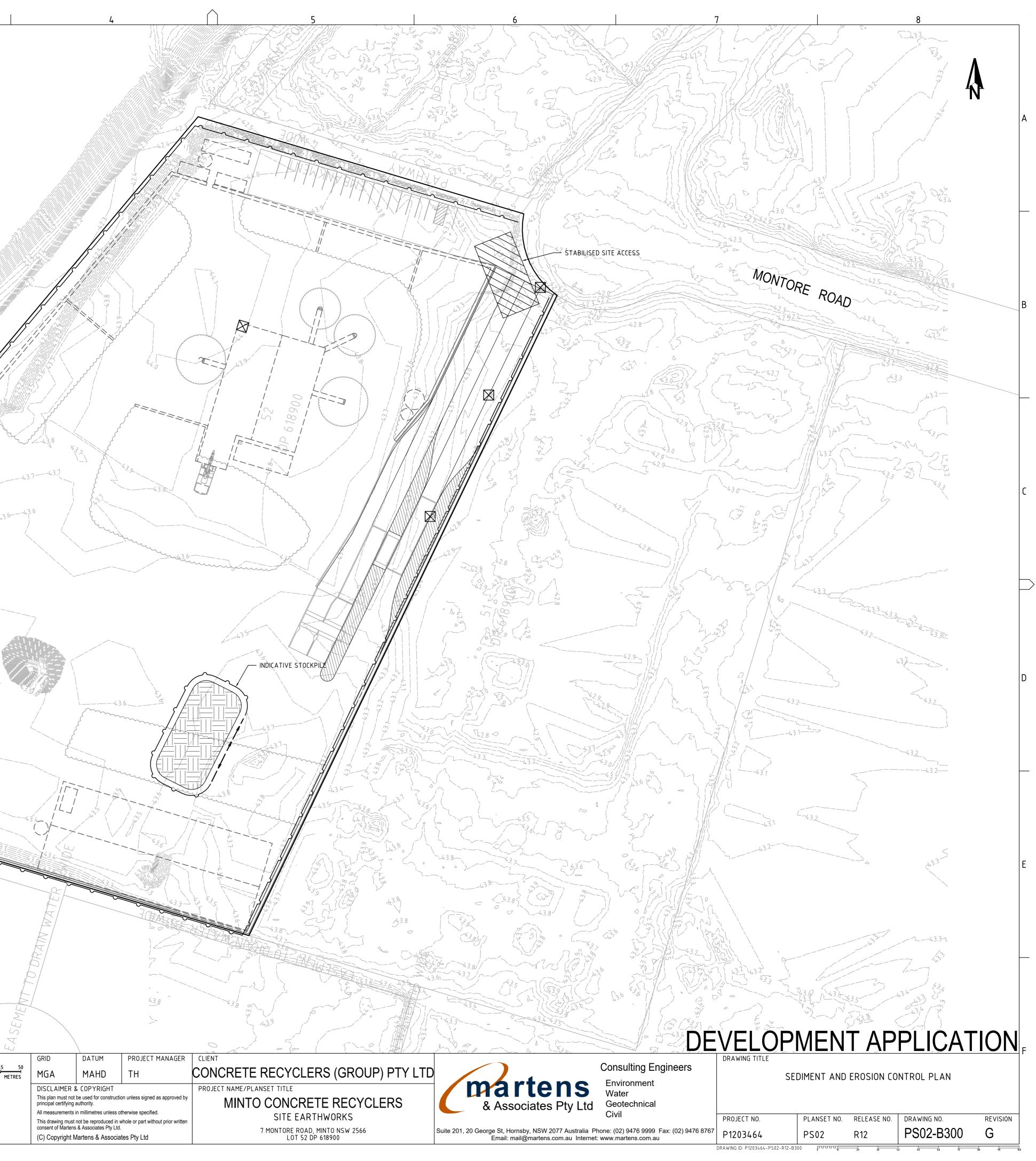
INDICATIVE STOCKPILE


GEOTEXTILE INLET FILTER

SEDIMENT FENCE

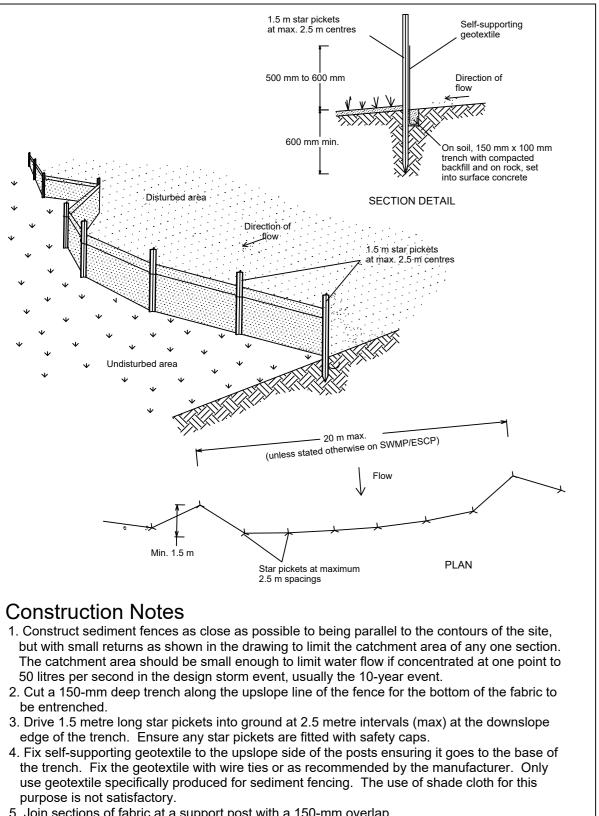
STABILISED SITE ACCESS

 \boxtimes



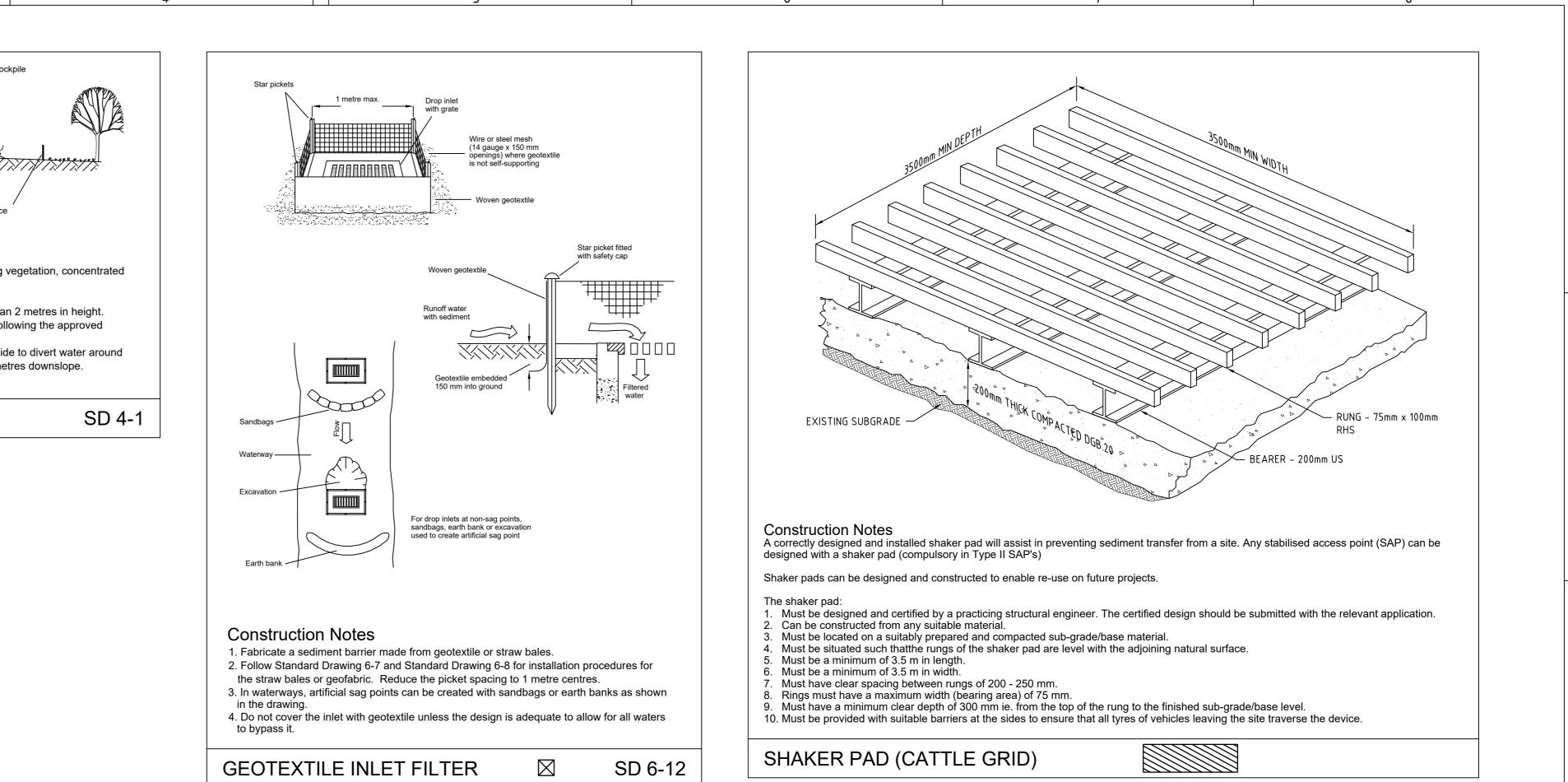
	REV	DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRVD	SCA
Ī	G	MINOR AMENDMENTS	28/09/2018	JCF/LZ/PB	CG/JCF	TH	TH	0
∍	F	CLIENT REQUESTED AMENDMENTS	12/09/2018	JCF/LZ	JCF			A1
s: LLI	E	CLIENT REQUESTED AMENDMENTS	03/08/2018	PB	JCF	TH	TH	
USER:	D	UPDATED AS PER CLIENT REQUEST	06/06/2018	RK/JCF	JCF	TH	TH	
' [C	CLIENT REQUESTED AMENDMENTS	21/03/2018	KW/JCF	JCF	TH		
	В	CLIENT REQUESTED AMENDMENTS	09/03/2018	KW	CG/JCF	TH		
ITED	А	BALANCE SITE EARTHWORKS	07/11/2017	CG	CG	TH		
PRINT								

					/			
SCALE								
0 5	10	15	20	25	30	35	40	45
A1 (A3)	1:500 (1:1,000)						М


A1 / A3 LANDSCAPE (A1LC_v02.0.01)

____2

SD 6-8


5. Join sections of fabric at a support post with a 150-mm overlap.6. Backfill the trench over the base of the fabric and compact it thoroughly over the geotextile.

SEDIMENT FENCE

Stabilise stockpile surface Earth bank terert. Flow \rightarrow Sediment fence **Construction Notes** 1. Place stockpiles more than 2 (preferably 5) metres from existing vegetation, concentrated water flow, roads and hazard areas. 2. Construct on the contour as low, flat, elongated mounds. 3. Where there is sufficient area, topsoil stockpiles shall be less than 2 metres in height. 4. Where they are to be in place for more than 10 days, stabilise following the approved ESCP or SWMP to reduce the C-factor to less than 0.10. 5. Construct earth banks (Standard Drawing 5-5) on the upslope side to divert water around stockpiles and sediment fences (Standard Drawing 6-8) 1 to 2 metres downslope. STOCKPILES

V DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRVD
CLIENT REQUESTED AMENDMENTS	03/08/2018	PB	JCF	TH	TH
BALANCE SITE EARTHWORKS	07/11/2017	CG	CG	TH	

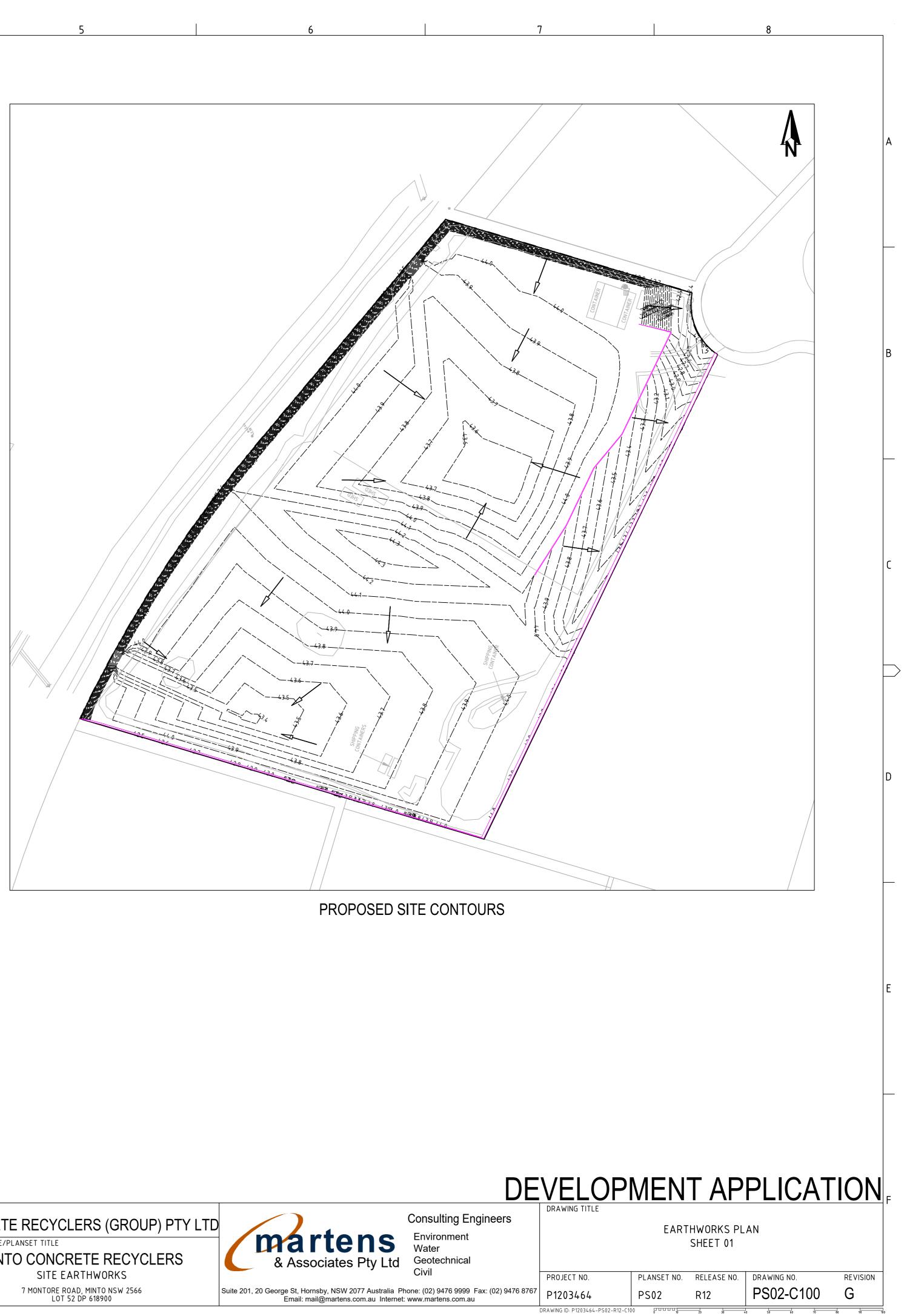
GRID	DATUM	PROJECT MANAGER	CLIENT		A 1/1
		ТН	CONCRETE RECYCLERS (GROUP) PTY LTD		Consulting
DISCLAIMER 8			PROJECT NAME/PLANSET TITLE	martens	Environme
	be used for construction	on unless signed as approved by		& Associates Pty Ltd	Water Geotechnio
	n millimetres unless of	•	SITE EARTHWORKS		Civil
	s & Associates Pty Ltd.	whole or part without prior written		Suite 201, 20 George St, Hornsby, NSW 2077 Australia P	hone: (02) 9476 9
(C) Copyright N	lartens & Associa	tes Pty Ltd	LOT 52 DP 618900	Email: mail@martens.com.au Internet	

DEVELOPMENT APPLICATION

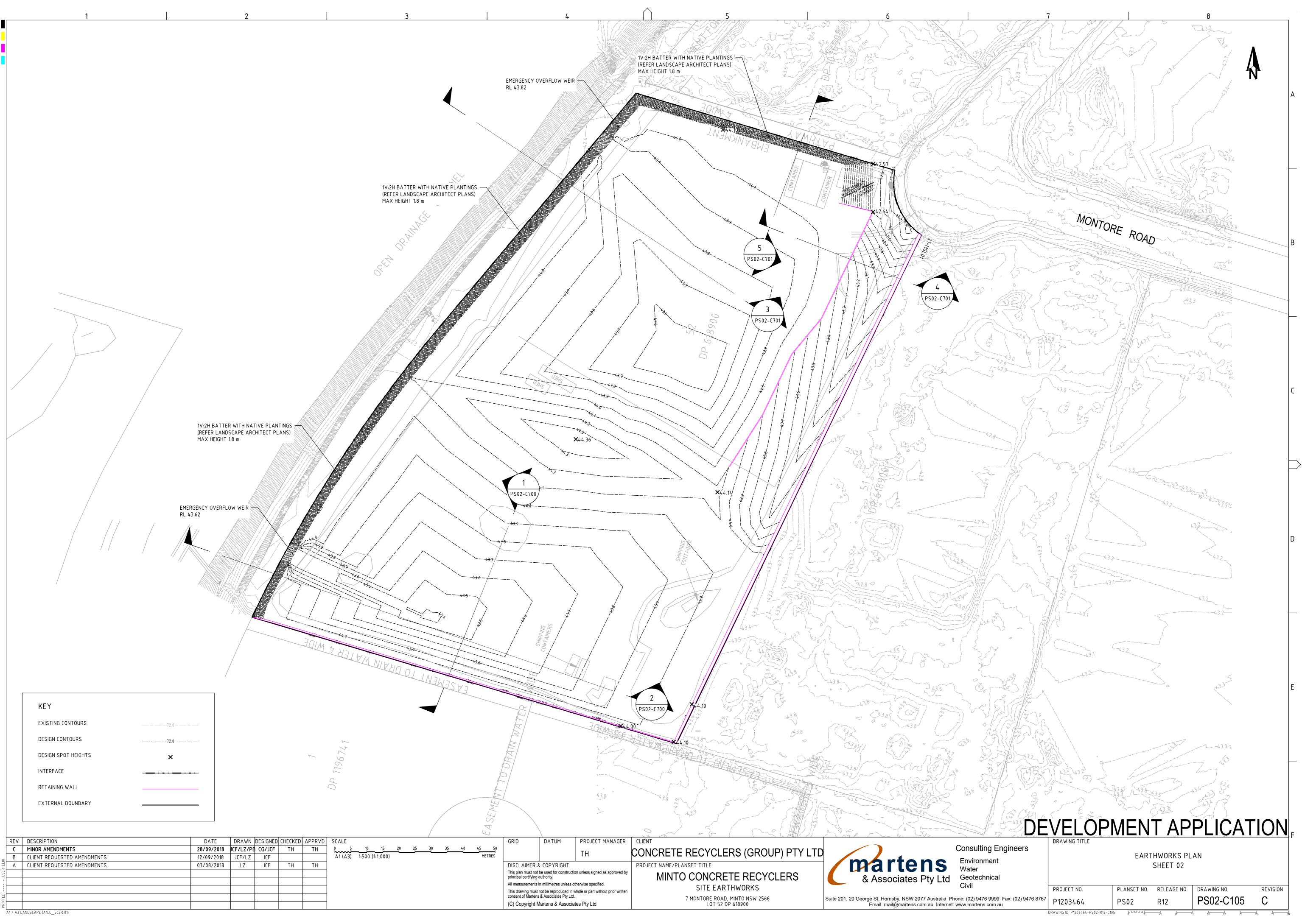
g Engineers ^{ent} ical

SEDIMENT AND EROSION CONTROL DETAILS

	PROJECT NO.	PLANSET NO.	RELEASE NO.	DRAWING NO.	REVISION
999 Fax: (02) 9476 8767 m.au	P1203464	PS02	R12	PS02-B350	В
	DRAWING ID: P1203464-PS02-R12-B3	50 00000	20 30 4	0 50 60 70	80 90 100



EXISTING SITE CONTOURS


KEY	
EXISTING CONTOURS	
DESIGN CONTOURS	
INTERFACE	
RETAINING WALL	
EXTERNAL BOUNDARY	
OVERLAND FLOW	

	REV	DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRVD	SCALE							
	G	MINOR AMENDMENTS	28/09/2018	JCF/LZ/PE	CG/JCF	TH	TH	0 7.5	15.0	2.5 3).0 37.5	45.0	52.5	60.0	67.5
⇒	F	CLIENT REQUESTED AMENDMENTS	12/09/2018	JCF/LZ	JCF			A1 (A3)	1:750 (1:1,	500)					ME
s: LLI	Е	CLIENT REQUESTED AMENDMENTS	03/08/2018	LZ	JCF	TH	TH								
USEF	D	UPDATED AS PER CLIENT REQUEST	06/06/2018	RK/JCF	JCF	TH	TH								
'	C	CLIENT REQUESTED AMENDMENTS	21/03/2018	KW/JCF	JCF	TH									
	В	CLIENT REQUESTED AMENDMENTS	09/03/2018	KW	CG/JCF	TH									
ITED	Α	BALANCE SITE EARTHWORKS	07/11/2017	CG	CG	TH									
PRIN															
-	A1 / A3 L														

A1 / A3 LANDSCAPE (A1LC_v02.0.01)

			Λ	
			N	
				A
	MONTO	RE ROAD		
		" ROAD		В
		/		
				С
	/			
	/			
				\square
	/			
				D
/	/			
/				
VORKS SUMM				
	FILL			
OLUME (m ³) -1298	7810			E
ALANCE (m³) –	6512			
EMENT (m³) –	6432			
NCE (m ³) –	80			
/				
/				
	S TO DESIGN SURFACE LEV			<u> </u>
ID PAVEMENT AT 0.3 M DE	EPTH REQUIRED (21440 X 0.3	3).		
/				
/				
DE	VELOP	MENT AP	PLICATION	 F
ig Engineers	DRAWING TITLE			1'
nent	EAR	THWORKS CUT & FILL AN	IALYSIS PLAN	
nical	PROJECT NO.	PLANSET NO. RELEASE NO.	DRAWING NO. REVISION	
9999 Fax: (02) 9476 8767		PLANSET NU. RELEASE NU.		

PS02-C600

P1203464

PS02

R12

DRAWING ID: P1203464-PS02-R12-C600

G

1	2	3	4
DATUM RL 28.000 DESIGN SURFACE LEVELS	44.027 43.93 43.93 43.833 43.639 43.542 43.542 43.479 43.479	43.478 43.476 43.475 43.488 43.488 43.503 43.522 43.555 43.555 43.555 43.552 43.522 43.522 43.522	43.652 43.685 43.717 43.717 43.75 43.815 43.815 43.815 43.884
EXISTING SURFACE LEVELS	42.834 42.707 43.192 43.395 43.395 43.411 43.402 43.402 43.402 43.392	43.383 43.373 43.378 43.395 43.412 43.412 43.446 43.464 43.471	43.469 43.470 43.471 43.473 43.473 43.473 43.473 43.47 43.48 47.348 47.348 47.080 47.080 46.921
CUT / FILL DEPTH	-0.432 1.241 0.558 0.218 0.080 0.080 0.086 0.086	0.096 0.103 0.110 0.095 0.092 0.092 0.104 0.116 0.118	0.169 0.199 0.228 0.258 -0.537 -0.537 -2.055 -3.25 -3.25 -3.061
CHAINAGE	0.000 2.000 4.000 6.000 10.000 12.000 14.000	16.000 20.000 22.000 24.000 26.000 28.000 30.000 31.000 34.000	36.000 38.000 40.000 42.000 44.000 46.000 48.000 50.000 50.260

SECTION 1 SCALE: HORIZONTAL - 1:200

VERTICAL - 1:200

DATUM RL 26.000 DESIGN SURFACE LEVELS								+3.17	4.098	+3.988 +3.965	.3.946	43.929 43 913	.3.896	+3.878	+3.847	-3.816	-2.753 - 2.7552 - 2.75	43.722	+3.691	+3.66 +3.629	43.597	43.566	43.535		+3.49	•3.495	43.499 43.503	+3.507	+3.511	43.514 4 2 5 1 4	43.522	43.526	43.53	43.537	3.551	+3.568	43.585	.3.619	+3.636	3.652	43.686	43.703	43.72	43.737 43.754	3.77	43.787	43.804	-3.821 -3.838	43.855	+3.872	4.3.888 4.3.899
EXISTING SURFACE LEVELS	40.224	40.668	41.1/0	41.713	42.119	42.609	42.629 42.680	42.713	90	42.822 4 43.369 1		43.342 1 43.342 1 43.336		43.325	43.329	43.332				43.311 43.301 4			43.311 43.319 4		43.335		43.355 4 43.367 4				403	00	7 007.67		399		43.402				43.492 1 43.512 1			43.540 1 43.527 1				43.552 4 43.511 4			<u>43.726</u> <u>43.336</u> <u>1</u>
CUT / FILL DEPTH	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.457	1.432	1.158 0.445	0.397	0.372	0.349	0.301	0.238	0.174	0.039	0.035	0.047	0.059	0.069	0.067	0.059	0.043	0.035	0.026	0.015	0.018	0.023	0.027	0.064	0.081	0.098	0.133	0.150	0.165	0.180	0.181	0.180	0.177	0.174	0.168	0.165	0.223	0.235	0.251	0.234	0.323	0.361	-0.434	0.170 0.572
CHAINAGE	0.000	2.000	6.000	8.000	10.000	12.000	14.000 16.000	18.000	20.000	22.000 24.000	26.000	28.000 30.000	32.000	34.000	36.000	38.000	40.000	44.000	46.000	48.000 50.000	52.000	54.000	56.000 58.000	60.000	62.000	64.000	66.000 68.000	70.000	72.000	74.000	78.000	80.000	82.000 84.000	86.000	88.000	90.000	92.000	96.000	98.000	100.000	102.000 104.000	106.000	108.000	110.000 112.000	114.000	116.000	118.000	120.000 122.000	124.000	126.000	128.000 129.289

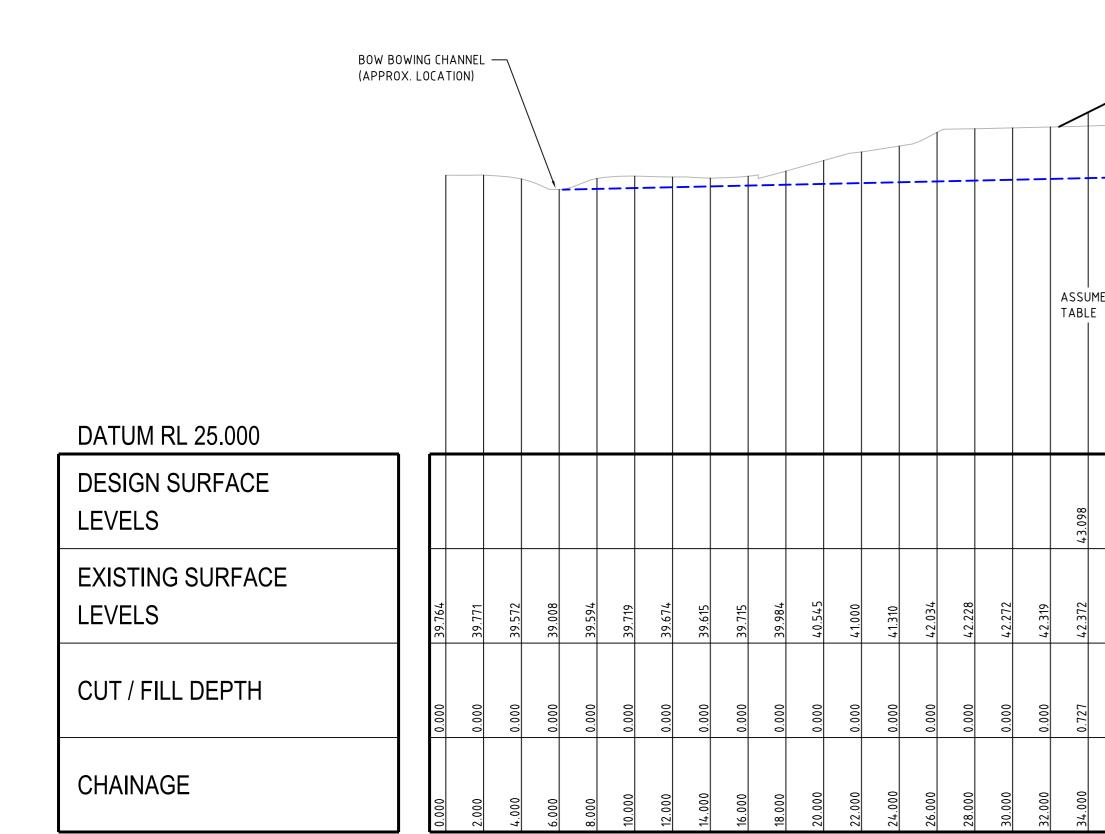
ſ	REV	DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRVD	SCALE							
Γ	Е	MINOR AMENDMENTS	28/09/2018	JCF/LZ/PE	CG/JCF	TH	TH	0 2	4	6	8 10	12	14	16	18
⊇	D	CLIENT REQUESTED AMENDMENTS	12/09/2018	JCF/LZ	JCF			A1 (A3)	1:200 (1:4	00)					ME
: LLI	C	UPDATED AS PER CLIENT REQUEST	06/06/2018	RK/JCF	JCF	TH	TH								
USEF	В	CLIENT REQUESTED AMENDMENTS	09/03/2018	KW	CG/JCF	TH									
ļ	А	BALANCE SITE EARTHWORKS	07/11/2017	CG	CG	TH									
RINTED:															
۵ ل															
/	41 / A3 L	ANDSCAPE (A1LC_v02.0.01)													

SECTION 2

5

6

SCALE: HORIZONTAL – 1:200 VERTICAL – 1:200


			GRID	DATUM	PROJECT MANAGER	CLIENT	
2 14	16	18 20 METRES	MGA	MAHD	ТН	CONCRETE RECYCLERS (GROUP) PTY LTD	
			DISCLAIMER 8	COPYRIGHT		PROJECT NAME/PLANSET TITLE	mai
			This plan must not l principal certifying a		on unless signed as approved by	MINTO CONCRETE RECYCLERS	& Asso
			All measurements i	n millimetres unless ot	herwise specified.	SITE EARTHWORKS	
				not be reproduced in w & Associates Pty Ltd.	hole or part without prior written		
				lartens & Associat		7 MONTORE ROAD, MINTO NSW 2566 LOT 52 DP 618900	Suite 201, 20 George St, Horn Email: mai

201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 99 Email: mail@martens.com.au Internet: www.martens.com

DE	VELOP	MEN	T AP	PLICAT	ION F
ng Engineers nent nical	DRAWING TITLE	EARTH	WORKS SECT SHEET 01	IONS	
Incar	PROJECT NO.	PLANSET NO.	RELEASE NO.	DRAWING NO.	REVISION
5 9999 Fax: (02) 9476 8767 .com.au	P1203464	PS02	R12	PS02-C700	E
	DRAWING ID: P1203464-PS02-R12-C7		20 30 4	Jo 50 60 70	

D

DATUM RL 28.000																		
DESIGN SURFACE LEVELS		42.912	42.87	42.907	42.971	43.035	43.099	43.162	43.226	44.091	44.071	44.052	44.032	44.01	43.989	43.965	43.953	43.95 43.949
EXISTING SURFACE LEVELS	42.706	42.741	42.799	42.794	42.810	42.819	42.835	42.890	42.959	43.049	43.176	43.292	43.370	43.448	43.525	43.588	43.612	43.634 43.639
CUT / FILL DEPTH	0.000	0.171	0.071	0.113	0.161	0.216	0.264	0.272	0.267	1.041	0.894	0.757	0.657	0.556	0.454	0.365	0.315	0.265 0.248
CHAINAGE	0.000	2.000	4.000	6.000	8.000	10.000	12.000	14.000	16.000	18.000	20.000	22.000	24.000	26.000	28.000	30.000	32.000	34.000 34.804

SECTION 4

SCALE: HORIZONTAL - 1:200 VERTICAL - 1:200

											DE	EVELOF	PMEN	IT AP	PLICA	TIC
DESCRIPTION MINOR AMENDMENTS CLIENT REQUESTED AMENDMENTS	DATE 28/09/2018 12/09/2018				APPRVD TH	SCALE 0 2 4 6 8 10 12 14 16 18 20 A1 (A3) 1:200 (1:400) METRES	GRID DATUM	PROJECT MANAGE	CONCRETE RECYCLERS (GROUP) PTY LT		Consulting Engineers	DRAWING TITLE		HWORKS SEC		
UPDATED AS PER CLIENT REQUEST CLIENT REQUESTED AMENDMENTS	06/06/2018 09/03/2018	RK/JCF KW	JCF CG/JCF	TH TH	TH		DISCLAIMER & COPYRIGHT This plan must not be used for constru principal certifying authority.		PROJECT NAME/PLANSET TITLE MINTO CONCRETE RECYCLERS	& Associates Pty L				SHEET 02		
BALANCE SITE EARTHWORKS	07/11/2017	CG		TH		_	All measurements in millimetres unles This drawing must not be reproduced consent of Martens & Associates Pty I	in whole or part without prior writh	SITE FARTHWORKS		Civil	PROJECT NO.	PLANSET NO			RI
IDSCAPE (A1LC_v02.0.01)							(C) Copyright Martens & Assoc		LOT 52 DP 618900	Suite 201, 20 George St, Hornsby, NSW 2077 Austra Email: mail@martens.com.au Int		P1203464 DRAWING ID: P1203464-PS02-R1	PS02	R12	PS02-C701	

40.000 0.2 42.000 -0. 44.000 -0. 46.000 -0.			44.005	TE		
	0.208	43.797	רס ביו	ER/		
	-0.102	44.039	43.937			
	-0.144	44.047	43.903		~	
48.000 -0.	-0.188	44.057	43.869			
50.000 -0.	-0.226	44.061	43.835			
52.000 -0.	-0.258	44.059	43.801			
54.000 -0.	-0.301	44.067	43.767			
56.000 -0.	-0.346	44.079	43.733			
58.000 -0.	-0.372	44.090	43.718			
60.000 -0.	-0.392	44.101	43.709			
62.000 -0.	-0.402	44.113	43.711			
64.000 -0.	-0.392	44.107	43.714			
	-0.378	44.096	43.718			
68.000 -0.	-0.363	44.084	43.721			
	-0.339	44.064	43.724			
72.000 -0.	- 0.310	44.038	43.727			
74.000 -0.	-0.282	44.012	43.731			
76.000 -0.	-0.253	43.987	43.734			
	-0.224	43.961	43.737			
80.000 -0.	- 0. 186	43.926	43.74			
	- 0.171	43.909	43.738			
	-0.167	43.903	43.736			
	-0.154	43.888	43.734			
	-0.141	43.873	43.732			
90.000 -0.	-0.128	43.858	43.73			
92.000 -0.	-0.115	43.843	43.728			
94.000 -0.	-0.107	43.833	43.726			
96.000 -0. 04.531 0	-0.111	43.834 4.3.835	43.723 43.723			

DATUM RL 28.000

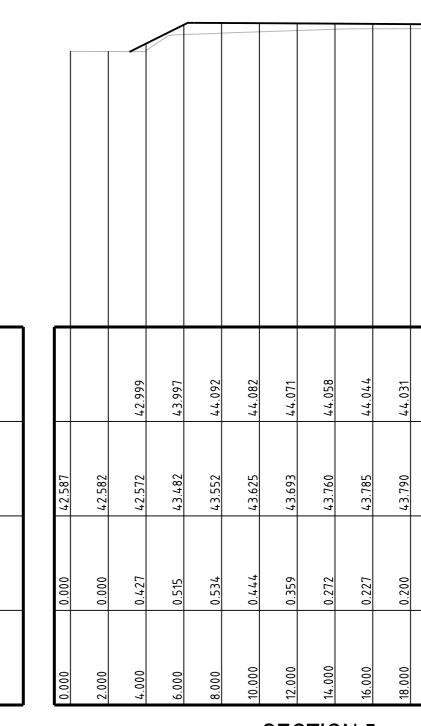
DESIGN SURFACE

EXISTING SURFACE

CUT / FILL DEPTH

LEVELS

LEVELS

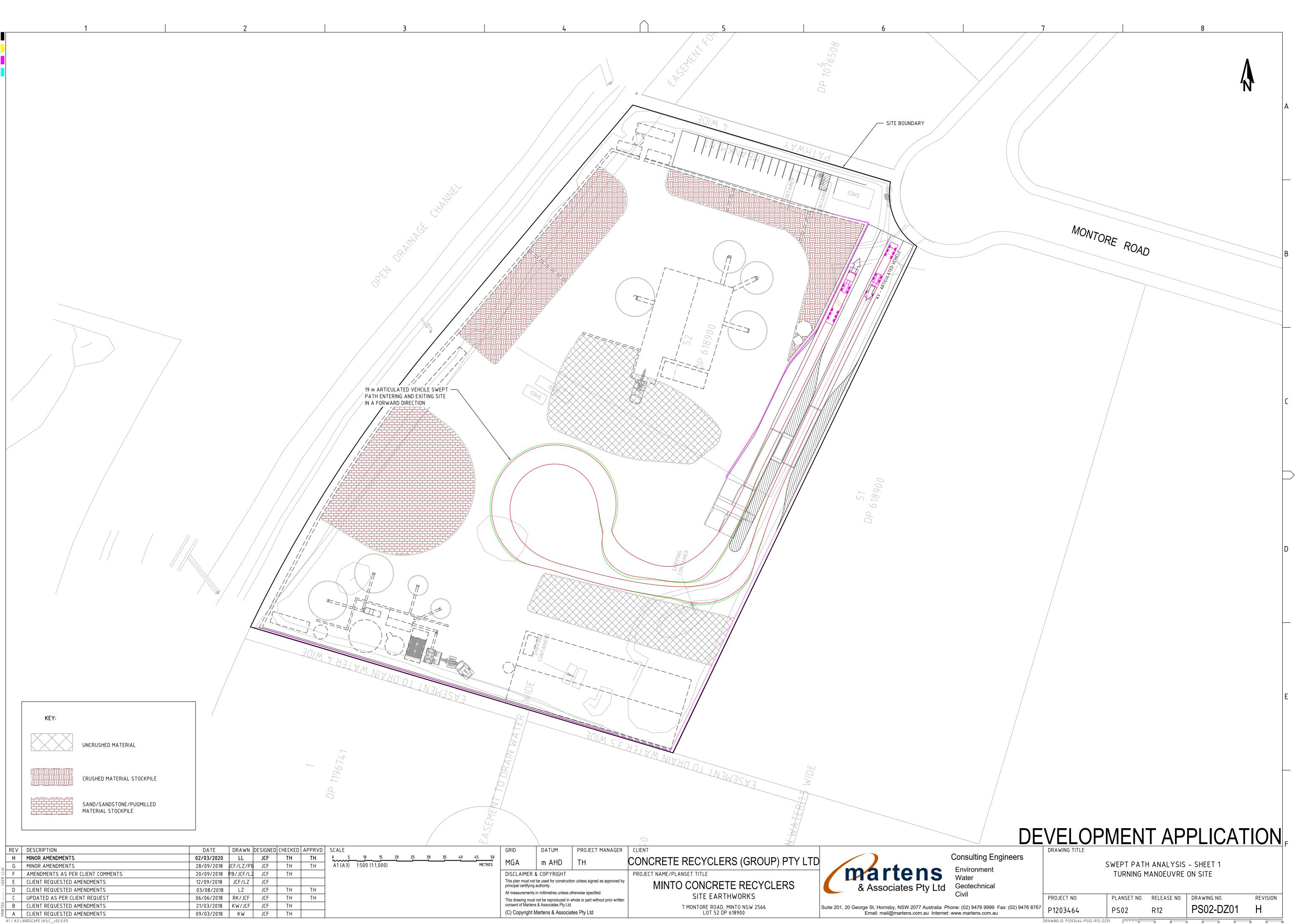

CHAINAGE

5

SECTION 3 - CONCEPTUAL GROUNDWATER MODEL

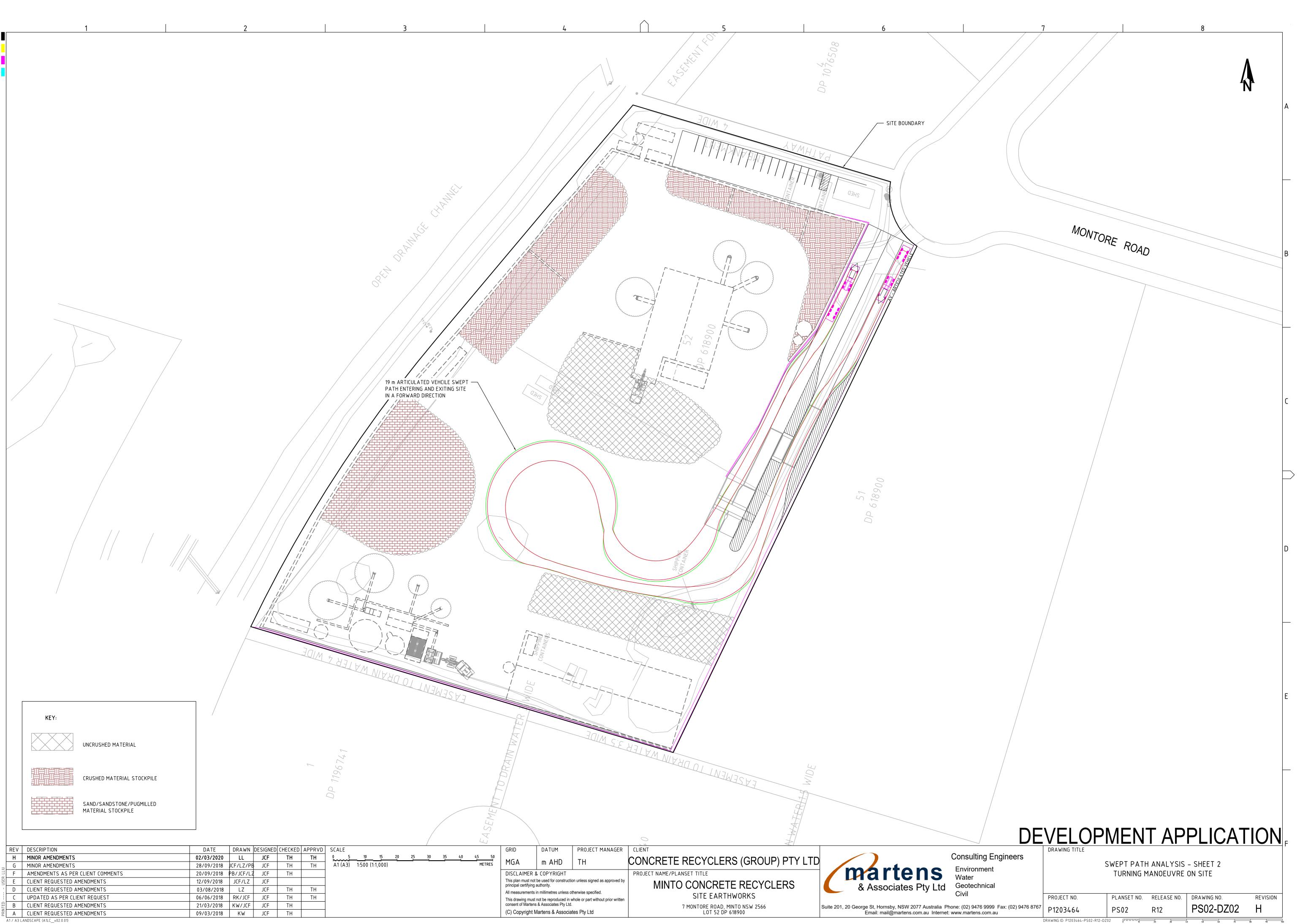
SCALE: HORIZONTAL - 1:200 VERTICAL - 1:200

4

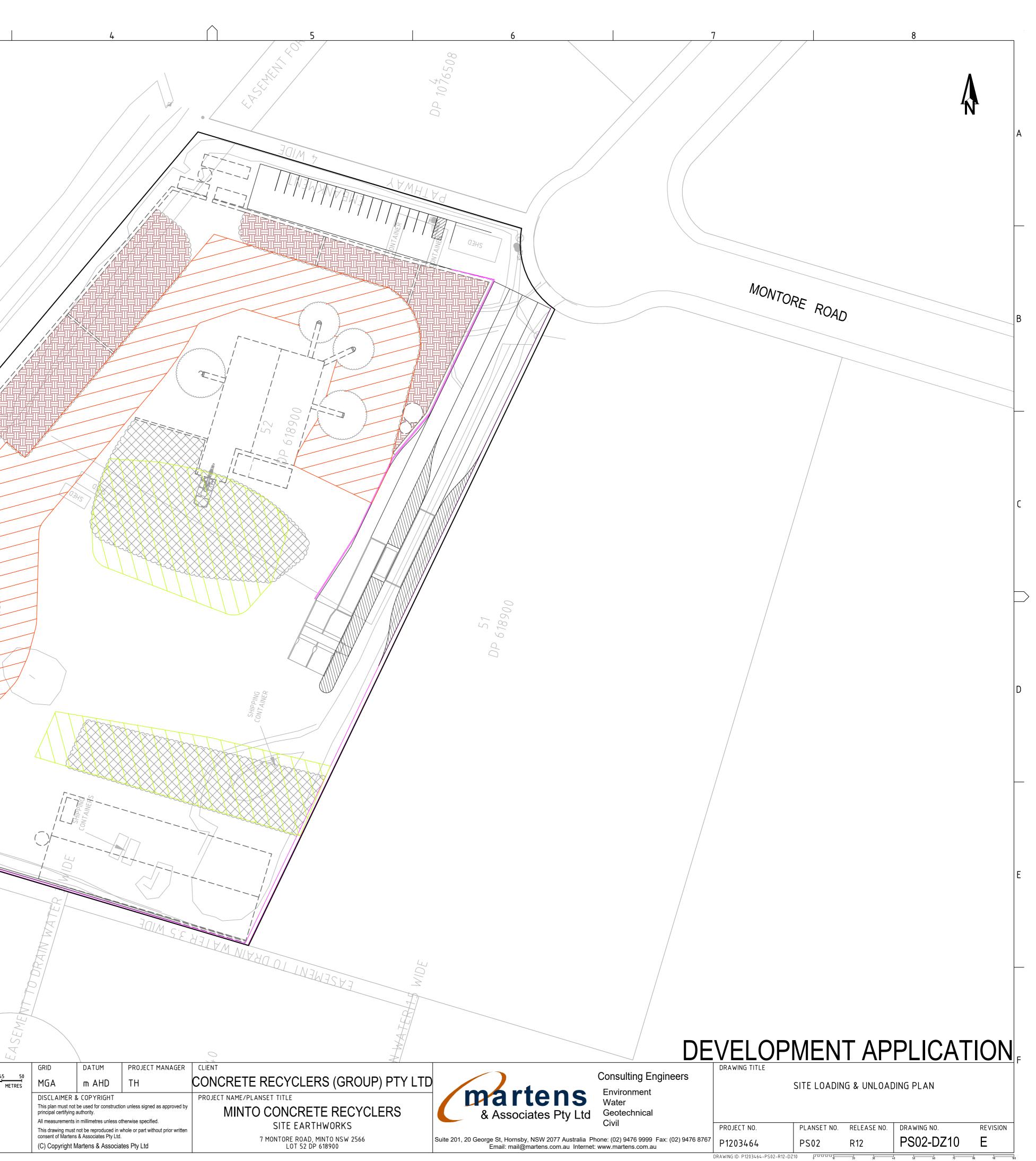


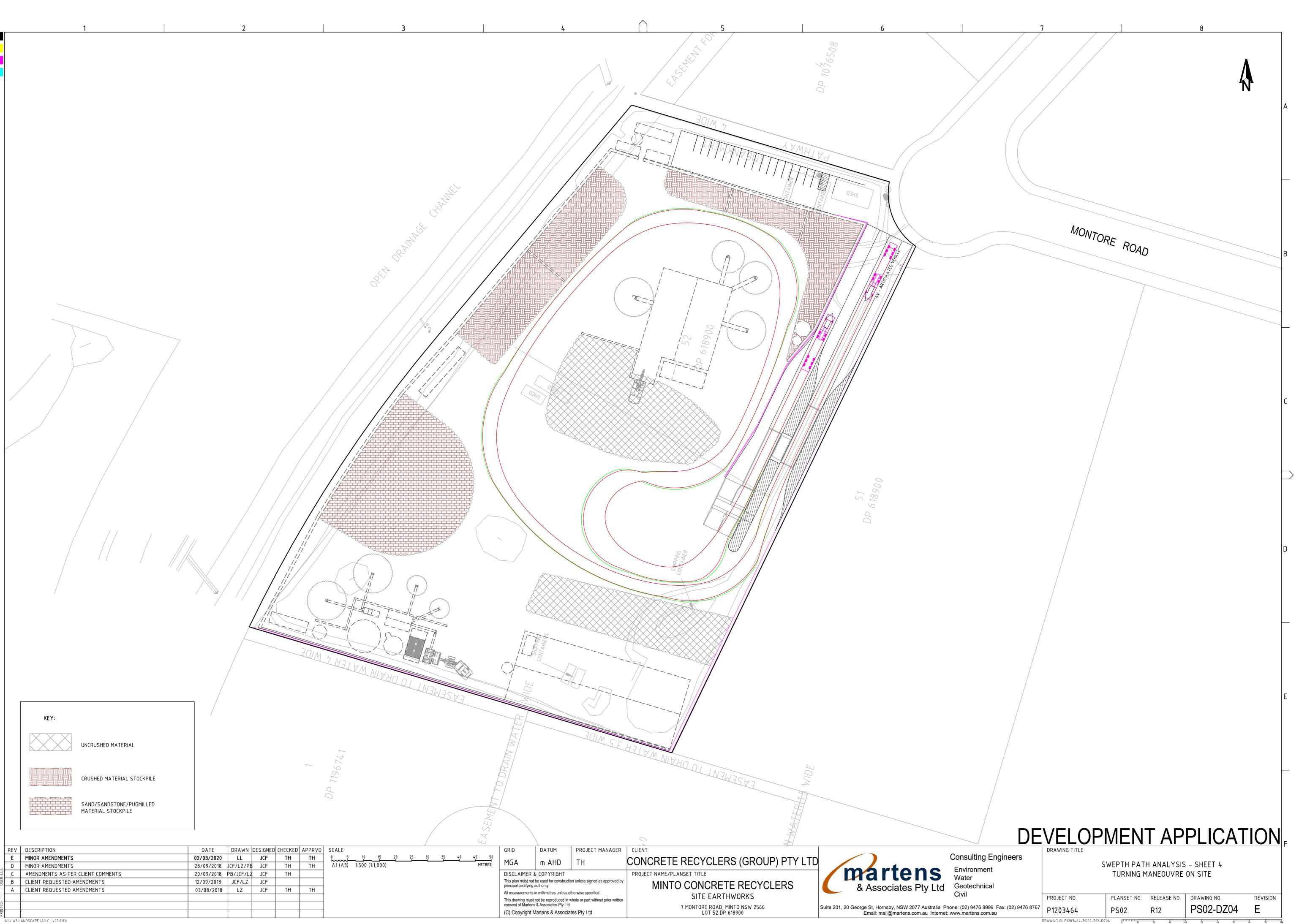

SECTION 5

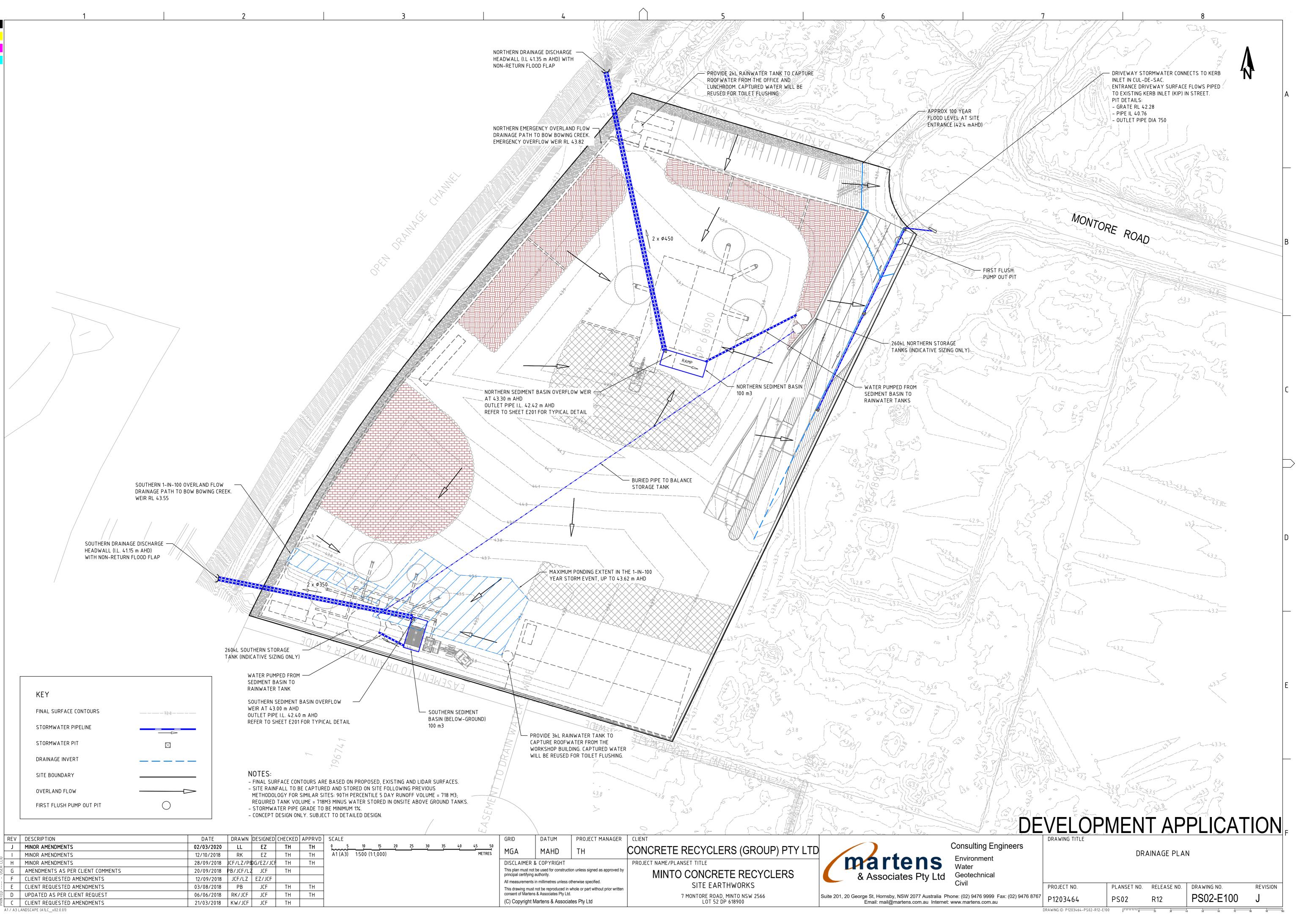
SCALE: HORIZONTAL - 1:200 VERTICAL - 1:200


18.000	0.200	43.790	44.031	
20.000	0.173	43.795	44.018	
22.000	0.153	43.791	700,44	
24.000	0.137	43.784	43.991	
26.000	0.122	43.776	43.978	
27.857	0.113	43.767	43.965	

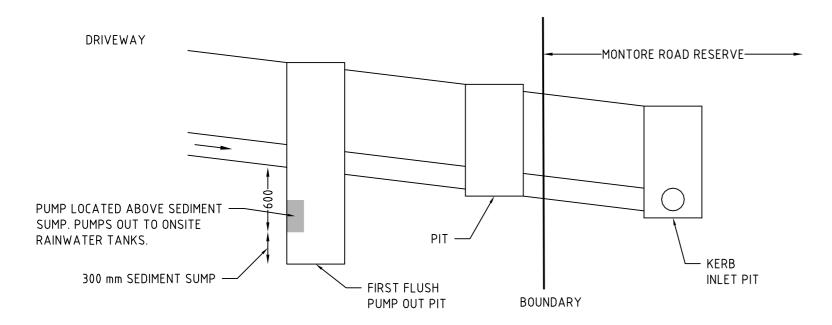
7



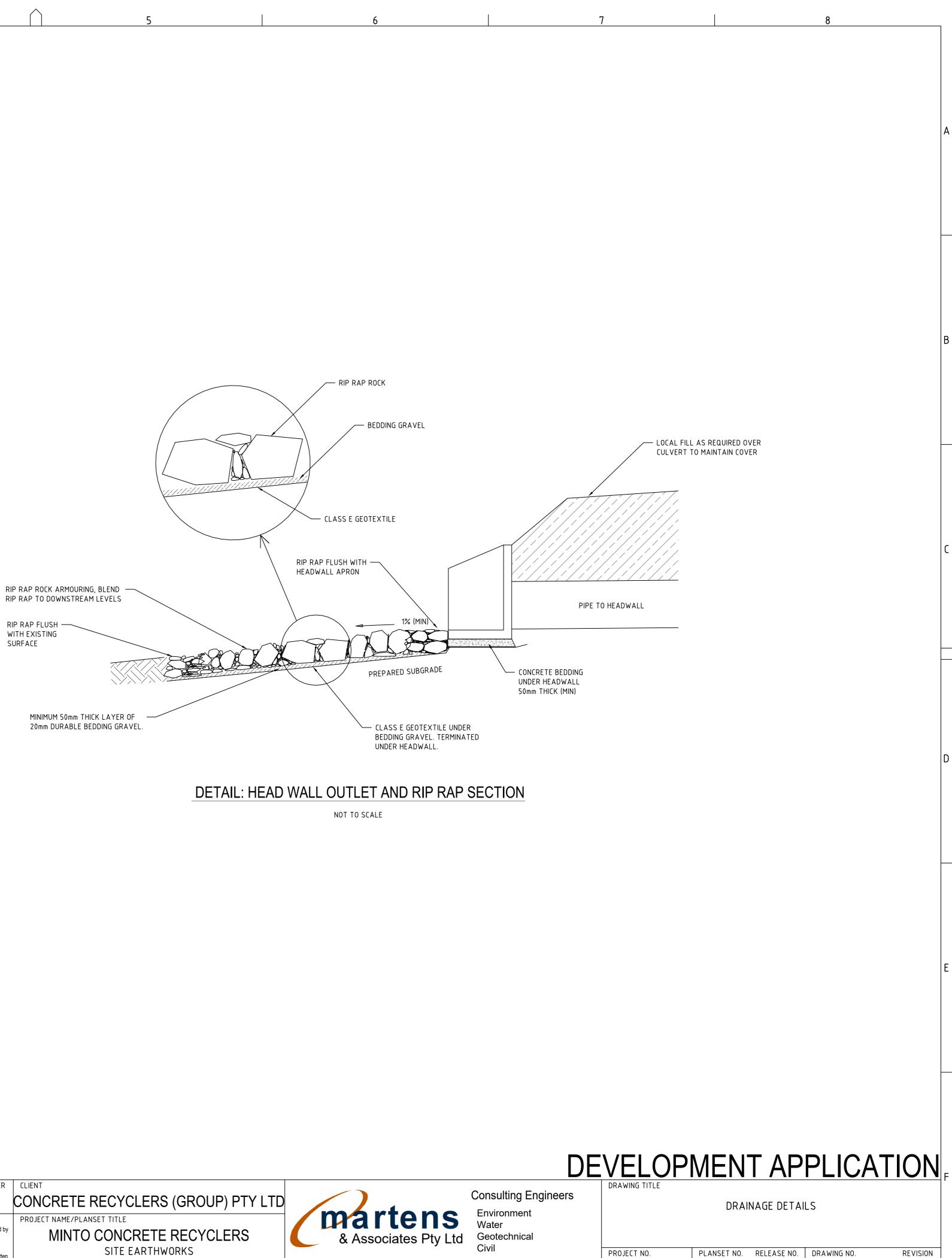

REV	DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRVD	SCALE							
E	MINOR AMENDMENTS	02/03/2020	LL	JCF	TH	TH	0 2.5	5 5.0	7.5 10	.0 12.5	15.0	17.5	20.0	22.5
_ D	MINOR AMENDMENTS	28/09/2018	JCF/LZ/PE	B JCF	TH	TH	A1 (A3)	1:250 (1:5	00)					ME
	CLIENT REQUESTED AMENDMENTS	03/08/2018	LZ	JCF	TH	TH								
B B	CLIENT REQUESTED AMENDMENTS	21/03/2018	KW/JCF	JCF	TH									
¦ A	CLIENT REQUESTED AMENDMENTS	09/03/2018	KW	JCF	TH									
PRIN														
A1 / A3	LANDSCAPE (A1LC v02.0.01)													


	1		2			3	
							CHER.
						N	CHAMME'
						S.F.	
						Strin	
					/		
/							~
				/			
/							
			/				
)
			4				
	KEY:						
					TER 2 MIG	AW MAYO C	
	LOADING AREA						EASEMEN
	UNLOADING AREA						
					1 96747		
					DP 11		
	SAND/SANDSTONE/PI MATERIAL STOCKPILE	JGMILLED					
	EV DESCRIPTION	DA		ESIGNED CHECKED	APPRVD SCALE		
	EV DESCRIPTION E MINOR AMENDMENTS D MINOR AMENDMENTS C AMENDMENTS AS PER CLIENT COMMENTS	DA 02/03/ 28/09/ 20/09/	/2020 LL /2018 JCF/LZ/PB	JCF TH JCF TH JCF TH	APPRVD SLALE TH 1 TH A1 (A3)	<u>10 15 20 25</u> 1:500 (1:1,000)	30 35 40 45 ME
USER	C AMENDMENTS AS PER CLIENT COMMENTS B CLIENT REQUESTED AMENDMENTS A CLIENT REQUESTED AMENDMENTS	20709/ 12/09/ 03/08	/2018 JCF/LZ	JCF TH JCF TH	TH		
INTED:							

A1 / A3 LANDSCAPE (A1LC_v02.0.01)



												/			
	REV	DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRVD	SCALE							
	J	MINOR AMENDMENTS	02/03/2020	LL	EZ	TH	TH	0 5	10 15	20	25	30	35	40	45
n	Ι	MINOR AMENDMENTS	12/10/2018	RK	EZ	TH	TH	A1 (A3)	1:500 (1:1,000)					ME
k: LLI	Η	MINOR AMENDMENTS	28/09/2018	JCF/LZ/PE	₿G/EZ/JCF	TH	TH								
USEF	G	AMENDMENTS AS PER CLIENT COMMENTS	20/09/2018	PB/JCF/LZ	JCF	TH									
1	F	CLIENT REQUESTED AMENDMENTS	12/09/2018	JCF/LZ	EZ/JCF										
	Е	CLIENT REQUESTED AMENDMENTS	03/08/2018	PB	JCF	TH	TH								
ITED:	D	UPDATED AS PER CLIENT REQUEST	06/06/2018	RK/JCF	JCF	TH	TH								
PRIN	C	CLIENT REQUESTED AMENDMENTS	21/03/2018	KW/JCF	JCF	TH									
	A1 / A3 I														

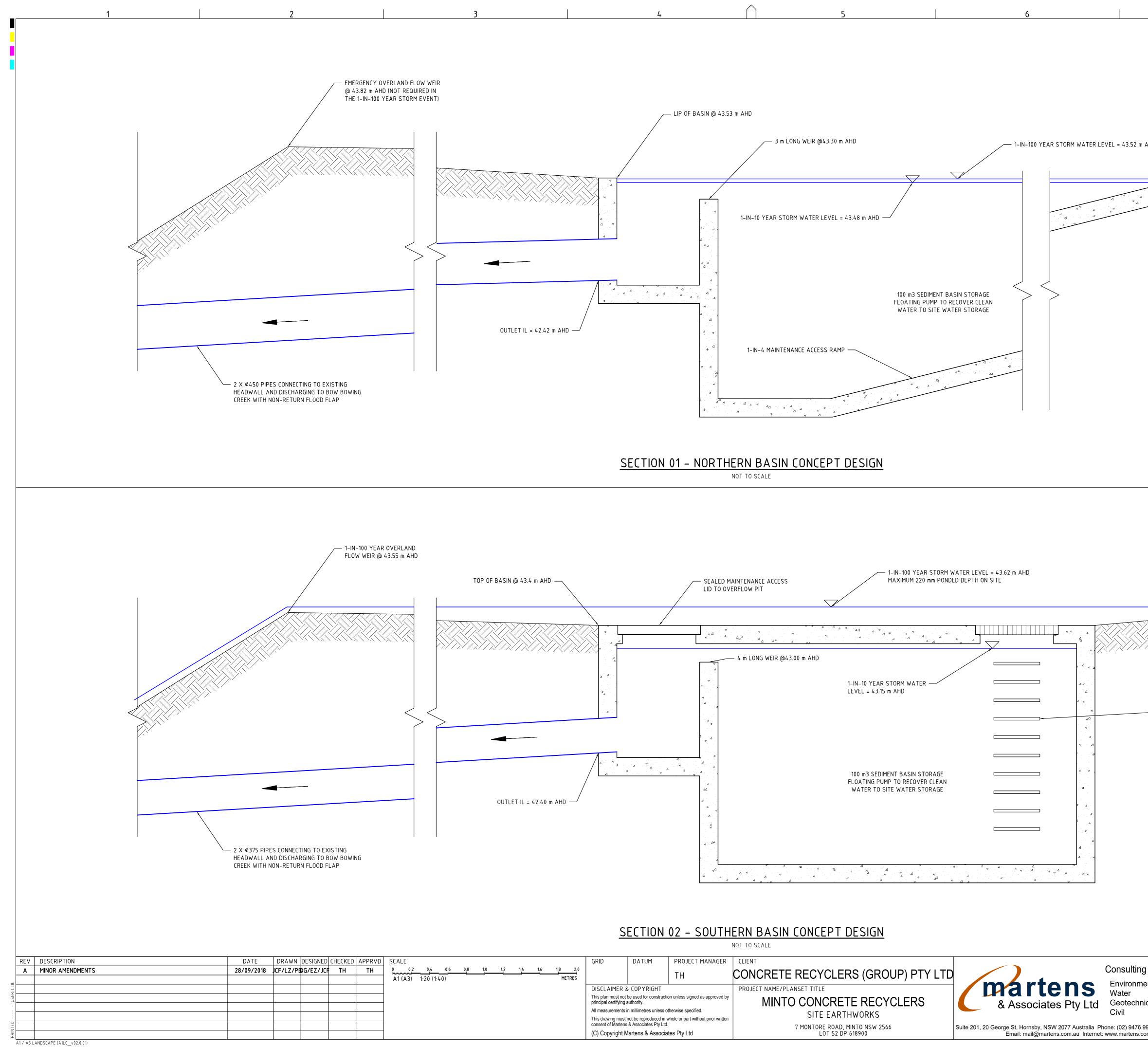

DETAIL: DRIVEWAY FIRST FLUSH PUMP

NOTES:

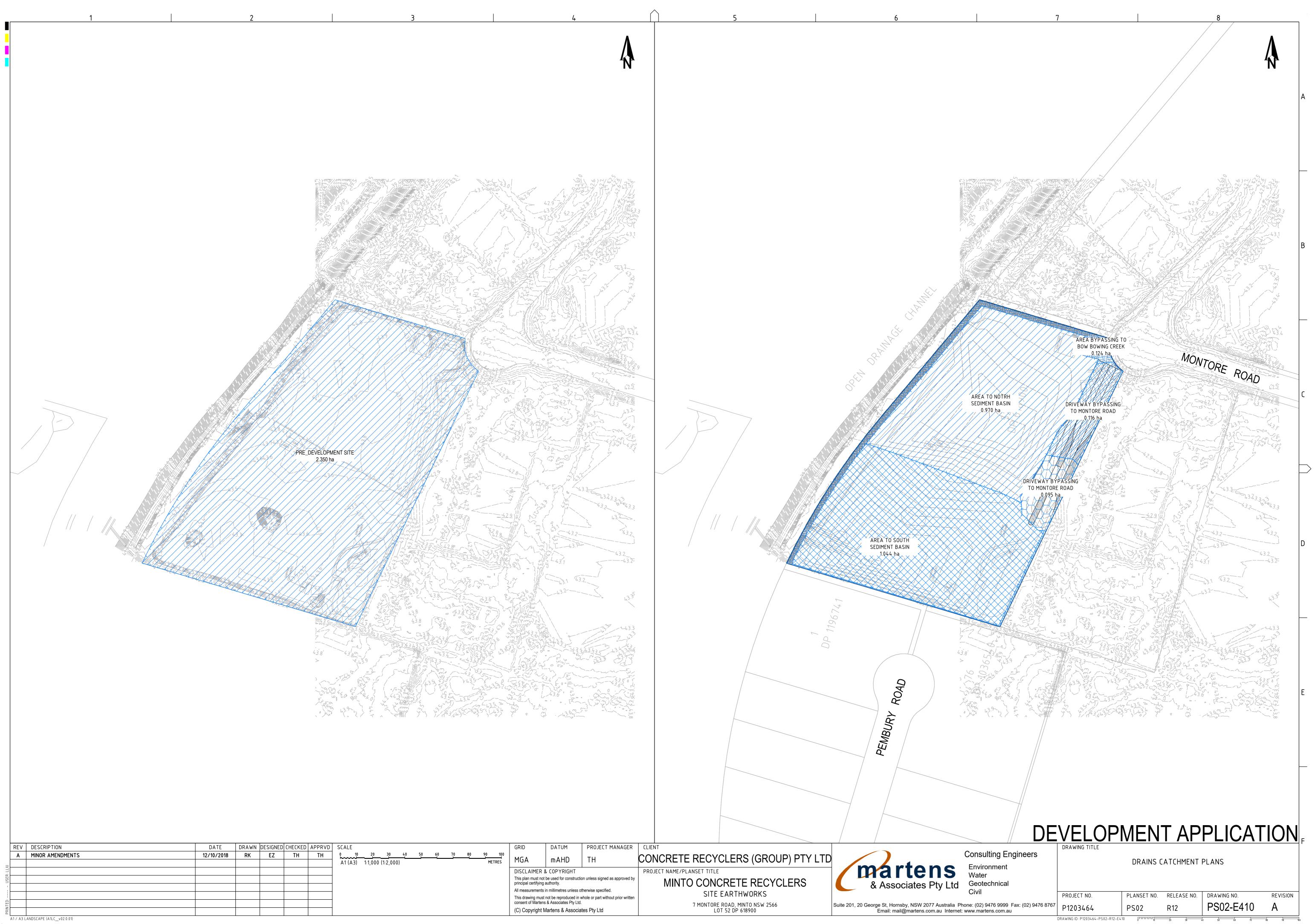
- CONCEPT DESIGN ONLY. SUBJECT TO DETAILED DESIGN.

REV	DESCRIPTION	DATE	DRAWN DESIGNED CHECKED	APPRVD SCALE	GRID	DATUM	PROJECT MANAGER	CLIENT			DRAWING TITLE
D	MINOR AMENDMENTS	28/09/2018	JCF/LZ/PB EZ/JCF TH	ТН				CONCRETE RECYCLERS (GROUP) PTY LTD		Consulting Engineers	
_ C	AMENDMENTS AS PER CLIENT COMMENTS	20/09/2018	PB/JCF/LZ JCF TH					CONCILIE RECICEERS (GROOF) FITEID		Environment	
B	CLIENT REQUESTED AMENDMENTS	12/09/2018	JCF/LZ EZ/JCF		DISCLAIM	ER & COPYRIGHT	•	PROJECT NAME/PLANSET TITLE	martens	Water	
A NSEP	CLIENT REQUESTED AMENDMENTS	03/08/2018	LZ JCF TH	TH		st not be used for construct fying authority.	ction unless signed as approved by	MINTO CONCRETE RECYCLERS	& Associates Pty Ltd		
						ents in millimetres unless	otherwise specified.		& Associates Pty Ltd	Civil	
							n whole or part without prior writter	SITE EARTHWORKS		Sivii	PROJECT NO.
						artens & Associates Pty Lto		7 MONTORE ROAD, MINTO NSW 2566	Suite 201, 20 George St, Hornsby, NSW 2077 Australia F Email: mail@martens.com.au_Interne	Phone: (02) 9476 9999 Fax: (02) 9476 87	767 D1203/6/
PRII					(С) Соругіє	ght Martens & Associa	iates Pty Ltd	LOT 52 DP 618900	Email: mail@martens.com.au Interne	t: www.martens.com.au	F 1203404
A1 / A3 l	LANDSCAPE (A1LC_v02.0.01)										DRAWING ID: P1203464-PS02

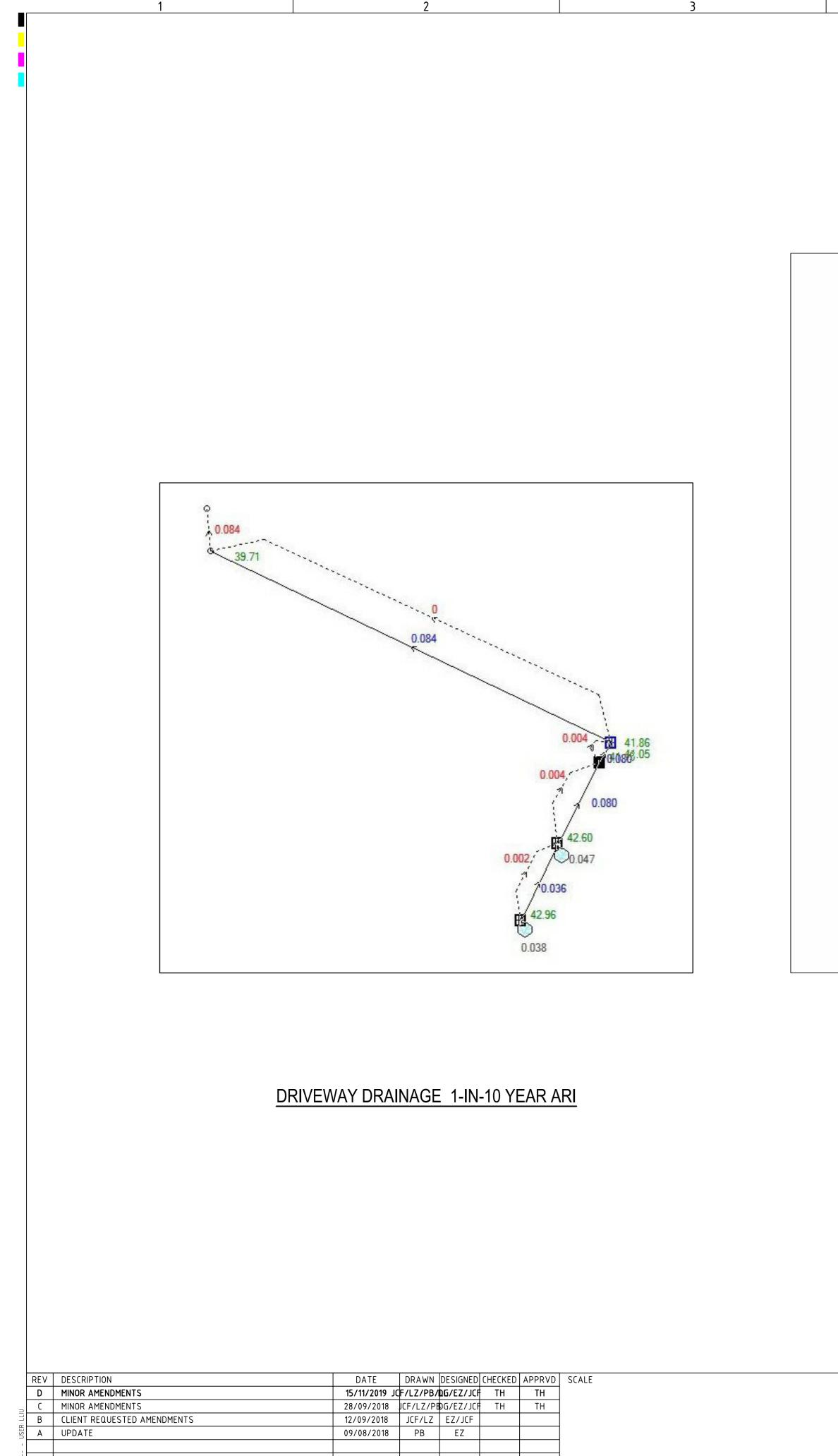
4

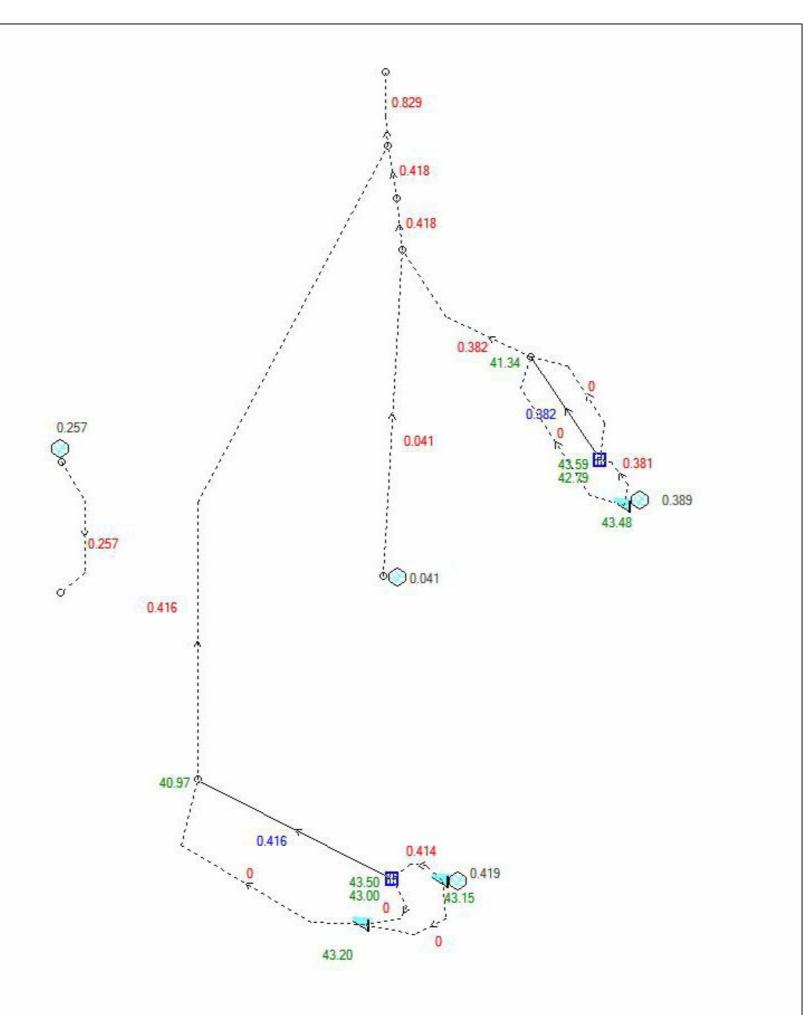

PS02-E200

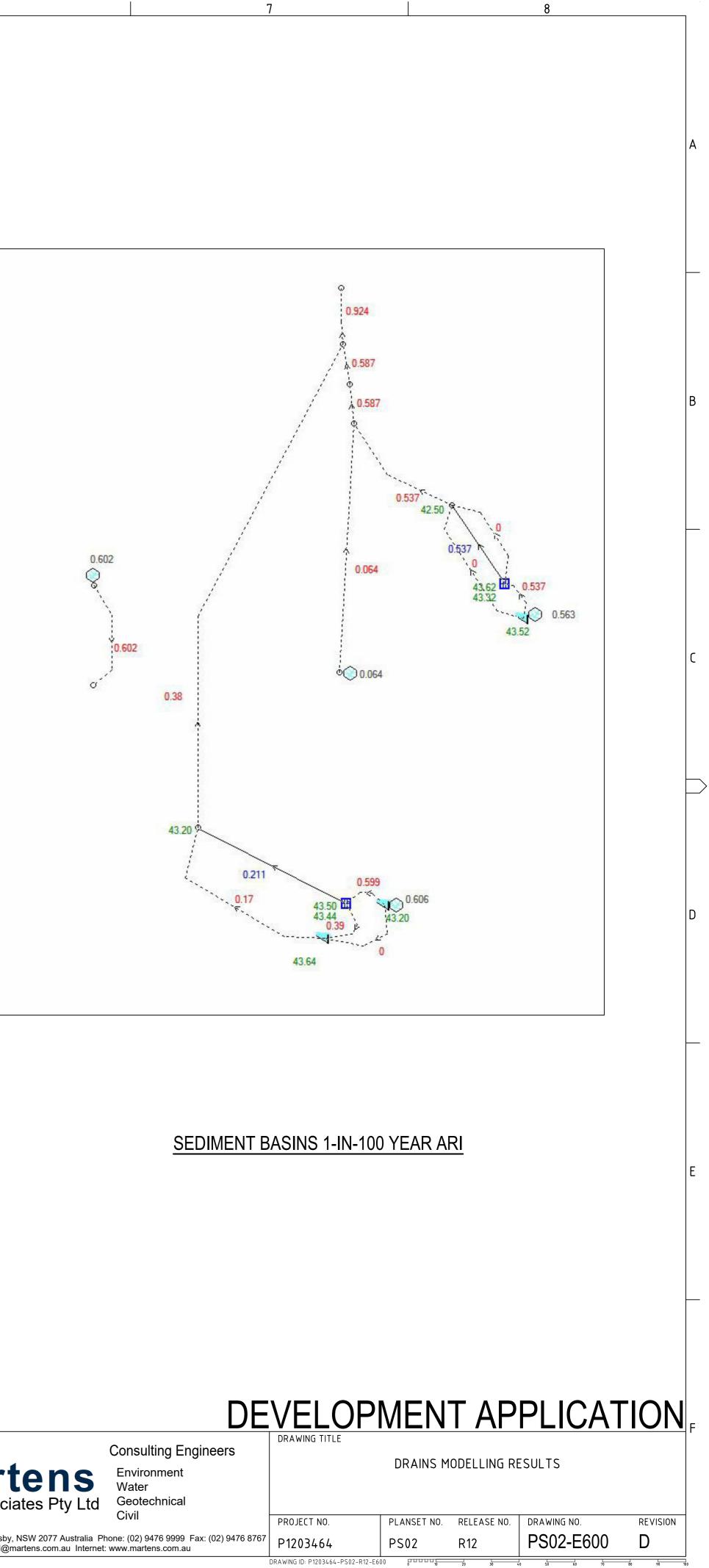
PS02


R12

DRAWING ID: P1203464-PS02-R12-E200


D


							8	
		- 3 III LONG		1-IN-100 YEAR ST	ORM WATER LEVEL = 43.52 m AHD			
		1-IN-10 YEAR STORM	WATER LEVEL = 43.48 m AHD					
	4	Δ Δ 4 σ						
							Ι	
			FLOATING PUMP	P TO RECOVER CLEAN				
<section-header></section-header>		1-IN-4 MAINTENAN(EE ACCESS RAMP					
<section-header></section-header>				51				
	SECTION		<u>oncer i design</u>					
		SEALED MAINTENANCE ACCESS LID TO OVERFLOW PIT	1-IN-100 YEAR ST MAXIMUM 220 mm	ORM WATER LEVEL = 43.62 m AHD PONDED DEPTH ON SITE				
			m AHD 1-IN-10 YEAR STORM WATER					
INITIAL SECTION 02 - SOUTHERN BASIN CONCEPT DESIGN NOT TO STATE SECTION 02 - SOUTHERN BASIN CONCEPT DESIGN NOT TO STATE DATUM PROJECT MARAGE CLENT CONCRETE RECYCLERS (GROUP) PTY LTD DESCLAMER & CONVIGIT CONSULTING BUG PURCHASET TITLE MILTO STATE CONSULTING BUG PURCHASET TITLE MILTO STATE A CONVIGIT MILTO SCRETE RECYCLERS (GROUP) PTY LTD DESCLAMER & CONVIGIT CONSULTING BUG PURCHASET TITLE MILTO CONCRETE RECYCLERS (GROUP) PTY LTD Consulting Engineers Divident and suggest as suggests MILTO CONCRETE RECYCLERS (GROUP) PTY LTD DESCLAMER & CONVIGIT MILTO CONCRETE RECYCLERS (GROUP) PTY LTD Divident and suggest as suggests MILTO CONCRETE RECYCLERS (GROUP) PTY LTD Divident and suggest as suggests MILTO CONCRETE RECYCLERS (GROUP) PTY LTD Divident and suggest as suggests MILTO CONCRETE RECYCLERS (GROUP) PTY LTD Divident and suggest as suggests MILTO CONCRETE RECYCLERS (GROUP) PTY LTD Divident and suggest as suggests MILTO STATE AND PURCHASET TITLE MILTO STATE AND PURCHASET TITLE MILTO STATE AND PURCHASET TITLE MILTO STATE AND PURCHASET AND PU			m AHD 1-IN-10 YEAR STORM WATER			ADDER ACCESS FOR MAINTENANCE		
WATER TO SITE WATER STORAGE WATER TO SITE WATER STORAGE WATER TO SITE WATER STORAGE SECTION 02 - SOUTHERN BASIN CONCEPT DESIGN DEVELOPMENT APPLICATION NOT TO SCALE CONCRETE RECYCLERS (GROUP) PTY LTD DISCLAMER & LEPY RIGHT TH DISCLAMER & CONCRETE RECYCLERS (GROUP) PTY LTD DISCLAMER & CONCRETE RECYCLERS (GROUP) PTY LTD DISCLAMER & CONCRETE RECYCLERS (GROUP) PTY LTD DISCLAMER & CONCRETE RECYCLERS (SOUP) PTY LTD DISCLAMER & CONCRETE RECYCLERS (SIGNUP) PTY LTD			m AHD 1-IN-10 YEAR STORM WATER			ADDER ACCESS FOR MAINTENANCE		
SECTION 02 - SOUTHERN BASIN CONCEPT DESIGN NOT TO SCALE SITE CONCRETE RECYCLERS (GROUP) PTY LTD DISCLAMER 2 COPYRIGH MINTO CONCRETE RECYCLERS SITE EARTHWORKS SITE			m AHD 1-IN-10 YEAR STORM WATER — LEVEL = 43.15 m AHD 100 m3 SEDIMENT BASIN STORA	.GE		ADDER ACCESS FOR MAINTENANCE		
SECTION 02 - SOUTHERN BASIN CONCEPT DESIGN DEVELOPMENT APPLICATION NOT TO SCALE SRD DIVIDUAL SRD DIVIDUAL SRD CONCRETE RECYCLERS (GROUP) PTY LTD DIVIDUAL SET TITLE CONSULTING Engineers DISCLAMER & COPYRIGHT THOM TO CONCRETE RECYCLERS (GROUP) PTY LTD Consulting Engineers DISCLAMER & COPYRIGHT MINTO CONCRETE RECYCLERS Concrete RECYCLERS NITE EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART HWORKS Subter EART			m AHD 1-IN-10 YEAR STORM WATER — LEVEL = 43.15 m AHD 100 m3 SEDIMENT BASIN STORA FLOATING PUMP TO RECOVER CLI	AGE		ADDER ACCESS FOR MAINTENANCE		
SECTION 02 - SOUTHERN BASIN CONCEPT DESIGN DEVELOPMENT APPLICATION OPPOSIT OF SCALE CONCRETE RECYCLERS (GROUP) PTY LTD DISCLAIMER & COPYRIGHT DISCLAIMER & COPYRIGHT PROJECT NAME/PLANSET TITLE DISCLAIMER & COPYRIGHT PROJECT NAME/PLANSET TITLE MINTO CONCRETE RECYCLERS INTO CONCRETE RECYCLERS SITE EARTHWORKS Consulting Engineers & Associates Pty Ltd Consulting Engineers Environment Water Geotechnical Civil PROJECT NO. PLANSET NO. RELEASE NO. DRAWING NO. REVISION The drawing must note regoodied in writes orderwise specified. The drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in writes or performed writes drawing south of the regoodied in write or performed writes drawing south of the regoodied in write or performance writes drawing south of the regoodied in write or performance			m AHD 1-IN-10 YEAR STORM WATER — LEVEL = 43.15 m AHD 100 m3 SEDIMENT BASIN STORA FLOATING PUMP TO RECOVER CLI	AGE		ADDER ACCESS FOR MAINTENANCE		
Datum PROJECT MANAGER CLIENT GRID DATUM PROJECT MANAGER CLIENT DISCLAIMER & COPYRIGHT TH CONCRETE RECYCLERS (GROUP) PTY LTD Disclaiment on bused for construction unless signed as approved by principal certifying authority. PROJECT NAME/PLANSET TITLE Mintro CONCRETE RECYCLERS SITE EARTHWORKS Site EARTHWORKS Site EARTHWORKS Twis drawing must not bused for construction unless signed as approved by principal certifying authority. This drawing must not bused for construction unless signed as approved by principal certifying authority. Site EARTHWORKS All measurements in millineres unless otherwise specified. This drawing must not bused for construction unless signed as approved by principal certifying authority. Site EARTHWORKS This drawing must not bused for construction unless signed as approved by principal certifying authority. This drawing must not bused for construction unless signed as approved by principal certifying authority. Site EARTHWORKS Environment Water Beotechnical Disclaiment		4 m LONG WEIR @43.00	m AHD 1-IN-10 YEAR STORM WATER — LEVEL = 43.15 m AHD 100 m3 SEDIMENT BASIN STORA FLOATING PUMP TO RECOVER CLM WATER TO SITE WATER STORA	AGE EAN GE		ADDER ACCESS FOR MAINTENANCE		
Datum PROJECT MANAGER CLIENT GRID DATUM PROJECT MANAGER CLIENT DISCLAIMER & COPYRIGHT TH CONCRETE RECYCLERS (GROUP) PTY LTD Disclaimers drows on busing on busing on busing on busing must not be used for construction unless signed as approved by principal certifying authority. PROJECT NAME/PLANSET TITLE NINTO CONCRETE RECYCLERS All measurements in milling must not be used for construction unless signed as approved by principal certifying authority. NINTO CONCRETE RECYCLERS SITE EARTHWORKS All measurements in milling must not be used for construction unless signed as approved by principal certifying authority. SITE EARTHWORKS SITE EARTHWORKS SITE EARTHWORKS This drawing must not be used for construction unless signed as approved by principal certifying authority. Topolicit No. Release NO. DRAWING NO. Release NO. All measurements in milling must not be reproduced in whole or part without prior writem or million writem Topolicit No. Planset NO. Release NO. DRAWING NO. Relvisit Suite 201, 20 George St. Hornsby. NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 9899 Fax: (02) 9476		4 m LONG WEIR @43.00	m AHD 1-IN-10 YEAR STORM WATER — LEVEL = 43.15 m AHD 100 m3 SEDIMENT BASIN STORA FLOATING PUMP TO RECOVER CLM WATER TO SITE WATER STORA	AGE EAN GE		ADDER ACCESS FOR MAINTENANCE		
GRID DATUM PROJECT MANAGER CLIENT TH CONCRETE RECYCLERS (GROUP) PTY LTD DISCLAIMER & COPYRIGHT PRO JECT NAME/PLANSET TITLE This plan must not be used for construction unless signed as approved by principal certifying authority. PRO JECT NAME/PLANSET TITLE All measurements in millimetres unless otherwise specified. SITE EARTHWORKS This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd. PRO JECT NO. PRO JECT NO. PLANSET NO. RELEASE NO. DRAWING NO. This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd. Suite 201. 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999		4 m LONG WEIR @43.00	m AHD 1-IN-10 YEAR STORM WATER — LEVEL = 43.15 m AHD 100 m3 SEDIMENT BASIN STORA FLOATING PUMP TO RECOVER CLI WATER TO SITE WATER STORA	AGE EAN GE		ADDER ACCESS FOR MAINTENANCE		
This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd. 7 MONTORE ROAD, MINTO NSW 2566 Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 9999 Fax: (02) 9476 8767 DADAL (U		4 m LONG WEIR @43.00	m AHD 1-IN-10 YEAR STORM WATER	AGE EAN GE		ADDER ACCESS FOR MAINTENANCE F SEDIMENT TANK		ΤΙΟΙ
This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd. 7 MONTORE ROAD, MINTO NSW 2566 Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 9799 Fax: (02) 9476 970 Fax: (02)	SECTION	4 m LONG WEIR @43.00 4 m LONG WEIR #4	m AHD 1-IN-10 YEAR STORM WATER				PMENT APPLICA	
	GRID DATUM DISCLAIMER & COPYRIGHT This plan must not be used for constructi principal certifying authority.	4 m LONG WEIR (@43.00 4 m LONG WEIR (@43.00	m AHD 1-IN-10 YEAR STORM WATER — LEVEL = 43.15 m AHD 100 m3 SEDIMENT BASIN STORA FLOATING PUMP TO RECOVER CLI WATER TO SITE WATER STORA ONCEPT DESIGN RECYCLERS (GROUP) PTY L SET TITLE CONCRETE RECYCLERS		Consulting Eng Bry Ltd Environment Water Geotechnical		PMENT APPLICA	<u>TIOI</u>

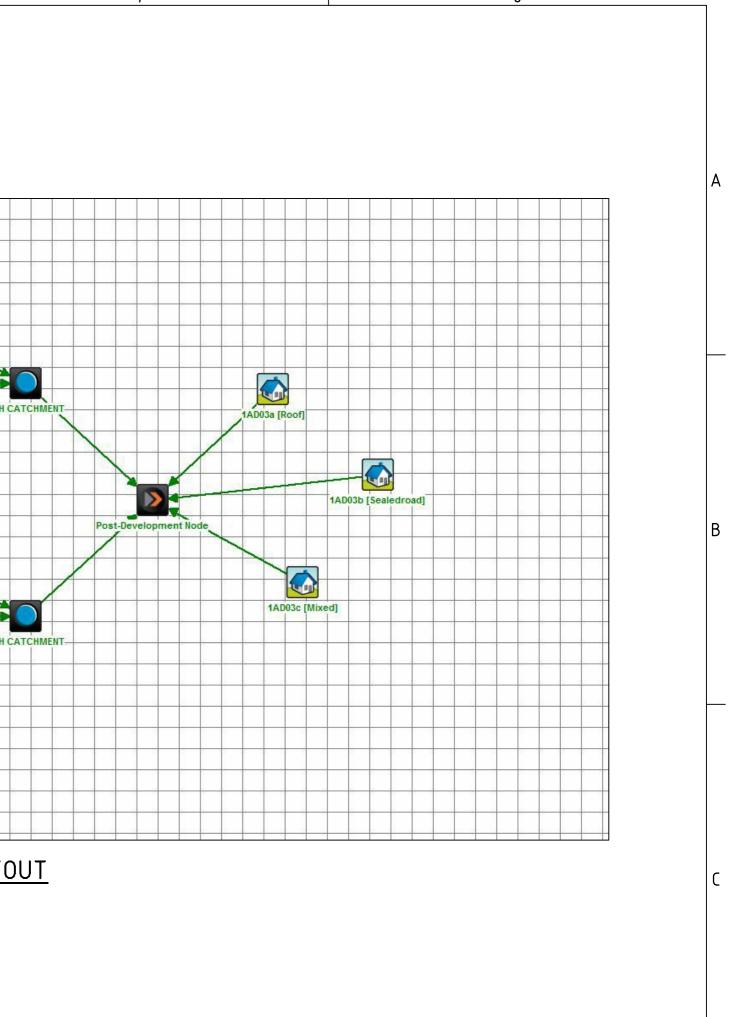


	REV	DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRVD	SCALE							
	Α	MINOR AMENDMENTS	12/10/2018	RK	EZ	TH	TH	0 10	20		50	60	70	80	90
n								A1 (A3)	1:1,000	(1:2,000)					ME
Ц															
USER:															
1															
RINTED:															
PRIN															
	A1 / A3 L	ANDSCAPE (A1LC_v02.0.01)				•	• • •								

A1 / A3 LANDSCAPE (A1LC_v02.0.01)

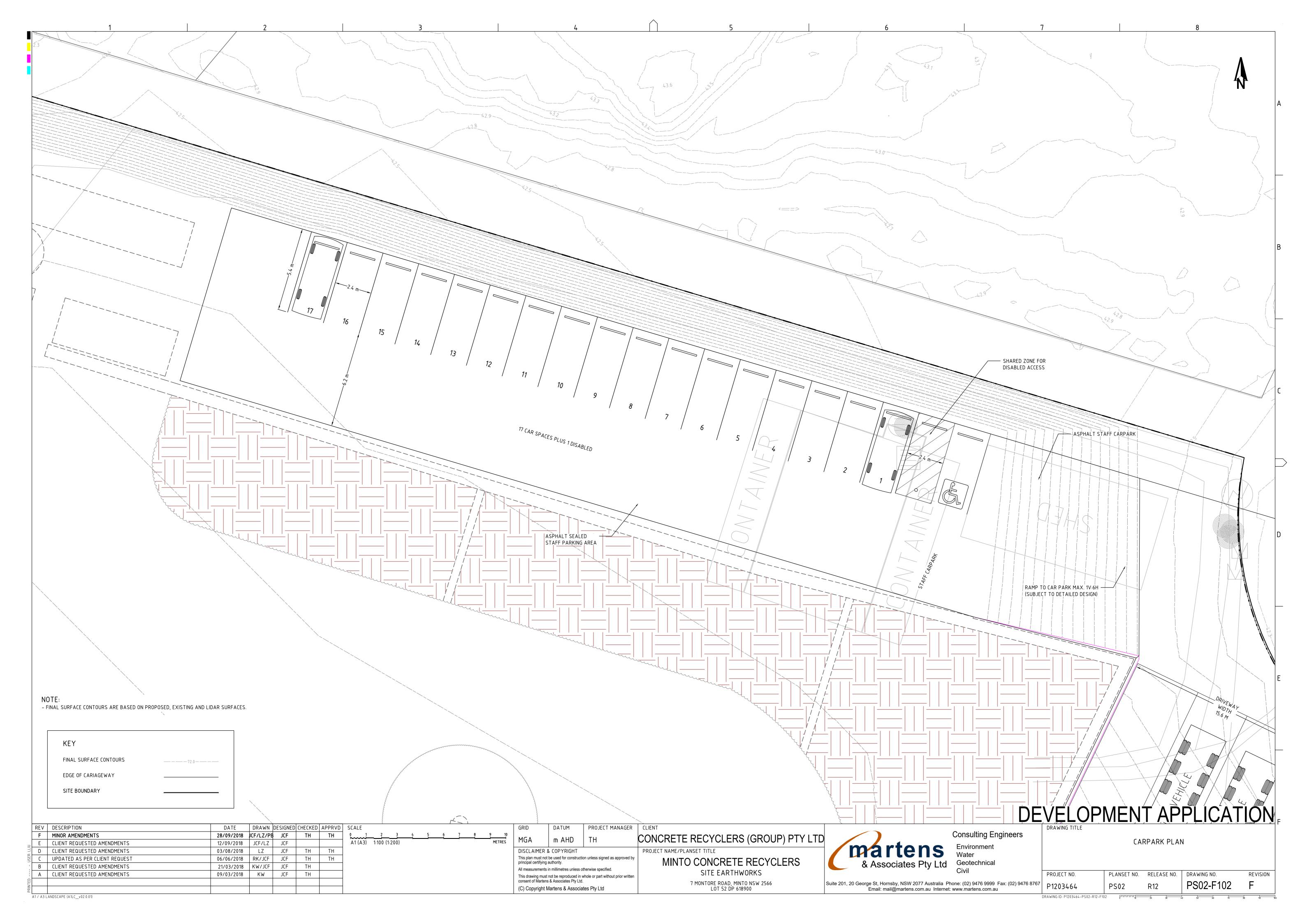
SEDIMENT BASINS 1-IN-10 YEAR ARI

DISCLAIMER & COPYRIGHT This plan must not be used for construction unless signed as approved by principal certifying authority. All measurements in millimetres unless otherwise specified. PROJECT NAME/PLANSET TITLE MINTO CONCRETE RECYCLERS SITE FARTHWORKS Water & Associates Pty Ltd Civil							
MGA mAHD IH CONCRETE RECTCLERS (GROUP) PTY LTD DISCLAIMER & COPYRIGHT DISCLAIMER & COPYRIGHT PROJECT NAME/PLANSET TITLE This plan must not be used for construction unless signed as approved by principal certifying authority. PROJECT NAME/PLANSET TITLE PROJECT NAME/PLANSET TITLE All measurements in millimetres unless otherwise specified. MINTO CONCRETE RECYCLERS & Associates Pty Ltd Environmentority		GRID	DATUM	PROJECT MANAGER	CLIENT		
MINTO CONCRETE RECYCLERS All measurements in millimetres unless otherwise specified. MINTO CONCRETE RECYCLERS SITE FARTHWORKS SITE FARTHWORKS		MGA	mAHD	ТН	CONCRETE RECYCLERS (GROUP) PTY LTD		0
MINTO CONCRETE RECYCLERS All measurements in millimetres unless otherwise specified. MINTO CONCRETE RECYCLERS SITE FARTHWORKS SITE FARTHWORKS	F	DISCLAIMER 8	COPYRIGHT		PROJECT NAME/PLANSET TITLE	martens	Environment Water
All measurements in millimetres unless otherwise specified.				on unless signed as approved by	MINTO CONCRETE RECYCLERS		Geotechnical
					SITE EARTHWORKS		Civil
This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd. 7 MONTORE ROAD, MINTO NSW 2566 Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 999		consent of Martens	& Associates Pty Ltd.	whole or part without prior written	7 MONTORE ROAD, MINTO NSW 2566	Suite 201, 20 George St. Hornsby, NSW 2077 Australia P	hone: (02) 9476 9999
(C) Copyright Martens & Associates Pty Ltd LOT 52 DP 618900 Email: mail@martens.com.au Internet: www.martens.com		(C) Copyright N	lartens & Associa	ites Pty Ltd			

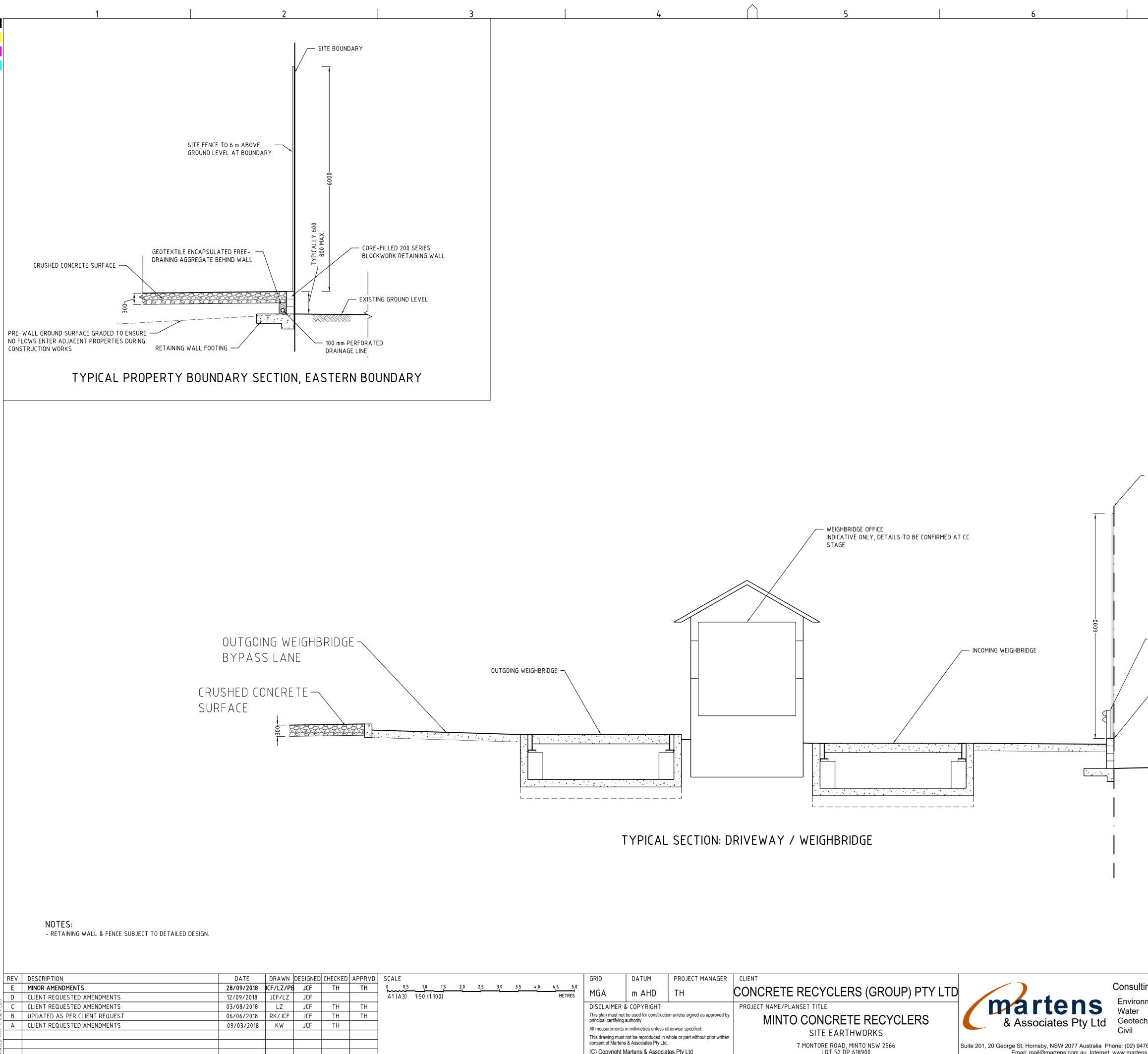

	REV	DESCRIPTION	DATE	DRAWN	DESIGNED	CHECKED	APPRVD
	Α	INITIAL RELEASE	15/11/2019	LL	EZ	TH	TH
Ч Ч							
A	1/A3L	ANDSCAPE (A1LC_v02.0.01)					

		-	_		_				-			-		- 23	-		-	-	4	00	_		-	-
															-									
															-									
								D	/		_	_							4			_		
	-140	01a [Roo	ſ]	-1	2 kL :	k Raii	nwat	er Ta	Ink	/	-			_	/	_	Nth	onsit	te tar	ik			
					- 2		-				-	1	4				-	-	-	-		-		
	-1AD	01b [Roo	f]	_	-	-	-			Nth :	sedir	ment	ation	bas	in—							N	THCA
	AD01c			Ibeo																				-
		Laca	icui	Jauj						_	_	_						_	_	_		_		_
																				_				
					- 3		-	C				-	- 24		-				4		/		+	-
	-1AL	02a [ROO	T]		-3K	LXR	ainw	ater	Tank	/	-		7	_	/	_	Sth	onsit	te tar			-	
	140	02b [f]						-	Sth :	sedir	ment	ation	bas	in—							S	THCA
			7-		-	-	-											-						
-1/	AD01c	[Sea	ledr	oad]																				
				0									- 20		- 23				1	0				
			_								_							_						
												; ;								; ; ; ; ; ;				
0 2 2		-					_											_						

MUSIC NODE	POST DEVELOPMEN	NT NODE		
PARAMETER	SOURCES	RESIDUAL LOAD	% REDUCTION	% TARGET
Flow (ML/yr)	16.6	8.73	47.3	NONE
Total Suspended Solids (kg/yr)	5.25E+03	9.69E+02	81.5	80
Total Phosphorus (kg/yr)	8.91	2.31	74	45
Total Nitrogen (kg/yr)	39.4	17.5	55.5	45
Gross Pollutants (kg/yr)	427	40.9	90.4	90


GRID	DATUM	PROJECT MANAGER	CONCRETE RECYCLERS (GROUP) PTY LTD		Consulting Engineers	DRAWING TITLE	WATER QUAI	LITY CATCHN	1ENT PLAN		
This plan must not principal certifying	g authority.	on unless signed as approved by therwise specified.	MINTO CONCRETE RECYCLERS	& Associates Pty Ltd	Water						
All measurements in millimetres unless otherwise specified. This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd. (C) Copyright Martens & Associates Pty Ltd		whole or part without prior written	SITE EARTHWORKS 7 MONTORE ROAD, MINTO NSW 2566 LOT 52 DP 618900	Suite 201, 20 George St, Hornsby, NSW 2077 Australia F Email: mail@martens.com.au Interne	Phone: (02) 9476 9999 Fax: (02) 9476 8767	PROJECT NO. P1203464	PLANSET NO.	release no. R12	DRAWING NO. PS02-E700		
						DRAWING ID: P1203464-PS02-R12-E	700 00000	20 30 4	0 50 60 70	80 90 100	


MUSIC NODE REFERENCE
NSW MUSIC MODELLING GUIDELINES 2015
NSW MUSIC MODELLING GUIDELINES 2015
NSW MUSIC MODELLING GUIDELINES 2015
NSW MUSIC MODELLING GUIDELINES 2015
NSW MUSIC MODELLING GUIDELINES 2015
NSW MUSIC MODELLING GUIDELINES 2015
NSW MUSIC MODELLING GUIDELINES 2015
NSW MUSIC MODELLING GUIDELINES 2015
NSW MUSIC MODELLING GUIDELINES 2015
= 100 % OF OVERALL AREA
= 95 % OF OVERALL AREA
= 5 % OF OVERALL AREA

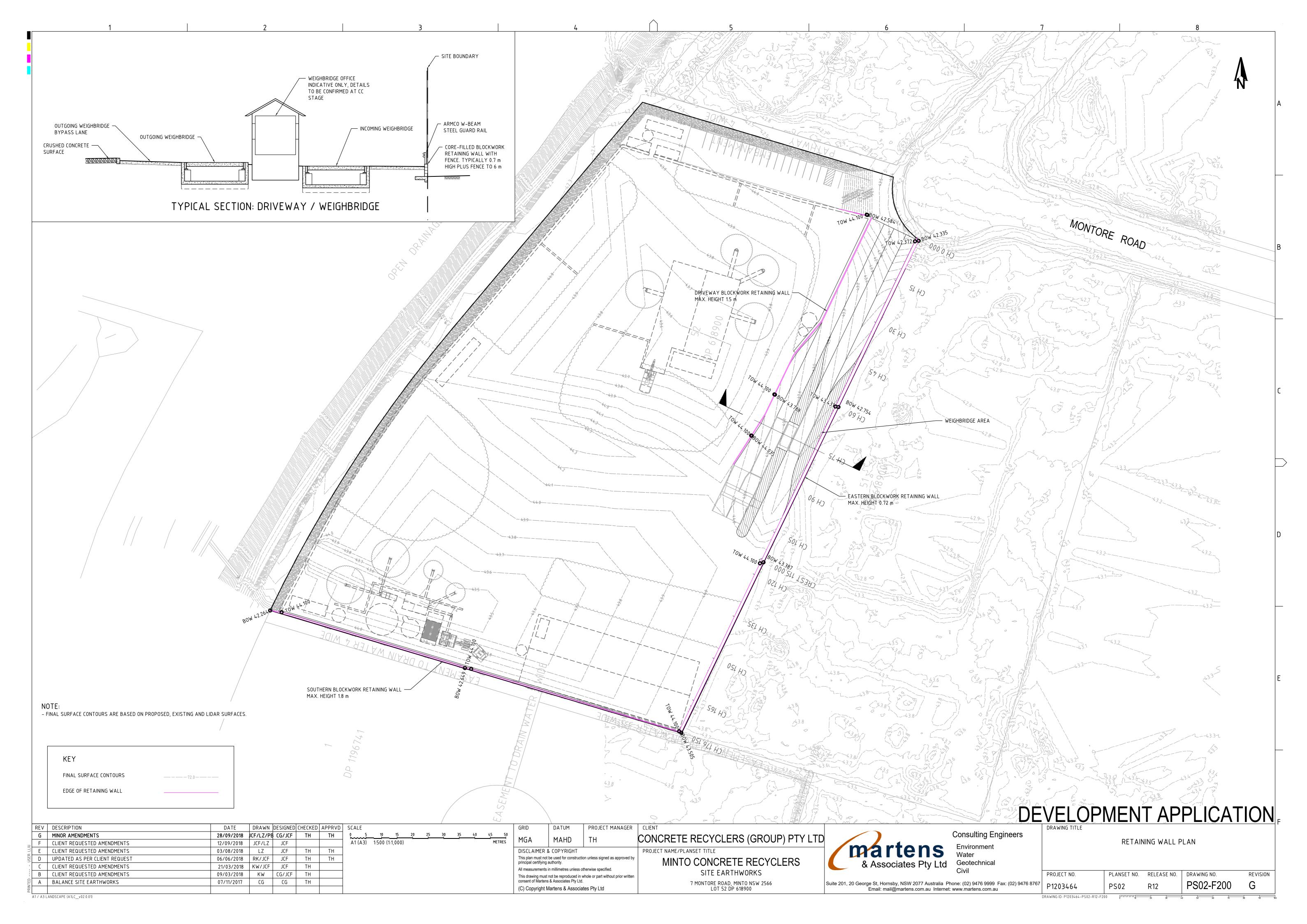


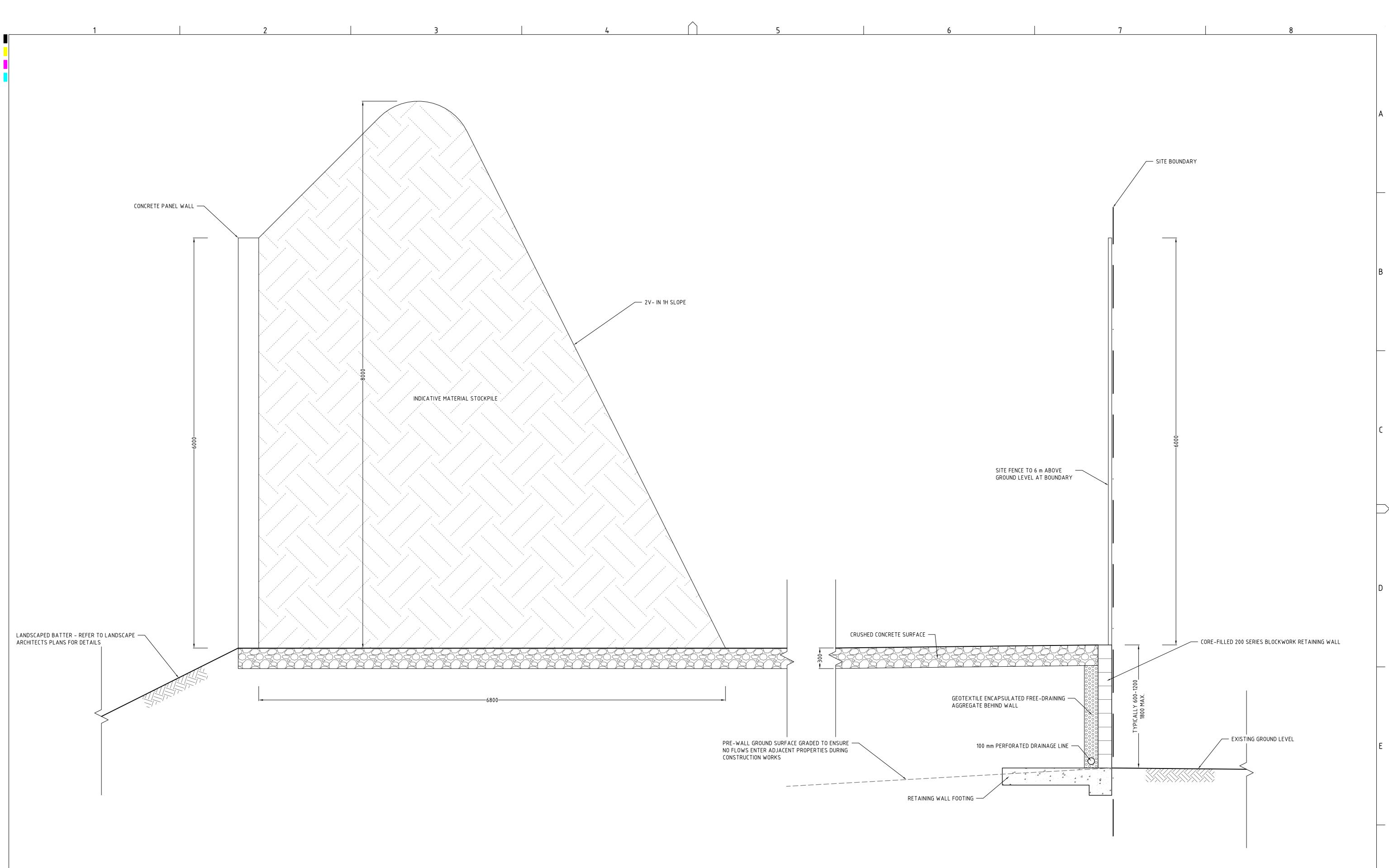
MUS01V01)

DEVELOPMENT APPLICATION

A1 / A3 LANDSCAPE (A1LC_v02.0.01)

	GRID	DATUM	PROJECT MANAGER	CLIENT			DRAWING TITLE				
4.5 5.0 METRES	MGA	m AHD	ТН	CONCRETE RECYCLERS (GROUP) PTY LTD		Consulting Engineers		DRIVEWA	Y CROSS SE	CTION	
	DISCLAIMER	& COPYRIGHT	1	PROJECT NAME/PLANSET TITLE	martens	Environment Water					
	This plan must not be used for construction unless signed as approved by principal certifying authority.		on unless signed as approved by	MINTO CONCRETE RECYCLERS	& Associates Pty Ltd						
		in millimetres unless of not be reproduced in v	therwise specified. whole or part without prior written	SITE EARTHWORKS		Civil	PROJECT NO.	PLANSET NO.	RELEASE NO.	DRAWING NO.	REVISION
	consent of Martens & Associates Pty Ltd. (C) Copyright Martens & Associates Pty Ltd				Suite 201, 20 George St, Hornsby, NSW 2077 Australia Pt Email: mail@martens.com.au Internet:		P1203464	PS02	R12	PS02-F103	E
				•			DRAWING ID: P1203464-PS02-R12-F		20 30 4	0 50 60 70	80 90 100


DEVELOPMENT APPLICATION


FENCE. TYPICALLY 0.7 m HIGH PLUS FENCE TO 6 m

← CORE-FILLED BLOCKWORK RETAINING WALL WITH

- ARMCO W-BEAM STEEL GUARD RAIL

- SITE BOUNDARY

NOTE: - CONCEPT DESIGN ONLY. SUBJECT TO DETAILED DESIGN.

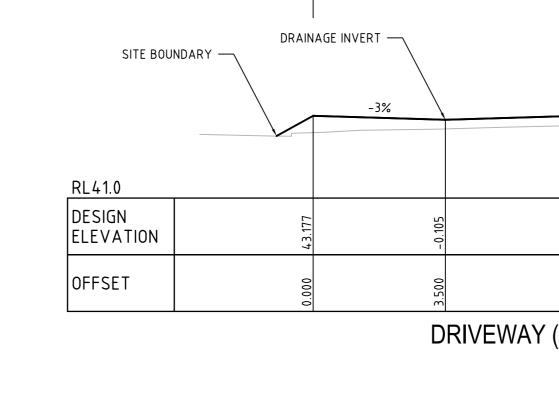
REV	DESCRIPTION	DATE DRAWN DESIGNED CHECKED APPRVD	SCALE	GRID	DATUM	PROJECT MANAGER CLIENT				DRAWING TITLE				· · ·
E	MINOR AMENDMENTS	28/09/2018 JCF/LZ/PB JCF TH TH	0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0	MCA		TH CONCRETE RECYCLERS (GROUP) PTY LTE			Consulting Engineers					
_ D	CLIENT REQUESTED AMENDMENTS	12/09/2018 JCF/LZ JCF	A1 (A3) 1:20 (1:40) METRES	MUA				mortone	Environment		RETAININ	G WALL DET	AILS	
C ال	CLIENT REQUESTED AMENDMENTS	03/08/2018 LZ JCF TH TH		DISCLAIMER 8	& COPYRIGHT	PROJECT NAME/PLANSET TITLE		martens	Water					
B B	UPDATED AS PER CLIENT REQUEST	06/06/2018 RK/JCF JCF TH TH		This plan must not principal certifying a	be used for constructi	ion unless signed as approved by MINTO CONCRETE RECYCLERS								
<u> </u> A	CLIENT REQUESTED AMENDMENTS	09/03/2018 KW JCF TH		All measurements i	in millimetres unless o	athenuise encoified		& Associates Pty Ltd	Civil					
				This drawing must	not be reproduced in	whole or part without prior written SITE EARTHWORKS			CIVII	PROJECT NO.	PLANSET NO.	RELEASE NO.	DRAWING NO.	REVISION
TED:				consent of Martens	s & Associates Pty Ltd	1. 7 MONTORE ROAD, MINTO NSW 2566	Suite 2	201, 20 George St, Hornsby, NSW 2077 Australia	Phone: (02) 9476 9999 Fax: (02) 9476 8767				PS02-F201	C
PRIN				(C) Copyright N	Aartens & Associa	ates Pty Ltd LOT 52 DP 618900		Email: mail@martens.com.au Intern		P1203464	PS02	KIZ	F 302-FZU I	
A1/A3	LANDSCAPE (A1LC_v02.0.01)									DRAWING ID: P1203464-PS02-R12-F	201 0 10	20 30 40	50 60 70	80 90 100

TYPICAL PROPERTY BOUNDARY SECTIONS: EASTERN, SOUTHERN AND WESTERN BOUNDARIES

DEVELOPMENT APPLICATION

A1/A3I	ANDSCAPE (A1LC	v02.0.0

REV DESCRIPTION	DATE DRAWN DESIGNED CHECKED	APPRVD	SCALE	GRID	DATUM	PROJEC	T MANAGER	CLIENT				DRAWING TITLE						
C MINOR AMENDMENTS	28/09/2018 JCF/LZ/PB CG/JCF TH	TH				T 11	C	CONCRETE RECYCLERS (GROUP) PTY LTD			Consulting Engineers							
B CLIENT REQUESTED AMENDMENTS	09/03/2018 KW CG/JCF TH		A1 (A3) 1:500 (1:1,000) METRES		MAHD		L L	SONONLIE NEOTOLENS (GNOOF) FITEID	1		Environment	DRIVEWAY	LONGITUDINA	AL AND TYPI	CAL CROSS SECTIO	DNS		
A BALANCE SITE EARTHWORKS	07/11/2017 CG CG TH			DISCLAIMER	& COPYRIGHT			PROJECT NAME/PLANSET TITLE		martens	Water							
			A1 (A3) 1:100 (1:200) METRES	This plan must no principal certifying	ot be used for constru	uction unless sign	ned as approved by	MINTO CONCRETE RECYCLERS										
				All measurement	s in millimetres unles	s otherwise sneci	ified			& Associates Pty Ltd	Civil							
				This drawing mus	t not be reproduced i	in whole or part w	vithout prior written	SITE EARTHWORKS			Civil	PROJECT NO.	PLANSET NO.	RELEASE NO.	DRAWING NO.	REVISION		
					ns & Associates Pty L			7 MONTORE ROAD, MINTO NSW 2566	Suite 2	201, 20 George St, Hornsby, NSW 2077 Australia	Phone: (02) 9476 9999 Fax: (02) 9476 8767			D12	PS02-F400	\mathbf{C}		
				(C) Copyright	Martens & Assoc	ciates Pty Ltd		LOT 52 DP 618900		Email: mail@martens.com.au Interne	et: www.martens.com.au	P1203464	PS02	R12	F 302-F400			
A1 / A3 LANDSCAPE (A1LC_v02.0.01)				•			ŀ	·				DRAWING ID: P1203464-PS02-R12-F	400 0 10	20 30 4	50 60 70	80 90 100		


21-MSL01 LONG. SECTION (ON ROAD ALIGNMENT)

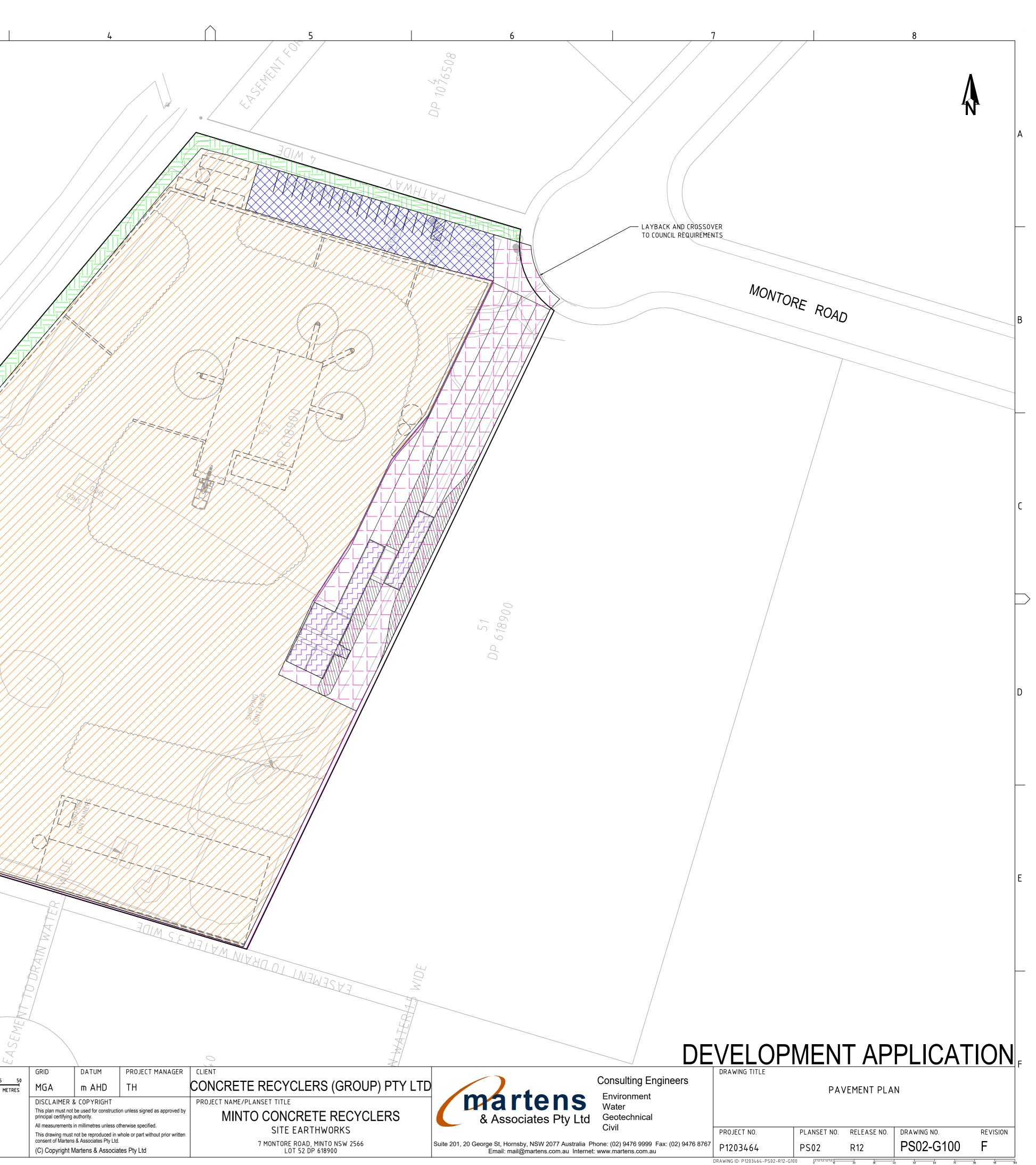
SCALE: HORIZONTAL – 1:500 VERTICAL – 1:100

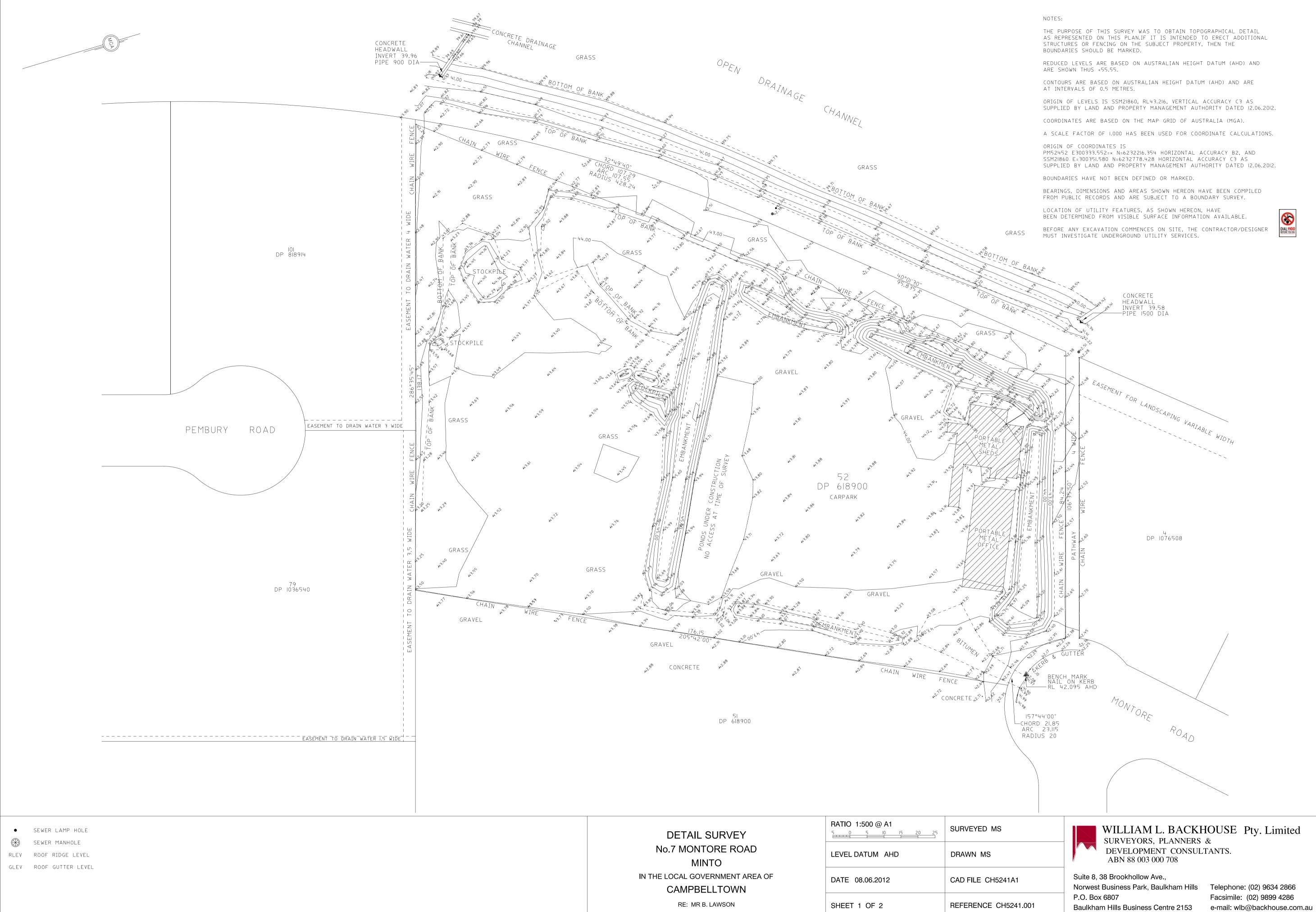
VERTICAL CURVE LENGTH (m) VERTICAL CURVE RADIUS (m) VERTICAL GRADE (%) VERTICAL GRADE (1 IN) HORIZONTAL CURVE RADIUS (m) DATUM RL 34.000	<		VC > 500			<u>0.846%</u> 118.2		V IP RL 43.600	1 1	
DESIGN SURFACE LEVELS	42.323	coc.24 02050	43,135	43.177	43,304	12434	43.558	43.600	43.650	
EXISTING SURFACE LEVELS	42.302	602.24	42.736	42.732	42.793	4.2.905	42.983	43.012	43.132	
CUT / FILL DEPTH	0.021	cl 0.0-		0.445	0.510	0 526	0.574	0.588	0.519	
CHAINAGE	0.000	000	25.000	30.000	45.000	60.000	75.000	80.000	000.06	

1

			CH115.000 - CUT THROUGHDR-EHE				CH163.409 - CUT THROUGHDR-EHE	CH176.150 - CUT THROUGHDR-EHE	
V IP RL 43.700		<u>2.646%</u> 37.8	V IP RL 44.100			<u>0%</u> 1000000			
43.700	43.835		44.100	44.100	44.100	44.100	000.77	44.100	
43.285	43.349		43.461	43.482					

1.

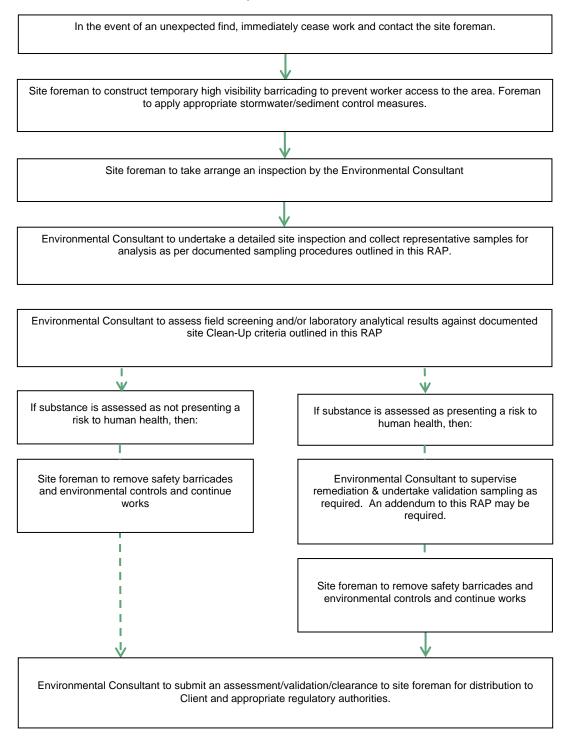

DRIVEWAY WIDTH RETAINING WALL TOP OF WALL RL 44.10 3%	
0.315 VARIES	
17.500 17.700	


DRIVEWAY (21-MSL01) TYPICAL SECTION

SCALE: 1:100

DEVELOPMENT APPLICATION

1	2	3
		OPEN DRAMAGE
		2 AM
		8~ / ///
KEY:	MIDE	
ASPHALT DRIVEWAY		ATTAW WARD OF THE REAL
		EASEMENT
ASPHALT CARPARKING AREA		
CONCRETE PAVEMENT		
		141
CRUSHED CONCRETE PAVEMENT TYPICALLY 300 mm THICK		119674
VEGETATED BATTERS TO		D
L		
DESCRIPTION MINOR AMENDMENTS CLIENT REQUESTED AMENDMENTS	DATE DRAWN DESIGNED CHECKED APPRVD 28/09/2018 JCF/LZ/PB JCF TH TH 12/09/2018 JCF/LZ JCF) SCALE <u><u><u></u><u></u><u></u><u>5</u><u>10</u><u>15</u><u>20</u><u>25</u><u>30</u><u>35</u><u>40</u> A1 (A3) 1:500 (1:1,000)</u></u>
CLIENT REQUESTED AMENDMENTS UPDATED AS PER CLIENT REQUEST	03/08/2018 LZ JCF TH TH 06/06/2018 RK/JCF JCF TH TH	
CLIENT REQUESTED AMENDMENTS CLIENT REQUESTED AMENDMENTS	21/03/2018 KW/JCF JCF TH 09/03/2018 KW JCF TH	-



	DETAIL SURVEY	RATIO 1:500 @ A1	SURVEYED MS
		LEVEL DATUM AHD	DRAWN MS
	IN THE LOCAL GOVERNMENT AREA OF CAMPBELLTOWN	DATE 08.06.2012	CAD FILE CH5241A1
	RE: MR B. LAWSON	SHEET 1 OF 2	REFERENCE CH5241.001

Appendix C – Unexpected Finds Protocol

Unexpected Finds Protocol

