The Halloran Trust

martens consulting engineers

Water Cycle Management Report – Mixed Use Subdivision; West Culburra, NSW

P1203365JR01V07 November 2016

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to prepare a Water Cycle Management Report in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Realty Realizations P/L (hereafter known as the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© November 2016 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890

Phone: +61-2-9476-9999

Fax: +61-2-9476-8767 Email: <u>mail@martens.com.au</u> Web: <u>www.martens.com.au</u>

	Document and Distribution Status						
Autho	r(s)	Reviewer(s)	Project Manager			Signature	
Megan Kovelis, Daniel Dhiacou		Andrew Norris		Andrew Norris		Alberri	
					Documen	t Location	
Revision No.	Description	Status	Release Date	File Copy	Realty Realizations P/L	Allen Price and Associates	Void
1	Internal Review	Draft	21/03/2012	1E,1P,1H	1P	1P	
1	Client Issue	Draft	04/04/2012	1E,1P,1H	1P	1P	
2	Amended	Final	27/11/2012	1E,1P,1H	1P	1P	
3	Amended	Final	01/03/2013	1E,1P,1H	1P	1P	
4	Amended layout	Final	10/10/2013	1E,1P,1H	1P	1P	
5	Response to DoPE review	Final	20/08/2014	1E,1P,1H	1P	1P	
6	Following DoPE peer review	Final	16/08/2016	1E,1P,1H	1P	1P	
7	Amended	Final	10/11/2016	1E,1P,1H	1P	1P	

Distribution Types: F = Fax, H = hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Executive Summary

Overview

This Water Cycle Management Report (WCMR) has been prepared to support a project Concept Approval, with NSW Department of Planning and Environment (DoPE), for a mixed use subdivision located at Lot 61 DP 755971, and parts of Lots 5, 6 and 7 DP 1065111, Culburra Road, West Culburra, NSW (MP09-0088). It provides an assessment of the proposed development with respect to stormwater management, including water quality and quantity.

This document has been prepared in consultation with various local and state government agencies as well as relevant stakeholder groups. It should be read in conjunction with:

- Martens and Associates, (2016a) Estuarine Management Study (P1203365JR02V04).
- Martens and Associates, (2016b) Estuarine Processes Modelling Report (P1203365JR04V01).
- Martens and Associates, (2016c) Water Quality Monitoring Plan (P1203365JR03V04).

Groundwater Assessment

The site contains two low permeability aquifers, being an unconfined shallow clay aquifer and a deeper confined rock aquifer. Shallow aquifer(s) beneath the site are likely to be ephemeral (i.e non-permanent) in some areas, non-existent in others and permanent in low lying areas and areas with low grades. Given their low yield, limited distribution and ephemeral nature, the aquifers beneath the site are of low value to stakeholders (ecological and anthropogenic).

Groundwater recharge will be marginally increased as a result of the proposed development. Given the nature of local groundwater conditions, this change will result in negligible environmental impact. Consequently, no mitigation is required to address changes to groundwater recharge. Groundwater is therefore not expected to constrain site development.

Water Quality Assessment

The water quality assessment determines treatment measures required to achieve adopted water quality objectives (NorBe and Council pollutant reduction criteria). It allows for a general specification of water quality structures, and will require refinement at detailed design stage. Given the site's location and sensitive nature of downstream ecosystems, this assessment ensures compliance with water quality objectives at all receiving environments.

The preferred stormwater treatment strategy for the site uses stormwater reuse, at source controls, and end of line controls to ensure treatment objectives are satisfied.

General specification of water quality treatment requirements are provided, however locations and sizes of stormwater quality improvement devices are to be confirmed during design of development stages as internal lot layouts are developed.

Results of surface water modelling indicate that post development water quality objectives will be met by the proposed stormwater treatment train.

Construction Phase Water Quality Assessment

Management of the potential impacts of the construction phase of development on runoff water quality and receiving environments has been raised in submissions by NSW OEH (May 9, 2014) and BMT WBM (March 6, 2014). This has been assessed using MUSIC modelling of each stage.

Water Quantity

To address potential changes in flow regime to the downstream wetland, analysis of developed site runoff regime has been undertaken. Iterative modelling concluded that the developed catchment area discharging to the wetland needs to be reduced to approximately 34.9 ha to mimic the pre development hydrological regime. Other catchment areas are diverted via treatment system to discharge into the open water in the Crookhaven River.

Statement of Commitments

Section 7 provides commitments made by the Applicant regarding site stormwater management.

Contents

1 INTRODUCTION	11
1.1 Overview	11
1.2 Scope	11
1.3 Proposed Development	12
1.4 Relevant Planning Controls and Design Principles	12
1.5 Agency Consultation	13
1.5.1 Initial Consultation	13
1.5.2 EA Submission Consultation	13
1.5.3 Ongoing Culburra Development-Stakeholder Liaison Consultation	Group 14
1.5.4 Response to Submissions Consultation	14
2 SITE DESCRIPTION	16
2.1 Location and Existing Landuse	16
2.2 Physiography and Hydrology	16
2.3 Lithology and Soil Landscapes	16
2.4 Hydrogeology	17
3 GROUNDWATER ASSESSMENT	18
3.1 Overview	18
3.2 Field Investigations	18
3.3 Groundwater Conditions	19
3.3.1 Water Bearing Strata	19
3.3.2 Hydraulic Conductivity (K)	20
3.3.3 Groundwater Level Measurements	22
3.3.4 Groundwater Quality	22
3.3.5 Groundwater/Surface Water Interaction	23
3.3.6 Groundwater Dependent Ecosystems (GDEs)	23
3.4 Groundwater Impact Assessment	23
3.4.1 Resource Use	23
3.4.2 Potential Impacts	23
3.4.3 CLASS-U3M-1D (Unsaturated Moisture Movement Model)	24
3.5 Conclusions and Recommendations	26
4 WATER QUALITY ASSESSMENT	28
4.1 Overview	28
4.2 Water Quality Objectives	28
4.3 Modelling Methodology	29
4.3.1 Overview	29
4.3.2 Approach	29
4.3.3 Climate Data	29
4.3.4 Input Parameters	30
4.3.5 Catchment Areas	30

4.3.6 Model Parameters	31
4.4 Treatment Train Philosophy	32
4.4.1 Rainwater Tanks	33
4.4.2 Bioretention Swales	33
4.4.3 Stormwater360 'Stormfilter/Enviropod' Treatment Devices	34
4.4.4 Bioretention Basins	34
4.4.5 Parkland Wetland	35
4.4.6 Infiltration System	35
4.4.7 Substation Treatment	35
4.4.8 Industrial Zone and Proposed Roundabout Treatment	36
4.4.9 7(a) Protection Zone Buffer	36
4.4.10Exfiltration Treatment	36
4.5 MUSIC Results	38
4.5.1 Model Output Suitability	38
4.5.2 NORBE Assessment	40
4.5.3 Treatment Train Effectiveness	41
4.5.4 Proposed Roundabout	43
4.5.5 Sensitivity Analysis	43
4.6 Water Quality Impacts on Sensitive Ecosystems	44
4.6.1 SEPP 14 Wetlands	44
4.6.2 Seagrass	44
4.6.3 Oyster Leases	44
4.6.4 Lake Wollumboola	45
4.7 Estuarine Process Modelling	45
4.8 Conclusions	45
4.9 Water Quality Monitoring, Maintenance and Management	45
5 CONSTRUCTION PHASE WATER QUALITY ASSESSMENT	
5.1 Overview	47
5.2 Construction Staging	47
5.3 Sediment and Erosion Control	47
5.4 Water Quality Modelling	47
5.4.1 Approach	47
5.4.2 Objective	48
5.4.3 Methodology	48
5.4.4 Results	50
5.5 Recommendations	50
6 WATER QUANTITY ASSESSMENT	51
6.1 Overview	51
6.2 OSD Requirements	51
6.3 Hydrological Assessment	51
6.3.1 Objectives	51

	6.3.2 Approach	51
	6.3.3 Results	52
6.4	4 Management Recommendations	52
7	STATEMENT OF COMMITMENTS	53
8	REFERENCES	54
9	ATTACHMENT A - PLANSET	55
10	ATTACHMENT B - SUMMARY OF MUSIC INPUT PARAMETERS	64
11	ATTACHMENT C - FIGURES	66
12	ATTACHMENT D - MUSIC MODEL CATCHMENT AREAS	70
13	ATTACHMENT E - BIORETENTION BASIN, WETLAND AND INFILTRATION MUSIC INPUT PARAMETERS	
14	ATTACHMENT F - TYPICAL BIORETENTION SWALE, BASIN AND V	
15	ATTACHMENT G - GROUNDWATER QUALITY LABORATORY RESULTS	77
16	ATTACHMENT H - AGENCY CONSULTATION	91
17	ATTACHMENT I – MUSIC MODEL SENSITIVITY ANALYSIS	96
18	ATTACHMENT J - BORELOGS	98

Figures

Tables

Figure 1		57
Figure 2		68
Figure 3		59
Table 1:	Summary of aquifer K testing results	20
Table 2:	Manual groundwater level measurements2	22
Table 3:	Preliminary groundwater quality results2	23
Table 4:	CLASS input parameters2	25
Table 5:	CLASS results summary2	26
Table 6:	Adopted EMCs for source nodes3	32
Table 7:	BCC Stormfilter and Enviropod pollutant removal efficiencies3	34
Table 8:	Literature review results: vegetation uptake rates of nutrients from stormwater sources.	
Table 9:	MUSIC runoff coefficients assessment	39
Table 10	: MUSIC results - NORBE assessment – Crookhaven River	10
Table 11	: MUSIC results - NORBE assessment – Lake Wollumboola	10
Table 12	2: MUSIC results - NORBE assessment – Billys Island inlet (SEPP 1 Wetlands)	
Table 13	: MUSIC results - NORBE assessment – Seagrass and Oyster Leases4	11
Table 14	: MUSIC results - NORBE assessment – Curleys Bay	11
Table 15	: MUSIC results - treatment train effectiveness – Crookhaven River4	12
Table 16	: MUSIC results - treatment train effectiveness – Lake Wollumboola4	12
Table 17	: MUSIC results - treatment train effectiveness – Billys Island Inlet (SEF 14 Wetlands)	
Table 18	: MUSIC results - treatment train effectiveness – Seagrass and Oyste Leases	
Table 19	: MUSIC results - treatment train effectiveness – Curleys Bay	13

Table 20: MUSIC results - NORBE assessment - Proposed Roundabout

 Table 21: Construction phase MUSIC model runs summary.......48

Table	22: Eroded gullies EMCs for construction phase modelling (BMT WBM, 2010)49
Table	23 : Hydrological modelling results52
Table	24: MUSIC results – assessment period (1964 to 1970) – site receivers with vegetation uptake
Table	25: MUSIC results – assessment period (1964 to 1970) – site receivers without vegetation uptake (results not achieving NorBe highlighted in areen)

1 Introduction

1.1 Overview

This Water Cycle Management Report (WCMR) has been prepared to support a project Concept Approval, with NSW Department of Planning and Environment (DoPE), for a mixed use subdivision located at Lot 61 DP 755971, and parts of Lots 5, 6 and 7 DP 1065111, Culburra Road, West Culburra, NSW (MP09-0088).

It provides an assessment of the proposed development with respect to stormwater management, including water quality and quantity.

This document has been updated to address feedback and recommendations from various agencies provided throughout the applications review process, in preparation of the project overview report.

1.2 Scope

The scope of this assessment has been developed:

- 1. To address the requirements of the Director General's Environmental Assessment Requirements (DGEARs) with respect to stormwater management.
- 2. To address concerns raised and recommendations outlined by BMT WBM (March 6, June 5 and October 23, 2014) as part of their review of this document on behalf of NSW DoPE.
- 3. To address relevant concerns raised by NSW OEH in their submission to NSW DoPE (May 9, 2014).

This report provides:

- Documentation of results of a conceptual water quality assessment.
- Treatment train specification to achieve nominated water quality objectives.
- Overview of construction phase impact modelling, results and construction phase management requirements.

- Assessment of on-site detention (OSD) and stormwater quantity control requirements for the site, including proposed measures to control discharge into adjacent mangrove environment.
- Assess potential impacts of the development on sensitive receiving environments including identified SEPP14 wetlands, seagrass beds and oyster leases.
- Statement of Commitments relating to stormwater management.

The following reports have been prepared to support this assessment and should be read in conjunction with this document:

- Estuarine Management Study (EMS) (Martens, July 2016a. Ref: P1203365JR02V04).
- Estuarine Processes Modelling Report (EPMR) (Martens, August 2016b. Ref: P1203365JR04V01).
- Water Quality Monitoring Plan (WQMP) (including a Sediment and Erosion Control Plan) (Martens, August 2016c. Ref: P1203365JR03V04).

1.3 Proposed Development

The proposed development includes the following landuses:

- Residential (including Torrens title lots, townhouses and medium density development).
- o Commercial.
- o Industrial.
- o Tourist facilities and accommodation.
- o Open space.

A plan of the proposed development is provided in Attachment A.

1.4 Relevant Planning Controls and Design Principles

The following planning and engineering controls and design principles have been used:

o Shoalhaven City Council (2014) Development Control Plan.

- o Landcom (2004) Soils and Construction 'Managing Urban Stormwater'.
- o BMT WBM (2010) Draft NSW MUSIC Modelling Guidelines.
- Neutral or beneficial effect (NorBE) design principle in determining minimum stormwater quality structure requirements.

1.5 Agency Consultation

1.5.1 Initial Consultation

The following agencies were contacted as part of consultation completed as part of preparation of this assessment:

- Shoalhaven Council.
- o NSW DPI Water (formally NSW Office of Water NOW).
- NSW Office of Environment and Heritage (NSW OEH).
- o DoPI (Fisheries).

Results of initial agency consultation are provided in Attachment H.

1.5.2 EA Submission Consultation

Subsequent to submission of the Environmental Assessment (EA) a number of agencies and stakeholders provided comments relevant to this assessment. These are summarised as:

- o All development, including water quality treatment structures, is to be excluded from the 7(a) Environmental Protection zone.
- The water quality monitoring regime was considered inadequate.

A stakeholder meeting was held on August 13, 2013 and attended by:

- Local oyster farmers
- Australia's Oyster Coast Inc.
- o NSW Food Authority.
- Southern Rivers Catchment Management Authority (CMA).
- o Shoalhaven Water.

- Shoalhaven City Council (SCC).
- NSW Environmental Protection Authority (EPA).
- NSW Fisheries.
- o NSW Office of Environment and Heritage (OEH).
- The applicant, Martens and Associates, and Allen Price and Associates representatives.

The stakeholder meeting resulted in a layout redesign and subsequent water quality remodelling. The WQMP and SECP are now part of a separate document (Martens, 2016c) that provides a detailed outline of monitoring requirements pre, during and post construction.

1.5.3 Ongoing Culburra Development-Stakeholder Liaison Group Consultation

During the August, 2013 stakeholder meeting, the 'Culburra Development-Stakeholder Liaison Group' was formed and it was resolved that subsequent meetings would be held to facilitate additional stakeholder and agency comment and input into various aspects of the proposed development.

During the September, 2013 meeting of the Group, the draft WQMP was reviewed and discussed. Comments relating to monitoring and water quality treatment requirements were incorporated into project design and documentation.

1.5.4 Response to Submissions Consultation

Subsequent to lodgement of the EA, a number of agencies provided submissions to the NSW DoPE in relation to the proposed development. Of particular relevance to this assessment were comments provided by NSW OEH (May 9, 2014) and BMT WBM (on behalf of NSW DoPE) (March 6, 2014) which are summarised as:

- o Impacts of the construction phase to be considered and quantified.
- Impacts of increased freshwater runoff to be considered and quantified.
- Proprietary devices used as part of the proposed treatment train are to have pollutant removal efficiencies that have been verified independently.

- Water quality treatment of the proposed substation was considered inappropriate.
- o The modelled runoff coefficients generated by water quality modelling requires validation in context of the site location.
- Seepage/infiltration losses included in water quality modelling is unacceptable and considered to overestimate the treatment capabilities of the proposed stormwater management system.
- o Groundwater analysis is inadequate and needs revision to ascertain the pollutant load being discharged from the development to the groundwater table.
- Development within the Lake Wollumboola catchment is not supported due to potential water quality impacts.

Subsequent consultation with BMT WBM (between June, 2014 and January, 2015) has refined agency concerns and requirements. This WCMR has been updated to address and incorporate these.

Agency comments related to water quality monitoring, sediment and erosion control and hydrological and water quality impacts on the Crookhaven estuary are addressed in WQMP, EMS and EPMR.

2 Site Description

2.1 Location and Existing Landuse

The study area is located on the northern side of Culburra Road, West Culburra, within the Shoalhaven City Council local government area (LGA). The study area consists of the following lots:

- o Lot 61 DP 755971
- Part Lot 5 DP 1065111
- Part Lot 6 DP 1065111
- Part Lot 7 DP 1065111

The study area covers an area of approximately 109 ha and consists of undeveloped vegetated land and some agricultural areas in Lot 5 DP 1065111 and Lot 61 DP 755971 (Figure 1).

2.2 Physiography and Hydrology

Majority of the site is elevated >5 mAHD above the Crookhaven River estuary. Immediate foreshore areas are moderately steep and transitional between the subject site and the estuary. Relief across the site is approximately 20 m. The landscape is gently undulating with slopes ranging between 2.5 – 6.0 %, with some areas of localised over steepening typically associated with drainage lines and foreshore areas.

The site of the proposed subdivision lies on a ridgeline and associated northern side slopes discussed above, except for an area of Lot 5 which lies on the southern side of the ridge line.

Site drainage ranges from good to poor across the site, with poor draining areas characteristically associated with lower points of elevation within the landscape. Site drainage likely consists of both infiltration and overland flow (sheet and concentrated).

2.3 Lithology and Soil Landscapes

Reference to the 1:250,000 Wollongong Geological Series Sheet indicates the site lies upon Wandrawandian Siltstone, a member of the Shoalhaven Group. Wandrawandian Siltstone is dominated by siltstone and silty sandstone lithologies, and is pebbly in parts. Immediate foreshore areas of the site, adjacent to Crookhaven River Estuary

consist of Quaternary sedimentary units of gravel, sands, silts, and clays of marine to freshwater environments, and likely overlie Wandrawandian Siltstone in these areas.

Hazelton (1992) indicates that soils within the investigation area belong predominantly to the Greenwell Point Soil Landscape Group. Soils are primarily derived from *in-situ* weathering of the underlying Wandrawandian Siltstone. Soils are characteristically shallow (<50 cm) to moderately deep (50-100 cm) Loams to Yellow Podzolic Soils or Red Solodic Soils.

Soil mapping completed by Hazelton (1992) suggests that the eastern periphery of the site may contain the Seven Mile Soil Landscape group. This soil landscape group is estuarine, and comprises deep (> 1.5 m) Siliceous Sands, Acid Peats, and Humus Podzols. This landscape was not observed during field investigations (November 22, 2010).

2.4 Hydrogeology

Groundwater was observed during intrusive investigations at the site (November 22, 2010). More detailed investigation of groundwater is presented in Section 3.

3 Groundwater Assessment

3.1 Overview

This assessment has been prepared to satisfy Issue 7.5 of the Director General Requirements (DGRs) (NSW DoPE, May 27, 2010). It documents aquifer characteristics, assesses likely impacts associated with site development, and assesses the requirement for mitigation measures that aim to prevent adverse groundwater impacts.

3.2 Field Investigations

Field investigations for groundwater investigations were undertaken on November 22 and November 26, 2010 and included:

- Site walkover.
- Completion of 26 boreholes with a truck mounted hydraulic auger.
- Completion of 8 of the 26 boreholes as Groundwater Monitoring Bores (GMBs).
- Monitoring of groundwater levels within GMBs.
- Rising/falling head tests to estimate hydraulic conductivity (k) at 7 of the 8 GMBs.
- o Collection of 3 groundwater samples for laboratory analysis.

To address agency concerns related to soil hydrology, further investigations were undertaken on June 12 – 13, 2014. Works completed included:

- o Completion of 8 test pits and soil classification at each.
- Falling head tests to estimate hydraulic conductivity (K) at 7 of the 8 test pits.

3.3 Groundwater Conditions

3.3.1 Water Bearing Strata

Aquifer layers are broadly classed as follows:

1. Residual clay:

- Clay that extends from near natural surface level (typically 0.3 mBGL) to depths of 1.3 mBGL.
- Low hydraulic conductivity (K).
- Generally unconfined.
- Base of layer comprises extremely weathered siltstone.
- Permanent groundwater is likely to only exist in areas with relatively low grades.
- Other areas may contain ephemeral groundwater or remain generally unsaturated.
- The majority of boreholes within this stratum were drilled dry. We note that drilling works were undertaken in late November, 2010 which had above average rainfall.
- Flow vectors are expected to generally mimic the surface topography.
- During 2010 fieldworks, groundwater levels varied from approximately 0.15 mBGL to dry.

2. Siltstone:

- During 2010 field works, water bearing zones in the aquifer were observed at weathered siltstone from 3.2 to 4.2 mBGL (BH1), 6.5 to 7.0 mBGL (BH2) and 3.3 to 6.5 mBGL (BH6). Shallow GMBs installed immediately adjacent to GMB1 and GMB2 verified this aquifer layer is confined.
- Low hydraulic conductivity (K).
- During 2010 field works, groundwater head levels varied from 1.41 to 0.62 mBGL.
- Confinement at GMB2 is likely to be associated with geological bedding in the vicinity of the GMB as this GMB

was drilled on-top of a knoll and still displayed evidence of confinement.

3.3.2 Hydraulic Conductivity (K)

Site K testing to date (Table 1) indicates that the aquifer(s) are of low permeability. Refer to Figure 2 for GMB locations.

Table 1: Summary of aquifer K testing results.

Testing Event	GMB	Test Medium	Estimated K (m/d)
	1	Clay/Extremely Weathered Siltstone	0.057
	1a	Clay	0.035
	2	Clay/Extremely Weathered Siltstone	0.043
	3	Clay/Extremely Weathered Siltstone	0.004
20101	4	Clay/Extremely Weathered Siltstone	0.004
	5	Extremely Weathered Siltstone	0.008
	6	Clay/Extremely Weathered Siltstone	0.007
	Geometric mean		0.013
	Median	Clay/Extremely Weathered Siltstone	0.008
	Mean		0.023

Testing Event	GMB	Test Medium	Estimated K (m/d)
	302	Clay	0.013
	303	Clay	0.002
	304	Clay	0.052
	305	Clay	0.027
20142	306	Clay	0.056
20142	307	Clay	0.079
	309	Clay	0.019
	Geometric mean		0.022
	Median	Clay	0.027
	Mean		0.035

Notes:

Data collected from recent (2014) field works is generally consistent with 2010 results. A site soil K value of 0.027 m/day (1.14 mm/hr) is adopted for groundwater (Section 3.4.3) and site surface water quality modelling (Section 4.3).

 $^{^{1.}}$ Results based on Martens and Associates testing completed on 22.11.2010 and 23.10.2010. Test type = rising head for GMB1, GMB1a, GMB2 and GMB6. Falling head for GMB3, GMB4 and GMB5 as these GMBs were dry. All data analysed using the Hvorslev (1951) method.

^{2.} Results based on Martens and Associates testing completed on 12.06.2014 and 13.06.2013. Test type = falling head for all test pits. BH301 excluded as water was found to be seeping into test pit. All data analysed using the Hvorslev (1951) method.

3.3.3 Groundwater Level Measurements

Manual groundwater level measurements taken during 2010 field works are summarised in Table 2.

Table 2: Manual groundwater level measurements.

		Groundwater Levels (mAHD) Recorded by Martens and Associates				
			23.11.2010 ²	24.11.2010 ²	25.11.2010 ²	26.11.2010 ²
GMB ID	Aquifer Layer 1	GMB Surface Level	mAHD	mAHD	mAHD	mAHD
1	Siltstone (confined)	6	5.38	5.38	5.34	5.31
1a	Residual clay (unconfined)	6	-	4.84	4.93	4.97
2	Siltstone (confined)	22	20.8	20.71	20.63	20.59
2 a		22	-	Dry	Dry	Dry
3		15	Dry	Dry	Dry	Dry
4		8	Dry	Dry	Dry	Dry
5		8	Dry	Dry	Dry	Dry
6	Siltstone (confined)	5	-	-	4.87	4.86

Note:

3.3.4 Groundwater Quality

Groundwater quality samples were taken from GMB1, GMB2 and GMB6. Results for key analytes are summarised (Table 3) with full laboratory report in Attachment G. Results indicate:

- o Groundwater is acidic.
- Groundwater is fresh at GMB2, brackish at GMB1 and saline at GMB6.
- o Nutrient levels are low.

¹ GMB – groundwater monitoring bore.

² Level approximate mAHD based on Allen, Price and Associates survey (Ref: 25405-02)

Table 3: Preliminary groundwater quality results.

GMB ID	Date Sampled	pH (pH Units)	EC (µ\$/cm)	TDS (grav) (mg/L)	Total Nitrogen (mg/L)	Total Phosphorus (mg/L)
1	25.11.2010	5.2	4,900	2,900	0.7	<0.5
2	25.11.2010	5.1	250	180	0.4	<0.5
6	26.11.2010	5.6	18,000	13,000	0.3	<0.5

3.3.5 Groundwater/Surface Water Interaction

Interaction of groundwater from the upper unconfined aquifer with surface water is expected to be minimal given the majority of site boreholes and GMBs did not encounter water.

3.3.6 Groundwater Dependent Ecosystems (GDEs)

The Ecologist (SLR Consulting) has addressed GDE distribution on and around the site.

3.4 Groundwater Impact Assessment

3.4.1 Resource Use

Review of the NSW Natural Resource Atlas (Figure 3) indicates that there are no licensed bores in the vicinity (3km) of the site.

3.4.2 Potential Impacts

1. Altered groundwater recharge:

The proposed-development has the potential to alter groundwater flow to downslope areas as follows:

- Impervious areas shall increase resulting in reduced groundwater recharge.
- Land currently occupied by forest/woodland vegetation shall be cleared and replaced by a landscape predominantly comprised of grass in pervious areas and no vegetation in impervious areas. Grass vegetation shall exhibit lower evapotranspiration (ET) than the ET associated with the existing forest/woodland vegetation. This reduction in ET has the potential to increase groundwater recharge rates.

Page 23

- The balance of the above effects will determine if groundwater recharge is increased or reduced due to the proposed development.
- 2. Hydrological and Groundwater Quality Impacts:

Comments provided by NSW OEH (May 9, 2014) and BMT WBM (March 6, 2014) has raised concerns related to the development's impact on groundwater quality and hydrology, and the potential effects this may have on receiving environments.

It is noted that groundwater at the site is not considered a valuable resource as there are no GDEs (SLR, 2013) and no nearby groundwater users. In accordance with methodologies developed in consultation with BMT WBM (May 27 and June 5, 2014) the following has been completed to address this concern:

- a. Groundwater (CLASS) modelling (Section 3.4.3) with input parameters consistent with outcomes of field permeability testing.
- b. Surface water quality assessment (MUSIC) (Section 4) with groundwater infiltration rates from treatment measures set to be consistent with site K values.
- 3. Potential acid sulfate soils (PASS):

SPOCUS testing indicates that site soils are acidic and that they do not increase in acidity once oxidised. Based on the above, and given that site soils are residual (i.e. not estuarine sediments associated with ASS), risks associated with PASS or ASS soils are low.

3.4.3 CLASS-U3M-1D (Unsaturated Moisture Movement Model)

3.4.3.1 Overview

The CLASS soil moisture model developed by eWater Cooperative Research Centre (CRC) is used to assess site groundwater recharge for existing and developed conditions. The model utilises site rainfall and evaporation data together with soil profile properties to assess the net recharge to groundwater.

In consultation with eWater Cooperative Research Centre it was confirmed that the CLASS model was appropriate for this application as follows:

- Groundwater flow is ephemeral and therefore not suited to modelling with conventional groundwater models such as MODFLOW.
- The conceptual hydrogeological model is suited to CLASS as the soil/rock interface layer has low slope and soil stratigraphy is not overly complex.
- o Long-term climate data is considered important for the model simulation and CLASS is run using a long-term daily climate file.
- Catchment and soil science experts of the eWater Cooperative Research Centre previously indicated that the model was suitable for a site with a similar hydrogeological setting (Mundamia Urban Release area).

3.4.3.2 Inputs

Input parameters used in the model are summarised in Table 4.

Table 4: CLASS input parameters.

Element	Input
Soil Layers	2
Soil Layer Depth (mBGL)	Layer 1 – sandy loam (0 – 0.3) Layer 2 – clay (0.3 – 1.3)
Soil Parameters	CLASS default soil catalogue parameters for nominated soil types
Soil K (m/d)	Layer 1 – 1.061 Layer 2 – 0.027
Ksub (m/d) ¹	0.027
Climate file	Daily 50 yr rain and evaporation file derived from NOWRA RAN BOM station
Vegetation	Tree (CLASS default properties) for existing conditions, pasture (CLASS default properties)

Notes:

3.4.3.3 Results

Total seepage flux (Table 5) determined by the CLASS modelling system indicates a groundwater recharge rate of 33 mm/year for existing conditions. When forest is replaced by grass, this increases to 86 mm/year. Considering recharge doesn't occur beneath impervious surfaces and pervious 'grassed' surface shall be 60% of the developed

 $^{^{1\}cdot}$ A Ksub value of 0.027 m/d was assigned so that flux out of the bottom soil layer could be considered as seepage.

site the overall groundwater recharge for developed conditions is estimated at 52 mm/year ($60\% \times 86 \text{ mm/year}$).

Whilst results indicate a minor increase to groundwater recharge we note that CLASS modelling for developed conditions assumed uniform grass cover. Whist developed pervious areas shall be dominated by grass, a small proportion of trees shall remain or be planted. Consequently, ET in the developed condition is likely to be slightly higher than modelled value and therefore changes to groundwater recharge due to the proposed development are likely to be less than that modelled and not of sufficient magnitude to affect local conditions.

Table 5: CLASS results summary.

	Forest CLASS model result	Grassed CLASS model result	Developed conditions CLASS model accounting for impervious surfaces
Average annual groundwater recharge (mm/yr)	33	86	52

3.4.3.4 Impact Assessment

Results indicate that groundwater recharge will increase as a result of the proposed development. However given the nature of local groundwater conditions and result of modelling completed in Section 4, this change will result in negligible environmental impact. Consequently, no mitigation measure is required to address changes to groundwater recharge.

3.5 Conclusions and Recommendations

- The site contains two low permeability aquifers, being an unconfined shallow clay aquifer and a deeper confined rock aquifer.
- o Field investigations completed in 2010 found:
 - Shallow clay aquifer in 1 of the site's 8 GMBs within approximately 1 m of the land surface in a low lying area of the site. Consequently, it is anticipated that shallow ephemeral aquifers shall exist in local drainage depressions.
 - Deeper confined aquifer in 3 of the site's 8 GMBs. This aquifer is confined by siltstone which typically occurs at a depth of approximately 1.3 mBGL. The water bearing zones for this aquifer are thought to comprise extremely

weathered siltstone or clay seams. Water bearing zones were considered to be from 3.2 to 4.2 mBGL (BH1), 6.5 to 7 mBGL (BH2) and 3.3 to 6.5 mBGL (BH6).

- No aroundwater in 4 of the 8 GMBs.
- o Field investigations completed in 2014 found soil hydraulic conductivity to be generally consistent with 2010 results and a value of 1.14 mm/hr (0.027 m/d) is adopted for modelling purposes.
- Shallow aquifer(s) beneath the site are likely to be ephemeral (i.e non-permanent) in some areas, non-existent in others and permanent in low lying areas and areas with low grades.
- If shallow excavations (road pavements, service trenches and shallow footings) are proposed it is likely that works may intersect the shallow unconfined aquifer. This is to be assessed and managed through future construction works.
- The aquifers beneath the site are of low value to stakeholders (ecological and anthropogenic) given their low yield, limited distribution and ephemeral nature.
- o Groundwater recharge will be marginally increased as a result of the proposed development. Given the nature of local groundwater conditions, this change will result in negligible environmental impact. Consequently, no mitigation is required to address changes to groundwater recharge.
- o Impacts on groundwater quality have been addressed by site surface water assessment (Section 4) which has been prepared in consultation with BMT WBM. This assessment has adopted field test results for groundwater infiltration rates and designed treatment train measures to achieve surface water objectives accordingly.
- In principle, groundwater is not expected to constrain site development. However, from a geotechnical perspective it is recommended that the findings in this report are considered for site engineering purposes.

4 Water Quality Assessment

4.1 Overview

This water quality assessment determines treatment measures required to achieve adopted water quality objectives. It allows for a general specification of water quality structures, and will require refinement at detailed design stage once lot and road layouts are confirmed.

Given the site's location and the sensitive nature of downstream ecosystems, the water quality management system developed shall ensure compliance with water quality objectives at the following receiving environments (Figure 1):

- o SEPP 14 Wetlands between Billy's Island and the site.
- Seagrass and oyster leases fringing the foreshore to the north east and north west of the site.
- o Curleys Bay.
- o Crookhaven River.
- o Lake Wollumboola.

4.2 Water Quality Objectives

Chapter G2 of Shoalhaven DCP 2014, Section 5.3.4 requires the following pollutant load reduction (of the post development average annual load of pollutants) criteria be achieved at minimum:

- o 90% of gross pollutants
- 85% of total suspended solids (TSS)
- 65% of total phosphorus (TP)
- o 45% of total nitrogen (TN)
- o 90% of total hydrocarbons

Based on Shoalhaven Council requirements and consultation with NSW OEH, project water quality objectives are adopted as follows:

- NorBE (neutral or beneficial) pollutant loads in the post development scenario that are equal to or less than those currently generated from the site.
- o Treatment train effectiveness will be designed to achieve the DCP (2015) requirements for pollutant load reduction.

Water quality objectives are adopted for all receiving environments (Section 4.1).

4.3 Modelling Methodology

4.3.1 Overview

The Model for Urban Stormwater Improvement Conceptualisation (MUSIC, Version 5.1) developed by the CRC for Catchment Hydrology was utilised to evaluate pre and post development pollutant loads from the site.

Modelling has been undertaken in accordance with *Draft NSW MUSIC Modelling Guidelines* (BMT WBM, 2010).

The following modelling scenarios were considered:

- 1. Pre development the existing site.
- 2. <u>Post development (untreated)</u> the developed site without water quality structures.
- 3. <u>Post development (treated)</u> the developed site with water quality structures included to achieve adopted objectives.

Pre and post development MUSIC model layouts are provided on SK203 and SK204 of Attachment A.

4.3.2 Approach

An iterative approach was used for post development modelling to determine appropriate types, sizes and locations of stormwater treatment devices for the site to achieve adopted objectives.

4.3.3 Climate Data

Rainfall data was sourced from Nowra RAN from 1964 – 1970 in accordance with the NSW MUSIC guidelines. Average monthly areal

potential evapotranspiration (PET) was sourced from 'Climatic Atlas of Australia – Evapotranspiration' (Bureau of Meteorology, 2001).

4.3.4 Input Parameters

Input parameters for source and treatment nodes are consistent with the *Draft NSW MUSIC Modelling Guidelines* (BMT WBM, 2010). Attachment B summarises input parameters.

4.3.5 Catchment Areas

Pre and post development catchment areas and pervious/impervious areas of each catchment are provided in Attachment D. A ridge forming the catchment boundary between Lake Wollumboola and the Crookhaven River runs along the southern edge of the development area.

The following should be noted with regards to catchment areas:

- Development north of the ridgeline discharges north to the Crookhaven River as with existing hydrology.
- Where development occurs south of the ridgeline (small portion of the collector road, the industrial subdivision in the site's east and residential development in the site's east), runoff shall be directed to the Crookhaven River by road drainage networks.
- Only the proposed oval (Catchment C4) and the proposed new roundabout intersection along Culburra Road shall discharge south to Lake Wollumboola. They are therefore modelled and assessed separately to ensure water quality objectives are met for each receiving environment.
- o The catchment area draining to the SEPP14 wetlands between Billys Island and the site was determined for the post development based on maintaining wetland hydrology (Section 6).
- This wetland outlet was assessed independently, as well as part of the Crookhaven River catchment, to assess water quality impacts on the wetlands.
- Outlets into the Crookhaven River, excluding the wetland outlet, were assessed to determine the impacts on seagrass and oyster leases.
- The Curleys Bay outlet was assessed independently due to its identified significance by NSW DoPE and NSW OEH.

- The roundabout area was compared to an equivalent area of pre development 'forest' to ensure water quality objectives (Section 4.4.8).
- The proposed substation was not included in water quality modelling (see Section 4.4.7).
- All residential/accommodation development catchments have been split into 'roof', 'road' and 'remaining' sub-catchments. The cumulative areas of each of these sub-catchments are based on the catchment area, the proposed landuse and the proposed site coverage (Attachment A).

4.3.6 Model Parameters

Event Mean Concentration (EMC) inputs were derived from Sydney Metropolitan Catchment Management Authority (SMCMA) (2010) 'Draft NSW MUSIC Modelling Guidelines'.

Table 6: Adopted EMCs for source nodes.

		Base Flow (mg/L)		Storm Flow (mg/L)	
Land Use	Parameter	Log (mean)	Log (stdev)	Log (mean)	Log (stdev)
Roof	TN	na	na	0.300	0.190
	TP	na	na	-0.890	0.250
	SS	na	na	1.300	0.320
Agricultural	TN	0.040	0.130	0.480	0.260
	TP	-1.050	0.130	-0.220	0.300
	SS	1.300	0.130	2.150	0.310
Residential	TN	0.110	0.120	0.300	0.190
	TP	-0.850	0.190	0.600	0.250
	SS	1.200	0.170	2.150	0.320
Forest	TN	-0.520	0.130	-0.050	0.240
	TP	-1.520	0.130	-1.100	0.220
	SS	0.780	0.130	1.600	0.200
Commercial	TN	0.110	0.120	0.300	0.190
	TP	-0.850	0.190	-0.600	0.250
	SS	1.200	0.170	2.150	0.320
Sealed roads	TN	0.110	0.120	0.340	0.190
	TP	-0.850	0.190	-0.300	0.250
	SS	1.200	0.170	2.430	0.320
Industrial	TN	0.110	0.120	0.300	0.190
	TP	-0.850	0.190	-0.600	0.250
	SS	1.200	0.170	2.150	0.320
	TN TP SS TN TP	0.110 -0.850 1.200 0.110 -0.850	0.120 0.190 0.170 0.120 0.190	0.340 -0.300 2.430 0.300 -0.600	0.190 0.250 0.320 0.190 0.250

Land use parameters for each catchment node are provided in Attachment D.

4.4 Treatment Train Philosophy

The preferred stormwater treatment strategy for the site utilises stormwater reuse, at source controls, and end of line controls to ensure treatment objectives are satisfied. Individual SQIDs are outlined in the following sub-sections.

This assessment allows for general specification of water quality treatment requirements. Locations and sizes of SQIDs are to be confirmed during detailed design once internal lot layout has been confirmed.

4.4.1 Rainwater Tanks

Rainwater tanks shall be utilised across the site to reuse rainwater to satisfy toilet flushing and laundry demands. The following tank sizes were assumed:

- 5 KL per dwelling for freestanding dwellings.
- o 3 5KL per dwelling for tourist facilities.
- 5 KL per unit for multi-unit buildings.
- o 15 KL per industrial 'lot'.

Water usage demands were based on figures provided by Shoalhaven Water (16 November, 2012):

- o 1 ET for dwellings and units.
- o 15 ET/gross ha/yr for light industrial.

where 1 ET = 200KL/yr.

According to NSW Department of Water and Energy (DWE) (2008) 'NSW Guidelines for Greywater Reuse in Sewered, Single Household Residential Premises', toilet flushing and laundry uses account for 44% of total internal water demands. Therefore, total rainwater tank demands have been calculated based on 0.241 KL/day/dwelling (ET).

The total number of dwellings (and hence the cumulative tank volume and cumulative demand) was based on the sub catchment area and the proposed lot sizes within the sub-catchment. A single 'roof' node and 'tank' node was created to model each sub catchment.

4.4.2 Bioretention Swales

Where required to achieve water quality criteria objectives, roadside bioretention swales ('bioswales') shall provide at source treatment of runoff from development areas (including road, rainwater tank overflow and pervious lot areas). Bioswale location and size requirements shall be confirmed at detailed design stage once an internal lot layout has been prepared.

Bioswales provide treatment through media filtration, biological uptake of nutrients, evapotranspiration, infiltration (see Section 4.4.10) and detention. In accordance with FAWB (2008) hydraulic conductivity of filter media was modelled at 50% of the design value to account for reduced capacity over swales life.

Bioswale input parameters are provided in Attachment B. Typical bioswale design is provided in Attachment F.

4.4.3 Stormwater360 'Stormfilter/Enviropod' Treatment Devices

Runoff from tank, lot and road areas (or from bioswales where required) shall pass through a 'Stormfilter/Enviropod' (SFEP) treatment train (produced by Stormwater360) to remove remaining gross pollutants and a portion of suspended solids and nutrients from stormwater runoff. The treatment capabilities of the SFEP system has been independently reviewed and published in *Water* the Journal of the Australian Water Association (September, 2011) and by James Cook University (May, 2008).

The node utilised in modelling was that supplied and endorsed by Blacktown City Council (BCC), based on their independent review and analysis. Pollutant removal efficiencies of these devices are provided in Table 7.

Table 7: BCC Stormfilter and Enviropod pollutant removal efficiencies.

Pollutant	Enviropod	Stormfilter
TSS	54%	73.5%
TN	21%	32%
TP	30%	49%

Stormfilter canisters would be located in below ground tanks sized to accommodate the number of units required to service the catchment. This tank has been modelled as an OSD tank with 0 mm/hr exfiltration and 0% evaporative loss.

Other SFEP input parameters are summarised in Attachment B.

Devices to be used onsite shall be confirmed at detailed design stage. If different devices are proposed, treatment removal efficiencies should meet or exceed those used in this assessment.

4.4.4 Bioretention Basins

Bioretention basins are proposed to treat runoff discharging from 'Catchment 7' (small lot development) and from the industrial zone ('Catchment 8').

Bioretention basins provide treatment through filtration, biological uptake of nutrients, infiltration (see Section 4.4.10), evapotranspiration and detention. Overflow outlets of the proposed basins will include baffles to retain floating pollutants such as gross pollutants and hydrocarbons.

Individual basin input parameters are provided in Attachment E with typical basin sections in Attachment F.

4.4.5 Parkland Wetland

A constructed wetland is proposed in Catchment C4 (proposed oval and parkland). Inclusion of a wetland here allows detained water to be reused for irrigation on the oval. A reuse demand of 6 ML/ha/yr was assumed based on typical irrigation rates for playing fields.

Typical wetland sections are provided in Attachment F with wetland input parameters in Attachment E.

4.4.6 Infiltration System

The proposed end of line component of the stormwater treatment train features a number of foreshore infiltration systems. The inlet between Billys Island and the site includes an elongated continuous infiltration system designed specifically to achieve water quality objectives prior to discharge to the adjacent SEPP 14 Wetlands and to provide distributed flows to this environment.

Flow from the catchment will discharge into the foreshore infiltration systems which will detain and treat runoff through biological uptake of nutrients, evapotranspiration, infiltration (Section 4.4.10) and detention and discharge immediately upslope of the 7(a) zone boundary. They shall be designed and vegetated to complement the existing estuarine environment.

Infiltration system outlets shall consist of either an energy dissipater or, in the case of the continuous system, spill evenly along its length to promote even dispersal of flow and controlled discharge during major events.

4.4.7 Substation Treatment

The proposed substation will be constructed, owned and managed by Endeavour Energy who shall include water quality management measures, including spill capture infrastructure, in accordance with their design standards.

It was agreed with BMT WBM that, for the purposes of modelling, it was most appropriate that this area be excluded from the post and pre development MUSIC modelling.

4.4.8 Industrial Zone and Proposed Roundabout Treatment

The industrial zone presents a point source of potentially high pollution generation. It is recommended that approximately 10% of individual industrial lot areas be dedicated to bioretention basin to provide at source treatment of runoff and support rainwater tanks and the proposed end of line bioretention basin. This is consistent with the typical landscaped component of an industrial lot.

The proposed roundabout and intersection with Culburra Road naturally discharges to Lake Wollumboola via Wattle Creek. To achieve acceptable water quality impacts at receiving environments a bioretention swale is proposed to treat road runoff. Final design of the proposed intersection will refine the size of bioswale area required to achieve a neutral or beneficial water quality outcome. To ensure a conservative comparative analysis for the roundabout area, comparison was with an equivalent area of pre development forest to ensure water quality objectives are achieved.

4.4.9 7(a) Protection Zone Buffer

An area zoned 7(a) Environmental Protection lies downslope of the development footprint. No development, excluding a passive recreational walk/cycleway, is proposed in this area to maintain a vegetated buffer between the development and the receiving estuarine environment.

This buffer is minimum 100m wide and will naturally provide additional treatment to surface runoff through evapotranspiration, infiltration and filtration. Only the treatment effects of this vegetation on subsurface flows were considered. We therefore anticipate final water quality of runoff discharging to the estuary to be better than that reported within this document.

4.4.10 Exfiltration Treatment

4.4.10.1 Exfiltration Rates

An exfiltration rate of 1.14 mm/hr was adopted for all treatment nodes where infiltration is a treatment mechanism, based on site soil hydraulic conductivity (Section 3.3.2).

In bioretention swales, this rate was increased by 50% (i.e. to 1.71 mm/hr) as in reality, swales are to be constructed with a vertical kerb system to increase the filter media surface area (Attachment F). Consultation with BMT WBM (December 5 and 18, 2015) found this to be an acceptable outcome.

4.4.10.2 Subsurface Flow Treatment

In response to BMT WBM concerns regarding pollutant loss through infiltration from treatment nodes (March 6, 2014, October 23, 2014 & December 18, 2014), MUSIC's 'split flows' function was used to assess the behaviour of subsurface flows and the fate of infiltrated pollutants. Infiltration from treatment nodes, and baseflow and deep seepage from source nodes has been directed through a treatment node designed to model vegetation uptake of nutrients and physical filtration of sediment in downslope vegetated areas (7(a) zone). This has been completed for both the pre and post development models.

The nutrient removal capacity input parameters for the 'vegetation uptake' node was determined based on the capacity of vegetation between the downslope edge of the development and the estuary/wetland, to consume nutrients delivered to it. In determining this, the following was considered:

o The uptake rate of vegetation:

A literature review on vegetation uptake rates of nutrients was completed (Table 8).

Table 8: Literature review results: vegetation uptake rates of nutrients from stormwater sources.

Author	Date	Uptake Rate TN	Uptake Rate TP	Riparian Vegetation Type	Landuse	Study Location	Article
Lowerance et al	1984	51.8 kg/ha/yr	-	Forested wetland	Agricultural, roads, urban and others	Little River, Chesapeake Bay, USA	Riparian Forests as Nutrient Filters in Agricultural Watersheds.
Kelly et al	2007	-	15 kg/ha/yr	Grass and Alfalfa	Agricultural	Iowa, USA	Phosphorus uptake during 4 years by different vegetative covers in a riparian buffer.
Lowerance et al	1997	89%	80%	Coastal plain riparian forest	62% forest, 23% cropland , 12% pasture	Rhode River, Chesapeake	Water Quality Functions of Riparian Forest Buffer in
		Bay, USA Coastal plain Cropland riparian forest and wetland	bay, USA	Chesapeake Bay Watersheds.			
Peterjohn & Correll	1984	77 kg/ha/yr	10 kg/ha/yr	Broad leaved deciduous vegetation	Agricultural	Rhode River Maryland, USA, USA	Nutrient dynamics in an agricultural watershed, observations on the role of a riparian forest.

The study by Kelly et al. is disregarded as the riparian vegetation type consists of crops with superior nutrient uptake capacity compared with natural forested areas.

Considering the compiled data in Table 8, uptake rates of 51.8 kg/ha/yr (TN) and 10 kg/ha/yr (TP) (Lowerance et al. and Peterjohn & Correll respectively) were adopted.

o The loads of nutrients delivered to vegetation:

Flow and nutrient loads was determined using MUSIC and the split flow function applied to deep seepage, baseflow and infiltration losses.

Determine the pollutant removal capacity:

100% pollutant removal capacity up to the calculated uptake capacity was adopted. Uptake capacity was determined based on the measured vegetated area downslope of the development multiplied by adopted vegetation nutrient uptake rate. It was assumed that, with the passage of infiltrated water through a minimum of 100m of soil, all suspended sediments shall be removed.

4.5 MUSIC Results

4.5.1 Model Output Suitability

In accordance with BMT WBM recommendations (March 6, 2014) we have completed an assessment of the suitability of the development MUSIC model in representing the site location by way of comparison of modelled runoff coefficients (Table 9). MUSIC rainfall and runoff results for the entire modelled period were exported for each 'outlet' (Attachment A, SK203 and SK204) for the existing and developed site. Runoff results from the MUSIC model created for the existing township of Culburra were also analysed to allow comparison of the developed site with an urbanised catchment.

Table 9: MUSIC runoff coefficients assessment.

Outlet	01	O2	О3	04	O5	06	Culburra
Rainfall (1964 – 1970) (mm)	5 600.9	5 600.9	5 600.9	5 600.9	5 600.9	5 600.9	5 600.9
Pre development Catchment area (ha)	18.3	45.9	19.3	6.9	31.4	7.6	NA
Post development Catchment area (ha)	28.7	35.0	20.2	9.9	29.5	6.1	221.4
Pre Development Rainfall Volume (ML)	1 025	2 571	1 081	386	1 759	426	NA
Post Development Rainfall Volume (ML)	1 607	1 960	1 131	554	1 652	342	12 399
Pre Development Runoff (ML)	264.2	664.4	278.5	99.5	589.8	109.2	3 197.51
Post Development Runoff (ML)	400.3	314.0	194.1	92.4	494.9	45.8	5 211.7
Pre Development Runoff Coefficient (%)	26%	26%	26%	26%	34%	26%	26 %¹
Post Development Runoff Coefficient (%)	25%	16%	17%	17%	30%	13%	42%

Notes

Results indicate that the proposed development is reducing runoff coefficients across the site. This effect is most notable in outlet 'O6' (Lake Wollumboola catchment) where the coefficient is reduced by half.

Results are not typical of an urbanised catchment (such as shown for existing Culburra) but are appropriate for an urban development integrating extensive water quality treatment measures with considerable infiltration systems. The reduction reflects design efforts to achieve water quality objectives by treating stormwater through detention, evapotranspiration and infiltration, thereby reducing site runoff. The existing Culburra township has little to no water sensitive urban design measures (WSUD) and as a result of additional impervious surfaces increases the runoff coefficient (i.e. from an equivalent area of forest) by 60%.

It is concluded that the MUSIC models generated to assess water quality impacts of the proposed development suitably represent the site hydrology.

¹ A 100% forest area equivalent to Culburra township's footprint was modelled to allow comparison with pre-urbanisation runoff rates.

4.5.2 NORBE Assessment

Water quality assessment results are tabulated in Table 10 to Table 14 for each catchment considered. Catchment description refers to the receiving environment.

Table 10: MUSIC results - NORBE assessment – Crookhaven River.

Parameter	Pre Development	Post Development	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	12 319.0	10 067.0	18%	Y
TP (kg/year)	26.5	22.3	16%	Y
TN (kg/year)	180.2	162.2	10%	Y
Gross Pollutants	905.0	905.0	0%	Υ

Table 11: MUSIC results - NORBE assessment - Lake Wollumboola.

Parameter	Pre Development	Post Development	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	214.0	125.0	42%	Y
TP (kg/year)	0.5	0.5	1%	Y
TN (kg/year)	5.2	4.5	15%	Υ
Gross Pollutants	0.0	0.0	0%	Y

Table 12: MUSIC results - NORBE assessment – Billys Island inlet (SEPP 14 Wetlands).

Parameter	Pre Development	Post Development	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	1 180	510.0	57%	Y
TP (kg/year)	2.7	2.5	9%	Y
TN (kg/year)	31.5	26.6	16%	Y
Gross Pollutants	0.0	0.0	0%	Y

Table 13: MUSIC results - NORBE assessment - Seagrass and Oyster Leases.

Parameter	Pre Development	Post Development	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	11 139	9 557	14%	Υ
TP (kg/year)	23.8	19.8	17%	Υ
TN (kg/year)	148.7	135.6	9%	Υ
Gross Pollutants	905.0	905.0	0%	Υ

Table 14: MUSIC results - NORBE assessment - Curleys Bay.

Parameter	Pre Development	Post Development	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	8 890.0	8 660.0	3%	Y
TP (kg/year)	16.1	15.2	6%	Y
TN (kg/year)	94.5	89.1	6%	Y
Gross Pollutants	905.0	905.0	0%	Y

4.5.3 Treatment Train Effectiveness

Table 15 to Table 19 provide assessment of the treatment train effectiveness (i.e. post development untreated versus with treatment) for receiving environments.

Table 15: MUSIC results - treatment train effectiveness - Crookhaven River.

Parameter	Sources	Residual	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	44590.0	927.5	98%	Y
TP (kg/year)	96.7	5.4	94%	Y
TN (kg/year)	717.2	53.5	93%	Y
Gross Pollutants	8103.0	0.0	100%	Υ

 Table 16: MUSIC results - treatment train effectiveness - Lake Wollumboola.

Parameter	Sources	Residual	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	2 200.0	103.0	95%	Y
TP (kg/year)	4.9	0.3	93%	Y
TN (kg/year)	28.2	3.0	89%	Y
Gross Pollutants	156.0	0.0	100%	Y

Table 17: MUSIC results - treatment train effectiveness - Billys Island Inlet (SEPP 14 Wetlands).

Parameter	Sources	Residual	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	12400.0	206.0	98%	Υ
TP (kg/year)	30.8	1.6	95%	Υ
TN (kg/year)	248.0	16.5	93%	Y
Gross Pollutants	2810.0	0.0	100%	Υ

 Table 18: MUSIC results - treatment train effectiveness - Seagrass and Oyster Leases.

Parameter	Sources	Residual	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	32190.0	721.5	98%	Y
TP (kg/year)	65.9	3.8	94%	Y
TN (kg/year)	469.2	37.0	92%	Y
Gross Pollutants	5293.0	0.0	100%	Υ

Table 19: MUSIC results - treatment train effectiveness - Curleys Bay.

Parameter	Sources	Residual	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	1180.0	204.0	83%	Y
TP (kg/year)	3.3	0.3	90%	Y
TN (kg/year)	27.3	2.6	91%	Y
Gross Pollutants	203.0	0.0	100%	Y

4.5.4 Proposed Roundabout

Table 20 provides assessment of water quality results when Catchment C8r (proposed roundabout) is isolated and tested for compliance against NorBe objectives.

Table 20: MUSIC results - NORBE assessment - Proposed Roundabout Intersection.

Parameter	Pre Development	Post Development	Achieved Reduction (%)	Complies (Y/N)
TSS (kg/year)	30.2	2.9	90%	Y
TP (kg/year)	0.1	0.1	0%	Υ
TN (kg/year)	1.0	0.7	28%	Y
Gross Pollutants	0.0	0.0	0%	Υ

4.5.5 Sensitivity Analysis

Throughout the consultation process BMT WBM, on behalf of DoPE, have suggested that water quality modelling should bypass any infiltration, untreated, to the model outlet node – thereby ignoring the natural processes that will occur within the 7(a) vegetated buffer zone. Although this is considered to be incorrect and overly conservative, sensitivity analysis was completed to determine the effects of removing treatment of infiltration from the model.

Attachment I provides results of the sensitivity analysis which show that NorBe objectives are not achieved for all pollutants at all receiving environments. The significance of this impact has been assessed and discussed in the EPMR (Martens, 2016b).

4.6 Water Quality Impacts on Sensitive Ecosystems

4.6.1 SEPP 14 Wetlands

MUSIC modelling demonstrates that water quality discharged into the Billys Island inlet will be of better quality than that currently being discharged. The proposed outlet structures shall be designed (at CC stage) to provide for controlled and dispersed flow that does not result in localised scour and disturbance of mangrove species.

It is therefore considered that surface water runoff from the development shall have a negligible impact.

4.6.2 Seagrass

MUSIC modelling demonstrates that water quality discharged into areas where seagrass is mapped will be of better quality than that currently being discharged.

NSW OEH have raised concerns (May 9, 2014) related to potential impacts of freshwater runoff from the developed site on seagrass environments. Estuarine process modelling (Martens, 2016b) documents the development's impact on salinity levels more fully.

4.6.3 Oyster Leases

MUSIC modelling demonstrates that water quality discharged into areas with oyster leases will be of better quality than that currently being discharged.

The importance of faecal coliform impacts on oyster leases is acknowledged and considered in the design of water quality treatment devices, although MUSIC modelling only considers nutrients, suspended sediments and gross pollutants. The proposed infiltration systems and bioretention basins are designed to increase residence time to allow for the breakdown of faecal coliforms. The presence of wetland planting shall increase the rate of this breakdown.

It is noted that the proposed development shall be sewered with a system operated by Shoalhaven Water and no onsite effluent disposal is proposed which reduces the risk of release of human pathogens to stormwater. A Sewage Management Regime (Allen Price & Associates, 2013) has been prepared to outline design measures and emergency procedures to mitigate the impacts of sewage spills/leaks on the water quality within the estuary.

Therefore impacts on oyster leases resulting from reduced water quality are anticipated to be negligible. Any residual risk is to be addressed through the development monitoring program (Martens, 2016c)

4.6.4 Lake Wollumboola

Development areas draining to Lake Wollumboola (the proposed oval and roundabout) achieve the NorBE objective for water quality through runoff capture, treatment and, where possible, reuse for irrigation. Further it is noted that there is considerable distance (approximately 700m) from this development to Lake Wollumboola and the passage of water over this distance will provide further treatment of runoff prior to discharge.

The proposed areas of development represent approximately 6% of the Wattle Creek catchment and less than 0.5% of the Lake's catchment. These areas are considered negligible in the context of the catchment and, given modelled stormwater quality of runoff, are considered unlikely to result in negative environmental outcomes in the Lake.

4.7 Estuarine Process Modelling

Estuarine process modelling (Martens, 2016b) has been completed to further address agency concerns that the proposed development will have long term impacts on estuarine water quality conditions.

4.8 Conclusions

Results of surface water modelling indicate that post development water quality objectives will be met by the proposed stormwater treatment train.

It is noted that further refinement of the model at the detailed design stage of the development may alter the sizes of proposed treatment structures, however, performance outcomes of final design are to achieve specification provided in this report.

4.9 Water Quality Monitoring, Maintenance and Management

In response to EA agency comments (June 21, 2013) a WQMP for the development was prepared. This was completed in consultation with NSW Food Authority, NSW Fisheries, NSW Oyster Coast Inc, local oyster farmers and other stakeholders and with reference to SEPP 62 and NSW Oyster Industry Sustainable Aquaculture Strategy (OISAS) (2006).

This plan (Martens, 2016c) was subsequently updated in light of recent agency comments (BMT WBM, March 2014; and NSW OEH, May 2014) adopting a risk-based approach. It determines: the potential water

quality hazards to receiving environments; the likelihood and consequence of hazards; defines the subsequent risk to the receiving environment; outlines measurements required to manage risks; and provides contingency plans for each risk. Measures outlined include monitoring and maintenance of the proposed treatment train to ensure components are operating at optimum capacity.

5 Construction Phase Water Quality Assessment

5.1 Overview

Concerns regarding the potential impacts of the construction phase of development on water quality of runoff and receiving environments has been raised in submissions by NSW OEH (May 9, 2014) and BMT WBM (March 6, 2014).

This assessment utilises water quality to quantify water quality impacts throughout the construction phase and ascertain the significance of these impacts in the context of the Crookhaven estuary.

5.2 Construction Staging

The proposed development is to be constructed in 5 stages (Attachment A). These stages are to be confirmed at detailed design stage when a detailed Construction Management Plan is prepared.

5.3 Sediment and Erosion Control

The WQMP (Martens, 2016c) provides details of sediment and erosion control requirements to manage the construction phase. These measures have been designed in accordance with Landcom (2004) and include:

- Sedimentation basins.
- Energy dissipaters.
- Earth diversion bands.
- Sediment fences.
- Stabilised site entry.
- o Revegetation.

5.4 Water Quality Modelling

5.4.1 Approach

Several MUSIC models were created representing the site at various stages of construction. Sedimentation basins were included in each model to assess their treatment efficiency during the construction phase.

Pollutant concentrations in runoff generated during each stage of development was determined.

The approach for the design of construction phase water quality control measures as well as the methodology for this assessment has been developed in consultation with BMT WBM (May 27 and June 18, 2014) who confirmed them as being acceptable.

5.4.2 Objective

In accordance with industry best practice, Landcom (2004) is the criteria for site management and water quality treatment during construction phase of development. Sediment and erosion control measures for the site have been designed in accordance with these guidelines (Martens, 2016c).

The objective of construction phase water quality modelling was therefore to quantify the pollutant concentrations generated during each stage of development.

5.4.3 Methodology

The methodology for water quality modelling is summarised as follows:

 Several MUSIC models were created representing each stage of development (Table 21). Climate files were as for the site water quality assessment (Section 4). Modelling was completed in accordance with *Draft NSW MUSIC Modelling Guidelines* (BMT WBM, 2010).

 Table 21: Construction phase MUSIC model runs summary.

			Stage ¹		
Model Run	1	2	3	4	5
1	Е	Е	Е	Е	Е
2	С	Е	Е	Е	Е
3	0	С	Е	Е	Е
4	0	0	С	Е	Е
5	0	0	0	С	Е
6	0	0	0	0	С
7	0	0	0	0	0

Note:

¹ C = under construction, E = existing conditions/undeveloped, O = operational/developed

2. Run 1 (all stages undeveloped) model included the site, the existing township of Culburra and areas upstream of the site

- draining into the Crookhaven River. The Culburra Road bridge was adopted as the upstream extent of modelling.
- 3. Upstream catchments and Culburra township were modelled as a mixture of forest, agricultural and urban landuse interpreted from aerial photo review. Catchment areas were based 1:25 000 topographic map and LIDAR data purchased from NSW LPI.
- 4. Pervious and impervious areas for upstream catchments and Culburra township were calculated based on aerial photograph analysis of a representative (10%) portion of the catchment area.
- 5. EMC values adopted for upstream catchments and Culburra township were as per (BMT WBM, 2010) (Table 6).
- 6. For Runs 2 7 the landuse conditions within the site varied depending on the stage of development. Upstream catchments and Culburra township remained unchanged.
- 7. Areas under construction were modelled as 'eroded gullies' landuse (Table 22).

Table 22: Eroded gullies EMCs for construction phase modelling (BMT WBM, 2010).

		Base Flow (mg/L)		Storm Flow	/ (mg/L)
Land Use	Parameter	Log (mean)	Log (stdev)	Log (mean)	Log (stdev)
	TN	0.11	0.12	0.34	0.19
Eroded Gully	TP	-0.85	0.19	-0.30	0.25
2 3 /	SS	1.20	0.17	3.00	0.32

- 8. Each stage under construction included the sedimentation basins as required to address Landcom (2004). As per BMT WBM recommendations (June 19, 2014) sediment basins were modelled using a generic node and the following removal efficiencies:
 - 94.5% TSS
 - 32% TP
 - 15% TN

Highflow bypass was set to be equivalent to the basin design event (i.e. the 1 in 10 year flow rate).

- 9. Construction areas outside basin catchment areas were assumed to runoff untreated to receiving environments. In reality these areas would be treated by sediment fences that will have a relatively high TSS removal for particles greater than 0.02mm (Landcom, 2004). Some nutrient removal is also expected.
- 10. The vegetated 7(a) zone downslope of the development (between 50 200m in width) shall provide water quality treatment through filtration of sediment, infiltration and evapotranspiration. This effect was not included in MUSIC modelling.
- 11. Developed (operational) stages included site treatment train as per the post development NorBe model (Section 4.4). Infiltration losses were included at treatment nodes.

5.4.4 Results

MUSIC models for each stage are provided for peer review.

5.5 Recommendations

The following recommendations are provided to ensure that receiving environments are not detrimentally impacted during the construction and operation of the site:

- Sediment and erosion control features are to be designed, installed and managed in accordance with the Water Quality Monitoring Plan (Martens, 2016c) and Landcom (2004).
- Construction phase monitoring is to be undertaken in accordance with Water Quality Monitoring Plan (Martens, 2016c).
- Development treatment train features are to be designed and installed in accordance with Section 4 of this document and monitored and managed in accordance with Water Quality Monitoring Plan (Martens, 2016c).

6 Water Quantity Assessment

6.1 Overview

This water quantity assessment discusses the impact of the proposed development on the flow regime leaving the site, and recommends management measures to control this discharge and mitigate impacts on the receiving wetland ecosystem.

We note that this assessment examines surface water hydrological impacts only. In response to NSW OEH concerns (May 9, 2014) related to potential impacts of increased freshwater runoff from the site on values supported by the Crookhaven estuary, estuarine process modelling has been completed, the results of which are provided in the EPMR (Martens, 2016b).

6.2 OSD Requirements

Council's Subdivision Engineer (I. Dollery, February 21, 2012) has confirmed that, given the site discharge is near the outlet of the catchment and in close proximity to the ocean, OSD is not necessary for the site.

Where the site discharges to wetland areas measures are proposed to protect the receiving environments from increased localised flows resulting from increased impervious area runoff.

6.3 Hydrological Assessment

6.3.1 Objectives

The objective of the hydrological assessment is to determine management measures required to, as far as feasible, mimic the hydrological regime in the wetland areas within the Billy Island inlet (Figure 1).

6.3.2 Approach

DRAINS hydraulic modelling software was utilised to calculate pre and post development flow rates leaving the site for the 1 in 2, 10, 20 and 100 year ARI storm events. Iterative modelling was utilised to determine the post development catchment area required to achieve flow rates in the wetland that mimic, as nearly as possible, pre development flow rates.

The assessed catchment area of 34.9 ha for the receiving wetlands is identified in Attachment A (SK205).

6.3.3 Results

Table 23 provides the pre and post development catchment areas and flow rates for each storm event.

Table 23: Hydrological modelling results.

Scangria	Catchment Area Imp (ha)	Impervious Area	Pervious Area (%)	Flow Rates (m³/s)			
Scenario		(%)		1:2yr	1:10yr	1:20yr	1:100yr
Pre Development	45.5	0%	100%	5.1	9.7	11.8	16.4
Post Development 1	34.9	33%	67%	4.9	8.5	10.3	13.9

Notes:

Results of iterative modelling conclude that the developed catchment area discharging to the wetland needs to be limited to approximately 34.9 ha to mimic the pre development hydrological regime and minimise the risk of negative impacts from increased flow rates.

6.4 Management Recommendations

The following measures are recommended as part of the proposed development to maintain the hydrological regime in the receiving wetland ecosystem:

- Catchment areas outside the 34.9 ha area that would otherwise discharge into the wetlands (Attachment A) shall be diverted, after treatment, and discharged to open water in the Crookhaven River. MUSIC modelling indicates that water quality objectives are met under these conditions.
- Proposed bioretention basins and wetlands (Sections 4.4.3 and 4.4.5) are to include an outlet structure appropriately designed to achieve dispersed flow into the SEPP14 Wetland and mitigate impacts such as localised scour. Outlet structures are to include rip-rap and vegetation tolerant of freshwater inflows.
- o The proposed bioretention basins and wetlands include a maximum of 0.5 and 0.4 m detention depth respectively. This storage will provide a degree of onsite detention of flow during rain events and shall mimic natural baseflow and groundwater flow.

¹ Post development catchment modified to mimic pre development wetland flow regime.

7 Statement of Commitments

With regards to management of stormwater onsite during construction and operation of the proposed development, the following commitments are made by the Applicant:

- Water quality treatment devices shall be installed to achieve nutrient and suspended sediment loads that reflect existing loads to the Crookhaven River, Lake Wollumboola, Curleys Bay and Billys Island inlet (SEPP 14 wetlands).
- o The proposed treatment train shall achieve NorBE at receiving environments as detailed in Section 4.5.2.
- To maintain an appropriate hydrological regime in the wetland areas, the catchment area discharging into the wetlands shall be reduced such that post development flows to these areas are comparable to pre development flow.
- All discharge points shall include outlet structures appropriately designed to achieve dispersed flow into any downstream wetland areas to mitigate impacts such as localised scour.
- Water quality monitoring shall be undertaken in accordance with the project Water Quality Monitoring Plan (Martens, 2016c), which has been prepared with the input from various stakeholders, to ensure the development continues to comply with site water quality objectives. This plan shall undergo continual review and modification to address project progress and results.
- Impacts on receiving environments during the construction phase shall be mitigated by implementation of the project SECP (Martens, 2016c) which has been prepared in accordance with Landcom (2004) and industry best practice.
- Estuary management shall be undertaken in accordance with the Estuarine Management Study (Martens, 2016a).

Page 53

8 References

- Allen Price & Associates (2013) Proposed Sewage Management Regime for New Development Areas within the Crookhaven River Catchment
- CSIRO (1999) Sustainable Effluent-Irrigated Plantations: An Australian Guideline
- FAWB (2008) Hydraulic Performance of Biofilter Systems for Stormwater Management: Lessons from a Field Study.
- Martens and Associates, (2016a) Estuarine Management Study (P1203365JR02V04)
- Martens and Associates, (2016b) Estuarine Processes Modelling Report (P1203365JR04V02)
- Martens and Associates, (2016c) Water Quality Monitoring Plan (P1203365JR03V04)
- Munksgaard, N & Lottermoser, B (May, 2008) Treatment of road runoff waters, Kuranda Range Project: Final Report
- Shoalhaven City Council (2015) Development Control Plan.
- Soil Landscapes of the Kiama 1:100 000 sheet. Soil Conservation Service of NSW, Sydney.
- SLR (2013) Culburra West Urban Development Project Culburra Beach: Ecological and Riparian Issues and Assessment Report.
- Sydney Metropolitan Catchment Management Authority (SMCMA) (2010) 'Draft NSW MUSIC Modelling Guidelines'
- Wollongong 1:250,000 Geological Sheet; New South Wales Dept of Mines, 1970.
- Wicks, M, Vigar, N & Hannah, M (September, 2011) Nutrients and solids removal by an engineered treatment train Journal of the Australian Water Association Water

Page 54

9 Attachment A – Planset

COVER SHEET

E

(C) Copyright Martens & Associates Pty. Ltd . 2016

martens	
Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 Email: mail@martens.com.au Internet: http://www.martens.com.au	

MARTENS &
ASSOCIATES PTY LTD
Sustainable Solutions

Sustainable Solutions
Environmental - Geotechnical - Civil
Hydraulic - Wastewater Engineers

CLIENT/ PROJECT
THE HALLORAN TRUST

THIS PLAN MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED BY PRINCIPAL CERTIFYING AUTHORITY All measurements in mm unless otherwise specified.

PROJECT MANAGER:

ANDREW NORRIS

COVER SHEET

MIXED USE SUBDIVISION - WEST CULBURRA, NSW

DRAWING NUMBER:

P1203365JD01V10

DESIGNED: DATUM: SHEET

MLK mAHD

DRAWN: HORIZONTAL RATIO: SK200

KT NA

REVIEWED: VERTICAL RATIO: PAPER SIZ

AN NA A1 / A3

DRAWING NUMBER:

P1203365JD01V10

Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767

Email: mail@martens.com.au Internet: http://www.martens.com.au MARTENS & ASSOCIATES PTY LTD

Sustainable Solutions
Environmental - Geotechnical - Civil
Hydraulic - Wastewater Engineers

THE HALLORAN TRUST

THIS PLAN MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED BY PRINCIPAL CERTIFYING AUTHORITY All measurements in mm unless otherwise specified.

PRE-DEVELOPMENT MUSIC MODEL LAYOUT

RAN TRUST

MIXED USE SUBDIVISION – WEST CULBURRA, NSW

PROJECT MANAGER:

ANDREW NORRIS

A, NSW

MLK mAHD

DRAWN: HORIZONTAL RATIO: SK203

KT NTS SK203

REVIEWED: VERTICAL RATIO: PAPER SIZE:
AN NTS A1 / A3

REV. DESCRIPTION DATE

1 FINAL 3.11.2016

203

SIZE:

Email: mail@martens.com.au Internet: http://www.martens.com.au MARTENS &
ASSOCIATES PTY LTD
Sustainable Solutions

ASSOCIATES PTY LTD
Sustainable Solutions
Environmental - Geotechnical - Civil
Hydraulic - Wastewater Engineers

THE HALLORAN TRUST

THIS PLAN MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED BY PRINCIPAL CERTIFYING AUTHORITY

All measurements in mm unless otherwise specified.

PROJECT MANAGER:

ANDREW NORRIS

CLIENT/ PROJECT

POST-DEVELOPMENT MUSIC MODEL LAYOUT

MIXED USE SUBDIVISION - WEST CULBURRA, NSW

DRAWING NUMBER:

P1203365JD01V10

DESIGNED: DATUM: SHEET

MLK mAHD

DRAWN: HORIZONTAL RATIO: SK204

KT NTS

REVIEWED: VERTICAL RATIO: PAPER SIZE:
AN NTS A1 / A3

REV. DESCRIPTION

1 FINAL

3.11.2016

AN

5. ENSURE THAT ANY CONCRETE OR RIPRAP USED FOR THE ENERGY DISSIPATER OR THE OUTLET PROTECTION

ENERGY DISSIPATER

Email: mail@martens.com.au

Internet: http://www.martens.com.au

MARTENS & **ASSOCIATES PTY LTD Sustainable Solutions**

Hydraulic - Wastewater Engineers

CONFORMS TO THE GRADING LIMITS SPECIFIED ON THE SWMP.

THE HALLORAN TRUST

SD 5-8

CLIENT/ PROJECT

THIS PLAN MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED BY PRINCIPAL CERTIFYING AUTHORITY

PROJECT MANAGER:

ANDREW NORRIS

SEDIMENT AND EROSION CONTROL SPECIFICATIONS

MIXED USE SUBDIVISION - WEST CULBURRA, NSW

DRAWING NUMBER:

P1203365JD01V10

DESIGNED: DATUM: DESCRIPTION mAHD FINAL HORIZONTAL RATIO SK208 1:4000 @ A1 1:8000 @ A3 REVIEWED: VERTICAL RATIO: PAPER SIZE: 1:4000 @ A1 A1 / A3

1:8000 @ A3

3.11.2016

Attachment B – Summary of MUSIC Input Parameters 10

Element	Factor	Input	Source
Setup	Climate File	Climate file (mlb file) from Nowra RAN from 5/08/1964 - 31/12/1970	вом
	Node Type	The existing site will be a mixture of agricultual and forested nodes, depending on location across the site. Proposed will be a mixture of	As per WBM (2010) and development layout.
	Touc Type	roof, road and residential nodes plus forest for undeveloped forest areas.	7.5 per word (2020) and development layout.
	Roof Area	As per proposed site coverage (ranges from 40% - 60%)	As per development layout.
	Road Area	Area per lot layout. Area to be summed for each subcatchment.	As per development layout.
Source Nodes	Decidential	Remaining lot area (catchment area less road and roof area). Given	Assumed based on thesical lot lavouts
	Residential	driveways are not considered 'effective impervious areas' and laybacks are, residential nodes are generally 99% pervious	Assumed based on 'typical' lot layouts.
	Rainfall Threshold	Based on land use type or surface type as specified in Table 3.6 of	WBM (2010) guidelines.
		WBM (2010)	
		Based on soils within the top 0.5m of existing soil profile = Loamy	Soil properties based on WBM (2010) Table 3-7 and 3-8 and site geotechnical testing by
	Pervious Area Parameters	sand overlying clay. Inputs based on a weighted mean of these soil types	Martens (2010) of 24 boreholes.
	EMC's	As per WBM (2010) for Urban and Forest landuse	WBM (2010) guidelines.
	Estimation Method	Stochastically generated	WBM (2010) guidelines.
	Low Flow By-Pass	0 m³/s	WBM (2010) guidelines.
	High Flow Bypass	100 m³/s	Online so no bypass (excluding Catchment C15a basin = 50% 1yr ARI).
	Extended Detention depth	0.5m	By design.
	Surface area	Surface area at top of basin (have vertical sides)	WBM (2010) guidelines.
	Filter area	By design.	Design of proposed basin.
	Unlined filter media	Equal to square root of surface area (actual) multiplied by 4	WBM (2010) guidelines.
	Saturated Hydraulic Conductivity	90 mm/hr	MUSIC model help guidelines (ewater) recommend a hydraulic conductibity of 180 mm/hr be used for sands. 50% of this value has been used in modelling as a conservative estimate of realistic long-term hydraulic conductivity
	Fiter Depth	0.4 - 0.65m	Design of proposed basin.
Bioretention Basin			Based on previous discussions with T. Weber (WBM) for other sites (Riverside
	TN content of filter media	500 mg/kg	development September 7, 2012).
	Orthophosphate content of		Based on previous discussions with T. Weber (WBM) for other sites (Riverside
	filter media	40 mg/kg	development September 7, 2012) and product data sheet from RiverSands P/L for typical sand filter media (attached).
	Exfiltration rate	1.14 mm/hr	Based on median result of site hydraulic conductivity testing.
	Is based lined?	No	Basins shall not be lined.
	Vegetation Properties	With effective nutrient removal plants	Landscaping of basins will include deep rooted vegetation.
	Oveflow weir width	·	
		varies	Basin design.
	Underdrain present Submerged zone with carbon	Yes	Basin design.
	present	Yes; 0.2m	Basin design.
	Low Flow By-Pass	0 m³/s	WBM (2010) guidelines.
	High Flow Bypass	100 m³/s	No Bypass.
	Extended Detention depth	0.25m	By design.
	Surface area	Surface area at half the detention depth	WBM (2010) guidelines.
	Filter area	By design.	Design of proposed basin.
	Unlined filter media	Equal to square root of surface area (actual) multiplied by 4	WBM (2010) guidelines.
	Saturated Widrow!!-		MUSIC model help guidelines (ewater) recommend a hydraulic conductibity of 180
	Saturated Hydraulic Conductivity		mm/hr be used for sands. 50% of this value has been used in modelling as a conservative estimate of realistic long-term hydraulic conductivity of system (ewater).
	Fiter Depth		Design of proposed basin.
Bioretention Swales			
bioretention swales	TN content of filter media	500 mg/kg	Based on previous discussions with T. Weber (WBM) for other sites (Riverside development September 7, 2012).
	Orthophosphate content of filter media	40 mg/kg	Based on previous discussions with T. Weber (WBM) for other sites (Riverside development September 7, 2012) and product data sheet from RiverSands P/L for
			typical sand filter media (attached). Increased site hydraulic conductivity (1.14 mm/hr) by 50% to account for new swale
	Exfiltration rate	1.71 mm/hr	design with vertical kerbs resulting in increased filter media area.
	Is based lined?	No	Swales shall not be lined
	Vegetation Properties	With effective nutrient removal plants	Landscaping of basins will include deep rooted vegetation.
	Oveflow weir width	varies	Basin design.
	Underdrain present	Yes	Basin design.
			1

	Submerged zone with carbon	Yes; 0.2m	Basin design.
	present Low Flow By-Pass	0 m3/s	•
			By design
	High Flow Bypass	100 m3/s	By design
	Pond Surface Area	Surface area at half the detention depth	WBM (2010) guidelines.
	Extended Detention depth	0.5m	By design
Infiltration System	Filter area	Varies	By design
	Unlined filter media	Equal to square root of surface area (actual) multiplied by 4	WBM (2010) guidelines.
	Depth of infiltration media	100mm	By design
	Exfiltration rate	1.14 mm/hr	Based on median result of site hydraulic conductivity testing.
	Evaporative loss	100%	By design
	Overflow Weir	Varies	By design
	Low Flow By-Pass	0 m³/s	WBM (2010) guidelines
	High Flow Bypass	100 m³/s	Online so no bypass (excluding Catchment C15a basin = 50% 1yr ARI)
	Inlet Pond Volume	0 m3	By design
	Surface area	Surface area at half the detention depth	WBM (2010) guidelines
	Extended Detention depth	0.5m	Design of proposed wetlands
	Permanent Pool Volume	560	Design of proposed wetlands
Wetland	Exfiltration rate	1.14 mm/hr	Based on median result of site hydraulic conductivity testing.
	Equivalent Pipe Diameter	60	Adjusted to achieve an approximate detention time of 72 hrs as per 3.8.3.1 of WBM
			(2010) guidelines
	Weir width	20	Design of proposed wetlands
	Reuse	6ML/ha/yr	Typical irrigation rate for golf course grade landscaping
	Low Flow By-Pass	0 m3/s	WBM (2010) guidelines
	High Flow Bypass	100 m3/s	No bypass.
Generic (Vegetation	TSS (mg/L)	Varies	Based on inflow concentration of nutrient and 100% removal capacity of downslope vegetation.
Uptake Node)	TN (mg/L)	Varies	Based on inflow concentration of nutrient and 51.8 kg/ha/year removal capacity of downslope vegetation.
	TP (mg/L)	Varies	Based on inflow concentration of nutrient and 10 kg/ha/year removal capacity of downslope vegetation.
	GP (kg/ML)	Varies	100% removal capacity of downslope vegetation.
	Low Flow By-Pass	0 m3/s	WBM (2010) guidelines
	High Flow Bypass	Varies - based on 1 Enviropod/1,000 m2 and 20L/s highflow bypass per unit	As per manufactures specification (SW360) and catchment area
GPT (Enviropod)	TSS (mg/L)	Input 100 Ouput 46	As per manufactures specification (SW360) and Blacktown Council requirements
	TN (mg/1)	Input 10 Ouput 7.9	As per manufactures specification (SW360) and Blacktown Council requirements
GPT (Enviropod)	TN (mg/L)	lanut 10	
GPT (Enviropod)	TP (mg/L)	Input 10 Ouput 7	As per manufactures specification (SW360) and Blacktown Council requirements
GPT (Enviropod)		·	As per manufactures specification (SW360) and Blacktown Council requirements As per manufactures specification (SW360) and Blacktown Council requirements
GPT (Enviropod)	TP (mg/L)	Ouput 7 Input 14.8	
GPT (Enviropod)	TP (mg/L) GP (kg/ML)	Ouput 7 Input 14.8 Ouput 0	As per manufactures specification (SW360) and Blacktown Council requirements
GPT (Enviropod)	TP (mg/L) GP (kg/ML) Low Flow By-Pass	Ouput 7 Input 14.8 Ouput 0 0 m3/s	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations
GPT (Enviropod)	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass.
	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements.
	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite.
	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank.
	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank.
	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0%	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements.
	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies Varies Varies Varies Varies	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements.
OSD Storage Tank Generic (SW360	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies Units Uni	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines
OSD Storage Tank Generic (SW360	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies 0 m3/s Varies Input 100	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements.
OSD Storage Tank Generic (SW360	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass TSS (mg/L)	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies Uaries Uaries Uaries Uaries Uaries Uaries Uaries Uaries Uaries Input 100 Ouput 26.5 Input 100 Ouput 6.8 Input 10 Ouput 5.1	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements. As per manufactures specification (SW360) and Blacktown Council requirements.
OSD Storage Tank Generic (SW360	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass TSS (mg/L) TN (mg/L)	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies Varies Input 100 Ouput 26.5 Input 100 Ouput 6.8 Input 10	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements.
OSD Storage Tank Generic (SW360	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass TSS (mg/L) TN (mg/L) TP (mg/L)	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies Uaries Input 100 Ouput 26.5 Input 100 Ouput 6.8 Input 10 Ouput 5.1 Input 100	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements.
OSD Storage Tank Generic (SW360	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass TSS (mg/L) TN (mg/L) TP (mg/L) GP (kg/ML)	Ouput 7 Input 14.8 Ouput 0 O m3/s 100 m3/s Varies 0.77m O mm/hr O% Varies Varies Units Uni	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements.
OSD Storage Tank Generic (SW360 Stormfilter)	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass TSS (mg/L) TN (mg/L) TP (mg/L) GP (kg/ML) Low Flow By-Pass	Ouput 7 Input 14.8 Ouput 0 O m3/s 100 m3/s Varies 0.77m O mm/hr 0% Varies Varies Varies Input 100 Ouput 26.5 Input 100 Ouput 6.8 Input 10 Ouput 5.1 Input 100 Ouput 5.1 Input 100 Ouput 5.0 Ouput 50 O m3/s O m3/s O m3/s O m3/s O m3/s	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. WBM (2010) guidelines
OSD Storage Tank Generic (SW360	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass TSS (mg/L) TN (mg/L) TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow By-Pass High Flow By-Pass Volume below overflow Depth above overflow	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies Input 100 Ouput 26.5 Input 100 Ouput 6.8 Input 10 Ouput 5.1 Input 100 Ouput 5.1 Input 100 Ouput 50 0 m3/s 0 m3/s 0 m3/s 0 m3/s 0 m3/s	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. WBM (2010) guidelines WBM (2010) guidelines Development design. As per WBM (2010) MUSIC modelling guidelines By design
OSD Storage Tank Generic (SW360 Stormfilter)	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass TSS (mg/L) TN (mg/L) TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow By-Pass	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies Varies Input 100 Ouput 26.5 Input 100 Ouput 6.8 Input 10 Ouput 5.1 Input 100 Ouput 5.1 Input 100 Ouput 50 0 m3/s 0.005 m3/s per dwelling (for free standing houses, townhouses, retirement and tourist accomodation). 100mm/hr for unit blocks by assumed roof perimeter Based on 3KL/dwelling or 3KL/tenement. A volume of 80% of total tank volume is assumed	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. WBM (2010) guidelines WBM (2010) guidelines Development design. As per WBM (2010) MUSIC modelling guidelines
OSD Storage Tank Generic (SW360 Stormfilter)	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass TSS (mg/L) TN (mg/L) TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow By-Pass High Flow By-Pass Volume below overflow Depth above overflow	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies Input 100 Ouput 26.5 Input 100 Ouput 6.8 Input 10 Ouput 5.1 Input 100 Ouput 5.1 Input 100 Ouput 50 0 m3/s 0 m3/s 0 m3/s 0 m3/s 0 m3/s	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. WBM (2010) guidelines WBM (2010) guidelines Development design. As per WBM (2010) MUSIC modelling guidelines By design
OSD Storage Tank Generic (SW360 Stormfilter)	TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow Bypass Surface Area Extended Detention depth Exfiltration rate Evaporative loss Low Flow Pipe Diameter Overflow Weir Low Flow By-Pass High Flow Bypass TSS (mg/L) TN (mg/L) TP (mg/L) GP (kg/ML) Low Flow By-Pass High Flow By-Pass High Flow By-Pass Under the company of the co	Ouput 7 Input 14.8 Ouput 0 0 m3/s 100 m3/s Varies 0.77m 0 mm/hr 0% Varies Varies Input 100 Ouput 26.5 Input 100 Ouput 5.5 Input 100 Ouput 5.1 Input 100 Ouput 5.0 Ouput 5.0 Om3/s 0 m3/s 0.005 m3/s per dwelling (for free standing houses, townhouses, retirement and tourist accomodation). 100mm/hr for unit blocks by assumed roof perimeter Based on 3KL/dwelling or 3KL/tenement. A volume of 80% of total tank volume is assumed 0.2m Cumulative surface area	As per manufactures specification (SW360) and Blacktown Council requirements SW360 design recommendations No bypass. Based on number of Stormfilter cartridges and SW360 design requirements. Based on 'tall' cartridges being installed onsite. Based on sealed concrete tank. Based on sealed concrete tank. Based on SW360 design requirements. Based on SW360 design requirements. WBM (2010) guidelines Based on number of Stormfilter cartridges and SW360 design requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. As per manufactures specification (SW360) and Blacktown Council requirements. WBM (2010) guidelines WBM (2010) guidelines WBM (2010) guidelines Development design. As per WBM (2010) MUSIC modelling guidelines By design By design

11 Attachment C - Figures

Martens & Associates Pty Ltd ABN 85 070 240 890		Environment Water Wastewater Geotechnical Civil Management		
Drawn:	MLK			
Approved:	AN	Site Locality and Regional Context	Figure 1	
Date:	2.11.2016		SK301	
Scale:	NA		Job No: P1203365	

Key:

- Approx borehole location and I.D (2010)
- Approximate GMB location and I.D (2010)
- Approximate testpit and permeability testing location and I.D (2014)

Martens & Associates Pty Ltd ABN 85 070 240 890		Environment Water Wastewater Geotechnical Civil Management		
Drawn:	MLK			
Approved:	AN	Borehole and GMB Locations	Figure 2	
Date:	02.11.20165		SK302	
Scale:	NA		Job No: P1203365	

Notes:

- Source (NSW Natural Resource Atlas). Site location is approximate only. Licensed bores = purple dots.

Martens & Associates Pty Ltd ABN 85 070 240 890		Environment Water Wastewater Geotechnical Civil Management		
Drawn:	MLK			
Approved:	AN	Site and Surrounding Licensed Bores	Figure 3	
Date:	02.11.2016		SK303	
Scale:	NA		Job No: P1203365	

12	Attachment D – MUSIC Model Catchment Areas

ROJECT: ROJECT NUMBER	1/07/2014 West Culburra 3365			1 IOWRA RAN as per MUSIC; ET from Climatic Atlas of A	Change:	July 2014 chang	
MC's -CMA	_	BASE FI	iow I	STORN	1 FLOW	_	
LANDUSE	PARAMETER	LOG(BF)	LOG (STDEV)	LOG (SF)	LG (STDEV)		
i	TN	0.010	0.010	0.300	0.190		
ROOF	TP	0.010	0.010	-0.890	0.250		
ı	SS	0.010	0.010	1.300	0.320		
i	TN	0.040	0.130	0.480	0.260		
AGRICULTURE	TP	-1.050	0.130	-0.220	0.300		
ſ	22	1.300	0.130	2.150	0.310		
i	TN	0.110	0.120	0.300	0.190		
RESIDENTIAL	TP	-0.850	0.190	0.600	0.250		
ſ	22	1.200	0.170	2.150	0.320		
i	TN	-0.520	0.130	-0.050	0.240		
FOREST	TP	-1.520	0.130	-1.100	0.220		
ſ	22	0.780	0.130	1.600	0.200		
i	TN	0.110	0.120	0.300	0.190		
COMMERCIAL	TP	-0.850	0.190	-0.600	0.250		
ſ	22	1.200	0.170	2.150	0.320		
i	TN	0.110	0.120	0.340	0.190		
SEALED ROADS	TP	-0.850	0.190	-0.300	0.250		
	22	1,200	0.170	2.430	0.320		

	Soil Types in top 0.5m - Real Data								Inputs for MUSIC				
Layer 1	Depth	SSC (MUSIC guidelines)	FC (MUSIC Guidelines)	Layer 2	Depth	SSC (MUSIC guidelines)	FC (MUSIC Guidelines)	Weighted average SSC	Weighted average FC	Inf a	Inf b	DRR (%)	DBR (%)
LOAMY SAND	0.3	139	69	CLAY	0.2	93	68	120.6	68.6	270	1.9	64	34

PRE DEVELOPMENT CATCHMENT AREAS

RECEIVING NODE	CATCHMENT ID	TOTAL AREA (HA)	IMPERVIOUS AREA (HA)	%	PERVIOUS AREA (HA)	%	EMC CATEGORY
	C1 AG	10.5	0.0	0%	10.5	100%	AGRICULTURAL
	C1 FOREST	3.0	0.0	0%	3.0	100%	FOREST
01	017(A)C1	1.4	0.0	0%	1.4	100%	FOREST
	O17(A)C2a	2.7	0.0	0%	2.7	100%	AGRICULTURAL
	C2 AG	0.7	0.0	0%	0.7	100%	AGRICULTURAL
	C2 FOREST	13.3	0.0	0%	13.3	100%	FOREST
	O17(A)C2b	2.6	0.0	0%	13.3	100%	FOREST
	C3	4.6	0.0	0%	4.6	100%	FOREST
02	02 7(A)	4.8	0.0	0%	13.3	100%	FOREST
	CS	9.5	0.0	0%	9.5	100%	FOREST
	C6	8.2	0.0	0%	8.2	100%	FOREST
	017(A) C6	2.9	0.0	0%	2.9	100%	FOREST
06	C8r	0.9	0.0	0%	0.9	100%	FOREST
06	C4	6.7	0.0	0%	6.7	100%	FOREST
	C7	4.6	0.0	0%	4.6	100%	FOREST
03	037(A)	6.0	0.0	0%	6.0	100%	FOREST
	C8	8.7	0.0	0%	8.7	100%	FOREST
04	C14	4.0	0.0	0%	4.0	100%	FOREST
04	C15	2.9	0.0	0%	2.9	100%	FOREST
	C9	4.4	0.0	0%	4.4	100%	FOREST
	OS 7(A)	6.1	0.0	0%	6.1	100%	FOREST
	C10	11.5	0.0	0%	11.5	100%	FOREST
OS	C10ag	4.4	0.0	0%	4.4	100%	AGRICULTURAL
	C10comm	1.5	0.6	40%	0.9	60%	COMMERCIAL
	C11	1.7	1.7	100%	0.0	0%	INDUSTRIAL
	C12	1.8	1.8	100%	0.0	0%	ROAD
	TOTAL	129.4					

POST DEVELOPMENT CATCHMENT ARE A Nic Roads are 50% Pervious 50% impervious based on DCP100 pg 24 Table 3 and using a local street

RECEIVING NODE	CATCHMENT	Total Area	Bioswale Area	Road Area	%Pervious Road*	House Area	Residential Node	% Impervious (Res)	%Pervious (Res)	NODE	Number of Lots
	C1 FOREST	1.1						0%	100%	FOREST	1
	WETLAND 1	0.3									1
	C1	12.4	0.4201	4.35	0.41	2.96	4.63	1%	99%	RESIDENTIAL	104
01	C1 Tourist	0.6					0.6	90%	10%		1
01	C2 FOREST A	2.7						0%	100%	FOREST	1
	C2	10.2	0.3291	2.40	0.38	2.91	4.55	1%	99%	RESIDENTIAL	104
	C2 UPSLOPE	0.5									1
	C1 UPSLOPE	0.9									1
	TOTAL	28.7									1
	C2 Forest b	2.6						0%	100%	FOREST	1
	C3 FOREST	3.6						0%	100%	FOREST	1
	C3	16.8	0.4331	4.87	0.42	4,77	6.73	1%		RESIDENTIAL	171
	WETLAND 3 (1.2)	0.8									1
	CS FOREST A	2.8						0%	100%	FOREST	1
02	WETLAND5(b1)	0.1									1
	WETLAND 3 (3)	0.3									1
	CS A	4.3	0.0895	1.12	0.42	1.07	2.05	1%	99%	RESIDENTIAL	46
	77	3.5		0.0		2.08		0%		RESIDENTIAL	1
	BASIN B7	0.1									1
	TOTAL	35.0									1
	C8r	0.9		0.89	0.50					ROAD	1
06	C4	5.0	0.0625	0.22	0.28		4.68	0%	100%	RESIDENTIAL	1
	WETLAND 4	0.3							200.0		1
	CS FOREST B	5.3						0%	100%	FOREST	1
	Wetland 5	0.2						0/4	100%	TONEST	1
	WETLAND5(b2)	0.5									1
03	CS B	11.4	0.3856	4.16	0.41	2.72	4.09	1%	99%	RESIDENTIAL	94
	C17	0.2	0.3050	4.10	0.41	2.72	4.00	20%	80%	COMMERCIAL	-
	C9	2.7						0%		FOREST	1
	TOTAL	20.2						0/4	100%	TONEST	1
	C23b	2.6						0%	100%	FOREST	1
04	C8	6.9	0.6863	1.50	0.50	0.0	4.68	100%	0%	INDUSTRIAL	1
04	BASIN C8	0.4	0.0003	1.50	0.30	0.0	4.00	100%	0%	INDUSTRIAL	1
	TOTAL	9.9									1
		2.4						0%	100%	FOREST	4
	C10 C11	1.7					1.7	100%			1
	C15a	2.1					2.1	100%			1
	C15a WETLAND 15B	Z.1 0.6					2.1	0%	100%	RESIDENTIAL	1
	C15b	0.6 5.5						0%	100%	FOREST	1
	C12	1.0					1.0	90%	10%		1
	C12 C14	1.0		1.8			1.0	100%	10%		1
os	C16	5.9		1.0				100%		FOREST	1
US	C16AG	5.9		-				0%			4
	C18	0.7						0%		AGRICULTURAL	4
	C19	0.7	0.0000	0.2	0.5	0.153	0.32	0%		RESIDENTIAL	4
I	C19 C20	1.8	0.0000	0.2	0.5	0.153	0.32	0%		RESIDENTIAL	14.0
I	C21	1.8	0.0954		0.5	0.430	0.95				14.0
I	C21 C22	0.6		0.0				0% 40%		FOREST	16.0
I	C22 C23	1.5					1.5	40%		FOREST	4
								0%	100%	rustsi	1
	TOTAL	29.5									4
	TOTAL	129.4									1

13 Attachment E - Bioretention Basin, Wetland and Infiltration System MUSIC Input Parameters

WETLAND

Node Name	Wetland 4	
Reuse Properties - Annual Demand Value (ML/year)	9.36	{ML/year}
Inlet Properties - Low Flow By-pass (cubic metres per sec)	0	{cubic metres per sec}
Inlet Properties - High Flow By-pass (cubic metres per sec)	100	{cubic metres per sec}
Inlet Properties - Inlet Pond Volume (cubic metres)	0	{cubic metres}
Storage Properties - Surface Area (square metres)	2800	{square metres}
Storage Properties - Extended Detention Depth (metres)	0.5	{metres}
Storage Properties - Permanent Pool Volume (cubic metres)	560	{cubic metres}
Storage Properties - Initial Volume	560	
Storage Properties - Exfiltration Rate (mm/hr)	1.14	{mm/hr}
Storage Properties - Evaporative Loss as % of PET	125	
Outlet Properties - Equivalent Pipe Diameter (mm)	60	{mm}
Outlet Properties - Overflow Weir Width (metres)	20	{metres}
Outlet Properties - Notional Detention Time (hrs)	65.6	{hrs}

INFILTRATION SYSTEMS

Node Name	Infiltration System O1	Infiltration System O2	Infiltration System O3	Infiltration System O5	
Inlet Properties - Low Flow By-pass (cubic metres per sec)	0	0	0	0	{cubic metres per sec}
Inlet Properties - High Flow By-pass (cubic metres per sec)	100	100	100	100	{cubic metres per sec}
Storage and Infiltration Properties - Pond Surface Area (square metres)	3311	11738.6	8229.3	6471	{square metres}
Storage and Infiltration Properties - Extended Detention Depth (metres)	0.5	0.5	0.5	0.5	{metres}
Storage and Infiltration Properties - Filter Area (square metres)	3150	11078	7752.3	6298.3	{square metres}
Storage and Infiltration Properties - Unlined Filter Media Perimeter (metres)	230	433.4	362.9	321	{metres}
Storage and Infiltration Properties - Depth of Infiltration Media (metres)	0.1	0.1	0.1	0.1	{metres}
Storage and Infiltration Properties - Exfiltration Rate (mm/hr)	1.14	1.14	1.14	1.14	{mm/hr}
Storage and Infiltration Properties - Evaporative Loss as % of PET	100	100	100	100	
Outlet Properties - Overflow Weir Width (metres)	20	690	300	70	{metres}

BIORETENTION BASINS

Node Name	B7 BASIN	Basin 8	C8r BIOSWALE	
Inlet Properties - Low Flow By-pass (cubic metres per sec)	0	0	0	{cubic metres per sec}
Inlet Properties - High Flow By-pass (cubic metres per sec)	100	100	100	{cubic metres per sec}
Storage Properties - Extended Detention Depth (metres)	0.5	0.5	0.2	{metres}
Storage Properties - Surface Area (square metres)	1211	3990.6	1185	{square metres}
Filter and Media Properties - Filter Area (square metres)	1211	3990.6	1154	{square metres}
Filter and Media Properties - Unlined Filter Media Perimeter (metres)	140	253	138	{metres}
Filter and Media Properties - Saturated Hydraulic Conductivity (mm/hr)	90	90	90	{mm/hr}
Filter and Media Properties - Filter Depth (metres)	0.4	0.65	0.5	{metres}
Filter and Media Properties - TN Content of Filter Media (mg/kg)	500	500	500	{mg/kg}
Filter and Media Properties - Orthophosphate Content of Filter Media (mg/kg)	40	40	40	{mg/kg}
Infiltration Properties - Exfiltration Rate (mm/hr)	1.14	1.14	1.71	{mm/hr}
Outlet Properties - Overflow Weir Width (metres)	35	7	5	{metres}
Outlet Properties - Submerged Zone Depth (metres)	0.2	0.2	0.1	{metres}

14 Attachment F - Typical Bioretention Swale, Basin and Wetland Design

TYPICAL SECTION
ROAD 20m WIDE

SCALE 1:80 @ A3

	Martens & Associates Pt	ty Ltd ABN 85 070 240 890	Environment Water Wastewater Geotechnical C	Civil Management
0 0.2 0.4 0.6 0.8 1.0	Drawn: KT			Drawing No./ID:
UNITS - METRES	Approved:	AN	TYPICAL BIOSWALE SECTION CULBURRA WEST, NSW	SK001
	Date:	4.08.2016	MIXED USE SUBDIVISION	Drawing No./ID:
(C) Copyright Martens & Associates Pty Ltd This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd	Scale @A3:	1:20	Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 Email: mail@martens.com.au Internet: http://www.martens.com.au	

Attachment G – Groundwater Quality Laboratory Results 15

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 48959

Client:

Martens & Associates Pty Ltd

6/37 Leighton Place Hornsby NSW 2077

Attention: Ben Rose

Sample log in details:

Your Reference: P1002842JC01V01, Culburra

No. of samples: 3 Waters, 60 Soils

Date samples received: 30/11/10
Date completed instructions received: 30/11/10

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 7/12/10

Date of Preliminary Report: 01/12/2010

Issue Date: 7/12/10

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Pasialieucz.
Kasjan Paciuszkiewicz

Chemist

Nick Sarlamis
Inorganics Supervisor

Miscellaneous Inorg - soil						
Our Reference:	UNITS	48959-4	48959-5	48959-6	48959-7	48959-
Your Reference		2842/1	2842/1	2842/1	2842/2	2842/2
Depth		0.5	1.0	1.5	0.2	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/201
Date analysed	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/201
pH 1:5 soil:water	pH Units	5.1	5.0	8.1	5.5	4.7
Electrical Conductivity 1:5 soil:water	μS/cm	57	97	80	23	43
Miscellaneous Inorg - soil						
Our Reference:	UNITS	48959-9	48959-10	48959-11	48959-12	48959-1
Your Reference		2842/2	2842/24	2842/24	2842/24	2842/2
Depth		1.5	0.2	1.0	1.5	2.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/201
Date analysed	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/201
pH 1:5 soil:water	pH Units	5.0	5.3	4.8	4.8	4.9
Electrical Conductivity 1:5 soil:water	μS/cm	23	21	55	58	58
Miscellaneous Inorg - soil						
Our Reference:	UNITS	48959-14	48959-15	48959-16	48959-17	48959-1
Your Reference		2842/13	2842/13	2842/13	2842/3	2842/3
Depth		0.2	0.5	1.0	0.2	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/201
Date analysed	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/201
pH 1:5 soil:water	pH Units	5.1	5.5	5.2	5.3	5.2
Electrical Conductivity 1:5 soil:water	μS/cm	33	24	66	35	56
Miscellaneous Inorg - soil						
Our Reference:	UNITS	48959-19	48959-20	48959-21	48959-22	48959-2
Your Reference		2842/3	2842/4	2842/4	2842/4	2842/18
Depth		1.0	1.0	1.5	2.0	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/201
Date analysed	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/201
pH 1:5 soil:water	pH Units	4.9	4.8	4.7	4.6	5.3
Electrical Conductivity 1:5 soil:water	μS/cm	52	63	68	76	18

Miscellaneous Inorg - soil						
Our Reference:	UNITS	48959-24	48959-25	48959-26	48959-27	48959-28
Your Reference		2842/18	2842/18	2842/19	2842/19	2842/19
Depth		0.5	1.0	0.2	0.5	1.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/2010
Date analysed	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/2010
pH 1:5 soil:water	pH Units	5.1	4.9	5.5	4.9	4.7
Electrical Conductivity 1:5 soil:water	μS/cm	34	44	30	51	83
Miscellaneous Inorg - soil						
Our Reference:	UNITS	48959-29	48959-30	48959-31	48959-32	48959-33
Your Reference		2842/22	2842/22	2842/6	2842/6	2842/6
Depth		0.2	0.5	0.2	0.5	2.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/2010
Date analysed	-	6/12/2010	6/12/2010	6/12/2010	6/12/2010	6/12/2010
pH 1:5 soil:water	pH Units	5.7	5.3	4.7	4.5	6.1

21

58

480

1,200

710

μS/cm

Envirolab Reference: 48959 Revision No: R 01

Electrical Conductivity 1:5 soil:water

sPOCAS field test						
Our Reference:	UNITS	48959-34	48959-35	48959-36	48959-37	48959-3
Your Reference		2842/1	2842/1	2842/1	2842/11	2842/1
Depth		0.5	1.0	1.5	0.5	1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
pHF (field pH test)*	pH Units	5.4	5.1	5.1	5.3	4.7
pHFox (field peroxide test)*	pH Units	4.5	4.1	4.2	4.4	3.8
Reaction Rate*	-	Slight	Slight	Slight	Slight	Slight
sPOCAS field test						
Our Reference:	UNITS	48959-39	48959-40	48959-41	48959-42	48959-4
Your Reference		2842/24	2842/24	2842/24	2842/24	2842/1
Depth		0.5	1.0	1.5	2.0	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
pHr (field pH test)*	pH Units	5.1	5.0	5.1	5.2	5.3
pHFox (field peroxide test)*	pH Units	4.0	4.0	4.1	4.2	4.2
Reaction Rate*	-	Slight	Slight	Slight	Slight	Slight
sPOCAS field test						
Our Reference:	UNITS	48959-44	48959-45	48959-46	48959-47	48959-4
Your Reference		2842/13	2842/4	2842/4	2842/4	2842/4
		1.0	0.5	1.0	1.5	2.0
Depth Type of sample		Soil	Soil	Soil	Soil	Soil
pHF (field pH test)*	pH Units	5.4	5.3	4.9	4.8	4.9
pHFox (field peroxide test)*	pH Units	4.4	4.3	4.0	4.0	4.0
Reaction Rate*	-	Slight	Slight	Slight	Slight	Slight
sPOCAS field test						
Our Reference:	UNITS	48959-49	48959-50	48959-51	48959-52	48959-5
Your Reference		2842/4	2842/19	2842/19	2842/19	2842/5
Depth		2.5	0.5	1.0	1.5	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
pHF (field pH test)*	pH Units	4.5	5.1	4.8	4.9	5.5
pHFox (field peroxide test)*	pH Units	3.8	4.2	3.9	3.9	4.5
Reaction Rate*	-	Slight	Slight	Slight	Slight	Slight
sPOCAS field test						
Our Reference:	UNITS	48959-54	48959-55	48959-56	48959-57	48959-5
Your Reference		2842/5	2842/6	2842/6	2842/6	2842/6
Depth		1.0	0.5	1.0	1.5	2.0
Type of sample		Soil	Soil	Soil	Soil	Soil
pHr (field pH test)*	pH Units	5.2	4.5	4.7	5.0	5.2
pHFox (field peroxide test)*	pH Units	4.1	3.6	4.0	4.5	4.4
			0.0	1.0	1.0	7.7

sPOCAS field test						
Our Reference:	UNITS	48959-59	48959-60	48959-61	48959-62	48959-63
Your Reference		2842/6	2842/6	2842/21	2842/21	2842/20
Depth		2.5	3.0	0.5	1.0	1.5
Type of sample		Soil	Soil	Soil	Soil	Soil
pHr (field pH test)*	pH Units	5.8	5.6	5.2	5.3	5.0
pHFox (field peroxide test)*	pH Units	5.7	5.3	4.1	4.7	4.2
Reaction Rate*	-	Slight	Slight	Slight	Slight	Slight

Miscellaneous Inorganics				
Our Reference:	UNITS	48959-1	48959-2	48959-3
Your Reference		2842/GMB01/	2842/GMB02/	2842/GMB06/
		25.11.2010	25.11.2010	26.11.2010
Depth		-	-	-
Type of sample		Water	Water	Water
Date prepared	-	30/11/2010	30/11/2010	30/11/2010
Date analysed	-	30/11/2010	30/11/2010	30/11/2010
Electrical Conductivity	μS/cm	4,900	250	18,000
Total Dissolved Solids (grav)	mg/L	2,900	180	13,000
рН	pH Units	5.2	5.1	5.6
Nitrate as N in water	mg/L	0.01	0.1	<0.005
Hardness	mgCaCO3	280	8	2,600
	/L			
NOx as N in water	mg/L	0.02	0.1	0.007
Ammonia as N in water	mg/L	0.3	0.02	0.1
Total Nitrogen in water	mg/L	0.7	0.4	0.3
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05
Phosphate as P in water	mg/L	<0.05	<0.05	<0.05
Silicon*- Dissolved	mg/L	36	36	15
Strontium - Dissolved	mg/L	0.2	<0.01	1.2
Titanium - Dissolved	mg/L	<0.02	<0.02	<0.02

Ion Balance				
Our Reference:	UNITS	48959-1	48959-2	48959-3
Your Reference		2842/GMB01/	2842/GMB02/	2842/GMB06/
		25.11.2010	25.11.2010	26.11.2010
Depth		-	-	-
Type of sample		Water	Water	Water
Date prepared	-	30/11/2010	30/11/2010	30/11/2010
Date analysed	-	30/11/2010	30/11/2010	30/11/2010
Calcium - Dissolved	mg/L	10	0.6	130
Potassium - Dissolved	mg/L	8.0	0.6	13
Sodium - Dissolved	mg/L	950	38	3,400
Magnesium - Dissolved	mg/L	62	1.6	560
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	<0.1	<0.1	<0.1
Bicarbonate Alkalinity as CaCO ₃	mg/L	23	7	46
Carbonate Alkalinity as CaCO ₃	mg/L	<0.1	<0.1	<0.1
Total Alkalinity as CaCO ₃	mg/L	23	7	46
Sulphate, SO4	mg/L	330	22	720
Chloride, Cl	mg/L	1,300	40	6,000
Ionic Balance	%	3.5	3.1	3.9

All metals in water-dissolved				
Our Reference:	UNITS	48959-1	48959-2	48959-3
Your Reference		2842/GMB01/	2842/GMB02/	2842/GMB06/
		25.11.2010	25.11.2010	26.11.2010
Depth		-	-	-
Type of sample		Water	Water	Water
Date prepared	-	2/12/2010	2/12/2010	2/12/2010
Date analysed	-	2/12/2010	2/12/2010	2/12/2010
Aluminium-Dissolved	μg/L	260	39	210
Boron-Dissolved	μg/L	200	70	40
Barium-Dissolved	μg/L	71	7	93
Beryllium-Dissolved	μg/L	<0.5	<0.5	0.6
Cadmium-Dissolved	μg/L	1.9	1	3.2
Cobalt-Dissolved	μg/L	52	<1	67
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	3	<1	7
Iron-Dissolved	μg/L	1,800	11	13
Manganese-Dissolved	μg/L	950	7	1,100
Molybdenum-Dissolved	μg/L	<1	<1	<1
Nickel-Dissolved	μg/L	38	<1	67
Vanadium-Dissolved	μg/L	<1	<1	<1
Zinc-Dissolved	μg/L	100	42	140
Arsenic-Dissolved	μg/L	2	<1	9
Mercury-Dissolved	μg/L	<0.4	<0.4	<0.4
Lead-Dissolved	μg/L	15	<1	3
Selenium-Dissolved	μg/L	<1	<1	<1

Method ID	Methodology Summary
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
LAB.2	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA2510 20th ED and Rayment & Higginson.
LAB.63	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.
LAB.18	Total Dissolved Solids - determined gravimetrically by drying the sample, in accordance with APHA 20th ED, 2540-C.
LAB.55	Nitrate - determined colourimetrically based on EPA353.2. Soils are analysed following a water extraction.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
LAB.57	Ammonia - determined colourimetrically based on EPA350.1, Soils are analysed following a water extraction.
LAB.66	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.
LAB.60	Phosphate water extractable - determined colourimetrically based on EPA365.1
LAB.6	Alkalinity - determined titrimetrically in accordance with APHA 20th ED, 2320-B.
LAB.81	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 21st ED, 4110-B.
LAB.41	Gravimetric determination of the total solids content of water.
Metals.22 ICP-MS	Determination of various metals by ICP-MS.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %RPD		
Date prepared	-			6/12/20 10	48959-4	6/12/2010 6/12/2010	LCS-1	6/12/2010
Date analysed	-			6/12/20 10	48959-4	6/12/2010 6/12/2010	LCS-1	6/12/2010
pH 1:5 soil:water	pH Units		LAB.1	[NT]	48959-4	5.1 5.1 RPD: 0	LCS-1	100%
Electrical Conductivity 1:5 soil:water	μS/cm	1	LAB.2	<1.0	48959-4	57 53 RPD: 7	LCS-1	107%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank
sPOCAS field test				
pHF (field pH test)*	pH Units		LAB.63	[NT]
pHFox (field peroxide test)*	pH Units		LAB.63	[NT]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II %RPD		
Date prepared	-			30/11/2 010	[NT]	[NT]	LCS-W1	30/11/2010
Date analysed	-			30/11/2 010	[NT]	[NT]	LCS-W1	2/12/2010
Electrical Conductivity	μS/cm	1	LAB.2	<1.0	[NT]	[NT]	LCS-W1	104%
Total Dissolved Solids (grav)	mg/L	5	LAB.18	<5	[NT]	[NT]	LCS-W1	106%
рН	pH Units		LAB.1	[NT]	[NT]	[NT]	LCS-W1	102%
Nitrate as N in water	mg/L	0.005	LAB.55	<0.005	[NT]	[NT]	LCS-W1	91%
Hardness	mgCaCO 3/L	3	Metals.20 ICP-AES	<3	[NT]	[NT]	[NR]	[NR]
NOx as N in water	mg/L	0.005	LAB.55	<0.005	[NT]	[NT]	LCS-W1	91%
Ammonia as N in water	mg/L	0.005	LAB.57	<0.005	[NT]	[NT]	LCS-W1	93%
Total Nitrogen in water	mg/L	0.1	LAB.66	<0.1	[NT]	[NT]	LCS-W1	86%
Phosphorus - Total	mg/L	0.05	Metals.20 ICP-AES	<0.05	[NT]	[NT]	LCS-W1	97%
Phosphate as P in water	mg/L	0.005	LAB.60	<0.005	[NT]	[NT]	LCS-W1	101%
Silicon*- Dissolved	mg/L	0.2	Metals.20 ICP-AES	<0.2	[NT]	[NT]	LCS-W1	100%
Strontium - Dissolved	mg/L	0.01	Metals.20 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	90%
Titanium - Dissolved	mg/L	0.02	Metals.20 ICP-AES	<0.02	[NT]	[NT]	LCS-W1	96%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Ion Balance						Base II Duplicate II %RPD		. tooovory
Date prepared	-			30/11/2 010	[NT]	[NT]	LCS-W1	30/11/2010
Date analysed	-			30/11/2 010	[NT]	[NT]	LCS-W1	30/11/2010
Calcium - Dissolved	mg/L	0.5	Metals.20 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	91%
Potassium - Dissolved	mg/L	0.5	Metals.20 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	103%
Sodium - Dissolved	mg/L	0.5	Metals.20 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	100%
Magnesium - Dissolved	mg/L	0.5	Metals.20 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	92%
Bicarbonate Alkalinity as CaCO ₃	mg/L	0.1	LAB.6	<0.1	[NT]	[NT]	LCS-W1	104%
Carbonate Alkalinity as CaCO ₃	mg/L	0.1	LAB.6	<0.1	[NT]	[NT]	[NR]	[NR]
Total Alkalinity as CaCO ₃	mg/L	0.1	LAB.6	<0.1	[NT]	[NT]	LCS-W1	104%
Sulphate, SO4	mg/L	1	LAB.81	<1.0	[NT]	[NT]	LCS-W1	108%
Chloride, Cl	mg/L	1	LAB.81	<1.0	[NT]	[NT]	LCS-W1	94%
Ionic Balance	%		LAB.41	[NT]	[NT]	[NT]	[NR]	[NR]
	T	I	1	1			1	1
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
All metals in water-dissolved						Base II Duplicate II %RPD		Recovery
Date prepared	-			2/12/20 10	48959-1	2/12/2010 2/12/2010	LCS-W1	02/12/2010
Date analysed	-			2/12/20 10	48959-1	2/12/2010 2/12/2010	LCS-W1	02/12/2010
Aluminium-Dissolved	μg/L	10	Metals.22 ICP-MS	<10	48959-1	260 260 RPD: 0	LCS-W1	103%
Boron-Dissolved	μg/L	5	Metals.22 ICP-MS	<5	48959-1	200 190 RPD: 5	LCS-W1	83%
Barium-Dissolved	μg/L	1	Metals.22 ICP-MS	<1	48959-1	71 67 RPD: 6	LCS-W1	99%
Beryllium-Dissolved	μg/L	0.5	Metals.22 ICP-MS	<0.5	48959-1	<0.5 <0.5	LCS-W1	80%

Envirolab Reference: 48959 Revision No: R 01

0.1

1

10

5

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

Metals.22

ICP-MS

Metals.22

ICP-MS

Metals.22

ICP-MS

Metals.22

ICP-MS

Metals.22

ICP-MS

Metals.22

ICP-MS

<0.1

<1

<1

<1

<10

<5

48959-1

48959-1

48959-1

48959-1

48959-1

48959-1

Cadmium-Dissolved

Cobalt-Dissolved

Chromium-Dissolved

Copper-Dissolved

Iron-Dissolved

Manganese-Dissolved

LCS-W1

LCS-W1

LCS-W1

LCS-W1

LCS-W1

LCS-W1

100%

96%

95%

91%

91%

91%

1.9 || 2.0 || RPD: 5

52 || 52 || RPD: 0

<1 || <1

3 || 3 || RPD: 0

1800 || 1800 || RPD: 0

950 || 950 || RPD: 0

Client Reference: P1002842JC01V01, Culburra UNITS PQL QUALITY CONTROL **METHOD** Blank Duplicate Sm# **Duplicate results** Spike Sm# Spike % Recovery All metals in Base II Duplicate II %RPD water-dissolved Molybdenum-Dissolved Metals.22 48959-1 <1 || <1 LCS-W1 99% μg/L 1 <1 ICP-MS Nickel-Dissolved Metals.22 48959-1 38 || 38 || RPD: 0 LCS-W1 89% μg/L 1 <1 ICP-MS Metals.22 Vanadium-Dissolved 48959-1 <1 || <1 LCS-W1 95% μg/L <1 ICP-MS Zinc-Dissolved Metals.22 48959-1 100 || 100 || RPD: 0 LCS-W1 95% μg/L 1 <1 ICP-MS Arsenic-Dissolved Metals.22 48959-1 LCS-W1 90% 1 2 || 2 || RPD: 0 μg/L <1 ICP-MS Mercury-Dissolved Metals.21 μg/L 0.4 < 0.4 48959-1 <0.4 || <0.4 LCS-W1 100% CV-AAS Lead-Dissolved μg/L 1 Metals.22 <1 48959-1 15 || 15 || RPD: 0 LCS-W1 96% ICP-MS Selenium-Dissolved 92% Metals.22 48959-1 LCS-W1 μg/L 1 <1 <1 || <1 ICP-MS **QUALITY CONTROL UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Miscellaneous Inorg - soil Base + Duplicate + %RPD Date prepared 48959-14 6/12/2010 || 6/12/2010 LCS-2 6/12/2010 Date analysed 48959-14 6/12/2010 || 6/12/2010 LCS-2 6/12/2010 pH 1:5 soil:water pH Units 48959-14 5.1 || 5.0 || RPD: 2 LCS-2 100% **Electrical Conductivity 1:5** 48959-14 33 || 34 || RPD: 3 LCS-2 106% µS/cm soil:water **QUALITY CONTROL** UNITS Dup. Sm# Duplicate Miscellaneous Inorg - soil Base + Duplicate + %RPD Date prepared 48959-25 6/12/2010 || 6/12/2010 Date analysed 48959-25 6/12/2010 || 6/12/2010 48959-25 4.9 || 5.0 || RPD: 2 pH 1:5 soil:water pH Units **Electrical Conductivity 1:5** μS/cm 48959-25 44 || 54 || RPD: 20

Envirolab Reference: 48959 Revision No: R 01

soil:water

Report Comments:

Phosphate:PQL raised due to sample matrix.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

Asbestos counting was analysed by Approved Counter:

@ERROR
Asbestos counting was authorised by Approved Signatory:

@ERROR

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Reference: 48959 Revision No: R 01 Page 13 of 13

16 Attachment H – Agency Consultation

Megan Kovelis

From: Dollery, Ian <dolleryi@shoalhaven.nsw.gov.au>

Sent: Thursday, 15 March 2012 8:52 AM

Megan Kovelis To:

Subject: RE: West Culburra subdivision

Megan

At this point in time I can't foresee any problem with doing so. Without the policy and the development coming direct to council, we would probably place conditions on a consent requiring similar outcomes.

Regards

San Dollery Subdivision Engineer

Shoalhaven City Council

202 4429 3308 | **3**02 4429 3178

Please consider the environment before printing this e-mail notice.

From: Megan Kovelis [mailto:mkovelis@martens.com.au]

Sent: Wednesday, 14 March 2012 4:12 PM

To: Dollery, Ian Cc: Andrew Norris

Subject: RE: West Culburra subdivision

lan,

Thank you for sending that information through. As discussed, our current MUSIC modelling approach is to achieve a 'neutral or beneficial impact' when comparing the pre- and post-development scenarios. Based on the information provided, we will also consider the pollutant objectives in Table 5.2 of the draft DCP.

Do you anticipate that Council would be happy with this modelling approach?

Kind Regards,

Martens & Associates Pty Ltd

Megan Kovelis **Environmental Scientist** BEnvSc (Hons1)

Martens & Associates Pty Ltd Unit 6/37 Leighton Place Hornsby, NSW 2077 P + 61 2 9476 9999 F + 61 2 9476 8767

www.martens.com.au

This message is intended for the addressee named and may contain confidential / privileged information. If you are not the intended recipient, please delete it and notify the sender. Views expressed in this message are those of the individual sender, and are not necessarily the views of Martens & Associates Pty Ltd. You should scan any attached files for viruses.

From: Dollery, Ian [mailto:dolleryi@shoalhaven.nsw.gov.au]

Sent: Tuesday, 13 March 2012 4:36 PM

To: Megan Kovelis

Subject: West Culburra subdivision

Megan

Hope this helps!

Regards

San Dollery Subdivision Engineer Shoalhaven City Council

202 4429 3308 | **3**02 4429 3178

http://shoalhaven.nsw.gov.au

Please consider the environment before printing this e-mail notice.

This message may contain both confidential and privileged information intended only for the addressee named above.

If you have received this email in error, please notify the sender immediately then destroy the original message.

This message may contain both confidential and privileged information intended only for the addressee named above.

If you have received this email in error, please notify the sender immediately then destroy the original message.

Megan Kovelis

From: allan.lugg@dpi.nsw.gov.au

Sent: Thursday, 14 February 2013 12:25 PM

To: Megan Kovelis

Cc: trevor.daly@dpi.nsw.gov.au

Subject: MP09_0088 West Culburra Urban Expansion - Stormwater Modelling

Hi Megan,

as discussed, I can confirm that we have discussed the modelling approach being undertaken for the proposed West Culburra subdivision by Martens and Associates.

From our discussion, I understand that the modelling will compare pre-development conditions with post-development conditions and aim to achieve a Neutral or Beneficial Impact upon Curleys Bay and the Crookhaven River estuary (where there are numerous oyster farms) with respect to suspended sediment, nitrogen and phosphorus. I believe that is a reasonable approach.

As discussed, I also recommend that you give some consideration to the potential impacts upon bacterial levels and the potential implications for oyster farming.

Regards Allan

Allan Lugg | Senior Fisheries Conservation Manager

NSW Department of Primary Industries

4 Woollamia Road | PO Box 97 | HUSKISSON NSW 2540

T: 02 4428 3401 | F: 02 4441 8961 | M: 0409 912 686 | E: <u>Allan.Lugg@dpi.nsw.gov.au</u>

W: http://www.dpi.nsw.gov.au/fisheries

This message is intended for the addressee named and may contain confidential information.

If you are not the intended recipient, please delete it and notify the sender. Views expressed in this message are those of the individual sender, and are not necessarily the views of their organisation.

Megan Kovelis

From: Miles Boak <Miles.Boak@environment.nsw.gov.au>

Sent: Friday, 8 February 2013 2:11 PM

To: Megan Kovelis

Subject: FW: West Culburra Proposed Subdivision - Water Quality Modelling

Attachments: DOC10-22366 DECCW DG-EARs & Attachments 24 May 2010.pdf; ATT00001..txt;

ATT00002..htm

Hi Megan

OEH are happy with the approach taken for water quality assessment - of applying MUSIC modelling guidelines with a view to achieving neutral and beneficial impact on water quality. OEH provided comments in this regard on the West Culburra DGRs in May 2010 (attached) which provide more detail.

Cheers Miles Boak

Miles Boak Conservation Planner - Regional Operations Office of Environment and Heritage NSW Department of Premier and Cabinet PO Box 733, Queanbeyan, NSW 2620 T: 02 62297095 M: 0427919192 W: www.environment.nsw.gov.au

From: Megan Kovelis [mailto:mkovelis@martens.com.au]

Sent: Wednesday, 14 March 2012 12:28 PM

To: Thompson Julian **Cc:** Andrew Norris

Subject: West Culburra Proposed Subdivision - Water Quality Modelling

Julian,

I appreciate your time this morning. As discussed, based on Council DCP water quality requirements and NSW OEH requirements for the nearby West Culburra Golf Course, we are undertaking our MUSIC modelling to achieve neutral or beneficial impacts (pre development versus post development) for the proposed subdivision development.

MUSIC inputs (EMC's, pervious area parameters etc) are based on NSW CMA (2010) 'Sydney Metropolitan: Draft NSW MUSIC Modelling Guidelines'.

I trust that OEH agree with this modelling approach.

Kind Regards,

Martens & Associates Pty Ltd

Megan Kovelis Environmental Scientist BEnvSc (Hons1)

17 Attachment I – MUSIC Model Sensitivity Analysis

Table 24: MUSIC results – assessment period (1964 to 1970) – site receivers with vegetation uptake.

Scenario	Location	Flow (ML/yr)	Peak Flow (m³/s)	TSS (kg/yr)	TP (kg/yr)	TN (kg/yr)
ınt	Crookhaven River	296	28.6	12319	26.5	180.2
Site – Development	Lake Wollumboola	19	2.0	214	0.5	5.2
Site -	Billys Island inlet (SEPP 14 Wetlands)	104	10.8	1180	2.7	31.5
De De	Seagrass and Oyster Leases	192	17.8	11139	23.8	148.7
Pre	Curleys Bay	92	7.4	8890	16.1	94.5
+	Crookhaven River	381	20.9	10067	22.3	162.2
Site – Post Development	Lake Wollumboola	16	1.0	125	0.5	4.5
Site – Post elopr	Billys Island inlet (SEPP 14 Wetlands)	105	6.2	510	2.5	26.6
) Oeve	Seagrass and Oyster Leases	276	14.6	9557	19.8	135.6
	Curleys Bay	88	6.2	8660	15.2	89.1
	Crookhaven River	28%	-27%	-18%	-16%	-10%
(%)	Lake Wollumboola	-15%	-49%	-42%	-1%	-15%
Change (%)	Billys Island inlet (SEPP 14 Wetlands)	1%	-42%	-57%	-9%	-16%
Cho	Seagrass and Oyster Leases	43%	-18%	-14%	-17%	-9%
	Curleys Bay	-4%	-16%	-3%	-6%	-6%
_	Crookhaven River	-	-	Υ	Υ	Υ
<u></u> Z	Lake Wollumboola	-	-	Y	Υ	Y
Complies with NorBE (Y/N)	Billys Island inlet (SEPP 14 Wetlands)	-	-	Υ	Υ	Υ
Nor	Seagrass and Oyster Leases	-	-	Y	Y	Y
	Curleys Bay	-	-	Y	Y	Y

Table 25: MUSIC results – assessment period (1964 to 1970) – site receivers <u>without</u> vegetation uptake (results not achieving NorBe highlighted in green).

UL	otake (results not achieving NorBe high	ilignied in (gieerij.			
Scenario	Location	Flow (ML/yr)	Peak Flow (m³/s)	TSS (kg/yr)	TP (kg/yr)	TN (kg/yr)
t t	Crookhaven River	296	28.6	13639	33.0	250.7
- bme	Lake Wollumboola	19	2.0	287	0.9	9.4
Site – svelop	Billys Island inlet (SEPP 14 Wetlands)	104	10.8	1550	4.6	50.3
Site – Pre Development	Seagrass and Oyster Leases	192	17.8	12089	28.4	200.4
Pre	Curleys Bay	92	7.4	9180	17.9	114.0
+	Crookhaven River	381	20.9	12433	42.8	345.7
nen.	Lake Wollumboola	16	1.0	318	2.0	18.6
Site – Post Development	Billys Island inlet (SEPP 14 Wetlands)	105	6.2	1270	9.2	88.9
S – Seve	Seagrass and Oyster Leases	276	14.6	11163	33.6	256.8
	Curleys Bay	88	6.2	9140	17.7	115.0
	Crookhaven River	28%	-27%	-9%	30%	38%
88	Lake Wollumboola	-15%	-49%	11%	135%	97%
Change (%)	Billys Island inlet (SEPP 14 Wetlands)	1%	-42%	-18%	98%	77%
Chc	Seagrass and Oyster Leases	43%	-18%	-8%	19%	28%
	Curleys Bay	-4%	-16%	0%	-1%	1%
_	Crookhaven River	-	-	Y	Ν	N
<u></u>	Lake Wollumboola	-	-	Ν	Ν	Ν
Complies with NorBE (Y/N)	Billys Island inlet (SEPP 14 Wetlands)	-	-	Y	Ν	Ν
Com	Seagrass and Oyster Leases	-	-	Y	Ν	Ν
	Curleys Bay	-	-	Υ	Y	Ν

18 Attachment J - Borelogs

CLI	EN	г	Α	llen Pric	ce & As	sociates	Pty	Ltd	COMMENCED	22.11.10	COMPLET	ED 2	22.11.10			REF		BH1	
PRO	ΟJΕ	СТ	E	ngineer	ing Ser	vices			LOGGED	GT	CHECKED	,	AN			Sheet 1			
SIT			С	ullburra		West C	ullbu	ırra	GEOLOGY	Siltstone	VEGETAT	-	Grasses			PROJECT I	NO . P10	002842	
EQUI				NSIONS	Hydraulic				EASTING	NA	RL SURFA		NA			SI ODE			
_		_		ION DA		4.75m depth		M 2	NORTHING	NA NTA	ASPECT		North		AMPI IN	SLOPE	2-3%	0	
				TON DA		(2)	Z	IVIZ	TI ENIAL DA	NIA .		×			AIVIFLIIV	IG & IES	IIIIG		
МЕТНОD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a ntamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX) 	DEPTH(M)		WATER 0.6m agl	WELL C	DETAILS Well Cove	r
Α	Nil	N	М	-0.25			sc	SILTY CLAYEY SAND	– Dark brown	, fine grained sands.		L	. ,	A 0.2	2 2842/1/0	.2		Concrete	-
Α	Nil	N	М	-0.25 - -0.45			sc	SILTY CLAYEY SAND	- Light grey,	fine grained sands,		L		0.4	2842/1/0	.4			\exists
				0.45			-		inor gravels.		F		1					0.5m bgl	
Α	Nil	N	М	0.9			CL	SILTY CLAY - Brown/c tending to clay	orange, grave with gravels	els (1-15mm, 35%), decreasing.	St			A 1.0	2842/1/1	0		Bentonite Sea	1 0
Α	Nil	N	М	1.2			СН	CLAY - Gre	ey/orange/red	mottled.	VSt		'		2042/1/1		∮ • ∣	UPVC Pipe	e. 1 <u>.0</u>
А	Nil	N	М	1.6			CL	SANDY CLAY/E. SILTSTONE - Ligh		v, cream bands,	VSt	М	D ,	A 1.5	5 2842/1/1	.5		1.5m bgl	111
А	Nil	N	D	2.0 			EW HW	graveis EXTREMELY TO HIGI	· · ·			MI D						Sand Paci	2 <u>.0</u> 2.0 k. –
Α	Nil	N	D	3.0 3.2			MW	MODERATELY\ GRA	WEATHEREI									UPVC Scree	en. – 3 <u>.0</u>
А	Nil	N	М	4.0			CL EW	CLAY/EXTREMELY	(WEATHERI Grey.	ED SILTSTONE -	F St		,	3.5	5 2842/1/3	3.5			4.0
А	Nil	N	D	_ - - - -4.75			MW	MODERATELYV	VEATHERE	SILTSTONE.		D	, ,	4.5	5 2842/1/4	.5 4.55m bgl		Well end plug.	11111
EG	QUIPMQUIPM	MENT	/ME	5.0 - - - - - - - - - - - - - - - - - - -	JPPORT	WATER			weathered si		SAMM	PLING	& TEST	NG		1	CI	ASSIFICATION	5.0
N X BH E HA S PT A	Na Ex Ex Ha Ha Put	atural e	exposi excar bucke or ger ade e	ture SF vation SC eet RE Nil	H Shoring	N Nor te X Not olts ∇ Wa	ne obs meas ter lev ter out	erved D Dry L Lo red M Moist M Mo el W Wet H Hig Wp Plastic limit R Re flow WI Liquid limit	w VS oderate S gh F ifusal St VSt H	DENSTTY	ose A A B E Dense U U D [se M N	Auger s Bulk sar Jndistu Disturbe Moistur	ample	ple nm)	pp Pocket p S Standard VS Vane sh DCP Dynam penetro FD Field der WS Water sa	nic cone ometer nsity	S	MBOLS AND DIL DESCRIPTIO	
		.5.018	2016	<u>·</u>		EXCAVAT	ON L	OG TO BE READ IN CONJU	INCTION WITH	I ACCOMPANYING REP	ORT NOTE	S AN	ID ABBF	REVIAT	TIONS				
		_	_									Т			_	_			

CLI	EN	Γ	Al	len Pric	ce & Ass	sociates	Pty	Ltd	COMMENCED	23.11.10		COMPLETE	D 23.1	1.10			REF	Е	BH1A
PR	JE	СТ	Er	ngineer	ing Serv	vices			LOGGED	GT		CHECKED	AN				Sheet 1		
SIT			Cı	ullburra		West Cu	ıllbu	ırra	GEOLOGY	Siltstone		VEGETATION	ON Gras	ses			PROJECT N	o. P10	02842
EQU					Hydraulic A				EASTING	NA		RL SURFAC							
-				SIONS	0.1mØ X 1	.6m depth			NORTHING	NA TA		ASPECT	Norti	h T	C A	MDLIN	SLOPE	2-3%)
Н	EX	CAV	AII	ON DA			7	IVI A	TERIAL DA	ATA .					SA	WIPLIN	G & TES	IING	
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, r particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a ontamination, odou	asticity, rocks, oxidation and minor components	on, i,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		WATER V	VELL C	PETAILS Well Cover
А	Nil	N	М	_			sc	SILTY CLAYEY SAND	– Dark brown	, fine grained sa	inds.		L						Concrete
А	Nil	N	М	-0.25 -			sc	SILTY CLAYEY SAND					L				—0.3m bgl—		Bentonite Seal
				-0.45 - 0.6				m	inor gravels.		_/	F					0.56m bgl	-	UPVC Pipe.
A	Nil	N	М				CL	SILTY CLAY - Brown/ tending to clay	with gravels	decreasing.	%),	St							UPVC Screen.
А	Nil	N	М	1.2			СН	CLAY - Gre	ey/orange/red	mottled.		VSt							Sand Pack.
А	Nil	N	М	1.6			CL	SANDY CLAY/E SILTSTONE - Ligi	XTREMELY \ nt grey, yellov (approx 5-50	v, cream bands,		VSt	MD	A	1.6	2842/1A/	1.6		1.56mbgl
				2.0 				Borehole terminate		clay/extremely									
		MENT	/ ME	THOD SU	JPPORT Shoring	WATER				SISTENCY DENSIT			PLING & T		<u> </u>	Dode-4	onotro mat		ASSIFICATION
N X BH E H S P1 A C0	H Ba Ex Ha Ha Pus Au	atural e xisting ckhoe cavato and aug and spa sh tube ager ncrete	excav bucke or ger ade	ration SC et RE Nil	3 Rock Boli I No suppo	ts <u>▼</u> Wate ort ▼ Wate ► Wate	measu er leve er outf er inflo	red M Moist M Moist W Wet H Hig Wp Plastic limit R Re low WI Liquid limit	oderate S gh F Ifusal St VSt H F	Soft L Lo Firm MD M Stiff D De Very Stiff VD Ve Hard Friable	ery Loos bose edium D ense ery Dense	se A Ai B Bi ense U U D D e M M Ux Tu	uger samp ulk sample ndisturbed isturbed si oisture co ube sampl	ole di sample ample ntent e (x mm)	PP S VS DO FE W	Standard Vane she P Dynam penetro Field der S Water sa	nic cone ometer nsity		-
			_													_	_		

CLI			-			sociates	Pty	Lta	LOGGED	22.11.10		COMPLETE		.10			KEF			H2	
PROJECT Engineering Services SITE Cullburra Road, West Cullburra										GT		CHECKED	AN				Sheet 1				
SIT			C	ullburra			ıllbu	ırra	GEOLOGY	Siltstone		VEGETATIO	_	es			PROJECT	NO. P	100284	12	
EQUI			INAT N	CIONE	Hydraulic A				EASTING	NA		RL SURFAC					SLOPE		0/		
				SIONS	0.1mØ X 7	7.0m depth			NORTHING	NA T A		ASPECT	North					3-4			_
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH(M)	PENETRATION R RESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRII Soil type, texture, structure, reparticle characteristics, orga	PTION OF STR mottling, colour, planics, secondary a ontamination, odou	ATA asticity, rocks, c	oxidation, conents,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	MPLING	G & TES WATER			AILS Well Cover 0.73m agl	r
A	Nil	N N		0.1			OL	ORGANIC SILT	Y CLAY – Da	rk grey/blad	ck.	S			0.0	0040/0/0	T.	1	1.	7	=
Α	Nil	N	М	0.2			CL		Y – Brown/lig					Α	0.2	2842/2/0.2	2+ B			Concrete, -0.3m bgl	_
A	Nil	N	М				CL	CLAY – Red, moderat mottles inc	tely plastic, w creassing with		wn/grey	F		A	0.5	2842/2/0.5	5 + Att			_Bentonite Sea	1 -
Α	Nil	N	М				СН	CLAY – Red, mediun	m plasticity, g	rey/brown r	nottles.	St		А	1.0	2842/2/1.0)	() () •		UPVC Pipe	- 2. 1 <u>.0</u>
Α	Nil	N	М	1.2			СН	CLAY - Grey wit	h minor red/b	rown mottle	es.	VSt		Α	1.2	2842/2/1.2	2	2,4	ΒE		=
Α	Nil	z	Δ Δ	2.0 - - - - - - - - - - - - - - - - - - -			CL	CLAY - EXTREMEL Clay to sandy	Y WEATHER	ED SILTS1	FONE -	VSt		A	2.0	2842/2/1.8 2842/2/2.0 2842/2/2.8 2842/2/4.8	5			4.05mbglSand PackUPVC Screen	2.0
Α	Nil	N	М	- - - 6.0 - - - - 6.5			CL	SILTSTONE CLAY - highly w	Brown/dark g /eathered silts		gravels,	St		Α	6.0	2842/2/6.0)				6.0
Α	Nil	N	w	- - - 7.0			CL EW	CLAY - Dark gi weat	rey/brown, cla hered siltstor		у	VSt		A	7.0	2842/2/7.	.0	성 기 : : : : : : : : : : : : : : : : : : :			7 0
								Borehole term	ninated at 7.0	m on clays.					-) 	[<u>₩. Ή</u>	— 7 .05 m bgl Veil end plug.	8.0
	ALUE:	4E	/	9.0 THOD SU	JPPORT	WATER		MOISTURE PENET	TRATION CON	SISTENCY [DENSITY		LINGS	07:::					21.4.2.	IEIO A T. C.	9.0
N Natural exposure X Existing excavation SC Shotrete X Not measured BH Backhoe bucket E Excavator Nil No support A Hand spade PT Push tube A Auger CC Concrete Corer Natural exposure SH Shoring N None observed D Dry L Low VS Very Soft VL Very Loose M Moderate S Soft L Loose W Wet H High F Firm MD Medium Dense W Wet H High F Firm MD Medium Dense St Stiff VD Very Dense W Liquid limit F Firable F Friable Water outflow W Liquid limit F Firable EXCAVATION LOG TO BE READ IN CONJUNCTION WITH ACCOMPANYING REPORT N											se A Au B Bu Jense U Ur D Di e M Mo Ux Tu	LING & TE ger sample llk sample idisturbed sa sisture con be sample	sample mple tent (x mm)	PP S VS DC FE W:	S Vane she CP Dynamic penetror D Field dens S Water sar	penetration to ar c cone meter sity	est S	Y L	EFICATION DLS AND ESCRIPTION JSCS Agricultural		
)						MARTENS &	ASSOCIATES	S PTY LTD				no	vino	orin	~ I	_	~	

CLI			Allen Price & Associates Pty Ltd								COMMENC				COMPLE		23.11.	10			REF		BH	I2A	
PROJECT Engineering Services							LOGGED	GT	Т		CHECKE	D	AN				Sheet 1	of	1						
SIT			Cu	Ilburra	Road,		ullbu	ırra			GEOLOGY		Itstone		VEGETA ⁻		Grasse	es			PROJECT	NO. P	100284	12	
EQUI					Hydraulic A						EASTING				RL SURF	ACE	NA			1					
_			IMENS		0.1mØ X 1.	5m depth					NORTHING				ASPECT		North				SLOPE	3-4			
	SUPPORT	WATER	MOISTURE	DEPTH(M)	PENETRATION R RESISTANCE	GRAPHIC LOG	CLASSIFICATION	S	DE oil type, texture, stru particle characteristi	ESCRIP ucture, m	PTION OF States of the control of th	STRAT. ur, plastic	A city, rocks	, oxidation, nponents,	CONSISTENCY		DENSITY INDEX	TYPE	DEPTH(M)		WATER			AILS — Well Co	over
A A	Nil Nil	N N	M (0.1	2216		OL	_	ORGANIC	SILTY	/ CLAY –	- Dark	grey/bla	ack.	S	L.	_				्ट	1		Concrete	
	Nil	N	M	0.2			CL				′ – Brown				S F						-0.25m bgl-			Bentonite	Seal _
A	INII	IN	l L	0.6 -			CL	CI	_AY – Red, mottl		ely plastic reassing			own/grey							0 <u>.4</u> 7mbgl			_UPVC S	
A	Nil	N	l F	1.0 1.1		 	CH	С	CLAY – Red, m						St									Sand P	ack 1.0
A	Nil Nil	N N	M D M	1.2			CH	_	CLAY - Gre						VSt VSt						1.42m bal				_
	Nil	N .					EW EW	C	Borehole to	andy ogre gre ermina	clay, wea y/red/bro	theredown. 5m on	l gravel	s,	VSt			A	1.5	2842/2A/1.	5 1.42m bgl			Well end plu	\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			_	<u>.</u> 2.0																		_			9. <u>0</u>
N Natural exposure SH Shoring N None observed D Dry L L X Existing excavation SC Shotcrete X Not measured M Moist M I									L Lov M Mo H Hig R Ref	w \ derate S h F iusal S	S Sol F Firr St Stiff VSt Ver H Har F Fria	ry Soft ft m f ry Stiff rd ble	DENSITY VL Very Loo L Loose MD Medium I D Dense VD Very Dense	ose A B Dense U D se M Ux	Auger Bulk s Undist Distur Moistu Tube s	IG & TE sample ample turbed shed samure contus sample	ample nple ent (x mm)	pp S VS DC FE WS	S Vane she CP Dynami penetroi D Field dens S Water sai	penetration ar c cone meter sity		SYMBO SOIL D	EIFICATIONS AND ESCRIP) TION	
ı											MARTENS	S & A S	SOCIAT	ES PTY LTD		- 1				.:	ovin	~ I	_		

CLI	EN	Г	Allen Price & Associates Pty Ltd COMMENCED 23.11.10									ED 2	23.11.10			REF		BH3
PROJECT Engineering Services						LOGGED	GT	CHECKED		AN			Sheet 1		_			
SIT	E		С	ullburra	Road,	West Cu	ıllbu	ırra	GEOLOGY	Siltstone	VEGETAT	ION I	None			PROJECT I	IO. P10	002842
EQUI	PMEI	NT			Hydraulic A	Auger			EASTING	NA	RL SURFA	CE I	NA					
EXC	VAT	ION D	IMEN	ISIONS	0.1mØ X 5	.5m depth			NORTHING	NA	ASPECT	ı	North			SLOPE	2-3%	6
	EX	CAV	/AT	ION DA				MA	ATERIAL DA	ATA				SA	MPLIN	G & TES	TING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR. mottling, colour, pla anics, secondary a ontamination, odou	sticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		WATER	WELL I	Well Cover
Α	Nil	N	М	- 0.15	*	×××	SM	SILTY SAND – Brow	wn/dark brow	n, minor gravels.		L	А	0.2	2842/3/0.	2	H	Concrete
Α	Nil	N	М	_ _0.35	*		SP	SAND – Light brown				L						
				_				gravels (1	-5mm, approx	x 10%).			А	0.5	2842/3/0.	5		
А	Nil	N	М			 	CL	CLAY - Yellow/bro siltstone band			F St		A	1.0	2842/3/1.	0		0.6m bgl Bentonite Seal UPVC Pipe. 1.1
Α	Nil	N	М	- -1.25			CL/ HW	SANDY CLAY/HIGH		RED SILTSTONE	VSt		А	1.2	2842/3/1.	2	ior Lu	
				- 1.25		= ===	CL	- (Orange/grey.		7/01					+	1	4
A	Nil	N	М	1.6			HW	CLAY - HIGHLY W Grey with red/orange			VSt		A	1.5	2842/3/1.	5	Q MEE	1.565m bgl
A	Nil	N	М	2.0 2.1			MW	CLAY - MODERATELY SILTSTONE - C) VSt		А	2.0	2842/3/2.	0		Sand Pack. UPVC Screen. 2.1
Α	Nil	N	D	- - - - - - - - - - - - -			SC EW		EXTREMELY :- Grey/pink/r m grained sar	ed, fine to	VSt		А	2.5	2842/3/2.	5		100 100 100 100 100 100 100 100 100 100
Α	Nil	N	D	3.2			MW	MODERATELY V	VEATHERED	SILTSTONE -								3.1
А	Nil	N	D	3.2 - - - - - - - - - - - - - - - - - - -			HW/ EW		range brown.				В	4.0	2842/3/4.	0		100 100 100 100 100 100 100 100 100 100
A	Nil	N	D	- - - - - - - - - - - - - - - - - - -			MW/ SW	MODERATELY, S	/SLIGHTLY W BILTSTONE.	/EATHERED						4 <u>.565</u> m <u>bgl</u>		Well end plug.
А	Nil	N	D	_ _ _ _ 5.5			EW/ MW	EXTREMELY/MC	DDERATELY SILTSTONE.	WEATHERED						; ;; ;;		
								Borehole termina weatl	ated at 5.5m c									6 <u>.</u> 7 <u>.</u> 8 <u>.</u>
N X BH E HA S PT A	Na Ex Ex Ha Ha Au	itural e	exposi excar bucke or ger ade e	THOD SL ure SH vation SC et RE Nil	Rock Boli No suppo	ts <u>▼</u> Wat ort 	e obse measu er leve er outf er inflo	rived D Dry L Lo red M Moist M Mo il W Wet H Hig Wp Plastic limit R Re low WI Liquid limit	ow VS obtained by VS for the VS f	SISTENCY	oose A A Dense U U D D Inse M N Ux T	auger s Bulk sar Indistu Disturb Toistur Tube sa	irbed sample ed sample e content ample (x mn	e V: D n) FI	Standard S Vane she CP Dynami penetro D Field den S Water sa	ic cone meter sity	S'	LASSIFICATION YMBOLS AND OIL DESCRIPTION USCS
					Е	XCAVATIO	ON LO	OG TO BE READ IN CONJU	INCTION WITH	ACCOMPANYING RE	PORT NOTE	SAN	ID ABBRI	VIATI	SNC			
Ì			-									- 1			_	_		

CL	IEN	Γ	А	llen Pri	ce & As	sociates	Pty	Ltd	COMMENCED	23.11.10	COMPLET	ED 2	23.11.10			REF	E	3H4
PR	OJE	СТ	E	nginee	ring Ser	vices			LOGGED	GT	CHECKED	,	AN			Sheet 1		
SIT			С	ullburr		West Cu	ıllbu	ırra	GEOLOGY	Siltstone	VEGETATI	-	None			PROJECT	NO . P100	2842
_	IPME			IOIONO	Hydraulic /				EASTING	NA	RL SURFA		NA			OL ODE		
EXC				ION DA	0.1mØ X 5	5.5m depth		M	NORTHING	NA	ASPECT		North	9/	MDIIN	SLOPE	2-3%	
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH (M)	PENETRATION	GRAPHIC LOG	CLASSIFICATION	DESCRII Soil type, texture, structure, reparticle characteristics, orga	PTION OF STR	ATA asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH (M)			WELL DI	ETAILS Well Cover
	Nil	N	м	-	≥ ± ∝	X X X		SILTY SAND – Brown,	gravole (1-1	0mm approx 10%)	ŭ		-	0.2	2842/4/0).2		Concrete -
A	Nil	N	М	0.3		× × ×	SM	CLAY - Brown/orange	e, mottles inci	reasing with depth,	S		A	0.5	2842/4/0).5		-
А	Nil	N	М	 _ 			CL	gravels (1-	10mm, appro			F	A	1.0	2842/4/1	1.0		O.6m bgl Bentonite Seal UPVC Pipe. 1.0
Α	Nil	N	М	- - - - - 1.8			CL HW	CLAY - HIGHLY W Grey with red/orange			VSt		А	1.5	2842/4/1	1.5		- 4.26m bgl
А	Nil	N	М	2.0			CL MW EW	CLAY - MODERATELY SILTSTONE - 0			VSt		A	2.5	2842/4/2 2842/4/2			2 <u>0</u>
А	Nil	N	D	3.0 			SC EW	CLAYEY SAND/E SILTSTONE - G mediur		orange, fine to	VSt		В	4.0	2842/4/4	l.0 4 <u>.26</u> m bgl		3.0
А	Nil	N	D				EW/ MW	EXTREMELY/MC SILTSTONE					А	5.0	2842/4/5	5.0		5 <u>.0</u>
				5.5 				Borehole to extremely/mode	erminated at a								102,700	- 6.0
N B E H S P A	EQUIPMENT / METHOD SUPPORT N Attural exposure SC Shotcrete SC Shotcrete Nil No support H H and auger S Hand spade S Hands spade																	
	C Co	ncrete	Core	er		EXCAVATION	ONI	OG TO BE READ IN CONJU	INCTION WITH	ACCOMPANYING REP	ORT NOTE	SAN	ID ARRPI	EVIATI	ONS			
\vdash			_			_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J. 4 L			ASSOCIATES BTV LTD	5 NOTE	1		\ ! !				

CLIENT Allen Price & Associates Pty Ltd								Pty	Ltd	COMMENCED	24.11.10	COMPLETE	ED 2	4.11.10			REF	1	BH5	,
-	OJE	СТ	E	ngineer	ring S	erv	vices			LOGGED	JSF	CHECKED	0	FT .			Sheet '	of	1	
SI			С	ullburra	_		West Cu	ıllbu	rra	GEOLOGY	Siltstone	VEGETATI	_	ucalypts			PROJECT	NO . P	1002842	
-	JIPME		IME	ISIONS	Hydrau		Suger 5.5m depth			EASTING NORTHING	NA NA	RL SURFAC	-	NA North			SLOPE	5%		
Ë				ION DA		<i>D</i> X :	o.om deptri			TERIAL DA		ASPECT		NOTUT	SA	MPLIN	IG & TE	_		
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH(M)	FENETRATION SECOND	KESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRII Soil type, texture, structure, reparticle characteristics, orga	PTION OF STR	ATA asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)				DETAILS	ll Cover
А	Nil	N	М	0.3			× × × × × ×	OL	ORGANIC SA	NDY SILT – I	Dark brown.	S		A	0.2	2842/5/0	0.2		Conc	crete, –
А	Nil	N	М	- - - - - - - 1.0				CL	CLAY - Orange/bro tending grey with mino	own mottles, f or brown and i	irm grading stiff, red mottles at depth.	F- St		A	1.0	2842/5/0 2842/5/1			1.0m	
A	Nil	N	D	1.7				EW	EXTREMELY W Orange MODERATELY W	/grey mottled	, dry.			A	1.5	2842/5/1	.5		1.68m	 nbgl nd Pack
A	Nil	N	D	3.0				MW		grey mottled				A	2.5	2842/5/2	2.5		UPV	C Screen. — 3.0
A	Nil	N	D	4.0				EW		grey mottled	, dry.									- - - - - 4.0
A	Nil	N	D	4.3 - - - - - - - - - - - - - - - - - - -				SW	SLIGHTLY WE MODERATELY WEATHERE	ATHERED W	ITH EXTREMELY			В	5.5	2842/5/5	<u>4.68</u> m <u>bg</u>			
	QUIP	MENT	// ME		UPPOR		WATER		moderately	erminated at a veathered s		SAM	PLING	& TESTING					CLASSIFICA	
E E E F	N Natural exposure SH Shoring N None observed D Dry L Low VS Very Soft VL Very Loose A Auger sample S Standard penetrometer S SMBOLS AND SC Shotcrete X Not measured M Moist M Moderate S Soft L Loose B Bulk sample S Standard penetration test SOIL DESCRIPTION Well High F Firm MD Medium Dense U Undisturbed sample VS Vana shear VS Vana shear DCP Dynamic cone penetrometer S SMBOLS AND SOIL DESCRIPTION Well High F Firm MD Medium Dense U Undisturbed sample DCP Dynamic cone penetrometer S SMBOLS AND SOIL DESCRIPTION Well High F Firm MD Medium Dense U Undisturbed sample DCP Dynamic cone penetrometer S SMBOLS AND SOIL DESCRIPTION Well High F Firm MD Medium Dense U Undisturbed sample DCP Dynamic cone penetrometer P F Fiable Water outlined sample NS Soil DESCRIPTION Well Well High F Firm MD Medium Dense U Undisturbed sample DCP Dynamic cone penetrometer P F Fiable Water outlined sample NS Soil DESCRIPTION Well Well Well Well High F Firm MD Medium Dense U Undisturbed sample DCP Dynamic cone penetrometer P F Fiable Water outlined sample NS Soil DESCRIPTION Well Well Well Well Well Well Well Wel																			
F	00	- ROTERE	JOUR			Е	XCAVATIO	ON LO	OG TO BE READ IN CONJU		ACCOMPANYING REP	ORT NOTE	S AN	D ABBRE	VIATI	ONS				

CL	IEN	Т	А	llen Pri	ce & As	ssociates	Pty	Ltd	COMMENCED	23.11.10	COMPLETE	D 23.1	1.10			REF		Bŀ	1 6
PR	OJE	СТ	E	ngineer	ing Se	rvices			LOGGED	GT	CHECKED	AN				Sheet 1	of		
SI			C	ullburra		, West Cı	ıllbu	rra	GEOLOGY	Siltstone	VEGETATI		е			PROJECT	NO. P	100284	2
-	JIPME		- II. 4F-1	1010110	Hydraulic				EASTING	NA	RL SURFA					SI ODE	1		
EXC				ION DA		5.5m depth		M	NORTHING ATERIAL DA	NA ATA	ASPECT	Nor	h	9.1	MDIIN	SLOPE	1-2		
METHOD		WATER	MOISTURE	DEPTH (M)	PENETRATION	GRAPHIC LOG	CLASSIFICATION	DESCRII Soil type, texture, structure, reparticle characteristics, orga	PTION OF STR	ATA sticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		WATER			.ILS - Well Cover
	"		_	-	- ≥ ± 0	ž 2	CLA				8	DE		_		_	1	Ī.	
Α	Nil	N	М	0.1			CL	SILTY SANDY	CLAY – Dark	grey/brown.	S		A	0.2	2842/6/0	2	F		Concrete
А	Nil	N	М	0.45			CL	SILTY SAND C	LAY – Brown	/light brown.	s		A	0.5	2842/6/0				-
А	Nil	N	М	0.45			CL	CLAY - Red/orange wi			St			0.5	2842/0/0	.5			-0.5m bgl - Bentonite Seal
А	Nil	N	М				СН	CLAY - Grey/cream wir plastic, gravel	th red/brown	mottles, moderately	St		A	1.0	2842/6/1	.0	(4 (4) (5) (5)		UPVC Pipe. 1 <u>.0</u>
				-									А	1.5	2842/6/1	.5			Sand Pack.
А	Nil	N	М	2.0 _ _ _			CL HW	CLAY - HIGHLY W Light grey with red n increa		ne gravels bands	VSt		A	2.0	2842/6/2		X X XEE		2 <u>.0</u> - 2 <u>.33</u> m bgl -
				2.8				OANDY OLAY, M	ODEDATEL	(MEATHERER			A	2.5	2842/6/2	5			_UPVC Screen.
A	Nil Nil	N N	M D	3.0 3.1 3.3			CL MW CL/ HW		E - Light brownmm, approx 15	n, gravels	VSt VSt		В	3.0	2842/6/3	.0		X 	3.0
				-		=	HVV	CLAY/HIGHLY WEATH	HERED SILT	STONE - Light grey./			А	3.5	2842/6/3	.5			-
A	Nil	N	w	4.0 - -			CL	CLAY - EXTREMEL	Y WEATHER	ED SILTSTONE -	VSt		В	4.5	2842/6/4	.5			- 4 <u>.0</u> - - - -
				5.0 			EW	Dark brown/dark ເ	grey with ban	ds of grey clay.						<u>5.33</u> m <u>bgl</u>			5 <u>.0</u> 5 <u>.0</u> - - -
				5.5				Borehole te	erminated at s	5.5m on			A	5.5	2842/6/5	.5	<u> </u>	W	'ell end plug.
									weathered si										- 6 <u>.0</u> - - - -
																			- - - -
				7.0 _ _ _ _															/ <u>.u</u> - - - -
				_ _ 															- - 8 <u>.0</u>
				<u> </u>															- -
				- - - - 9.0															- - - - 9.0
EQUIPMENT / METHOD SUPPORT WATER None observed Natural exposure SH Shoring None observed X Existing excavation SC Shotcrete X Not measured BH Backhoe bucket RB Rock Bots TW Water level W Wet H High F Firm MD Mediu E Excavator Nil No support Water outflow WI Liquid limit R Refusal St Stiff D Dense HAH Hand auger S Hand spade PT Push tube A Auger C CC Concrete Corer												PLING & uger sample ulk sample ndisturbed so oisture coube samp	ole e d sample ample ontent	pr S V: D:	Pocket pr Standard S Vane shi CP Dynam penetro D Field der S Water sa	nic cone ometer nsity	est S	SYMBO SOIL DE	9.0 FICATION ILS AND ESCRIPTION SCS gricultural
EXCAVATION LOG TO BE READ IN CONJUNCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																			
į)						MARTENS &	ASSOCIATES PTY LTD		1	_			ovin	I		

CL	IEN	Г	Α	llen Pric	ce &	Ass	sociates	Pty	Ltd	COMMENCED	24.11.10	COMPLET	ED	24.11.	10			REF	BH7
PR	OJE	СТ	_	ngineer						LOGGED	JSF	CHECKED)	GT				Sheet 1 of	
SIT			С	ullburra	_		West Cu	llbu	ırra	GEOLOGY	Siltstone	VEGETAT		Grass				PROJECT NO.	P1002842
_	IPME		NAC'S	ISIONS	Hydra					EASTING NORTHING	NA NA	RL SURFA	CE	NA Na atla 1	14/			SLOPE	4%
-				ION DA	_	ωx.	2.5m depth			TERIAL DA	NA NTA	ASPECT		North	vvest	SA		G & TESTII	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	⊢ PENETRATION	RESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRII Soil type, texture, structure, riparticle characteristics, orga	PTION OF STR	ATA asticity, rocks, oxidation, and minor components,	CONSISTENCY) (DENSILY INDEX	TYPE	DEPTH(M)		RESUL	
A	Nil	N	M		::: ::::		× × ×	OL	ORGANIC SA	NDY SILT -	Dark brown.	S			A	0.2	2842/7/0	.2	
A	Nil	N	М	0.3			× × ×	SC	CLAYEY SAND - Bro	own, moist (a	lmost wet), loose.	_		L	Α		2842/7/0		
А	Nil	N	М	1.0 1.2				CL	CLAY - Orange/bro tending grey with mino	own mottles, f r brown and	irm grading stiff, red mottles at depth.	F			A	1.0	2842/7/1		1 <u>.</u>
А	Nil	N	D	1.6				EW	EXTREMELY W Grey, cl	EATHERED ay like prope					Α	1.5	2842/7/1	.5	
А	Nil	z	D					MW	MODERATELY WEATHERE								Bore	ehole left open and after drillinh and	2 <u>.</u> I checked 2 hours I found dry.
					JPPOR		WATER		MOISTURE PENE		SISTENCY DENSITY			G & TE					5_ CLASSIFICATION
E H S	X Existing excavation SC Shotcrete X Not measured BH Backhoe bucket RB Rock Bolts Y Water level E Excavator HA Hand auger BH Hand spade PT Push tube Shotch bucket PT Push tube Shotch bucket RB Water inflow Water level W Wet H High F Firm MD Medium Dense U Undisturbed sample Disturbed sample VS Vane shear VS Vane shear VS Vane shear VS Vane shear VS VS Vane Stiff VD Very Dense D Disturbed sample UX Tube sample UX Tube sample VS Vane sample VS Vane sample VS Vane shear																		
	C Co		Core	r		Е	XCAVATIO	ON LO	OG TO BE READ IN CONJU	NCTION WITH	I ACCOMPANYING REF	PORT NOTI	ES A	ND AE	BBRE\	/IATI	ONS		

CL	IEN	Γ	Α	llen Pric	e & A	ssociates	Pty L	Ltd	COMMENCED	24.11.10	COMPLETE	24.	.11.10			REF BH8				
PR	OJE	СТ	E	ngineeri	ing Se	rvices			LOGGED	JSF	CHECKED	GT	-			Sheet 1 of 1				
SIT	Έ		С	ullburra	Road	, West Cu	ıllbur	ra	GEOLOGY	Siltstone	VEGETATIO	N Gra	ass			PROJECT NO. P1002842				
EQU	IIPMEI	NT			Hydraulio	C Auger			EASTING	NA	RL SURFAC	E NA	ı							
EXC				SIONS		X 2.5m depth			NORTHING	NA	ASPECT	No	rth West			SLOPE 5%				
_	EX	CA	/AT	ION DA				MA	TERIAL DA	ATA				SA	MPLIN	G & TESTING				
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	FENETRATION RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, m particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a ntamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	А	RESULTS AND DDITIONAL OBSERVATIONS				
A	Nil	N	М	0.1	:::: :::::::::::::::::::::::::::::::::	x x x	OL	ORGANIC SAI	NDY SILT – I	Dark brown.	S		A	0.2	2842/7/0	2				
А	Nil	N	М	0.3		\(\times\)\(\times\)\(\times\)\(\times\)	sc	CLAYEY SAND - Bro	own, moist (a	lmost wet), loose.	\vdash	L								
А	Nil	N	М				CL	CLAY - Orange/bro tending grey with minor			F		A	1.0	2842/7/ 0. 2842/7/ 1.	- - -				
А	Nil	N	D	1.3 - 1.6			EW	EXTREMELY WI Grey, red mott					A	1.5	2842/7/1.	5				
Α	Nil	N	D	EVTREMELY WEATHERED ON TOTONE																
								Orange, (ciay like prop	properties A 2.0 2842/7/2.0 2.0										
А	A Nil N D Sorehole dry after 2 hours. MW MODERATELY WEATHERED SILTSTONE - Grey. Borehole dry after 2 hours.														Borehole dry after 2 hours.					
				5.0 					erminated at a							3.0 				
				8.0 												7.0 - - - - - - 8.0 - - - - - - - - - - - - - - - - - - -				
N X B E H S P	H Ba Ex A Ha T Pu	atural existing ckhoe cavate and au and sp sh tub iger	exposi excar bucke or ger ade e	THOD SU ure SH vation SC et RE Nil	JPPORT I Shoring Shotcre B Rock B No sup	ete X Not r olts \(\frac{\tau}{\text{V}} \) Wate Wate	e observ measure er level er outflor er inflow	ved D Dry L Loved M Moist M Mc W Wet H Hig Wp Plastic limit R Ref	w VS oderate S ph F fusal St VSt H F	SISTENCY	ose A Au B Bu Dense U Un D Dis se M Mo Ux Tul	ger sam k samp disturbe turbed isture c pe samp	ole ed sample sample content ple (x mm)	PF S V: D FI W	Standard S Vane she CP Dynam penetro D Field den S Water sa	enetrometer penetration test sic cone meter sity N Agricultural				
,⊢						LVOVALIC	JIV LUI	C 10 PF IVEVD IN CONTO	TO LICIN WITE	AND OUT AN HING KEP	OILL NOTES	עואט	YPDVE.	* I/\ I I	J140					

CL	IEN	Г	Α	llen Pric	e & As	sociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETE	D 24.	11.10			REF TP9
PR	OJE	СТ	E	ngineer	ing Sei	rvices			LOGGED	GT	CHECKED	AN				Sheet 1 of 1
SIT	ΓΕ		С	ullburra	Road,	West Cu	Ilbu	rra	GEOLOGY	Siltstone	VEGETATIO	No.	ne			PROJECT NO. P1002842
-	JIPMEI				Backhoe				EASTING	NA	RL SURFAC	E NA				
EXC				SIONS		0m X 2.5m de	pth		NORTHING	NA .	ASPECT	So	urth			SLOPE 2-3%
⊢	EX	CA	/AT	ION DA			-	MA	TERIAL DA	ATA			+	SA	MPLIN	G & TESTING
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a ntamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	A	RESULTS AND DDITIONAL OBSERVATIONS
ВН	Nil	N	М	0.1		× × ×	SM	ORGANIC SILTY	' SAND – Da	rk grey/brown.		L	В	0.2	2842/9/0	.2
ВН	Nil	N	М	- -0.35		× × ×	SM	SILTY SAND – Light g	rey/grey, gra	vels (1-5mm, 10%).		L		0.2		
вн	Nil	N	М	0.6			CL	CLAY - Orange/brov	vn mottled, m	oderately plastic.	F St		В	0.5	2842/9/0	.5
ВН	Nil	N	М	0.9 1.0 -			CL	CLAY - Grey/red/orar	nge mottled, r	noderately plastic.	VSt		В	1.0	2842/9/1	.0 1 <u>.0</u> -
ВН	Nil	N	М	1.4			CL/	CLAY/HIGHLY W Grey/pink/red/orange,	EATHERED	SILTSTONE -	VSt		В	1.5	2842/9/1	.5
							HW	to extremely we	athered siltst	one at 1.8m.			В	2.0	2842/9/2	.0 2.0 -
ВН	Nil	N	М	_ _ 			MW	MODERATELY W With grey/	/EATHERED orange/red m		VSt					- -
				3.0 -				Test pit terminate weath	ed at 2.5m on ered siltstone							3 <u>.0</u> -
				- - - -												- - - -
				<u>4.0</u> –												4 <u>.0</u> - - -
				- - - -												- - - -
				5.0 _												5 <u>.0</u> _ _ _
				- - - -												- - - - -
				6.0 -												6 <u>.0</u> -
				- - -												- - - -
																_
				_ - - -												- - - -
																- - 8 <u>.0</u> -
				- - - -												
	OLUDA	/FNIT	/ ME	 	IPPORT	WATER		MOISTURE PENET	TRATION CON	SISTENCY DENSITY	CAME	I INC º	TESTING			- 9.0 CLASSIFICATION
N X B E H S P	I Na Ex H Ba Ex IA Ha I Ha	itural e disting ckhoe cavate nd au ind sp sh tub ger	exposi excar bucki or ger ade e	ure SF vation SC et RE Nil	Shoring Shotcret Rock Bo No supp	N Non X Not Ults	e obser measur er level er outflo	rved D Dry L Lored M Moist M Mc W Wet H Hig Wp Plastic limit R Re ow WI Liquid limit	w VS oderate S ph F fusal St VSt H F	Very Soft Soft VL Very Loose Loose Firm MD Medium Loose Stiff D Dense Very Stiff VD Very Dense Hard Hard Triable	use A Au B Bu Dense U Ui D Di se M M Ux Tu	iger sam ilk samp ndisturbe sturbed bisture c ibe sam	nple le ed sample sample ontent ble (x mm)	PF S V: D: FI W	Standard S Vane she CP Dynam penetro D Field der S Water sa	enetrometer SYMBOLS AND SOIL DESCRIPTION Pair ic cone meter sity N Agricultural
.—															-	

CL	IEN	Γ	Α	llen Pric	e & As	ssociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETE	D 24	4.11.10			REF	TP10
PR	OJE	СТ	E	ngineer	ing Se	rvices			LOGGED	GT	CHECKED	Al	N			Sheet 1 of	
SIT	Έ		С	ullburra	Road	, West Cı	illbu	rra	GEOLOGY	Siltstone	VEGETATIO	N N	one			PROJECT NO.	P1002842
EQU	IPME	NT			Backhoe				EASTING	NA	RL SURFAC	E N	A				
EXC				SIONS		.0m X 2.0m de	pth		NORTHING	NA	ASPECT	N	orth West				2-3%
_	EX	CA	/AT	ION DA				MA	TERIAL DA	ATA				SA	MPLIN	G & TESTI	NG
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a ntamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	A	RESUL1 DDITIONAL O	S AND BSERVATIONS
BH	Nil	N	M	0.1		× × × × × × ×	SM	ORGANIC SILTY	' SAND – Da	rk grey/brown.		L	В	0.2	2842/10/	0.2	
ВН	Nil	N	М	0.3		× × ×	SM	SILTY SAND - Light g	rey/grey, gra	vels (1-5mm, 10%).	F	L					_
ВН	Nil	N	М	0.5 - 0.8			CL	CLAY - Orange/brow	vn mottled, m	oderately plastic.	St		В	0.5	2842/10/	0.5	
вн	Nil	N	М	1.0 - 1.3			CL	CLAY - Grey/red/orar	nge mottled, r	moderately plastic.	VSt		В	1.0	2842/10/	1.0	1 <u>.0</u> - -
ВН	Nil	N	М	- - - -			CL/ EW	CLAY/EXTREMELY Grey minor mottle siltstone band weatle	les, moderate	ely weathered moderately	VSt		В	1.5	2842/10/	1.5	- - - - -
				2.0				weatt	ierea sinston				В	2.0	2842/10/	2.0	2.0
				2.0 				Test pit terminated weath	at 2.0m on m hered siltston				В	2.0	2842/10/	2.0	2.0
				- - - <u>7.</u> 0													- - 7 <u>.0</u> -
																	_ _ _ _ _
				<u>8.0</u>													- 8 <u>.</u> 0
				- - -													6.0 - - -
				_ - -													- - - -
$ldsymbol{ld}}}}}}$				9.0													9. <u>0</u>
N X B E H S P A	Na Ex H Ba Ex A Ha Ha T Pus	atural existing ckhoe cavate and au and sp sh tub iger	exposi excar bucki or ger ade e	ure SH /ation SC et RE Nil	JPPORT Shoring Shotcre Rock B No supp	ete X Not olts \(\frac{\tau}{\text{Point}} \) Wat \(\frac{\tau}{\text{Point}} \) Wat	e obser measur er level er outflo er inflov	ved D Dry L Lo ed M Moist M Mo W Wet H Hig Wp Plastic limit R Re ow WI Liquid limit	w VS oderate S ph F fusal St VSt H F	SISTENCY	use A Au B Bu Dense U Ui D Di se M M Ux Tu	uger sa ulk sam ndisturk sturbed sisture ube san	ple ped sample d sample content nple (x mm)	PF S V: D: FI W	Standard S Vane she CP Dynam penetro D Field den S Water sa	ic cone meter sity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural

CI	.IEN	T	Α	llen Pric	e & A	ssociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETE	D 2	24.11.10			REF	BH11
PF	OJE	СТ	E	ngineer	ing Se	ervices			LOGGED	JSF	CHECKED	(ЭТ			Sheet 1 o	
SI	ΤE		С	ullburra	Road	I, West Cı	ıllbuı	rra	GEOLOGY	Siltstone	VEGETATION	ОΝ	Eucalypts			PROJECT NO.	P1002842
-	JIPME				Hydrauli	c Auger			EASTING	NA	RL SURFAC	E I	NA				
EX				SIONS	_	X 2.0m depth			NORTHING	NA	ASPECT	1	North East			SLOPE	4%
┡	EX	CA	/AT	ION DA			T T	MA	TERIAL DA	ATA				SA	MPLIN	G & TESTI	NG
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	œ	CLASSIFICATION	Soil type, texture, structure, m particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a ntamination, odou	sticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	А		TS AND DBSERVATIONS
Α	Nil	N	М	0.2		× × ×	OL	ORGANIC SAI	NDY SILT – I	Dark brown.	S		А	0.2	2842/11/	0.2	-
А	Nil	N	М				CL	CLAY - Orange/bro tending grey with mino	own mottles, f r brown and i	irm grading stiff, red mottles at depth.	F- St		A	0.5	2842/11/		- - - - - 1 <u>.ō</u> -
А	Nil	N	D	- - - - 1.8			EW	EXTREMELY WI Gre	EATHERED y with mottled				А	1.5	2842/11/	1.5	-
A NII N D 2.0 MW MODERATELY WEATHERED SILTSTONE - Grey with mottled.																	2.0
				2.0				Greg Borehole te		I. 2.0m on							2.0
				- - - - -													- - - - -
																	6.0
	N Na (E BH Ba E Ex HA Ha B Ha PT Pu	atural existing ackhoe ackhoe ackhoe and au and spand sh tubuger	expos g exca e buck or iger pade e	ure SH /ation SC et RE Nil	JPPORT I Shoring Shotch Rock E No sup	ete X Not Bolts \(\frac{\psi}{\psi}\) Wat \(\frac{\psi}{\psi}\) Wat \(\frac{\psi}{\psi}\) Wat	e obser measure ter level ter outflo	ved D Dry L Loved M Moist M Most W Wet H Hig Wp Plastic limit R Rei	w VS oderate S ph F fusal St VSt H F	SISTENCY	Se A Au B Bu Dense U U D Di Se M M Ux Tu	uger s ulk sar ndistu isturbe oisture ube sa	mple rbed sample ed sample e content ample (x mm)	PF S V: D FI W	Standard S Vane she CP Dynam penetro D Field den 'S Water sa	ic cone meter sity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural
,—						EXCAVATI	ON LO	G TO BE READ IN CONJU	INCTION WITH	ACCOMPANYING REP	UKINUIE	o AN	IN ARRKE,	VIATI	OINS		

CL	IEN ⁻	Г	Α	llen Pric	e & As	sociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETE	D 24	.11.10			REF	TP12
PR	OJE	СТ	E	ngineer	ing Ser	vices			LOGGED	GT	CHECKED	AN	I			Sheet 1 of	
SIT	Έ		С	ullburra	Road,	West Cu	Ilbui	rra	GEOLOGY	Siltstone	VEGETATIO	No No	ne			PROJECT NO.	P1002842
EQU	IPMEI	NT			Backhoe				EASTING	NA	RL SURFAC	E NA	Į.				
EXC				SIONS		0m X 2.2m de	pth		NORTHING	NA	ASPECT	No	rth				2-3%
	EX	CA	/AT	ION DA				MA	TERIAL DA	ATA				SA	MPLIN	G & TESTII	NG
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a ntamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	A	RESULT DDITIONAL O	IS AND BSERVATIONS
ВН	Nil	N		0.1	() ()	X X X	SM	ORGANIC SILTY	′ SAND – Da	rk grey/brown.		L	В	0.2	2842/12/	0.2	
ВН	Nil	N	М	0.3		× × ×	SM	SILTY SAND - Light g	rey/grey, gra	vels (1-5mm, 10%).		L				-	
вн	Nil	N	М	0.5			CL	CLAY - Orange/brow	vn mottled m	oderately plastic	F		В	0.5	2842/12/	0.5	
\vdash				0.7			\vdash				St						
вн	Nil	N	М	1.0 - 1.3			CL	CLAY - Grey/red/orar	nge mottled, r	noderately plastic.	VSt		В	1.0	2842/12/	1.0	1
ВН	Nil	N	м	- - - - - - 2.0			CL/ EW	CLAY/EXTREMELY Grey minor mott siltstone band weatl	les, moderate	ely weathered moderately	VSt		В	1.5	2842/12/	1.5	2
				2.0 2.2 - - - - - - - - - - - - - - - - - -				Test pit termina		n moderately							2 3 4 4
N	Na	atural e	expos	ure SH	JPPORT I Shoring	WATER N None	e obser	ved D Dry L Lo	w VS	SISTENCY DENSITY Very Soft VL Very Loo	se A Au	iger san	: TESTING	pp	Pocket pe	enetrometer	9 CLASSIFICATION SYMBOLS AND
X B E H S P	E: H Ba Ex A Ha Ha T Pu	xisting ckhoe cavate and au and sp sh tub iger	excar buck or ger ade e	vation SC et RE Nil	Shotcret Rock Bo No supp	e X Not in Sits \(\frac{\tau}{	measure er level er outflo	ed M Moist M Mo W Wet H Hig Wp Plastic limit R Re ow WI Liquid limit	oderate S gh F fusal St VSt H F	Soft L Loose Firm MD Medium D Stiff D Dense Very Stiff VD Very Dens Hard Friable	Dense U Ur D Di Se M Mo Ux Tu	ulk samp ndisturbed sturbed bisture o ube sam	ole ed sample sample content ple (x mm)	S V: D: FI W	Standard S Vane she CP Dynam penetro D Field den S Water sa	penetration test ear ic cone meter sity	SOIL DESCRIPTION Y USCS N Agricultural

CLI	EN ⁻	Т	Α	llen Pri	ce &	Ass	ociates	Pty	Ltd	COMMENCED	24.11.10	co	OMPLETED	24.11	.10			REF	BH13
PRO	JE	СТ	E	nginee	ring S	Serv	ices			LOGGED	JSF	СН	HECKED	GT				Sheet 1 of	
SIT			С	ullburr			Vest Cu	ıllbur	rra	GEOLOGY	Siltstone	_	GETATION	+	ypts			PROJECT NO.	P1002842
EQUI					Hydra					EASTING	NA		SURFACE	_					
-				ISIONS		Ø X 2	.5m depth		MA	NORTHING	NA NTA	AS	SPECT	North		٥,٨		SLOPE G & TESTI	6% NG
П		CA				빙		NO.	IVIZ	TERIAL DI	NIA .		ჯ	X X			IVIT LIN	G & IESII	NO
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION	RESISTAN	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, m particle characteristics, orga	PTION OF STR nottling, colour, planics, secondary a ntamination, odo	asticity, rocks, oxidation, and minor components,		CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	А		TS AND BSERVATIONS
A	Nil Nil	N 0.4	M	- -0.25 0.4				ML CL	ORGANIC SILTY/CLA			st.	S F		А	0.2	2842/13/	0.2	
А	Nil	0.4 N	w	0.7				CL	GRAVELLY CLA gravels (5- 10m	Y - Brown, v	et (perched),		S- F		А	0.5	2842/13/	0.5	
А	Nil	N	М	1.0 - 1.3				CL	CLAY - Brown and or	ange mottled	, firm to stiff, mois	t.	F- St		А	1.0	2842/13/	1.0	12
А	Nil	N	М	1.7				EW	EXTREMELY WI Brown/grey m						А	1.5	2842/13/	1.5	
А	Nil	N	М					MW	MODERATELY W	/EATHERED Light grey.	SILTSTONE -				А	2.0	2842/13/	2.0	2 <u>.</u>
				2.5						erminated at weathered s									3. 4. 5. 7.
N X BH E HA S PT A	Na Ex Ex Ha Ha Pu Au	atural	expos g exca e buck or iger pade e	ure S vation S et R	UPPOR H Short C Shot B Rock lil No s	ring crete k Bolts suppor	S	e obsen measure er level er outflo er inflow	ved D Dry L Lor ed M Moist M Mc W Wet H Hig Wp Plastic limit R Rei bw WI Liquid limit	w VS oderate S yh F fusal St VSt H F	Soft L Loo Firm MD Med Stiff D Dens Very Stiff VD Very Hard Friable	/ Loose se ium Dense se Dense	e U Undi D Distu M Mois Ux Tube	er sample sample sturbed : irbed sai ture con sample	sample mple tent (x mm)	PF S VS DO FE W	Standard S Vane she CP Dynam penetro D Field den S Water sa	ic cone meter sity	9. CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural

CL	IEN	Γ	Α	llen Pric	e & A	Asso	ociates	Pty	Ltd	COMMENCED	24.11.10	COMPLET	ED	24.11.10			REF	TP14
PR	OJE	СТ	Е	ngineer	ing S	ervi	ices			LOGGED	GT	CHECKED)	AN			Sheet 1 of	
SIT	Έ		С	ullburra	Road	d, V	Vest Cu	ıllbu	rra	GEOLOGY	Siltstone	VEGETAT	ION	None			PROJECT NO.	P1002842
-	IPME				Backho					EASTING	NA	RL SURFA	CE	NA				
EXC				SIONS		2.0m	1 X 1.5m de	pth		NORTHING	NA	ASPECT		North				2-3%
\vdash	EX	CAV	/AT	ION DA				7	N	ATERIAL D	ATA	I			S	AMPLIN	G & TESTI	NG
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE		GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure particle characteristics, o	RIPTION OF STF, , mottling, colour, pl rganics, secondary contamination, odo	asticity, rocks, oxidation, and minor components,	CONSISTENCY	710141	DENSILY INDEX	DEPTH(M)	A		TS AND BSERVATIONS
ВН	Nil Nil	N N	M	0.1		1	^ × × ×	SM	ORGANIC SILT	TY SAND – Da	rk grey/brown.			L L B	0.2	2842/14/	0.2	
BH	Nil	N	M	- 0.25 - 0. <u>35</u>		1		CL	SILTY SAND – Light			F			0.2	20.27.17	0.2	-
ВН	Nil	N	М	0.5		*		CL	CLAY - Orange/bro			St VSt		В	0.5	2842/14/	0.5	
ВН	Nil	N	М	0.8				EW	EXTREMELY WEA			VSt						
	IVIII	14	IVI	1.0				EVV	LXTINLIMILET WEA	ATTILINED SIL	1310NL BANDS.	VSI		B B				1.0
вн	Nil	N	M	_				MW	MODERATELY	WEATHERED ey, minor mottle		VSt		٦	1.2	2042/14/	1.2	<u>-</u>
				1.5					GIE	y, minor moto	2 5.			В	1.5	2842/14/	1.5	_
l				_					Test pit termin									_ _
l				-					We	athered siltstor	ne.							_ _ =
				<u>2.0</u>														2 <u>.0</u> –
l				_														_
l				_														-
				-														=
l				3.0														3.0
				Ē														
l																		=
l				E														=
l				E														=
l				4.0														4.0
l				_														_
l				_														_
				_														_
				_														
l				5.0														5 <u>.0</u>
l				-														_ _
l				_														-
l				<u>-</u>														-
l				-														=
l				6.0														6.0
				F														= = = = = = = = = = = = = = = = = = = =
				E														=
				Ė.														=
				E														
				7.0 _														7 <u>.0</u> _
				_														_
				<u> </u>														<u>-</u>
				Ė														- -
				<u>8.0</u>														- 8.0
																		6 <u>.U</u> –
				Ė														=
				F														= = = = = = = = = = = = = = = = = = = =
				E														=
L				<u>9</u> .0														9. <u>0</u>
N	Na	atural e	expos	ure SH	JPPORT I Shorir	ng	WATER N None	e obser	rved D Dry L	Low VS	SISTENCY DENSITY Very Soft VL Very Loc	se A A	Auger	G & TESTII sample	р	p Pocket p	enetrometer	CLASSIFICATION SYMBOLS AND
B	Ex H Ba	xisting ckhoe	exca buck	ration SC et RE	Shotci Rock	rete Bolts	X Not r		red M Moist M W Wet H I	Moderate S High F	Soft L Loose Firm MD Medium I	B E Dense U l	Bulk si Undist	ample turbed samp	le V	S Standard /S Vane she	penetration test ear	SOIL DESCRIPTION
	A Ha		ger	Nil	No su	pport	± → Wate	er outfl		VSt	Stiff D Dense Very Stiff VD Very Dens	se M N	Moistu	bed sample ire content		DCP Dynam penetro	meter	Y USCS N Agricultural
S P A	T Pu	ınd sp sh tub ıaer					→ Wate	er inflo	w		Hard Friable	UX 1	uDe S	sample (x m	111) F	D Field der VS Water sa		N Agricultural
A Auger CC Concrete Corer EXCAVATION LOG TO BE READ IN CONJUNCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																		
<u> </u>						ĒΣ	xCAVATI(JN LC	DG TO BE READ IN CON	JUNC FION WITH	1 ACCOMPANYING REP	UK F NOTE	ES A	ND ABBR	∟VIAT	IUNS		

CL	IEN	Т	Α	llen Pri	ce & As	ssociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETE	D 24.1	11.10			REF	TP15
PF	OJE	СТ	E	ngineer	ing Se	rvices			LOGGED	GT	CHECKED	AN				Sheet 1 of	_
SI	ΤE		С	ullburra	Road	, West Cu	Ilbui	rra	GEOLOGY	Siltstone	VEGETATION	Nor Nor	ne			PROJECT NO.	P1002842
-	JIPME				Backhoe				EASTING	NA	RL SURFAC	E NA					
EX				SIONS		.0m X 2.7m de	pth		NORTHING	NA .	ASPECT	Nor	th				1-2%
\vdash	EX	CA	/AT	ION DA			7	MA	TERIAL DA	ATA			+	SA	MPLIN	G & TESTIN	NG
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	PENETRATION RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a entamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	А	RESULT DDITIONAL O	'S AND BSERVATIONS
BH BH	Nil Nil	N N	M M	0.1	() ()	× × ×	SM	ORGANIC SILTY	′ SAND – Da	rk grey/brown.		L	В	0.2	2842/15/	0.2	
ВН		N	М	0.6			CL	SILTY SAND – Light g			F St		В	0.5	2842/15/		
вн	Nil	N	М	1.0 - - -			CL	CLAY - Grey/red/orar	nge mottled, r	noderately plastic.	VSt		В	1.0	2842/15/		1 <u>.0</u> - - - -
				1.7 - 2.0			CL/	CLAY/HIGHLY W			V64		В	2.0	2842/15/	2.0	_ _ 2 <u>.0</u> _
ВН	Nil	N	М	 _ _ _ 			HW	Grey/pink/red, silts to extremely wea	thered siltsto	ne past 2.3m.	VSt		B B	2.5 2.6	2842/15/ 2842/15/		- - - -
				3.0				Test pit termina weatl	on extremely e.							- 3 <u>.0</u> - - - - - - -	
				4.0 - - - -													4.0 - - - - - -
				<u>5.0</u> _ _ _ _													5 <u>.0</u> 5 <u>.0</u> - - -
				_ _ _ _ 													
				7.0													7 <u>.0</u> -
				_ - - - -													- - - - -
				8.0 - - -													8 <u>.0</u> - - - - -
				 <u>9</u> .0													9. <u>0</u>
E E E F	N Na (E BH Ba E Ex HA Ha B Ha PT Pu	atural of xisting ackhoe ccavate and au and sp ish tub uger	exposi excar bucke or ger ade e	ure Si vation S0 et RI Ni	JPPORT H Shoring C Shotcre B Rock Bo I No supp	te X Not u olts \(\sum_{\text{var}} \) Wat oort \(\sum_{\text{var}} \) Wat	e obser measure er level er outflo er inflov	ved D Dry L Lo ed M Moist M Mo W Wet H Hig Wp Plastic limit R Re ow WI Liquid limit	w VS oderate S gh F fusal St VSt H F	SISTENCY	se A Au B Bu Dense U U D D Se M M Ux Tu	uger sam ulk sampl ndisturbe isturbed s oisture co ube samp	le d sample sample ontent ole (x mm)	PF S V: D: FI W	Standard Vane she DP Dynam penetro Field den S Water sa	ic cone meter sity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural

CL	IEN	Т	Α	llen Pri	ce & As	sociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETE	D 24.	11.10			REF	TP16
PR	OJE	СТ	E	ngineer	ing Se	rvices			LOGGED	GT	CHECKED	AN				Sheet 1 of	_
SIT	Έ		С	ullburra	Road	West Cu	illbu	rra	GEOLOGY	Siltstone	VEGETATIO	Nor	ne			PROJECT NO.	P1002842
EQU	IPME	NT			Backhoe				EASTING	NA	RL SURFAC	E NA					
EXC				SIONS		0m X 2.4m de	pth		NORTHING	NA	ASPECT	Nor	rth				2-3%
<u> </u>	EX	CA	/AT	ION DA				MA	TERIAL DA	ATA			+	SA	MPLIN	G & TESTII	NG
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a ntamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	A	RESULT DDITIONAL O	'S AND BSERVATIONS
ВН	Nil	N	М	0.1	() ()	× × ×	SM	ORGANIC SILTY	′ SAND – Da	rk grey/brown.		L	В	0.2	2842/16/	0.2	
ВН	Nil	N	М	0.4		x x x x x x x x x x x x x x x x x x x	SM	SILTY SAND – Light g	rey/grey, gra	vels (1-5mm, 10%).		L		0.2	2042/10/	0.2	-
вн	Nil	N	М	0.6			CL	CLAY - Light brown/g	rey mottles, i	moderately plastic.	F		В	0.5	2842/16/	0.5	-
L				0.9							St				00.40/40/		-
вн	Nil	N	М	1.0			CL	CLAY - Grey with minor gravels, moder			VSt		В	1.0	2842/16/	1.0	1 <u>.0</u> -
вн	Nil	N	М	- - - - - - - 2.0			CL HW	CLAY - HIGHLY WEAT minor red/orange mo plastic, mottles ind bands/gravels tending to extre	THERED SILTHERS, minor goreasing with	ravels, moderately depth, siltstone oprox 20%),	VSt		В	1.5	2842/16/ 2842/16/		- - - 2.0
				2.4									В	2.4	2842/16/	2.4	
				4.0 - - - - - - - - - - - - - - - - - - -				Test pit termina weatl	ated at 2.4m o								5.0
				7.0 - - - - - - - - - - - - - - - - - - -													7.0 - - - - - - - 8.0 - - - - - - - - - - - - - - - - - - -
N X B E H S P A	Na E: H Ba Ex A Ha Ha T Pu	atural oxisting ackhoe acavate and au and sp sh tub ager	exposi excar bucke or ger ade e	THOD SI ure SH vation SO et RI Ni	JPPORT H Shoring C Shotcre B Rock Bo I No supp	te X Not r obts \(\frac{\text{V}}{\text{Wate}} \) \(\text{Wate} \) \(\text{Wate} \)	e obser measur er level er outflo er inflov	ved D Dry L Lo ed M Moist M Mo W Wet H Hig Wp Plastic limit R Re ow WI Liquid limit	w VS oderate S gh F fusal St VSt H F	SISTENCY DENSITY Very Soft VL Very Loo Soft L Loose Firm MD Medium D Dense Very Stiff VD Very Dens Friable	SE A AU B BU Dense U UI D DI SE M M UX TU	iger sam ilk sampl ndisturbe sturbed : bisture co ibe samp	le ed sample sample ontent ole (x mm)	PF S V: D: FI W	Standard S Vane she CP Dynam penetro D Field den S Water sa	ic cone meter sity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural
,—						LACAVATIC	JIN LU	O TO DE READ IN CONJU	INCTION WITE	I ACCOIVIPAINTING KEP	OKT NOTE:	2 AND	MODKE	v iA I I	JINO		

CL	EN	Γ	Α	llen Pric	e & As	sociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETE	24	4.11.10			REF	BH17	•
-	OJE	СТ	+	ngineer					LOGGED	JSF	CHECKED	G	Т			Sheet 1 c	of 1	
SIT			С	ullburra		West Cu	Ilbu	rra	GEOLOGY	Siltstone	VEGETATIO	-	ucalypts			PROJECT NO	. P1002842	
-	IPMEI AVAT		IMEN	ISIONS	Hydraulic A 0.95mØ X	2.5m depth			EASTING NORTHING	NA NA	RL SURFAC ASPECT	_	orth West			SLOPE	5%	
	EX	CAV	/AT	ION DA	ГА			MA	TERIAL D	ATA	•			SA	MPLIN	G & TEST	ING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR mottling, colour, pl anics, secondary a ontamination, odor	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	A		.TS AND DBSERVATION	ıs
А	Nil	N	М	- 0.3		× × × × × × × × × × × × × × × × × × ×	ML	ORGANIC SILTY/CLA	YEY SAND -	Dark brown, moist.		L	А	0.2	2842/17/	0.2		=
А	Nil	N	М	1.0			CL	CLAY - Orange/bro tending grey with mino			F		A	1.0	2842/17/ 2842/17/ 2842/17/	1.0		- - - - 1 <u>.0</u> - -
А	Nil	N	М				CL	CLAY - Grey with r moist, sand in p SANDY CLAY - Gre	rofile from 1.	8m, grades to	St		A	2.0	2842/17/	2.0		2.0 2.0
				2.5				Borehole termina	ated at 2.5m o	on sandy clay.			A	2.5	2842/17/	2.5		3.0
N X	Na Ex	itural e	expos	ure SH vation SC	JPPORT Shoring Shotcrete	WATER N None X Noti	e obse measu	rved D Dry L Lo red M Moist M Mo	w VS oderate S	SISTENCY DENSITY Very Soft VL Very Loc Soft L Loose	ose A Au B Bul	ger sa Ik sam	ple	pp S	Standard	enetrometer I penetration test	CLASSIFICAT SYMBOLS AN SOIL DESCRI	1D
Α	Ex A Ha Ha F Pus Au	ger	or ger ade e	et RE Nil	Rock Bol No suppo	ts 🏗 Wat	er leve er outf	W Wet H Hig Wp Plastic limit R Re low WI Liquid limit	gh F efusal St VSt H	Firm MD Medium I Stiff D Dense Very Stiff VD Very Den: Hard Friable	Dense U Un D Dis se M Mo	disturb sturbed isture	bed sample d sample content nple (x mm)	V: D: FI	S Vane sh CP Dynam penetro D Field der S Water sa	ear nic cone ometer nsity	Y USCS N Agricultu	
	C Coi	icrete	Core	ı	E	EXCAVATION	ON L	OG TO BE READ IN CONJU	JNCTION WITH	ACCOMPANYING REP	ORT NOTES	ANI) ABBRE	VIATIO	ONS			

CL	IEN	Т	Α	llen Pric	e & As	ssociates	Pty L	.td	COMMENCED	24.11.10	COMPLETE	D	24.11.10			REF	BH18
PR	OJE	СТ	E	ngineeri	ing Se	rvices			LOGGED	JSF	CHECKED		GT			Sheet 1 of	_
SIT	ΓΕ		С	ullburra	Road	, West Cu	llburr	ra	GEOLOGY	Siltstone	VEGETATION	ON	Eucalypts			PROJECT NO.	P1002842
-	JIPMEI				Hydraulic				EASTING	NA	RL SURFAC	CE	NA				
EXC				ISIONS		X 2.5m depth			NORTHING	NA .	ASPECT		North				1-2%
⊢	EX	CA	/AT	ION DAT			- T	MA	TERIAL DA	ATA				SA	MPLIN	G & TESTIN	NG
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, m particle characteristics, orga	PTION OF STR nottling, colour, pla nics, secondary a ntamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	A	RESULT DDITIONAL OI	S AND BSERVATIONS
А	Nil	N	М	0.3		× × × × × ×	OL	ORGANIC SAI	NDY SILT – [Dark brown.	S		А	0.2	2842/18/	0.2	-
А	Nil	N	М				CL	CLAY - Orange/bro tending grey with minor			F- St		A	1.0	2842/18/		- - - - - 1 <u>.0</u> -
				1.5									Α.	1.5	2842/18/	1.5	-
А	Nil	N	D	2.0			EW	EXTREMELY WEATI properties, grey with			St- VSt		A	2.0	2842/18/	2.0	- - - 2.0
А	Nil	N	D				MW	MODERATELY WEA	ATHERED SI	LTSTONE - Grey.			A			2.5	- - -
A Nii N D														3.0 			
	QUID			7.0 - - - - - - - - - - - - - - - - - - -				MOISTURE	TRATION CON	DESTENCY DENOTY		DUM					7.0
N X B E F	EQUIPMENT / METHOD SUPPORT WATER MOISTURE PENETRATION CONSISTENCY DENSITY SAMPLING & TESTING SYMBOLS AND SYMBOLS A																
C	C Co	iger ncrete	Core	r				G TO BE READ IN CONJU	NCTION WITH	I ACCOMPANYING REP	ORT NOTE	S AN	ND ABBRE	VIATI	ONS		

CLI	EN	Γ	Al	len Pric	e & Ass	sociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETED	24.11.	REF BH19 Sheet 1 of 1								
PR		СТ	Er	ngineeri	ing Serv	vices			LOGGED	JSF	CHECKED	GT	calypts PROJECT NO. P1002842								
SIT			Cı	ullburra		West Cu	Ilbu	rra	GEOLOGY	Siltstone	VEGETATION		ypts			PROJECT NO.	P1002842				
EQU			IMEN	SIONS	Hydraulic A 0.95mØ X				EASTING NORTHING	NA NA	ASPECT	NA North				SLOPE	2-3%				
LX0				ON DA		z.om deptin		MA	TERIAL DA		Adi Edi	Notal		SA		G & TESTI		_			
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR nottling, colour, planics, secondary antamination, odor	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		RESUL	TS AND DBSERVATIONS				
Α	Nil	N	М	0.1	60	× × ×	OL	ORGANIC SAI	NDY SILT -	Dark brown.	S		A	0.2	2842/19/	0.2		_			
Α	Nil	N	М				CL	CLAY - Orange/bro tending grey with mino	own mottles, f	irm grading stiff.	F- St		A A	0.5	2842/19/ 2842/19/ 2842/19/	0.5		1.0			
A	Nil	N	Ti.6														2 <u>.0</u>				
				3.0 				moderately	weathered s	iltstone.					2842/19/	2.5		5.00			
N X Bi E H/ S P	X Existing excavation BH Backhoe bucket BH BACkh																				
C			Corer		E	EXCAVATION	ON LC	OG TO BE READ IN CONJU	INCTION WITH	ACCOMPANYING RE	PORT NOTES	AND AE	BBRE\	/IATI0	ONS						

CL	IEN	Γ	A	llen Pric	e & Ass	sociates	Pty	Ltd	COMMENCED	24.11.10	COMPLET	ED	24.11.10	REF TP20								
_	OJE	СТ	+	ngineer					LOGGED	GT	CHECKED	-	AN	ne PROJECT NO. P1002842								
SIT	E IPMEI	NT.	С	ullburra	Road,	West Cu	Illbu	rra	GEOLOGY EASTING	Siltstone	VEGETATI	-	None NA			PROJECT NO	. P1002842					
_			OIMEN	ISIONS		m X 2.2m de	pth		NORTHING	NA NA	ASPECT	_	North Wes	t		SLOPE	1-2%					
	EX	CAV	/AT	ION DA				MA	TERIAL DA	ATA .				S	AMPLIN	G & TEST	ING					
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR nottling, colour, planics, secondary a nntamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	7 PF	DEPTH(M)	A		TS AND DBSERVATIONS					
BH BH	Nil Nil	N Y	M W	0.2 -0.35		× × × × × ×	SM SM	SILTY SAI	ND – Dark gr SAND – Brov			L	-	0.2	2842/20/	0.2						
ВН	Nil	Υ	W	- 0 <u>.45</u> - 0.55			CL	CLAY - Orange/brown,	minor gravels	s, moderately plastic.	F St		Е	0.5	2842/20/	0.5						
вн	Nil	N	М	1.0 - - - - - - - - - - - -			СН	CLAY - Red/grey, n moderate	ninor gravels ely to highly p		VSt		E	1.5	2842/20/	1.5	<u>1.</u> 2.					
Test pit terminated at 2.2m on clays.														3.								
				4.0													4.					
				- - - - - -																		
				5.0 _ _ _ _ _ _													<u>5.</u>					
																	6_					
																	7 <u>.</u>					
																	8.					
	Ol iib:	AEN:	/845	9.0	JPPORT	1414.755		MOISTURE PENE	TDATION OCC	DISTENCY DELICITY		DI IV		NG			9					
N X B E H S P A	EQUIPMENT / METHOD N Natural exposure SH Shoring X Existing excavation SH Rock Botts Water level Water outflow Water outflow A Auger CC Concrete Corer WATER MOISTURE PENETRATION CONSISTENCY VS Very Soft VS Very Soft VS Very L Very Loose A Auger SS Ampeling & TESTING SAMPLING & TESTING PP Pocket penetrometer S Standard penetration test S Sindard penetration test S Sinda																					
\vdash			_		E	XCAVATIO	ON LO	OG TO BE READ IN CONJU	INCTION WITH	ACCOMPANYING REF	ORT NOTE	S AN	ND ABBR	EVIAT	IONS							

CI	IEN	Т	Α	llen Pri	ce & A	ssociate	s Pt	y Ltd	COMMENCED	24.11.10	COMPLET	ED	24.11.1	10			REF	TP21
-	ROJE	ECT	E	nginee	ring Se	rvices			LOGGED	GT	CHECKED)	AN				Sheet 1 o	
_	TE		C	ullburr		, West (ullb	ourra	GEOLOGY	Siltstone	VEGETAT	-	None				PROJECT NO.	P1002842
_	UIPME		DIMEN	ISIONS	Backhoe	2.0m X 2.6m	denth		EASTING NORTHING	NA NA	RL SURFA	_	NA North V	Nest			SLOPE	1-2%
F				ION DA		2.011	иори.	M	ATERIAL D		1		1		SA		IG & TESTI	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	PENETRATION R RESISTANCE	GRAPHIC LOG	CLASSIFICATION		IPTION OF STE , mottling, colour, p rganics, secondary contamination, odo	asticity, rocks, oxidation, and minor components,	CONSISTENCY	VENSITY INDEX	DENSILLINDEX	TYPE	DEPTH(M)	А		TS AND DBSERVATIONS
ВН	Nil	N	М	_0.12	88		CI	SILTY SAND	Y CLAY – Darl	k grey/brown.	S			В	0.2	2842/20/	0.2	
ВН	Nil	N	М	_			CI	SILTY SAND	CLAY – Brow	n/light brown.	S							
ВН	Nil	N	М	0.5 - 0.8			CI	CLAY - Red/orange with depth, minor	with light brow gravels (1-10	n mottles increasing mm, approx 5%).	St			В	0.5	2842/20/	0.5	
ВН	Nil	N	М	1.0 - -			_ Cŀ	CLAY - Grey/cream v	vith red/brown els (1-5mm, a		St			В	1.0	2842/20/	1.0	1 <u>.(</u>
				1.6										В	1.5	2842/20/	1.5	
вн	Nil	N	М				Cl HV	v Light grey with red		one gravels bands	VSt			В	2.0	2842/20/	2.0	2 <u>.</u> .
H				2.6		_=_	=							В	2.6	2842/20/	2.6	•
								Test pit termina weat	ted at 2.6m or hered siltston									3.0 4.0 5.0 7.0
	N N K E BH Ba	atural xisting ackhoe xcavat	expos g exca e buck or	ure S vation S et R	UPPORT H Shoring C Shotore B Rock B il No sup	ete X No solts <u>V</u> W	one ob ot mea ater le	served D Dry L I sured M Moist M I vel W Wet H H Wp Plastic limit R F	Low VS Moderate S High F Refusal St	ISISTENCY DENSITY Very Soft VL Very Loose Soft L Loose Firm MD Medium Stiff D Dense	ose A A B E Dense U I D I	Auger : Bulk sa Jndisti Disturb	urbed sam	ample	pr S V:	Standard S Vane she CP Dynam	nic cone	9.0 CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS
;	HA Hand auger																	
	CC Cc		Core	er		EXCAVA	TION	LOG TO BE READ IN CON.	JUNCTION WIT	H ACCOMPANYING REF	PORT NOTI	ES AN	ND AB	BRE\	/IATI	ONS		

CLI	EN	Г	AI	len Pric	e & A	ssociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETE	D 24	l.11.10			REF	BH22					
PR	OJE	СТ	Er	ngineer	ing Se	rvices			LOGGED	BR	CHECKED	G	GT Sheet 1 of 1 Grass PROJECT NO. P1002842									
SIT	E		Cı	ullburra	Road	, West C	ullbu	ırra	GEOLOGY	Siltstone	VEGETATIO	ON G	rass			PROJECT NO.	P1002842					
EQU					Hydraulio				EASTING	NA	RL SURFAC	_				I						
EXC				SIONS		X 2.5m depth		B4.4	NORTHING	NA	ASPECT	No	orth East		MDI IN	SLOPE	1-2%					
	ΕX	CAV	AII	ON DA			Tz	M. <i>F</i>	TERIAL DA	ATA .				SA	MIPLIN	G & TEST	NG					
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	PENETRATION RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, r particle characteristics, orga	PTION OF STR nottling, colour, pla anics, secondary a ntamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	А		TS AND DBSERVATIONS					
Α	Nil	N	М	0.3		× × × × × × × × × × × × × × × × × × ×	OL	ORGANIC SILT – Darl	k brown, grav	els (5-10mm, 30%).	S		А	0.2	2842/22/	0.2	-					
Α	Nil	N	М	_ _ _ _ 			CL	CLAY - Variable colo	ours (grey, re	d, yellow, brown).	F		A	0.5	2842/22/	0.5	- - -					
А	Nil	N	D	1.0 1.2			EW	EXTREMELY WE SILTSTO	ATHERED F NE - Reddish				A	1.0	2842/22/	1.0	1. <u>0</u> 					
Α	Nil	N	D	- - - - -			EW	EXTREMELY WE SILT	- - - - -													
А	Nil	N		1.9 2.0 -			EW	SILTSTONE - Grey. A 2.0 2842/22/2.0 EXTREMELY WEATHERED FINE GRAINED SILTSTONE - Grey, strength decreasing.														
				2.5			_	, EXTREMELY WEATHERED FINE GRAINED														
									erminated at a weathered si								5.0 6.0					
				8.0 - - - - - - - - - - - - - - - - - - -													8.0 - - 8.0 - - - - - - - - - - - - - - - - -					
N BI E H/ S P	Na Ex Ex A Ha Ha Pu Au	MENT atural e xisting ackhoe ccavato and auç and spa sh tube uger ncrete	exposu excav bucke or ger ade e	ure SH vation SC et RE Nil	JPPORT H Shoring C Shotcre B Rock B I No supp	ete X Not olts ∰ Wa port ← Wa	ne obse measu ter leve ter out	erved D Dry L Lo ured M Moist M M- el W Wet H Hig Wp Plastic limit R Re flow WI Liquid limit	w VS oderate S gh F fusal St VSt H F	SISTENCY	ose A Au B Bu Dense U Ur D Dis se M Mc Ux Tu	iger sai ilk sam ndisturb sturbed sisture ibe san	ple bed sample d sample content nple (x mm)	PF S VS DO FE W	Standard Vane she P Dynam penetro Field der S Water sa	nic cone ometer nsity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural					

CLIEN					sociates	Pty	Lta	LOCCED		COMPLETE		10		REF BH23	
PROJ	ECT	_	ngineeri					LOGGED	BR	CHECKED	GT			Sheet 1 of 1	
SITE		C	ıllburra		West Cu	illbu	rra	GEOLOGY	Siltstone	VEGETATIO				PROJECT NO. P1002842	4
EQUIPMI		DIMEN	SIONS	Hydraulic A	Auger 1.0m depth			EASTING NORTHING	NA NA	ASPECT	E NA North	Eact.		SLOPE 1-2%	+
			ON DA		1.0m deptn		N/ /	ATERIAL DA		ASPECT	North	East	64	MPLING & TESTING	-
METHOD SUPPORT		ш	DEPTH (M)	M PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRII Soil type, texture, structure, r particle characteristics, org:	PTION OF STR	ATA asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	RESULTS AND ADDITIONAL OBSERVATIONS	
A Nil		M	0.2		× × × ×	OL CL	ORGANIC SILT – Dari	k brown, grav CLAY - Grey.	rels (5-10mm, 30%).	S S		Α	0.2	2842/23/ 0.2	_
A Nil	N	М	- - - - - 0.9			CL	CLAY - Variable colo		d, yellow, brown).	s		Α	0.5	2842/23/ 0.5	11111
A Nil	N	D	1.0			EW	EXTREMELY WE SILTSTO	EATHERED I NE - Reddish				Α	1.0	2842/23/ 1.0	1.0
							Borehole to	erminated at weathered si	1.0m on						
			- - - - - 9.0												9.0
N N X I BH B E E HA H S H PT P A A	latural Existin ackho xcava and au land sp ush tul	uger pade	THOD SU re SH ation SC t RE Nil	IPPORT I Shoring Shotcrete Rock Bol No suppo	ts <u>▼</u> Wat ort 	e obse measu er leve er outfl er inflo	rved D Dry L Lo red M Moist M Mi I W Wet H Hi Wp Plastic limit R Re low WI Liquid limit	ow VS oderate S gh F ofusal St VSt H F	SISTENCY DENSITY Very Soft VL Very Loose Firm MD Medium Stiff D Dense Very Stiff VD Very De Hard Friable H ACCOMPANYING RE	ose A Aug B Bul Dense U Un D Dis nse M Mo Ux Tub	ING & TE ger sample k sample k sample disturbed s turbed sar sture cont e sample	sample mple ent (x mm)	pp S VS DC FD WS	Pocket penetrometer SYMBOLS AND SYMBOLS AND SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION SYMBOLS AND SOIL DESCRIPTION SYMBOLS	

C	_IEN	Т	Α	llen Pri	ce &	Ass	sociates	Pty	Ltd	COMMENCED	24.11.10	COMPLET	ED	24.11.10	К⊑Г ВПZ4								
PF	ROJI	ECT	E	ngineer	ing S	erv	/ices			LOGGED	JSF	CHECKED)	GT	Sheet 1 of 1								
_	TE		С	ullburra	_		West Cu	ıllbu	rra	GEOLOGY	Siltstone	VEGETAT	_	Eucalypt	ts			PROJECT N	IO. P1002842				
\vdash	UIPME				Hydrai					EASTING	NA	RL SURFA	ACE	NA									
EX				ISIONS		Ø X 2	2.6m depth	—		NORTHING	NA NA	ASPECT		North Ea	ast	64		SLOPE G & TES	5%				
H	T <u>-</u> ^	LA	AI	ION DA				z	IVIA	ATERIAL DA	AIA		,	. 		SA	WPLIN	G & IES	TING				
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION	RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR mottling, colour, pla anics, secondary a ontamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY		DENSILY INDEX	TYPE	DEPTH(M)	A		JLTS AND - OBSERVATIO	DNS			
А	Nil	N	М	0.2			× × ×	OL	ORGANIC SAI	NDY SILT – I	Dark brown.	S			А	0.2	2842/24/	0.2		-			
А	Nil	Ν	М	1.0				CL	CLAY - Orange/bro tending grey with mino			St- VSt			A A A	0.5	2842/24/ 2842/24/ 2842/24/ 2842/24/	0.5 1.0		1 <u>.0</u> 			
_	N.III		_	2.0 _ 2.3 _			 	- FW	EXTREMELY WEA	ATHERED SII	_TSTONE - Grey					2.5	2842/24/			- - - -			
Α	Nil	N	D	2.6		Ш		EW	with red mottl	les, clay like	properties.				Α	2.5	2842/24/	2.5					
				3.0 - - - - - - - - - - - - - - - - - - -					Borehole to extremely							3.0 							
				_ - - -																- - - -			
				7.0 - - - - - - - - - - - - - - - - - - -																7.0 - - - - - - - 8.0			
	N N K E BH B	atural xisting ackhoe	expos g exca e buck	ure SI vation S0 et RI	B Rock	ring crete k Bolts	s Wate		erved D Dry L Lo rred M Moist M Mo	w VS oderate S gh F	SISTENCY	ose A / B B Dense U I	Auger Bulk si Undist	G & TES sample ample turbed sample	mple	pp S VS	Standard Vane she		CLASSIFIC SYMBOLS st SOIL DESC	AND RIPTION			
	E Excavator Nil No support																						
F						E	XCAVATIO	JN L	OG TO BE READ IN CONJU	INCTION WITH	I ACCOMPANYING REP	ORT NOTI	ES A	ND ABE	3REV	/IATIC	NS						

CL	IEN	Г	А	llen Pri	ce & As	sociates	Pty	Ltd	COMMENCED	12.06.14	COMPLETE	D 12.0	6.14			REF	TP301
_	OJE	СТ	_			stigation			LOGGED	GT	CHECKED	AN				Sheet 1 of	1
SIT			С	ulburra		West Cu	lburr	ra	GEOLOGY	Siltstone	VEGETATIO		ses			PROJECT NO.	P1203365
_	IPMEI		IME	NSIONS		Hand Auger			EASTING NORTHING	NA NA	RL SURFAC ASPECT	E NA Norti	h			SLOPE 3	3-4%
-				ION DA		1.0m depth		MAT	ERIAL DAT		ASPECT	Norti	n	SA		G & TESTIN	
МЕТНОВ	SUPPORT	WATER	MOISTURE	DEPTH (M)	PENETRATION R RESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRIPT Soil type, texture, structure, mot particle characteristics, organi	ION OF STRAT	A city, rocks, oxidation,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		RESULTS	S AND
s	Nil	N	М	0.1		× × × × × × × × ×	SM	ORGANIC SIL	T - Dark grey	/brown.							-
s	Nil	N	М				CL	CLAY - Medium plastic	:, orange/bro\	vn/grey mottled.			A	0.4	3365/30	01/ 0.4	- - - -
НА	Nil	N	М														0 <u>.5</u> - -
НА	Nil	N	м	1.0			CL	CLAY - Low plastic, gre (possibly extreme	ey with orang ely weathered	e/brown mottles siltstone).			A	0.9	3365/30)1/ 0.9	- - - - 1.0
HA Nil N M - CL CLAY - Low plastic, grey with orange/brown mottles (possibly extremely weathered siltstone).																	
N B H S C V	Na E: H Ba A Ha Sp C Coi V-E	atural oxisting ckhoe and au ade ncrete Bit agsten	expos exca buck ger Core	sure SI avation So set RI Ni	JPPORT H Shoring C Shotcret B Rock Bo I No supp	lts V Wat	e obser measur er level er outfl	ed M Moist M Mode W Wet H High Wp Plastic limit R Refus ww WI Liquid limit	VS Verate S So F Fir sal St Sti VSt Ve H Ha	ry Soft VL Very Loo oft L Loose m MD Medium I ff D Dense ry Stiff VD Very Dense	se A Au B Bu Dense U Ur D Dis	LING & T ger samp lk sample disturbed sturbed sa isture co be sample	ole e I sample ample ntent	pr S V: D:		nic cone ometer onsity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural
_			<u> </u>			EXCAVATI	ON LC	OG TO BE READ IN CONJUN		CCOMPANYING REP	ORT NOTES	AND A	ABBRE	/IATIO	ONS		

CL	IEN ⁻	Γ	Α	llen Pric	e & As	sociates	Pty	Ltd	COMMENCED	12.06.14	COMPLETE	12.06	6.14		REF TP30)2	
PR	OJE	СТ	P	relimina	ry Inve	stigatior	1		LOGGED GT CHECKED AN Sheet 1 of 1 GEOLOGY Siltstone VEGETATION Grasses PROJECT NO. P1203365								
SIT	Έ		С	ulburra	Road, \	Nest Cu	lburr	а	GEOLOGY	Siltstone	VEGETATIO	N Grass	ses		PROJECT NO. P1203365		
_	IPME				Spade + H				EASTING	NA	RL SURFAC						
EXC				ISIONS		1.0m depth			NORTHING	NA .	ASPECT	North	n T		SLOPE 3-4%		
\vdash	EX	CAN	AI	ION DAT			z	MAI	ERIAL DAT	Α				SA	MPLING & TESTING		
МЕТНОВ	SUPPORT	WATER	MOISTURE	DEPTH (M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, mot particle characteristics, organic	ION OF STRAT tling, colour, plasti cs, secondary and amination, odour.	icity, rocks, oxidation,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	RESULTS AND ADDITIONAL OBSERVATION	ONS	
s	Nil	N	М	- - 0.12		* * * * * * * * * * * * * * * * * * *	OL	ORGANIC SIL	T - Dark grey	//brown.						-	
s	Nil	N	М	_ _ _ 0.28			CL	SILTY CLA	AY - Brown/gr	rey.						- -	
НА	Nil	N	М	0.5			CL	CLAY - Medium plastic, grey with red/ora	, red/brown m ange mottles	nottled tending to > 0.70m.			A	0.4	3365/302/ 0.4 3365/302/ 0.75	- 0.5	
				1.0				Borehole termir	nated at 1.0m	on clay.						1.0 - - -	
				_ _ _ _												- - -	
				1.5 - -												1 <u>.5</u> - -	
				- - -												-	
																_ 2.0 _ _ _ _	
N B H S C V	Na E: H Ba A Ha Sp C Coi V-E	atural existing ckhoe and au ade ncrete Bit agsten	expos exca buck ger Core	ure SH vation SC et RE Nil	JPPORT I Shoring Shotcrete B Rock Bol No suppo	ts V Wat	e obsen measure er level er outflo	ed M Moist M Mode W Wet H High Wp Plastic limit R Refus w WI Liquid limit	vs verate s sc F Fir sal st sti vst ve H Ha	ry Soft VL Very Loc oft L Loose rm MD Medium I ff D Dense rry Stiff VD Very Den	ose A Au B Bul Dense U Un D Dis se M Mo	ING & Toper sample k sample disturbed turbed sa sture cor le sample	sample ample atent	pp S VS DO	Pocket penetrometer SYMBOLS SUL DESC Vane shear P Dynamic cone penetrometer Field density Water sample	AND CRIPTION	
					E	EXCAVATION	ON LO	G TO BE READ IN CONJUN		CCOMPANYING REP	PORT NOTES	AND A	BBRE	/IATIC	NS		

CLIEN	Т	Α	llen Pric	e & As	sociates	Pty	Ltd	COMMENCED	12.06.14	COMPLETED	12.06	.14			REF	TP303			
PROJE	СТ	_			stigatior			LOGGED	GT	CHECKED	AN	AN Sheet 1 of 1 Grasses PROJECT NO. P1203365							
SITE		С	ulburra		Nest Cu	burr	а	GEOLOGY	Siltstone	VEGETATIO		es			PROJECT NO.	P1203365			
EQUIPME EXCAVAT		DIMEN	NSIONS	Spade + H	1.0m depth			EASTING NORTHING	NA NA	RL SURFACE ASPECT	NA North				SLOPE	2-3%			
			ION DA		1.om deptil		MAT	ERIAL DAT		Adi Edi	Notur		SA		G & TESTI				
METHOD	WATER	MOISTURE	DEPTH (M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRIPT Soil type, texture, structure, mot particle characteristics, organic	ION OF STRAT	Γ Α icity, rocks, oxidation,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH (M)		RESUL	TS AND BSERVATIONS			
S Nil	N	М	_ _ _ _ _ _ _		× × × × × × × × × × × × × × × × × × ×	SM	SILTY SAND - With so sands,	ome gravels, i , brown/grey.											
HA Nil	N	М				CL	CLAY - Trace gravels, r plastic, d	medium sub a orange/browr	angular, medium n.			А	0.4	3365/30	3/ 0.4	<u>0</u>			
HA Nil	N	м	-			CL	CLAY - Medium plasti with red mottling	c, brown with increasing w	orange mottles vith depth.			А	0.7	3365/30	3/ 0.7				
			1.0				Borehole termin	nated at 1.0m	on clay.			A	1.0	3365/30	3/1.0	1 2			
X E BH Ba HA Ha	atural existing ackhoe and au pade encrete Bit angsten	expos exca buck ger Core	ure SF vation SC et RE Nil	JPPORT H Shoring Shotcrete Rock Bol No suppo	ts <u>▼</u> Wat ort 	e obser measure er level er outflo er inflov	ed M Moist M Mode W Wet H High Wp Plastic limit R Refus w WI Liquid limit	VS Verate S Sc F Fir al St Sti VSt Ve H Ha F Fria	rry Soft VL Very Loo The MD Medium L The D Dense rry Stiff VD Very Dense rd The MD Medium L The MD Medium L The MD Medium L The MD	se A Aug B Bull Dense U Und D Dis se M Moi Ux Tub	ING & Ti er sample sample isturbed urbed sa sture con e sample	sample mple tent (x mm)	pp S VS DC FE W:	Standard Vane she DP Dynam penetro Field den S Water sa	ic cone meter sity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural			

CL	IEN'	Т	Α	llen Pric	ce & As	sociates	Pty	Ltd	COMMENCED	12.06.14	COMPLETE	12.06	6.14			REF	TP304	
PR	OJE	СТ	Р	relimina	ry Inve	stigatior	1		LOGGED	GT	CHECKED AN Sheet 1 of 1							
SI	ΓΕ		С	ulburra	Road, \	Nest Cu	lburı	ra	GEOLOGY	Siltstone	VEGETATIO	N Gras	ses			PROJECT NO.	P1203365	
_	JIPME				Spade + H				EASTING	NA	RL SURFAC							_
EXC				ION DA		0.8m depth		МАТ	NORTHING ERIAL DAT	NA ·	ASPECT	North	1	٥,٨		SLOPE G & TESTI	2-3% NG	_
МЕТНОВ	SUPPORT	WATER	MOISTURE	DEPTH (M)	M PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRIPT Soil type, texture, structure, mot particle characteristics, organi	ION OF STRAT	^A city, rocks, oxidation,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH (M)		RESUL	TS AND DBSERVATIONS	
s	Nil	N	М	_ _ 0.15		* * * * * * * * * * * * * * * * * * *	SM	SILTY SAND - With so sands	ome gravels, i , brown/grey.									-
НА	Nil	N	М				CL	CLAY - Trace gravels, i	medium sub a orange/browr									-
НА	Nil	N	М	0.5			CL	CLAY - Medium plastic with red mottling					A	0.5	3365/30		(0.5
НА	Nil	N	М	0.7			VL	EXTREMELY WEAK mottled, extr	SILTSTONE				A	0.7	3365/30	04/ 0.7		_
				0.8				Borehole refusal at 0.	-									
N E H S C V	I Na EBH Ba BA Ha BA CC Co V-E CC Tur	atural oxisting ickhoe ind au nade ncrete Bit ngsten	expos exca buck ger Core	ure SF vation SC et RE Nil	JPPORT I Shoring Shotcrete Rock Bol No suppo	ts 🅎 Wat	e obser measur er level er outfl	red M Moist M Mode I W Wet H High Wp Plastic limit R Refus ow WI Liquid limit	VS Verate S So F Fir sal St Sti VSt Ve H Ha	ry Soft VL Very Loo oft L Loose m MD Medium E ff D Dense ry Stiff VD Very Dens	ose A Au B Bul Dense U Un D Dis se M Mo	ING & T ger samp k sample disturbed sturbed sa isture con be sample	le sample ample ntent	pp S VS DO		nic cone ometer nsity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION Y USCS N Agricultural	1
F	T Pu	sh tub	e		E	EXCAVATI	ON LC	OG TO BE READ IN CONJUN	CTION WITH A	CCOMPANYING REP	ORT NOTES	AND A	BBRE\	/IATI0	ONS			_
i								N.	IADTENIC O AC	COCIATES DIVITO		1	_		- !	=		

CL	IEN ⁻	Γ	Α	llen Pric	e & A	ssociates	Pty	Ltd	COMMENCED	12.06.14	COMPLETED	12.06	6.14			REF	TP30	5
PR	OJE	СТ	P	relimina	ry Inv	estigatio	1		LOGGED	GT	CHECKED	AN				Sheet 1 o		
SIT	Έ		С	ulburra	Road,	West Cu	lburr	ra	GEOLOGY	Siltstone	VEGETATIO	Gras:	ses			PROJECT NO.	P1203365	
_	IPMEI					Hand Auger			EASTING	NA	RL SURFACE							
EXC				ISIONS		X 1.0m depth		14 A T	NORTHING	NA .	ASPECT	North	n T			SLOPE	1-2%	
\vdash	EX	CAV	AI	ION DA			z	MAI	ERIAL DAT	Α	I . I			SA	IMPLIN	G & TESTI	NG	
МЕТНОВ	SUPPORT	WATER	MOISTURE	DEPTH (M)	L PENETRATION H RESISTANCE	ĸ	CLASSIFICATION	Soil type, texture, structure, mot particle characteristics, organi	TION OF STRAT ttling, colour, plastics, secondary and amination, odour.	icity, rocks, oxidation,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH (M)	A		TS AND DBSERVATION	NS
s	Nil	N	М				OL	ORGANIC SILTY (grey/	SAND - Medi dark brown.	um grained,								- - -
НА	Nil	N	М				CL	CLAY - Medium plas mottli	tic, gold/brow ing > 0.65m.	n with orange			A	0.7	3365/30	5/ 0.7		- 0 <u>.5</u> - - - - - - - - 1.0
								Borehole termin										- - - - 1.5 - - - - 2.0 - - - 2.25
N B H S C V	Na E: H Ba A Ha Sp C Coi V-E	atural e xisting ckhoe and au ade ncrete Bit agsten	expos exca buck ger Core	ure SF vation SC et RE Nil	JPPORT I Shoring C Shotcre B Rock B No sup	ete X Not volts \(\frac{\psi}{\psi} \) Wat \(\frac{\psi}{\psi} \) Wat \(\frac{\psi}{\psi} \) Wat	e obser measur ter level ter outfle ter inflor	red M Moist M Mode W Wet H High Wp Plastic limit R Refus ow WI Liquid limit	VS Verate S Sc F Fir sal St Sti VSt Ve H Ha F Fria	rry Soft VL Very Loo The MD Medium L The D Dense rry Stiff VD Very Dense rd The MD Medium L The MD Medium L The MD Medium L The MD	se A Aug B Bull Dense U Und D Dis se M Moi Ux Tub	ING & T per sample sample disturbed turbed sa sture cor e sample	sample sample ample ntent e (x mm)	PF S V: D: FI W	Standard S Vane she CP Dynam penetro D Field der S Water sa	ic cone meter sity	CLASSIFICA SYMBOLS AI SOIL DESCR Y USCS N Agricult	ND RIPTION
			7			_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J. 1 LC			SOCIATES BTV LTD	110120	T			•	-	_	

CL	IEN'	Т	Α	llen Pric	ce & As	sociates	Pty	Ltd	COMMENCED	12.06.14	COMPLETE	12.0	6.14			REF	F TP306			
PROJECT		Р	relimina	ry Inve	stigatior	1		LOGGED	GT	CHECKED	AN				Sheet 1					
SITE			С	ulburra	_	Nest Cu	bur	ra	GEOLOGY	Siltstone	VEGETATIO		ses		PROJECT NO. P1203365					
-	JIPME		IMEN	SNOIS	Spade + H	0.8m depth			EASTING NORTHING	NA NA	RL SURFAC ASPECT	E NA Norti	h			SLOPE	1-2%			
EXCAVATION DIMENSIONS EXCAVATION DA						o.om depth		MAT	ERIAL DAT		ASPECT	110121			SAMPLING & TESTING					
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRIPT Soil type, texture, structure, mot particle characteristics, organic	TION OF STRAT	^A city, rocks, oxidation,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		RESUI	LTS AND OBSERVATIONS			
S	Nil	N	М	- - - 0.2		* * * * * * * * * * * * * * * * * * *	SM	SILTY SAND - Mediui	m grained, da	ark grey/brown.								-		
НА	Nil	N	М	0.3			CL	SILTY CLAY - Tra	ace sands, da	ark brown.								_		
НА	Nil	N	М	_ _ _ _ 			CL	SILTY CLAY	- Light browr	n/gold.								0.5		
НА	Nil	N	М	_ _ _ _ _ _			CL	CLAY - Medium plastic extremely weath	c, gold/brown nered siltston	with red/orange e bands.			A	0.8	3365/3(06/ 0.8		- - -		
								Borehole terminated at s	0.8m on extre	emely weathered								_		
				1.0														1.0		
				-														-		
				-														-		
																		-		
				-														-		
				1.5														1.5		
				_														-		
				-														-		
				-														-		
				2.0														2.0		
				_														-		
L	QUIP	MENT	/ MF		JPPORT	WATER		MOISTURE PENETRA	ATION CONSIS	STENCY DENSITY	SAMPI	ING & T	ESTING				2 CLASSIFICATION	2.25		
EQUIPMENT / METHOD SUPPORT WATER MOISTURE PENETRATION N Natural exposure SH Shoring N None observed D Dry L Low X Existing excavation SG Shotcrete BH Backhoe bucket RB Rock Bolts HA Hand auger Nil No support S Spade CC Concrete Corer V V-Bit TC Tungsten Carbide Bit WATER MOISTURE PENETRATION No None observed D Dry L Low W Moist H Moist M Moderate W Wet H High W Plastic limit R Refusal W Water outflow W Liquid limit										ry Soft VL Very Loc off L Loose m MD Medium I ff D Dense ry Stiff VD Very Den rd able	ose A Au B Bul Dense U Un D Dis se M Mo	ger samp k sample disturbed turbed si isture co	ole e I sample ample	pp S VS DO		nic cone ometer nsity	SYMBOLS AND	N		
	T Pu	on tub	<u> </u>		E	EXCAVATIO	ON LO	OG TO BE READ IN CONJUN		CCOMPANYING REP	PORT NOTES	AND A	ABBRE	/IATI0	ONS			_		

CLIENT		Α	llen Pric	e & Ass	sociates	Pty I	_td	COMMENCED	12.06.14	COMPLETED	12.06.14			REF TP307					
PROJECT		Pı	relimina	ry Inve	stigation	1		LOGGED	GT	CHECKED		Sheet 1 of 1							
SIT	E		С	ulburra	Road, V	Vest Cul	burra	a	GEOLOGY	Siltstone	VEGETATION	Grasses		PROJECT NO. P1203365					
EQUI					Spade + H				EASTING NORTHING	NA	RL SURFACE								
_				ISIONS	70mmØ X	1.0m depth		MAT	NA .	ASPECT	North East		SAMPLING & TESTING						
	EX	CAV	AI	ION DA			z	WAI	ERIAL DAT	<u> </u>	Ι. Ι		- SA	INIPLIN	IG & IESIII	NG			
МЕТНОD	SUPPORT	WATER	MOISTURE	DEPTH (M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, mot particle characteristics, organic	ION OF STRAT tling, colour, plasti cs, secondary and amination, odour.	city, rocks, oxidation,	CONSISTENCY	DENSITY INDEX	DEPTH(M)	А	RESULTS AND ADDITIONAL OBSERVATIONS				
S	Nil	N	М	_ _ 0.15		× × × × × × × × × × × × × × × × × × ×	OL	ORGANIC SILT	- Dark brown	, gravels.		S	0.1	3365/30	07/ 0.1		1 1		
S	Nil	N	М				CL	CLAY - Medium plas	stic, brown/ora	ange mottled.		S	0.2	3365/30	07/ 0.2		=		
НА	Nil	N	М	0.5 - - - - - 0.75			CL	CLAY - Medium plas orgai	stic, light brov nic mottles.	wn with minor		A	0.7	3365/30	07/ 0.7		- 0.5 - -		
НА	Nil	N	М	-			CL	CLAY - Medium brown/o	plastic, light range mottles			A	0.8	3365/30	07/ 0.8				
					JPPORT + Shoring	WATER N. Norw	o observation	MOISTURE PENETR.	eathered silts	STENCY DENSITY		NG & TESTINN		Pocket n	enetrometer	CLASSIFICAT SYMROLS AN			
N X BH H# S CO V TO	Na Ex Ba Ha Sp Coi V-E	itural e kisting ckhoe nd aug ade ncrete Bit gsten	exposi excar bucki ger Core	ure SI- vation SC et RE Nil	H Shoring C Shotcrete B Rock Boll No suppo	N None x Notr ts ∇ Wate	measure er level er outflo	Ped D Dry	VS Ve erate S Sc F Fir	ry Soft VL Very Loc off L Loose m MD Medium I ff D Dense ry Stiff VD Very Den: rd	Dense A Auge B Bulk Dense U Undi D Distu se M Mois	er sample	pr S V: D:		nic cone ometer nsity	SYMBOLS AN SOIL DESCR Y USCS N Agricult	ND IPTION		
PT	Pus	sh tube	е	-	-	YC	י און	G TO BE READ IN CONJUN	TION MUTUA		ORT NOTES	אוט אםטטר	\/\\\\\	ONS					
					E	-VOWALI(JIN LU	O TO DE LEVO IN CONJUN	STION WITH A	OCCIVIEAN TING KEP	OKT NOTES /	AND ADRKE	. v 1/4 [](-	_	_			

CLIENT

CL	IEN	Т	A	llen Pric	e & .	Ass	sociates	Pty	Ltd	COMMENCED	12.06.14	COMPLET	ED 1	2.06.14			REF	1	P309		
PROJECT			-		_		stigation			LOGGED	GT	CHECKED	_	AN		Sheet 1 of 1					
SI			С	ulburra			Vest Cu	burr	ra	GEOLOGY	Siltstone	VEGETATI	_	Grasses		PROJECT NO. P1203365					
-	JIPME		DIMEN	SIONS			and Auger 0.8m depth			EASTING NORTHING	NA NA	RL SURFA ASPECT	_	NA North	3-49	V ₆					
Г		EXCAVATION DATA MA							MAT	ERIAL DAT			- 1		SA	MPLIN	SLOPE				
МЕТНОВ	SUPPORT	WATER	MOISTURE	DEPTH(M)	⊩ PENETRATION	H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, mot particle characteristics, organi	ION OF STRAT tling, colour, plastics, secondary and amination, odour.	city, rocks, oxidation,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH (M)	А	RESULTS AND ADDITIONAL OBSERVATIONS				
S	Nil	N	М	- - 0.12			× × × × × × × × × × × × × × × × × × ×	OL	ORGANIC SIL	T - Dark grey	/brown.										
s	Nil	N	М	0.25			 	CL	SILTY CLA	AY - Brown/gr	еу.										
НА	Nil	N	М	0.5				CL	CLAY - Medium pla oran	istic, light gre ge mottles.	y/brown with			A	0.5	3365/30	09/ 0.5			0.5	
				-					Borehole refusal a	at 0.8m on roo	ot/bedrock.										
				1.0																1.0 - 1.0 	
N E H S C V	I Na IH Ba IA Ha IC Co V-E IC Tur	atural oxisting ackhoe and au bade ncrete Bit ngsten	expos exca buck ger Core	THOD SU ure SH vation SC et RE Nil	JPPOR H Shor C Shot B Rock No s	ing crete k Bolt	s 🏗 Wat	e obser measur er level er outfl	red M Moist M Mode W Wet H High Wp Plastic limit R Refus ow WI Liquid limit	VS Verate S So F Fir sal St Sti	vry Soft VL Very Loo vft L Loose m MD Medium E p D Dense ry Stiff VD Very Dense rd VD Very Dense	se A A Dense U L D D se M M	uger sa ulk san Indistur Isturbe Ioisture		PI S V D		nic cone ometer nsity	S		N TION	
F	T Pu	sh tub	е			F	XCAVATIO	אור	OG TO BE READ IN CONJUN	CTION WITH A	CCOMPANYING REP	ORT NOTE	S AN	D ABBRF	VIATI	ONS					
			_								SOCIATES BTV LTD		T		,,	•				-	