Report on Detailed Site Investigation (Contamination) with Limited Sampling

Proposed Educational & Research Facility Campbelltown Hospital, Campbelltown, NSW

Prepared for Western Sydney University - Office of Estate and Commercial c/- Walker Corporation

Project 34275.27 August 2021

Document History

Document details

Project No.	34275.27	Document No.	R.001.Rev1
Document title	Report on Detailed Site Investigation (Contamination) with Limited		
	Sampling		
	Proposed Educationa	ıl & Research Facili	ty
Site address	Campbelltown Hospital, Campbelltown, NSW		
Depart propored for	Western Sydney Univ	ersity - Office of Es	state and Commercial c/- Walker
Report prepared for	Corporation		
File name	34275.27.R.001.Rev	1	

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Archana Maharjan Emily Eden	Glyn Eade	22 June 2021
Revision 1	Emily Eden	Glyn Eade	19 August 2021

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Walker Corporation - Garry Pham
Revision 1	1	0	Walker Corporation - Garry Pham

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signa	ature	Date
Author	- felen.	19 August 2021
Reviewer	Jyrode	19 August 2021
	/ //	

Executive Summary

Douglas Partners Pty Ltd (DP) has been engaged by Western Sydney University - Office of Estate and Commercial c/- Walker Corporation to complete this Detailed Site Investigation for Contamination with limited sampling (DSI) for a proposed Medical Research Centre (MMRC) at Campbelltown Hospital, Campbelltown, NSW, NSW. The objective of the DSI is to assess the suitability of the site for the proposed development and whether further investigation and/or management is required. It is understood that the report will be used to inform the developing Preliminary Cost Plan and Function Design Brief as well as upcoming design and documentation work for the MMRC. It is also understood that fill present on site is unlikely to be reused as part of the development, so some form of advice on the likely waste classification of the fill is required.

The scope of the DSI included review of previous contamination investigations undertaken by DP at the site, summary of site geology, hydrogeology, topography and acid sulphate soil risk maps, review of historical aerial photographs and a search of NSW EPA public registers. A geotechnical investigation was also undertaken by DP (reported under separate cover) and nine boreholes were drilled, from which six soil samples were analysed for a range of common contaminants of potential concern. Soil analytical results were compared against NSW EPA endorsed contamination assessment and waste criteria and the findings documented in this report.

A total of six samples were collected and sent for analytical testing. The analytical results for all contaminants tested in all samples were below the laboratory practical quantitation limit (PQL) and/or the adopted SAC. No asbestos was recorded in the soil samples analysed.

All soil analytical results pass EPA (2014) CT1 criteria and appear to contain minimal putrescible material. Soil analytical results indicate a good likelihood that fill is suitable for disposal as General Solid Waste (GSW) non-putrescible.

Alternatively, the analysed soil is suitable for re use as part of the MMRC development.

Further testing will be required to establish whether the soil is suitable for reuse on another site under the Excavated Natural Materials (ENM) Exemption under the POEO Act. This form of testing is best undertaken once the material is being excavated to observe soil conditions and assess whether any further anthropogenic material is present in the soil.

Based on the findings of the current investigation, it is considered that the site is suitable for the proposed MMRC (commercial / industrial type) development. No further investigation is currently necessary. Notwithstanding the findings of this investigation and noting the limitations inherent (see Section 15), an Unexpected Finds Protocol (UFP) should be developed and referred to during construction should suspected contamination be identified at that time.

In regard to a UPSS to the north of the site, review of previous reports established that the likelihood of UPSS impacting the current site is low. However, the condition of the UPSS may have changed since the previous reports were prepared. As such, if suspected petroleum hydrocarbon type odours and staining are observed during development near or below the groundwater table, the UFP should be followed including seeking advice from a suitably qualified (with reference to NEPC, 2013) Environmental Consultant.

Table of Contents

			Page
1.	Introd	uction	1
2.	Curre	nt and Proposed Development	1
3.	Scope	of Work	2
4.	Site In	formation	2
5.	Enviro	nmental Setting	3
6.	Previo	us Reports	4
	6.1	DP (2011) Phase 1 Contamination Assessment (P1CA)	4
	6.2	DP (2012) Phase 2 Contamination Assessment (P2CA)	5
7.	Site H	istory Summary	6
	7.1	Review of Historical Aerial Photographs	6
	7.2	Search of EPA Register	6
8.		inary Conceptual Site Model	
9.	Samp	ing and Analysis Quality Plan	8
		Data Quality Objectives	
		Soil Sampling Rationale	
10.		ssessment Criteria	
11.		S	
		Field Work Results	
4.0		Laboratory Analytical Results	
12.		Ssion	
40		Data Quality Assurance and Quality Control	
13.		usions and Recommendationstions	
14.	Limita	ions	11
Appe	endix A:	Drawing 1	
		About this Report	
Appe	endix B:	EPA Public Register Results	
Appe	endix C:	DQO	
Appe	endix D:	Field Work Methodology	
Appe	endix E:	SAC	
Appendix F: Summary Tables		Summary Tables	
Appe	endix G:	Bore Logs	
Appe	endix H:	Laboratory Analytical Reports	
Appe	endix I:	QAQC	

Report on Detailed Site Investigation (Contamination) with Limited Sampling Proposed Educational & Research Facility

Campbelltown Hospital, Campbelltown, NSW

1. Introduction

Douglas Partners Pty Ltd (DP) has been engaged by Western Sydney University - Office of Estate and Commercial c/- Walker Corporation to complete this Detailed Site Investigation for Contamination with limited sampling (DSI) for a proposed Medical Research Centre (MMRC) at Campbelltown Hospital, Campbelltown, NSW, NSW (hereinafter referred to as 'the site'). The site is shown on Drawing 1, Appendix A.

The objective of the DSI is to assess the suitability of the site for the proposed development and whether further investigation and/or management is required. It is understood that the report will be used to inform the developing Preliminary Cost Plan and Function Design Brief as well as upcoming design and documentation work for the MMRC. It is also understood that fill present on site is unlikely to be reused as part of the development, so some form of advice on the likely waste classification of the fill is required.

This investigation was undertaken in conjunction with a geotechnical investigation, also undertaken by DP and reported under separate cover (project reference 34275.31).

The site has previously been subject to contamination investigations undertaken by DP to inform the current site (helipad) and surrounding development. The findings of these reports of relevance to the current investigation are summarised in Sections 6.1 and 6.2. The site has since been subject to filling to raise the site levels to the necessary levels to build the helipad. As such, the primary change to site conditions since the previous reports were completed is likely the introduction of fill at the site. This has been considered accordingly in preparing this DSI report.

This report must be read in conjunction with all appendices including the notes provided in Appendix B.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [the 'NEPM'] (NEPC, 2013);
- NSW EPA Waste Classification Guidelines Part 1: Classification of Waste (EPA, 2014); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

2. Current and Proposed Development

The site currently comprises the helipad for Campbelltown Hospital.

DP understands WSU proposes to redevelop the site into a multistorey medical research facility, i.e. MMRC.

3. Scope of Work

DP carried out the following scope of work as part of the DSI:

- Review of previous contamination investigations undertaken by DP at the site;
- Summary of site geology, hydrogeology, topography and acid sulphate soil risk maps;
- Review of historical aerial photography provided in previous reports of relevance to the site, and more recent aerial photographs obtained through Metromap and Nearmap since 2012;
- Carry out an updated search of the NSW EPA public registers established under the Contaminated Land Management Act 1997 (CLM) and the Protection of the Environment Operations Act 1997 (POEO);
- Review of soil logs from nine boreholes drilled as part of the geotechnical investigation;
- Schedule six soil samples for the analysis of a range of common contaminants of potential concern (CoPC) including metals/metalloids, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and total xylenes (BTEX), polycyclic aromatic hydrocarbons (PAH), total phenols, organochlorine and organophosphorus pesticides (OC/OP), polychlorinated biphenyls (PCBs) and asbestos;
- Compare soil analytical results against relevant Site Assessment Criteria (SAC) for the development, as defined in NEPC (2013) as well as waste classification criteria as presented in EPA (2014) and
- Preparation of this DSI report outlining the methodology and results of the investigation, and an assessment of the site's suitability for the proposed development.

No review of Land Titles or Planning Certificates has been undertaken as part of the current investigation because the site has not changed ownership since the previous reports were completed.

4. Site Information

Site Address	Campbelltown Hospital, Campbelltown, NSW
Legal Description	Lot 6 Deposited Plan 1058047
Area	3,930 m ²
Zoning	Zone SP2 Infrastructure
Local Council Area	Campbelltown City Council
Current Use	Helipad for Campbelltown Hospital
Surrounding Uses	North – Campbelltown Hospital
	East – Hospital car park and main building to hospital
	South – Macarthur Clinical School
	West – Parkside Crescent, Marsden Park open space riparian corridor and Birunji Creek, followed by residential

The site layout and boundary is shown on Figure 1 below.

Figure 1: Site Layout

5. Environmental Setting

Regional and Site Topography	Regional topography mapping predates the current helipad which (based on RL elevations at boreholes undertaken as part of the geotechnical investigation) ranges between 82 and 83 m relative to Australian Height Datum (AHD). Beyond the edge of the helipad, the topography slopes in all directions to approximately 73 m AHD in the north east and 79 mAHD in the south west. The site therefore slopes towards the north east, i.e. towards Birunji Creek.
Soil Landscape	Reference to the Soil Conservation Service of NSW (1990) Soil Landscapes of the Wollongong-Port Hacking 1:100 000 Sheet indicates that the site is underlain by the Blacktown soil landscape (mapping unit bt), characterised by gently undulating rises on Wianamatta Group shales and Hawkesbury shale, with local relief to 30 m and slopes usually less than 5%. The landscape is typically represented by broad rounded crests and ridges with gently inclined slopes. Soils range from shallow (<1 m) red-brown podzolic soils - comprising mostly clayey soils on crests and upper slopes - to deep (1.5 m - 3 m) yellow-brown clay soils on lower slopes and areas of poor drainage. These soils are typically moderately reactive with low fertility, poor soil drainage and highly plastic subsoil.
Geology	Reference to the Geological Survey of New South Wales (1985), Wollongong-Port Hacking 1:100 000 Geological Sheet 9029 - 9129 indicates the site is underlain by Ashfield Shale and Minchinbury Sandstone (mapping units Rwa and Rwm) of the Wianamatta Group of the Triassic age. This formation typically comprises laminite and dark grey siltstone and fine to medium-grained lithic sandstone.

Acid Sulfate Soils	Reference to the NSW acid sulfate soils (ASS) risk map indicates that the site is located within an area of no known occurrence of ASS.
Surface Water	Surface water is anticipated to follow the topographical slope, towards Birunji Creek, located approximately 50 m west of the site and ultimately flows into Bow Bowing Creek, some 900 m north east of the site and a tributary of Georges River.
Groundwater	Groundwater of a low yield is anticipated to be present in underlying regolith and bedrock. Groundwater is anticipated to primarily flow towards the north west.

6. Previous Reports

The following previous reports are relevant to the current investigation:

- DP Report on Phase 1 Contamination Assessment (P1CA), Campbelltown Hospital Redevelopment, Therry Road, Campbelltown, Reference 34275.01 (DP, 2011); and
- DP Report on Phase 2 Contamination Assessment, Proposed Hospital Redevelopment, Campbelltown Hospital, Therry Road, Campbelltown, Project 34275.02 (DP, 2012 the P2 CA).

The findings of relevance to the site are summarised below in Sections 6.1 and 6.2.

6.1 DP (2011) Phase 1 Contamination Assessment (P1CA)

- The 2011 (P1CA) investigation was undertaken at the same time as a geotechnical investigation, also undertaken by DP. A total of 37 bores were drilled across the wider Campbelltown Hospital site to inform the geotechnical investigation, of which three boreholes (BH1, BH2 and BH41) were completed within the footprint of the site.
 - o Soil conditions observed in BH1 comprised 3.7 m of fill (grey brown mottled orange brown clayey fine to coarse grained siltstone gravel with some gravelly clay bands) above silty clay and siltstone at depth. DP did not observe any obvious non-soil anthropogenic material in the fill layer. The RL at the time of the investigation was 81.8 mAHD.
 - Soil conditions observed in BH2 comprised 5.0 m of fill (brown grey silty fine to coarse grained siltstone gravel with trace concrete fragments and fine to coarse grained sand above brown fine to coarse grained siltstone gravelly clay with some fine to coarse grained sand) above silty clay and siltstone at depth. The RL at the time of the investigation was 81.8 mAHD.
 - o Soil conditions observed in BH41 comprised 0.1 m of fill (green grey silty fine to coarse grained sandy fine to medium grained igneous gravel) above silty clay and siltstone. DP did not observe anthropogenic material in the fill layer. The RL at the time of the investigation was 76.7 mAHD.

- No obvious staining or odours were encountered in any of the bores.
- Based on the findings of the desk top study and review of the bore logs from the geotechnical
 investigation, DP concluded that the 'site' (as defined in the same report) had a moderate risk
 of contamination being present within the identified Areas of Environmental Concern (AEC)
 and their associated contaminants including (in the current site) fill at the current site.

6.2 DP (2012) Phase 2 Contamination Assessment (P2CA)

- The 2012 investigation (P2CA) included the current site to inform the development of the proposed helipad.
- Two underground petroleum storage system tanks (UPSS) were identified in the P2CA one 'current' (at the time of reporting) and one historical. The locations of both UPSS are not within the current site, with the nearest located more than 50 m north east of the current site.
- To inform the P2CA, DP drilled 45 deep and shallow bores and installed seven monitoring wells. Five of the bores (BH133, BH135, BH137, BH138 and BH139) are located in the current site. Three monitoring wells (MW104 to MW106) were also installed 70 m north of the site (cross and up hydraulic gradient¹) to monitor groundwater conditions associated with the 'current' and historical UPSS.
 - o Soil conditions observed in BH133 comprised 4.6 m of fill (brown orange grey gravelly silty clay above brown grey clayey gravelly silty with some concrete fragments and trace medium to coarse grained orange sand above red brown orange clay with grey gravelly silty clay bands) above clay.
 - o Soil conditions observed in BH135 comprised 0.2 of topsoil (brown clayey silty with rootlets and trace fine grained ironstone gravel) above silty clay and clay. The borehole was terminated at the 3.0 m limit of investigation. DP did not observe any obvious non-soil anthropogenic material in the topsoil layer.
 - o Soil conditions observed in BH137 comprised 0.2 m topsoil (brown gravelly silt with some siltstone gravel fragments and rootlets) above gravelly silty clay. The borehole was terminated at the 0.6 m limit of investigation. DP did not observe any obvious non-soil anthropogenic material in the topsoil layer.
 - o Soil conditions observed in BH138 comprised 0.2 m of topsoil (brown gravelly silt with some fine to medium grained ironstone and siltstone gravels) above silty clay. The borehole was terminated at the 0.6 m limit of investigation. DP did not observe any obvious non-soil anthropogenic material in the topsoil layer.
 - o Soil conditions observed in BH139 comprised 2.5 m of fill (brown to dark grey gravelly silty clay with shale, ironstone and igneous gravels and rootlets. The borehole was terminated at the 2.5 m limit of investigation. White plastic tape was observed in the fill layer.
- The scope of the P2CA included investigating soil and groundwater conditions associated with the two UPSS located north of the current site.
- No staining or olfactory indicators of contamination were noted in soils from any of the bore logs. Soil samples were collected from all bores and analysed for metals, TRH, BTEX, PAH, OC/OP, PCBs, total phenols and asbestos.

¹Based on observed groundwater levels in the P2CA, groundwater is inferred to flow towards the north west.

- All reported concentrations of soil and groundwater were below the laboratory limits of detection and/or their relevant NSW EPA criteria which was current at that time. No asbestos was detected in soil samples analysed.
- The P2CA concluded that the 'site' (as defined in the same report) is suitable for continued hospital
 use and no further contamination investigations were necessary, including in relation to the two
 UPSS' north of the site.

7. Site History Summary

7.1 Review of Historical Aerial Photographs

The following is a summary of the review of historical aerial photographs undertaken in the previous reports and of relevance to the current site only.

- In 1947 and 1961 the site appeared to comprise cleared grazing land and land scarring, possibly a drainage line is evident. Nearby dirt tracks and Appin Road are also visible.
- Some development of the south eastern portion of the site is evident in 1984 and 1988, likely an
 access road constructed for the early layout of adjacent Campbelltown Hospital.
- In 1994 the site and the wider Campbelltown Hospital site appeared to have been subject to clearing, and a batter slope appears to run north to south across the site. Little discernible change occurs to the site until post-2011 when the current helipad was constructed.
- **2012 to current** Key findings of the historical aerial photographs from 29 December 2012 to resent for the site are summarised below:
 - Earthworks for the current helipad appear to have commenced by 17 October 2012 and were completed by 12 May 2013. It is apparent that fill material of unknown quantity and quality was imported and placed as part of the construction works; and,
 - o The site has remained largely unchanged to present day, except for possible staining (the origins of which cannot be confirmed from a desktop study) present on the concrete hardstand surface.

7.2 Search of EPA Register

A search of the NSW EPA website was undertaken on 21 June 2021 for sites recorded as licenced or notified under the Contaminated Land Management Act 1997 (CLM Act) and the Protection of the Environment Operations Act 1997 (POEO Act). The findings are summarised below:

- The site and adjacent properties have not been included in the list of NSW contaminated sites notified to EPA;
- No notices or orders made under the CLM Act 1997 have been issued for the site or adjacent properties; and
- No licences under Schedule 1 of the POEO Act 1997 have been issued for the site or adjacent properties.

The NSW EPA search results are presented in Appendix B.

8. Preliminary Conceptual Site Model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future ie: it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

Potential Sources

Based on the current investigation, the following potential source of contamination and associated CoPC have been identified.

- S1: Fill: Associated with any residual filling present from prior to 2012 and construction of the helipad and levelling.
 - o Various CoPC and may include metals/metalloids, TRH, BTEX, PAH, PCB, OC/OP, total phenols and asbestos.

It is noted that DP carried out a clearance of the site following demolition of a former building and the remains prior to construction of current helipad in 2012 and reported in (DP, 2012 – the P2 CA).

Potential Receptors

The following potential human receptors have been identified:

- R1: Current site users [Hospital staffs, patients, visitors, construction and maintenance workers];
- R2: End site users [Staffs and students of WSU, patients, and their families]; and
- R3: Adjacent site users [Hospital staffs, patients, and visitors].

The following potential environmental receptors have been identified:

- R4: Surface water [Birunji Creek];
- R5: Local groundwater; and
- R6: Terrestrial ecology.

Potential Pathways

The following potential pathways have been identified:

- P1: Ingestion and dermal contact;
- P2: Inhalation of dust and/or vapours;
- P3: Leaching of contaminants and vertical migration into groundwater;
- P4: Surface water run-off;
- P5: Lateral migration of groundwater providing base flow to water bodies; and
- P6: Contact with terrestrial ecology.

Summary of Potentially Complete Exposure Pathways

A 'source-pathway-receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 to S2) and receptors (R1 to R7) are provided in below Table 1.

Table 1: Summary of Potentially Complete Exposure Pathways

Source and COPC	Transport Pathway	Receptor	Risk Management Action
S1: Fill - Metals/metalloids, TRH, BTEX, PAH, OCP and asbestos	P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	R1: Current site users [Hospital staffs, patients, visitors, construction, and maintenance workers] R2: End site users [Staffs and students of WSU, patients, and their families].	An intrusive soil investigation is recommended to
	P2: Inhalation of dust and/or vapours	R3: Land users in adjacent site [Hospital staffs, patients, and visitors]	assess possible contamination and suitability of the site for the proposed
	P3: Leaching of contaminants and vertical migration into groundwater	R4: Local groundwater	development. The findings of the soil investigation will inform the
	P4: Surface water run-off P5: Lateral migration of groundwater providing base flow to water bodies	R5: Surface water bodies	requirement (or not) for a groundwater investigation.
	P6: Contact with terrestrial ecology	R6: Terrestrial ecology	

9. Sampling and Analysis Quality Plan

9.1 Data Quality Objectives

The DSI was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The DQO process is outlined in Appendix C.

9.2 Soil Sampling Rationale

The bore holes undertaken to inform the current investigation were positioned as part the geotechnical investigation which provided a reasonable coverage of the site conditions. Soil samples were collected from each bore hole at select depths targeting fill, in particular any fill containing anthropogenic material.

The general sampling methods are described in the field work methodology, included in Appendix D.

10. Site Assessment Criteria

The site assessment criteria (SAC) applied in the current investigation are informed by the CSM (Section 8) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic commercial/industrial land use scenario. The derivation of the SAC is included in Appendix E and the adopted SAC are listed on the summary analytical results tables in Appendix F.

11. Results

11.1 Field Work Results

The bore hole logs for this assessment are included in Appendix G. The logs recorded the following general sub-surface profile:

- Concrete Hardstand: In TP208 and TP 209, to depths of between 0.23 m and 0.25 m below ground level (bgl).
- Fill: Silty clay with siltstone gravel, was observed in test pit 201/1-1.45, 203/0.5-0.95, 207/1-1.45 to depths of 5.2 m, 4.8 m and 6.7 m bgl respectively.
- Fill: Gravelly clay with siltstone, gravel, trace brick fragments, sandstone gravels in TP 205-0-0.1 and TP208/2.5-2.95 to depths of 1.45 m and 5.5 m bgl respectively.
- Fill: Sandy gravel with igneous gravel was observed in TP209/0.3-0.4 to a depth of 0.4 m bgl.

There were no other apparent records of visual or olfactory evidence (eg: staining, odours, free phase product) to suggest the presence of contamination within the soils encountered in the investigation.

No free groundwater was observed during drilling or logging. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary spatially, and with time.

11.2 Laboratory Analytical Results

The results of laboratory analysis are summarised in Tables 1 to 3 in Appendix F. The laboratory certificate(s) of analysis together with the chain of custody and sample receipt information are provided in Appendix H.

12. Discussion

A total of six samples were collected and sent for analytical testing. The analytical results for all contaminants tested in all samples were below the laboratory practical quantitation limit (PQL) and/or the adopted SAC. No asbestos was recorded in the soil samples analysed.

All soil analytical results pass EPA (2014) CT1 criteria and appear to contain minimal putrescible material. Soil analytical results indicate a good likelihood that fill is suitable for disposal as General Solid Waste (GSW) non-putrescible.

Alternatively, the analysed soil is suitable for re use as part of the MMRC development.

Further testing will be required to establish whether the soil is suitable for reuse on another site under the Excavated Natural Materials (ENM) Exemption under the POEO Act. This form of testing is best undertaken once the material is being excavated to observe soil conditions and assess whether any further anthropogenic material is present in the soil.

12.1 Data Quality Assurance and Quality Control

The data quality assurance and quality control (QA/QC) results are included in Appendix I. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

13. Conclusions and Recommendations

This DSI included a review of site history information, previous investigations and soil testing for contamination investigation purposes. The historical aerial photograph review indicated that the site has been used as a hospital since 2002 and prior to this for farming (pastoral) purposes. The areas near the site have been subject to various stages of redevelopment since the 1970's and previous investigations have indicated the presence of filling at the site.

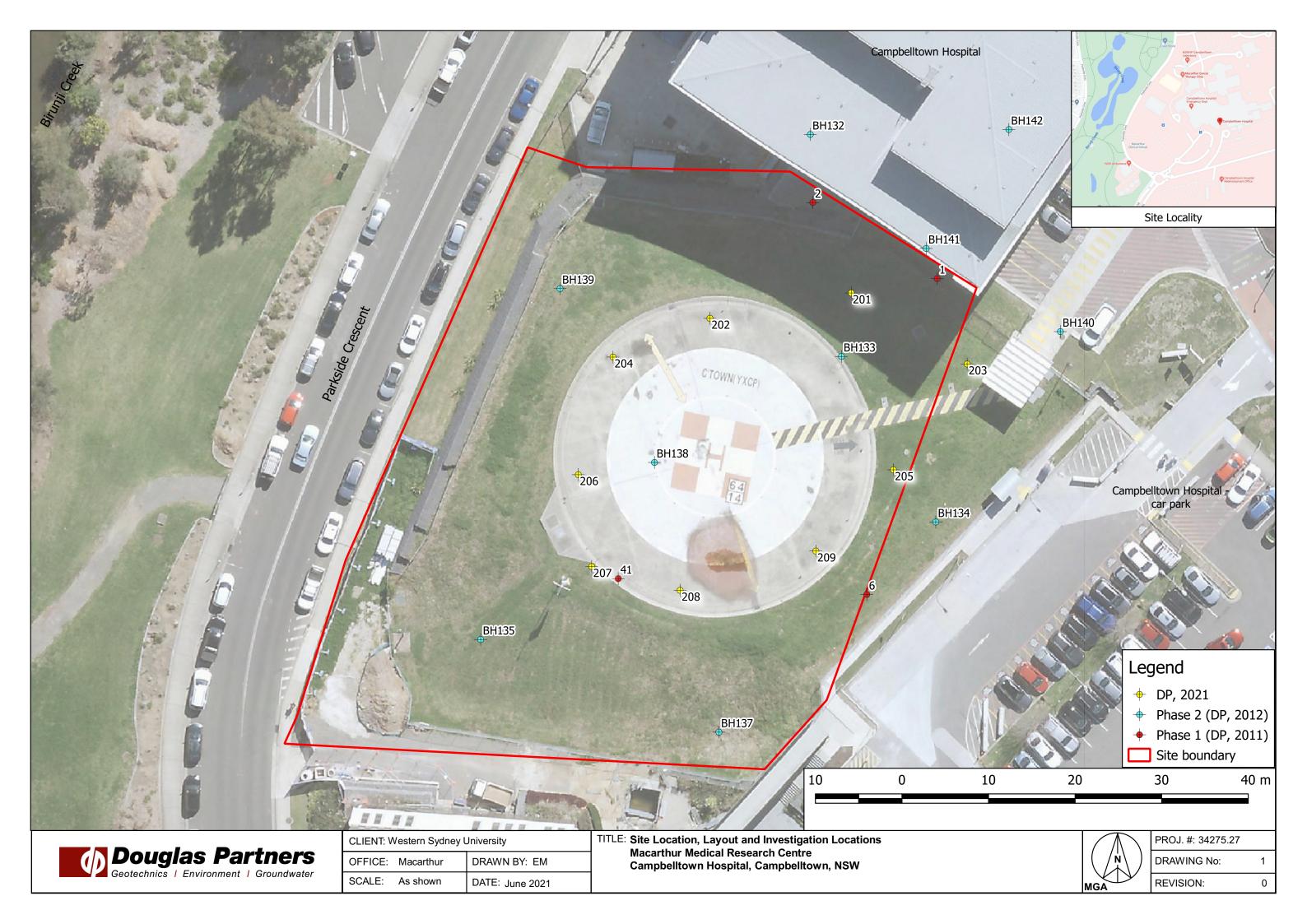
Based on the findings of the current investigation, it is considered that the site is suitable for the proposed MMRC (commercial / industrial type) development. No further investigation is currently necessary. Notwithstanding the findings of this investigation and noting the limitations inherent (see Section 15), an Unexpected Finds Protocol (UFP) should be developed and referred to during construction should suspected contamination be identified at that time.

In regard to the UPSS to the north of the site, review of previous reports established that the likelihood of UPSS impacting the current site is low. However, the condition of the UPSS may have changed since the previous reports were prepared. As such, if suspected petroleum hydrocarbon type odours and staining are observed during development near or below the groundwater table, the UFP should be followed including seeking advice from a suitably qualified (with reference to NEPC, 2013) Environmental Consultant.

14. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at Campbelltown Hospital, Campbelltown, NSW in accordance with DP's proposal MAC200380 dated 11 February 2021 and Contract reference MAC200380.P001.Rev2. This report is provided for the exclusive use of Western Sydney University - Office of Estate and Commercial for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.


This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the environmental components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

Drawing 1 About this Report

About this Inspection Report

Introduction

These notes are provided to amplify DP's inspection report in regard to the limitations of carrying out inspection work. Not all notes are necessarily relevant to this report.

Standards

This inspection report has been prepared by qualified personnel to current engineering standards of interpretation and analysis.

Copyright and Limits of Use

This inspection report is the property of DP and is provided for the exclusive use of the client for the specific project and purpose as described in the report. It should not be used by a third party for any purpose other than to confirm that the construction works addressed in the report have been inspected as described. Use of the inspection report is limited in accordance with the Conditions of Engagement for the commission.

DP does not undertake to guarantee the works of the contractors or relieve them of their responsibility to produce a completed product conforming to the design.

Reports

This inspection report may include advice or opinion that is based on engineering and/or geological interpretation, information provided by the client or the client's agent, and information gained from:

- an investigation report for the project (if available to DP);
- inspection of the work, exposed ground conditions, excavation spoil and performance of excavating equipment while DP was on site;
- investigation and testing that was carried out during the site inspection;
- anecdotal information provided by authoritative site personnel; and

DP's experience and knowledge of local geology.

Such information may be limited by the frequency of any inspection or testing that was able to be practically carried out, including possible site or cost constraints imposed by the client/contractor(s). For these reasons, the reliability of this inspection report is limited by the scope of information on which it relies.

Every care is taken with the inspection report as it relates to interpretation of subsurface conditions and any recommendations or suggestions for construction or design. However, DP cannot anticipate or assume responsibility for:

- unexpected variations in subsurface conditions that are not evident from the inspection; and
- the actions of contractors responding to commercial pressures.

Should these issues occur, then additional advice should be sought from DP and, if required, amendments made.

This inspection report must be read in conjunction with any attached information. This inspection report should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions from review by others of this inspection report or test data, which are not otherwise supported by an expressed statement, interpretation, outcome or conclusion stated in this inspection report.

Appendix B

EPA Public Register Results

Home Public registers Contaminated land record of notices

Search results

Your search for:Suburb: CAMPBELLTOWN

Matched 3 notices relating to 1 site.

Search Again Refine Search

Suburb Address Site Name Notices related to this site

CAMPBELLTOWN 62 Blaxland ROAD Chemical Storage 3 former

Page 1 of 1

21 June 2021

For business and industry ^

For local government ^

Contact us

131 555 (tel:131555)

Online (https://yoursay.epa.nsw.gov.au/epa-website-feedback)

info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)

EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index)
Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer)
Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy)
Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

in
(https://au.lin
environmentprotectionautlerity(https://www.tper/./www.

Find us on

Number	Name	Location	Туре	Status	Issued date
		Campbelltown Road Upgrade between East			
4500040		Town Centre Road and New MacDonald	s.80 Surrender of a		24.4. 20
1593918		Road, CAMPBELLTOWN, NSW 2560	Licence	Issued	31-Aug-20
		Commbolitarya Bood Hagrada batuyaan Fast			
	BURTON CONTRACTORS BTV	Campbelltown Road Upgrade between East			
24040	BURTON CONTRACTORS PTY	Town Centre Road and New MacDonald	DOEO I'm man	6	24 5 4 40
21040	LID	Road, CAMPBELLTOWN, NSW 2560	POEO licence	Surrendered	21-Feb-18
1005533	CANADENI COLL NAIV DTV LTD	GLENLEE ROAD, CAMPBELLTOWN, NSW	s FO License Verietien	leaved	24 May 01
1005522	CAMDEN SOIL MIX PTY LTD	GLENLEE ROAD, CAMPBELLTOWN, NSW	s.58 Licence Variation	Issued	24-May-01
1016427	CANADENI COLL NAIV DTV LTD	· ·	s FO License Marietien	leaved	20 1 02
1016427	CAMDEN SOIL MIX PTY LTD	2560 GLENLEE ROAD, CAMPBELLTOWN, NSW	s.58 Licence Variation	issuea	29-Jul-02
1010770	CANADENI COLL NAIV DTV LTD	2560	s FO License Marietien	leaved	10 500 03
1019778	CAMDEN SOIL MIX PTY LTD		s.58 Licence Variation	Issued	19-Sep-02
1025207	CANADENI COLL NAIV DTV LTD	GLENLEE ROAD, CAMPBELLTOWN, NSW 2560	s FO License Marietien	leaved	7 Max 02
1025207	CAMDEN SOIL MIX PTY LTD	GLENLEE ROAD, CAMPBELLTOWN, NSW	s.58 Licence Variation	Issued	7-Mar-03
1022000	CANADENI COLL NAIV DTV LTD	2560	s FO License Marietien	Issued	2 Doc 02
1032889	CAMDEN SOIL MIX PTY LTD		s.58 Licence Variation	issuea	2-Dec-03
1024270	CANADENI COLL NAIV DTV LTD	GLENLEE ROAD, CAMPBELLTOWN, NSW 2560	s FO License Marietien	leaved	4 Fab 04
1034270	CAMDEN SOIL MIX PTY LTD		s.58 Licence Variation	Issued	4-Feb-04
1042014	CANADENI COLL NAIV DTV LTD	GLENLEE ROAD, CAMPBELLTOWN, NSW 2560	s FO License Marietien	Issued	10 Dec 04
1043014	CAMDEN SOIL MIX PTY LTD	GLENLEE ROAD, CAMPBELLTOWN, NSW	s.58 Licence Variation	issuea	10-Dec-04
1052000	CAMDEN SOIL MIX PTY LTD	2560	s.58 Licence Variation	Issued	24 Oct 05
1052990	CAMIDEN SOIL WIIX PTT LTD		5.56 LICETICE VARIATION	issueu	24-Oct-05
CCE1	CANADDELL TOWARD CITY COLUNICIE	CAMPBELLTOWN CITY COUNCIL,	DOFO liganes	Currendered	9 May 00
0051	CAMPBELLTOWN CITY COUNCIL	CAMPBELLTOWN, NSW 2560 THE PARKWAY, CAMPBELLTOWN, NSW	POEO licence	Surrendered	8-May-00
1667	CAMPBELLTOWN CITY COUNCIL	· ·	POEO licence	Surrendered	21-Jun-00
1007	CAIVIF BELLTOWN CITT COONCIL	CAMPBELLTOWN CITY COUNCIL,	r OLO licerice	Surremaerea	21-3411-00
1000602	CAMPBELLTOWN CITY COUNCIL	CAMPBELLTOWN, NSW 2560	s.58 Licence Variation	Issued	2-Oct-01
1003002	CAIVIF BELLTOWN CITT COONCIL	THE PARKWAY, CAMPBELLTOWN, NSW	s.80 Surrender of a	issueu	2-001-01
1012603	CAMPBELLTOWN CITY COUNCIL		Licence	Issued	27-Nov-01
1012003	CAIVII BELETOWN CITT COONCIL	CAMPBELLTOWN CITY COUNCIL,	s.80 Surrender of a	1334C4	27 100 01
1507186	CAMPBELLTOWN CITY COUNCIL	CAMPBELLTOWN, NSW 2560	Licence	Issued	25-Jul-12
1307100	CAIVIF BELLTOWN CITT COONCIL	BADGALLY ROAD, CAMPBELLTOWN, NSW	Licence	issueu	25-Jul-12
3109	DULMISON PTY LTD	2560	POEO licence	Surrendered	1-May-00
3103	DOLIVIISONTTTEID	BADGALLY ROAD, CAMPBELLTOWN, NSW	s.80 Surrender of a	Sarrenaerea	1 Way 00
1035315	DULMISON PTY LTD	2560	Licence	Issued	15-Mar-04
1033313	HANSON CONSTRUCTION	66 BLAXLAND ROAD, CAMPBELLTOWN,	Licence	No longer in	13 10101 04
1341	MATERIALS PTY LTD	NSW 2560	POEO licence	force	24-May-00
15-1	HANSON CONSTRUCTION	66 BLAXLAND ROAD, CAMPBELLTOWN,	1 OLO IICCIICC	TOTCC	24 Way 00
1006343	MATERIALS PTY LTD	NSW 2560	s.58 Licence Variation	Issued	15-Jun-01
1000343	HCOA OPERATIONS	92-96 DUMARESQ ST, CAMPBELLTOWN,	3.30 Electrice variation	No longer in	15 3411 01
6721	(AUSTRALIA) PTY LIMITED	NSW 2560	POEO licence	force	1-May-00
0721	HCOA OPERATIONS	92-96 DUMARESQ ST, CAMPBELLTOWN,	1 OLO IICCIICC	TOTCC	1 11/14/ 00
1044534	(AUSTRALIA) PTY LIMITED	NSW 2560	s.58 Licence Variation	Issued	15-Feb-05
		92-96 DUMARESQ ST, CAMPBELLTOWN,			
1018720	PRUINOSA PTY LTD	NSW 2560	s.58 Licence Variation	Issued	22-Oct-02
	SUEZ RECYCLING & RECOVERY	GLENLEE ROAD, CAMPBELLTOWN, NSW	- 52 <u></u>		
5647	PTY LTD	2560	POEO licence	Issued	6-Jan-00
3317	SUEZ RECYCLING & RECOVERY	GLENLEE ROAD, CAMPBELLTOWN, NSW			2 32 30
1129416		2560	s.58 Licence Variation	Issued	15-Jun-11
	SUEZ RECYCLING & RECOVERY	GLENLEE ROAD, CAMPBELLTOWN, NSW			
1505549		2560	s.58 Licence Variation	Issued	22-May-13
		2.2.2		1	, 10

	SUEZ RECYCLING & RECOVERY	GLENLEE ROAD, CAMPBELLTOWN, NSW			
3085774295	PTY LTD	2560	Penalty Notice	Issued	10-Jun-14
	SUEZ RECYCLING & RECOVERY	GLENLEE ROAD, CAMPBELLTOWN, NSW			
3085775166	PTY LTD	2560	Penalty Notice	Issued	28-Oct-14
	SUEZ RECYCLING & RECOVERY	GLENLEE ROAD, CAMPBELLTOWN, NSW			
3085776798	PTY LTD	2560	Penalty Notice	Issued	17-Jun-15
	SUEZ RECYCLING & RECOVERY	GLENLEE ROAD, CAMPBELLTOWN, NSW			
1524788	PTY LTD	2560	s.58 Licence Variation	Issued	2-May-18
	SYDNEY SOUTH WEST AREA	THERRY ROAD, CAMPBELLTOWN, NSW		No longer in	
7457	HEALTH SERVICE	2560	POEO licence	force	31-Mar-00
	SYDNEY SOUTH WEST AREA	THERRY ROAD, CAMPBELLTOWN, NSW			
1027194	HEALTH SERVICE	2560	s.58 Licence Variation	Issued	9-May-03
	SYDNEY SOUTH WEST AREA	THERRY ROAD, CAMPBELLTOWN, NSW			
1051870	HEALTH SERVICE	2560	s.58 Licence Variation	Issued	13-Sep-05
	WSN ENVIRONMENTAL	GLENLEE ROAD, CAMPBELLTOWN, NSW			
1096555	SOLUTIONS PTY LIMITED	2560	s.58 Licence Variation	Issued	3-Feb-09
	WSN ENVIRONMENTAL	GLENLEE ROAD, CAMPBELLTOWN, NSW			
1109891	SOLUTIONS PTY LIMITED	2560	s.58 Licence Variation	Issued	16-Dec-09
	WSN ENVIRONMENTAL	GLENLEE ROAD, CAMPBELLTOWN, NSW			
1114416	SOLUTIONS PTY LIMITED	2560	s.58 Licence Variation	Issued	27-Jul-10
	WSN ENVIRONMENTAL	GLENLEE ROAD, CAMPBELLTOWN, NSW			
1119461	SOLUTIONS PTY LIMITED	2560	s.58 Licence Variation	Issued	15-Sep-10

Appendix C

DQO

Appendix C Data Quality Objectives Campbelltown Hospital, Campbelltown, NSW

C1.0 Data Quality Objectives

The DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

Ste	ер	Summary
1. State	e the	The objective of the investigation is to confirm the contamination status of the site with respect to the proposed land use. The report is being undertaken as the land is to be redeveloped to provide a medical research facility. The requirements of the regulator, Campbelltown city Council, will also be considered by consulting their Development Control Plan (DCP), Local Environment Plan (LEP) and any other requirements based on our recent experience with Council on similar sites.
prob	olem	A preliminary conceptual site model (CSM) has been prepared (Section 8) for the proposed development.
		The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager, Field staff.
		The scope of the intrusive investigation comprised (and was limited to) soil bores undertaken to inform a geotechnical investigation also being undertaken by DP.
2. Ident	itify the sions /	The site history has identified possible contamination associated with historical and recent filling of the site, as outlined in the CSM (Section 8). The CSM identifies the associated contaminants of potential concern (COPC) and the likely impacted media. The site assessment criteria (SAC) for each of the COPC are detailed in Section 10 and Appendix E and with reference to NEPC (2013).
goal study	of the y	The decision is to establish whether or not the results fall below the SAC and (if any exceedances are noted, and the dataset is suitable to assess accordingly) or whether or not the 95% upper confidence limit of the sample population falls below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective and whether (or not) further assessment and / or remediation will be derived.
3. Ident information input	mation	Inputs to the investigation will be the results of analysis of samples to measure the concentration of COPC identified in the CSM using NATA accredited laboratories and methods, where possible. A photoionization detector (PID) was made available to screen soils for VOC if visual / olfactory indicators of possible contamination were observed (none were).

Step	Summary
Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A. The vertical boundaries are to the base of the filling and in the top of underlying natural strata. The assessment is limited to the timeframe over which the field investigation was undertaken. Constraints to the assessment are identified and discussed in the conclusions of the report, Section 13.
5. Develop the analytical approach (or decision rule)	The decision rule is to compare all analytical results with SAC. Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible. It is noted that for the purpose of a preliminary assessment of waste classification for the soil, soil analytical results were also compared with EPA (2014) waste classification guidelines. Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s). Initial comparisons will be with individual results then, if and where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL) to assess potential risks posed by the site contamination. Quality control results are to be assessed according to their relative percent difference (RPD) values.
6. Specify the performance or acceptance criteria	Baseline condition: Contaminants at the site exceed human health and environmental SAC and poses a potentially unacceptable risk to receptors (null hypothesis). Alternative condition: Contaminants at the site complies with human health and environmental SAC and as such, does not pose a potentially unacceptable risk to receptors (alternative hypothesis). Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true. Decision errors for the proposed assessment will be minimised and measured by the following: C1.0 Compare new data with available previous investigations to determine the possible range of the parameters of interest; Systematic soil sample numbers will comply (where possible) with those recommended in the NSW EPA Sampling Design Guidelines (1995), which have risk probabilities already incorporated; The sampling regime will target each stratum identified to account for site variability; Sample collection and handling techniques will be in accordance with DP's Field Procedures Manual; Samples will be prepared and analysed by a NATA-accredited laboratory with the acceptance limits for laboratory QA/QC parameters based on the laboratory reported acceptance limits and those stated in NEPC (2013); The SAC will be adopted from established and NSW EPA endorsed guidelines. Where not available, recognised national and international guidelines were used. The SAC have risk probabilities already incorporated;

	A significance level of 0.05 will be adopted for data with statistical analysis of 95% Upper Confidence Limit (95% UCL) of average concentrations; and
	Only NATA accredited laboratories using NATA endorsed methods are used to perform laboratory analysis. Where NATA endorsed methods are not used, the reasons are stated. The effect of using non-NATA methods on the decision making process are explained.
7. Optimise the design for obtaining data	The positioning of bore holes was undertaken to inform the geotechnical investigation, however fill conditions across the site were not considered likely to vary significantly given the nature of the recent development (helipad). As the purpose of the sampling program of fill soil is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially impacted fill based on visual and olfactory observations.
	Further details regarding the proposed sampling plan are presented in Section 9.

Appendix D

Field Work Methodology

Appendix D Field Work Methodology Campbelltown Hospital, Campbelltown, NSW

D1.0 Guidelines

The field work methodology was prepared with reference to NEPC (2013) as referenced in the main body report.

D2.0 Soil Sampling

Soil sampling is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from the core sample extracted during drilling;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Collect replicate samples in zip-lock bags for PID screening;
- Collect ~40 g to 50 g samples in zip-lock bags for asbestos (presence / absence) analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

D3.0 Field Testing

Field testing including headspace tests (with a Photoionization Detector – PID) and gravimetric analysis of soils for asbestos containing materials (ACM) was not required for this project because no visual or olfactory indicators of possible volatile contamination or suspected asbestos was observed in the soil sampled from each bore hole.

Appendix E

SAC

Appendix E Site Assessment Criteria Campbelltown Hospital, Campbelltown, NSW

E1.0 Introduction

E1.1 Guidelines

The site assessment criteria (SAC) were prepared with reference to NEPC (2013) as referenced in the main body report.

E1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: Commercial/Industrial. Corresponding to land use category 'D', commercial / industrial such as shops, offices, factories and industrial sites; and
- Soil type: clay.

E2.0 Soils

E2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 and 2.

Table 1: Health Investigation Levels (mg/kg)

Table 1: Health investigation	Leveis (mg/kg)		
Contaminant	HIL-D		
Metals			
Arsenic	3000		
Cadmium	900		
Chromium (VI)	3600		
Copper	240 000		
Lead	1500		
Mercury (inorganic)	730		
Nickel	6000		
Zinc	400 000		
PAH			
B(a)P TEQ	40		
Total PAH	4000		
Phenois			
Phenol	240 000		
Pentachlorophenol	660		
ОСР			
DDT+DDE+DDD	3600		
Aldrin and dieldrin	45		
Chlordane	530		
Endosulfan	2000		
Endrin	100		
Heptachlor	50		
НСВ	80		
Methoxychlor	2500		
OPP			
Chlorpyrifos	2000		
РСВ			
PCB	7		

Table 2: Health Screening Levels (mg/kg)

Contaminant	HSL-D	HSL-D	HSL-D	HSL-D
SAND	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	3	3	3	3
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	230	NL	NL	NL
Naphthalene	NL	NL	NL	NL
TRH F1	260	370	630	NL
TRH F2	NL	NL	NL	NL
SILT	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	4	4	6	10
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	NL	NL	NL	NL
Naphthalene	NL	NL	NL	NL
TRH F1	250	360	590	NL
TRH F2	NL	NL	NL	NL
CLAY	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	4	6	9	20
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	NL	NL	NL	NL
Naphthalene	NL	NL	NL	NL
TRH F1	310	480	NL	NL
TRH F2	NL	NL	NL	NL

Notes: TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH $>C_{10}-C_{16}$ minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in Table 3.

Table 3: Health Screening Levels for Direct Contact (mg/kg)

Contaminant	DC HSL-D	DC HSL-IMW
Benzene	430	1100
Toluene	99 000	120 000
Ethylbenzene	27 000	85 000
Xylenes	81 000	130 000
Naphthalene	11 000	29 000
TRH F1	26 000	82 000
TRH F2	20 000	62 000
TRH F3	27 000	85 000
TRH F4	38 000	12 000

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C₁₀-C₁₆ minus naphthalene

IMW intrusive maintenance worker

E2.2 Asbestos in Soil

Based on the CSM and/or current site access limitations, a detailed asbestos assessment was not considered to be warranted at this stage. However, due to the history of widespread use of ACM products across Australia, ACM can be encountered unexpectedly and sporadically at a site. Therefore, the presence or absence of asbestos at a limit of reporting of 0.1 g/kg (AS:4964) has been adopted for this investigation/assessment as an initial screen.

E2.3 Ecological Investigation Levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 5, with inputs into their derivation shown in Table 4.

Table 4: Inputs to the Derivation of the Ecological Investigation Levels

Variable	Input	Rationale
Age of contaminants	"Aged" (>2 years)	No 'new' spill has occurred at site as far is reasonably known. The fill is the 'source' and has been present for some time; minor constituents in the fill is unlikely to be a 'fresh' source.
pН	4	Conservative presumption for initial screening purposes
CEC	5 cmol₀/kg	Conservative presumption for initial screening purposes
Clay content	40 %	Reasonable presumption for soils that are primarily clays.
Traffic volumes	High	Conservative presumption for initial screening purposes
State / Territory	NSW	-

Table 5: Ecological Investigation Levels (mg/kg)

Contaminant	EIL-D	
Metals		
Arsenic	160	
Copper	85	
Nickel	60	
Chromium	1100	
Lead	1800	
Zinc	230	
РАН		
Naphthalene	370	
ОСР		
DDT	640	

Notes: EIL-AES area of ecological significance

E2.4 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 6.

Table 6: Ecological Screening Levels (mg/kg)

Contaminant	Soil Type	EIL-D
Benzene	Coarse	75
Toluene	Coarse	135
Ethylbenzene	Coarse	165
Xylenes	Coarse	180
TRH F1	Coarse/ Fine	215*
TRH F2	Coarse/ Fine	170*
TRH F3	Coarse	1700
TRH F4	Coarse	3300
B(a)P	Coarse	1.4
Benzene	Fine	95
Toluene	Fine	135
Ethylbenzene	Fine	185
Xylenes	Fine	95
TRH F1	Coarse/ Fine	215*
TRH F2	Coarse/ Fine	170*
TRH F3	Fine	2500
TRH F4	Fine	6600
B(a)P	Fine	1.4

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability

TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C₁₀-C₁₆ including naphthalene

EIL-AES is area of ecological significance

E2.5 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- · Fire and explosion hazards; and
- Effects on buried infrastructure eg: penetration of, or damage to, in-ground services.

The adopted management limits are in Table 7.

Table 7: Management Limits (mg/kg)

Contaminant	Soil Type	ML-A-B-C	ML-D
TRH F1	Coarse	700	700
TRH F2	Coarse	1000	1000
TRH F3	Coarse	2500	3500
TRH F4	Coarse	10 000	10 000
TRH F1	Fine	800	800
TRH F2	Fine	1000	1000
TRH F3	Fine	3500	5000
TRH F4	Fine	10 000	10 000

Notes: TRH F1 is TRH $C_6\text{-}C_{10}$ including BTEX

TRH F2 is TRH $>C_{10}-C_{16}$ including naphthalene

Appendix F

Summary Tables

Table 1: Summary of Laboratory Results – Metals, TRH, BTEX, PAH

					Me	etals				TF	RH			TR	кH				ВТ	ΞX			P	PAH		00	CP	OPP	РСВ
		Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C9	C10-C36 recoverable hydrocarbons	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs	Total Endosulfan	Total Analysed OCP	Total Analysed OPP	Total PCB
	PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.05	0.1	0.1	0.1	0.1
Sample ID	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg	/kg	m	g/kg
201/1-1.45	05/05/2021	<4	<0.4	4	34	17	<0.1	15	59	<25	<50	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<0.1	<0.1	<0.1	<0.1
201/1 1.40	03/03/2021	3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230	-	-		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	NL 370	- 1.4	40 -	4000 -	-	-	-	-
203/0.5-0.95	05/05/2021	<4	<0.4	7	19	14	<0.1	10	39	<25	<50	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<0.1	<0.1	<0.1	<0.1
		3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230	-	-		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	NL 370	- 1.4	40 -	4000 -	-	-	-	-
205/0-0.1	06/05/2021	<4	<0.4	7	24	14	0.1	12	44	<25	<50	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<0.1	<0.1	<0.1	<0.1
		3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230	-	-		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	NL 370	- 1.4	40 -	4000 -	-	-	-	-
207/1-1.45	06/05/2021	4	<0.4	14	36	20	<0.1	20	86	<25	<50	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<0.1	<0.1	<0.1	<0.1
		3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230	-	-		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	NL 370	- 1.4		4000 -	-	-	-	-
208/2.5-2.95	10/05/2021	<4	<0.4	7	20	16	<0.1	8	32	<25	<50	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<0.1	<0.1	<0.1	<0.1
		3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230	-	-		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	NL 370	- 1.4		4000 -	-	-	-	-
209/0.3-0.4	11/05/2021	<4 3000 160	<0.4 900 -	5 3600 1100	24	14	<0.1	4	90	<25	<50	<25	<50 - 170	<25 310 215	<50	280	- 6600	<0.2	<0.5	<1 NII 405	<1	<1 NL 370	1.4	2.1	12	<0.1	<0.1	<0.1	<0.1
		3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230	-	-		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	INL 370	- 1.4	40 -	4000 -	-	-	-	-
С	T1	100	20	100	NC	100	4	40	NC	650	10000	NC	NC	NC	NC	NC	NC	10	288	600	1000	NC	0.8	NC	200	60	<50	4	<50
SC	CC1	500	100	1900	NC	1500	50	1050	NC	650	10000	NC	NC	NC	NC	NC	NC	18	518	1080	1800	NC	10	NC	200	108	<50	7.5	<50
TC	LP1	N/A	N/A	N/A	NC	N/A	N/A	N/A	NC	N/A	N/A	NC	NC	NC	NC	NC	NC	N/A	N/A	N/A	N/A	NC	N/A	NC	N/A	N/A	N/A	N/A	N/A
	T2	400	80	400	NC	400	16	160	NC	2600	40000	NC	NC	NC	NC	NC	NC	40	1152	2400	4000	NC	3.2	NC	800	240	<50	16	<50
SC	CC2	2000	400	7600	NC	6000	200	4200	NC	2600	40000	NC	NC	NC	NC	NC	NC	72	2073	4320	7200	NC	23	NC	800	432	<50	30	<50
TC	LP2	N/A	N/A	N/A	NC	N/A	N/A	N/A	NC	N/A	N/A	NC	NC	NC	NC	NC	NC	N/A	N/A	N/A	N/A	NC	N/A	NC	N/A	N/A	N/A	N/A	N/A

Lab result	HIL/HSL exceedance EIL/ESL exceedance HIL/HSL and EIL/ESL exceedance ML exceedance ML and HIL/HSL or EIL/ESL exceedance
HIL/HSL value EIL/ESL value	Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance ☐ HSL 0-<1 Exceedance

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact H

Notes:

- QA/QC replicate of sample listed directly below the primary sample
- b Reported naphthalene laboratory result obtained from BTEXN suite
- C Criteria applies to DDT only

Site Assessment Criteria (SAC):

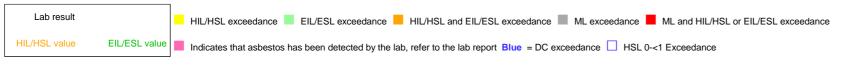
Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Commercial/ industrial $\ensuremath{\mathsf{D}}$

HIL D Commercial / Industrial (NEPC, 2013)

HSL D Commercial / Industrial (vapour intrusion) (NEPC, 2013)

DC HSL D Direct contact HSL D Commercial/Industrial (direct contact) (CRC CARE, 2011)


EIL/ESL C/Ind Commercial and Industrial (NEPC, 2013)

ML C/Ind Commercial and Industrial (NEPC, 2013)

Table 2: Summary of Laboratory Results - Phenol, OCP, OPP, PCB, Asbestos

			Phenol						ОСР						OPP	РСВ		Asbestos	
			Phenol	QQQ	DDT+DDE+DDD ^C	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzene	Methoxychlor	Chlorpyriphos	Total PCB	Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos (50 g)
	F	PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
Sample ID	Samp	ple Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	-
201/1-1.45	05/0	05/2021	660 -		3600 640		- 640	45 -	530	100 -	2000 -	50	80 -	2500 -	2000 -	7 -	NAD	NAD	NAD
203/0.5-0.95	05/0	05/2021	<5 660 -	-	3600 640		- 640	45 -	530 -	100 -	2000 -	50 -	- 80 -	2500 -	2000 -	7 -	NAD	NAD	NAD
205/0-0.1	06/0	05/2021	<5 660 -	<0.1	<0.1 3600 640	<0.1	<0.1 - 640	<0.1 45 -	<0.1 530 -	<0.1	<0.1	<0.1	<0.1 80 -	<0.1 2500 -	<0.1	<0.1	NAD	NAD	NAD
207/1-1.45	06/0	05/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
209/2 5 2 05	10/0	05/2021	<5 <	-	-	-	- 640	45 -	530 -	100 -	-	50 -	80 -	2500 -	2000 -	-	NAD	NAD	NAD
208/2.5-2.95	10/0		660 -		3600 640		- 640	45 -	530 -	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -	INAD	INAD	INAD
209/0.3-0.4	11/0	05/2021	660 -		- 3600 640		- 640	45 -	530	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -	NAD	NAD	NAD

Bold = Lab detections -= Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit D

Notes:

a QA/QC replicate of sample listed directly below the primary sample

b Reported naphthalene laboratory result obtained from BTEXN suite

C Criteria applies to DDT only

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Commercial/ industrial D

HIL D Commercial / Industrial (NEPC, 2013)

HSL D Commercial / Industrial (vapour intrusion) (NEPC, 2013)

DC HSL D Direct contact HSL D Commercial/Industrial (direct contact) (CRC CARE, 2011)

EIL/ESL C/Ind Commercial and Industrial (NEPC, 2013)

ML C/Ind Commercial and Industrial (NEPC, 2013)

Table 3: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos

						Metals						т	RH				ВТЕ	X			PA	Н		Phenol						OCP						OPP	PCB		Asbestos	
				Т				1	1																															
		Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs	Phenol	QQQ	DDT+DDE+DDD [©]	DDE	TOO	Aldrin & Dieldrin	Total Chlordane	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzene	Methoxychlor	Chlorpyriphos	Total PCB	Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos (50 g)
	PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.05	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
Sample ID	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	-
201/1-1.45	05/05/2021	<4	<0.4	4	34	17	<0.1	15	59	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	-	-		-	-	-	-	-	-	-	-	-	-	-	NAD	NAD	NAD
201/1-1.45	05/05/2021	3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	NL 370	- 1.4	40 -	4000 -	660 -		3600 640		- 640	45 -	530 -	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -	INAD	INAD	INAL
203/0.5-0.95	05/05/2021	<4	<0.4	7	19	14	<0.1	10	39	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	NAD	NAD	NAD
		3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	NL 370	- 1.4	40 -	4000 -	660 -		3600 640		- 640	45 -	530 -	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -			
205/0-0.1	06/05/2021	<4	<0.4	7	24	14	0.1	12	44	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
		3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	NL 370	- 1.4	40 -	4000 -	660	<0.1	3600 640	-01	- 640 <0.1	45 -	530 - <0.1	100 -	2000 - <0.1	50 -	80 -	2500 - <0.1	<0.1	7 -			
207/1-1.45	06/05/2021	3000 160	<0.4	2000 4400	36	4500 4000	<0.1	20	86 400000 230	<25	<50	<25 310 215	<50	<100	<100	4 05	<u.5< th=""><th><1 NII 10E</th><th>×1</th><th>NI 070</th><th><0.05</th><th><0.5</th><th><0.05</th><th><5</th><th><u.1< th=""><th><0.1</th><th><u. i<="" th=""><th>- 640</th><th>45</th><th><u. i<="" th=""><th>400</th><th>ςυ. I</th><th><u.1< th=""><th><0.1</th><th><u. i<="" th=""><th>20.1</th><th><0.1</th><th>NAD</th><th>NAD</th><th>NAD</th></u.></th></u.1<></th></u.></th></u.></th></u.1<></th></u.5<>	<1 NII 10E	×1	NI 070	<0.05	<0.5	<0.05	<5	<u.1< th=""><th><0.1</th><th><u. i<="" th=""><th>- 640</th><th>45</th><th><u. i<="" th=""><th>400</th><th>ςυ. I</th><th><u.1< th=""><th><0.1</th><th><u. i<="" th=""><th>20.1</th><th><0.1</th><th>NAD</th><th>NAD</th><th>NAD</th></u.></th></u.1<></th></u.></th></u.></th></u.1<>	<0.1	<u. i<="" th=""><th>- 640</th><th>45</th><th><u. i<="" th=""><th>400</th><th>ςυ. I</th><th><u.1< th=""><th><0.1</th><th><u. i<="" th=""><th>20.1</th><th><0.1</th><th>NAD</th><th>NAD</th><th>NAD</th></u.></th></u.1<></th></u.></th></u.>	- 640	45	<u. i<="" th=""><th>400</th><th>ςυ. I</th><th><u.1< th=""><th><0.1</th><th><u. i<="" th=""><th>20.1</th><th><0.1</th><th>NAD</th><th>NAD</th><th>NAD</th></u.></th></u.1<></th></u.>	400	ςυ. I	<u.1< th=""><th><0.1</th><th><u. i<="" th=""><th>20.1</th><th><0.1</th><th>NAD</th><th>NAD</th><th>NAD</th></u.></th></u.1<>	<0.1	<u. i<="" th=""><th>20.1</th><th><0.1</th><th>NAD</th><th>NAD</th><th>NAD</th></u.>	20.1	<0.1	NAD	NAD	NAD
		<4	<0.4	3000 1100	240000 65	1500 1600	<0.1	0000 00	32	<25	<50	<25	<50	<100	<100	4 95	-0 E	NL 185	NL 95	NL 370	<0.05	<0.5	<0.05	<5		3000 040		- 640	45	530 -	100 -	2000 -	50 -	ou -	2500 -	2000 -	/ -			-
208/2.5-2.95	10/05/2021	3000 160	900 -	3600 1100	240000 85	1500 1800		6000 60	400000 230		170	310 215	NI -	2500	- 6600	4 Q5	VU.5	NI 185	NI OS	NI 370	- 1.4	40.5	4000 -	660 -	-	3600 640	-	- 640	45	530 -	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -	NAD	NAD	NAD
		<4	<0.4	5	24	14	<0.1	4	90	<25	<50	<25	<50	280	220	<0.2	<0.5	<1	<1	<1	1.4	2.1	12	- 000		- 040		- 040	40	-	100	2000	-	-	2300	2000				-
209/0.3-0.4	11/05/2021	3000 160	900 -	3600 1100	240000 85	1500 1800	730 -	6000 60	400000 230		- 170	310 215	NL -	- 2500	- 6600	4 95	NL 135	NL 185	NL 95	NL 370	- 1.4	40 -	4000	660 -		3600 640		- 640	45 -	530 -	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -	NAD	NAD	NAD

Lab result

HIL/HSL value EIL/ESL value

HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 🔳 ML exceedance 🔳 ML and HIL/HSL or EIL/ESL exceedance

EIL/ESL value Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance HSL 0-<1 Exceedance

Bold = Lab detections -= Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Notes:

- QA/QC replicate of sample listed directly below the primary sample
- Reported naphthalene laboratory result obtained from BTEXN suite
- c Criteria applies to DDT only

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Commercial/ industrial D

HIL D Commercial / Industrial (NEPC, 2013)

HSL D Commercial / Industrial (vapour intrusion) (N

HSL D Commercial / Industrial (vapour intrusion) (NEPC, 2013)

DC HSL D Direct contact HSL D Commercial/Industrial (direct contact) (CRC CARE, 2011)

EIL/ESL C/Ind Commercial and Industrial (NEPC, 2013)

ML C/Ind Commercial and Industrial (NEPC, 2013)

Appendix G

Bore Logs

CLIENT: Western Sydney University

PROJECT: Proposed Medical Research Centre

LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.3 mAHD **BORE No:** 201

EASTING: 297391 **PROJECT No:** 34275.31

NORTHING: 6227038 **DATE**: 4/5/2021 **DIP/AZIMUTH**: 90°/-- **SHEET** 1 OF 1

			Description	. <u>o</u>		Sam	npling &	& In Situ Testing		Well
귐	Dep	th	of	Graphic Log	Type	Depth	Sample	Results &	Water	Construction
			Strata	Ō			San	Results & Comments	_	Details
2	0	.15	FILL/TOPSOIL: Gravelly CLAY CL-Cl, low to medium plasticity, dark brown, shale gravel, trace rootlets, w< <pl,< th=""><th></th><th>A/E</th><th>0.0 0.15</th><th></th><th></th><th></th><th></th></pl,<>		A/E	0.0 0.15				
- 8			FILL/Silty CLAY CI: medium plasticity, dark brown then grey, with siltstone gravel, w <pl, compacted<="" poorly="" th=""><th></th><th>A/E</th><th>0.4 0.5</th><th></th><th></th><th></th><th></th></pl,>		A/E	0.4 0.5				
			grey, with siltstone gravel, w <pl, compacted<="" poorly="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></pl,>							-
Ė	-1				_A/E_	0.9 1.0				- -1
- <u>∞</u>					S/E			4,3,6 N = 9		
						1.45				
					<u></u>	19				-
Ė	-2				_A/E_	1.9 2.0				-2 [
-8						0.5				-
					S/E	2.5		3,4,7		
	- 3			\bowtie	ļ	2.95		N = 11		-3
٥					,					
[]						3.5				-
					S/E			3,4,5 N = 9		
	-4					3.95				-4
8)					
						4.5		3,4,6	Ā	-
					S/E	4.95		N = 10	04-05-21	
	-5	5.2		$\langle \rangle \rangle$		4.30			40	-5 -
			CLAY CI-CH: medium to high plasticity, brown, with ironstone gravel, trace rootlets, w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td>5.5</td><td></td><td></td><td></td><td>-</td></pl,>			5.5				-
					S/E	0.0		5,13,13 N = 26		-
	-6					5.95		IN - 20		<u>-</u> 6
. 92					1					-
Ė					 	6.5				
	6	5.75	SILTSTONE: grey, very low strength, moderately	<u> </u>	s			5,15,34 N = 49		-
	-7		weathered, Bringelly Shale			6.95				7
72										-
		7.5	Bore discontinued at 7.5m	<u> </u>						
<u> </u>	-8		- limit of investigation							-
	0									-8 -
4										
1										
	-9									-9
2										
<u> </u>										- - -
<u> </u>										
Ш										

RIG: Hanjin 8D drill rig DRILLER: Rockwell LOGGED: RB CASING: Uncased

TYPE OF BORING: SFA to 7.5m

WATER OBSERVATIONS: Perched groundwater observed whilst augering at 4.6m

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING	& IN S	SITU TEST	ING L	EGEN	ID

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D D isturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level

CLIENT: Western Sydney University Proposed Medical Research Centre PROJECT:

LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.9 mAHD

EASTING: 297374 **NORTHING**: 6227035 **DIP/AZIMUTH:** 90°/-- **BORE No:** 202

PROJECT No: 34275.31 **DATE:** 5 - 7/5/2021 SHEET 1 OF 2

		Description	Degree of Weathering	. <u>e</u>	Rock Strength	Fracture	Discontinuities				n Situ Testing
R	Depth (m)	of		Graphic Log	Strength Strength Mater	Spacing (m)	B - Bedding J - Joint	Type	ore %	RQD %	Test Results &
		Strata	F SW M F SW F F	0	Kery High	0.00	S - Shear F - Fault	ŕ	QÃ	ĕ̈́	Comments
81 82	0.5	CONCRETE: 210mm thick, 8mm reo at 100mm depth, up to 20mm aggregate FILL/Gravelly CLAY CI-CH: medium to high plasticity, dark brown, igneous gravel, with sand FILL/Gravelly CLAY CI-CH: medium to high plasticity, dark brown and grey, siltstone gravel, w <pl, compacted<="" poorly="" td=""><td></td><td></td><td></td><td></td><td></td><td>A/E S/E</td><td></td><td></td><td>3,5,5 N = 10</td></pl,>						A/E S/E			3,5,5 N = 10
	-3							S/E			3,3,3 N = 6
	-4	- trace sandstone gravel below 3.4m						S/E			2,4,5 N = 9
78	- - - - - - - - - - -							S/E			5,7,7 N = 14
	- - - 6 -							S/E			3,4,4 N = 8
	6.7 - 7 - 7.4	CLAY CI:CH: medium to high plasticity, brown mottled pale grey, trace ironstone gravel, w <pl, (possibly="" apparently="" disturbed)<="" residual="" stiff,="" td=""><td></td><td></td><td></td><td></td><td></td><td>S E</td><td></td><td></td><td>3,3,4 N = 7</td></pl,>						S E			3,3,4 N = 7
75	- - - 8 -	SILTSTONE: grey, with 1-2% fine sandstone lamination, medium strength with very low strength bands, fresh stained then fresh, fractured, Ashfield Shale					7.6-7.64: Jx2, 60°, pl 7.71-7.83: Csx2, 10mm 7.91m: J, 60°, pl 8m: J, 20°, pl, fe 8.22-8.29m: Jx3, 60-90°,				PL(A) = 0.63
73	9						8.31m: B, 15°, pl, clay 5mm 8.41-8.53m: Csx2 10mm, fe 8.76-9.41m: Bx7, 0-10°, pl, clay up to 7mm 8.85-9.41m: Jx3, 40-70°, pl, clay vn 9.48m: Cs 10mm, fe	С	100	51	PL(A) = 0.45 PL(A) = 0.81

RIG: Hanjin 8D drill rig **DRILLER:** Rockwell LOGGED: RB CASING: HQ to 7.5m

TYPE OF BORING: Diacore to 0.21m, SFA to 7.5m, rotary to 7.0m, NMLC coring to 12.84m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

CLIENT: Western Sydney University

Proposed Medical Research Centre PROJECT: LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.9 mAHD **BORE No:** 202

EASTING: 297374 **NORTHING**: 6227035 **DIP/AZIMUTH:** 90°/--

PROJECT No: 34275.31 **DATE:** 5 - 7/5/2021 SHEET 2 OF 2

		Description	Degree of Weathering	. <u>.</u>	Rock Strength ซ	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
R	Depth (m)	of	`		Strength Needium Needi	Spacing (m)	B - Bedding J - Joint	Type	e.	RQD %	Test Results &
	(***)	Strata	MW HW EW	ξĺΘ	Kery I Wedit Very I K High		S - Shear F - Fault	Ę	ပြည်	R _v	α Comments
-	10.42	SILTSTONE: (continued) SILTSTONE: grey, with 10-15% fine sandstone lamination, high			·		10.05-10.37m: Bx5, 0-10°, pl, fe				PL(A) = 0.84
72	- - -11	strength, unbroken, Ashfield Shale			- - - - - - - - - - - - - - - - - - -						PL(A) = 1.31
71	- - - -				- - - - - - - - - - - - - - - - - - -			С	100	100	PL(A) = 1.34
	- 12 - - -				·						
Ē	40.04				-						PL(A) = 1.45
02	12.84 - 13 -	Bore discontinued at 12.84m - limit of investigation									
69	- - - - 14										
	- - - - -										
89	-15 -15										
	- 16 -										
	- - - - 17										
65	- 18										
	- - - - -										
64	- 19 - 19										
63	- - -										

RIG: Hanjin 8D drill rig **DRILLER:** Rockwell LOGGED: RB CASING: HQ to 7.5m

TYPE OF BORING: Diacore to 0.21m, SFA to 7.5m, rotary to 7.0m, NMLC coring to 12.84m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

Western Sydney University CLIENT:

Proposed Medical Research Centre PROJECT:

LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.9 mAHD **BORE No:** 203

EASTING: 297404 **NORTHING**: 6227030

DIP/AZIMUTH: 90°/--

PROJECT No: 34275.31

DATE: 4/5/2021 SHEET 1 OF 2

Т		Donoristics	Degree of		Rock	Fracture	Discontinuities	S	amnlii	ng & I	n Situ Testing
귐	Depth	Description of	Weathering	Graphic Log	Strenath ⊨	Spacing					Test Results
	(m)	Strata	EW MW SW FS	g L	Ex Low Very Low Medium High Very High Ex High Wate	0.05 0.10 1.00 (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	ဗွ် ဗွဲ	RQD %	& Comments
82		FILL/Silty SAND: fine to medium grained, dark brown, with siltstone gravel and clay, dry FILL/Silty CLAY CI-CH: medium to high plasticity, dark brown to brown, with siltstone gravel, w <pl, compacted<="" poorly="" td=""><td> </td><td></td><td> </td><td> </td><td></td><td>A/E* A/E S/E</td><td></td><td></td><td>4,6,6 N = 12 3,6,9</td></pl,>						A/E* A/E S/E			4,6,6 N = 12 3,6,9
81	2							S/E			N = 15
80	3							S/E			4,4,2 N = 6
62	4							S/E	_		2,3,2 N = 5
7.8	4.8 - 5	CLAY CI-CH: medium to high plasticity, brown mottled pale grey, trace ironstone gravel, w <pl, very<br="">stiff, residual</pl,>						S E	-		3,8,10 N = 18
	6							S	-		6,8,9 N = 17
9,-	7 7.4 -							S	_		4,7,11 N = 18
E	7.4	SILTSTONE: grey, with up to 5% fine sandstone lamination, low		-				S	-		11,25/10mm,- refusal
6/	8 8.32-	strength with very low strength bands, slightly weathered, fractured, Ashfield Shale					7.8m: J, 45°, cu, clay vn 7.87m: J, 70-80°, ir, clay vn 7.93m: J, 60°, cu				PL(A) = 0.21
74	9 9.4 -	SILTSTONE: grey, with up to 5% fine sandstone lamination, medium strength, slightly weathered, fractured, Ashfield Shale SILTSTONE: grey, with up to 10%					8.05m: Cs 30mm, fe 8.17m: Cs 10mm 8.22m: Cs 10mm 8.28m: Ds 40mm, fe 8.42m: Cs 10mm 8.47m: B, 0-20°, ir 8.52m: B, 10°, pl, clay 7mm 8.88-9.36m: Jx5,	С	100	36	PL(A) = 0.51
73		fine sandstone lamination, high strength, fresh, slightly fractured, Ashfield Shale		: — : —			30-60°, pl, fe 9.39m: B, 0°, pl, clay 2mm	С	100	97	PL(A) = 1.24

LOGGED: RB RIG: Hanjin 8D drill rig **DRILLER:** Rockwell CASING: HQ to 7.7m

TYPE OF BORING: SFA to 7.5m, rotary to 7.75m, NMLC coring to 12.6m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. * Replicate sample BD1/040521 collected

I			SAMPLING	& IN SITU TESTING	G LEGE	ND
	Α	Auger sample	G	Gas sample	PID	Photo ionisatio
	В	Bulk sample	Р	Piston sample	PL(A)	Point load axia
	DIV	Plack cample	- 11	Tubo cample (v mm dia)	ים (ום	Doint load diam

Core drilling
Disturbed sample
Environmental sample Water sample Water seep Water level

CLIENT: Western Sydney University

Proposed Medical Research Centre PROJECT:

LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.9 mAHD

EASTING: 297404 **NORTHING**: 6227030

DIP/AZIMUTH: 90°/--

BORE No: 203

PROJECT No: 34275.31

DATE: 4/5/2021 SHEET 2 OF 2

		Description	Degree of Weathering	o	Rock Strength _o	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
RL	Depth (m)	of	vveauleilig	aphi Log	Strength Medium High Ex High Water	Spacing (m)	B - Bedding J - Joint	e	e %	۵.۵	Test Results
	()	Strata	EW MW SW FR	Ō	Ex Loy Levy Low High Ex High Ex High O.01	0.05 0.10 0.50 1.00	S - Shear F - Fault	Туре	ပြည်	RQD %	& Comments
72	- - - - - - - - - - - 11	SILTSTONE: grey, with up to 10% fine sandstone lamination, high strength, fresh, slightly fractured, Ashfield Shale (continued)									PL(A) = 1.37
71	- · · · - - - - - - - - - 12						J, 30°, pl	С	100	97	PL(A) = 1.41
	- - -			· —			12.4-12.44: Jx2, 45°. [;				DI (1)
70	- 12.6 - - - - 13	Bore discontinued at 12.6m - limit of investigation				- 	12.5m: Cs 10mm				PL(A) = 1.12
69	- - - - - - - 14										
	- - - - - - - 15										
	- - - - - - - 16										
99	- - - - - 17 - -										
65	- - - - - 18										
64	- - - -19 -										
63	- - -										

LOGGED: RB RIG: Hanjin 8D drill rig **DRILLER:** Rockwell CASING: HQ to 7.7m

TYPE OF BORING: SFA to 7.5m, rotary to 7.75m, NMLC coring to 12.6m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. * Replicate sample BD1/040521 collected

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

CLIENT: Western Sydney University

PROJECT: Proposed Medical Research Centre **LOCATION:** Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.8 mAHD

EASTING: 297363 **NORTHING**: 6227031 **DIP/AZIMUTH**: 90°/-- **PROJECT No:** 34275.31 **DATE:** 10/5/2021

BORE No: 204

DATE: 10/5/2021 **SHEET** 1 OF 2

		Description	Degree of Weathering	i i	Rock Strength	Fracture	Discontinuities				In Situ Testing
R	Depth (m)	of		Graphic Log	Strength Strength Nate Nate Nate Nate Nate Nate Nate Nate	Spacing (m)	B - Bedding J - Joint	Туре	ore %	RQD %	Test Results &
		Strata	EW HW SW FB	Ð	Kery Very Fx High	0.10	S - Shear F - Fault	Т	Q &	8 .	Comments
81 82	0.27 - 0.4	CONCRETE: 270mm thick, 8mm reo at 120mm depth, up to 20mm aggregate FILL/Sandy GRAVEL: fine to coarse grained, dark brown, igneous gravel, moist FILL/Gravelly CLAY CI-CH: medium to high plasticity, brown and pale grey, siltstone gravel, trace sandstone and igneous gravel, w~PL, poorly compacted						A/E A/E S/E			2,3,3 N = 6
808	-3							E*			3,3,6 N = 9
78 79	-4	havening and Ell helper 5 Oct						S/E			3,3,4 N = 7
//	-6	- becoming w <pl 5.0m<="" below="" td=""><td></td><td></td><td></td><td></td><td></td><td>S/E</td><td></td><td></td><td>6,7,11 N = 18</td></pl>						S/E			6,7,11 N = 18
9/	7.3	CLAY CI-CH: medium to high plasticity brown and grey, trace rootlets, w <pl, residual<="" stiff,="" td=""><td></td><td></td><td></td><td></td><td></td><td>S/E</td><td></td><td></td><td>5,7,7 N = 14</td></pl,>						S/E			5,7,7 N = 14
75	-8	(possibly disturbed between 7.3 - 7.45m)									
ļ	8.14	SILTSTONE: grey, with 3-5% fine				-		S			15,50,- refusal
4,		sandstone lamination, medium strength with low to very low strength bands, slightly weathered, fractured, Ashfield Shale					7mm -8.22-10.03m: Bx13, 0-10°, clay 0-9mm, fe -8.32-8.34m: Cs 20mm,				PL(A) = 0.43
ŀ	-9						fe 8.35-9.94m: Jx10, 30-60°, pl & ir, clay 0-5mm, fe 8.66-8.67m: Cs 10mm 9.12-9.20m: Ds 80mm 9.3-9.32m: Cs 20mm, fe	С	100		PL(A) = 0.64

RIG: Hanjin 8D drill rig DRILLER: Rockwell LOGGED: RB CASING: HQ to 8.0m

TYPE OF BORING: Diacore to 0.27m, SFA to 8.0m, rotary to 8.14m, NMLC coring to 13.54m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. * Replicate sample BD4/100521 collected

CLIENT: Western Sydney University

Proposed Medical Research Centre PROJECT: Therry Road, Campbelltown, NSW LOCATION:

EASTING: 297363 **NORTHING:** 6227031

SURFACE LEVEL: 82.8 mAHD

PROJECT No: 34275.31 **DATE:** 10/5/2021

SHEET 2 OF 2

BORE No: 204

DIP/AZIMUTH: 90°/--

Г		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	Sa	ampling &	In Situ Testing
R	Depth (m)	of Strata	Degree of Weathering	Strength Low Nedium Wedium Wedium Weldium Water Water Water	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	Core Rec. % RQD %	Test Results & Comments
72	10.03	SILTSTONE: grey, with 5-7% fine sandstone lamination, medium strength then high strength, fresh stained then fresh, slightly fractured, Ashfield Shale				10.0-10.03m: Ds 30mm 10.51m: B, 0°, pl, clay 2mm 10.53m: B, 0°, pl, fe 10.72m: B, 10°, pl, clay	С	100	PL(A) = 0.46 PL(A) = 0.56
	- - - - - 12			-		2mm 11.29-11.8m: Jx4, 45-70°, pl, ir & cu, clay vn			PL(A) = 2.34
	- - - 13					12.58m: J, 80°, ir	С	100	PL(A) = 1.43 PL(A) = 1.44
69	13.54	Bore discontinued at 13.54m - limit of investigation		 -					1 2(1) = 1.44
89	-15								
	- - - 16								
99	- - - 17								
65	- - - 18								
64	- - - 19 -								
63	-								

CASING: HQ to 8.0m RIG: Hanjin 8D drill rig **DRILLER:** Rockwell LOGGED: RB

TYPE OF BORING: Diacore to 0.27m, SFA to 8.0m, rotary to 8.14m, NMLC coring to 13.54m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. * Replicate sample BD4/100521 collected

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

CLIENT: Western Sydney University

Proposed Medical Research Centre PROJECT: LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.8 mAHD **BORE No:** 204

EASTING: 297363 **NORTHING**: 6227031 **DIP/AZIMUTH:** 90°/--

PROJECT No: 34275.31

DATE: 10/5/2021 SHEET 2 OF 2

		Description	Degree of Weathering	<u>.</u>	Rock Strength 5	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
R	Depth (m)	of		raph Log	Ex Low Very Low Nedium High Very High Ex High Water	Spacing (m)	B - Bedding J - Joint	Туре	ore c.%	RQD %	Test Results &
Ш	10.03		M H M S E H		Kery Very Very	0.00	S - Shear F - Fault	Ę.	0 %	ж ⁻	Comments PL(A) = 0.46
72	-11	SILTSTONE: grey, with 5-7% fine sandstone lamination, medium strength then high strength, fresh stained then fresh, slightly fractured, Ashfield Shale					10.0-10.03m: Ds 30mm 10.51m: B, 0°, pl, clay 2mm 10.53m: B, 0°, pl, fe 10.72m: B, 10°, pl, clay	С	100		PL(A) = 0.56
71							2mm 11.29-11.8m: Jx4, 45-70°, pl, ir & cu, clay vn				PL(A) = 2.34
	- 12 - - - - - - 13						12.58m: J, 80°, ir	С	100		PL(A) = 1.43
	13.54	Bore discontinued at 13.54m									PL(A) = 1.44
69	-14	- limit of investigation									
	- - - - - - - - -										
	- 16 16										
. 99	-17										
. 99	- - 18 - -										
63	- 19 - 19										

RIG: Hanjin 8D drill rig **DRILLER:** Rockwell LOGGED: RB CASING: HQ to 8.0m

TYPE OF BORING: Diacore to 0.27m, SFA to 8.0m, rotary to 8.14m, NMLC coring to 13.54m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. * Replicate sample BD4/100521 collected

SAMPLING & IN SITU TESTING LEGEND LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa) Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Western Sydney University

Proposed Medical Research Centre PROJECT: LOCATION:

Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.8 mAHD

BORE No: 205 **PROJECT No:** 34275.31 **EASTING**: 297396

NORTHING: 6227018 **DATE:** 5/5/2021 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 1

			Description	U		Sam	pling 8	& In Situ Testing		Well
뮙	Dep		of	Graphic Log	ē	£	<u>e</u>	Populto 9	Water	Construction
	(111)	'	Strata	8 7	Туре	Depth	Sample	Results & Comments	>	Details
		-	FILL/Gravelly CLAY CI-CH: medium to high plasticity, brown to dark brown, siltstone gravel, with silt, trace brick fragments, sandstone gravel and rootlets, w~PL, poorly compacted, first 100mm topsoil		_A/E_	0.0 0.1 0.4 0.5	0,			
82	-1		- becoming w <pl 0.4m<="" below="" td=""><td></td><td>A/E_ S/E</td><td>0.9 1.0</td><td></td><td></td><td></td><td>-1 -1</td></pl>		A/E_ S/E	0.9 1.0				-1 -1
		1.5	- asphaltic concrete at 1.3m FILL/Gravelly CLAY CI-CH: medium to high plasticity,			1.45				
81	-2		grey, siltstone gravel, with silt, w <pl, compacted<="" poorly="" td=""><td></td><td>_A/E</td><td>1.9 2.0</td><td></td><td>2,3,4 N = 7</td><td></td><td>-2 -1</td></pl,>		_A/E	1.9 2.0		2,3,4 N = 7		-2 -1
80					S/E	2.5 2.95		3,4,4 N = 8		
	-3					3.5				-3 - - - -
19	-4		- becoming dark brown, PVC fragments below 3.6m		S/E	3.95		2,4,5 N = 9		-4
78			- igneous gravel below 4.7m		S/E	4.5		6,8,7 N = 15		
7	-5	5.3	CLAY CI-CH: medium to high plasticity, brown, trace			4.95		21/150mm,-,-		- -5 - -
77		5.5	ironstone gravel, apparently stiff, residual SILTSTONE: grey, low strength, slightly weathered		S	5.45 5.5		21/190mm,-,- refusal		
	-6	6.0	Bore discontinued at 6.0m - limit of investigation							-
76	-7 -									- - -7 -
75	-8									- - - -8 -
74	-9									9
73										

LOGGED: RB **CASING:** Uncased RIG: Hanjin 8D drill rig **DRILLER:** Rockwell

TYPE OF BORING: SFA to 6.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING	& IN S	ITU TESTING	LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sam
E Environmental Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

CLIENT: Western Sydney University **PROJECT:** Proposed Medical Research Centre

LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.8 mAHD

EASTING: 297359 **NORTHING**: 6227017 **DIP/AZIMUTH**: 90°/--

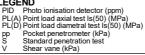
BORE No: 206 **PROJECT No:** 34275.31

DATE: 10/5/2021 **SHEET** 1 OF 2

		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
RL	Depth (m)	of	Weathering Dide 0	الإالتاليالا	Spacing (m)	B - Bedding J - Joint	Туре	ore %	RQD %	Test Results &
	,	Strata	EW HW SW FS FR	Ex Low Very Low Medium High Ex High Way Man	0.05	S - Shear F - Fault	Ту	Rec	RC %	Comments
81 82	-0.22	CONCRETE: 220mm thick, 3 x 8mm reinforcement at 120mm depth, up to ~20mm aggregate FILL/Gravelly CLAY CI-CH: medium to high plasticity, brown and gey, siltstone gravel, trace igneous and sandstone gravel, w <pl, compacted<="" poorly="" td=""><td></td><td></td><td></td><td></td><td>E/A* A/E S/E</td><td></td><td></td><td>2,2,4 N = 6</td></pl,>					E/A* A/E S/E			2,2,4 N = 6
	-3						S/E			2,2,4 N = 6
79.	-4 4 	- asphaltic concrete at 4.3m					S/E			3,9,8 N = 17
7,2		- concrete fragments at 5.9m					S/E			6,6,13 N = 19
9/	- 6.9 - 7 	CLAY CI-CH: medium to high plasticity, brown mottled pale grey, w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td>S/E</td><td></td><td></td><td>6,9,13 N = 22</td></pl,>					S/E			6,9,13 N = 22
75	- 8 - 8 8.4	SILTSTONE: grey, with 3-5% fine sandstone lamination, medium					S			24/140mm,-,- refusal
74	- - - 9 -	strength, with very low strength bands, fresh stained, fractured, Ashfield Shale			 	8.67m: J, 45°, pl, clay vn 8.7m: B, 0°, pl, clay 3mm 8.73-8.84: Ds 110mm 8.87m: Cs 10mm	С	100	21	PL(A) = 0.55
73	- - - -				▎ ▃ ▋▏▕┆▕ ▎ ▕ ▋	8.90-9.12m: B, 0-10°, pl, clay 3-5mm 9.10-9.15m: Ds 50mm 9.16-9.42m: Jx6,	J	100	<u> </u>	PL(A) = 0.46

RIG: Hanjin 8D drill rig DRILLER: Rockwell LOGGED: RB CASING: HQ to 8.5m

TYPE OF BORING: Diacore to 0.22m, SFA to 8.5m, rotary to 8.67m, NMLC coring to 14.28m


WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. * Replicate sample BD3/100521 collected

		SAMPLING	& IN SITU TESTING	LEGE	ND
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector
	Bulk sample	Р	Piston sample) Point load axial test Is(50
DI V	Diagle comple	- 11	Tube comple (v mm die)		Doint load diametral toot

LK Block sample
Core drilling
Disturbed sample
Environmental sample

Water sample
Water seep
Water level

CLIENT: Western Sydney University

PROJECT: Proposed Medical Research Centre **LOCATION:** Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.8 mAHD

EASTING: 297359 **NORTHING**: 6227017 **DIP/AZIMUTH**: 90°/--

PROJECT No: 34275.31

BORE No: 206

DATE: 10/5/2021 **SHEET** 2 OF 2

		Description	Degree of Weathering	<u>.0</u>	Rock Strength ក្រ	Fracture	Discontinuities				n Situ Testing
뮙	Dep	of of	Wedneshing	raph	Ex Low Low Low Medium High Very High Ex High E	Spacing (m)	B - Bedding J - Joint	Туре	Core Rec. %	D %	Test Results &
	<u> </u>		EW HW EW	(0)	EX LOW Medi	0.00	S - Shear F - Fault	È	ŭ ğ	χ°,	Comments
72	10	SILTSTONE: grey, with 3-5% fine sandstone lamination, medium strength, with very low strength bands, fresh stained, fractured, Ashfield Shale (continued) SILTSTONE: grey, with 5-10% fine sandstone lamination, high strength, fresh, unbroken then fractured to			-		20-60°, pl, clay vn 9.37-9.41m: Ds 40mm 9.47m: B, 0-10°, pl, fe 9.48m: B, 0-10°, pl, fe 9.5-9.53m: Ds 30mm 9.54-10.58m: Bx12, 0-10°, clay 0-5mm, fe 9.87-10.74m: Jx4, 0-45°, fe, clay vn 10.85m: B, 0-5°, pl, fe	С	100		PL(A) = 0.59 PL(A) = 1.14
- 12	- 12	slightly fractured, Ashfield Shale			·						PL(A) = 1.41
							12.17m: J, 45°, cu, fe	С	100	92	PL(A) = 1.74
	- 13 - 13				.		12.87m: J, 45°, pl 13.0-13.1m: Jx3, 45°, pl 13.2-13.3m: Jx6, 30-45°, pl, cu, st		100	92	
-69	- - - - 14			. —	- 		13.49-13.52m: Jx2, 30-45°, pl 13.72-13.85m: Jx2, pl, 30-45°				PL(A) = 2.08
ŧ	14	28				 					PL(A) = 1.25
ļ	-	Bore discontinued at 14.28m - limit of investigation									
89	-15										
19	-16										
99	- 17 - 17										
99	- 18										
63 64	-19										

RIG: Hanjin 8D drill rig DRILLER: Rockwell LOGGED: RB CASING: HQ to 8.5m

TYPE OF BORING: Diacore to 0.22m, SFA to 8.5m, rotary to 8.67m, NMLC coring to 14.28m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. * Replicate sample BD3/100521 collected

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water level

SAMPLING & IN SITU TESTING LEGEND
PID ploto ionisation detector (ppm)
PI(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Western Sydney University CLIENT:

Proposed Medical Research Centre PROJECT:

LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.8 mAHD **BORE No:** 207

PROJECT No: 34275.31 **EASTING**: 297361

NORTHING: 6227007 **DATE:** 5/5/2021 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 1

			Description	٥.		Sam	npling &	& In Situ Testing	Ι.	Well
R	Depth (m)		of	Graphic Log	9.0	oth	ble	Results &	Water	Construction
	()		Strata	<u>ō</u> _	1	Depth	Sample	Results & Comments	>	Details
	0.	FILL/TO	OPSOIL: Silty SAND, fine to medium grained, dark with siltstone gravel and rootlets, moist		_A/E_	0.0 0.1				
			Ity CLAY CI: medium plasticity, dark brown, with e gravel, trace sandstone gravel, w <pl, poorly<="" td=""><td></td><td>A/E</td><td>0.4 0.5</td><td></td><td></td><td></td><td>-</td></pl,>		A/E	0.4 0.5				-
85	-1	Соттра	oleu		_A/E_	0.9 1.0				-1 -1
		- bitum	en fragment at 1.3m		S/E	1.45		4,6,8 N = 14		-
- 8					A/E	1.9				
	-2				AVE_	2.0 2.15		2,5,7 N = 12		-2 - -
					S/E	2.5				-
8	-3				>					-3
					>					-
62	- 4									-4
										- '
. 82										
	-5				S/E	5.0		7,11,15 N = 26		- -5 -
		- brick	fragment at 5.45m			5.45		IN = 20		
	-6					6.0		25.44		- -6
					S/E	6.45		3,5,11 N = 16		
92	6. - 7	CLAY	CI-CH: medium to high plasticity, brown mottled ey, w <pl, residual<="" stiff="" stiff,="" td="" to="" very=""><td></td><td></td><td>7.0</td><td></td><td></td><td></td><td>- - -7</td></pl,>			7.0				- - -7
					S/E	7.45		4,8,16 N = 24		- - -
75						7.10				-
	-8					8.0		470		- -8 -
} 					S	0.75		4,7,8 N = 15		
74	-9 8.	SILTS	FONE: grey, very low strength, slightly weathered,	- · - ·	S	9.0		11,20/50mm,- refusal		- - -9
	9.	Bore di	scontinued at 9.2m			9.2-		bouncing		-
23		- limit o	f investigation							
										-

LOGGED: RB **CASING:** Uncased RIG: Hanjin 8D drill rig **DRILLER:** Rockwell

TYPE OF BORING: SFA to 9.2m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING	3 & IN SITU	TESTING	LEG	END
G	Gas sample		PID	Photo

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Western Sydney University

Proposed Medical Research Centre PROJECT:

LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.9 mAHD **BORE No:** 208

EASTING: 297371 **NORTHING**: 6227004

DIP/AZIMUTH: 90°/--

PROJECT No: 34275.31

DATE: 7/5/2021 SHEET 1 OF 2

П		Description	Discontinuities	na &	& In Situ Testing						
R	Depth	Description of	Degree of Weathering	raphic	Rock Strength	Fracture Spacing					
<u> </u>	(m)	Strata	HW MW SW FR	Gra	Strength Nedium High New High Ex High Ex High No.01	0.05 0.10 (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	Core Rec. %	RQ %	& Comments
82	0.25- 0.35	CONCRETE: 250mm thick, 8mm reo at 110mm depth, up to 20mm aggregate FILL/Sandy GRAVEL: fine to coarse grained, dark brown, igneous gravel, with clay FILL/Gravelly CLAY CI-CH: medium to high plasticity, dark brown and grey, siltstone gravel, trace igneous and sandstone gravel, w <pl, poorly<="" td=""><td> </td><td></td><td>0 WYTZELYW</td><td></td><td></td><td>A/E</td><td>-</td><td></td><td>Confinents</td></pl,>			0 WYTZELYW			A/E	-		Confinents
8-	-2	compacted						S/E	_		2,3,5 N = 8
8	-3							S/E			4,4,4 N = 8
79	- 4							S/E	_		3,7,7 N = 14
78	- 5							S/E	-		4,4,4 N = 8
42	-6 6.3-	- grey sandy gravel band between 5.65-5.75m CLAY CI-CH: medium to high						S/E			4,10,7 N = 17
76	-7	plasticity, brown mottled pale grey, trace ironstone and rootlets, w <pl, residual<="" stiff="" stiff,="" td="" to="" very=""><td></td><td></td><td></td><td></td><td></td><td>S/E</td><td>_</td><td></td><td>3,7,9 N = 16</td></pl,>						S/E	_		3,7,9 N = 16
75	-8							S	-		8,11,12 N = 23
74	8.8	SILTSTONE: grey, with 15-20%						S			10,12,20/100mm refusal
73	-9 9.46-	fine sandstone lamination, medium strength, with very low strength bands, slightly weathered then fresh stained, fractured, Ashfield Shale					8.9m: J, 60°, pl, ti 8.96-9.03m: Cs 70mm, fe 9.09m: J, 60°, pl, fe 9.3m: B, 10°, pl, fe 9.34m: J, 55°, pl, he 9.39-9.40m: Cs 10mm, fe	С	100	71	PL(A) = 0.67 PL(A) = 1.58

RIG: Hanjin 8D drill rig **DRILLER:** Rockwell LOGGED: RB CASING: HQ to 8.8m

TYPE OF BORING: Diacore to 0.25m, Hand auger to 1.5m, SFA to 8.5m, rotary to 8.8m, NMLC coring to 14.3m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING	6 & IN SITU	TESTING	LEGE	END
G	Gas sample		PID	Phot

A Auger sample
B Bulk sample
BLK Block sample
C Core drillino
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

CLIENT: Western Sydney University

Proposed Medical Research Centre PROJECT:

LOCATION: Therry Road, Campbelltown, NSW

SURFACE LEVEL: 82.9 mAHD **BORE No:** 208

EASTING: 297371 **NORTHING**: 6227004

DIP/AZIMUTH: 90°/--

PROJECT No: 34275.31

DATE: 7/5/2021 SHEET 2 OF 2

		Description	Degree of Weathering	<u>.</u>	Rock Strength ់ច	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth (m)	of		3raph Log	Strength Low Medium High Kery High K	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	Core Rec. %	gg %	Test Results &
Н		Strata SILTSTONE: grey, with 2-10% fine	W H W S & H W		Ex High	0.00	9.44m: B, 0-10°, pl, clay	_	0 %	Ľ	Comments
72	-11	sandstone lamination, high strength, fresh stained then fresh, slightly fractured, Ashfield Shale (continued)					7mm 9.45m: J, 10°, pl, clay vn 9.64-10.38m: Bx5, 0-5°, pl, fe 10.72m: B, 0°, pl, fe	С	100	71	PL(A) = 1.42
71	- - - 12										PL(A) = 1.55
	- -						12.05m: J, 30°, cu, cln				
02	- - - - - - 13						\12.38m: J, 60°, pl, cln \12.40-12.42: Cs 20mm \12.55-12.72m: Jx2, 45°, pl, cln	С	100	99	PL(A) = 1.81
	- - -										PL(A) = 1.18
69	• • •						13.66m: J, 70-80°, pl				
. "	- 14 -					 					PL(A) = 1.24
89	- 14.3 15 	Bore discontinued at 14.28m - limit of investigation									
29	- - - - 16 - -										
99	- - - 17 - -										
65	- - -18 -										
63 64	- - 19 - - - - - - -										

RIG: Hanjin 8D drill rig **DRILLER:** Rockwell LOGGED: RB CASING: HQ to 8.8m

TYPE OF BORING: Diacore to 0.25m, Hand auger to 1.5m, SFA to 8.5m, rotary to 8.8m, NMLC coring to 14.3m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGENI

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

CLIENT: Western Sydney University

Proposed Medical Research Centre PROJECT: Therry Road, Campbelltown, NSW LOCATION:

SURFACE LEVEL: 83.0 mAHD

EASTING: 297387 **NORTHING**: 6227009 DIP/AZIMUTH: 90°/--

BORE No: 209 **PROJECT No:** 34275.31

DATE: 10/5/2021 SHEET 1 OF 1

			Description	ji _		Sam		& In Situ Testing	_	Well
R	Dept (m)	th)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
88		4	Strata CONCRETE: 230mm thick, 8mm reo at 100mm depth,		<u>Ę.</u>	ă	Sal	Comments		Details
		.23 - 0.4 -	up to 20mm aggregate FILL/Sandy GRAVEL: fine to coarse grained, dark brown, / igneous gravel, moist	\(\frac{1}{2}\)	_E_ _A	0.3 0.4 0.5				
82	- 1 1	_	FILL/Gravelly CLAY CI-CH: medium to high plasticity, brown and grey, siltstone gravel, trace sandstone gravel, w>PL, poorly compacted - becoming w <pl 1.0m<="" below="" td=""><td></td><td>_A/E*_</td><td>0.9 1.0</td><td></td><td>4,6,8 N = 14</td><td></td><td>-1</td></pl>		_A/E*_	0.9 1.0		4,6,8 N = 14		-1
81	-2					1.45				-2
	- - - - -				s	2.5		2,2,4 N = 6		
. 08	-3					2.95		. IN = 0		-3
. 62	- -4 - - - -				S/E	4.0 4.45		4,3,4 N = 7		-4
78		5.3 -	CLAY CI-CH: medium to high plasticity, brown mottled							-5 -5
	- - - - 6		grey, trace ironstone gravel, w <pl, residual<="" stiff,="" td="" very=""><td></td><td>S/E</td><td>5.5</td><td></td><td>4,7,11 N = 18</td><td>10-05-21</td><td>-6</td></pl,>		S/E	5.5		4,7,11 N = 18	10-05-21	-6
	- - - - -	6.7	SILTSTONE: grey, very low to low strength, slightly							
76	- -7	7.0	weathered, Ashfield Shale	. —	S	7.0		25,-,- refusal		-7
75	- - - -		Bore discontinued at 7.1m - limit of investigation			¯7.15¯		bouncing		
7	- - - - -									
74	- -9 - -									-9 -9
	-									

RIG: Hanjin 8D drill rig **DRILLER:** Rockwell LOGGED: RB **CASING:** Uncased

TYPE OF BORING: Diacore to 0.23m, SFA to 7.0m

WATER OBSERVATIONS: Free groundwater observed whilst augering at 5.5m

REMARKS: Location coordinates are in MGA94 Zone 56. * Replicate sample BD2/100521 collected

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in the grained soils (>55% lines)					
Term	Proportion	Example			
	of sand or				
	gravel				
And	Specify	Clay (60%) and			
		Sand (40%)			
Adjective	>30%	Sandy Clay			
With	15 – 30%	Clay with sand			
Trace	0 - 15%	Clay with trace			
		sand			

In coarse grained soils (>65% coarse)

- with clavs or silts

- with clays or sitts)	
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils (>65% coarse)

- with coarser fraction

- With Coarser fraction				
Term	Proportion	Example		
	of coarser			
	fraction			
And	Specify	Sand (60%) and		
		Gravel (40%)		
Adjective	>30%	Gravelly Sand		
With	15 - 30%	Sand with gravel		
Trace	0 - 15%	Sand with trace		
		gravel		

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition - Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C	Core arilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
110	D:

Cara drilling

HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

Α	Auger sample
В	Bulk sample
D	Disturbed sample
E	Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

	76.
В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h	horizontal
V	vertical
sh	sub-horizontal
sv	sub-vertical

Coating or Infilling Term

cln	clean
СО	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Syr	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\delta \cdot \delta \delta \cdot \delta \c	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils		. — . — . —	Siltstone
	Topsoil		Laminite
* * * * * :	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////// //.///	Sandy clay	Metamorphic	: Rocks
	Gravelly clay		Slate, phyllite, schist
-/-/-/- -/-/-/-	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × ; × × × ;	Dacite, epidote
· · · · · · · · · · · ·	Silty sand		Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

Appendix H

Laboratory Analytical Reports

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 268732

Client Details	
Client	Douglas Partners Pty Ltd Smeaton Grange
Attention	Emily McGinty
Address	18 Waler Crescent, Smeaton Grange, NSW, 2567

Sample Details	
Your Reference	34275.27, Campbelltown Hospital
Number of Samples	6 Soil
Date samples received	11/05/2021
Date completed instructions received	11/05/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	18/05/2021
Date of Issue	18/05/2021
NATA Accreditation Number 2901. This	document shall not be reproduced except in full.
Accredited for compliance with ISO/IEC	17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Asbestos Supervisor Manju Dewendrage, Chemist Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		268732-1	268732-2	268732-3	268732-4	268732-5
Your Reference	UNITS	201/1-1.45	203/0.5-0.95	205/0-0.1	207/1-1.45	208/2.5-2.95
Date Sampled		05/05/2021	05/05/2021	06/05/2021	06/05/2021	10/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021
Date analysed	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	107	106	105	100	111

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		268732-6
Your Reference	UNITS	209/0.3-0.4
Date Sampled		11/05/2021
Type of sample		Soil
Date extracted	-	12/05/2021
Date analysed	-	12/05/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	104

svTRH (C10-C40) in Soil						
Our Reference		268732-1	268732-2	268732-3	268732-4	268732-5
Your Reference	UNITS	201/1-1.45	203/0.5-0.95	205/0-0.1	207/1-1.45	208/2.5-2.95
Date Sampled		05/05/2021	05/05/2021	06/05/2021	06/05/2021	10/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021
Date analysed	-	12/05/2021	12/05/2021	13/05/2021	13/05/2021	13/05/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	82	86	84	82	83

svTRH (C10-C40) in Soil		
Our Reference		268732-6
Your Reference	UNITS	209/0.3-0.4
Date Sampled		11/05/2021
Type of sample		Soil
Date extracted	-	12/05/2021
Date analysed	-	13/05/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	110
TRH C ₂₉ - C ₃₆	mg/kg	230
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	280
TRH >C34 -C40	mg/kg	220
Total +ve TRH (>C10-C40)	mg/kg	490
Surrogate o-Terphenyl	%	83

PAHs in Soil						
Our Reference		268732-1	268732-2	268732-3	268732-4	268732-5
Your Reference	UNITS	201/1-1.45	203/0.5-0.95	205/0-0.1	207/1-1.45	208/2.5-2.95
Date Sampled		05/05/2021	05/05/2021	06/05/2021	06/05/2021	10/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021
Date analysed	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	109	111	112	115	113

Envirolab Reference: 268732

Revision No: R00

PAHs in Soil		
Our Reference		268732-6
Your Reference	UNITS	209/0.3-0.4
Date Sampled		11/05/2021
Type of sample		Soil
Date extracted	-	12/05/2021
Date analysed	-	12/05/2021
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	0.2
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.7
Anthracene	mg/kg	0.3
Fluoranthene	mg/kg	1.4
Pyrene	mg/kg	1.8
Benzo(a)anthracene	mg/kg	1.6
Chrysene	mg/kg	0.7
Benzo(b,j+k)fluoranthene	mg/kg	0.5
Benzo(a)pyrene	mg/kg	1.4
Indeno(1,2,3-c,d)pyrene	mg/kg	1.6
Dibenzo(a,h)anthracene	mg/kg	0.2
Benzo(g,h,i)perylene	mg/kg	1.3
Total +ve PAH's	mg/kg	12
Benzo(a)pyrene TEQ calc (zero)	mg/kg	2.1
Benzo(a)pyrene TEQ calc(half)	mg/kg	2.1
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	2.1
Surrogate p-Terphenyl-d14	%	110

Envirolab Reference: 268732

Revision No: R00

Organochlorine Pesticides in soil			
Our Reference		268732-3	268732-4
Your Reference	UNITS	205/0-0.1	207/1-1.45
Date Sampled		06/05/2021	06/05/2021
Type of sample		Soil	Soil
Date extracted	-	12/05/2021	12/05/2021
Date analysed	-	12/05/2021	12/05/2021
alpha-BHC	mg/kg	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	86	87

Organophosphorus Pesticides in Soil			
Our Reference		268732-3	268732-4
Your Reference	UNITS	205/0-0.1	207/1-1.45
Date Sampled		06/05/2021	06/05/2021
Type of sample		Soil	Soil
Date extracted	-	12/05/2021	12/05/2021
Date analysed	-	12/05/2021	12/05/2021
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	86	87

Envirolab Reference: 268732

Revision No: R00

PCBs in Soil			
Our Reference		268732-3	268732-4
Your Reference	UNITS	205/0-0.1	207/1-1.45
Date Sampled		06/05/2021	06/05/2021
Type of sample		Soil	Soil
Date extracted	-	12/05/2021	12/05/2021
Date analysed	-	12/05/2021	12/05/2021
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	86	87

Envirolab Reference: 268732

Revision No: R00

Acid Extractable metals in soil						
Our Reference		268732-1	268732-2	268732-3	268732-4	268732-5
Your Reference	UNITS	201/1-1.45	203/0.5-0.95	205/0-0.1	207/1-1.45	208/2.5-2.95
Date Sampled		05/05/2021	05/05/2021	06/05/2021	06/05/2021	10/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021
Date analysed	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021
Arsenic	mg/kg	<4	<4	<4	4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	4	7	7	14	7
Copper	mg/kg	34	19	24	36	20
Lead	mg/kg	17	14	14	20	16
Mercury	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Nickel	mg/kg	15	10	12	20	8
Zinc	mg/kg	59	39	44	86	32

Acid Extractable metals in soil		
Our Reference		268732-6
Your Reference	UNITS	209/0.3-0.4
Date Sampled		11/05/2021
Type of sample		Soil
Date prepared	-	12/05/2021
Date analysed	-	12/05/2021
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	5
Copper	mg/kg	24
Lead	mg/kg	14
Mercury	mg/kg	<0.1
Nickel	mg/kg	4
Zinc	mg/kg	90

Misc Soil - Inorg					
Our Reference		268732-2	268732-3	268732-4	268732-5
Your Reference	UNITS	203/0.5-0.95	205/0-0.1	207/1-1.45	208/2.5-2.95
Date Sampled		05/05/2021	06/05/2021	06/05/2021	10/05/2021
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021
Date analysed	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5

Moisture						
Our Reference		268732-1	268732-2	268732-3	268732-4	268732-5
Your Reference	UNITS	201/1-1.45	203/0.5-0.95	205/0-0.1	207/1-1.45	208/2.5-2.95
Date Sampled		05/05/2021	05/05/2021	06/05/2021	06/05/2021	10/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021
Date analysed	-	13/05/2021	13/05/2021	13/05/2021	13/05/2021	13/05/2021
Moisture	%	9.0	13	17	15	12

Moisture		
Our Reference		268732-6
Your Reference	UNITS	209/0.3-0.4
Date Sampled		11/05/2021
Type of sample		Soil
Date prepared	-	12/05/2021
Date analysed	-	13/05/2021
Moisture	%	9.0

Asbestos ID - soils						
Our Reference		268732-1	268732-2	268732-3	268732-4	268732-5
Your Reference	UNITS	201/1-1.45	203/0.5-0.95	205/0-0.1	207/1-1.45	208/2.5-2.95
Date Sampled		05/05/2021	05/05/2021	06/05/2021	06/05/2021	10/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	17/05/2021	17/05/2021	17/05/2021	17/05/2021	17/05/2021
Sample mass tested	g	Approx. 40g	Approx. 45g	Approx. 45g	Approx. 50g	Approx. 40g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Ashastas ID asile		
Asbestos ID - soils		
Our Reference		268732-6
Your Reference	UNITS	209/0.3-0.4
Date Sampled		11/05/2021
Type of sample		Soil
Date analysed	-	17/05/2021
Sample mass tested	g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO
Trace Analysis	-	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum the positive individually report DDD+DDE+DDT.

Envirolab Reference: 268732

Revision No: R00

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<="" is="" most="" pql.="" td="" the="" this=""></pql>
	approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql 'eq="" 3.="" <pql="" a="" above.<="" all="" and="" approach="" approaches="" are="" as="" assuming="" below="" between="" but="" calculation="" conservative="" contribute="" contributing="" false="" half="" hence="" is="" least="" mid-point="" more="" most="" negative="" pahs="" pql'values="" pql.="" present="" reported="" stipulated="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum
	of the positive individual Xylenes.

ROL: vTRH	(C6-C10)	BTEXN in Soil			Duplicate			Spike Recovery %		
Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	268732-4	
-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021	
-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021	
mg/kg	25	Org-023	<25	3	<25	<25	0	114	116	
mg/kg	25	Org-023	<25	3	<25	<25	0	114	116	
mg/kg	0.2	Org-023	<0.2	3	<0.2	<0.2	0	106	112	
mg/kg	0.5	Org-023	<0.5	3	<0.5	<0.5	0	118	120	
mg/kg	1	Org-023	<1	3	<1	<1	0	118	120	
mg/kg	2	Org-023	<2	3	<2	<2	0	114	115	
mg/kg	1	Org-023	<1	3	<1	<1	0	115	116	
mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]	
%		Org-023	115	3	105	105	0	93	109	
	Units - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Units PQL - mg/kg 25 mg/kg 25 mg/kg 0.2 mg/kg 0.5 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1	- mg/kg 25 Org-023 mg/kg 25 Org-023 mg/kg 0.2 Org-023 mg/kg 0.5 Org-023 mg/kg 1 Org-023 mg/kg 2 Org-023 mg/kg 1 Org-023 mg/kg 1 Org-023 mg/kg 1 Org-023 mg/kg 1 Org-023	Units PQL Method Blank - 12/05/2021 - 12/05/2021 mg/kg 25 Org-023 <25	Units PQL Method Blank # - 12/05/2021 3 - 12/05/2021 3 mg/kg 25 Org-023 <25	Units PQL Method Blank # Base - 12/05/2021 3 12/05/2021 - 12/05/2021 3 12/05/2021 mg/kg 25 Org-023 <25	Units PQL Method Blank # Base Dup. - 12/05/2021 3 12/05/2021 12/05/2021 12/05/2021 - 12/05/2021 3 12/05/2021 12/05/2021 12/05/2021 mg/kg 25 Org-023 <25	Units PQL Method Blank # Base Dup. RPD - 12/05/2021 3 12/05/2021 12/05/2021 12/05/2021 12/05/2021 - 12/05/2021 3 12/05/2021 12/05/2021 12/05/2021 mg/kg 25 Org-023 <25	Units PQL Method Blank # Base Dup. RPD LCS-4 - 12/05/2021 3 12/05/2021 12/05/2021 12/05/2021 12/05/2021 - 12/05/2021 3 12/05/2021 12/05/2021 12/05/2021 12/05/2021 mg/kg 25 Org-023 <25	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	268732-4
Date extracted	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021
Date analysed	-			12/05/2021	3	13/05/2021	13/05/2021		12/05/2021	13/05/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	3	<50	<50	0	114	122
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	3	<100	<100	0	77	84
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	3	<100	<100	0	92	76
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	3	<50	<50	0	114	122
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	3	<100	<100	0	77	84
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	3	<100	<100	0	92	76
Surrogate o-Terphenyl	%		Org-020	83	3	84	86	2	117	82

QUAL	ITY CONTRO	L: PAHs	in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	268732-4	
Date extracted	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021	
Date analysed	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	88	86	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	76	74	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	84	82	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	103	95	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	86	79	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	89	84	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	90	80	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	3	<0.05	<0.05	0	112	105	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	116	3	112	111	1	105	107	

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	268732-4
Date extracted	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/202
Date analysed	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	92	89
НСВ	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	85	85
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	127	123
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	105	97
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	103	97
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	97	96
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	103	95
Endrin	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	125	120
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	83	85
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	128	128
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	95	3	86	87	1	88	85

QUALITY CONTR	OL: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	268732-4	
Date extracted	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021	
Date analysed	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	84	82	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	89	91	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	91	89	
Malathion	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	118	116	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	95	95	
Parathion	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	98	108	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	109	113	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	95	3	86	87	1	88	85	

Envirolab Reference: 268732 Revision No: R00

Page | 19 of 25

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	268732-4
Date extracted	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021
Date analysed	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	100	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	95	3	86	87	1	88	85

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	268732-4
Date prepared	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021
Date analysed	-			12/05/2021	3	12/05/2021	12/05/2021		12/05/2021	12/05/2021
Arsenic	mg/kg	4	Metals-020	<4	3	<4	<4	0	90	76
Cadmium	mg/kg	0.4	Metals-020	<0.4	3	<0.4	<0.4	0	86	78
Chromium	mg/kg	1	Metals-020	<1	3	7	6	15	89	#
Copper	mg/kg	1	Metals-020	<1	3	24	22	9	87	90
Lead	mg/kg	1	Metals-020	<1	3	14	12	15	87	#
Mercury	mg/kg	0.1	Metals-021	<0.1	3	0.1	<0.1	0	91	109
Nickel	mg/kg	1	Metals-020	<1	3	12	11	9	86	#
Zinc	mg/kg	1	Metals-020	<1	3	44	39	12	95	#

QUALITY	CONTROL:	Misc Soi	l - Inorg			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	268732-4
Date prepared	-			12/05/2021	[NT]		[NT]	[NT]	12/05/2021	12/05/2021
Date analysed	-			12/05/2021	[NT]		[NT]	[NT]	12/05/2021	12/05/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	100	100

Envirolab Reference: 268732

Revision No: R00

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 268732

Revision No: R00

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 metals in soil - # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures.

We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 268732-1 to 5 were sub-sampled from bags provided by the client.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures.

We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 268732-6 was sub-sampled from a jar provided by the client.

Envirolab Reference: 268732 Page | 25 of 25 Revision No: R00

EMG

Project Name:	Campbelltown Hospital						To: Envirolab Services							
Project No:	34275.27 Sampler: Emily Eden				<u>i</u> den		12 Ashley Street, Chatswood NSV				swood NSW 2067			
Project Mgr:	EMG				Mob. Phone: 0418651227				Attn:	Nand				
Email:	emily.mcginty@douglaspartners.com.au				Phone:		9910 620		Fax: (02) 9910 620					
Date Required:	stand	lard turnarou	und							Email:	nzha	angs@e	nvirolabs	services.com.au
		peld	Sample Cont		I Analytes				5					
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 3a	Combo 8a	Combo 4a							Notes/preservation
201 / 1 - 1.45		05/05/21	S	G/P	х									268732
203 / 0.5 - 0.95		05/05/21	S	G/P			х							
205 / 0 - 0.1		06/05/21	S	G/P		х							-	
207 / 1 - 1.45	'	06/05/21	s	G/P	<u> </u>	х	<u> </u>		<u> </u>			L		17/5/2
208 / 2.5 - 2.95	<u> </u> '	10/05/21	S ·	G/P	 	<u> </u>	x		<u> </u>			<u> </u>	<u> </u>	
209 / 0.3 - 0.4	<u> </u>	11/05/21	S	G	x	<u> </u>	<u> </u>		ļ.	+-+		<u> </u>	<u> </u>	ile par
						 	-	-				<u> </u>	-	1
	-	•	· ·			 	 	 	+	+ +			1.	
												 		
<u>. </u>	ļ!	<u> </u>	-		-	1.	-	 	-	+ +		·	 	, , , , , , , , , , , , , , , , , , , ,
Lab Report No:	'	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u></u>			<u> </u>	<u></u>	

Transported to laboratory by:

7/08/2018 Received by:

Relinquished by:

Signed:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd Smeaton Grange
Attention	Emily McGinty

Sample Login Details	
Your reference	34275.27, Campbelltown Hospital
Envirolab Reference	268732
Date Sample Received	11/05/2021
Date Instructions Received	11/05/2021
Date Results Expected to be Reported	18/05/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	6 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils
201/1-1.45	✓	✓	✓				✓		✓
201/1-1.45	√	√	√				√	✓	√
				√	√	✓		√	✓✓
203/0.5-0.95	✓	√	√	✓ ✓	✓ ✓	✓	√	· .	✓
203/0.5-0.95 205/0-0.1	✓ ✓	✓ ✓	√	Ľ.			√	· ✓	√

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix I

QAQC

Appendix I QAQC

Campbelltown Hospital, Campbelltown, NSW

I1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details.

Table 1: Field and Laboratory Quality Control

Item	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Inter-laboratory replicates	5% of primary samples; <30% RPD	NC
Trip Spikes	1 per sampling event; 60-140% recovery	NC
Trip Blanks	1 per sampling event; <pql< td=""><td>NC</td></pql<>	NC
Rinsates	1 per sampling event; <pql< td=""><td>NC</td></pql<>	NC
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

No field QA samples were collected and therefore no analysis was undertaken. As the soil analytical results were all below the adopted SAC, and exhibited fairly similar chemistries, the absence of this component of the QA assessment is not considered to significantly inhibit on the purpose of this investigation.

In regard to the laboratory RPD and acceptance limits, they were all within the acceptable range

In summary, the dataset is determined to be of sufficient quality to be considered acceptable for the assessment.

I2.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Table 2: Data Quality Indicators

Data Quality Indicator	Method(s) of Achievement
Completeness	Systematic and selected target locations sampled.
	Preparation of borehole logs, sample location plan and chain of custody records.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM).
	Completion of chain of custody (COC) documentation.
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for laboratory quality control (QC) samples as discussed in Section 1. The absence of field QC samples has been discussed in Section 1.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced sampler(s) used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for laboratory QC samples.

Data Quality Indicator	Method(s) of Achievement
Representativeness	Target media sampled.
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.
	Samples were extracted and analysed within holding times.
	Samples were analysed in accordance with the COC.
Precision	Field staff generally followed standard operating procedures.
	Satisfactory results for all laboratory QC samples.
Accuracy	Field staff generally followed standard operating procedures.
	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQIs have been generally complied with.

I3.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.