

TABLE OF CONTENTS

I	INTRODUCTION	.1
2	PROPOSED DEVELOPMENT	.5
3	PUBLIC AND ACTIVE TRANSPORT	.6
4	PARKING	.9
5	ACCESS, SERVICING AND INTERNAL LAYOUT	
6	TRAFFIC EFFECTS	3
7	DRAFT CONSTRUCTION TRAFFIC MANAGEMENT PLAN	25
8	CONSULTATION	31
9	SUMMARY	38

APPENDIX A – CYCLE ROUTES

APPENDIX B – VEHICLE SWEPT PATHS

APPENDIX C – SIDRA MOVEMENT SUMMARIES

I INTRODUCTION

- 1.1 Colston Budd Rogers and Kafes Pty Ltd has been commissioned by Fabcot Pty Limited to prepare a traffic and access report to support the state significant development application (SSDA) for the proposed warehouse and distribution centre at 250 Victoria Street, Wetherill Park. The site is located on the northern side of Victoria Street, between Wetherill Street in the east and Walter Street in the west, as shown on Figure 1.
- 1.2 The proposed development will include a Woolworths warehouse and distribution centre of 77,489m². The facility will include fresh and chilled produce which will be delivered to the site from suppliers and distributed to supermarkets in NSW. Car parking is proposed with access from Victoria Street. Service vehicles will access the site from Redfern Street. 24 hour, seven day operation is proposed.
- 1.3 The Secretary's Environmental Assessment Requirements for the project, dated 26 March 2021, include a number of traffic and parking matters. Table 1.1 includes the SEARs and the relevant sections of the report in which they are addressed.

Table 1.1: SEARs						
SEARs requirement	Section of report					
Traffic and transport – including:	Chapter 6, Chapter 7					
- details of all traffic types and volumes likely to be generated during construction and operation, including a description of:						
 key access / haul routes employee shift change pattern 24-hour temporal profile of truck 						

CHAPTER I

generation	
- an assessment of the predicted impacts of	Chapter 6
this traffic on road safety and the capacity	
of the surrounding road network, including	
consideration of cumulative traffic impacts	
at key intersections using SIDRA or similar	
traffic model	
- details of any new roads or access points	Chapter 5, Chapter 6
required for the development	
- details of the largest vehicle anticipated to	Chapter 5, Appendix B
access and move within the site, including	
swept path analysis	-
- detailed plans of the proposed site access	Chapter 5
point/s, parking arrangements and	
proposed pedestrian and cyclist facilities	
(including end of trip facilities), in	
accordance with the relevant Australian	
Standards	
- identification of any dangerous goods likely	This matter is being addressed by
to be transported on arterial and local	Riskcon Engineering.
roads to/ from the site and. If necessary,	
the preparation of an incident management	
strategy	
- plans demonstrating how all vehicles likely	Chapter 5
to be generated during construction and	
operation and awaiting loading, unloading	
or servicing can be accommodated on the	
site to avoid queuing in the street network	
- details of road upgrades, infrastructure	Chapter 5, Chapter 6
works or new roads or access points	
required for the development if necessary.	
Consultation	
During preparation of the EIS, you must consult	Chapter 8
with the relevant local, State or Commonwealth	
Government authorities, service providers,	
community groups and affected landowners. In	
particular you must consult with:	
Fairfield City Council	
Transport for NSW	
NSW Food Authority	
Heritage NSW	
NSW Fire and Rescue	

CHAPTER I

Environment Protection Authority	
Sydney Water	
WaterNSW	
• the Environment, Energy and Science Group	
Ausgrid	
Endeavour Energy	
 surrounding local landowners and stakeholders 	
 any other public transport, utilities or community service providers 	
The EIS must describe the consultation process	
and the issues raised and identify where the	
design of the development has been amended in	
response to these issues. Where amendments	
have not been made to address an issue, a short	
explanation should be provided.	

- 1.4 This report assesses the traffic and transport implications of the proposed development, including addressing the SEARs, through the following chapters:
 - □ Chapter 2 proposed development;
 - Chapter 3 public and active transport;
 - □ Chapter 4 parking;
 - □ Chapter 5 access, servicing and internal layout;
 - Chapter 6 traffic effects;
 - Chapter 7 draft construction management plan;

- Chapter 8 consultation; and
- Chapter 9 summary.

2 PROPOSED DEVELOPMENT

- 2.1 The proposed development will include a Woolworths warehouse and distribution centre of 77,489m². The facility will include fresh and chilled produce which will be delivered to the site from suppliers and distributed to supermarkets in NSW. Car parking is proposed with access from Victoria Street. Service vehicles will access the site from Redfern Street. 24 hour, seven day operation is proposed.
- 2.2 Deliveries to and from the facility will be made by semi-trailers up to 20 metres long and b-doubles up to 26 metres long. The warehouse and distribution centre will operate with overlapping shifts and the office will operate during normal business hours, from Monday to Friday. The number of employees per shift will vary from some 90 to 425.

3 PUBLIC AND ACTIVE TRANSPORT

Public Transport Services

- 3.1 A number of bus services operate in the area, including along Victoria Street, Redfern Street, Hassall Street and The Horsley Drive. As previously discussed, there are bus stops on both sides of Victoria Street and Redfern Street, close to the site.
- 3.2 Bus services include:
 - o route 800: Blacktown to Fairfield via Wetherill Park;
 - o route 806: Liverpool to Parramatta via Abbotsbury;
 - route 812: Blacktown to Fairfield;
 - o route 813: Bonnyrigg to Fairfield; and
 - route 814: Fairfield to Smithfield.
- 3.3 The Liverpool to Parramatta Bus Transitway is west of the site, running parallel to Walter Street. The site is some five to 10 minutes' walking distance from the transitway stops. Services on the transitway are every 10 minutes in each direction.

Active Transport

3.4 Pedestrian facilities in the vicinity of the site are provided by existing footpaths on the surrounding road network and pedestrian crossing facilities at signalised intersections. The intersections of Victoria Street/Walter Street, Victoria Street/Hassall Street and Hassall Street/Redfern Street include signalised pedestrian crossings.

- 3.5 There is a cycle path along the bus transitway, just west of the site. This cycleway connects Parramatta in the north with Liverpool in the south. It also connects to the Bay to Mountains and St Johns Park shared pedestrian/cycle networks. A plan showing cycle routes is provided in Appendix A.
- 3.6 The Western City District Plan identifies Wetherill Park as a significant industrial precinct and employment source in the metropolitan area. Journey to work data indicates the following modes of travel to work in this area:

car driver	-	91 per cent;
car passenger	-	5 per cent;
bus	-	2 per cent; and
walk/cycle/other	-	2 per cent.

- 3.7 Based on the above journey to work data, the proposed development would generate some five to 10 trips by bus and five to 10 trips by walking/cycling/other modes in the morning and afternoon peak hours. The existing public transport services will readily cater for these trips.
- 3.8 Footpaths are proposed along the site frontages in Victoria Street and Redfern Street. This will improve conditions for pedestrians accessing the site.
- 3.9 The proposed development will provide appropriate bicycle parking and end of trip facilities. Maps showing walking and cycling routes will be provided to employees.
- 3.10 The proposed development is therefore consistent with the Western City District Plan, government objectives and planning principles of:

- (a) improving accessibility to employment and services by public transport;
- (b) improving the choice of transport and reducing dependence solely on cars for travel purposes;
- (c) moderating growth in the demand for travel and the distances travelled, especially by car; and
- (d) support the efficient and viable operation of public transport services.

Work Place Travel Plan

- 3.11 A work place travel plan will be prepared, which will include the following:
 - identify existing bus routes which stop adjacent and close to the site, including the location of bus stops and pedestrian crossings at signalised intersections;
 - work with bus operators to improve services;
 - encourage public transport by employees and visitors through the provision of information, maps and timetables in a site travel plan;
 - raise awareness of health benefits of walking and cycling (including maps showing walking and cycling routes, including adjacent to and near the site);
 - encourage cycling by providing safe and secure bicycle parking, including the provision of bicycle parking for employees, plus showers and lockers.

4 PARKING

Car Parking

- 4.1 Chapter 12 of the Fairfield Citywide Development Control Plan (Car Parking, Vehicle and Access Management) includes a parking requirement for warehouses and distribution centres of one space per 80m² GLA. Where the warehouse is in excess of 5,000m², the DCP indicates that consideration will be given to a provision of one space per 150m².
- The proposed warehouse and distribution centre is 77,489m². Based on one space per 150m², the development would require some 517 parking spaces.
 Based on one space per 80m², the development would require some 969 parking spaces.
- 4.3 The proposed provision is 767 spaces which is within the range identified by the DCP. This parking provision is proposed to cater for shift changes, and to cater for employees at night when public transport options are less frequent. The proposed provision includes eight disabled parking spaces.

Bicycle Parking

4.4 The DCP encourages the provision of bicycle parking in new developments. The Austroads guidelines recommend bicycle parking provisions of one space per 500m² for industrial uses. These rates are based on a 10 per cent travel mode by bicycle, which is higher than that for the subject area as noted in paragraph 3.6.

4.5 Based on this rate, the development would require some 155 bicycle parking spaces. Bicycle parking is proposed for 155 bicycles in accordance with these requirements. Showers and lockers are also proposed.

5 ACCESS, SERVICING AND INTERNAL LAYOUT

Vehicular Access

- 5.1 Vehicular access to the site will be provided from Victoria Street and Redfern Street. The employee car park will be accessed from Victoria Street. Truck, service and delivery vehicle access will be provided from Redfern Street.
- 5.2 The driveway for the employee car park will be provided in approximately the centre of the site. The driveway will be left in/left out due to the median in Victoria Street.
- 5.3 In pre-application advice, Transport for NSW requested that a deceleration lane be provided on Victoria Street for cars entering the development. A deceleration lane is proposed in accordance with this requirement.
- 5.4 Access from Redfern Street will be provided for service vehicles at the eastern and western ends of the site. The eastern driveway will provide for Woolworths trucks to enter the site. The western driveway will provide for trucks delivering produce to enter, and for all trucks (inbound and outbound) to exit.
- 5.5 Driveway widths will be provided in accordance with the Australian Standard for Parking Facilities (Part 1: Off-street car parking and Part 2: Off-street commercial vehicle facilities), AS2890.1:2004 and AS2890.2:2018, to cater for the swept paths of cars, service vehicles and emergency vehicles.

Service Vehicles

- 5.6 Waiting bays for trucks delivering inbound produce will be provided in a basement level on the eastern side of the site, prior to being allocated a dock. Docks for inbound deliveries will be located on the northern side of the building, on two levels: fresh produce on the ground level and chilled produce on the first floor.
- 5.7 Docks for outbound delivery trucks, taking produce to supermarkets, will be provided on the western side of the building, on ground level. The proposed loading dock arrangements will be designed to comply with the requirements of the Australian Standard for Parking Facilities AS2890.2-2018.
- 5.8 Inbound deliveries to the distribution centre will be made by b-doubles up to 26 metres long. Outbound deliveries will be made by semi-trailers up to 20 metres long. All vehicles will enter and exit the site in a forward direction. Vehicle swept paths are shown in Appendix B.

Internal Circulation and Layout

5.9 Within the car parking areas, car parking dimensions, aisle widths, ramp grades and transitions will be in accordance with the Australian Standard AS2890.1-2004. Parking spaces will be provided with minimum dimensions of 2.5 metres wide by 5.4 metres long and aisle widths of 5.8 metres. Spaces located adjacent to obstructions will be 300mm wider to appropriately provide for doors to open. Disabled parking spaces will be 2.4 metres wide, with a 2.4 metre wide adjacent shared zone for wheelchair access. Height clearance will be 2.2 metres generally, with 2.5 metres above disabled spaces. These dimensions are appropriate, being in accordance with AS2890.1:2004.

6 TRAFFIC EFFECTS

Road Network

- 6.1 The site is at 250 Victoria Street, on the northern side of the road, between Wetherill Street in the east and Walter Street in the west. It is occupied by a number of buildings which are used for industrial purposes. The site also has frontage to Redfern Street on its northern side.
- 6.2 Victoria Street connects Cumberland Highway in the east with Cowpasture Road in the west. Victoria Street provides access to major industrial precincts in Wetherill Park. In the vicinity of the site it provides for two traffic lanes and one parking lane in each direction, clear of intersections, with a central concrete median and a 60 kilometre per hour speed limit. There are school zone restrictions which operate west of the site. There are bus stops on both sides of the road. West of Walter Street, Victoria Street forms part of the bus transitway.
- 6.3 East of the site, Victoria Street intersects Wetherill Street at a two lane roundabout. Wetherill Street provides access to residential areas to the south. West of the site, Victoria Street intersects Walter Street at a signalized intersection. Walter Street provides access to industrial areas.
- 6.4 Redfern Street forms the northern site boundary. It connects Hassall Street in the east with Walter Street in the west, providing one traffic lane and one parking lane in each direction, clear of intersections. There are bus stops on both sides of the road. The intersection of Redfern Street with Hassall Street is traffic signal controlled. The intersection of Redfern Street with Walter Street is unsignalised.

- 6.5 To the north, Hassall Street connects, via Reconciliation Road and the Prospect Highway, to the M4 Motorway. Victoria Street connects, via Cowpasture Road and The Horsley Drive, to the M7 Motorway to the west.
- 6.6 Transport for NSW is proposing to upgrade the intersections of The Horsley Drive with Cowpasture Road. Both intersections would be signalized and additional capacity provided. The Horsley Drive would also be upgraded between Cowpasture Road and the M7 Motorway.

Traffic Flows

- 6.7 Traffic generated by the proposed development will have its greatest effects during weekday morning and afternoon peak periods, when it combines with other traffic on the surrounding road network. In order to gauge traffic conditions, counts have been undertaken at the following intersections:
 - Cowpasture Road/The Horsley Drive;
 - Uictoria Street/Walter Street;
 - Uictoria Street/Wetherill Street;
 - Uictoria Street/Hassall Street;
 - Uictoria Street/Cumberland Highway;
 - Redfern Street/Walter Street;
 - Redfern Street/Hassall Street;
 - The Horsley Drive/Wetherill Street; and
 - The Horsley Drive/Cumberland Highway.
- 6.8 The results of the surveys are shown in Figures 2 and 3, and summarized in Table 6.1. Peak hours for local intersections in the vicinity of the site were 7:15 8:15 am and 4:00 5:00 pm. Cumberland Highway and Cowpasture Road intersections had peak hours of 8:00 9:00 am and 4:30 5:30 pm.

CHAPTER 6

Table 6. I: Existing two-way (sum of both directions) peak hour traffic flows							
Road	Location	AM peak hour	PM peak hour				
The Horsley Drive	North of Cowpasture Road	2,540	3,155				
	East of Cowpasture Road	2,355	2,285				
	West of Wetherill Street	2,710	2,535				
	East of Wetherill Street	2,275	2,375				
	West of Cumberland Highway	1,430	1,190				
	East of Cumberland Highway	1,790	1,955				
Cowpasture Road	North of The Horsley Drive	I,760	١,620				
	South of The Horsley Drive	2,295	2,535				
Victoria Street	West of Walter Street	١,660	1,945				
	West of Wetherill Street	1,425	I,560				
	West of Hassall Street	1,145	١,260				
	East of Hassall Street	950	1,315				
	West of Cumberland Highway	1,315	2,210				
	East of Cumberland Highway	25	45				
Cumberland Highway	North of Victoria Street	4,535	5,195				
	North of The Horsley Drive	4,125	4,655				
	South of The Horsley Drive	3,285	3,670				
Redfern Street	East of Walter Street	405	405				
	West of Hassall Street	375	420				
Walter Street	North of Victoria Street	550	885				
	North of Redfern Street	780	580				
Wetherill Street	South of Victoria Street	760	775				
	South of The Horsley Drive	I,475	I,290				
Hassall Street	North of Redfern Street	1,900	2,165				
	North of Victoria Street	2,150	2,350				
	South of Victoria Street	1,515	I,695				

- 6.9 Table 6.1 shows that Cumberland Highway carried some 3,300 to 5,200 vehicles per hour two-way during the surveyed morning and afternoon peak hours. The Horsley Drive, Cowpasture Road and Hassall Street carried lower flows of some 1,200 to 2,700 vehicles per hour two-way.
- 6.10 Victoria Street carried some 950 to 1,950 vehicles per hour two-way. Wetherill Street, Redfern Street and Walter Street carried some 375 to 1,500 vehicles per hour two-way during the surveyed morning and afternoon peak hours.

Intersection Operations

- 6.11 The capacity of the road network is largely determined by the capacity of its intersections to cater for peak period traffic flows. The surveyed intersections have been analysed using the SIDRA computer program for the traffic flows shown in Figures 2 and 3.
- 6.12 SIDRA simulates the operations of intersections to provide a number of performance measures. The most useful measure provided is average delay per vehicle expressed in seconds per vehicle.
- 6.13 Based on average delay per vehicle, SIDRA estimates the following levels of service (LOS):
 - For traffic signals, the average delay per vehicle in seconds is calculated as delay/(all vehicles), for roundabouts the average delay per vehicle in seconds is selected for the movement with the highest average delay per vehicle, equivalent to the following LOS:

0 to 14	=	"A"	Good		
15 to 28	=	"B"	Good with minimal delays and spare capacity		
29 to 42	=	"C"	Satisfactory with spare capacity		
43 to 56	=	"D"	Satisfactory but operating near capacity		
57 to 70	=	"E"	At capacity and incidents will cause excessive		
			delays. Roundabouts require other control mode.		
>70	=	"F"	Unsatisfactory and requires additional capacity		

For give way and stop signs, the average delay per vehicle in seconds is selected from the movement with the highest average delay per vehicle, equivalent to following LOS:

0 to 14	=	"A"	Good
15 to 28	=	"B"	Acceptable delays and spare capacity
29 to 42	=	"C"	Satisfactory but accident study required
43 to 56	=	"D"	Near capacity and accident study required
57 to 70	=	"E"	At capacity and requires other control mode
>70	=	"F"	Unsatisfactory and requires other control mode

6.14 It should be noted that for roundabouts, give way and stop signs, in some circumstances, simply examining the highest individual average delay can be misleading. The size of the movement with the highest average delay per vehicle should also be taken into account. Thus, for example, an intersection where all movements are operating at a level of service A, except one which is at level of service E, may not necessarily define the intersection level of service as E if that movement is very small. That is, longer delays to a small number of vehicles may not justify upgrading an intersection unless a safety issue was also involved.

- 6.15 The analysis found that the intersections of The Horsley Drive with Cowpasture Road operate with average delays of less than 28 seconds per vehicle during peak periods. This represents level of service B, a good level of service. As noted above, TfNSW is proposing to upgrade these intersections.
- 6.16 The signalized intersections of Cumberland Highway with Victoria Street and The Horsley Drive, and of The Horsley Drive with Wetherill Street, are operating with average delays of less than 50 seconds per vehicle during peak periods. This represents level of service D, a satisfactory level of service for busy intersections during peak periods.
- 6.17 The signalized intersection of Victoria Street with Hassall Street is operating with average delays of less than 40 seconds per vehicle during peak periods. This represents level of service C, a satisfactory level of service.
- 6.18 The signalized intersections of Victoria Street with Walter Street, and of Hassall Street with Redfern Street, are operating with average delays of less than 30 seconds per vehicle during peak periods. This represents level of service B/C, a satisfactory level of service.
- 6.19 The roundabout at the Victoria Street/Wetherill Street intersection operates with average delays for all movements of less than 20 seconds per vehicle during peak periods. This represents level of service B, a good level of service.
- 6.20 The unsignalised intersection of Walter Street with Redfern Street is operating with average delays for all movements of less than 15 seconds per vehicle during peak periods. This represents level of service A/B, a good level of service.

Traffic Generation of Distribution Centre

- 6.21 The development is proposed to operate 24 hours a day, seven days a week. The warehouse and distribution centre will operate with overlapping shifts. It will replace a number of functions currently occurring at the Woolworths distribution centre at Minchinbury, as well as other distribution occurring from Arndell Park.
- 6.22 Daily traffic generation of the warehouse and distribution centre would be some3,400 vehicles per day two-way (including some 2,000 cars and 1,400 trucks).
- 6.23 Traffic generated by the proposed development will have its greatest effects during the weekday morning and afternoon peak periods when it combines with other traffic on the surrounding road network. Based on surveys at Minchinbury and Arndell Park, the proposed development will generate some 180 to 200 and 300 to 320 vehicles per hour two-way during the morning and afternoon peak periods respectively. These comprise some 80 to 100 trucks plus 100 cars during the morning peak hour and some 80 to 100 trucks plus 220 cars during the afternoon peak hour. We have assessed the upper ends of these ranges.
- 6.24 As previously noted, our traffic counts at Wetherill Park found peak hours in the vicinity of the site as follows:
 - 7:15 8:15 am; and
 - 4:00 5:00 pm.
- 6.25 The Woolworths statement of operations indicates a morning peak hour volume of 54 trucks (108 two-way) between 6:00 am and 7:00 am. The corresponding numbers are 33 and 18 trucks (66 and 36 two-way) between 7:00 8:00 am and

8:00 – 9:00 am respectively. By comparison, our traffic counts at Minchinbury and Arndell Park (from where operations would relocate to Wetherill Park) found 90 two-way truck movements between 7:15 and 8:15 am. Our assessment is based on 100 trucks per hour in the morning, which is:

- similar to the number of trucks counted by ourselves at Minchinbury and Arndell Park;
- similar to the peak number of trucks estimated in the Woolworths statement of operations (albeit for an earlier time in the morning); and
- higher than the number of trucks estimated in the statement of operations for the road network peak period at Wetherill Park.
- 6.26 Our morning assessment is therefore based on a truck volume which is conservatively high with respect to the statement of operations.
- 6.27 The statement of operations indicates an afternoon peak hour volume of 61 trucks (122 two-way) between 3:00 pm and 4:00 pm. The corresponding number is 37 trucks (74 two-way) between 4:00 5:00 pm. The average across both hours is 49 trucks (98 two-way). By comparison, our traffic counts at Minchinbury and Arndell Park found 88 two-way truck movements between 4:00 and 5:00 pm. Our assessment is based on 100 trucks per hour in the afternoon, which is:
 - similar to the number of trucks counted by ourselves at Minchinbury and Arndell Park;
 - similar to the average number of trucks estimated in the Woolworths statement of operations between 3:00 pm and 5:00pm; and
 - higher than the number of trucks estimated in the statement of operations for the road network peak period at Wetherill Park.

- 6.28 Our afternoon assessment is therefore also based on a truck volume which is conservatively high with respect to the statement of operations.
- 6.29 The statement of operations notes that employee shift change times will be at:
 - 5:00 am;
 - I:00 pm; and
 - o **I 0:00 pm**.
- 6.30 These times are not the peak periods for the road network at Wetherill Park.
- 6.31 As noted above, the proposed warehouse and distribution centre will operate with overlapping shifts. To take account of overlapping shifts, we undertook traffic counts at Minchinbury and Arndell Park, from where operations would relocate to Wetherill Park.
- 6.32 These counts found 88 two-way car movements between 7:15 and 8:15 am. Our assessment is based on 100 cars per hour in the morning which is similar to the number counted by ourselves at Minchinbury and Arndell Park.
- 6.33 In the afternoon, our counts found 46 cars per hour between 4:00 and 5:00 pm.Between 3:00 and 4:00 pm the corresponding number was 217 cars. Our assessment is based on 220 cars per hour in the afternoon, which is:
 - similar to the number of cars counted by ourselves at Minchinbury and Arndell Park (albeit for an earlier time in the afternoon); and
 - higher than the number of cars counted by ourselves at Minchinbury and Arndell Park for the road network peak hour at Wetherill Park.

Traffic Effects

- 6.34 The additional traffic has been assigned to the surrounding road network. Some 70 per cent of trucks are expected to travel along Victoria Street, to and from the M7. Most of the remaining trucks would use Hassall Street, to and from the M4. A small number of trucks would use Victoria Street, to and from the Cumberland Highway. Existing peak hour traffic flows plus the additional development traffic are shown in Figures 2 and 3, and summarised on Table 6.2.
- 6.35 Traffic increases on Victoria Street and Walter Street would be some 30 to 185 vehicles per hour two-way at peak times. Increases on The Horsley Drive, Cowpasture Road, Cumberland Highway, Redfern Street, Wetherill Street and Hassall Street would be lower at some five to 85 vehicles per hour two-way.
- 6.36 The intersections previously analysed have been reanalysed with SIDRA for the additional development traffic flows shown on Figures 2 and 3. The analysis found that the intersections of The Horsley Drive with Cowpasture Road would operate with average delays of less than 30 seconds per vehicle during peak periods. This represents level of service C, a satisfactory level of service.
- 6.37 The signalized intersections of Cumberland Highway with Victoria Street and The Horsley Drive, and of The Horsley Drive with Wetherill Street, would continue to operate with average delays of less than 50 seconds per vehicle during peak periods. This represents level of service D, a satisfactory level of service for busy intersections during peak periods.

CHAPTER 6

-

Road	Location	AM peak hour		PM peak hour	
		Existing	Plus	Existing	Plus
			development		development
The Horsley Drive	North of Cowpasture Road	2,540	+70	3,155	+100
	East of Cowpasture Road	2,355	+20	2,285	+30
	West of Wetherill Street	2,710	-	2,535	-
	East of Wetherill Street	2,275	-	2,375	-
	West of Cumberland Highway	I,430	-	1,190	-
	East of Cumberland Highway	1,790	+5	1,955	+10
Cowpasture Road	North of Horsley Drive	I,760	+70	1,620	+100
	South of Horsley Drive	2,295	+30	2,535	+40
Victoria Street	West of Walter Street	I,660	+100	1,945	+140
	West of Wetherill Street	I,425	+25	1,560	+185
	West of Hassall Street	1,145	+20	1,260	+85
	East of Hassall Street	950	+15	1,315	+45
	West of Cumberland Highway	1,315	+25	2,210	+45
	East of Cumberland Highway	25	-	45	-
Cumberland Highway	North of Victoria Street	4,535	+10	5,195	+20
	North of The Horsley Drive	4,125	+15	4,655	+25
	South of The Horsley Drive	3,285	+10	3,670	+15
Redfern Street	East of Walter Street	405	+85	405	+85
	West of Hassall Street	375	+45	420	+45
Walter Street	North of Victoria Street	550	+115	885	+115
	North of Redfern Street	780	+30	580	+30
Wetherill Street	South of Victoria Street	760	+5	775	+20
	South of The Horsley Drive	I,475	+5	I,290	+20
Hassall Street	North of Redfern Street	1,900	+30	2,165	+65
	North of Victoria Street	2,150	+35	2,350	+70
	South of Victoria Street	1,515	+10	1,695	+20

- 6.38 The signalized intersection of Victoria Street with Hassall Street would operate with average delays of some 45 seconds per vehicle or less during peak periods. This represents level of service D, a satisfactory level of service for a busy intersection during peak periods.
- 6.39 The signalized intersections of Victoria Street with Walter Street, and of Hassall Street with Redfern Street, would operate with average delays of less than 40 seconds per vehicle during peak periods. This represents level of service C, a satisfactory level of service.
- 6.40 The intersection of Victoria Street/Wetherill Street would continue to operate with average delays for all movements of less than 20 seconds per vehicle during peak periods. This represents level of service B, a good level of service.
- 6.41 The intersection of Walter Street with Redfern Street would continue to operate with average delays for all movements of less than 15 seconds per vehicle during peak periods. This represents level of service A/B, a good level of service.
- 6.42 Therefore, the road network will be able to cater for the traffic from the proposed development.

7 DRAFT CONSTRUCTION TRAFFIC MANAGEMENT PLAN

7.1 The construction methodology, process and staging will be finalised when a builder has been appointed. The CTMP will be finalised prior to the commencement of work, taking into account relevant consent conditions.

Overall Principles for Traffic Management

- 7.2 The overall principles for traffic management during construction of the development are:
 - provide a convenient and appropriate environment for pedestrians;
 - minimise effects on pedestrian movements and amenity;
 - manage and control vehicular movements to and from the site;
 - number of the site maintain traffic capacity at intersections and mid-block around the site;
 - maintain access to other properties adjacent to the site;
 - restrict vehicle activity to designated truck routes through the area;
 - maintain safety for workers;
 - provide appropriate access to the site for construction traffic; and

- manage and control vehicle activity in the vicinity of the site.
- 7.3 If works zones are required in Victoria Street or Redfern Street, a separate application will be made to Fairfield Council.

Hours of Work

- 7.4 Subject to conditions of consent, work associated with construction activities will be carried out between the following hours:
 - Monday to Friday: 7:00 am to 6:00 pm;
 - □ Saturday: 7:00 am to 4:00 pm; and
 - □ Sunday/public holidays: no work.
- 7.5 All work including demolition, excavation and construction work during these hours will be carried out in accordance with the conditions of consent and the Australian Standard AS 2436.10 Guide to Noise Control and Construction, Maintenance and Demolition Sites. The site contractor will be responsible to instruct and control all workers and sub-contractors regarding the hours of work. Any work outside these times would be subject to a separate application to Fairfield Council. The control of hours of operation avoids truck movements during the early hours of the morning, before 7:00 am and in the evening, after 6:00 pm.

Truck Routes

7.6 During construction, trucks removing transporting material to the site will be accommodated on the site. Vehicular access to and from the site will be provided

from Redfern Street and Victoria Street, via two driveways, located adjacent to the northern and southern boundaries of the site.

- 7.7 General traffic movements on surrounding roads and continued access to adjacent properties will be maintained during construction. Truck movements will be restricted to designated truck routes and will be confined to the main road network through the area. Trucks at no time during demolition, excavation and construction will be permitted to park on-street in the vicinity of the site.
- 7.8 Trucks would travel to and from the site along the following designated routes, as shown in Figure 2:
 - approach routes:
 - The Horsley Drive, Elizabeth Street, Victoria Street, Walter Street, Redfern Street;
 - Cumberland Highway, Victoria Street, Hassall Street, Redfern Street;
 - departure routes:
 - Redfern Street, Hassall Street, Victoria Street, Cumberland Highway; and
 - Redfern Street, Walter Street, Victoria Street, Elizabeth Street, The Horsley Drive.
- 7.9 The designated truck routes to and from the site are proposed to restrict truck traffic to the main road network through the area. Truck drivers will be inducted and advised of the designated truck routes to and from the site. The approach and departure route of demolition, excavation and construction vehicles are considered appropriate.

Construction Site Operation

- 7.10 During construction, all construction vehicles and materials handling, including delivery of construction material, will be accommodated within an on-site construction compound/ materials handling area. Construction hoarding and containment fencing will be erected around the perimeter of the site compound, with scaffolding and overhead protection provided where required.
- 7.11 Trucks will enter and exit the site in a forward direction. The construction access driveways on Redfern Street and Victoria Street will be managed and controlled by qualified traffic controllers. The traffic controllers will be located within the site and will manage pedestrians and truck movements across the adjacent footpath. They will ensure that the access driveway is kept clear at all times, to allow trucks unobstructed access to the site. They will not enter the public road reserve or attempt to stop vehicles within Redfern Street or Victoria Street. Trucks exiting the site will give way to traffic and pedestrians and will wait for appropriate gaps in the traffic in order to enter the surrounding road network.
- 7.12 The construction access driveways will provide appropriate sight lines for construction vehicle access, with regards to the number, type and size of construction vehicles. Pedestrian warning signs will be erected adjacent to the driveways and on pedestrian paths adjacent to the construction activity, in accordance with SafeWork NSW requirements.
- 7.13 Truck drivers will be advised of the presence of the traffic controllers, and that they must observe their direction at all times. All traffic controllers will be fully qualified with the relevant TfNSW Traffic Controllers qualifications.

Traffic and Parking Effects

- 7.14 The number of vehicles generated during the various stages of construction is likely to be up to some 40 to 60 construction vehicles per day two-way at peak times. The effects of construction vehicle activity on the surrounding road network will therefore be less than the operational effects. Construction vehicles will access the site from Redfern Street or Victoria Street, via temporary construction driveways. All construction vehicles will enter and exit the site in a forward direction.
- 7.15 Construction worker numbers will vary over the construction period, but would be generally be some 50 to 150 workers. Construction workers will be able to park on the site, as parking areas become available.
- 7.16 Construction workers would generate some 90 to 280 vehicles per day two-way. Construction of the proposed development would therefore have a total daily traffic generation up to some 340 vehicles per day two-way (including some 280 cars and 60 construction vehicles per day). The effects of construction vehicle activity on the surrounding road network will therefore be less than the operational effects of the proposed warehouse and distribution centre.

Draft Construction Traffic Management Plan

7.17 The draft traffic management plan for construction of the proposed development is presented below. It includes the principles of traffic management and is subject to SafeWork NSW requirements, as well as survey and final design.

- 7.18 The builder/contractor, once appointed, will be responsible for preparation of a detailed construction traffic management plan, to incorporate these principles and refine the construction methodology, staging and timing.
- 7.19 Site operations, signage, construction fencing/hoarding, overhead protection, safety barriers and line marking detail will be provided in accordance with Australian Standards and the TfNSW Manual for Traffic Control at Work Sites. A copy of the traffic management plan will be kept on-site at all times. Signage details, traffic management, the control of pedestrians in the vicinity of the site, and the control of trucks to and from the site will be the responsibility of the site contractor.
- 7.20 The draft construction traffic management plan includes the following:
 - all construction activity to be provided for on-site or within the on-street work zones;
 - the construction activity to be coordinated with the construction of other developments in the vicinity of the site;
 - construction vehicle access to be provided from Spine Road and Church Street, via temporary construction access driveways;
 - construction hoarding/fencing and scaffolding to be erected around the construction site, with overhead protection provided where required;
 - construction work to be restricted to the approved hours of construction.
 Any work outside the approved hours would be subject to prior approval from Fairfield Council and the traffic committee;

- the movement of trucks on and off the site to be managed and controlled by traffic controllers in accordance with a safe work method statement and appropriate traffic control plans;
- construction vehicles will include single unit dump truck, concrete trucks and semi-trailers;
- truck movements to and from the site to be restricted to the designated truck routes;
- Let trucks to enter and exit the site in a forward direction;
- maintain access to other adjacent properties in the vicinity of the site at all times during construction;
- maintain appropriate capacity for pedestrians and cyclists at all times along the adjacent footpaths;
- openings in the construction hoarding to be provided for access to the site for construction vehicles;
- construction access driveways to be managed and controlled by qualified traffic controllers;
- traffic controllers to ensure that the construction access driveways are kept clear at all times, to allow trucks unobstructed access to the site;

- the management of the site works will be the responsibility of the site contractor/builder;
- pedestrian activity across the site access driveways will be managed and controlled by traffic controllers where required;
- pedestrian and cyclist warning signs to be utilised in the vicinity of the site;
- pedestrian arrangements, construction activity and erection of safety fencing will be provided in accordance with SafeWork NSW requirements;
- the construction site manager/builder to be responsible for the management of the site, the movement of trucks on and off the site, signage detail, traffic management and the control of pedestrians/cyclists; and
- construction signage to be provided in accordance with Australian Standards and the TfNSW Manual for Traffic Control at Work Sites.

8 CONSULTATION

8.1 Meetings were held with Transport for NSW and Fairfield Council on 2 March and 25 March 2021 respectively. These authorities also provided letters dated 15 March and 16 March respectively. The matters raised in these documents are discussed below.

TfNSW Letter of 15 March

- The plan presented shows two access points form Victoria Street, on for entry and one for entry/exit. TfNSW would not support multiple access points on Victoria Road.
- 8.2 An initial plan included two access points on Victoria Street. The submitted plans include a single access point.
 - TfNSW has concerns with heavy vehicles turning at the intersection of Victoria and Hassall streets and do not believe the increased turning movements can be accommodated, including B-doubles that would be accessing the site.
- 8.3 As noted in Chapter 6, with the additional development traffic, the intersection of Victoria Street with Hassall Street would operate with average delays of less than 42 seconds per vehicle during peak periods. This represents level of service C, a satisfactory level of service. The number of additional vehicles through this intersection would be relatively modest.
- 8.4 We also note that while both Victoria Street and Hassall Street are approved bdouble routes, trucks using this route would be outbound vehicles delivering to supermarkets. These vehicles will be semi-trailers, not b-doubles.

- A deceleration lane would be required on Victoria Street.
- 8.5 A deceleration lane is proposed, as shown in the submitted plans.
 - Details all daily and peak traffic and transport movements likely to be generated (light and heavy vehicle, public transport, pedestrian and cycle trips) during construction and operation of the development. Key intersections should include:
 - Victoria Street/Walter Street
 - Horsley Drive/Cowpasture Road
 - Victoria Street/Hassall Street
 - Hassall Street/Redfern Street
 - Victoria Street/ Cumberland Highway
 - Cumberland Highway/The Horsley Drive
 - Victoria Street/Wetherill Street roundabout
 - Wetherill Street/The Horsley Drive
 - Walder Street/Redfern Street
- 8.6 These matters are discussed in Chapters 3, 6 and 7.
 - Details of the current daily and peak hour vehicle, public transport, pedestrian and bicycle movements and existing traffic and transport facilities provided on the road network located adjacent to the proposed development.
- 8.7 Existing traffic flows are discussed in Chapter 6. Existing public transport services and pedestrian and cycle facilities are discussed in Chapter 3.
 - An assessment of the operation of existing and future transport networks including public transport, pedestrian and bicycle provisions and their ability to accommodate the forecast number of trips to and from the development.

8.8 These matters are discussed in Chapter 3.

- Details the type of heavy vehicles likely to be used (e.g. B-doubles) during the operation of the development and the impacts of heavy vehicles on nearby intersections.
- 8.9 These details are discussed in paragraphs 2.2, 5.8, 8.3, 8.4, 8.20, 8.23 and chapter6 of the traffic report. Woolworths has provided the following estimate for the proportion of trucks which will use the facility:
 - o some 78 per cent of deliveries to stores by semi-trailers;
 - o some 22 per cent of deliveries to stores by rigid trucks;
 - o some 56 per cent of deliveries to the warehouse by b-doubles;
 - o some 42 per cent of deliveries to the warehouse by semi-trailers; and
 - o some two per cent of deliveries to the warehouse by rigid trucks.
- 8.10 For the intersections in the immediate vicinity of the site, all trucks have been assessed in the SIDRA modelling as large trucks. Beyond this, including on Victoria Street, Cumberland Highway and Cowpasture Road, the number of trucks would not noticeably affect the proportion of heavy vehicles using the arterial road network.
 - Details of access to, from and within the site to/from the local road and strategic (motorway) network including intersection location, design and sight distance (i.e. turning lanes, swept paths, sight distance requirements).
- 8.11 No changes to existing intersections in the vicinity of the site are proposed. The proposed access points provide good sight lines in both directions along Redfern Street and Victoria Street, as discussed in Chapter 5. The proposed driveways are also designed to accommodate the swept paths of the vehicles which will use

them, in accordance with Australian Standards. Swept paths are shown in Appendix B.

- Impact of the proposed development on existing and future public transport and walking and cycling infrastructure within and surrounding the site.
- 8.12 These matters are discussed in Chapter 3. Footpaths on the site frontages on Victoria and Redfern Streets will be provided in association with the development. Bicycle parking, showers and lockers are proposed on the site.
 - An assessment of the existing and future performance of key intersections providing access to the site and any upgrades (roads/ intersections) required as a result of the development.
- 8.13 This matter is discussed in Chapter 6.
 - An assessment of predicted impacts on road safety and the capacity of the road network to accommodate the development.
- 8.14 Development traffic would not create unusual safety issues. Appropriate access arrangements are proposed. Surrounding intersections have adequate capacity, as discussed in Chapter 6. Appropriate truck routes are available.
 - Demonstrate the measures to be implemented to encourage employees of the development to make sustainable travel choices, including walking, cycling, public transport and car sharing to include a Green Travel Plan prepared in consultation with TfNSW.
 - Appropriate provision, design and location of on-site bicycle parking, and how bicycle provision will be integrated with the existing bicycle network.

8.15 These matters are discussed in Chapter 3.

- Details of the proposed number of car parking spaces and compliance with appropriate parking codes and justify the level of car parking provided on the site.
- 8.16 These matters are discussed in Chapter 4.
 - Details of access and parking arrangements for emergency vehicles.
- 8.17 Emergency vehicles will be able to use any of the access points on Redfern Street.These vehicles will be able to access any of the areas utilised by trucks.
 - Detailed plans of the proposed layout of the internal road network and parking provision on-site in accordance with the relevant Australian Standards.
- 8.18 These matters are discussed in Chapter 5.
 - The existing and proposed pedestrian and bicycle routes and end of trip facilities within the vicinity of and surrounding the site and to public transport facilities as well as measures to maintain road and personal safety in line with CPTED principles.
- 8.19 Public transport, and facilities for pedestrians and cyclists, are discussed in Chapter3. CPTED principles are being addressed by other study team members.
 - Preparation of a draft Construction Traffic Management Plan which includes:
 - details of vehicle routes, number of trucks, hours of operation, access management and traffic control measures for all stages of construction;
 - o assessment of cumulative impacts associated with other construction activities;
 - o an assessment of road safety at key intersections;

- o details of anticipated peak hour and daily truck movements to and from the site;
- details of access arrangements for workers to/from the site, emergency vehicles and service vehicle movements;
- o details of temporary cycling and pedestrian access during constructions;
- an assessment of traffic and transport impacts during construction and how these impacts will be mitigated for any associated traffic, pedestrians, cyclists and public transport operations.
- 8.20 These matters are discussed in Chapter 7.

Fairfield Council Letter of 16 March

Road Hierarchy – As Victoria Street between Elizabeth Street and Cumberland Highway is a State road that carries much higher traffic volume than Redfern Street (local road). The applicant shall consider the option to allow ingress and egress for rigid vehicles via Victoria Street and staff access via Redfern Street. Vehicle access for a development proposed off a State road requires approval from Transport for NSW.

8.21 For operational and safety reasons, separate car and truck access to the development is proposed. Employee access is proposed from Victoria Street and truck access from Redfern Street. The number of cars generated by the development will be higher than the number of trucks. All roads in the vicinity of the site are designed and intended to serve the industrial precinct, including catering for b-doubles.

Traffic – Detailed traffic modelling assessment shall be undertaken to analyse the impacts of traffic generation on the adjoining road network (Victoria Street and Redfern Street). The outcome of the modelling results shall be provided to Council for assessment.

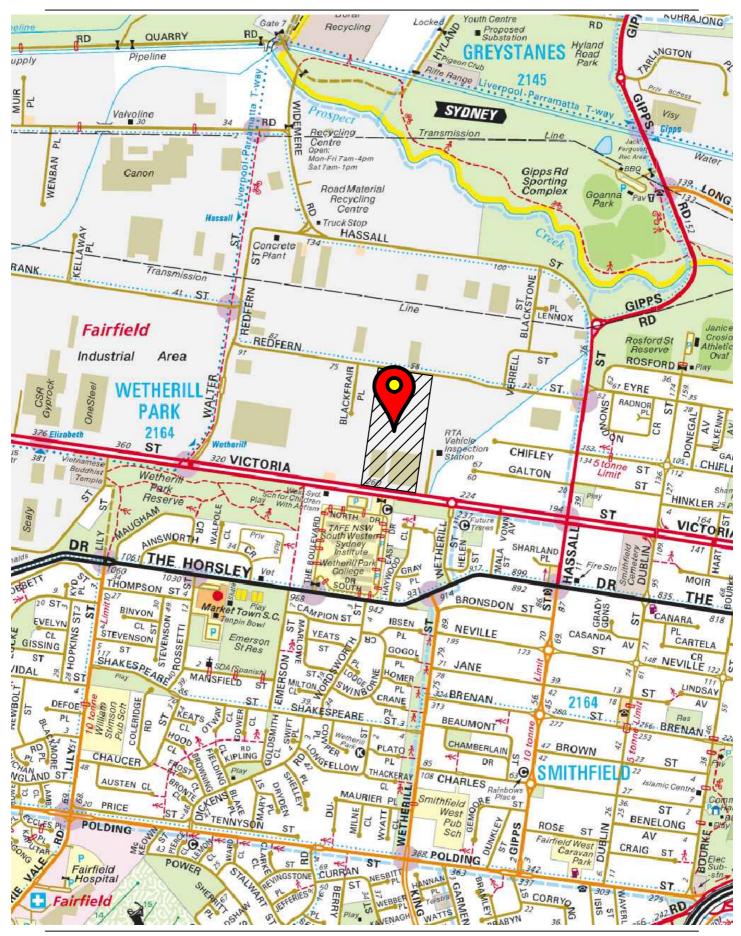
8.22 This matter is discussed in Chapter 6. SIDRA movement summaries are provided in Appendix C. Electronic copies of the SIDRA files have also been provided.

Parking – Parking provision within the site shall comply with Chapter 12 of Fairfield City Wide Development Control Plan

8.23 This matter is discussed in Chapter 4.

Truck Fleet – The applicant has advised Council that the truck fleet will predominantly comprise:

- **B-Doubles**;
- I 6m Trailers;
- I I m Trailers; and
- I I m Rigid vehicles.

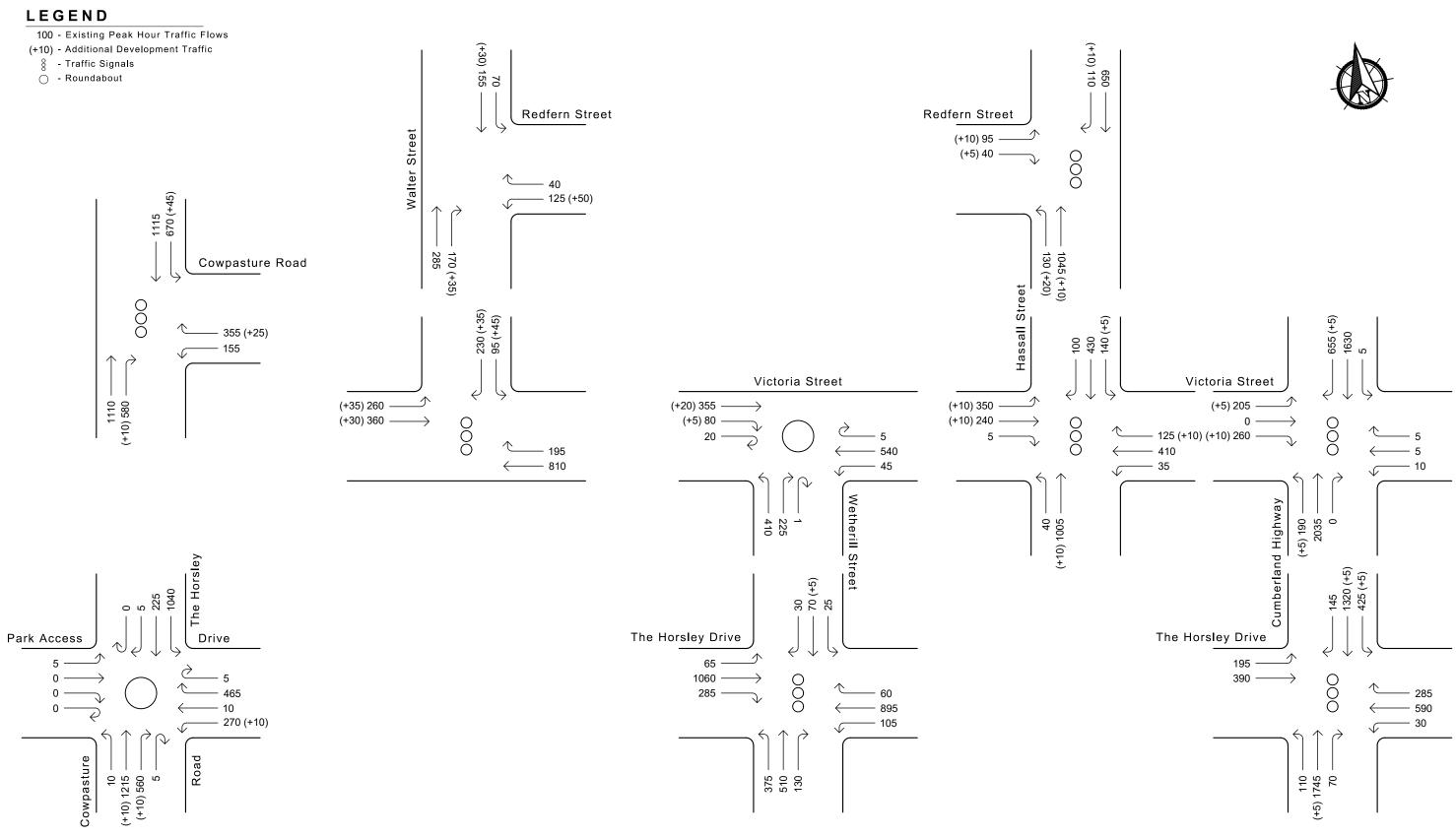

Clarification is required regarding the type of the vehicles that will be used for the development as it is different to the standard vehicle combinations such as 19m long articulated vehicles and 12.5m long heavy rigid vehicle.

Access Design – The largest vehicle servicing the site needs to be specified. The width of the driveway shall be designed to accommodate the simultaneous movements of the largest vehicle and another vehicle whichever case is the worst case scenario.

8.24 These matters are discussed in Chapter 2. Deliveries to and from the facility will be made by semi-trailers up to 20 metres long and b-doubles up to 26 metres long. Swept paths are shown in Appendix B.

9 SUMMARY

- 9.1 In summary, the main points relating to the traffic implications of the proposed development are as follows:
 - the proposed development will be a Woolworths warehouse and distribution centre;
 - ii) the site is accessible by public transport services;
 - iii) improvements are proposed to the pedestrian network in the vicinity of the site;
 - iv) bicycle parking, showers and change facilities will be provided for cyclists and employees;
 - v) the proposed parking provision is appropriate;
 - vi) access, servicing and internal layout will be provided in accordance with Australian Standards AS 2890.1:2004 and AS 2890.2:2018;
 - vii) the surrounding road network and intersections will be able to cater for the development traffic; and
 - viii) Table 1.1 in Chapter 1 sets down the SEARs and identifies the relevant sections of the report where they are addressed.

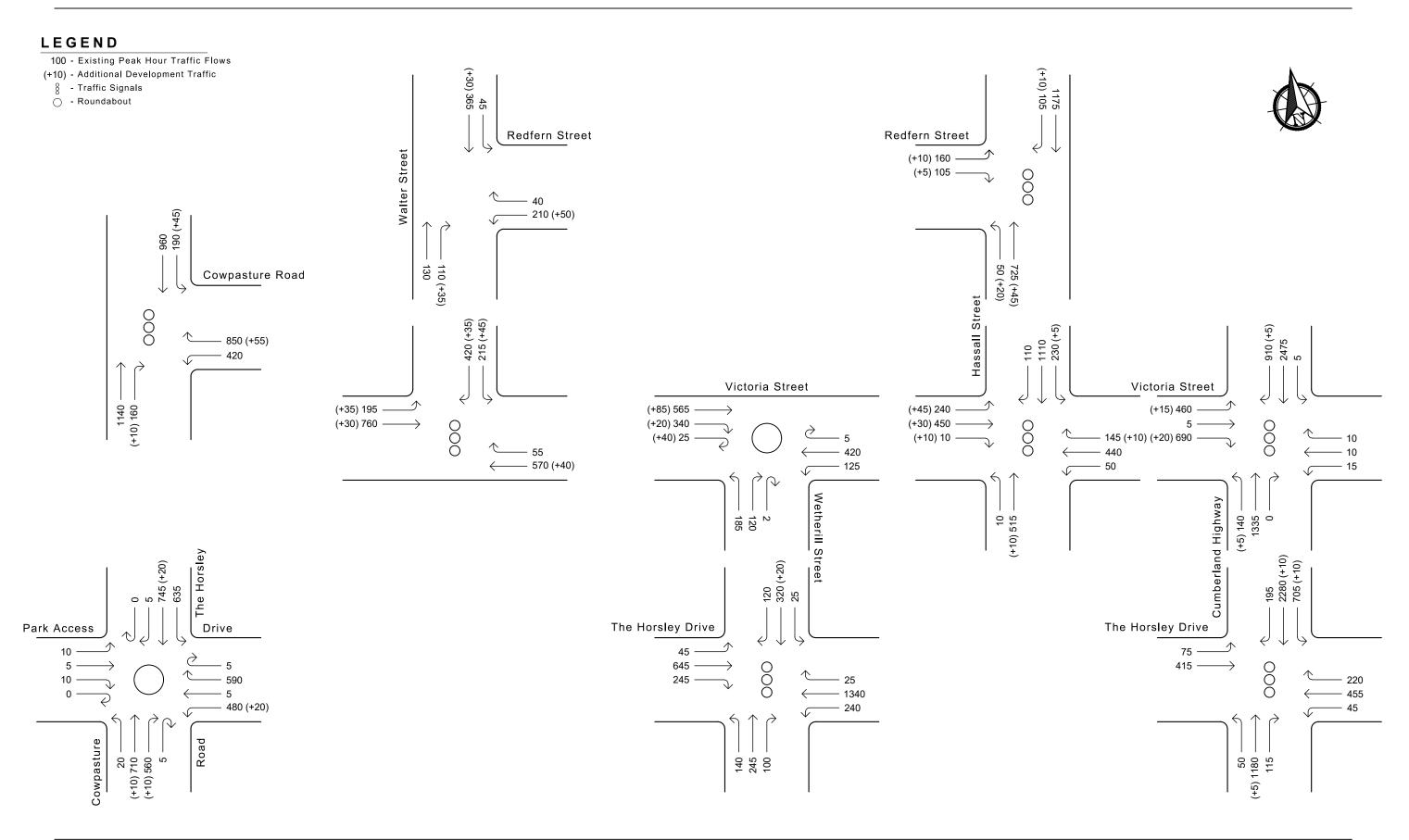


Click: https://goo.gl/maps/xxxxxxxx

Location Plan

Colston Budd Rogers & Kafes Pty Ltd Drawn By: CBRK Pty Ltd_hs Ref: 11725 21.04.2021

Figure 1



Colston Budd Rogers & Kafes Pty Ltd Drawn By: CBRK Pty Ltd_hs Ref: 11725 21.04.2021

Existing weekday morning peak hour traffic flows plus development traffic

Figure 2

Colston Budd Rogers & Kafes Pty Ltd Drawn By: CBRK Pty Ltd_hs Ref: 11725 21.04.2021

Figure 3

Existing weekday afternoon peak hour traffic flows plus development traffic

11725 - Wetherill Park Distribution

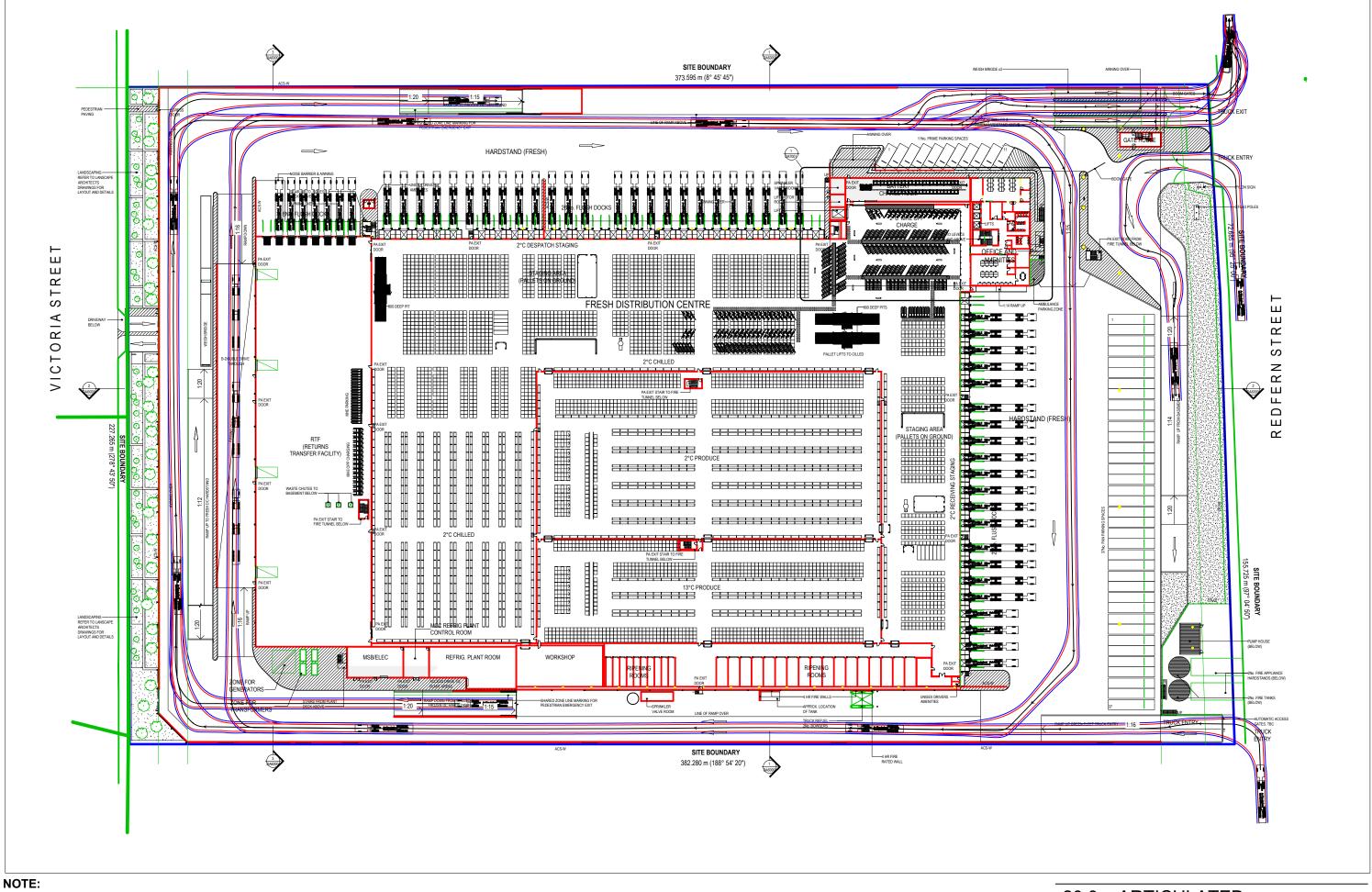
APPENDIX A

=

APPENDIX A

CYCLE ROUTES

FAIRFIELD CITY CYCLEWAYS - 2019

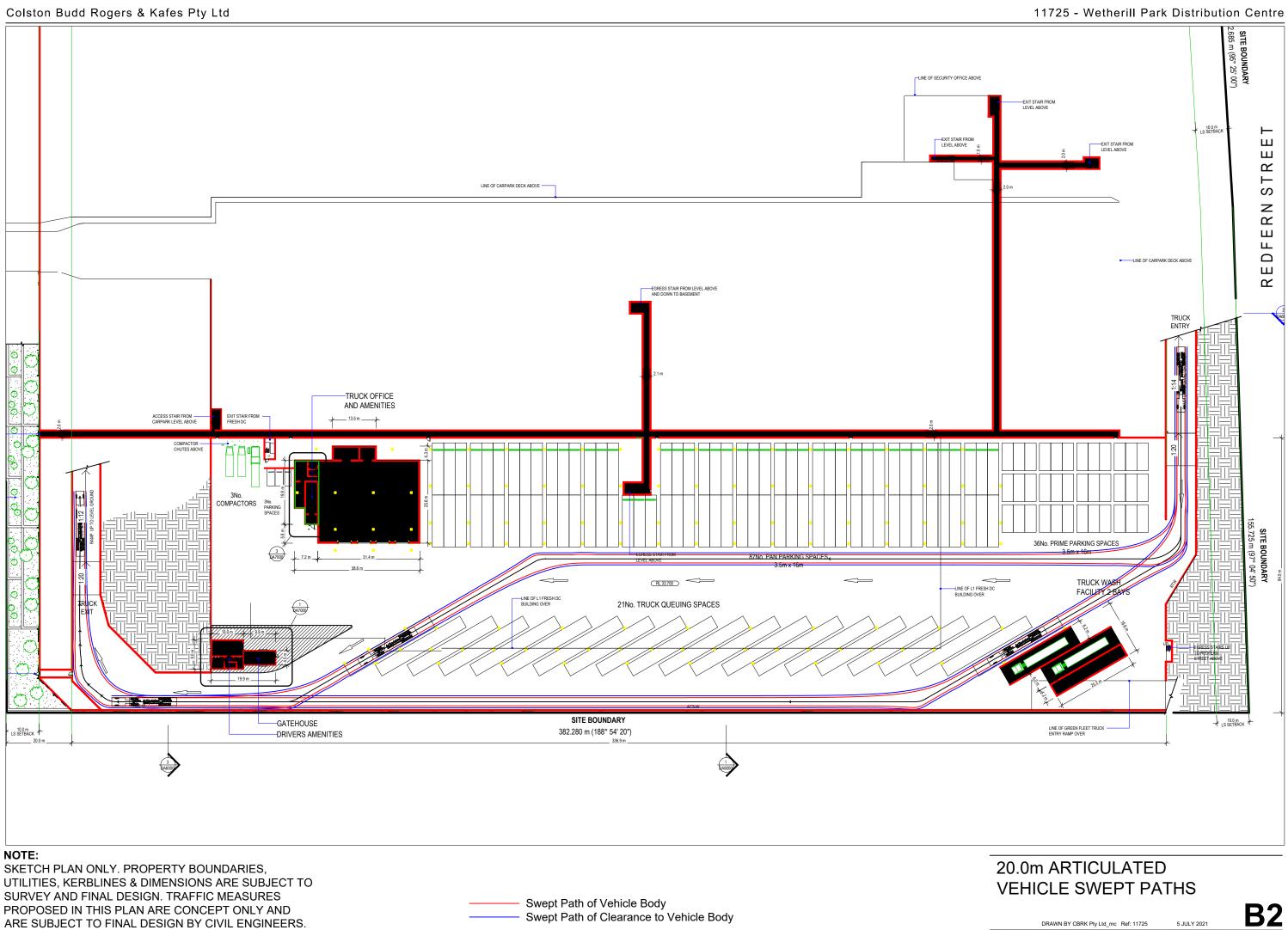

STELLE STORES
Carwarra Place Park Playground. Artist: Joe Hurst.
CYCLE NETWORK
EXISTING LOCAL CYCLEWAY ROUTE
BICYCLE STORAGE FACILITIES
TRANSITWAY
TRANSIT WAY STATIONS
OPEN SPACE
SCHOOLS
EMPLOYMENT PRECINCTS
POLICE POLICE
+ HOSPITAL
LEISURE CENTRE LEISURE CENTRE
SKATE SKATE PARKS
CLUB HOUSE WESTERN SYDNEY CYCLING NET WORK
MUSEUMS
PUBLIC ARTWORKS
C - D WARALI WALI (FAIRFIELD)
2A - 2D CYCLEWAY MARKERS
3A SEATING WALL 3B FISH HABITAT PROJECT
3C FISH AND DRAGONS PROJECT
A LANSVALE PARK - ROAD SAFETY & ACTIVITY CIRCUIT
FairfieldCity Celebrating diversity

Update: March 2019

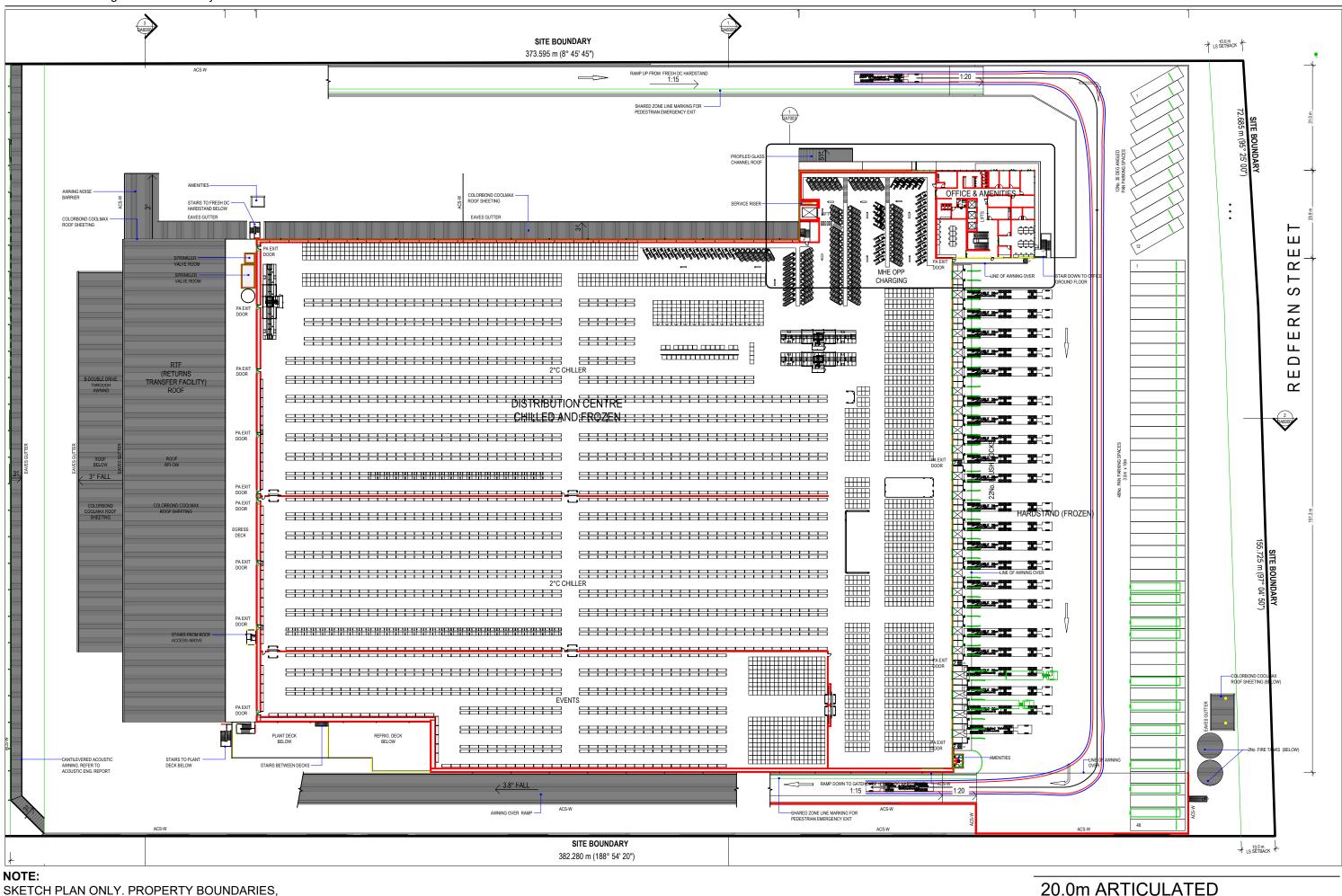
APPENDIX B

APPENDIX B

VEHICLE SWEPT PATHS



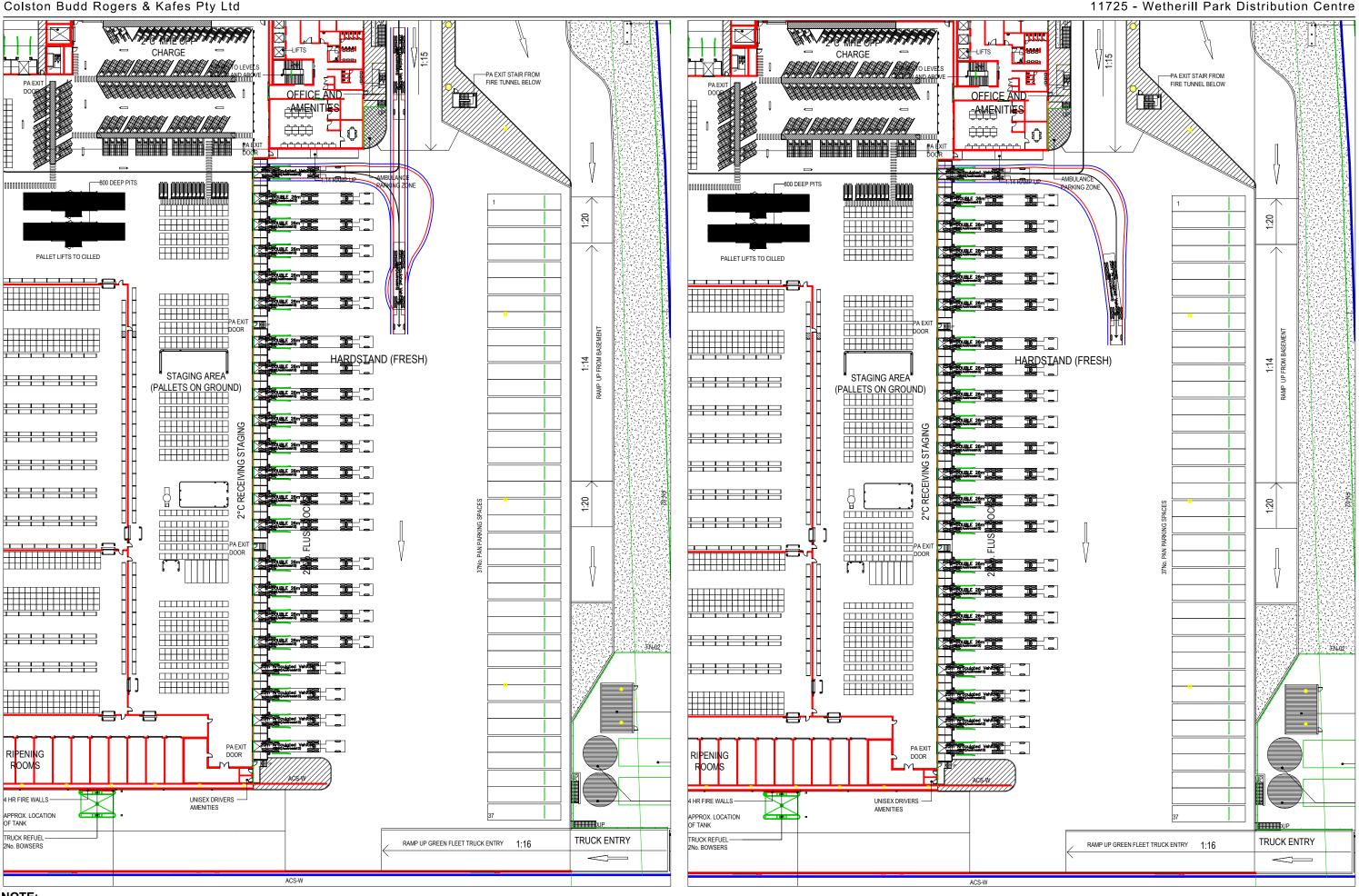
SKETCH PLAN ONLY. PROPERTY BOUNDARIES, UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.


Swept Path of Vehicle Body Swept Path of Clearance to Vehicle Body

20.0m ARTICULATED **VEHICLE SWEPT PATHS**

Colston Budd Rogers & Kafes Pty Ltd

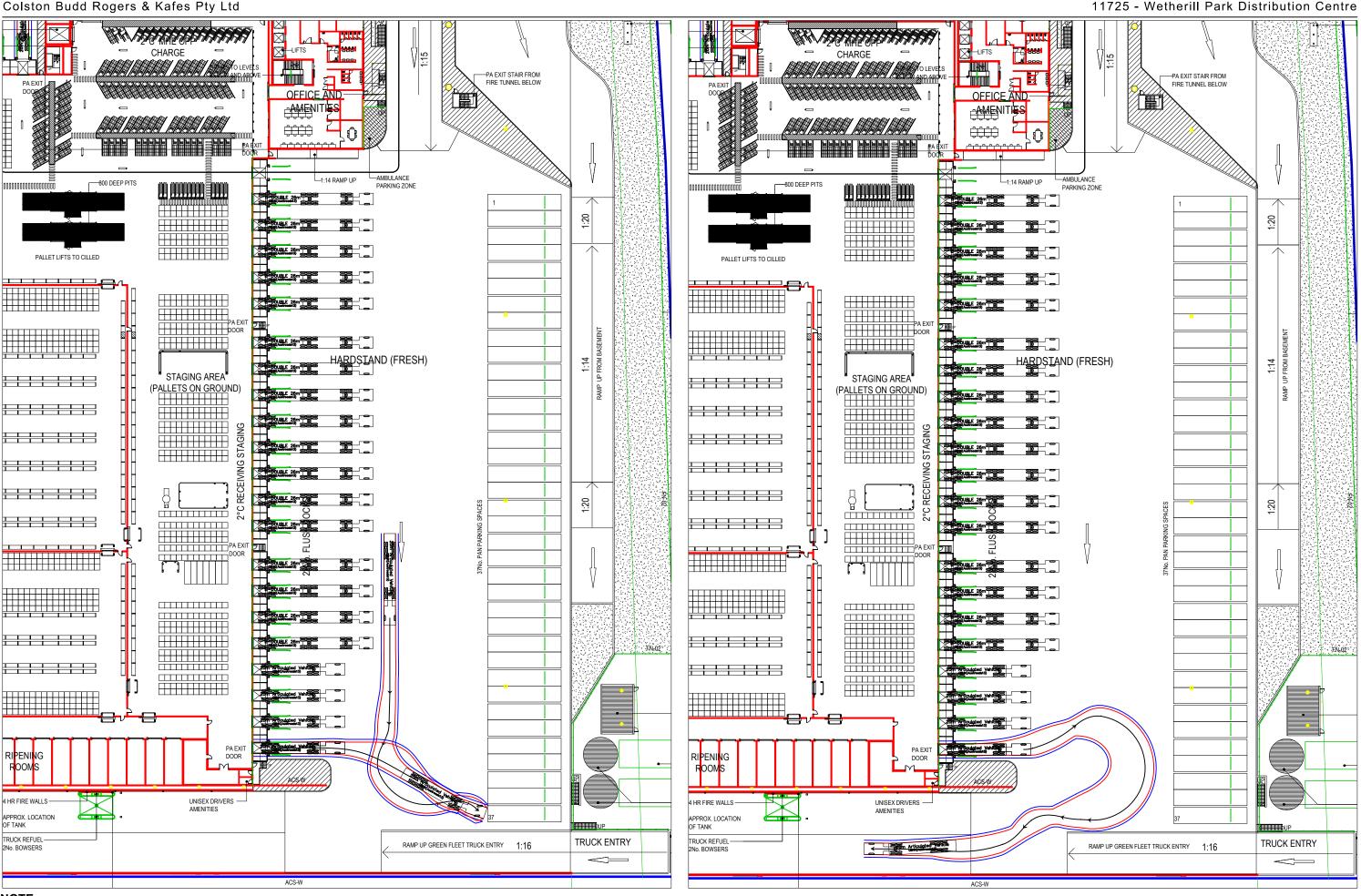
SKETCH PLAN ONLY. PROPERTY BOUNDARIES, UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.


Swept Path of Vehicle Body
 Swept Path of Clearance to Vehicle Body

20.0m ARTICULATED VEHICLE SWEPT PATHS

Colston Budd Rogers & Kafes Pty Ltd

NOTE:


SKETCH PLAN ONLY. PROPERTY BOUNDARIES UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.

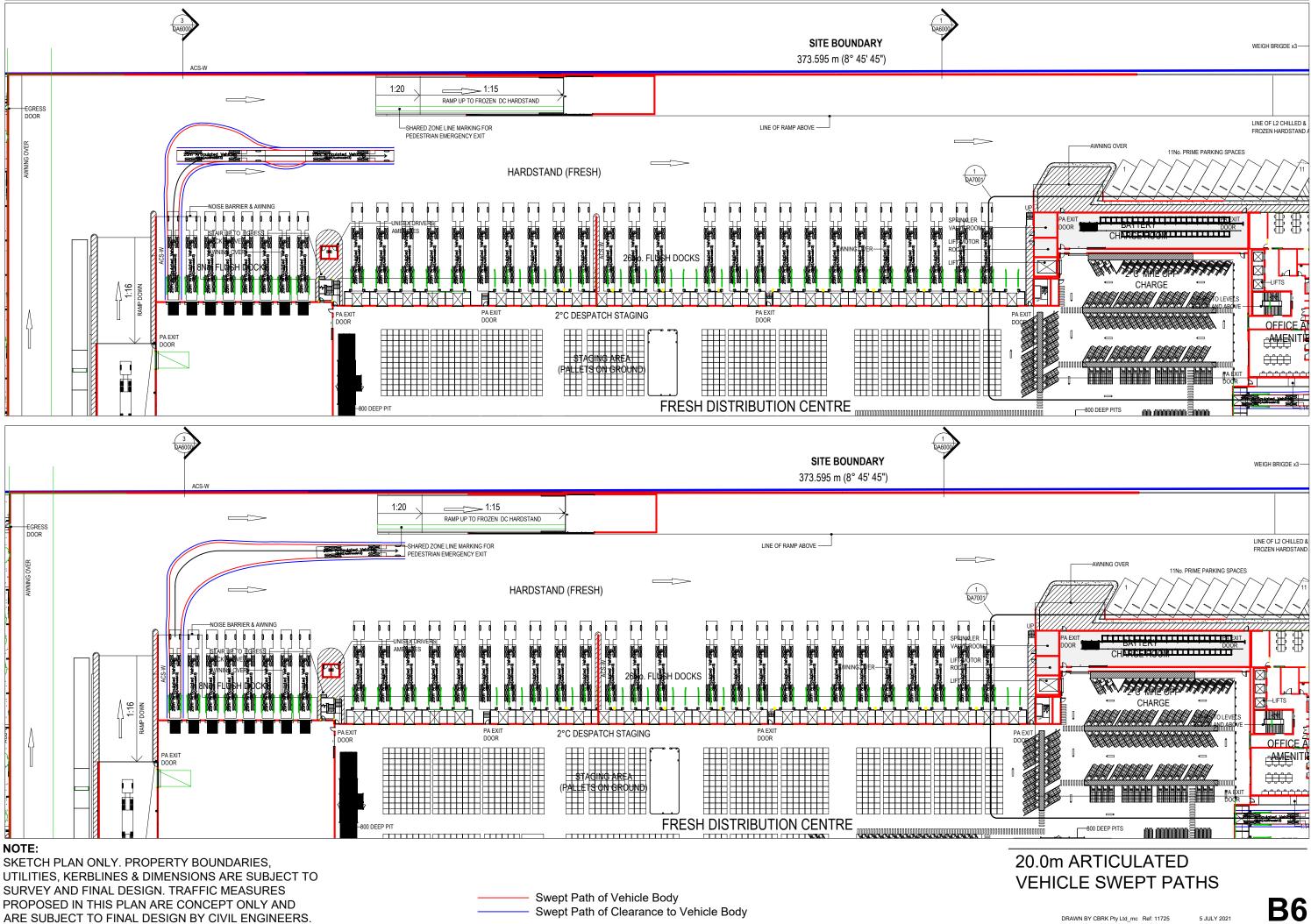
Swept Path of Vehicle Body Swept Path of Clearance to Vehicle Body

20.0m ARTICULATED VEHICLE SWEPT PATHS

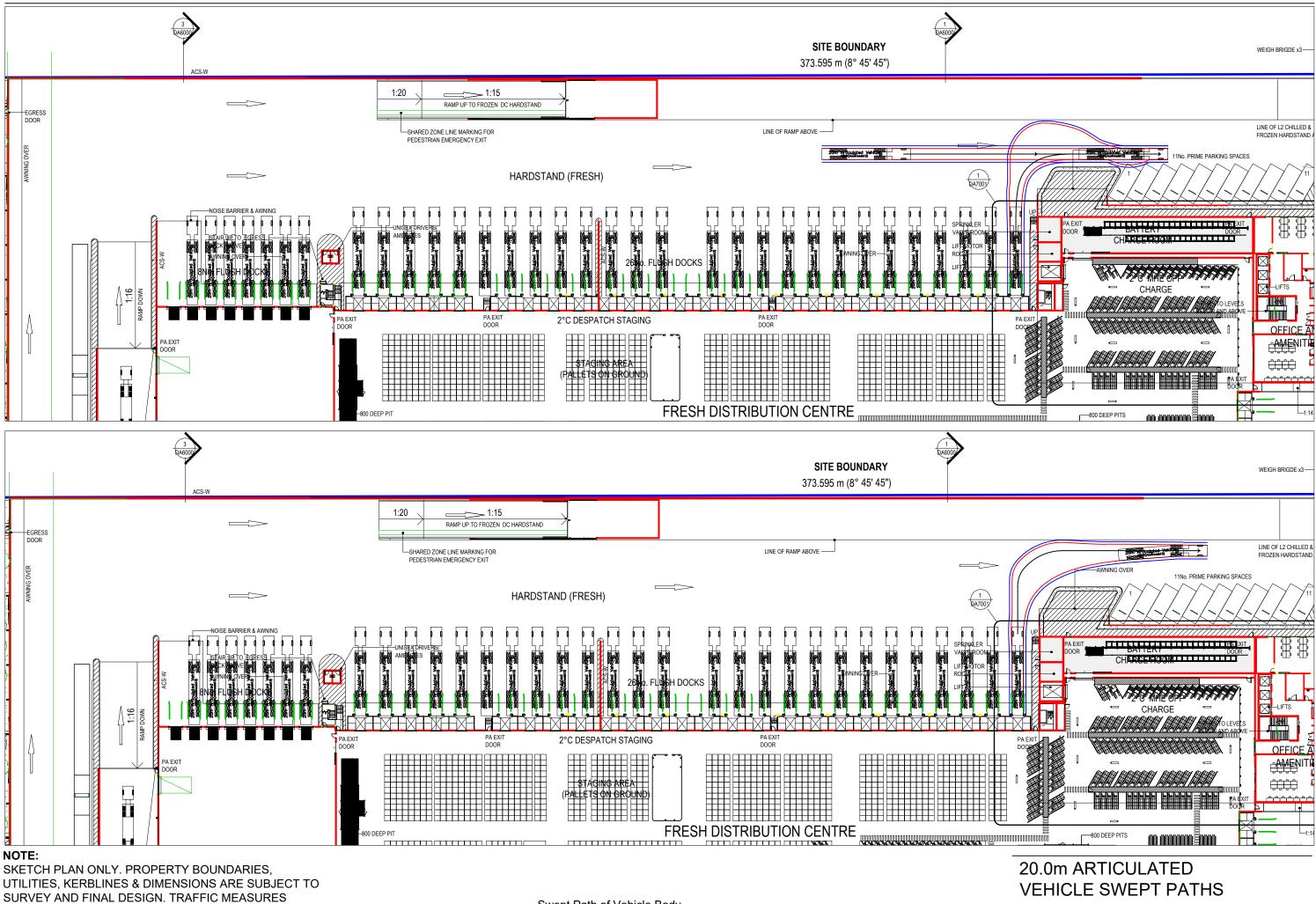
Colston Budd Rogers & Kafes Pty Ltd

NOTE:

SKETCH PLAN ONLY. PROPERTY BOUNDARIES UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.


Swept Path of Vehicle Body Swept Path of Clearance to Vehicle Body

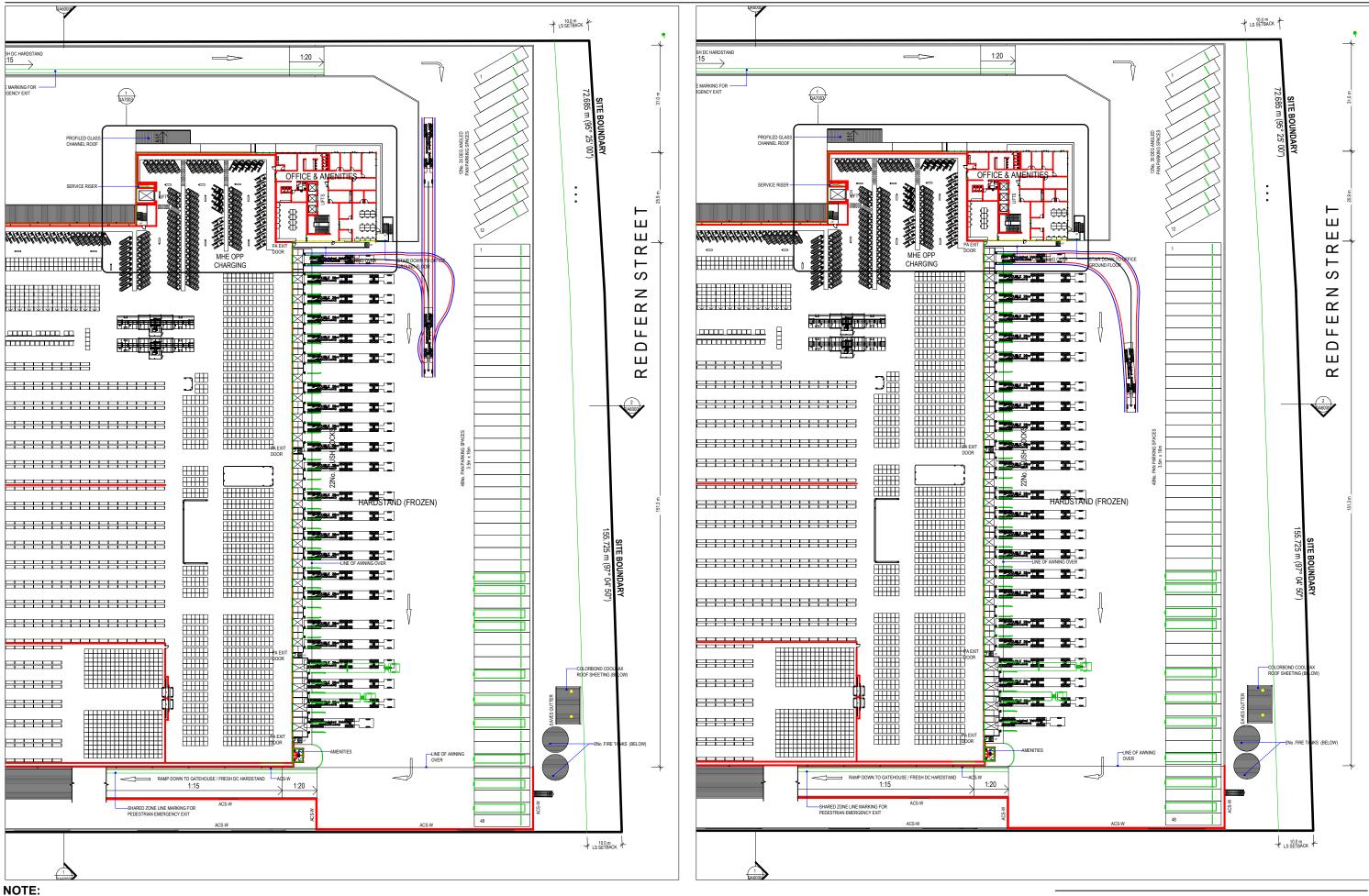
20.0m ARTICULATED VEHICLE SWEPT PATHS



DRAWN BY CBRK Ptv Ltd mc Ref: 11725

5 JULY 2021

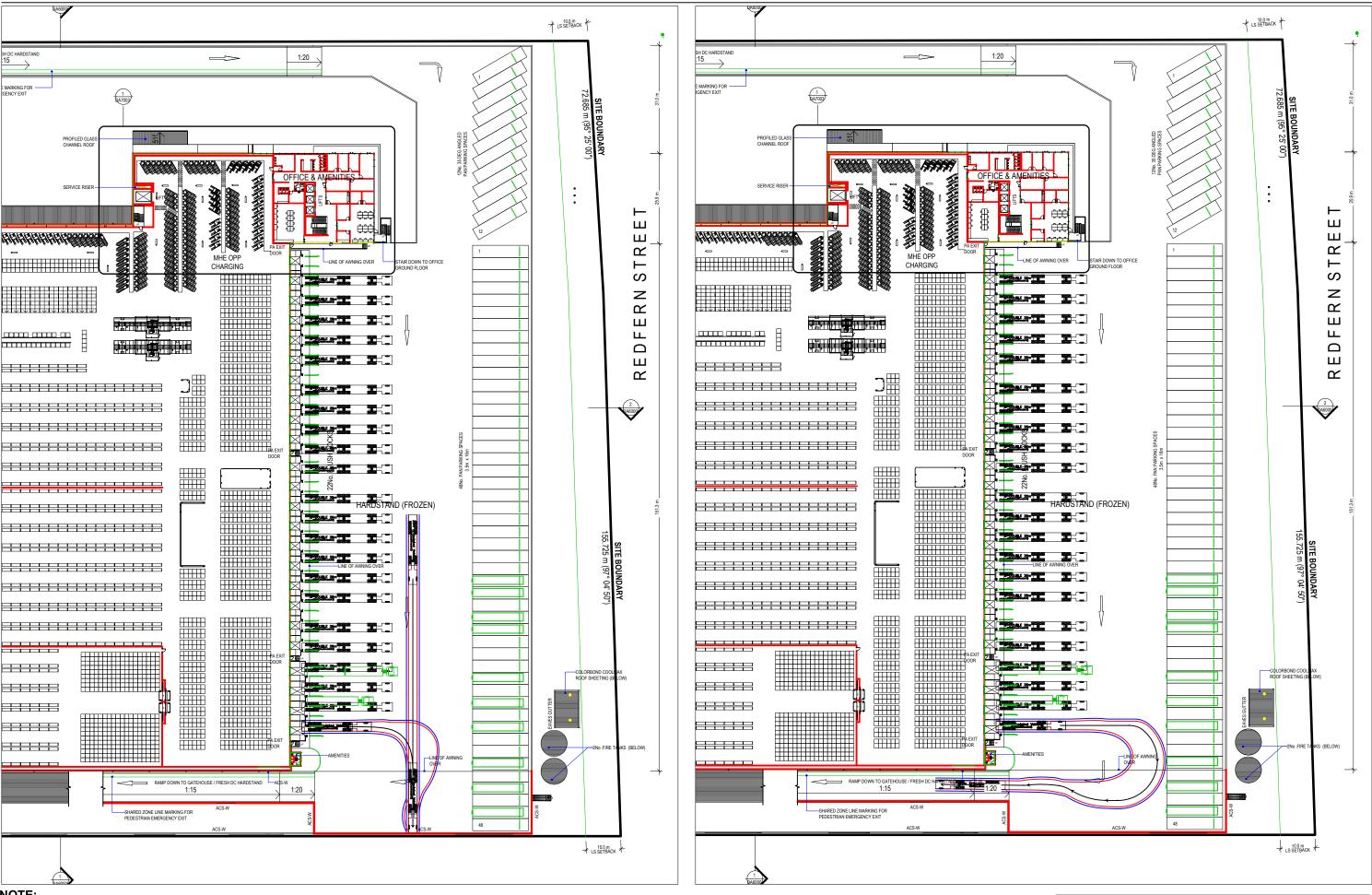
SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND



UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.

Swept Path of Vehicle Body
 Swept Path of Clearance to Vehicle Body

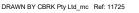
DRAWN BY CBRK Pty Ltd_mc Ref: 11725



NOTE: SKETCH PLAN ONLY. PROPERTY BOUNDARIES, UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.

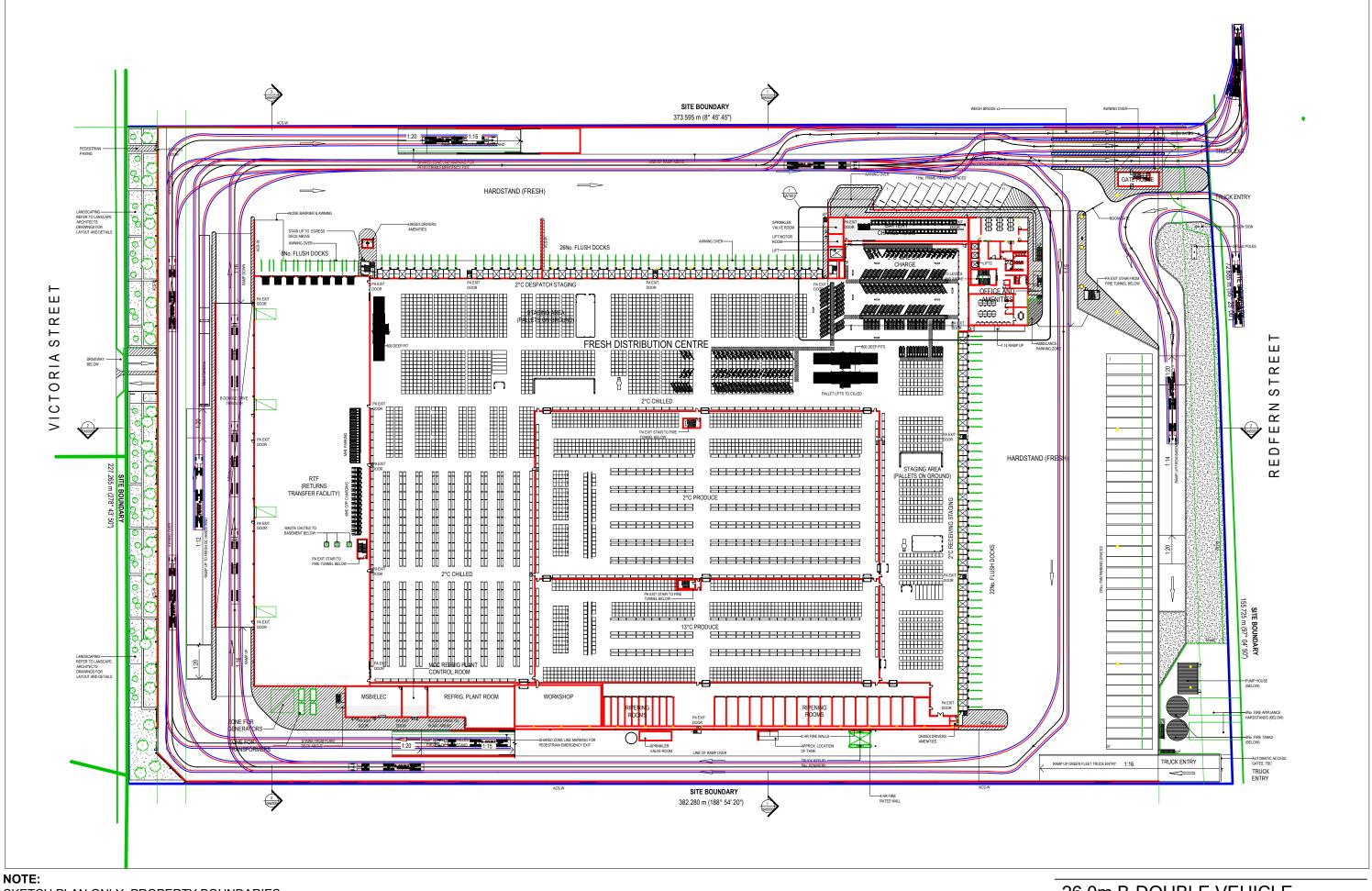
Swept Path of Vehicle Body
 Swept Path of Clearance to Vehicle Body

20.0m ARTICULATED VEHICLE SWEPT PATHS



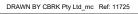
NOTE:

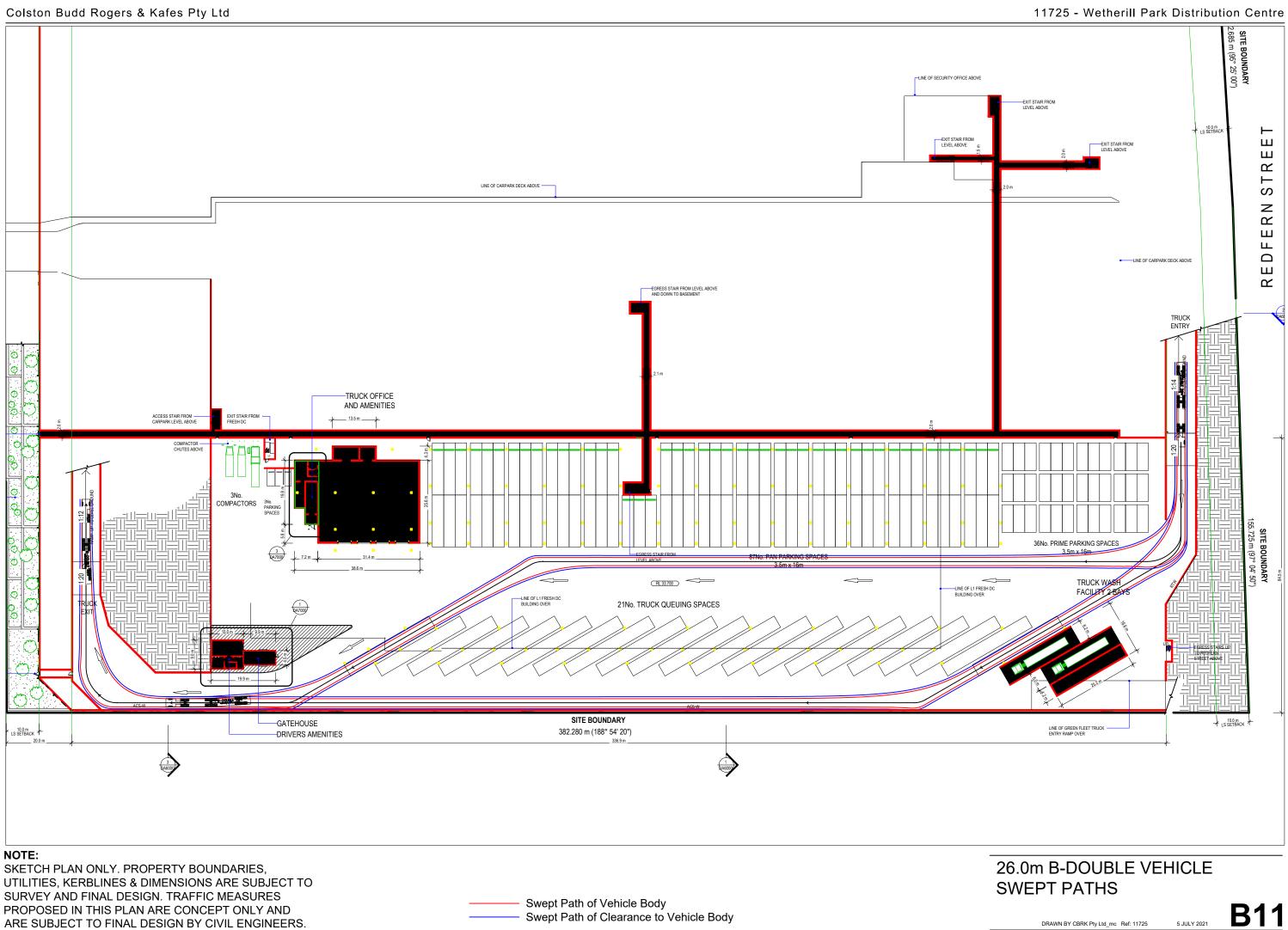
SKETCH PLAN ONLY. PROPERTY BOUNDARIES UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.


Swept Path of Vehicle Body Swept Path of Clearance to Vehicle Body

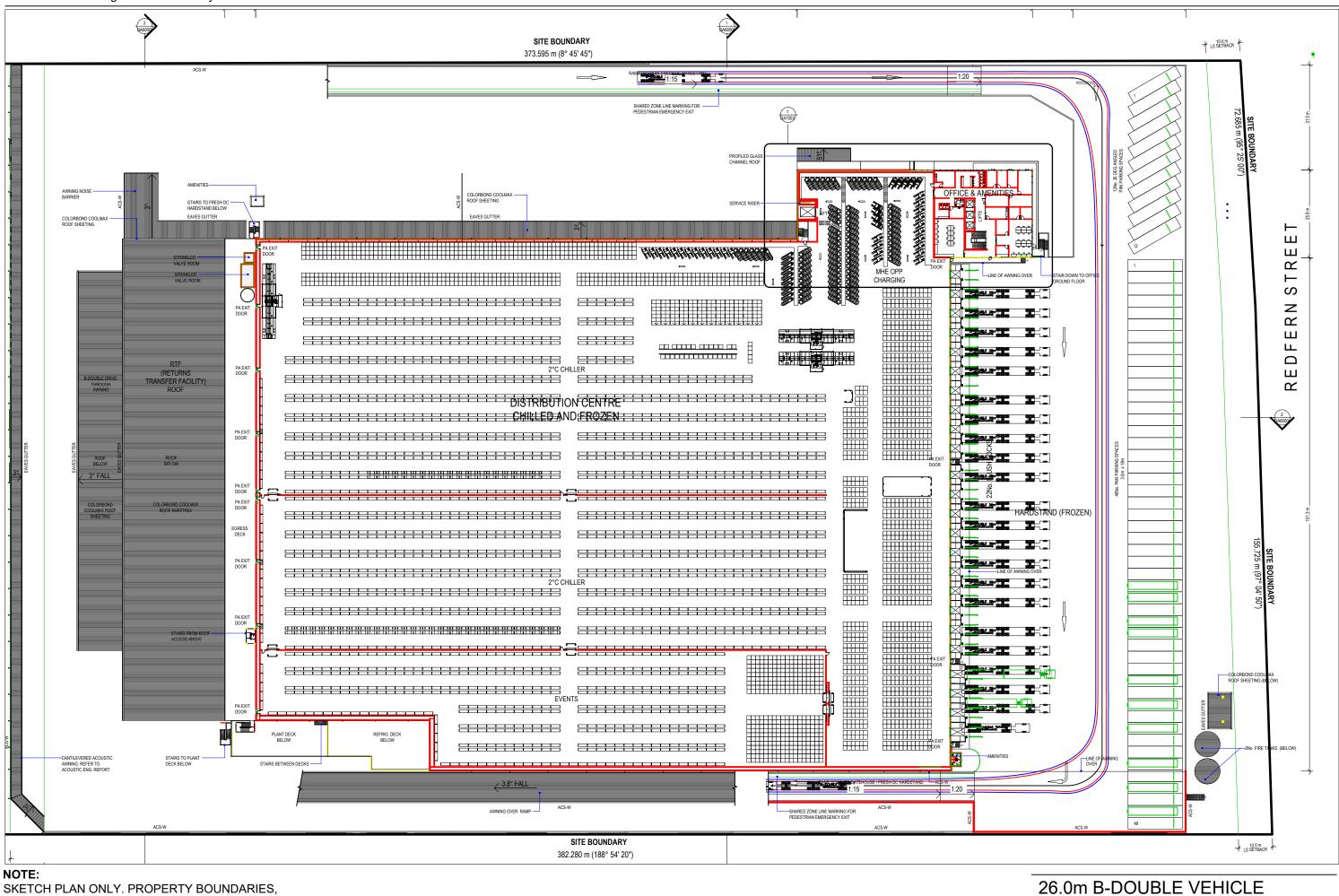
20.0m ARTICULATED **VEHICLE SWEPT PATHS**

5 JULY 2021




SKETCH PLAN ONLY. PROPERTY BOUNDARIES, UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.

Swept Path of Vehicle Body
 Swept Path of Clearance to Vehicle Body

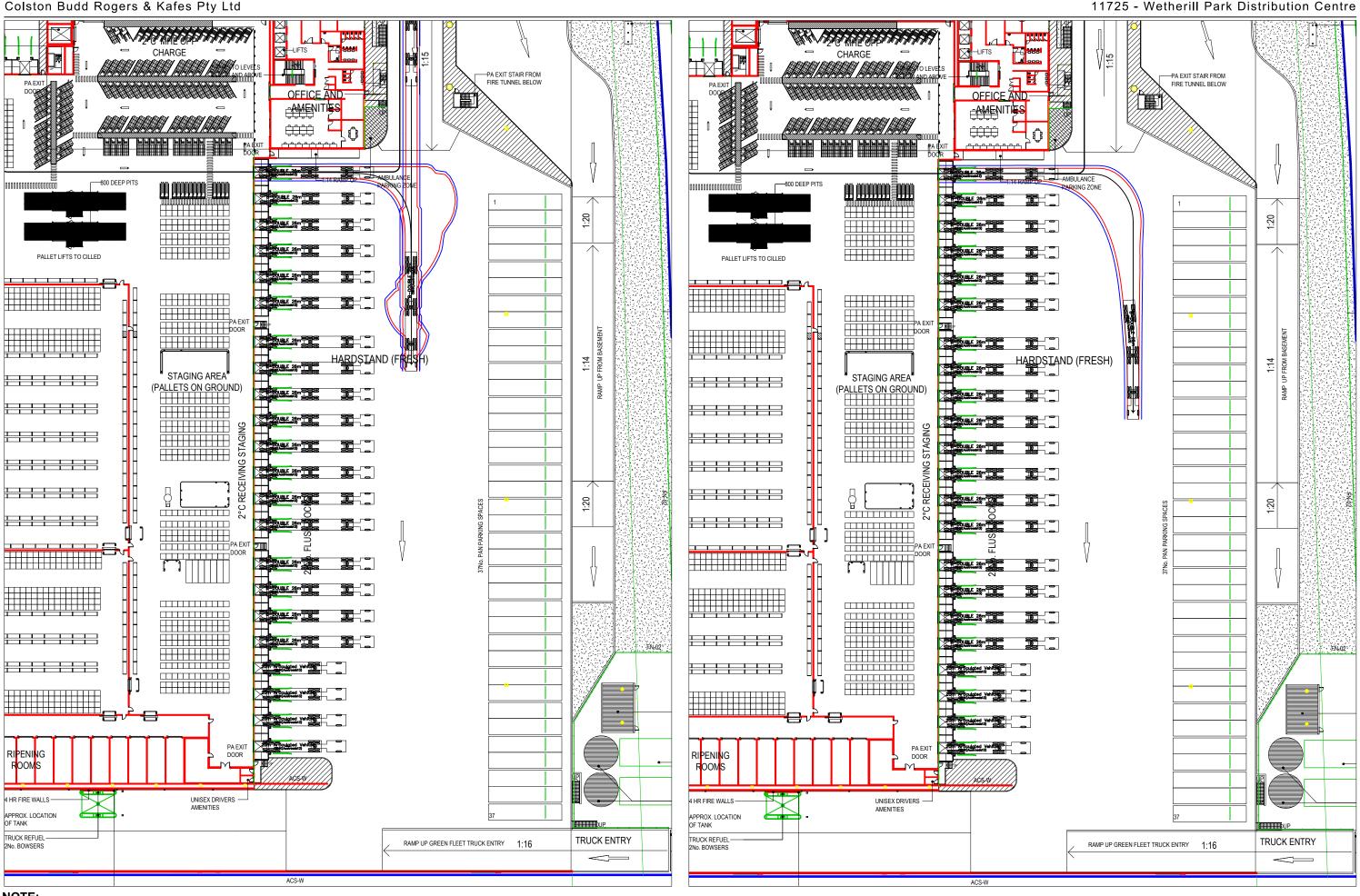

26.0m B-DOUBLE VEHICLE SWEPT PATHS

Colston Budd Rogers & Kafes Pty Ltd

SKETCH PLAN ONLY. PROPERTY BOUNDARIES, UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.

Swept Path of Vehicle Body

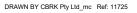
Swept Path of Clearance to Vehicle Body


26.0m B-DOUBLE VEHICLE SWEPT PATHS

5.IULY 2021

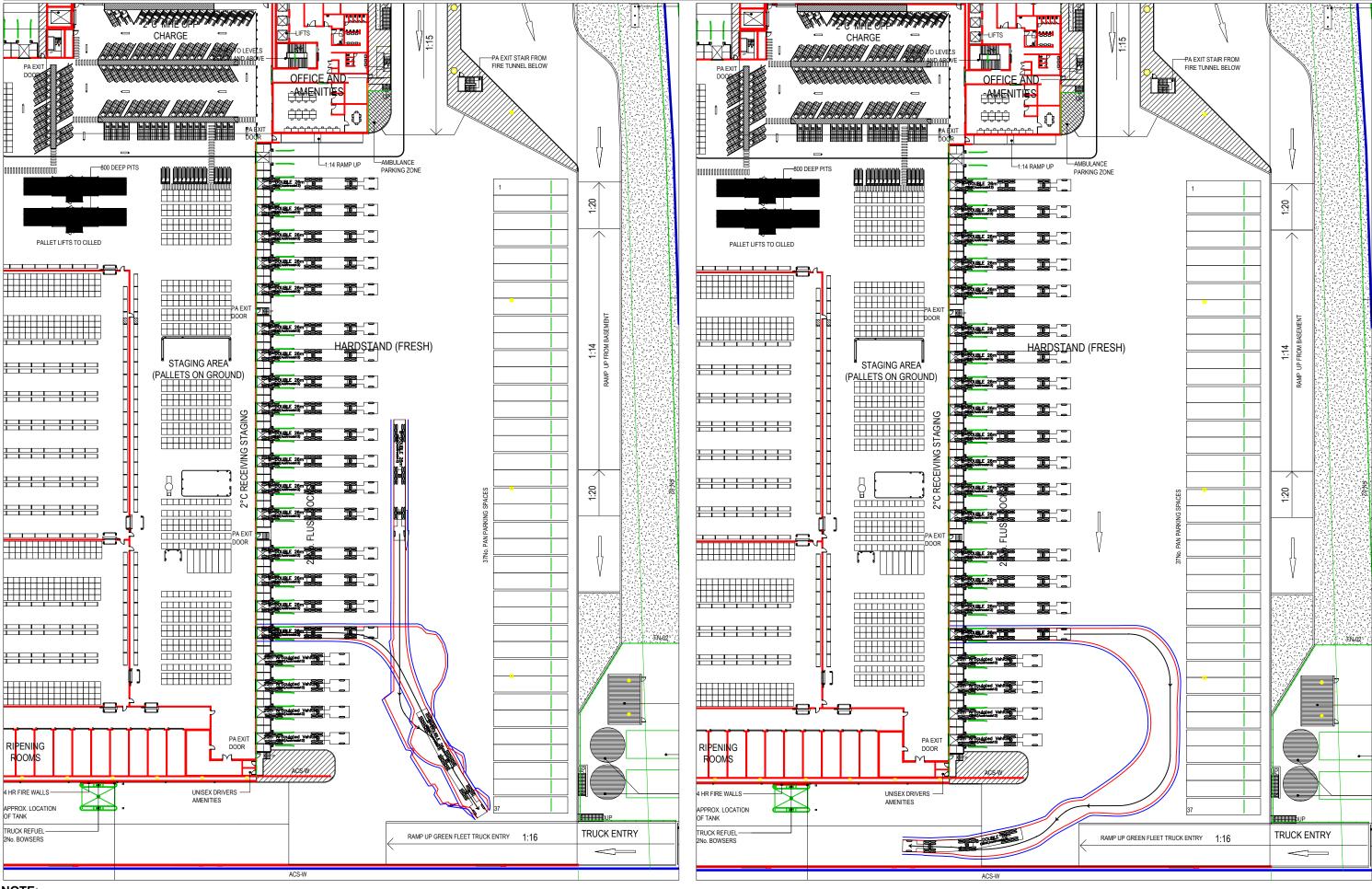
DRAWN BY CBRK Pty Ltd_mc Ref: 11725

Colston Budd Rogers & Kafes Pty Ltd



NOTE:

SKETCH PLAN ONLY. PROPERTY BOUNDARIES UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.


Swept Path of Vehicle Body Swept Path of Clearance to Vehicle Body

26.0m B-DOUBLE VEHICLE SWEPT PATHS

Colston Budd Rogers & Kafes Pty Ltd

NOTE:

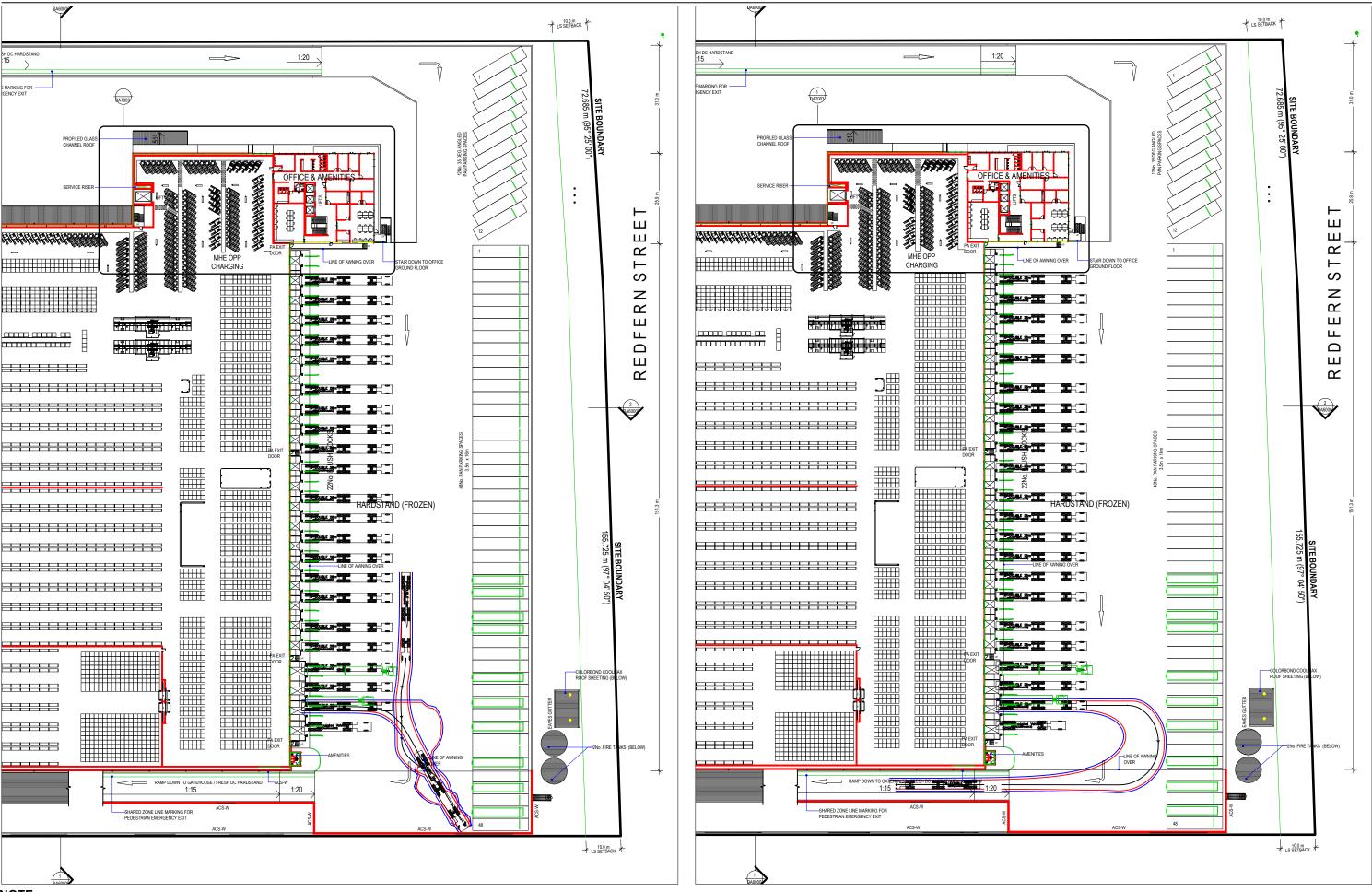

SKETCH PLAN ONLY. PROPERTY BOUNDARIES UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.

Swept Path of Vehicle Body Swept Path of Clearance to Vehicle Body

26.0m B-DOUBLE VEHICLE SWEPT PATHS DRAWN BY CBRK Ptv Ltd mc Ref: 11725 5 JULY 2021

11725 - Wetherill Park Distribution Centre

NOTE: SKETCH PLAN ONLY. PROPERTY BOUNDARIES UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.


Swept Path of Vehicle Body Swept Path of Clearance to Vehicle Body

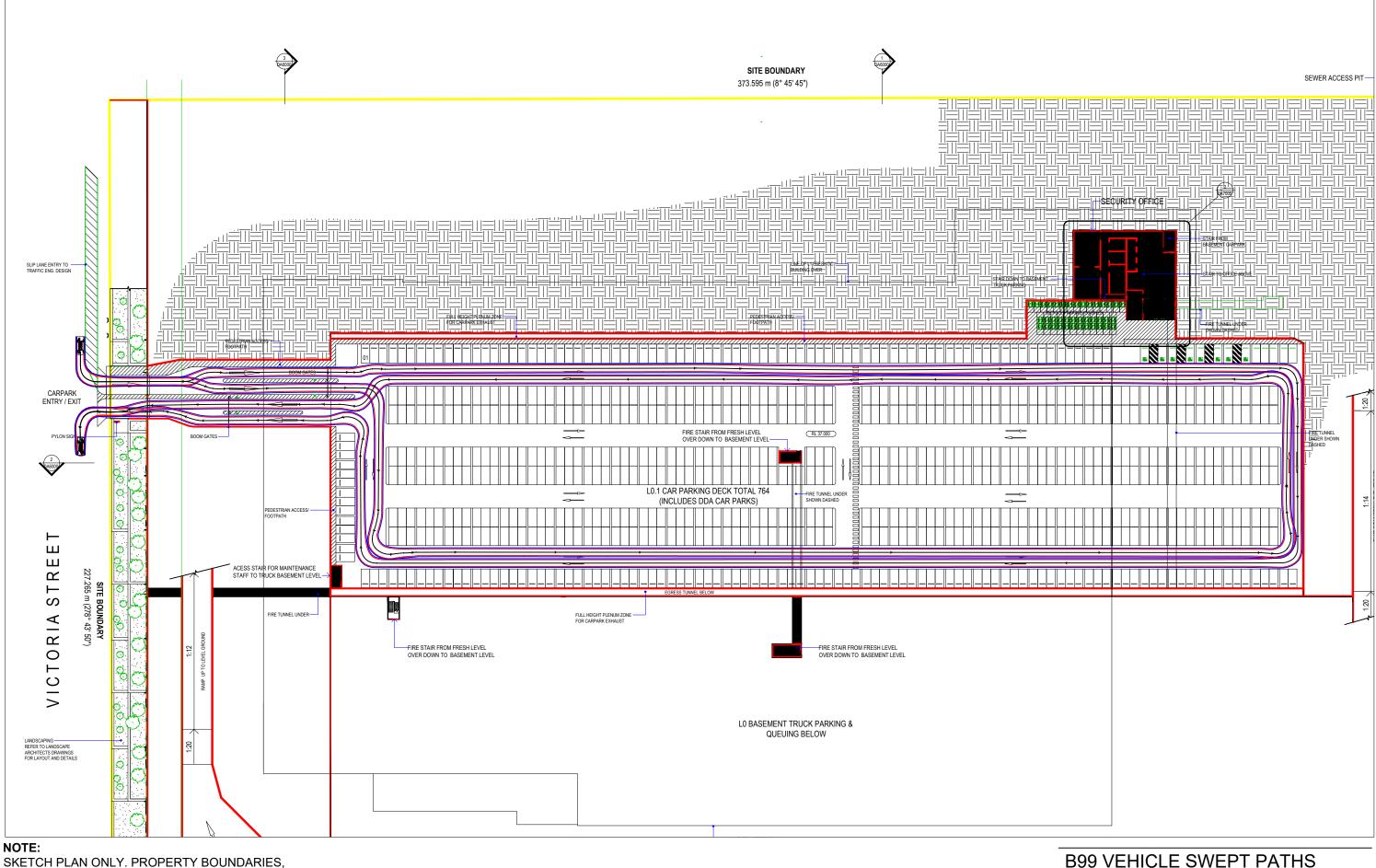
26.0m B-DOUBLE VEHICLE SWEPT PATHS

5 JULY 2021

DRAWN BY CBRK Ptv Ltd mc Ref: 11725

NOTE:

SKETCH PLAN ONLY. PROPERTY BOUNDARIES UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.


Swept Path of Vehicle Body Swept Path of Clearance to Vehicle Body

26.0m B-DOUBLE VEHICLE SWEPT PATHS

DRAWN BY CBRK Ptv Ltd mc Ref: 11725

5 JULY 2021

UTILITIES, KERBLINES & DIMENSIONS ARE SUBJECT TO SURVEY AND FINAL DESIGN. TRAFFIC MEASURES PROPOSED IN THIS PLAN ARE CONCEPT ONLY AND ARE SUBJECT TO FINAL DESIGN BY CIVIL ENGINEERS.

Swept Path of Vehicle Body Swept Path of Clearance to Vehicle Body

APPENDIX C

APPENDIX C

SIDRA MOVEMENT SUMMARIES

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: 11725 Wetherill Park Distribution Centre Network

Template: Movement Summaries

V Site: 101 [AM EX - Walter Street - Redfern Street (Site Folder: AM Existing)]

■ Network: 1 [AM Existing (Network Folder: Existing)]

New Site Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance														
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Walte	r Street	,,,											
2	T1	300	3.0	300	3.0	0.290	0.7	LOS A	1.2	8.9	0.25	0.23	0.25	56.8
3	R2	179	6.0	179	6.0	0.290	6.7	LOS A	1.2	8.9	0.25	0.23	0.25	54.5
Appro	bach	479	4.1	479	4.1	0.290	2.9	NA	1.2	8.9	0.25	0.23	0.25	55.9
East:	Redfer	n Street												
4	L2	132	6.0	132	6.0	0.096	6.2	LOS A	0.4	2.9	0.27	0.56	0.27	49.4
6	R2	42	6.0	42	6.0	0.065	8.9	LOS A	0.2	1.6	0.51	0.76	0.51	50.4
Appro	bach	174	6.0	174	6.0	0.096	6.8	LOS A	0.4	2.9	0.33	0.61	0.33	49.8
North	: Walte	r Street												
7	L2	74	6.0	74	6.0	0.127	5.6	LOS A	0.0	0.0	0.00	0.18	0.00	56.5
8	T1	163	3.0	163	3.0	0.127	0.0	LOS A	0.0	0.0	0.00	0.18	0.00	56.8
Appro	bach	237	3.9	237	3.9	0.127	1.8	NA	0.0	0.0	0.00	0.18	0.00	56.7
All Ve	hicles	889	4.4	889	4.4	0.290	3.4	NA	1.2	8.9	0.20	0.29	0.20	55.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [AM EX - Victoria Road - Walter Street (Site Folder: AM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehicle Movement Performance														
Mov ID	Turn	DEM/ FLOV [Total veh/h		ARRI FLO ^V [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BA QUE [Veh. veh		Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East:	Victoria													
5	T1	853	3.0	853	3.0	0.378	11.5	LOS A	10.8	77.7	0.57	0.50	0.57	52.6
6	R2	205	3.0	205	3.0	* 0.368	27.9	LOS B	7.5	53.7	0.81	0.79	0.81	39.0
Appro	bach	1058	3.0	1058	3.0	0.378	14.7	LOS B	10.8	77.7	0.61	0.56	0.61	50.3
North	: Walte	r Street												
7	L2	100	3.0	100	3.0	0.138	14.3	LOS A	1.8	12.7	0.57	0.68	0.57	38.0
9	R2	242	3.0	242	3.0	* 0.555	42.0	LOS C	10.5	75.6	0.93	0.82	0.93	33.0
Appro	bach	342	3.0	342	3.0	0.555	33.9	LOS C	10.5	75.6	0.82	0.78	0.82	33.7
West	: Victori	a Road												
10	L2	274	3.0	274	3.0	0.545	35.4	LOS C	12.7	91.3	0.87	0.81	0.87	28.3
11	T1	379	3.0	379	3.0	* 0.545	30.2	LOS C	13.5	96.7	0.88	0.76	0.88	30.0
Appro	bach	653	3.0	653	3.0	0.545	32.4	LOS C	13.5	96.7	0.87	0.78	0.87	29.3
All Ve	hicles	2053	3.0	2053	3.0	0.555	23.5	LOS B	13.5	96.7	0.73	0.66	0.73	42.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

New Site Site Category: (None) Roundabout

Vehicle Movement Performance														
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service		ACK OF JEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Wetherill Street														
1	L2	432	3.0	432	3.0	0.368	5.4	LOS A	1.7	12.4	0.40	0.59	0.40	44.8
3	R2	237	3.0	237	3.0	0.254	11.3	LOS A	1.0	7.3	0.39	0.73	0.39	38.0
3u	U	1	3.0	1	3.0	0.254	13.7	LOS A	1.0	7.3	0.39	0.73	0.39	38.0
Appro	oach	669	3.0	669	3.0	0.368	7.5	LOS A	1.7	12.4	0.39	0.64	0.39	41.8
East:	Victoria	a Road												
4	L2	47	3.0	47	3.0	0.226	4.0	LOS A	1.0	7.5	0.20	0.38	0.20	50.0
5	T1	568	3.0	568	3.0	0.226	3.9	LOS A	1.0	7.5	0.21	0.38	0.21	49.9
6u	U	5	3.0	5	3.0	0.226	12.0	LOS A	1.0	7.3	0.21	0.39	0.21	49.8
Appro	oach	621	3.0	621	3.0	0.226	4.0	LOS A	1.0	7.5	0.21	0.38	0.21	49.9
West	: Victori	a Road												
11	T1	374	3.0	374	3.0	0.196	4.6	LOS A	1.1	8.2	0.38	0.47	0.38	53.4
12	R2	84	3.0	84	3.0	0.196	10.3	LOS A	1.1	8.0	0.38	0.56	0.38	52.1
12u	U	21	3.0	21	3.0	0.196	12.7	LOS A	1.1	8.0	0.38	0.56	0.38	52.1
Appro	oach	479	3.0	479	3.0	0.196	5.9	LOS A	1.1	8.2	0.38	0.49	0.38	53.1
All Ve	ehicles	1769	3.0	1769	3.0	0.368	5.9	LOS A	1.7	12.4	0.32	0.51	0.32	49.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [AM EX - Victoria Street - Hassall Street (Site Folder: AM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C, E Output Phase Sequence: A, B, C, E

Vehicle Movement Performance														
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO ^V [Total veh/h	NS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BA QUE [Veh. veh		Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Hass	all Street												
1	L2	42	3.0	42	3.0	* 0.708	32.0	LOS C	22.1	158.6	0.89	0.80	0.89	32.2
2	T1	1058	3.0	1058	3.0	0.708	26.4	LOS B	22.5	161.8	0.89	0.80	0.89	32.4
Appro	bach	1100	3.0	1100	3.0	0.708	26.6	LOS B	22.5	161.8	0.89	0.80	0.89	32.4
East:	Victoria	a Street												
4	L2	37	3.0	37	3.0	0.373	33.2	LOS C	8.7	62.5	0.81	0.70	0.81	40.1
5	T1	432	3.0	432	3.0	0.373	27.6	LOS B	8.8	63.0	0.81	0.69	0.81	31.5
6	R2	132	3.0	132	3.0	* 0.588	36.6	LOS C	5.0	35.7	1.00	0.79	1.01	27.5
Appro	bach	600	3.0	600	3.0	0.588	29.9	LOS C	8.8	63.0	0.85	0.71	0.85	31.3
North	: Hassa	all Street												
7	L2	147	3.0	147	3.0	0.571	23.1	LOS B	21.4	153.6	0.80	0.74	0.80	43.3
8	T1	453	3.0	453	3.0	0.571	17.5	LOS B	21.4	153.6	0.80	0.74	0.80	44.4
9	R2	105	3.0	105	3.0	0.724	53.8	LOS D	5.3	37.9	0.99	0.82	1.09	18.3
Appro	bach	705	3.0	705	3.0	0.724	24.1	LOS B	21.4	153.6	0.83	0.76	0.84	40.0
West	: Victori	a Street												
10	L2	368	3.0	368	3.0	* 0.724	41.9	LOS C	16.8	120.4	0.96	0.87	1.00	21.0
11	T1	253	3.0	253	3.0	0.695	42.5	LOS C	12.0	86.0	0.99	0.85	1.03	33.2
12	R2	5	3.0	5	3.0	0.034	46.9	LOS D	0.2	1.6	0.89	0.66	0.89	31.1
Appro	bach	626	3.0	626	3.0	0.724	42.2	LOS C	16.8	120.4	0.97	0.86	1.01	27.2
All Ve	hicles	3032	3.0	3032	3.0	0.724	29.9	LOS C	22.5	161.8	0.89	0.78	0.90	32.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 101 [AM EX - Hassall Street - Redfern Street (Site Folder: AM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehicle Movement Performance														
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Hass	all Street												
1 2	L2 T1	137 1100	6.0 3.0	137 1100	6.0 3.0	0.627 * 0.627	23.6 10.9	LOS B LOS A	21.7 21.7	156.7 156.7	0.79 0.53	0.74 0.49	0.79 0.53	42.9 49.4
Appro		1237 all Street	3.3	1237	3.3	0.627	12.3	LOS A	21.7	156.7	0.56	0.52	0.56	48.6
8	T1 R2	684 116	3.0 6.0	684 116	3.0 6.0	0.381 * 0.381	6.0 21.0	LOS A LOS B	8.7 7.7	62.7 55.9	0.42 0.72	0.38 0.69	0.42 0.72	49.5 45.1
Appro		800	3.4	800	3.4	0.381	8.2	LOS A	8.7	62.7	0.46	0.43	0.46	48.3
West:	Redfe	rn Street												
10 12	L2 R2	100 42	6.0 6.0	100 42	6.0 6.0	0.156 * 0.394	28.9 58.0	LOS C LOS E	3.3 2.1	24.2 15.7	0.71 1.00	0.74 0.73	0.71 1.00	39.9 20.8
Appro	bach	142	6.0	142	6.0	0.394	37.5	LOS C	3.3	24.2	0.80	0.74	0.80	34.3
All Ve	hicles	2179	3.5	2179	3.5	0.627	12.4	LOS A	21.7	156.7	0.54	0.50	0.54	47.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 101 [AM EX - Wetherill Street - The Horsely Drive (Site Folder: AM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F*, G Output Phase Sequence: A, D, E, G (* Variable Phase)

Vehi	cle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total	VS HV]	ARRI FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	95% BA QUE [Veh.	EUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	
Sout	h: Weth	veh/h erill Stree	% et	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
1	L2	395	2.0	395	2.0	0.362	12.3	LOS A	7.9	56.3	0.51	0.71	0.51	49.3
2	 T1	537	2.0	537	2.0	* 0.930	63.4	LOSE	16.2	115.4	1.00	1.11	1.50	19.8
3	R2	137	2.0	137	2.0	0.934	72.7	LOS F	8.2	58.7	1.00	1.07	1.66	27.1
Appr	oach	1068	2.0	1068	2.0	0.934	45.7	LOS D	16.2	115.4	0.82	0.96	1.15	30.0
East:	The Ho	orsely Driv	ve											
4	L2	111	2.0	111	2.0	0.805	37.2	LOS C	23.8	169.6	0.91	0.86	0.97	38.4
5	T1	942	2.0	942	2.0	0.805	31.9	LOS C	23.8	169.6	0.90	0.84	0.96	39.3
6	R2	63	2.0	63	2.0	0.192	43.7	LOS D	2.7	18.9	0.89	0.75	0.89	25.0
Appr	oach	1116	2.0	1116	2.0	0.805	33.1	LOS C	23.8	169.6	0.90	0.84	0.95	38.5
North	n: Wethe	erill Stree	t											
7	L2	26	2.0	26	2.0	0.157	35.9	LOS C	2.1	15.3	0.87	0.71	0.87	34.6
8	T1	74	2.0	74	2.0	0.157	36.6	LOS C	2.1	15.3	0.89	0.69	0.89	33.1
9	R2	32	2.0	32	2.0	0.216	54.3	LOS D	1.5	10.8	0.97	0.72	0.97	27.1
Appr	oach	132	2.0	132	2.0	0.216	40.7	LOS C	2.1	15.3	0.91	0.70	0.91	31.7
West	: The H	orsely Dri	ive											
10	L2	68	2.0	68	2.0	* 0.940	55.5	LOS D	37.5	266.9	1.00	1.12	1.29	23.0
11	T1	1116	2.0	1116	2.0	0.940	50.0	LOS D	37.5	266.9	0.96	1.09	1.27	33.0
12	R2	300	2.0	300	2.0	* 0.910	64.4	LOS E	17.6	125.4	1.00	1.03	1.41	29.0
Appr	oach	1484	2.0	1484	2.0	0.940	53.2	LOS D	37.5	266.9	0.97	1.08	1.30	31.7
All Ve	ehicles	3800	2.0	3800	2.0	0.940	44.7	LOS D	37.5	266.9	0.90	0.96	1.14	33.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:46:04 PM

Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\11725 Wetherill Park Distribution Centre Network.sip9

All Movement Classes

Project: Cowpasture Road Networks

Template: Movement Summaries

V Site: 101 [AM EX - The Horsley Drive -Cowpasture Road (Site Folder: AM Existing)]

■ Network: 1 [AM Existing (Network Folder: Existing)]

New Site Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfo	ormano	ce _									
Mov ID	Turn	DEMA FLOV [Total	NS HV]	ARRI FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUE [Veh.	Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed
Sout	h: Cowp	veh/h asture R	% load	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
1	L2	11	2.0	11	2.0	0.859	8.0	LOS A	12.2	86.6	0.79	1.00	1.20	51.1
2	T1	1279	2.0	1279	2.0	0.859	10.9	LOS A	12.5	88.9	0.82	1.02	1.24	44.2
3	R2	589	2.0	589	2.0	0.859	16.2	LOS B	12.5	88.9	0.90	1.07	1.32	52.0
3u	U	5	2.0	5	2.0	0.859	18.8	LOS B	12.5	88.9	0.90	1.07	1.32	53.7
Appr	oach	1884	2.0	1884	2.0	0.859	12.6	LOS A	12.5	88.9	0.85	1.04	1.27	47.6
East	The Ho	orsley Dri	ive											
4	L2	284	2.0	284	2.0	0.285	4.0	LOS A	2.2	15.8	0.50	0.54	0.50	53.9
5	T1	11	2.0	11	2.0	0.285	3.7	LOS A	2.2	15.8	0.50	0.54	0.50	55.9
6	R2	489	2.0	489	2.0	0.285	10.6	LOS A	2.2	15.8	0.51	0.61	0.51	45.8
6u	U	5	2.0	5	2.0	0.285	13.2	LOS A	2.1	14.7	0.52	0.64	0.52	54.8
Appr	oach	789	2.0	789	2.0	0.285	8.2	LOS A	2.2	15.8	0.51	0.59	0.51	49.8
North	n: The H	orsley D	rive											
7	L2	1095	2.0	1095	2.0	0.679	8.8	LOS A	8.0	56.7	0.74	0.82	0.90	49.8
8	T1	237	2.0	237	2.0	0.679	9.6	LOS A	7.0	49.5	0.76	0.87	0.96	51.3
9	R2	5	2.0	5	2.0	0.679	16.4	LOS B	7.0	49.5	0.76	0.87	0.96	52.3
Appr	oach	1337	2.0	1337	2.0	0.679	9.0	LOS A	8.0	56.7	0.74	0.83	0.91	50.1
West	: Park A	ccess												
10	L2	5	2.0	5	2.0	0.014	13.0	LOS A	0.1	0.6	0.96	0.76	0.96	42.4
11	T1	1	2.0	1	2.0	0.007	14.3	LOS A	0.0	0.3	0.91	0.76	0.91	48.8
12	R2	1	2.0	1	2.0	0.007	20.9	LOS B	0.0	0.3	0.91	0.76	0.91	49.4
Appr	oach	7	2.0	7	2.0	0.014	14.3	LOS A	0.1	0.6	0.95	0.76	0.95	45.2
All Ve	ehicles	4018	2.0	4018	2.0	0.859	10.5	LOS A	12.5	88.9	0.75	0.88	1.00	48.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [AM EX - The Horsley Drive -Cowpasture Road (Site Folder: AM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehio	cle Mo	vement	Perfo	rmand	e:									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	NS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: The ⊦	lorsley D	rive											
2	T1	1168	2.0	1168	2.0	0.422	6.0	LOS A	11.3	80.1	0.43	0.39	0.43	52.4
3	R2	611	2.0	611	2.0	* 0.725	45.9	LOS D	14.4	102.4	0.98	0.87	1.04	27.7
Appro	bach	1779	2.0	1779	2.0	0.725	19.7	LOS B	14.4	102.4	0.62	0.55	0.64	40.1
East:	Cowpa	sture Ro	ad											
4	L2	163	2.0	163	2.0	0.193	11.6	LOS A	2.8	19.9	0.44	0.68	0.44	43.8
6	R2	374	2.0	374	2.0	* 0.638	49.6	LOS D	8.9	63.1	0.99	0.82	1.01	32.8
Appro	bach	537	2.0	537	2.0	0.638	38.0	LOS C	8.9	63.1	0.82	0.78	0.83	34.4
North	: The ⊢	lorsley D	rive											
7	L2	705	2.0	705	2.0	0.287	9.1	LOS A	4.9	34.6	0.37	0.67	0.37	51.5
8	T1	1174	2.0	1174	2.0	* 0.709	25.1	LOS B	23.4	166.8	0.88	0.79	0.88	33.2
Appro	bach	1879	2.0	1879	2.0	0.709	19.1	LOS B	23.4	166.8	0.69	0.74	0.69	41.2
All Ve	hicles	4195	2.0	4195	2.0	0.725	21.8	LOS B	23.4	166.8	0.68	0.67	0.69	39.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:47:31 PM Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\Cowpasture Road Networks.sip9

All Movement Classes

Project: Cumberland Highway Networks

Template: Movement Summaries

Site: 101 [AM EX - Cumberland Highway - The Horsely Drive (Site Folder: AM Existing)]

■ Network: 1 [AM Existing (Network Folder: Existing)]

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, B1*, C, D, E, F1*, F2* Output Phase Sequence: A, B1*, C, D, E (* Variable Phase)

Vehi	icle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO' [Total	WS HV]	Deg. Satn v/c	Delay	Level of Service	QU [Veh.	ACK OF EUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed
Sout	h: Cumb	berland H		veh/h v	70	V/C	sec	_	veh	m	_		_	km/h
1	L2	110	2.0	110	2.0	0.829	33.4	LOS C	26.9	191.5	0.83	0.83	0.88	42.9
2	T1	1745	2.0	1745		0.829	22.4	LOS B	26.9	191.5	0.81	0.78	0.86	37.8
3	R2	70	2.0	70	2.0	* 0.247	30.0	LOS C	1.9	13.2	0.92	0.75	0.92	41.8
Appr	oach	1925	2.0	1925	2.0	0.829	23.3	LOS B	26.9	191.5	0.82	0.78	0.86	38.5
East	: The Ho	orsely Dri	ve											
4	L2	30	2.0	30	2.0	0.803	42.5	LOS C	27.3	194.2	0.97	0.91	1.03	37.8
5	T1	590	2.0	590	2.0	0.803	39.6	LOS C	27.3	194.2	0.97	0.91	1.05	36.3
6	R2	285	2.0	285	2.0	* 0.803	62.0	LOS E	11.2	80.0	1.00	0.92	1.21	20.4
Appr	oach	905	2.0	905	2.0	0.803	46.7	LOS D	27.3	194.2	0.98	0.91	1.10	31.7
North	n: Cumb	erland H	ighway	/										
7	L2	425	2.0	425	2.0	0.334	11.3	LOS A	8.1	58.0	0.48	0.73	0.48	49.0
8	T1	1320	2.0	1320	2.0	* 0.852	33.3	LOS C	23.4	166.9	0.92	0.86	1.01	37.6
9	R2	145	2.0	145	2.0	0.792	64.6	LOS E	8.4	59.5	1.00	0.89	1.23	24.8
Appr	oach	1890	2.0	1890	2.0	0.852	30.7	LOS C	23.4	166.9	0.83	0.83	0.91	38.1
West	t: The H	orsely Dr	ive											
10	L2	195	2.0	195	2.0	* 0.828	46.7	LOS D	14.9	105.8	1.00	0.96	1.18	24.7
11	T1	390	2.0	390	2.0	* 0.828	50.0	LOS D	15.7	111.9	1.00	0.96	1.19	32.8
Appr	oach	585	2.0	585	2.0	0.828	48.9	LOS D	15.7	111.9	1.00	0.96	1.19	30.8
All V	ehicles	5305	2.0	5305	2.0	0.852	32.8	LOS C	27.3	194.2	0.87	0.84	0.95	35.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [AM EX - Cumberland Highway -Victoria Street (Site Folder: AM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C, D, F1* Output Phase Sequence: A, C, D, F1* (* Variable Phase)

Vehi	icle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO ^V [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Cuml	perland H	ighwa	y										
1	L2	190	2.0	190	2.0	0.865	23.4	LOS B	30.5	217.0	0.76	0.78	0.82	36.9
2	T1	2035	2.0	2035	2.0	* 0.865	17.2	LOS B	30.7	218.7	0.77	0.76	0.83	48.0
Appr	oach	2225	2.0	2225	2.0	0.865	17.7	LOS B	30.7	218.7	0.77	0.76	0.83	47.2
East	: Victoria	a Street												
4	L2	15	2.0	15	2.0	0.173	62.3	LOS E	0.9	6.7	0.98	0.69	0.98	20.1
5	T1	10	2.0	10	2.0	* 0.173	56.7	LOS E	1.0	6.8	0.98	0.69	0.98	26.1
6	R2	10	2.0	10	2.0	0.173	62.3	LOS E	1.0	6.8	0.98	0.69	0.98	30.9
Appr	oach	35	2.0	35	2.0	0.173	60.7	LOS E	1.0	6.8	0.98	0.69	0.98	25.4
North	n: Cumb	erland Hi	ighway	/										
7	L2	5	2.0	5	2.0	0.404	6.9	LOS A	1.0	7.5	0.04	0.04	0.04	62.1
8	T1	1630	2.0	1630	2.0	0.404	0.5	LOS A	1.0	7.5	0.04	0.04	0.04	68.7
9	R2	655	2.0	655	2.0	* 0.894	65.9	LOS E	20.3	144.6	1.00	0.98	1.32	25.4
Appr	oach	2290	2.0	2290	2.0	0.894	19.2	LOS B	20.3	144.6	0.31	0.30	0.40	42.1
West	t: Victor	ia Street												
10	L2	205	2.0	205	2.0	0.397	29.8	LOS C	7.3	52.3	0.85	0.78	0.85	37.6
11	T1	5	2.0	5	2.0	* 0.884	65.3	LOS E	8.2	58.2	1.00	0.99	1.45	23.7
12	R2	260	2.0	260	2.0	0.884	70.9	LOS F	8.2	58.2	1.00	0.99	1.45	11.2
Appr	oach	470	2.0	470	2.0	0.884	52.9	LOS D	8.2	58.2	0.94	0.90	1.19	21.8
All V	ehicles	5020	2.0	5020	2.0	0.894	22.0	LOS B	30.7	218.7	0.58	0.56	0.67	41.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

venicie movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included). Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:47:52 PM Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\Cumberland Highway Networks.sip9

All Movement Classes

Project: 11725 Wetherill Park Distribution Centre Network

Template: Movement Summaries

▽ Site: 101 [PM EX - Walter Street - Redfern Street (Site Folder: PM Existing)]

■ Network: 2 [PM Existing (Network Folder: Existing)]

New Site Site Category: (None) Give-Way (Two-Way)

Vehic	cle Mo	vement	Perfo	rman	ce									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Walte	r Street												
2	T1	137	3.0	137	3.0	0.178	1.5	LOS A	0.8	5.6	0.36	0.31	0.36	55.6
3	R2	116	6.0	116	6.0	0.178	7.6	LOS A	0.8	5.6	0.36	0.31	0.36	53.5
Appro	ach	253	4.4	253	4.4	0.178	4.3	NA	0.8	5.6	0.36	0.31	0.36	54.6
East:	Redfer	n Street												
4	L2	221	6.0	221	6.0	0.203	7.3	LOS A	0.9	6.3	0.46	0.69	0.46	48.4
6	R2	42	6.0	42	6.0	0.065	8.9	LOS A	0.2	1.5	0.51	0.76	0.51	50.4
Appro	ach	263	6.0	263	6.0	0.203	7.6	LOS A	0.9	6.3	0.47	0.70	0.47	48.9
North	: Walte	r Street												
7	L2	47	6.0	47	6.0	0.227	5.7	LOS A	0.0	0.0	0.00	0.07	0.00	57.4
8	T1	384	3.0	384	3.0	0.227	0.1	LOS A	0.0	0.0	0.00	0.07	0.00	58.8
Appro	ach	432	3.3	432	3.3	0.227	0.7	NA	0.0	0.0	0.00	0.07	0.00	58.5
All Ve	hicles	947	4.4	947	4.4	0.227	3.6	NA	0.9	6.3	0.23	0.31	0.23	54.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [PM EX - Victoria Road - Walter Street (Site Folder: PM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East:	Victoria		70	VCH/H	70	v/C	300	_	VCIT		_		_	KIII/II
5	T1	600	3.0	600	3.0	0.314	20.4	LOS B	11.1	79.5	0.63	0.55	0.63	48.0
6	R2	58	3.0	58	3.0	* 0.272	46.7	LOS D	3.0	21.8	0.87	0.77	0.87	31.6
Appro	bach	658	3.0	658	3.0	0.314	22.7	LOS B	11.1	79.5	0.65	0.57	0.65	46.6
North	: Walte	r Street												
7	L2	226	3.0	226	3.0	0.599	34.6	LOS C	7.6	54.4	0.87	0.85	0.87	25.0
9	R2	442	3.0	442	3.0	* 0.659	42.1	LOS C	23.2	166.9	0.89	0.85	0.89	32.9
Appro	bach	668	3.0	668	3.0	0.659	39.6	LOS C	23.2	166.9	0.88	0.85	0.88	31.1
West	Victori	a Road												
10	L2	205	3.0	205	3.0	0.651	38.2	LOS C	24.8	178.2	0.85	0.79	0.85	28.2
11	T1	800	3.0	800	3.0	* 0.651	32.9	LOS C	25.7	184.8	0.86	0.78	0.86	28.6
Appro	bach	1005	3.0	1005	3.0	0.651	34.0	LOS C	25.7	184.8	0.86	0.78	0.86	28.5
All Ve	hicles	2332	3.0	2332	3.0	0.659	32.4	LOS C	25.7	184.8	0.81	0.74	0.81	35.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

New Site Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service		BACK OF JEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Weth	erill Stree	et											
1	L2	205	3.0	205	3.0	0.175	4.9	LOS A	0.7	5.2	0.35	0.54	0.35	45.3
3	R2	126	3.0	126	3.0	0.132	10.8	LOS A	0.5	3.6	0.35	0.69	0.35	38.4
3u	U	2	3.0	2	3.0	0.132	13.2	LOS A	0.5	3.6	0.35	0.69	0.35	38.4
Appro	oach	334	3.0	334	3.0	0.175	7.2	LOS A	0.7	5.2	0.35	0.60	0.35	42.1
East:	Victoria	a Road												
4	L2	132	3.0	132	3.0	0.261	5.3	LOS A	1.3	9.6	0.41	0.52	0.41	48.0
5	T1	442	3.0	442	3.0	0.261	5.3	LOS A	1.3	9.6	0.41	0.52	0.41	47.8
6u	U	5	3.0	5	3.0	0.261	13.5	LOS A	1.3	9.2	0.41	0.52	0.41	47.6
Appro	oach	579	3.0	579	3.0	0.261	5.4	LOS A	1.3	9.6	0.41	0.52	0.41	47.8
West	: Victori	a Road												
11	T1	595	3.0	595	3.0	0.359	4.2	LOS A	2.3	16.4	0.30	0.42	0.30	53.9
12	R2	358	3.0	358	3.0	0.359	9.9	LOS A	2.2	16.0	0.31	0.59	0.31	51.0
12u	U	26	3.0	26	3.0	0.359	12.3	LOS A	2.2	16.0	0.31	0.59	0.31	51.0
Appro	oach	979	3.0	979	3.0	0.359	6.5	LOS A	2.3	16.4	0.30	0.49	0.30	52.7
All Ve	ehicles	1892	3.0	1892	3.0	0.359	6.3	LOS A	2.3	16.4	0.34	0.52	0.34	50.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [PM EX - Victoria Street - Hassall Street (Site Folder: PM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C, E Output Phase Sequence: A, B, C, E

Vehi	cle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BA QUE [Veh. veh		Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Hass	all Street												
1	L2	11	3.0	11	3.0	* 0.823	67.1	LOS E	18.1	130.2	1.00	0.95	1.16	20.1
2	T1	542	3.0	542	3.0	0.823	61.5	LOS E	18.4	132.2	1.00	0.95	1.15	20.2
Appro	bach	553	3.0	553	3.0	0.823	61.6	LOS E	18.4	132.2	1.00	0.95	1.15	20.2
East:	Victoria	a Street												
4	L2	53	3.0	53	3.0	0.392	39.9	LOS C	12.2	87.6	0.81	0.71	0.81	37.2
5	T1	463	3.0	463	3.0	0.392	34.3	LOS C	12.3	88.5	0.81	0.70	0.81	28.3
6	R2	153	3.0	153	3.0	* 0.856	52.0	LOS D	8.0	57.4	1.00	0.90	1.30	22.4
Appro	bach	668	3.0	668	3.0	0.856	38.8	LOS C	12.3	88.5	0.85	0.74	0.92	27.7
North	: Hassa	all Street												
7	L2	242	3.0	242	3.0	0.834	30.1	LOS C	45.9	329.6	0.89	0.84	0.89	39.5
8	T1	1168	3.0	1168	3.0	0.834	30.9	LOS C	45.9	329.6	0.91	0.86	0.93	37.5
9	R2	116	3.0	116	3.0	0.834	44.5	LOS D	35.9	257.7	0.93	0.87	0.97	22.3
Appro	bach	1526	3.0	1526	3.0	0.834	31.8	LOS C	45.9	329.6	0.91	0.86	0.92	36.9
West	: Victori	a Street												
10	L2	253	3.0	253	3.0	* 0.837	62.9	LOS E	23.8	170.6	1.00	0.94	1.14	16.2
11	T1	474	3.0	474	3.0	0.837	57.4	LOS E	23.9	171.9	1.00	0.96	1.14	28.5
12	R2	11	3.0	11	3.0	0.056	52.6	LOS D	0.6	4.0	0.84	0.69	0.84	29.5
Appro	bach	737	3.0	737	3.0	0.837	59.2	LOS E	23.9	171.9	1.00	0.95	1.13	25.0
All Ve	hicles	3484	3.0	3484	3.0	0.856	43.7	LOS D	45.9	329.6	0.93	0.87	1.00	29.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [PM EX - Hassall Street - Redfern Street (Site Folder: PM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle Mo	vement	Perfo	ormand	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO ^V [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Hass	all Street												
1	L2	53	6.0	53	6.0	0.679	46.9	LOS D	21.8	157.2	0.91	0.80	0.91	32.9
2	T1	763	3.0	763	3.0	* 0.679	30.4	LOS C	21.8	157.2	0.78	0.68	0.78	38.0
Appro	bach	816	3.2	816	3.2	0.679	31.5	LOS C	21.8	157.2	0.79	0.69	0.79	37.7
North	: Hassa	all Street												
8	T1	1237	3.0	1237	3.0	0.513	8.6	LOS A	20.6	148.6	0.48	0.45	0.48	46.3
9	R2	111	6.0	111	6.0	* 0.513	19.0	LOS B	20.6	148.6	0.61	0.57	0.61	47.1
Appro	bach	1347	3.2	1347	3.2	0.513	9.5	LOS A	20.6	148.6	0.49	0.46	0.49	46.5
West	Redfe	rn Street												
10	L2	168	6.0	168	6.0	0.160	18.2	LOS B	4.7	34.6	0.48	0.70	0.48	45.1
12	R2	111	6.0	111	6.0	* 0.672	70.6	LOS F	7.2	52.8	1.00	0.82	1.08	18.2
Appro	bach	279	6.0	279	6.0	0.672	39.0	LOS C	7.2	52.8	0.69	0.75	0.72	33.0
All Ve	hicles	2442	3.5	2442	3.5	0.679	20.2	LOS B	21.8	157.2	0.61	0.57	0.62	40.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [PM EX - Wetherill Street - The Horsely Drive (Site Folder: PM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F*, G Output Phase Sequence: A, D, E, G (* Variable Phase)

Vehi	icle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	95% BA QUE [Veh.	EUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	
Sout	h: Weth	erill Stree		veh/h	70	v/c	sec	_	veh	m	_		_	km/h
1	L2	147	2.0	147	2.0	0.187	25.5	LOS B	5.3	38.1	0.63	0.72	0.63	41.9
2	T1	258	2.0	258	2.0	0.512	58.0	LOS E	7.8	55.5	0.98	0.78	0.98	21.0
3	R2	105	2.0	105	2.0	0.747	74.3	LOS F	7.1	50.2	1.00	0.86	1.17	26.8
Appr	oach	511	2.0	511	2.0	0.747	52.0	LOS D	7.8	55.5	0.88	0.78	0.92	28.0
East	: The He	orsely Dri	ve											
4	L2	253	2.0	253	2.0	* 0.948	54.1	LOS D	60.5	430.5	1.00	1.05	1.19	32.4
5	T1	1411	2.0	1411	2.0	0.948	48.8	LOS D	60.5	430.5	0.98	1.04	1.17	33.2
6	R2	26	2.0	26	2.0	0.098	57.7	LOS E	1.5	10.4	0.90	0.71	0.90	21.0
Appr	oach	1689	2.0	1689	2.0	0.948	49.8	LOS D	60.5	430.5	0.98	1.04	1.17	32.9
North	n: Weth	erill Stree	t											
7	L2	26	2.0	26	2.0	0.711	70.7	LOS F	11.4	80.8	1.00	0.89	1.06	24.5
8	T1	337	2.0	337	2.0	* 0.711	62.9	LOS E	11.4	80.8	1.00	0.87	1.06	25.3
9	R2	126	2.0	126	2.0	0.897	83.0	LOS F	9.2	65.3	1.00	0.98	1.44	21.2
Appr	oach	489	2.0	489	2.0	0.897	68.5	LOS E	11.4	80.8	1.00	0.90	1.16	24.1
West	t: The H	orsely Dr	ive											
10	L2	47	2.0	47	2.0	0.409	25.1	LOS B	11.4	81.2	0.54	0.51	0.54	36.5
11	T1	679	2.0	679	2.0	0.409	19.9	LOS B	11.7	83.1	0.55	0.49	0.55	45.1
12	R2	258	2.0	258	2.0	* 0.964	94.8	LOS F	21.0	149.5	1.00	1.07	1.52	23.4
Appr	oach	984	2.0	984	2.0	0.964	39.8	LOS C	21.0	149.5	0.66	0.65	0.80	35.9
All Ve	ehicles	3674	2.0	3674	2.0	0.964	49.9	LOS D	60.5	430.5	0.89	0.88	1.04	31.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:48:12 PM

Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\11725 Wetherill Park Distribution Centre Network.sip9

All Movement Classes

Project: Cowpasture Road Networks

Template: Movement Summaries

V Site: 101 [PM EX - The Horsley Drive -Cowpasture Road (Site Folder: PM Existing)]

■ Network: 2 [PM Existing (Network Folder: Existing)]

New Site Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfo	ormano	ce _	_								
	Turn	DEMA		ARRI		Deg.		Level of		ACK OF		EffectiveA		Aver.
ID		FLO\ [Total	WS HV1	FLO [Total		Satn	Delay	Service	QU [Veh.	EUE Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h		v/c	sec		veh	m		nate		km/h
Sout	h: Cowp	asture R	load											
1	L2	21	2.0	21	2.0	0.733	5.8	LOS A	7.1	50.2	0.50	0.70	0.66	52.8
2	T1	747	2.0	747	2.0	0.733	8.8	LOS A	7.6	54.4	0.58	0.76	0.76	46.4
3	R2	589	2.0	589	2.0	0.733	14.3	LOS A	7.6	54.4	0.88	1.00	1.13	52.2
3u	U	5	2.0	5	2.0	0.733	16.9	LOS B	7.6	54.4	0.88	1.00	1.13	53.9
Appr	oach	1363	2.0	1363	2.0	0.733	11.2	LOS A	7.6	54.4	0.71	0.87	0.92	49.9
East	The Ho	orsley Dri	ive											
4	L2	505	2.0	505	2.0	0.701	14.8	LOS B	12.0	85.8	1.00	1.03	1.39	47.8
5	T1	5	2.0	5	2.0	0.701	14.5	LOS B	12.0	85.8	1.00	1.03	1.39	49.4
6	R2	621	2.0	621	2.0	0.701	23.6	LOS B	12.0	85.8	1.00	1.10	1.45	36.5
6u	U	5	2.0	5	2.0	0.701	26.9	LOS B	10.3	73.2	1.00	1.13	1.46	46.8
Appr	oach	1137	2.0	1137	2.0	0.701	19.6	LOS B	12.0	85.8	1.00	1.07	1.42	42.5
North	n: The H	lorsley D	rive											
7	L2	668	2.0	668	2.0	0.743	11.7	LOS A	10.0	71.5	0.80	0.95	1.10	47.0
8	T1	784	2.0	784	2.0	0.743	9.1	LOS A	10.0	71.5	0.77	0.84	1.01	52.3
9	R2	5	2.0	5	2.0	0.743	16.0	LOS B	10.0	71.5	0.77	0.84	1.01	53.2
Appr	oach	1458	2.0	1458	2.0	0.743	10.4	LOS A	10.0	71.5	0.78	0.89	1.05	49.8
Wes	t: Park A	ccess												
10	L2	11	2.0	11	2.0	0.027	9.5	LOS A	0.2	1.1	0.86	0.76	0.86	46.4
11	T1	5	2.0	5	2.0	0.027	9.0	LOS A	0.2	1.1	0.86	0.76	0.86	54.2
12	R2	11	2.0	11	2.0	0.027	17.9	LOS B	0.1	1.0	0.82	0.85	0.82	49.3
Appr	oach	26	2.0	26	2.0	0.027	12.8	LOS A	0.2	1.1	0.85	0.80	0.85	49.7
All V	ehicles	3984	2.0	3984	2.0	0.743	13.3	LOS A	12.0	85.8	0.82	0.93	1.11	47.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [PM EX - The Horsley Drive -Cowpasture Road (Site Folder: PM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle Mo	vement	Perfo	ormand	e:									
Mov ID	Turn	DEM/ FLO ^V [Total veh/h		ARRI FLO\ [Total veh/h	NS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: The H	lorsley D	rive											
2 3	T1 R2	1200 168	2.0 2.0	1200 168	2.0 2.0	0.628 * 0.657	17.9 58.7	LOS B LOS E	21.7 4.4	154.3 31.0	0.75 1.00	0.67 0.81	0.75 1.12	41.7 24.2
Appro East:		1368 sture Ro	2.0 ad	1368	2.0	0.657	22.9	LOS B	21.7	154.3	0.78	0.69	0.80	38.3
4 6	L2 R2	442 895	2.0 2.0	442 895	2.0 2.0	0.479 * 0.679	12.8 34.9	LOS A LOS C	10.1 18.6	71.6 132.2	0.57 0.91	0.74 0.85	0.57 0.91	42.6 37.8
Appro North		1337 lorsley D	2.0 rive	1337	2.0	0.679	27.6	LOS B	18.6	132.2	0.80	0.81	0.80	38.7
7 8	L2 T1	200 1011	2.0 2.0	200 1011	2.0 2.0	0.071 * 0.673	6.4 27.2	LOS A LOS B	0.5 20.4	3.7 145.2	0.18 0.89	0.60 0.78	0.18 0.89	53.5 32.1
Appro		1211	2.0		2.0	0.673	23.7	LOS B	20.4	145.2	0.77	0.75	0.77	36.1
All Ve	nicies	3916	2.0	3916	2.0	0.679	24.8	LOS B	21.7	154.3	0.78	0.75	0.79	37.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:48:28 PM Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\Cowpasture Road Networks.sip9

All Movement Classes

Project: Cumberland Highway Networks

Template: Movement Summaries

Site: 101 [PM EX - Cumberland Highway - The Horsely Drive (Site Folder: PM Existing)]

■ Network: 2 [PM Existing (Network Folder: Existing)]

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, B1*, C, D, E, F1*, F2* Output Phase Sequence: A, B*, C, D, E (* Variable Phase)

Vehi	icle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Cumb	perland H	ighwa	у										
1	L2	50	2.0	50	2.0	0.657	33.6	LOS C	15.3	109.0	0.75	0.71	0.75	42.9
2	T1	1180	2.0	1180	2.0	0.657	23.7	LOS B	15.4	109.4	0.75	0.67	0.75	37.0
3	R2	115	2.0	115	2.0	0.864	70.8	LOS F	7.0	49.7	1.00	0.94	1.42	28.5
Appr	oach	1345	2.0	1345	2.0	0.864	28.1	LOS B	15.4	109.4	0.77	0.69	0.80	35.7
East	: The Ho	orsely Dri	ve											
4	L2	45	2.0	45	2.0	0.794	46.9	LOS D	23.3	165.7	0.98	0.92	1.06	36.1
5	T1	455	2.0	455	2.0	0.794	43.3	LOS D	23.3	165.7	0.99	0.92	1.08	34.9
6	R2	220	2.0	220	2.0	* 0.794	64.3	LOS E	8.5	60.4	1.00	0.91	1.24	19.9
Appr	oach	720	2.0	720	2.0	0.794	49.9	LOS D	23.3	165.7	0.99	0.92	1.13	30.8
North	h: Cumb	erland H	ighway	/										
7	L2	705	2.0	705	2.0	0.536	10.7	LOS A	10.4	74.3	0.36	0.70	0.36	49.5
8	T1	2280	2.0	2280	2.0	* 0.904	18.4	LOS B	36.7	261.5	0.68	0.70	0.78	47.4
9	R2	195	2.0	195	2.0	0.689	32.8	LOS C	5.8	41.0	1.00	0.83	1.05	35.0
Appr	oach	3180	2.0	3180	2.0	0.904	17.6	LOS B	36.7	261.5	0.63	0.71	0.71	46.8
Wes	t: The H	orsely Dr	ive											
10	L2	75	2.0	75	2.0	* 0.846	58.8	LOS E	14.1	100.4	1.00	0.99	1.25	21.9
11	T1	415	2.0	415	2.0	* 0.846	55.5	LOS D	14.1	100.4	1.00	0.98	1.25	31.4
Appr	oach	490	2.0	490	2.0	0.846	56.0	LOS D	14.1	100.4	1.00	0.98	1.25	30.3
All V	ehicles	5735	2.0	5735	2.0	0.904	27.4	LOS B	36.7	261.5	0.74	0.75	0.83	39.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [PM EX - Cumberland Highway - Victoria Street (Site Folder: PM Existing)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C, D, F1* Output Phase Sequence: A, C, D, F1* (* Variable Phase)

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Cuml	berland H			70				Voll					
1	L2	140	2.0	140	2.0	* 0.965	57.8	LOS E	32.1	228.8	1.00	1.08	1.30	21.7
2	T1	1335	2.0	1335	2.0	0.965	51.9	LOS D	32.1	228.8	1.00	1.07	1.30	29.8
Appr	oach	1475	2.0	1475	2.0	0.965	52.5	LOS D	32.1	228.8	1.00	1.07	1.30	29.1
East:	Victoria	a Street												
4	L2	15	2.0	15	2.0	0.173	62.3	LOS E	0.9	6.7	0.98	0.69	0.98	20.1
5	T1	10	2.0	10	2.0	* 0.173	56.7	LOS E	1.0	6.8	0.98	0.69	0.98	26.1
6	R2	10	2.0	10	2.0	0.173	62.3	LOS E	1.0	6.8	0.98	0.69	0.98	30.9
Appr	oach	35	2.0	35	2.0	0.173	60.7	LOS E	1.0	6.8	0.98	0.69	0.98	25.4
North	n: Cumb	erland Hi	ighway	/										
7	L2	5	2.0	5	2.0	0.738	7.3	LOS A	3.3	23.8	0.08	0.08	0.08	61.7
8	T1	2475	2.0	2475	2.0	0.738	1.2	LOS A	4.6	33.1	0.10	0.10	0.10	67.0
9	R2	910	2.0	910	2.0	* 0.971	84.3	LOS F	33.6	239.5	1.00	1.08	1.52	21.8
Appr	oach	3390	2.0	3390	2.0	0.971	23.5	LOS B	33.6	239.5	0.34	0.36	0.48	38.8
West	: Victor	ia Street												
10	L2	460	2.0	460	2.0	0.542	19.5	LOS B	12.6	89.8	0.77	0.81	0.77	43.8
11	T1	5	2.0	5	2.0	0.949	71.9	LOS F	24.1	171.3	1.00	1.07	1.48	22.4
12	R2	690	2.0	690	2.0	0.949	77.5	LOS F	24.1	171.3	1.00	1.07	1.48	10.4
Appr	oach	1155	2.0	1155	2.0	0.949	54.4	LOS D	24.1	171.3	0.91	0.97	1.20	20.7
All Ve	ehicles	6055	2.0	6055	2.0	0.971	36.7	LOS C	33.6	239.5	0.62	0.65	0.82	31.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:48:43 PM Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\Cumberland Highway Networks.sip9

All Movement Classes

Project: 11725 Wetherill Park Distribution Centre Network (Sent to TfNSW) 210806

Template: Movement Summaries

✓ Site: 101 [AM EX + Dev - Walter Street -Redfern Street (Site Folder: AM Existing + Development)]

■ Network: 3 [AM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmance									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRIVAL FLOWS [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Walte	r Street											
2	T1	300	3.0	300 3.0	0.394	1.9	LOS A	2.5	21.6	0.35	0.27	0.39	55.7
3	R2	216	23.0	216 23.0	0.394	8.4	LOS A	2.5	21.6	0.35	0.27	0.39	52.3
Appro	bach	516	11.4	516 11.4	0.394	4.6	NA	2.5	21.6	0.35	0.27	0.39	54.3
East:	Redfer	n Street											
4	L2	184	26.0	184 26.0	0.188	7.2	LOS A	0.8	9.1	0.37	0.61	0.37	48.9
6	R2	42	6.0	42 6.0	0.074	9.9	LOS A	0.2	1.8	0.56	0.81	0.56	49.7
Appro	bach	226	22.3	226 22.3	0.188	7.7	LOS A	0.8	9.1	0.41	0.65	0.41	49.1
North	: Walter	r Street											
7	L2	74	6.0	74 6.0	0.143	5.6	LOS A	0.0	0.0	0.00	0.16	0.00	56.7
8	T1	195	3.0	195 3.0	0.143	0.0	LOS A	0.0	0.0	0.00	0.16	0.00	57.2
Appro	bach	268	3.8	268 3.8	0.143	1.6	NA	0.0	0.0	0.00	0.16	0.00	57.0
All Ve	hicles	1011	11.8	1011 11.8	0.394	4.5	NA	2.5	21.6	0.27	0.32	0.29	53.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [AM EX + Dev - Victoria Road -Walter Street (Site Folder: AM Existing + Development)]

■ Network: 3 [AM Existing + Development (Network Folder: Existing + Development)]

Developmen

New Site Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO ^V [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East:	Victoria	a Road												
5	T1	853	3.0	853	3.0	0.437	16.5	LOS B	13.0	93.3	0.68	0.59	0.68	49.9
6	R2	205	3.0	205	3.0	* 0.598	42.1	LOS C	9.0	64.8	0.96	0.90	0.96	33.1
Appro	bach	1058	3.0	1058	3.0	0.598	21.4	LOS B	13.0	93.3	0.73	0.65	0.73	46.8
North	: Walte	r Street												
7	L2	147	3.0	147	3.0	0.229	19.0	LOS B	3.3	24.0	0.71	0.72	0.71	33.9
9	R2	279	16.0	279	16.0	0.577	36.7	LOS C	11.5	109.6	0.89	0.83	0.89	34.5
Appro	bach	426	11.5	426	11.5	0.577	30.6	LOS C	11.5	109.6	0.83	0.79	0.83	34.4
West	: Victori	ia Road												
10	L2	416	15.0	416	15.0	* 0.528	38.3	LOS C	21.7	195.2	0.96	0.88	0.96	27.3
11	T1	411	3.0	411	3.0	0.528	30.0	LOS C	21.7	195.2	0.88	0.77	0.88	30.0
Appro	bach	826	9.0	826	9.0	0.528	34.1	LOS C	21.7	195.2	0.92	0.83	0.92	28.6
All Ve	hicles	2311	6.7	2311	6.7	0.598	27.7	LOS B	21.7	195.2	0.82	0.74	0.82	39.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [AM EX + Dev - Victoria Road -Wetherill Street (Site Folder: AM Existing + Development)]

■ Network: 3 [AM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfc	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Weth	erill Stree	et											
1	L2	432	3.0	432	3.0	0.368	5.4	LOS A	1.7	12.5	0.40	0.59	0.40	44.8
3	R2	237	3.0	237	3.0	0.254	11.3	LOS A	1.0	7.3	0.39	0.73	0.39	38.0
3u	U	1	3.0	1	3.0	0.254	13.7	LOS A	1.0	7.3	0.39	0.73	0.39	38.0
Appr	oach	669	3.0	669	3.0	0.368	7.5	LOS A	1.7	12.5	0.40	0.64	0.40	41.8
East	Victoria	a Road												
4	L2	47	3.0	47	3.0	0.227	4.0	LOS A	1.1	7.6	0.21	0.39	0.21	50.0
5	T1	568	3.0	568	3.0	0.227	4.0	LOS A	1.1	7.6	0.21	0.39	0.21	49.8
6u	U	5	3.0	5	3.0	0.227	12.1	LOS A	1.0	7.4	0.22	0.39	0.22	49.7
Appr	oach	621	3.0	621	3.0	0.227	4.0	LOS A	1.1	7.6	0.21	0.39	0.21	49.8
West	: Victori	a Road												
11	T1	395	3.0	395	3.0	0.206	4.6	LOS A	1.2	8.7	0.37	0.48	0.37	53.4
12	R2	89	3.0	89	3.0	0.206	10.3	LOS A	1.2	8.4	0.38	0.56	0.38	52.1
12u	U	21	3.0	21	3.0	0.206	12.7	LOS A	1.2	8.4	0.38	0.56	0.38	52.1
Appr	oach	505	3.0	505	3.0	0.206	5.9	LOS A	1.2	8.7	0.38	0.49	0.38	53.1
All Ve	ehicles	1796	3.0	1796	3.0	0.368	5.9	LOS A	1.7	12.5	0.33	0.51	0.33	49.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [AM EX + Dev - Victoria Street -Hassall Street (Site Folder: AM Existing + **Development)]**

Network: 3 [AM Existing + Development (Network Folder: Existing + Development)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C, E Output Phase Sequence: A, B, C, E

			гено	ormano	ce									
Mov ID	Turn	DEMA FLOW [Total veh/h		ARRI FLO ^V [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Hassa	all Street												
1	L2	42	3.0	42	3.0	* 0.715	32.1	LOS C	22.4	160.8	0.90	0.80	0.90	32.2
2	T1	1068	3.0	1068	3.0	0.715	26.5	LOS B	22.8	163.9	0.90	0.80	0.90	32.3
Appro	ach	1111	3.0	1111	3.0	0.715	26.7	LOS B	22.8	163.9	0.90	0.80	0.90	32.3
East: \	Victoria	a Street												
4	L2	37	3.0	37	3.0	0.373	33.2	LOS C	8.7	62.5	0.81	0.70	0.81	40.1
5	T1	432	3.0	432	3.0	0.373	27.6	LOS B	8.8	63.0	0.81	0.69	0.81	31.5
6	R2	142	7.0	142	7.0	* 0.726	39.2	LOS C	5.7	44.9	1.00	0.84	1.14	26.5
Appro	ach	611	3.9	611	3.9	0.726	30.6	LOS C	8.8	63.0	0.85	0.73	0.89	31.0
North:	Hassa	all Street												
7	L2	153	6.0	153	6.0	0.583	24.1	LOS B	22.2	162.8	0.82	0.76	0.82	42.6
8	T1	453	3.0	453	3.0	0.583	18.4	LOS B	22.2	162.8	0.82	0.76	0.82	43.8
9	R2	105	3.0	105	3.0	0.724	58.4	LOS E	5.4	38.7	1.00	0.84	1.14	17.3
Appro	ach	711	3.6	711	3.6	0.724	25.6	LOS B	22.2	162.8	0.85	0.78	0.87	39.3
West:	Victori	a Street												
10	L2	379	3.0	379	3.0	* 0.719	41.0	LOS C	17.0	122.3	0.96	0.86	0.98	21.3
11	T1	263	3.0	263	3.0	0.688	41.5	LOS C	12.3	88.5	0.98	0.84	1.02	33.6
12	R2	5	3.0	5	3.0	0.032	45.8	LOS D	0.2	1.6	0.88	0.66	0.88	31.5
Appro	ach	647	3.0	647	3.0	0.719	41.2	LOS C	17.0	122.3	0.97	0.85	1.00	27.6
All Vel	hicles	3079	3.3	3079	3.3	0.726	30.3	LOS C	22.8	163.9	0.89	0.79	0.91	32.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [AM EX + Dev - Hassall Street -Redfern Street (Site Folder: AM Existing + **Development)]**

Network: 3 [AM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehio	cle Mo	vement	Perfo	rman	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Hass	all Street	,,,	Voli/II					Von					
1	L2	158	9.0	158	9.0	0.635	23.0	LOS B	21.8	160.4	0.78	0.73	0.78	43.1
2 Appro	T1 bach	1111 1268	3.0 3.7	1111 1268	3.0 3.7	* 0.635 0.635	9.9 11.5	LOS A LOS A	21.8 21.8	160.4 160.4	0.49 0.53	0.46 0.49	0.49 0.53	50.2 49.2
North	: Hassa	all Street												
8 9	T1 R2	684 126	3.0 14.0	684 126	3.0 14.0	0.410 * 0.410	5.7 23.8	LOS A LOS B	9.7 7.6	69.7 62.4	0.41 0.80	0.38 0.76	0.41 0.80	50.1 43.0
Appro	bach	811	4.7	811	4.7	0.410	8.5	LOS A	9.7	69.7	0.47	0.44	0.47	48.0
West:	Redfe	rn Street												
10	L2	111	16.0	111	16.0	0.204	30.3	LOS C	3.8	34.7	0.74	0.75	0.74	38.9
12	R2	47	17.0	47	17.0	* 0.518	59.5	LOS E	2.5	23.0	1.00	0.76	1.03	20.5
Appro	bach	158	16.3	158	16.3	0.518	39.1	LOS C	3.8	34.7	0.82	0.75	0.83	33.6
All Ve	hicles	2237	5.0	2237	5.0	0.635	12.4	LOS A	21.8	160.4	0.53	0.49	0.53	47.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [AM EX + Dev - Wetherill Street - The Horsely Drive (Site Folder: AM Existing + **Development)**]

Network: 3 [AM Existing + Development (Network Folder: Existing + Development)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F*, G Output Phase Sequence: A, D, E, G (* Variable Phase)

Vehi	icle Mo	vement	Perfc	ormano	ce _									
Mov ID		DEMA FLO\ [Total veh/h	ND NS	ARRI FLO ^V [Total veh/h	VAL WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BA QUE [Veh. veh		Prop. I Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Weth	erill Stree		VOII/II	70	110	000		VOIT					
1	L2	395	2.0	395	2.0	0.355	12.4	LOS A	8.9	63.1	0.47	0.70	0.47	49.2
2	T1	537	2.0	537	2.0	* 0.881	64.2	LOS E	17.6	125.3	1.00	1.02	1.29	19.6
3	R2	137	2.0	137	2.0	0.897	77.4	LOS F	9.2	65.8	1.00	0.99	1.45	26.2
Appr	oach	1068	2.0	1068	2.0	0.897	46.8	LOS D	17.6	125.3	0.80	0.90	1.01	29.6
East	: The H	orsely Dri	ve											
4	L2	111	2.0	111	2.0	0.758	37.1	LOS C	25.5	181.4	0.86	0.78	0.86	38.4
5	T1	942	2.0	942	2.0	0.758	31.6	LOS C	25.5	181.4	0.84	0.76	0.85	39.4
6	R2	63	2.0	63	2.0	0.188	50.6	LOS D	3.2	22.5	0.88	0.75	0.88	22.9
Appr	oach	1116	2.0	1116	2.0	0.758	33.2	LOS C	25.5	181.4	0.85	0.76	0.85	38.5
North	n: Weth	erill Stree	t											
7	L2	26	2.0	26	2.0	0.161	44.7	LOS D	2.6	18.8	0.87	0.74	0.87	31.2
8	T1	79	2.0	79	2.0	0.161	44.2	LOS D	2.6	18.8	0.89	0.70	0.89	30.3
9	R2	32	2.0	32	2.0	0.207	63.0	LOS E	1.8	12.8	0.97	0.72	0.97	25.0
Appr	oach	137	2.0	137	2.0	0.207	48.6	LOS D	2.6	18.8	0.90	0.72	0.90	29.1
West	t: The H	orsely Dr	ive											
10	L2	68	2.0	68	2.0	* 0.905	50.7	LOS D	40.1	285.8	0.98	1.00	1.13	24.4
11	T1	1116	2.0	1116	2.0	0.905	45.1	LOS D	40.1	285.8	0.92	0.95	1.09	34.5
12	R2	300	2.0	300	2.0	* 0.894	70.4	LOS E	20.1	142.9	1.00	0.99	1.31	27.7
Appr	oach	1484	2.0	1484	2.0	0.905	50.5	LOS D	40.1	285.8	0.94	0.96	1.13	32.5
All V	ehicles	3805	2.0	3805	2.0	0.905	44.3	LOS D	40.1	285.8	0.87	0.87	1.01	33.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 6 August 2021 3:52:46 PM

Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\11725 Wetherill Park Distribution Centre Network (Sent to TfNSW) 210806.sip9

All Movement Classes

Project: Cowpasture Road Networks

Template: Movement Summaries

Site: 101 [AM EX + Dev - The Horsley Drive -Cowpasture Road (Site Folder: AM Existing + Development)]

■ Network: 5 [AM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfo	ormano	ce									
	Turn	DEMA		ARRI		Deg.		Level of	95% BA			EffectiveA		Aver.
ID		FLO\ [Total	WS HV1	FLO [Total]		Satn	Delay	Service	QUE [Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h		v/c	sec		veh	m		T Cato		km/h
Sout	h: Cowp	asture R	load											
1	L2	11	2.0	11	2.0	0.870	8.5	LOS A	12.9	91.5	0.80	1.02	1.25	50.7
2	T1	1289	2.0	1289	2.0	0.870	11.4	LOS A	13.2	94.0	0.84	1.04	1.29	43.7
3	R2	600	2.0	600	2.0	0.870	16.7	LOS B	13.2	94.0	0.91	1.09	1.37	51.7
3u	U	5	2.0	5	2.0	0.870	19.2	LOS B	13.2	94.0	0.91	1.09	1.37	53.3
Appr	oach	1905	2.0	1905	2.0	0.870	13.1	LOS A	13.2	94.0	0.86	1.06	1.31	47.2
East	The Ho	orsley Dri	ive											
4	L2	295	2.0	295	2.0	0.289	4.0	LOS A	2.3	16.1	0.50	0.54	0.50	53.9
5	T1	11	2.0	11	2.0	0.289	3.7	LOS A	2.3	16.1	0.50	0.54	0.50	55.9
6	R2	489	2.0	489	2.0	0.289	10.6	LOS A	2.3	16.1	0.52	0.61	0.52	45.8
6u	U	5	2.0	5	2.0	0.289	13.2	LOS A	2.1	15.0	0.52	0.64	0.52	54.8
Appr	oach	800	2.0	800	2.0	0.289	8.1	LOS A	2.3	16.1	0.51	0.59	0.51	49.8
North	n: The H	orsley D	rive											
7	L2	1095	2.0	1095	2.0	0.690	9.1	LOS A	8.2	58.7	0.75	0.83	0.93	49.5
8	T1	237	2.0	237	2.0	0.690	9.9	LOS A	7.2	51.1	0.77	0.88	0.99	51.0
9	R2	5	2.0	5	2.0	0.690	16.8	LOS B	7.2	51.1	0.77	0.88	0.99	51.9
Appr	oach	1337	2.0	1337	2.0	0.690	9.3	LOS A	8.2	58.7	0.75	0.84	0.94	49.8
West	: Park A	ccess												
10	L2	5	2.0	5	2.0	0.014	13.5	LOS A	0.1	0.7	0.97	0.76	0.97	42.0
11	T1	1	2.0	1	2.0	0.008	14.8	LOS B	0.0	0.3	0.91	0.76	0.91	48.5
12	R2	1	2.0	1	2.0	0.008	21.4	LOS B	0.0	0.3	0.91	0.76	0.91	49.1
Appr	oach	7	2.0	7	2.0	0.014	14.8	LOS B	0.1	0.7	0.95	0.76	0.95	44.8
All V	ehicles	4049	2.0	4049	2.0	0.870	10.8	LOS A	13.2	94.0	0.76	0.89	1.03	48.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [AM EX + Dev - The Horsley Drive -Cowpasture Road (Site Folder: AM Existing + Development)]

■ Network: 5 [AM Existing + Development (Network Folder: Existing + Development)]

Developine

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle Mo	vement	Perfo	rmand	e:									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	NS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: The H	lorsley D	rive											
2	T1	1168	2.0	1168	2.0	0.422	6.0	LOS A	11.3	80.1	0.43	0.39	0.43	52.4
3	R2	621	2.0	621	2.0	* 0.707	44.5	LOS D	14.3	102.2	0.97	0.86	1.01	28.2
Appro	bach	1789	2.0	1789	2.0	0.707	19.3	LOS B	14.3	102.2	0.62	0.55	0.63	40.4
East:	Cowpa	sture Ro	ad											
4	L2	163	2.0	163	2.0	0.191	12.0	LOS A	2.9	20.4	0.45	0.68	0.45	43.5
6	R2	400	2.0	400	2.0	* 0.683	50.5	LOS D	9.7	68.8	1.00	0.85	1.05	32.6
Appro	bach	563	2.0	563	2.0	0.683	39.3	LOS C	9.7	68.8	0.84	0.80	0.88	34.0
North	: The ⊦	lorsley D	rive											
7	L2	753	2.0	753	2.0	0.309	9.1	LOS A	5.3	37.9	0.38	0.67	0.38	51.5
8	T1	1174	2.0	1174	2.0	* 0.726	26.0	LOS B	23.9	169.9	0.90	0.80	0.90	32.7
Appro	bach	1926	2.0	1926	2.0	0.726	19.4	LOS B	23.9	169.9	0.70	0.75	0.70	41.1
All Ve	hicles	4279	2.0	4279	2.0	0.726	22.0	LOS B	23.9	169.9	0.68	0.67	0.69	39.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:49:24 PM Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\Cowpasture Road Networks.sip9

All Movement Classes

Project: Cumberland Highway Networks

Template: Movement Summaries

Site: 101 [AM EX + Dev - Cumberland Highway - The Horsely Drive (Site Folder: AM Existing + Development)]

■ Network: 3 [AM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, B1*, C, D, E, F1*, F2* Output Phase Sequence: A, C, D, E (* Variable Phase)

Vehi	cle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Cumb	perland H	ighwa	y										
1	L2	110	2.0	110	2.0	0.881	37.4	LOS C	30.8	219.5	0.88	0.92	0.99	41.0
2	T1	1750	2.0	1750	2.0	* 0.881	25.9	LOS B	30.8	219.5	0.86	0.86	0.96	35.3
3	R2	70	2.0	70	2.0	0.421	59.9	LOS E	3.7	26.5	0.99	0.76	0.99	31.2
Appr	oach	1930	2.0	1930	2.0	0.881	27.8	LOS B	30.8	219.5	0.87	0.86	0.96	35.5
East	The Ho	orsely Dri	ve											
4	L2	30	2.0	30	2.0	0.831	45.4	LOS D	29.4	209.5	0.98	0.95	1.08	36.7
5	T1	590	2.0	590	2.0	0.831	41.9	LOS C	29.4	209.5	0.98	0.95	1.10	35.5
6	R2	285	2.0	285	2.0	* 0.831	64.1	LOS E	11.0	78.4	1.00	0.95	1.28	20.0
Appr	oach	905	2.0	905	2.0	0.831	49.0	LOS D	29.4	209.5	0.99	0.95	1.15	31.0
North	n: Cumb	erland H	ighway	/										
7	L2	430	2.0	430	2.0	0.333	10.9	LOS A	7.0	49.8	0.40	0.70	0.40	49.3
8	T1	1325	2.0	1325	2.0	0.574	15.3	LOS B	12.7	90.6	0.58	0.51	0.58	50.1
9	R2	145	2.0	145	2.0	0.871	69.8	LOS E	8.8	62.8	1.00	0.95	1.40	23.6
Appr	oach	1900	2.0	1900	2.0	0.871	18.4	LOS B	12.7	90.6	0.57	0.58	0.60	46.0
West	: The H	orsely Dr	ive											
10	L2	195	2.0	195	2.0	* 0.850	49.0	LOS D	15.0	106.9	1.00	0.98	1.23	24.0
11	T1	390	2.0	390	2.0	* 0.850	52.1	LOS D	16.5	117.4	1.00	0.98	1.23	32.2
Appr	oach	585	2.0	585	2.0	0.850	51.1	LOS D	16.5	117.4	1.00	0.98	1.23	30.1
All Ve	ehicles	5320	2.0	5320	2.0	0.881	30.6	LOS C	30.8	219.5	0.80	0.79	0.89	36.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [AM EX + Dev - Cumberland Highway - Victoria Street (Site Folder: AM Existing + Development)]

Network: 3 [AM Existing + Development (Network Folder: Existing + Development)]

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C, D, F1* Output Phase Sequence: A, C, D, F1* (* Variable Phase)

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Cumb	perland H			70	V/C	360		Ven				_	NI11/11
1	L2	195	2.0	, 195	2.0	0.885	26.3	LOS B	33.4	238.1	0.81	0.83	0.90	34.8
2	T1	2035	2.0	2035		* 0.885	19.9	LOS B	33.5	238.3	0.82	0.81	0.90	45.8
Appro	bach	2230	2.0	2230	2.0	0.885	20.4	LOS B	33.5	238.3	0.82	0.82	0.90	45.0
East:	Victoria	a Street												
4	L2	15	2.0	15	2.0	0.173	62.3	LOS E	0.9	6.7	0.98	0.69	0.98	20.1
5	T1	10	2.0	10	2.0	* 0.173	56.7	LOS E	1.0	6.8	0.98	0.69	0.98	26.1
6	R2	10	2.0	10	2.0	0.173	62.3	LOS E	1.0	6.8	0.98	0.69	0.98	30.9
Appro	oach	35	2.0	35	2.0	0.173	60.7	LOS E	1.0	6.8	0.98	0.69	0.98	25.4
North	: Cumb	erland Hi	ghway	/										
7	L2	5	2.0	5	2.0	0.404	6.9	LOS A	1.0	7.5	0.04	0.04	0.04	62.1
8	T1	1630	2.0	1630	2.0	0.404	0.5	LOS A	1.0	7.5	0.04	0.04	0.04	68.7
9	R2	670	2.0	670	2.0	* 0.875	62.5	LOS E	20.1	143.4	1.00	0.96	1.26	26.2
Appro	bach	2305	2.0	2305	2.0	0.875	18.5	LOS B	20.1	143.4	0.32	0.30	0.39	42.7
West	: Victori	a Street												
10	L2	210	2.0	210	2.0	0.394	29.2	LOS C	7.4	52.9	0.84	0.78	0.84	38.0
11	T1	5	2.0	5	2.0	* 0.917	69.4	LOS E	8.8	62.6	1.00	1.04	1.55	22.9
12	R2	270	2.0	270	2.0	0.917	75.0	LOS F	8.8	62.6	1.00	1.04	1.55	10.7
Appro	bach	485	2.0	485	2.0	0.917	55.1	LOS D	8.8	62.6	0.93	0.93	1.24	21.2
All Ve	ehicles	5055	2.0	5055	2.0	0.917	23.2	LOS B	33.5	238.3	0.60	0.59	0.70	40.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:49:56 PM Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\Cumberland Highway Networks.sip9

All Movement Classes

Project: 11725 Wetherill Park Distribution Centre Network (Sent to TfNSW) 210806

Template: Movement Summaries

✓ Site: 101 [PM EX + Dev - Walter Street -Redfern Street (Site Folder: PM Existing + Development)]

■ Network: 4 [PM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmanc	e:									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO\ [Total veh/h	NS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		BACK OF JEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	South: Walter Street													
2	T1	137	3.0	137	3.0	0.310	4.4	LOS A	1.8	17.2	0.57	0.41	0.64	52.9
3	R2	153	24.0	153	24.0	0.310	10.8	LOS A	1.8	17.2	0.57	0.41	0.64	49.7
Appro	bach	289	14.1	289	14.1	0.310	7.8	NA	1.8	17.2	0.57	0.41	0.64	51.1
East:	Redfer	n Street												
4	L2	274	13.0	274	13.0	0.325	8.9	LOS A	1.6	15.2	0.56	0.80	0.62	46.8
6	R2	42	6.0	42	6.0	0.073	9.7	LOS A	0.2	1.7	0.55	0.81	0.55	49.8
Appro	bach	316	12.1	316	12.1	0.325	9.1	LOS A	1.6	15.2	0.56	0.80	0.61	47.5
North	: Walte	r Street												
7	L2	47	6.0	47	6.0	0.244	5.7	LOS A	0.0	0.0	0.00	0.06	0.00	57.5
8	T1	416	3.0	416	3.0	0.244	0.1	LOS A	0.0	0.0	0.00	0.06	0.00	58.8
Appro	bach	463	3.3	463	3.3	0.244	0.6	NA	0.0	0.0	0.00	0.06	0.00	58.6
All Ve	ehicles	1068	8.8	1068	8.8	0.325	5.1	NA	1.8	17.2	0.32	0.37	0.35	52.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [PM EX + Dev - Victoria Road -Walter Street (Site Folder: PM Existing + **Development)**]

Network: 4 [PM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehic	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BA QUE [Veh. veh		Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East: Victoria Road														
5 6	T1 R2	642 58	3.0 3.0	642 58	3.0 3.0	0.357 * 0.287	18.0 45.7	LOS B LOS D	9.9 2.6	71.0 18.8	0.68 0.94	0.59 0.75	0.68 0.94	49.2 31.9
Approach 700 3.0 700 3.0 0.35 North: Walter Street						0.357	20.3	LOS B	9.9	71.0	0.70	0.60	0.70	47.8
7 9	L2 R2	274 479	3.0 8.0	274 479	3.0 8.0	0.747 0.836	35.3 43.8	LOS C LOS D	8.8 23.9	63.0 201.8	0.97 0.97	0.91 0.93	1.06 1.11	24.6 32.3
Appro	bach	753	6.2	753	6.2	0.836	40.7	LOS C	23.9	201.8	0.97	0.92	1.10	30.3
West:	Victori	a Road												
10	L2	242	15.0	242	15.0	* 0.852	44.4	LOS D	24.7	207.5	0.94	0.95	1.11	25.7
11	T1	832	3.0	832	3.0	0.852	39.2	LOS C	29.0	208.5	0.98	0.98	1.13	26.1
Appro	bach	1074	5.7	1074	5.7	0.852	40.3	LOS C	29.0	208.5	0.97	0.97	1.12	26.0
All Ve	hicles	2526	5.1	2526	5.1	0.852	34.9	LOS C	29.0	208.5	0.89	0.86	1.00	34.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [PM EX + Dev - Victoria Road -Wetherill Street (Site Folder: PM Existing + Development)]

■ Network: 4 [PM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Weth	erill Stree	et											
1	L2	205	3.0	205	3.0	0.178	5.1	LOS A	0.8	5.4	0.36	0.55	0.36	45.1
3	R2	126	3.0	126	3.0	0.135	11.0	LOS A	0.5	3.8	0.36	0.70	0.36	38.3
3u	U	2	3.0	2	3.0	0.135	13.3	LOS A	0.5	3.8	0.36	0.70	0.36	38.3
Appr	oach	334	3.0	334	3.0	0.178	7.3	LOS A	0.8	5.4	0.36	0.61	0.36	41.9
East:	Victoria	a Road												
4	L2	132	3.0	132	3.0	0.272	5.7	LOS A	1.5	10.9	0.45	0.54	0.45	47.6
5	T1	442	3.0	442	3.0	0.272	5.8	LOS A	1.5	10.9	0.45	0.54	0.45	47.3
6u	U	5	3.0	5	3.0	0.272	14.0	LOS A	1.4	10.3	0.46	0.54	0.46	47.1
Appr	oach	579	3.0	579	3.0	0.272	5.9	LOS A	1.5	10.9	0.45	0.54	0.45	47.4
West	: Victori	a Road												
11	T1	684	3.0	684	3.0	0.413	4.2	LOS A	2.7	19.6	0.31	0.42	0.31	53.9
12	R2	379	3.0	379	3.0	0.413	10.0	LOS A	2.6	19.0	0.32	0.60	0.32	50.8
12u	U	68	3.0	68	3.0	0.413	12.3	LOS A	2.6	19.0	0.32	0.60	0.32	50.8
Appr	oach	1132	3.0	1132	3.0	0.413	6.6	LOS A	2.7	19.6	0.31	0.49	0.31	52.6
All Ve	ehicles	2044	3.0	2044	3.0	0.413	6.5	LOS A	2.7	19.6	0.36	0.53	0.36	50.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [PM EX + Dev - Victoria Street -Hassall Street (Site Folder: PM Existing + **Development)**]

Network: 4 [PM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B, C, E Output Phase Sequence: A, B, C, E

Vehicle Movement Performance														
Mov ID	Turn	DEMA FLOV [Total veh/h	ND	ARRI FLO [Total veh/h	VAL WS HV]	Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Hass	all Street												
1	L2	11	3.0	11	3.0	0.875	59.6	LOS E	15.4	110.9	1.00	1.03	1.32	21.9
2	T1	553	3.0	553	3.0	0.875	53.9	LOS D	15.7	113.1	1.00	1.03	1.32	22.0
Appr	oach	563	3.0	563	3.0	0.875	54.0	LOS D	15.7	113.1	1.00	1.03	1.32	22.0
East	: Victori	a Street												
4	L2	53	3.0	53	3.0	0.377	31.1	LOS C	9.3	66.5	0.79	0.69	0.79	40.9
5	T1	463	3.0	463	3.0	0.377	25.5	LOS B	9.4	67.2	0.79	0.68	0.79	32.6
6	R2	163	6.0	163	6.0	* 0.920	52.1	LOS D	7.3	59.4	1.00	1.02	1.56	22.4
Appr	oach	679	3.7	679	3.7	0.920	32.3	LOS C	9.4	67.2	0.84	0.76	0.97	30.4
North	n: Hass	all Street												
7	L2	247	3.0	247	3.0	0.910	47.1	LOS D	49.5	360.4	1.00	1.02	1.14	32.6
8	T1	1168	3.0	1168	3.0	* 0.910	43.9	LOS D	49.5	360.4	1.00	1.03	1.17	32.5
9	R2	116	3.0	116	3.0	0.910	52.5	LOS D	35.6	255.7	1.00	1.04	1.20	19.8
Appr	oach	1532	3.0	1532	3.0	0.910	45.1	LOS D	49.5	360.4	1.00	1.03	1.17	31.9
Wes	t: Victor	ia Street												
10	L2	300	3.0	300	3.0	0.873	54.3	LOS D	22.2	159.7	1.00	1.00	1.25	18.0
11	T1	505	3.0	505	3.0	* 0.873	49.2	LOS D	22.2	159.7	1.00	1.02	1.25	30.7
12	R2	21	3.0	21	3.0	0.109	43.0	LOS D	0.9	6.3	0.86	0.71	0.86	32.4
Appr	oach	826	3.0	826	3.0	0.873	50.9	LOS D	22.2	159.7	1.00	1.01	1.24	27.0
All V	ehicles	3600	3.1	3600	3.1	0.920	45.4	LOS D	49.5	360.4	0.97	0.97	1.17	29.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [PM EX + Dev - Hassall Street -Redfern Street (Site Folder: PM Existing + **Development)]**

Network: 4 [PM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehio	cle Mo	vement	Perfo	rmano	e:									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	NS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Hass	all Street												
1 2	L2 T1	74 811	7.0 3.0	74 811	7.0 3.0	0.731 * 0.731	46.6 37.8	LOS D LOS C	20.6 20.6	151.6 151.6	1.00 1.00	0.88 0.88	1.02 1.01	32.8 35.0
Appro	bach	884	3.3	884	3.3	0.731	38.5	LOS C	20.6	151.6	1.00	0.88	1.01	34.8
North: Hassall Street														
8 9	T1 R2	1237 121	3.0 9.0	1237 121	3.0 9.0	0.567 * 0.567	9.2 20.3	LOS A LOS B	17.0 16.9	122.1 126.3	0.56 0.70	0.53 0.68	0.56 0.70	45.6 46.1
Appro	bach	1358	3.5	1358	3.5	0.567	10.2	LOS A	17.0	126.3	0.58	0.54	0.58	45.7
West:	Redfe	rn Street												
10	L2	179	6.0	179	6.0	0.189	17.1	LOS B	4.2	34.3	0.52	0.71	0.52	45.6
12	R2	116	6.0	116	6.0	* 0.759	59.1	LOS E	6.1	49.3	1.00	0.88	1.22	20.6
Appro	bach	295	6.0	295	6.0	0.759	33.6	LOS C	6.1	49.3	0.71	0.78	0.80	35.1
All Ve	hicles	2537	3.8	2537	3.8	0.759	22.8	LOS B	20.6	151.6	0.74	0.69	0.75	38.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [PM EX + Dev - Wetherill Street - The Horsely Drive (Site Folder: PM Existing + **Development)**]

Network: 4 [PM Existing + Development (Network Folder: Existing + Development)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F*, G Output Phase Sequence: A, D, E, G (* Variable Phase)

Vehi	icle Mo	ovement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO ^V [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	EUE Dist]	Prop. I Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Weth	erill Stree		ven/n	70	V/C	sec	_	ven	m		_	_	K11/11
1	L2	147	2.0	147	2.0	0.183	25.7	LOS B	5.8	41.3	0.60	0.72	0.60	41.8
2	T1	258	2.0	258	2.0	0.558	68.4	LOS E	9.1	64.7	0.99	0.79	0.99	18.8
3	R2	105	2.0	105	2.0	0.719	82.7	LOS F	8.0	56.8	1.00	0.83	1.11	25.2
Appr	oach	511	2.0	511	2.0	0.719	59.0	LOS E	9.1	64.7	0.88	0.78	0.90	26.2
East	The H	orsely Dri	ve											
4	L2	253	2.0	253	2.0	* 0.913	44.8	LOS D	58.7	417.7	0.94	0.93	1.02	35.4
5	T1	1411	2.0	1411	2.0	0.913	39.5	LOS C	58.7	417.7	0.92	0.91	1.00	36.2
6	R2	26	2.0	26	2.0	0.090	63.3	LOS E	1.6	11.7	0.89	0.71	0.89	19.8
Appr	oach	1689	2.0	1689	2.0	0.913	40.7	LOS C	58.7	417.7	0.92	0.91	1.00	35.9
North	n: Weth	erill Stree	t											
7	L2	26	2.0	26	2.0	0.845	89.4	LOS F	15.4	109.6	1.00	0.99	1.21	21.1
8	T1	358	2.0	358	2.0	* 0.845	80.5	LOS F	15.4	109.6	1.00	0.97	1.22	21.8
9	R2	126	2.0	126	2.0	0.862	89.4	LOS F	10.2	72.3	1.00	0.93	1.31	20.2
Appr	oach	511	2.0	511	2.0	0.862	83.1	LOS F	15.4	109.6	1.00	0.96	1.24	21.4
West	t: The H	lorsely Dr	ive											
10	L2	47	2.0	47	2.0	0.394	25.9	LOS B	12.3	87.4	0.51	0.48	0.51	35.9
11	T1	679	2.0	679	2.0	0.394	20.7	LOS B	12.6	89.4	0.51	0.47	0.51	44.7
12	R2	258	2.0	258	2.0	* 0.880	83.4	LOS F	20.7	147.4	1.00	0.95	1.24	25.2
Appr	pproach 984 2.0 984 2.0 0.880						37.4	LOS C	20.7	147.4	0.64	0.59	0.70	36.8
All Ve	ehicles	3695	2.0	3695	2.0	0.913	48.2	LOS D	58.7	417.7	0.85	0.82	0.94	32.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 6 August 2021 3:53:42 PM

Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\11725 Wetherill Park Distribution Centre Network (Sent to TfNSW) 210806.sip9

All Movement Classes

Project: Cowpasture Road Networks

Template: Movement Summaries

Site: 101 [PM EX + Dev - The Horsley Drive -Cowpasture Road (Site Folder: PM Existing + Development)]

■ Network: 6 [PM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None) Roundabout

Veh	icle Mo	vement	Perfo	rmano	ce									
	Turn	DEM		ARRI		Deg.		Level of	95% BA			EffectiveA		Aver.
ID		FLO ^v [Total	WS HV1	FLO [Total		Satn	Delay	Service	QUE [Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h		v/c	sec		veh	m		nato		km/h
Sout	th: Cowp	asture R	load											
1	L2	21	2.0	21	2.0	0.753	6.2	LOS A	7.3	52.0	0.50	0.71	0.68	52.5
2	T1	758	2.0	758	2.0	0.753	9.2	LOS A	8.2	58.3	0.59	0.78	0.79	46.0
3	R2	600	2.0	600	2.0	0.753	14.7	LOS B	8.2	58.3	0.90	1.02	1.17	52.1
3u	U	5	2.0	5	2.0	0.753	17.2	LOS B	8.2	58.3	0.90	1.02	1.17	53.7
Аррі	roach	1384	2.0	1384	2.0	0.753	11.6	LOS A	8.2	58.3	0.72	0.88	0.95	49.6
East	: The Ho	orsley Dr	ive											
4	L2	511	2.0	511	2.0	0.736	17.2	LOS B	13.5	95.9	1.00	1.09	1.50	46.4
5	T1	5	2.0	5	2.0	0.736	16.8	LOS B	13.5	95.9	1.00	1.09	1.50	47.9
6	R2	621	2.0	621	2.0	0.736	26.1	LOS B	13.5	95.9	1.00	1.16	1.55	34.9
6u	U	5	2.0	5	2.0	0.736	29.5	LOS C	11.4	81.0	1.00	1.18	1.57	45.4
Аррі	roach	1142	2.0	1142	2.0	0.736	22.1	LOS B	13.5	95.9	1.00	1.13	1.53	41.0
Nort	h: The ⊦	lorsley D	rive											
7	L2	668	2.0	668	2.0	0.767	12.7	LOS A	10.9	77.9	0.82	0.98	1.17	46.1
8	T1	805	2.0	805	2.0	0.767	9.9	LOS A	10.9	77.9	0.80	0.88	1.08	51.5
9	R2	5	2.0	5	2.0	0.767	16.7	LOS B	10.9	77.9	0.80	0.88	1.08	52.4
Аррг	roach	1479	2.0	1479	2.0	0.767	11.2	LOS A	10.9	77.9	0.80	0.93	1.12	49.0
Wes	t: Park A	ccess												
10	L2	11	2.0	11	2.0	0.029	9.8	LOS A	0.2	1.2	0.87	0.77	0.87	46.1
11	T1	5	2.0	5	2.0	0.029	9.3	LOS A	0.2	1.2	0.87	0.77	0.87	53.9
12	R2	11	2.0	11	2.0	0.029	18.3	LOS B	0.1	1.0	0.83	0.86	0.83	49.1
Appr	roach	26	2.0	26	2.0	0.029	13.2	LOS A	0.2	1.2	0.85	0.80	0.85	49.4
All V	'ehicles	4032	2.0	4032	2.0	0.767	14.4	LOS A	13.5	95.9	0.83	0.97	1.18	46.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [PM EX + Dev - The Horsley Drive -Cowpasture Road (Site Folder: PM Existing + Development)]

■ Network: 6 [PM Existing + Development (Network Folder: Existing + Development)]

Developine

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRIN FLOV [Total veh/h	NS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: The Horsley Drive														
2	T1	1200	2.0	1200	2.0	0.641	18.7	LOS B	22.2	158.1	0.77	0.69	0.77	41.2
3	R2	179	2.0	179	2.0	* 0.698	59.4	LOS E	4.7	33.3	1.00	0.84	1.16	24.0
Appro	bach	1379	2.0	1379	2.0	0.698	23.9	LOS B	22.2	158.1	0.80	0.71	0.82	37.7
East:	East: Cowpasture Road													
4	L2	442	2.0	442	2.0	0.475	13.1	LOS A	10.1	72.3	0.57	0.74	0.57	42.3
6	R2	953	2.0	953	2.0	* 0.703	34.6	LOS C	19.9	141.5	0.91	0.85	0.91	37.9
Appro	bach	1395	2.0	1395	2.0	0.703	27.8	LOS B	19.9	141.5	0.81	0.82	0.81	38.7
North	: The ⊦	lorsley D	rive											
7	L2	247	2.0	247	2.0	0.088	6.4	LOS A	0.7	4.6	0.18	0.60	0.18	53.5
8	T1	1011	2.0	1011	2.0	* 0.691	28.1	LOS B	20.7	147.7	0.90	0.80	0.90	31.6
Appro	bach	1258	2.0	1258	2.0	0.691	23.8	LOS B	20.7	147.7	0.76	0.76	0.76	36.4
All Ve	hicles	4032	2.0	4032	2.0	0.703	25.2	LOS B	22.2	158.1	0.79	0.76	0.80	37.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:50:27 PM Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\Cowpasture Road Networks.sip9

All Movement Classes

Project: Cumberland Highway Networks

Template: Movement Summaries

Site: 101 [PM EX + Dev - Cumberland Highway - The Horsely Drive (Site Folder: PM Existing + Development)]

■ Network: 4 [PM Existing + Development (Network Folder: Existing + Development)]

New Site Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, B1*, C, D, E, F1*, F2* Output Phase Sequence: A, B*, C, D, E (* Variable Phase)

Vehi	icle Mo	vement	Perfo	ormano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Cumb	erland H	ighwa	y										
1	L2	50	2.0	50	2.0	0.767	36.2	LOS C	20.6	146.5	0.76	0.73	0.77	41.7
2	T1	1185	2.0	1185	2.0	* 0.767	25.4	LOS B	20.6	146.5	0.75	0.69	0.76	35.7
3	R2	115	2.0	115	2.0	0.879	87.7	LOS F	8.8	62.7	1.00	0.94	1.38	25.2
Appr	oach	1350	2.0	1350	2.0	0.879	31.1	LOS C	20.6	146.5	0.77	0.71	0.82	33.9
East	: The Ho	orsely Dri	ve											
4	L2	45	2.0	45	2.0	0.929	77.8	LOS F	40.0	285.0	1.00	1.08	1.26	27.7
5	T1	455	2.0	455	2.0	0.929	72.3	LOS F	40.0	285.0	1.00	1.08	1.26	27.5
6	R2	220	2.0	220	2.0	* 0.929	97.0	LOS F	9.3	66.6	1.00	1.05	1.55	14.7
Appr	oach	720	2.0	720	2.0	0.929	80.2	LOS F	40.0	285.0	1.00	1.07	1.35	23.7
North	h: Cumb	erland H	ighway	/										
7	L2	715	2.0	715	2.0	0.533	10.9	LOS A	11.6	82.8	0.30	0.68	0.30	49.4
8	T1	2290	2.0	2290	2.0	0.804	7.7	LOS A	23.6	167.7	0.42	0.39	0.42	58.3
9	R2	195	2.0	195	2.0	0.678	39.0	LOS C	7.6	54.2	1.00	0.82	1.02	32.3
Appr	oach	3200	2.0	3200	2.0	0.804	10.3	LOS A	23.6	167.7	0.43	0.48	0.43	53.6
Wes	t: The H	orsely Dr	ive											
10	L2	75	2.0	75	2.0	* 0.916	83.2	LOS F	18.4	130.9	1.00	1.07	1.36	17.0
11	T1	415	2.0	415	2.0	0.916	79.1	LOS F	19.9	141.4	1.00	1.06	1.35	26.2
Appr	pproach 490 2.0 490 2.0 0.916					0.916	79.8	LOS F	19.9	141.4	1.00	1.06	1.35	25.0
All V	ehicles	5760	2.0	5760	2.0	0.929	29.8	LOS C	40.0	285.0	0.63	0.66	0.72	37.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [PM EX + Dev - Cumberland Highway - Victoria Street (Site Folder: PM Existing + Development)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C, D, F1* Output Phase Sequence: A, B*, C, D, F1* (* Variable Phase)

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO ^V [Total veh/h	WS HV]	Deg. Satn v/c	Delay	Level of Service	95% BA QUE [Veh. veh	EUE Dist]	Prop. Que	EffectiveA Stop Rate		Aver. Speed km/h
Sout	h: Cumt	perland H			70	V/C	sec	_	ven	m	_	_	_	K[[]/[]
1	L2	145	2.0	, 145	2.0	* 0.968	67.1	LOS E	38.9	276.9	1.00	1.06	1.25	19.5
2	 T1	1335	2.0	1335		* 0.968	61.8	LOS E	39.3	279.7	1.00	1.06	1.25	26.8
Appr	oach	1480	2.0	1480		0.968	62.3	LOS E	39.3	279.7	1.00	1.06	1.25	26.2
East:	Victoria	a Street												
4	L2	15	2.0	15	2.0	0.220	79.6	LOS F	1.2	8.7	1.00	0.69	1.00	17.0
5	T1	10	2.0	10	2.0	* 0.220	74.0	LOS F	1.2	8.8	1.00	0.69	1.00	22.5
6	R2	10	2.0	10	2.0	0.220	79.6	LOS F	1.2	8.8	1.00	0.69	1.00	27.0
Appr	oach	35	2.0	35	2.0	0.220	78.0	LOS F	1.2	8.8	1.00	0.69	1.00	21.8
North	n: Cumb	erland Hi	ghway	/										
7	L2	5	2.0	5	2.0	0.752	7.6	LOS A	4.7	33.4	0.09	0.08	0.09	61.5
8	T1	2475	2.0	2475	2.0	0.752	1.1	LOS A	4.7	33.4	0.08	0.08	0.08	67.2
9	R2	915	2.0	915	2.0	* 0.972	87.0	LOS F	34.9	248.4	1.00	1.10	1.41	21.3
Appr	oach	3395	2.0	3395	2.0	0.972	24.3	LOS B	34.9	248.4	0.33	0.35	0.44	38.2
West	: Victori	a Street												
10	L2	475	2.0	475	2.0	0.498	20.2	LOS B	15.3	108.9	0.69	0.79	0.69	43.3
11	T1	5	2.0	5	2.0	0.968	93.9	LOS F	30.9	219.8	1.00	1.07	1.46	19.1
12	R2	710	2.0	710	2.0	0.968	98.8	LOS F	33.0	234.8	1.00	1.07	1.45	8.5
Appr	oach	1190	2.0	1190	2.0	0.968	67.4	LOS E	33.0	234.8	0.88	0.96	1.15	17.9
All Ve	ehicles	6100	2.0	6100	2.0	0.972	42.2	LOS C	39.3	279.7	0.60	0.64	0.78	29.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CBRK PTY LTD | Licence: NETWORK / 1PC | Created: Friday, 30 April 2021 3:50:38 PM Project: G:\Traffic\SIDRA 9.0\11725 Wetherill Park Distribution Centre\Cumberland Highway Networks.sip9