

REPORT TO

NSW DEPARTMENT OF EDUCATION

ON

PRELIMINARY SITE INVESTIGATION (PSI) - CONTAMINATION

FOR

PROPOSED MULGOA RISE PUBLIC SCHOOL

AT

1-23 FORESTWOOD DRIVE, GLENMORE PARK NSW

Date: 3 June 2020 Ref: E33177PArpt

JKEnvironments

www.jkenvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Anthony Barkway

Senior Environmental Engineer

Report reviewed by:

Brendan Page

Principal Associate | Environmental Scientist

CEnvP SC (No: SC40059)

For and on behalf of
JKE
PO BOX 976
NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E33177PArpt	Final Report	3 June 2020

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

NSW Department of Education | School Infrastructure NSW ('the client') commissioned JK Environments (JKE) to undertake a Preliminary Site Investigation (PSI) for the proposed new primary school development at 1-23 Forestwood Drive, Glenmore Park, NSW ('the site'). The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2.

This report has been prepared to support the project team through the design and delivery stages of this new school infrastructure project. Based on the Request for Tender (RFT) documentation provided, we understand that a new primary school is proposed (Mulgoa Rise Public School). The final design and layout of the school are yet to be determined.

A geotechnical investigation was undertaken in conjunction with this PSI by JK Geotechnics (JKG). The results of the geotechnical investigation are presented in a separate report.

The primary aims of the investigation were to identify any past or present potentially contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of the soil and groundwater contamination conditions. The objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of in-situ soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint);
- Assess whether further intrusive investigation and/or remediation is required; and
- Provide recommendations for completing such work in the context of the development consent and issue of construction certificate.

The scope of work included the following:

- Review of site information, including background and site history information from a Lotsearch Pty Ltd Environmental Risk and Planning Report and other sources;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The investigation included a review of historical information, soil sampling from 12 boreholes, 10 test pits and groundwater sampling from one monitoring well installed on-site. The site has historically been used quarrying activities and was rehabilitated from around the year 2000 via importation of material and controlled filling.

The PSI has not identified any soil or groundwater contamination that was assessed to pose a risk to on-site receptors and/or in relation to the proposed land use. Groundwater was found to be impacted by arsenic, nickel and zinc at concentrations that exceeded the ecological SAC. However, the occurrence of these heavy metals in the groundwater may be attributed to regional factors. Potential risks to ecological receptors in relation to groundwater requires further assessment as part of the detailed investigation.

The PSI has not identified any triggers for remediation, however a detailed investigation is required to establish whether remediation will be necessary. Based on the findings of the PSI, JKE are of the opinion that the site can be made suitable for the proposed development, subject to the implementation of the following recommendations:

- Prepare a Sampling, Analysis and Quality Plan (SAQP) for the DSI. If a NSW EPA accredited site auditor is to be engaged for the project, the auditor should review and endorse the SAQP prior to commencing the DSI;
- Complete the DSI in accordance with the SAQP; and
- Consider the requirement for completing further waste classification concurrently with the DSI. The extent of
 any further waste classification assessment should be discussed with the project stakeholders based on project
 risks moving forward.

Depending on the outcome of the DSI, remediation and validation may also be required. If remediation is required, we anticipate that a Remediation Action Plan (RAP) will need to be prepared as part of the development application.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	INTRO	DUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	SCOPE OF WORK	2
2	SITE IN	FORMATION	3
	2.1	SITE IDENTIFICATION	3
	2.2	SITE LOCATION AND REGIONAL SETTING	3
	2.3	TOPOGRAPHY	3
	2.4	SITE INSPECTION	3
	2.5	SURROUNDING LAND USE	5
	2.6	Underground Services	5
3	GEOLO	GY AND HYDROGEOLOGY	6
	3.1	REGIONAL GEOLOGY	6
	3.2	ACID SULFATE SOIL (ASS) RISK AND PLANNING	6
	3.3	HYDROGEOLOGY	6
	3.4	RECEIVING WATER BODIES	6
4	SITE H	STORY INFORMATION	7
	4.1	REVIEW OF HISTORICAL AERIAL PHOTOGRAPHS	7
	4.2	REVIEW OF HISTORICAL LAND TITLE RECORDS	8
	4.3	NSW EPA RECORDS	8
	4.4	SUMMARY OF SITE HISTORY INFORMATION	9
	4.5	INTEGRITY OF SITE HISTORY INFORMATION	9
5	CONCE	PTUAL SITE MODEL	10
	5.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	10
	5.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	11
6	SAMPI	ING, ANALYSIS AND QUALITY PLAN	13
	6.1	DATA QUALITY OBJECTIVES (DQO)	13
	6.2	SOIL SAMPLING PLAN AND METHODOLOGY	15
	6.3	GROUNDWATER SAMPLING PLAN AND METHODOLOGY	17
	6.4	ANALYTICAL SCHEDULE	18
7	SITE AS	SSESSMENT CRITERIA (SAC)	20
	7.1	Soil	20
	7.2	GROUNDWATER	22
8	RESUL	rs	23
	8.1	SUMMARY OF DATA (QA/QC) EVALUATION	23
	8.2	SUBSURFACE CONDITIONS	23
	8.3	FIELD SCREENING	23
	8.4	SOIL LABORATORY RESULTS	24
	8.5	GROUNDWATER LABORATORY RESULTS	25
9	WASTE	CLASSIFICATION ASSESSMENT	26

10	DISCU	ISSION	27
	10.1	TIER 1 RISK ASSESSMENT AND REVIEW OF CSM	27
	10.2	DECISION STATEMENTS	28
	10.3	DATA GAPS	29
11	CONC	LUSIONS AND RECOMMENDATIONS	30
12	LIMIT	ATIONS	31

List of Tables

Table 2-1: Site Identification	3
Table 4-1: Summary of Historical Aerial Photographs	7
Table 4-2: Summary of Historical Land Uses / Activities	9
Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	10
Table 5-2: CSM	11
Table 6-1: Soil Sampling Plan and Methodology	15
Table 6-2: Groundwater Sampling Plan and Methodology	17
Table 6-3: Analytical Schedule (Primary Samples)	18
Table 6-4: Laboratory Details	19
Table 7-1: Details for Asbestos SAC	20
Table 7-2: Waste Categories	21
Table 8-1: Summary of Subsurface Conditions	23
Table 8-2: Summary of Field Screening	23
Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)	24
Table 8-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria	25
Table 8-5: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)	25
Table 10-1: Data Gap Assessment	29

Attachments

Appendix	۸.	Donort	Eiguros
Abbendix	A:	Keport	Figures

Appendix B: Laboratory Results Summary Tables Appendix C: Site Information and Site History

Appendix D: Borehole & Test pit Logs

Appendix E: Laboratory Reports & COC Documents

Appendix F: Report Explanatory Notes Appendix G: Data (QA/QC) Evaluation Appendix H: Field Work Documents

Appendix I: Guidelines and Reference Documents

Abbreviations

Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Above-Ground Storage Tank	AST
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Bureau of Meteorology	ВОМ
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Development Application	DA
Dial Before You Dig	DBYD
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environment Protection Authority	EPA
Environmental Site Assessment	ESA
Ecological Screening Level	ESL
Fibre Cement Fragment(s)	FCF
General Approval of Immobilisation	GAI
Health Investigation Level	HILs
Hardness Modified Trigger Values	HMTV
Health Screening Level	HSL
Health Screening Level-Site Specific Assessment	HSL-SSA
International Organisation of Standardisation	ISO
JK Environments	JKE
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	ОСР
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	РАН
Potential ASS	PASS
Polychlorinated Biphenyls	PCBs
Per-and Polyfluoroalkyl Substances	PFAS
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance	QA

Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
Site Specific Assessment	SSA
Source, Pathway, Receptor	SPR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Standard Sampling Procedure	SSP
Standing Water Level	SWL
Trip Blank	TB
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
World Health Organisation	WHO
Work Health and Safety	WHS

Units

Litres L Metres BGL mBGL Metres m Millivolts m۷ Millilitres ml or mL Milliequivalents meq micro Siemens per Centimetre μS/cm Micrograms per Litre μg/L Milligrams per Kilogram mg/kg Milligrams per Litre mg/L Parts Per Million ppm Percentage %

1 INTRODUCTION

NSW Department of Education | School Infrastructure NSW ('the client') commissioned JK Environments (JKE) to undertake a Preliminary Site Investigation (PSI) for the proposed new primary school development at 1-23 Forestwood Drive, Glenmore Park, NSW ('the site'). The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2.

This report has been prepared to support the project team through the design and delivery stages of this new school infrastructure project.

A geotechnical investigation was undertaken in conjunction with this PSI by JK Geotechnics (JKG). The results of the investigation are presented in a separate report (Ref: 33177PNrpt, dated 3 June 2020)¹. This report should be read in conjunction with the JKG report.

1.1 Proposed Development Details

Based on the Request for Tender (RFT) documentation provided, we understand that a new primary school is proposed (Mulgoa Rise Public School). The final design and layout of the school are yet to be determined. We have not been provided with any drawings or plans of the proposed public school, except for an unreferenced contour plan of the site.

1.2 Aims and Objectives

The primary aims of the investigation were to identify any past or present potentially contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of the soil and groundwater contamination conditions. The objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of in-situ soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint);
- Assess whether further intrusive investigation and/or remediation is required; and
- Provide recommendations for completing such work in the context of the development consent and issue of construction certificate.

¹ Referred to as JKG report

1.3 Scope of Work

The PSI was undertaken generally in accordance with a JKE proposal (Ref: EP51519P) of 6 April 2020 and formal agreement in relation to tender Ref. SINSW00711/20 executed on 8 May 2020. The scope of work included the following:

- Review of site information, including background and site history information from a Lotsearch Pty Ltd Environmental Risk and Planning Report and other sources;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)², other guidelines made under or with regards to the Contaminated Land Management Act (1997)³ and State Environmental Planning Policy No.55 – Remediation of Land (1998)⁴. A list of reference documents/guidelines is included in the appendices.

⁴ State Environmental Planning Policy No. 55 – Remediation of Land 1998 (NSW) (referred to as SEPP55)

² National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

³ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

2 SITE INFORMATION

2.1 Site Identification

Table 2-1: Site Identification

Current Site Owner:	The Minister for Education	
Site Address:	1-23 Forestwood Drive, Glenmore Park, NSW	
Lot & Deposited Plan:	Lot 1663 in DP1166869	
Current Land Use:	Vacant	
Proposed Land Use:	Primary School (kindergarten to year six)	
Local Government Authority:	Penrith City Council	
Current Zoning:	R1 – General Residential	
Site Area (m²) (approx.):	30,000	
RL (AHD in m) (approx.):	60	
Geographical Location	Latitude: -33.802927	
(decimal degrees) (approx.):	Longitude: 150.681562	
Site Location Plan:	Figure 1	
Sample Location Plan:	Figure 2	
Site Contamination Plan:	Figure 3	

2.2 Site Location and Regional Setting

The site is located in a predominantly residential and recreational area of Glenmore Park and is bound by Deerubbin Drive to the north, Darug Avenue to the west, Forestwood Drive to the south and Mulgoa Rise Field recreational grounds to the east / south-east. The majority of the surrounding properties were residential in nature. The site is located approximately 200m to the west of Surveyors Creek.

2.3 Topography

The site fell gently towards the north-east with an overall slope of approximately 2°. The site topography was generally in-line with the surrounding natural elevation and topographic features.

2.4 Site Inspection

A walkover inspection of the site was undertaken by JKE on 11 May 2020. Selected site photographs obtained during the inspection are attached in the appendices. A summary of the inspection findings is outlined in the following subsections:

2.4.1 Current Site Use and/or Indicators of Former Site Use

At the time of the inspection, the site was vacant, levelled grassed area.

2.4.2 Buildings, Structures and Roads

No buildings or structures of any kind were present on site. Footpaths were observed along the northern and western perimeter of the site. A substation kiosk was observed along the western site boundary. This was most likely installed during late 1990s to early 2000s and is therefore considered unlikely to contain polychlorinated biphenyl (PCB) oils.

2.4.3 Boundary Conditions, Soil Stability and Erosion

The site was fenced by steel post and wire fencing along the southern boundary, and steel post/tubing along the eastern boundary. Visual inspection of the site extents revealed no obvious signs of soil erosion.

2.4.4 Visible or Olfactory Indicators of Contamination

No apparent visible or olfactory indicators of contamination were identified during site inspection and throughout the course of our intrusive investigation.

2.4.5 Presence of Drums/Chemicals, Waste and Fill Material

Filling was not obvious during the inspection. However, it is noted that substantial filling was identified in all boreholes drilled across the site.

2.4.6 Drainage and Services

A stormwater drain appeared to run along the eastern site boundary, with stormwater collection pit situated in the north-eastern corner of the site. A sewer main was also noted to be present in the north-eastern corner of the site.

2.4.7 Sensitive Environments

Sensitive environments such as wetlands, ponds, creeks or extensive areas of natural vegetation were not identified on site or in the immediate surrounds. Mulgoa Rise Field recreational grounds were situated directly to the east / south-east of the site with Surveyors Creek and associated areas of native vegetation located approximately 200m further to the east / south-east.

2.4.8 Landscaped Areas and Visible Signs of Plant Stress

The site was overgrown with grasses and weeds with larger tree plantings along the footpaths next to the northern, western and southern site boundaries. No obvious signs of vegetation stress or grass dieback were observed anywhere on site.

2.5 Surrounding Land Use

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North vacant grassed lot beyond Deerubbin Drive as well as residential properties including an early learning centre ("Young Academies") to the north-east;
- South residential properties beyond Forestwood Drive;
- East recreational land (Mulgoa Rise Field) including parking area, soccer fields, children's playground and amenities; and
- West residential properties beyond Darug Avenue.

JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.6 Underground Services

The 'Dial Before You Dig' (DBYD) plans were reviewed for the assessment in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. The DBYD plans indicated that a sewer main was present in the northeastern corner of the site.

3 GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology

Regional geological information presented in the Lotsearch report (attached in the appendices) indicated that the site is underlain by Bringelly Shale of the Wianamatta Group, which typically consists of shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone, rare coal and tuff.

3.2 Acid Sulfate Soil (ASS) Risk and Planning

The site is not located in an acid sulfate soil (ASS) risk area according to the risk maps prepared by the Department of Land and Water Conservation.

ASS information presented in the Lotsearch report indicated that the site is not located within an ASS risk area according to ASS risk maps published by the council.

3.3 Hydrogeology

Hydrogeological information presented in the Lotsearch report indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There were a total of seven registered bores within the report buffer of 1,000m. In summary:

- The nearest registered bore was located approximately 800m north of the site. This was utilised for monitoring purposes;
- The majority of the bores were registered for monitoring purposes;
- There were no nearby bores (i.e. within 1,000m) registered for domestic or irrigation uses; and
- The drillers log information from the closest registered bores typically identified top soil and/or clay soil to depths of 1.0-6.0m, underlain by shale bedrock. Standing water levels (SWLs) in these bores was not recorded however final drill depth ranged from 2.5m below ground level (BGL) to 8.9mBGL.

The information reviewed for this investigation indicated that the subsurface conditions at the site are likely to consist of relatively low permeability (residual) soils overlying shale bedrock. The potential for viable groundwater abstraction and use of groundwater under these conditions is considered to be low. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur. Use of groundwater is not proposed as part of the development.

Considering the local topography and surrounding land features, JKE would generally expect groundwater to flow eastwards towards Surveyors Creek.

3.4 Receiving Water Bodies

The site location and regional topography indicates that most of the excess surface water flows through the site are expected to eventuate in the stormwater drainage trench along the eastern perimeter and collection pit in the north-eastern corner of the site which is expected to discharge into Surveyors Creek located approximately 200m east of the site. This water body is considered to be the closest potential ecological receptor.

4 SITE HISTORY INFORMATION

4.1 Review of Historical Aerial Photographs

Historical aerial photographs were included in the Lotsearch report. JKE has reviewed the photographs and summarised relevant information in the following table:

Table 4-1: Summary of Historical Aerial Photographs

Year	Details
1947	On-site: The site appeared to be vacant land overgrown with trees, shrubs and grasses (possibly used
	for grazing purposes).
	Off-site: The land to the south appeared to have been cleared of trees and was most likely part of
	the rural property utilised for agricultural uses (i.e. growing crops and/or grazing purposes). The land
	to the north east and west appeared to have been vacant land similar to the site, overgrown with
	trees, shrubs and grasses and was most likely used for grazing purposes.
1956	The site and surrounding features appeared generally similar to the previous photograph.
1961	The site and surrounding features appeared generally similar to the previous photograph.
1965	The site and surrounding features appeared generally similar to the previous photograph.
1970	The site and the surrounding land to the north, east and west appeared to have been cleared of most
	trees and was grassed (possibly used for grazing purposes).
1079	The site and surrounding features appeared generally similar to the provious photograph
1978	The site and surrounding features appeared generally similar to the previous photograph.
1982	The site and surrounding features appeared generally similar to the previous photograph.
1986	On-site: Northern parts of the site appeared to have been used for quarrying (i.e. extractive industry)
	activities with various pits, material stockpiles and access roads visible throughout the area.
	Off-site: The surrounding land to the north and to the west appeared to have also been utilised for
	quarrying activities, similar to the site area.
1991	On-site: The entire site area appeared to have now been used for quarrying activities.
	Off-site: All of the surrounding land in the immediate vicinity appeared to have also been used for
	quarrying activities, similar to the site.
2000	On-site: Quarrying activities appeared to have ceased throughout the site area by this time and the
	land largely appeared to have been rehabilitated (i.e. filled and levelled). Rehabilitation appeared to
	have still been underway across the northern part of the site.
	Off-site: Quarrying activities appeared to still beunderway on the land to the south of the site. The
	land to the east and west appeared to have been rehabilitated, consistent with most of the site.
	Rehabilitation appeared to still be ongoing on the land to the north.
2007	All on-site and nearby off-site quarrying activities appeared to have ceased by this time, with the site
	and all surrounding areas rehabilitated.
2014	On-site: The site appeared to include a vacant, levelled, grass-covered area bound by Deerubbin Drive
	to the north, Darug Avenue to the west and Forestwood Drive to the south.

Year	Details
	Off-site: Residential properties had been established on the surrounding land to the west, north-west and south. The land to the north, north-east and east and south-east appeared to be vacant at this time.
On-site: The site appeared to be vacant and grassed. Vehicles were parked throughout to part of the site.	
	Off-site: More residential properties had been established on the surrounding land to the north-west, west, south and north-east. Recreational grounds and playing fields had been established on the land to the east and south-east including parking area directly to the east as well as public amenities and children's playground to the south-east.

4.2 Review of Historical Land Title Records

Historical land title records were reviewed for the investigation. The record search was undertaken by Advance Legal Searchers Pty Ltd. Copies of the title records are attached in the appendices. The title records indicate the following:

- The site was under the private ownership of various grazier farmers and cattle dealers since at least the early 1900s;
- Various corporate entities owned parts of the site since late 1960s. Part of the site was noted to have been under the ownership of a number of corporate entities (i.e. Zacuba Pty Ltd, Monier PGH Holdings Limited, JM & JA Wearn Pty Limited and Holicombe Pty Limited) since 1980 through to 2013 which includes the period when the site was known to have been utilised for quarrying activities. The NSW Land and Housing Corporation also owned parts of the site throughout the period of known quarrying activities across the site;
- The entire site went under the ownership of Lensworth Glenmore Park Limited who amalgamated the site under current Lot/DP in 2013; and
- The site was attributed to The Minister for Education since 2014 who remains its current registered proprietor/custodian.

4.3 NSW EPA Records

The Lotsearch report included information from the NSW EPA databases for the following:

- Records maintained in relation to contaminated land under Section 58 of the CLM Act 1997;
- Records of sites notified in accordance with the Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)⁵; and
- Licensed activities under the Protection of the Environment Operations Act (1997)⁶.

The search included the site area and surrounding areas in the report buffer of 1,000m. The search indicated the following:

• There were no records for the site or any properties in the report buffer under Section 58 of the CLM Act 1997;

8

⁶ Protection of the Environment Operations Act 1997 (NSW) (referred to as POEO Act 1997)

⁵ NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997. (referred to as Duty to Report Contamination)

- The site has not been notified with regards to the Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997.;
- There were no records for licenced activities at the site under the POEO Act 1997. Listed historical delicensed and former licensed/regulated EPA activities were identified for several properties within the report buffer, including land-based extraction (i.e. former licensed activity attributed to Mulgoa Quarries Pty Ltd) and the application of herbicides along waterways. Former quarrying activities on site are considered to pose a potential contamination risk to the site.

4.4 Summary of Site History Information

A time line summary of the historical land uses and activities is presented in the table below. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by JKE.

Table 4-2: Summary of Historical Land Uses / Activities

Year(s)	On-site - Potential Land Use / Activities	Off-site - Potential Land Use / Activities
Circa early 1900s until at least 1982	Vacant land, overgrown with trees, shrubs and grasses which was possibly used for grazing purposes.	Vacant land, possibly used for agricultural activities (i.e. crop cultivation) and/or grazing.
Since at least 1986 until 2007.	Quarry activities which ceased by 2000.	Quarry activities which have ceased by 2007.
2000-2007	Rehabilitation of land post Quarry activities. Filling of the site occurred.	Rehabilitation of land post Quarry activities. Filling of the surrounding land also occurred.
2007-Current	Vacant, levelled grassed over area.	Mostly residential and recreational uses. Neighbouring land to the north remains vacant.

4.5 Integrity of Site History Information

The majority of the site history information was obtained from government organisations as outlined in the relevant sections of this report. The veracity of the information from these sources is considered to be relatively high. A certain degree of information loss can be expected given the lack of specific land use details over time. JKE have relied upon the Lotsearch report and have not independently verified any information contained within. However, it is noted that the Lotsearch report is generated based on databases maintained by various government agencies and is expected to be reliable.

5 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

A review of the CSM in relation to source, pathway and receptor (SPR) linkages has been undertaken as part of the Tier 1 risk assessment process, as outlined in Section 10.

5.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern		
Source / AEC	CoPC	
Fill material – The site appears to have been historically filled to achieve the existing levels. The aerial photographs suggested that the depth of filling could be substantial. Fill material is expected to be present throughout the site area attributed to filling which occurred as part of site rehabilitation post quarrying activities. The fill may have been imported from various sources and could be contaminated. The client supplied limited information relating to earthworks and compaction which suggested that the filling of the site was undertaken in controlled manner (i.e. controlled fill/earthworks).	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.	
Historical mining/extractive industry — The site and surrounding areas were historically used for quarrying activities. The aerial photographs suggested soil and/or rock quarrying occurred. The main source of contamination is therefore considered to be the operational aspect of the mining such as the use of machinery and plant (e.g. re-fuelling, spills, leaks etc). Backfilling of the quarry also occurred (see discussion on 'fill material' above). Use of the site by parked vehicles — eastern part of the site	TRH/BTEX and the PAH compound naphthalene. Heavy metals, cyanide, radionuclides and explosives are generally associated with minerals mining. Minerals mining and the associated processing of ores and minerals is not expected to have occurred at the site. On this basis these have not been considered as CoPC. Heavy metal lead, TRHs, BTEX and the PAH compound naphthalene.	

5.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 5-2: CSM

Table 5-2: CSIVI			
Potential mechanism for contamination	 Potential mechanisms for contamination include: Fill material – importation of impacted material, 'top-down' impacts (e.g. placement of fill, leaching from surficial material etc), or sub-surface release (e.g. impacts from buried material); Use of the site by parked vehicles – 'top-down' and spills (e.g. leaks onto unpaved ground surface); and Historical mining/extractive industry – spills associated with refuelling of plant, fuel stores etc, or sub-surface release (e.g. impacts from buried material). 		
Affected media	Soil and groundwater have been identified as potentially affected media. The potential for soil vapour/ground gas impacts is considered to be relatively low. However, soil vapour would need to be considered in the event volatile contamination or uncontrolled fill material containing organics is identified.		
Receptor identification	Human receptors include site occupants/users (including adults and children), construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users, and recreational water users within Surveyors Creek. Ecological receptors include terrestrial organisms and plants within unpaved areas, and freshwater ecology of Surveyors Creek.		
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include primary/direct contact and ingestion. Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens/playground areas, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings and basements. Exposure to groundwater could occur in Surveyors Creek through direct migration, however, connectivity between the aquifer and the creek has not been confirmed at this time. Groundwater has the potential to enter the creek via the stormwater system (which is expected to discharge into the creek) in a drained basement scenario and/or a situation where groundwater seepage is captured and discharged to stormwater.		
Potential exposure mechanisms	 The following have been identified as potential exposure mechanisms for site contamination: Vapour intrusion into the proposed structures (either from soil contamination or volatilisation of contaminants from groundwater); Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas and/or unpaved areas; and Migration of groundwater off-site and into nearby water body (Surveyors Creek), including aquatic ecosystems and those being used for recreation. 		

Presence of preferential	Local underground services such as sewer and stormwater have the potential to act
pathways for contaminant	as preferential pathways for contaminant migration at the site. However, the
movement	potential for migration would depend on the fate and transport properties of the
	CoPC.

6 SAMPLING, ANALYSIS AND QUALITY PLAN

6.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013) and the Guidelines for the NSW Site Auditor Scheme, 3rd Edition (2017)⁷. The seven-step DQO approach for this project is outlined in the following sub-sections.

The DQO process is validated in part by the Data Quality Assurance/Quality Control (QA/QC) Evaluation. The Data (QA/QC) Evaluation is summarised in Section 8.1 and the detailed evaluation is provided in the appendices.

6.1.1 Step 1 - State the Problem

The CSM identified potential sources of contamination/AEC at the site that may pose a risk to human health and the environment. Investigation data is required to assess the contamination status of the site, assess the risks posed by the contaminants in the context of the proposed development/intended land use, and assess whether remediation is required. This information will be considered by the project team in the design and delivery of the project as well as by the consent authority in exercising its planning functions in relation to the approval of the development consent and issue of construction certificate.

A waste classification is required prior to off-site disposal of excavated soil/bedrock.

6.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the assessment are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?
- Are any results above the SAC?
- Do potential risks associated with contamination exist, and if so, what are they?
- Is remediation required?
- Is the site characterisation sufficient to provide adequate confidence that remediation is/is not required?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?
- In the event that remediation and/or further investigation is required, what are the recommendations
 for completing such work in the context of the development consent and issue of construction
 certificate?

NSW EPA (2017). Guidelines for the NSW Site Auditor Scheme, 3rd ed. (referred to as Site Auditor Guidelines 2017)

6.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Site information, including site observations and site history documentation;
- Sampling of potentially affected media, including soil and groundwater;
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining, and groundwater physiochemical parameters;
- Laboratory analysis of soils, fibre cement and groundwater for the CoPC identified in the CSM; and
- Field and laboratory QA/QC data.

6.1.4 Step 4 - Define the Study Boundary

The sampling will be confined to the site boundaries as shown in Figure 2 and will be limited vertically to a depth of 12.45mBGL (spatial boundary). The sampling was completed on 11, 12 and 18 May 2020 (temporal boundary). The assessment of potential risk to adjacent land users has been made based on data collected within the site boundary. The scope of the investigation is limited to that described in Section 1.3.

6.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

6.1.5.1 Tier 1 Screening Criteria

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined in Section 7. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid SPR-linkages.

For this assessment, the individual results have been assessed as either above or below the SAC. Statistical evaluation of the dataset via calculation of mean values and/or 95% upper confidence limit (UCL) values has not been undertaken due to the preliminary nature of the intrusive investigation.

6.1.5.2 Field and Laboratory QA/QC

Field QA/QC included analysis of inter-laboratory duplicates, intra-laboratory duplicates, trip spike and trip blank samples. Further details regarding the sampling and analysis undertaken, and the acceptable limits adopted, is provided in the Data Quality (QA/QC) Evaluation in the appendices.

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the attached laboratory reports. These criteria were developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, JKE typically adopt the most conservative concentration reported (or in some cases, consider the data from the affected sample as an estimate).

6.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this is provided.

6.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results is undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this assessment, the null hypothesis has been adopted which is that, there is considered to be a complete SPR linkage for the CoPC identified in the CSM unless this linkage can be proven not to (or unlikely to) exist. The null hypothesis has been adopted for this assessment.

6.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the assessment objectives. Adjustment of the assessment design can occur following consultation or feedback from project stakeholders. For this investigation, the design was optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data were collected.

The sampling plan and methodology are outlined in the following sub-sections.

6.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this assessment is outlined in the table below:

Table 6-1: Soil Sampling Plan and Methodology

Aspect	Input
Sampling	The sampling density for asbestos in soil included sampling from 10 test pits at 25% of the minimum
Density	sampling density recommended in the Guidelines for the Assessment, Remediation and
	Management of Asbestos-Contaminated Sites in Western Australia (2009) ⁸ (endorsed in NEPM
	2013). This density was considered adequate in the absence of any existing sub-surface data for the
	site.
	Samples for other contaminants were collected from all 22 locations as shown on the attached
	Figure 2, although we note that analysis of samples did not occur from BH21 and BH22. Based on
1	the site area (30,000m²), this number of locations corresponded to a sampling density of one

⁸ Western Australian (WA) Department of Health (DoH), (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. (referred to as WA DoH 2009)

Aspect	Input
	sampling location per approximately 1,365m ² . The sampling plan was not designed to meet the minimum sampling density for hotspot identification, as outlined in the NSW EPA Contaminated Sites Sampling Design Guidelines (1995) ⁹ .
Sampling Plan	The sampling locations were placed on a systematic, grid-based sampling plan. This sampling plan was considered suitable to make a preliminary assessment of potential risks associated with the AEC and CoPC identified in the CSM, and assess whether further investigation is warranted.
	The test pits were typically limited to a depth of 1.5-2mBGL due to the compacted nature of the fill and limitations associated with excavating this material.
Set-out and Sampling Equipment	Sampling locations were set out using hand held GPS unit (with an accuracy of ±5m). In-situ sampling locations were checked for underground services by an external contractor prior to sampling.
	Samples collected on 11 and 12 May 2020 using a drill rig equipped with spiral flight augers (150mm diameter). Soil samples were obtained from a Standard Penetration Test (SPT) split-spoon sampler, and/or directly from the auger.
	Samples were also collected on 12 May 2020 using an excavator. Samples were obtained from the test pit walls or directly from the bucket by hand. Where sampling occurred from the bucket, JKE collected samples from the central portion of large soil clods, or from material that was unlikely to have come into contact with the bucket.
Sample Collection and Field QA/QC	Soil samples were obtained on the 11 and 12 May 2020 in accordance with the standard sampling procedure (SSP) attached in the appendices. Soil samples were collected from the fill and natural profiles based on field observations. The sample depths are shown on the logs attached in the appendices.
	Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags. During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis.
Field Screening	A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp was used to screen the samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled ziplock plastic bags following equilibration of the headspace gases. PID calibration records are maintained on file by JKE.
	 The field screening for asbestos quantification was undertaken only from the test pit locations and included the following: A representative 10L sample was collected from fill at 1m intervals, or from each distinct fill profile. The bulk sample intervals are shown on the attached borehole and test pit logs; Each 10L sample was weighed using an electronic scale;
	 Each bulk sample was passed through a sieve with a 7.1mm aperture and inspected for the presence of fibre cement. Due to the cohesive nature of the soils, some of the sample material

⁹ NSW EPA, (1995), *Contaminated Sites Sampling Design Guidelines*. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input
	 was subsequently placed on a contrasting support (blue tarpaulin) and inspected for the presence of fibre cement. Any soil clumps/nodules were disaggregated; The condition of fibre cement or any other suspected asbestos materials was noted on the field records; and If observed, any fragments of fibre cement in the 10L sample were collected, placed in a zip-lock bag and assigned a unique identifier. Calculations for asbestos content were undertaken based on the requirements outlined in Schedule B1 of NEPM (2013), as summarised in Section 7.1.
Decontami- nation and Sample	Sampling personnel used disposable nitrile gloves during sampling activities. Re-usable sampling equipment was decontaminated as outlined in the SSP.
Preservation	Soil samples were preserved by immediate storage in an insulated sample container with ice. On completion of the fieldwork, the samples were stored temporarily in fridges in the JKE warehouse before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures.

6.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology is outlined in the table below:

Table 6-2: Groundwater Sampling Plan and Methodology

Aspect	Input
Sampling Plan	Groundwater monitoring well was installed in BH8 (MW8). The well was positioned to gain a snapshot of the groundwater conditions. Considering the topography and the location of the nearest down-gradient water body, MW8 was considered to be in the intermediate area of the site and would be expected to provide an indication of groundwater flowing across (beneath) the site.
Monitoring Well Installation	The monitoring well construction details are documented on the appropriate borehole log attached in the appendices. The monitoring well was installed down to approximately 6mBGL. The well was generally constructed as follows:
Procedure	• 50mm diameter Class 18 PVC (machine slotted screen) was installed in the lower section of the well to intersect groundwater;
	 50mm diameter Class 18 PVC casing was installed in the upper section of the well (screw fixed); A 2mm sand filter pack was used around the screen section for groundwater infiltration; A hydrated bentonite seal/plug was used on top of the sand pack to seal the well; and A gatic cover was installed at the surface with a concrete plug to limit the inflow of surface water.
	The well construction was considered to be appropriate for screening purposes to assess general aquifer conditions with regards to the recommended monitoring well installation requirements in Schedule B2 of NEPM 2013.
Monitoring Well Development	The monitoring well was developed on 11 May 2020 using a submersible electrical pump in accordance with the SSP. The monitoring well was developed until steady state conditions were achieved. The field monitoring records and calibration data are attached in the appendices.
Groundwater Sampling	The monitoring well was allowed to recharge for seven days after development. Groundwater samples were obtained on 18 May 2020.

Aspect	Input
	Prior to sampling, the monitoring well was checked for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) using an inter-phase probe electronic dip meter. The monitoring well head space was checked for VOCs using a calibrated PID unit. The samples were obtained using a peristaltic pump. During sampling, the following parameters were monitored using calibrated field instruments (see SSP): SWL using an electronic dip meter; and pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter. Steady state conditions were considered to have been achieved when the difference in the pH measurements was less than 0.2 units and the difference in conductivity was less than 10%. Groundwater samples were obtained directly from the single use PVC tubing and placed in the sample containers. Duplicate samples were obtained by alternate filling of sample containers. This technique was adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc. Groundwater removed from the wells during development and sampling was transported to JKE in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal. The field monitoring record and calibration data are attached in the appendices.
Decontaminant and Sample Preservation	The decontamination procedure adopted during sampling is outlined in the SSP attached in the appendices. The pump tubing was discarded after the sampling event for the single well onsite therefore no decontamination procedure was considered necessary. The samples were preserved with reference to the analytical requirements and placed in an insulated container with ice in accordance with the SSP. On completion of the fieldwork, the samples were temporarily stored in a fridge at the JKE office, before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.

6.4 Analytical Schedule

The analytical schedule (for primary samples) is outlined in the following table:

Table 6-3: Analytical Schedule (Primary Samples)

Analyte/CoPC	Fill Samples	Natural Soil Samples	Fibre Cement Material Samples	Groundwater Samples
Heavy Metals	20	-	-	1
TRH/BTEX	21	-	-	1
PAHs	20	-	-	1
VOCs*	-	-	-	1
OCPs/OPPs	10	-	-	-
PCBs	10	-	-	-

Analyte/CoPC	Fill Samples	Natural Soil Samples	Fibre Cement Material Samples	Groundwater Samples
Asbestos (500ml)	5	-	-	-
pH/EC	-	-	-	1
Toxicity characteristic leachate procedure (TCLP) Metals and/or PAHs for waste classification purposes	0	-	-	-

^{*} VOCs were included in the analytical schedule for screening purposes and were not identified as a CoPC

Soil analysis was targeted at the surficial soils for the PSI. Samples of the subsurface fill were collected, however, these were not analysed due to the limited scope of the investigation.

6.4.1 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 6-4: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks and trip spikes)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	242855 and 243106
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	21106

7 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

7.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

7.1.1 Human Health

- Health Investigation Levels (HILs) for a 'residential with accessible soils' exposure scenario (HIL-A);
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B).
 HSLs were calculated based on conservative assumptions including a 'clay' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)¹⁰; and
- Asbestos was assessed against the HSL-A criteria. A summary of the asbestos criteria is provided in the table below:

Table 7-1: Details for Asbestos SAC

Table 7-1: Details for A	Aspestos SAC	
Guideline	Applicability	
Asbestos in Soil	The HSL-A criteria were adopted for the assessment of asbestos in soil. The SAC adopted asbestos were derived from the NEPM 2013 and are based on WA DoH (2009) guidance. SAC include the following: • <0.01% w/w bonded asbestos containing material (ACM) in soil; and • <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. The NEPM (2013) and WA DoH (2009) also specify that the surface should be free of viasbestos. Concentrations for bonded ACM concentrations in soil are based on the following equals.	
	which is presented in Schedule B1 of NEPM (2013): % w/w asbestos in soil = % asbestos content x bonded ACM (kg) Soil volume (L) x soil density (kg/L)	
	However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably due to the presence of voids, particularly when assessing cohesive soils. Therefore, each bucket sample was weighed using electronic scales and the above equation was adjusted as follows (we note that the units have also converted to grams): % w/w asbestos in soil = % asbestos content x bonded ACM (g)	
	Soil weight (g)	

¹⁰ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

7.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. These have only been applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹¹;
- ESLs were adopted based on the soil type; and
- EILs for selected metals were calculated based on the most conservative added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013) and published ambient background concentration (ABC) values presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹² This method is considered to be adequate for the Tier 1 screening.

7.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered (if required) following evaluation of human health and ecological risks, and risks to groundwater.

7.1.4 Waste Classification

Data for the waste classification assessment were assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹³ as outlined in the following table:

Table 7-2: Waste Categories

Category	Description			
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste. 			
Restricted Solid Waste	• If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and			
(non-putrescible)	If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as restricted solid waste.			
Hazardous Waste	If SCC > CT2 then TCLP not needed to classify the soil as hazardous waste; and			
	If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste.			
Virgin Excavated Natural	Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following:			
Material (VENM)	 That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; 			
	That does not contain sulfidic ores or other waste; and			
	Includes excavated natural material that meets such criteria for virgin excavated			
	natural material as may be approved from time to time by a notice published in the			
	NSW Government Gazette.			

¹³ NSW EPA, (2014). Waste Classification Guidelines, Part 1: Classifying Waste. (referred to as Waste Classification Guidelines 2014)

¹¹ Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997) (referred to as the Canadian Soil Quality Guidelines)

¹² Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4*. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

7.2 Groundwater

Groundwater data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹⁴. Environmental values for this assessment include aquatic ecosystems and human-health risks in non-use scenarios (vapour intrusion and recreational exposure).

7.2.1 Human Health

- The NEPM (2013) HSLs were not considered to be applicable for this assessment as the proposed development design was not ascertained at this point in time. In addition, the groundwater was recorded at shallow depth around 2mBGL. On this basis, JKE have undertaken a site-specific assessment (SSA) for the Tier 1 screening of human health risks posed by volatile contaminants in groundwater. The assessment included selection of alternative Tier 1 criteria that were considered suitably protective of human health. These criteria are based on drinking water guidelines and have been referred to as HSL-SSA. The criteria were based on the following (as shown in the attached report tables):
 - Australian Drinking Water Guidelines 2011 (updated 2018)¹⁵ for BTEX compounds and selected VOCs;
 - World Health Organisation (WHO) document titled Petroleum Products in Drinking-water,
 Background document for the development of WHO Guidelines for Drinking Water Quality
 (2008)¹⁶ for petroleum hydrocarbons;
 - USEPA Region 9 screening levels for naphthalene (threshold value for tap water); and
 - The use of the laboratory PQLs for other contaminants where there were no Australian guidelines.
- The ADWG 2011 were multiplied by a factor of 10 to assess potential risks associated with incidental/recreational-type exposure to groundwater (e.g. within down-gradient water bodies, with bore water used for irrigation, or with seepage water in a basement). These have been deemed as 'recreational' SAC.

7.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of freshwater species were adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁷. The 99% trigger values were adopted where required to account for bioaccumulation. Low and moderate reliability trigger values were also adopted for some contaminants where high-reliability trigger values don't exist.

¹⁷ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

¹⁴ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.

¹⁵ National Health and Medical Research Council (NHMRC), (2018). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

¹⁶ World Health Organisation (WHO), (2008). *Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality* (referred to as WHO 2008)

8 RESULTS

8.1 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, JKE are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

8.2 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the borehole and testpit logs attached in the appendices for further details.

Table 8-1: Summary of Subsurface Conditions

Profile	Description			
Fill	Fill was encountered at the surface in all boreholes and extended to depths of greater than approximately 1.3-12.45mBGL. All boreholes were terminated in fill.			
	The fill typically comprised silty clay and gravelly silty clay, with inclusions comprising of varying sizes and fractions of igneous, ironstone, sandstone and siltstone gravel, ash, traces of sand, roots, glass and plastic (in some of the locations). The occurrence of anthropogenic inclusions was negligible and organic materials were not encountered (except for root-affected soils at the ground surface).			
Natural Soil	Natural residual soil was not encountered in any of the boreholes down to the maximum depth of 12.45mBGL.			
Bedrock	Bedrock was not encountered in any of the boreholes down to the maximum depth of 12.45mBGL.			
Groundwater	All test pits were dry on completion of excavation. Groundwater seepage was observed in BH2, BH6, BH8, BH10 and BH16 at depths ranging between 4.0-7.2mBGL after completion of drilling. A groundwater monitoring well was installed at BH8 to allow for further groundwater sampling. The groundwater was observed at depths ranging between 2.05-2.07mBGL during well development and upon return to the site for sampling at a later date.			
	Based on the initial water strike level/seepage depths recorded during drilling, compared to the SWLs recorded in MW8, it is considered possible that the groundwater is confined or semi-confined. The SWL may be representative of a potentiometric water level rather than the true groundwater level.			

8.3 Field Screening

A summary of the field screening results is presented in the following table:

Table 8-2: Summary of Field Screening

Aspect	Details
PID Screening of Soil	PID soil sample headspace readings are presented in attached report tables and the COC
Samples for VOCs	documents attached in the appendices. The results ranged from 0.0ppm to 3.1ppm
	equivalent isobutylene. These results indicate PID detectable VOCs. Samples with elevated
	PID readings were analysed for TRH and BTEX.

Aspect Details					
Bulk Screening for Asbestos	The bulk field screening results are summarised in the attached report tables. All other results were below the SAC. Visible asbestos was not detected in any of the bulk screening samples.				
Groundwater Depth & Flow	Groundwater seepage was encountered in boreholes BH2, BH6, BH8, BH10 and BH16 during drilling at depths of approximately 4.0 to 7.2mBGL. A SWL was measured in BH8/MW8 where the monitoring well was installed, at depths ranging from 2.05 to 2.07mBGL during well development and sampling. The remaining boreholes were dry during and a short time after completion of drilling. The groundwater flow direction was not established for the PSI. However, we expect groundwater to flow in an easterly (or north-easterly) direction towards the creek and in sympathy with the local topography.				
Groundwater Field Parameters	Field measurements recorded during sampling were as follows: - pH ranged from 6.74 to 6.92; - EC ranged from 5,185μS/cm to 5,414μS/cm; - Eh ranged from 6.7mV to 175.1mV; and - DO ranged from 0.6ppm to 2.6ppm.				
LNAPLs petroleum hydrocarbons	Phase separated product (i.e. LNAPL) were not detected using the interphase probe during groundwater sampling.				

8.4 Soil Laboratory Results

The soil laboratory results are compared to the relevant SAC in the attached report tables. A summary of the results assessed against the SAC is presented below:

8.4.1 Human Health and Environmental (Ecological) Assessment

Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)

Analyte	Results Compared to SAC				
Heavy Metals	All heavy metals results were below the SAC.				
TRH	All TRH results were below the SAC.				
BTEX	All BTEX results were below the SAC. All BTEX concentrations were below the laboratory PQLs				
PAHs	All PAH results were below the SAC.				
OCPs and OPPs	All OCP and OPP results were below the SAC. All pesticide concentrations were below the laboratory PQLs.				
PCBs	All PCB results were below the SAC. All PCB concentrations were below the laboratory PQLs.				
Asbestos	All asbestos results were below the SAC (i.e. asbestos was absent in the samples analysed for the investigation).				

8.4.2 Waste Classification Assessment

The laboratory results were assessed against the criteria presented in Part 1 of the Waste Classification Guidelines, as summarised previously in this report. The results are presented in the report tables attached in the appendices. A summary of the results is presented in the following table:

Table 8-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria

Analyte	No. of Samples Analysed	No. of Results > CT Criteria	No. of Results > SCC Criteria	Comments
Heavy Metals	20	0	0	-
TRH	21	0	0	-
BTEX	21	0	0	-
Total PAHs	20	0	0	-
Benzo(a)pyrene	20	0	0	-
OCPs & OPPs	10	0	0	-
PCBs	10	0	0	-
Asbestos	5	-	-	Asbestos was not detected in the samples analysed.

8.5 Groundwater Laboratory Results

The groundwater laboratory results are compared to the relevant SAC in the attached report tables. A summary of the results assessed against the SAC is presented in the following table:

Table 8-5: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)

Analyte	Results Compared to SAC
Heavy Metals	Arsenic (48 μ g/L), nickel (25 μ g/L) and zinc (11 μ g/L) concentrations exceeded the ecological SAC of 24 μ g/L, 11 μ g/L and 8 μ g/L respectively.
	All other results for heavy metals were below the SAC.
TRH	All TRH results were below the SAC and the laboratory PQLs.
BTEX	All BTEX results were below the SAC and the laboratory PQLs.
Other VOCs	All VOC results were below the SAC and the laboratory PQLs.
PAHs	All PAH results were below the SAC and the laboratory PQLs.
Other	The results for pH and EC are summarised below:
Parameters	pH was recorded at 7.1 in the primary sample;
	EC was recorded at 6,100μS/cm in the primary sample.

9 WASTE CLASSIFICATION ASSESSMENT

Based on the results of the assessment, and at the time of reporting, the fill material is classified as **General Solid Waste (non-putrescible)**. Further assessment and finalisation of the waste classification will be required prior to off-site disposal.

Based on the laboratory results and field observations during sampling JKE are of the opinion that the fill material at the site could potentially be classified as Excavated Natural Material (ENM) for off-site disposal or re-use purposes. ENM could be considered suitable for re-use on-site (from a contamination viewpoint), or alternatively, the information included in this report may be used to assess whether the material is suitable for beneficial reuse at another site as fill material.

In accordance with "The excavated natural material order 2014", compliance with the ENM classification requirements must be further confirmed by undertaking designed characterisation sampling and analysis program as outlined within the order document. ENM can also be disposed of accordingly to a facility that is licensed to accept it. The cost associated with disposing ENM to a licensed facility is significantly less (i.e. up to four times based on our recent project experience) than the cost for disposing General Solid Waste (non-putrescible).

10 DISCUSSION

10.1 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

10.1.1 Soil

Concentrations of all CoPC within soil were below the SAC. On this basis, there were no complete SPR-linkages identified and therefore the PSI identified no soil contamination-related risks to the receptors.

Although the analytical schedule for the PSI was limited and analysis was generally targeted at the surficial soils, the fill appeared to be sourced from natural material and there were negligible anthropogenic inclusions. Our boreholes and test pits identified no visual or olfactory indicators of contamination (i.e. asbestos material, staining, odours etc). On this basis, and considering the apparent controlled nature of the historical backfilling of the quarry, in our opinion it is unlikely that significant, widespread contamination impacts would occur in the fill. Additional sampling and analysis are required to support this opinion.

We note that information regarding the origin of the fill was requested from the client, however this has not been provided to date.

10.1.2 Groundwater

Arsenic, nickel and zinc concentrations in excess of the ecological SAC (GIL freshwater) were reported for the primary and duplicate samples collected from MW8. Nickel and zinc in groundwater may potentially constitute a regional issue which is common in urban environments due to runoff and leaking water infrastructure. The arsenic may also be a regional issue, however, it is also considered possible that the arsenic in groundwater could potentially be associated with the historical extractive industries (although we note that a specific use of arsenic was not identified and is not expected to be associated with soil/rock quarrying).

Trace concentrations of arsenic, nickel and zinc were identified in all fill samples analysed as part of this PSI. The observed groundwater table (i.e. 2.05-2.07mBGL) was within fill material which was identified across the site and extending down to at least 1.3-12.45mBGL. As the groundwater is within the fill and due to the fact that the majority of the site area is unpaved (which could result in increased surface water infiltration), it is possible that the arsenic and other heavy metals could have leached from the fill soil and added to the contaminant load in the groundwater. Further analysis of the deeper fill soils would be required to establish whether the deeper, subsurface soils contain appreciable concentrations of heavy metals and to confirm whether this transport mechanism is contributing to the heavy metals in groundwater.

The identified concentration of heavy metals in groundwater does not pose a risk to the on-site receptors as there is no complete SPR-linkage. There could be a complete SPR-linkage to ecological receptors if there is groundwater connectivity with the creek. This requires further consideration as part of the detailed investigation and in consideration of the regional conditions.

10.2 Decision Statements

The decision statements are addressed below:

Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?

The historical information identified potential sources of contamination, being: historical mining/extractive industry (i.e. quarrying activities) on site and surrounding areas; historical levelling and filling of the site and surrounding areas as part of rehabilitation of the land following quarrying activities; and the use of the eastern part of the site by parked vehicles. It is noted that extractive industries are listed as potentially contaminating activities in the SEPP55 Planning Guidelines which triggers a need for a detailed (Stage 2) Site Investigation (DSI).

Are any results above the SAC?

Arsenic, nickel and zinc were identified above the ecological SAC for groundwater within MW8. All soil results were below the SAC.

Do potential risks associated with contamination exist, and if so, what are they?

The PSI has not identified any soil or groundwater contamination that was assessed to pose a risk to on-site receptors and/or in relation to the proposed land use. Potential risks to ecological receptors in relation to groundwater requires further assessment as part of the detailed investigation.

Is remediation required?

Based on the current dataset, JKE consider that remediation is not warranted at this point in time.

Is the site characterisation sufficient to provide adequate confidence in the above decisions?

Yes, however further detailed investigation is required to establish whether remediation will be necessary. Design of the proposed development has not been finalised. Given the historical uses of the site, observed depth of fill and identified groundwater exceedances, a detailed investigation of the site is required.

Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

The site can be made suitable for the proposed development subject to appropriate further characterisation via implementation of a DSI to address the data gaps.

In the event that remediation and/or further investigation is required, what are the recommendations for completing such work in the context of the development consent and issue of construction certificate?

Based on our experience with similar projects proceeding via the State Significant Development (SSD) planning pathway, we expect that the DSI will be required prior to the SSD approval. In the event that remediation is required, a Remediation Action Plan (RAP) would also typically be required prior to the development approval being granted. Remediation and validation (where required) would occur prior to or as part of the construction.

We note that the NSW EPA, in reviewing SSD submissions, often recommends that a NSW EPA accredited site auditor be engaged to provide a site audit statement in accordance with the CLM Act 1997. We consider it likely that this requirement will apply to this project and we recommend engaging the site auditor early in the site investigation process.

10.3 Data Gaps

An assessment of data gaps is provided in the following table:

Table 10-1: Data Gap Assessment

Data Gap	Assessment
Groundwater flow direction not confirmed / groundwater assessment limited in scope	The PSI included a limited assessment of groundwater. The groundwater flow direction was not confirmed. The groundwater conditions and quality is to be further assessed during the DSI.
Soil sampling density below minimum guideline density	Sampling was limited to approximately 50% of the minimum sampling density recommended in the EPA Sampling Design Guidelines 1995. Additionally, there is lack of laboratory data associated with deeper fill profile layers across the site. The depth of fill was also not confirmed across the site as it extended in some parts to depths greater than 12.45mBGL. Analysis was undertaken mostly on the surficial samples of fill across the site and only limited analysis conducted on one fill sample from 1.3-1.4m depth. Recommendations for additional soil sampling are included in the report to address this data gap. This data gap can be addressed as part of the DSI.
Characterisation of soils for waste classification purposes	The waste classification of fill material provided within this report is preliminary in nature due to the limited sampling and analysis program, and will require confirmation prior to off-site disposal. Based on the current results and field observations, the fill could be classified as ENM for off-site disposal or re-use purposes. This classification should be confirmed by implementation of an appropriate characterisation sampling and analysis program.

11 CONCLUSIONS AND RECOMMENDATIONS

The investigation included a review of historical information, soil sampling from 12 boreholes, 10 test pits and groundwater sampling from one monitoring well installed onsite. The site has historically been used quarrying activities and was rehabilitated from around the year 2000 via importation of material and controlled filling.

The PSI has not identified any soil or groundwater contamination that was assessed to pose a risk to on-site receptors and/or in relation to the proposed land use. Groundwater was found to be impacted by arsenic, nickel and zinc at concentrations that exceeded the ecological SAC. However, the occurrence of these heavy metals in the groundwater may be attributed to regional factors. Potential risks to ecological receptors in relation to groundwater requires further assessment as part of the detailed investigation.

The PSI has not identified any triggers for remediation, however a detailed investigation is required to establish whether remediation will be necessary. Based on the findings of the PSI, JKE are of the opinion that the site can be made suitable for the proposed development described in Section 1.1, subject to the implementation of the following recommendations:

- Prepare a Sampling, Analysis and Quality Plan (SAQP) for the DSI. If a NSW EPA accredited site auditor
 is to be engaged for the project, the auditor should review and endorse the SAQP prior to commencing
 the DSI;
- Complete the DSI in accordance with the SAQP; and
- Consider the requirement for completing further waste classification concurrently with the DSI. The
 extent of any further waste classification assessment should be discussed with the project stakeholders
 based on project risks moving forward.

Depending on the outcome of the DSI, remediation and validation may also be required. If remediation is required, we anticipate that a Remediation Action Plan (RAP) will need to be prepared as part of the development application.

At this stage, JKE consider that there is no requirement to notify the NSW EPA under the NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)¹⁸. This should be reassessed as part of the DSI.

JKE consider that the report objectives outlined in Section 1.2 have been addressed.

¹⁸ NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (referred to as Duty to Report Contamination)

12 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted
 practice for environmental consultants, with reference to applicable environmental regulatory
 authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site.
 These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the assessment. If the subject site is sold, ownership of the assessment report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the assessment was undertaken. No person should apply an assessment for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an assessment report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site assessments identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Assessment Limitations

Although information provided by a site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Assessments by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an assessment report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Assessment Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the assessment. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site assessment is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Report Figures

AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM

SITE LOCATION PLAN

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Project No: E33177PA

-igure No:

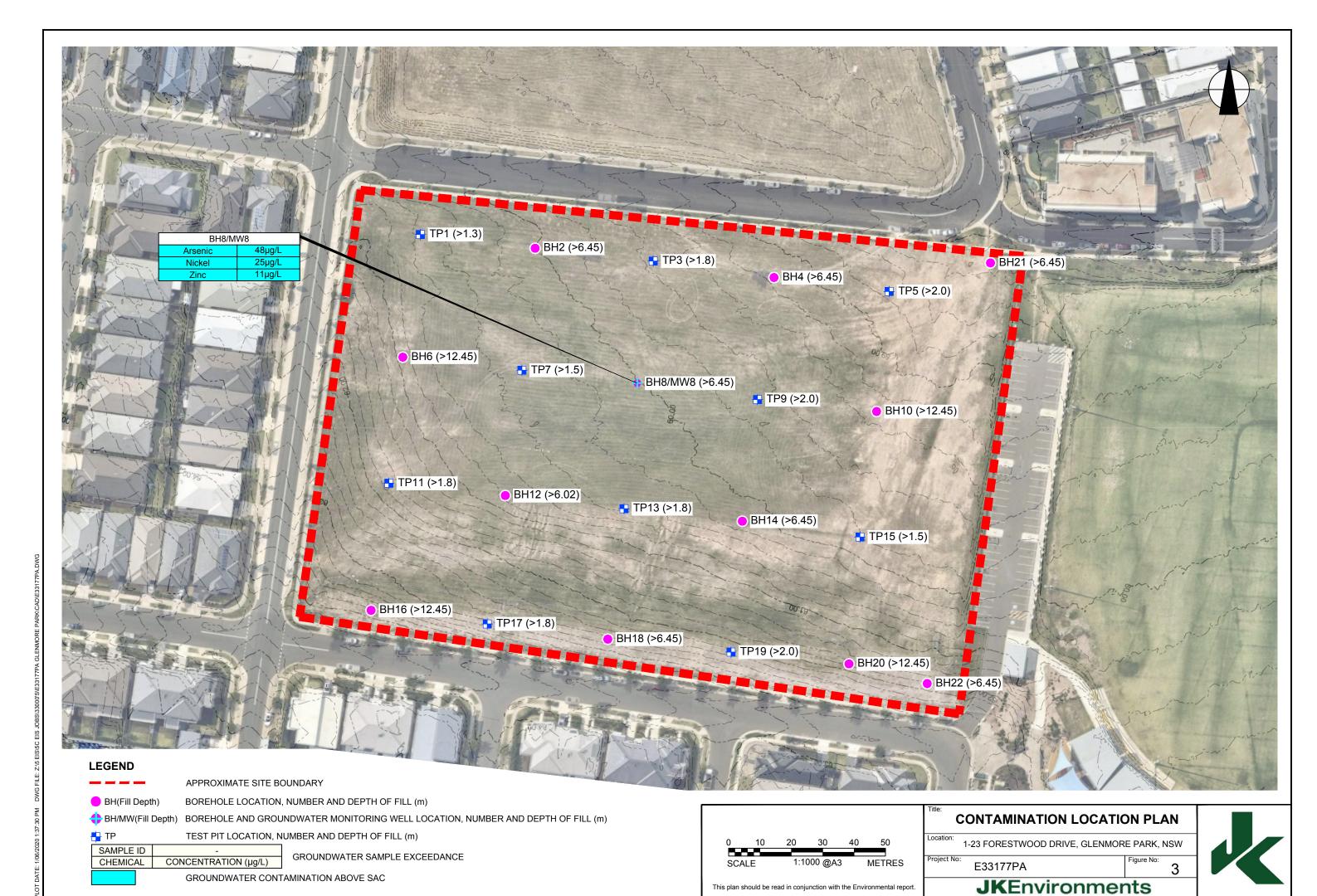
This plan should be read in conjunction with the Environmental report.

JKEnvironments

1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

JKEnvironments

E33177PA


This plan should be read in conjunction with the Environmental report

BH(Fill Depth)

BOREHOLE LOCATION, NUMBER AND DEPTH OF FILL (m)

TEST PIT LOCATION, NUMBER AND DEPTH OF FILL (m)

\$\rightarrow\$ BH/MW(Fill Depth) BOREHOLE AND GROUNDWATER MONITORING WELL LOCATION, NUMBER AND DEPTH OF FILL (m)

© JK ENVIRONMENTS

Appendix B: Laboratory Results Summary Tables

PRELIMINARY SITE INVESTIGATION (PSI) - CONTAMINATION 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW E33177PA

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: Ambient Background Concentration PCBs: Polychlorinated Biphenyls

ACM: Asbestos Containing Material PCE: Perchloroethylene (Tetrachloroethylene or Teterachloroethene)

ADWG: AustralianDrinking Water Guidelines pH_{KCL}: pH of filtered 1:20, 1M KCL extract, shaken overnight

AF: Asbestos Fines pH of filtered 1:20 1M KCl after peroxide digestion

ANZG Australian and New Zealand Guidelines PQL: Practical Quantitation Limit

B(a)P:Benzo(a)pyreneRS:Rinsate SampleCEC:Cation Exchange CapacityRSL:Regional Screening

 CEC:
 Cation Exchange Capacity
 RSL:
 Regional Screening Levels

 CRC:
 Cooperative Research Centre
 RSW:
 Restricted Solid Waste

 CT:
 Contaminant Threshold
 SAC:
 Site Assessment Criteria

ElLs: Ecological Investigation Levels SCC: Specific Contaminant Concentration

ESLs:Ecological Screening LevelsScr.:Chromium reducible sulfurFA:Fibrous AsbestosSpos.:Peroxide oxidisable SulfurGIL:Groundwater Investigation LevelsSSA:Site Specific Assessment

GSW: General Solid Waste **SSHSLs:** Site Specific Health Screening Levels

HILS: Health Investigation Levels TAA: Total Actual Acidity in 1M KCL extract titrated to pH6.5

HSLs: Health Screening Levels TB: Trip Blank

HSL-SSA: Health Screening Level-SiteSpecific Assessment TCA: 1,1,1 Trichloroethane (methyl chloroform)

kg/Lkilograms per litreTCE:Trichloroethylene (Trichloroethene)NA:Not AnalysedTCLP:Toxicity Characteristics Leaching Procedure

NC: Not Calculated TPA: Total Potential Acidity, 1M KCL peroxide digest

NEPM: National Environmental Protection Measure TS: Trip Spike

NHMRC: National Health and Medical Research Council TRH: Total Recoverable Hydrocarbons

NL: Not Limiting TSA: Total Sulfide Acidity (TPA-TAA)

NSL: No Set Limit UCL: Upper Level Confidence Limit on Mean Value OCP: Organochlorine Pesticides USEPA United States Environmental Protection Agency

OPP: Organophosphorus Pesticides VOCC: Volatile Organic Chlorinated Compounds

PAHs: Polycyclic Aromatic Hydrocarbons WHO: World Health Organisation

%w/w: weight per weightppm: Parts per million

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

- ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for new suburbs with low traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in $\mu g/L$.

TABLE S1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

						HEAVY I	METALS					PAHs			ORGANOCHL	ORINE PESTI	ICIDES (OCPs)			OP PESTICIDES (OPPs)		
All data in mg/kg unles:	s stated otherv	vise			Chromium						Total	Carcinogenic	НСВ	Endosulfan	Methoxychlor	Aldrin &	Chlordane	DDT, DDD	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
			Arsenic	Cadmium	VI	Copper	Lead	Mercury	Nickel	Zinc	PAHs	PAHs				Dieldrin		& DDE				
PQL - Envirolab Services	S		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessment Criteria	a (SAC)		100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
TP1	0.0-0.1	Fill: Silty Clay	6	<0.4	8	24	16	<0.1	10	50	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
TP1 - [LAB_DUP]	0.0-0.1	Fill: Silty Clay	6	<0.4	9	27	16	<0.1	10	47	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH2	0.0-0.2	Fill: Silty Clay	5	<0.4	9	36	16	<0.1	19	75	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP3	0.0-0.1 Fill: Silty Cl 0.0-0.1 Fill: Silty Cl 0.0-0.1 Fill: Silty Cl			<0.4	9	32	18	<0.1	14	55	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH4	0.0-0.2	Fill: Silty Clay	8	<0.4	11	30	16	<0.1	14	55	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP5	0.0-0.1	Fill: Silty Clay	7	<0.4	9	33	19	<0.1	15	61	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
вн6	0.0-0.1	Fill: Silty Clay	7	<0.4	13	24	13	<0.1	16	57	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP7	0.0-0.1	Fill: Silty Clay	<4	<0.4	4	10	6	<0.1	2	10	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP7	0.0-0.1 Fill: Silty (0.0-0.2 Fill: Silty (0.0-0.1 Fill: Silty (0.0-0.1 Fill: Silty (0.0-0.1 Fill: Silty (1.3-1.4 Fill: Silty (0.0-0.2 Fill: Silty (0.0-0.1 Fill: Silty (NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
вн8	Depth Sample Description Sample Description 0.0-0.1		5	<0.4	8	18	12	<0.1	7	30	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP9	Depth Sample Description Sample Description		7	<0.4	11	23	15	<0.1	9	36	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH10	Depth Sample Description Sample Description		6	<0.4	10	29	15	<0.1	12	47	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH10 - [LAB_DUP]	Depth Sample Descript		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP11	Sample Depth Sample Description		6	<0.4	10	26	17	<0.1	11	45	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
TP11	Sample Depth Sample Dest		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH12	Sample Depth Sample Depth Depth Sample Depth D		6	<0.4	12	25	17	<0.1	10	38	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP13	0.0-0.1	Fill: Silty Clay	8	<0.4	10	29	17	<0.1	12	47	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH14	0.0-0.2	Fill: Silty Clay	5	<0.4	10	24	15	<0.1	10	39	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP15	0.0-0.1	Fill: Silty Gravelly Clay	<4	<0.4	7	27	13	<0.1	11	42	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH16	0.0-0.2	Fill: Silty Clay	6	<0.4	12	41	26	<0.1	14	62	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP17	0.0-0.1	Fill: Silty Clay	7	<0.4	9	33	17	<0.1	13	71	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
TP17 - [LAB_DUP]	0.0-0.1	Fill: Silty Clay	6	<0.4	8	30	16	<0.1	26	77	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH18	0.0-0.2	Fill: Silty Clay	8	<0.4	9	32	21	<0.1	14	54	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP19	0.0-0.1	Fill: Silty Clay	7	<0.4	7	27	19	<0.1	12	51	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP19	0.3-0.5	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH20	0.0-0.2	Fill: Silty Clay	8	<0.4	10	32	15	<0.1	14	61	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
TP17 - [TRIPLICATE]	0.0-0.1	Fill: Silty Clay	6	<0.4	9	28	12	<0.1	14	48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP1	-	-	8	<0.4	12	27	22	<0.1	11	48	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP5	-	-	9	<0.4	12	28	22	<0.1	14	58	0.3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Number of Sam	ples		25	25	25	25	25	25	25	25	24	24	12	12	12	12	12	12	12	12	12	5
Maximum Value			9	<pql< td=""><td>13</td><td>41</td><td>26</td><td><pql< td=""><td>26</td><td>77</td><td>0.3</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	13	41	26	<pql< td=""><td>26</td><td>77</td><td>0.3</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	26	77	0.3	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

Concentration above the SAC Concentration above the PQL

VALUE Bold

TABLE S2

SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measurement
PQL - Envirolab Service	es .				25	50	0.2	0.5	1	1	1	ppm
NEPM 2013 HSL Land	Use Category	/					HSL-A/B:LC	W/HIGH DENSITY	RESIDENTIAL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
TP1	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP1 - [LAB_DUP]	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH2	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP3	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH4	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP5	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH6	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP7	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP7	1.3-1.4	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	3.1
BH8	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP9	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH10	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH10 - [LAB_DUP]	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	NA	<0.2	<0.5	<1	<3	<1	0
TP11	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP11	0.3-0.4	Fill: Silty Gravelly Clay	0m to <1m	Clay	NA	NA	NA	NA	NA	NA	NA	0
BH12	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP13	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH14	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP15	0.0-0.1	Fill: Silty Gravelly Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH16	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP17	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP17 - [LAB DUP]	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH18	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP19	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP19	0.3-0.5	Fill: Silty Clay	0m to <1m	Clay	NA	NA	NA	NA	NA	NA	NA	0
BH20	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	0
TP17 - [TRIPLICATE]	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	NA	NA	NA	NA	NA	NA	NA	-
SDUP1	-	-	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	-
SDUP5	-	-	0m to <1m	Clay	<25	<50	<0.2	<0.5	<1	<3	<1	-
Total Number of Sar	nples				26	25	26	26	26	26	26	26
Maximum Value					<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<>	<pql< td=""><td>3.1</td></pql<>	3.1

Concentration above the SAC

VALUE

Concentration above the PQL

Bold

The guideline corresponding to the concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
TP1	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP1 - [LAB_DUP]	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
BH2	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP3	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
BH4	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP5	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
BH6	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP7	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP7	1.3-1.4	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
BH8	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP9	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
BH10	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
BH10 - [LAB_DUP]	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	NA	0.7	480	NL	110	5
TP11	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP11	0.3-0.4	Fill: Silty Gravelly Clay	0m to <1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH12	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP13	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
BH14	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP15	0.0-0.1	Fill: Silty Gravelly Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
BH16	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP17	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP17 - [LAB DUP]	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
BH18	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP19	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP19	0.3-0.5	Fill: Silty Clay	0m to <1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH20	0.0-0.2	Fill: Silty Clay	0m to <1m	Clay	50	280	0.7	480	NL	110	5
TP17 - [TRIPLICATE]	0.0-0.1	Fill: Silty Clay	0m to <1m	Clay	NA	NA	NA	NA	NA	NA	NA
SDUP1	-		0m to <1m	Clay	50	280	0.7	480	NL	110	5
SDUP5		-	0m to <1m	Clay	50	280	0.7	480	NL	110	5

TABLE S3 SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS All data in mg/kg unless stated otherwise

			C ₆ -C ₁₀ (F1) plus	>C ₁₀ -C ₁₆ (F2) plus	>C ₁₆ -C ₃₄ (F3)	>C34-C40 (F4)
			BTEX	napthalene	7C ₁₆ -C ₃₄ (F3)	2C ₃₄ -C ₄₀ (14)
PQL - Envirolab Sen	vices		25	50	100	100
NEPM 2013 Land U	se Category		RE	SIDENTIAL, PARKLAND	& PUBLIC OPEN SP.	ACE
Sample Reference	Sample Depth	Soil Texture				
TP1	0.0-0.1	Fine	<25	<50	<100	<100
TP1 - [LAB_DUP]	0.0-0.1	Fine	<25	<50	<100	<100
BH2	0.0-0.2	Fine	<25	<50	<100	<100
TP3	0.0-0.1	Fine	<25	<50	<100	<100
BH4	0.0-0.2	Fine	<25	<50	<100	<100
TP5	0.0-0.1	Fine	<25	<50	<100	<100
BH6	0.0-0.1	Fine	<25	<50	<100	<100
TP7	0.0-0.1	Fine	<25	<50	<100	<100
TP7	1.3-1.4	Fine	<25	<50	<100	<100
BH8	0.0-0.2	Fine	<25	<50	<100	<100
TP9	0.0-0.1	Fine	<25	<50	<100	<100
BH10	0.0-0.2	Fine	<25	<50	<100	<100
BH10 - [LAB_DUP]	0.0-0.2	Fine	<25	NA	NA	NA
TP11	0.0-0.1	Fine	<25	<50	<100	<100
TP11	0.3-0.4	Fine	NA	NA	NA	NA
BH12	0.0-0.2	Fine	<25	<50	<100	<100
TP13	0.0-0.1	Fine	<25	<50	<100	<100
BH14	0.0-0.2	Fine	<25	<50	<100	<100
TP15	0.0-0.1	Fine	<25	<50	<100	<100
BH16	0.0-0.2	Fine	<25	<50	<100	<100
TP17	0.0-0.1	Fine	<25	<50	<100	<100
TP17 - [LAB_DUP]	0.0-0.1	Fine	<25	<50	<100	<100
BH18	0.0-0.2	Fine	<25	<50	<100	<100
TP19	0.0-0.1	Fine	<25	<50	<100	<100
TP19	0.3-0.5	Fine	NA	NA	NA	NA
BH20	0.0-0.2	Fine	<25	<50	<100	<100
TP17 -	0.0-0.1	Fine	NA	NA	NA	NA
SDUP1	-	Fine	<25	<50	<100	<100
SDUP5	-	Fine	<25	<50	<100	<100
Total Number of Sa	malos		26	25	25	25
i otal Number of Sa Maximum Value	illipies		<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>

Concentration above the SAC Concentration above the PQL

VALUE Bold

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
TP1	0.0-0.1	Fine	800	1000	3500	10000
TP1 - [LAB_DUP]	0.0-0.1	Fine	800	1000	3500	10000
BH2	0.0-0.2	Fine	800	1000	3500	10000
TP3	0.0-0.1	Fine	800	1000	3500	10000
BH4	0.0-0.2	Fine	800	1000	3500	10000
TP5	0.0-0.1	Fine	800	1000	3500	10000
BH6	0.0-0.1	Fine	800	1000	3500	10000
TP7	0.0-0.1	Fine	800	1000	3500	10000
TP7	1.3-1.4	Fine	800	1000	3500	10000
BH8	0.0-0.2	Fine	800	1000	3500	10000
TP9	0.0-0.1	Fine	800	1000	3500	10000
BH10	0.0-0.2	Fine	800	1000	3500	10000
BH10 - [LAB_DUP]	0.0-0.2	Fine	800			
TP11	0.0-0.1	Fine	800	1000	3500	10000
TP11	0.3-0.4	Fine				
BH12	0.0-0.2	Fine	800	1000	3500	10000
TP13	0.0-0.1	Fine	800	1000	3500	10000
BH14	0.0-0.2	Fine	800	1000	3500	10000
TP15	0.0-0.1	Fine	800	1000	3500	10000
BH16	0.0-0.2	Fine	800	1000	3500	10000
TP17	0.0-0.1	Fine	800	1000	3500	10000
TP17 - [LAB_DUP]	0.0-0.1	Fine	800	1000	3500	10000
BH18	0.0-0.2	Fine	800	1000	3500	10000
TP19	0.0-0.1	Fine	800	1000	3500	10000
TP19	0.3-0.5	Fine				
BH20	0.0-0.2	Fine	800	1000	3500	10000
TP17 -	0.0-0.1	Fine				
SDUP1	-	Fine	800	1000	3500	10000
SDUP5	-	Fine	800	1000	3500	10000

TABLE S4
SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA
All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C ₁₀ -C ₁₆	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Service	ces	25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct conf	tact Criteria	4,400	3,300	4,500	6,300	100	14,000	4,500	12,000	1,400	
Site Use				RESIDE	NTIAL WITH AC	CESSIBLE SOIL-	DIRECT SOIL C	ONTACT			
Sample Reference	Sample Depth										
TP1	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP1 - [LAB_DUP]	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH2	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP3	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH4	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP5	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH6	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP7	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP7	1.3-1.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	3.1
BH8	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP9	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH10	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH10 - [LAB_DUP]	0.0-0.2	<25	NA	NA	NA	<0.2	<0.5	<1	<3	<1	0
TP11	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP11	0.3-0.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
BH12	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP13	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH14	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP15	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH16	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP17	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP17 - [LAB_DUP]	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH18	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP19	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP19	0.3-0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
BH20	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
TP17 - [TRIPLICATE]	0.0-0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	-
SDUP1	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
SDUP5	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
Total Number of Sam	ples	26	25	25	25	26	26	26	26	26	26
Maximum Value		<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>3.1</td></pql<></td></pql<>	<pql< td=""><td>3.1</td></pql<>	3.1

Concentration above the SAC Concentration above the PQL

VALUE

Bold

TABLE SS
ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS
HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

								FIELD DATA											LABORA	TORY DATA						
Date Sampled	Sample	Sample Depth	Visible ACM in top 100mm	Approx. Volume of Soil (L)	Soil Mass (g)	Mass ACM (g)	Mass Asbestos in ACM (g)	[Asbestos from ACM in soil] (%w/w)	Mass ACM <7mm (g)	Mass Asbestos in ACM <7mm (g)	[Asbestos from ACM <7mm in soil] (%w/w)		Mass Asbestos in FA (g)	[Asbestos from FA in soil] (%w/w)	Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation (g)	FA and AF Estimation (g)	ACM >7mm Estimation %(w/w)	
SAC			No					0.01			0.001			0.001											0.01	0.001
12/05/2020	TP1	0.0-0.1	No	10	8,800	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP1	0.1-0.7	NA	10	12,630	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP1	0.7-1.3	NA	10	12,660	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP3	0.0-0.1	No	10	11,750	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP3	0.1-0.9	NA	10	12,480	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP3	0.9-1.8	NA	10	12,210	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP5	0.0-0.1	No	10	10,230	No ACM observed			No ACM <7mm observed			No FA observed			242855	TP5	0.0-0.1	612.47	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
12/05/2020	TP5	0.1-1.1	NA	10	13,550	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP5	1.1-2.0	NA	10	12,260	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP7	0.0-0.3	No	10	9,020	No ACM observed			No ACM <7mm observed			No FA observed			242855	TP7	0.0-0.1	522.51	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
12/05/2020	TP7	0.3-1.2	NA	10	10,640	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP7	1.2-1.5	NA	10	12,310	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP9	0.0-0.1	No	10	12,260	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP9	0.1-1.0	NA	10	13,040	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP9	1.0-2.0	NA	10	11,960	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP11	0.0-0.1	No	10	9,020	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP11	0.1-1.1	NA	10	14,520	No ACM observed			No ACM <7mm observed			No FA observed			242855	TP11	0.3-0.4	737.46	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
12/05/2020	TP11	1.1-1.8	NA	10	12,790	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP13	0.0-0.1	No	10	11,280	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP13	0.1-0.6	NA	10	12,280	No ACM observed			No ACM <7mm observed			No FA observed							-							
12/05/2020	TP13	0.6-1.6	NA	10	13,460	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP13	1.6-1.8	NA	10	10,650	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP15	0.0-0.1	No	10	12,680	No ACM observed			No ACM <7mm observed			No FA observed			242855	TP15	0.0-0.1	802.62	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
12/05/2020	TP15	0.1-1.1	NA	10	12,260	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP15	1.1-1.5	NA	10	11,780	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP17	0.0-0.1	No	10	10,200	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP17	0.1-1.1	NA	10	10,120	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP17	1.1-1.8	NA	10	10,940	No ACM observed		-	No ACM <7mm observed	-	-	No FA observed										-				
12/05/2020	TP19	0.0-0.1	No	10	13,240	No ACM observed			No ACM <7mm observed			No FA observed														
12/05/2020	TP19	0.1-1.1	NA	10	13,040	No ACM observed			No ACM <7mm observed			No FA observed			242855	TP19	0.3-0.5	685.77	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
12/05/2020	TP19	1.1-2.0	NA	10	12,860	No ACM observed			No ACM <7mm observed			No FA observed									-	-				

Concentration above the SAC VALUE

TABLE S6
SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLS All data in mg/kg unless stated otherwise

Land Use Category													IRBAN RESIDENTIA	AL AND PURI	IC OPEN SPACE								•
Land Ose Category							1		AGED HEAV	Y METALS-EILs			EIL		IC OPEN SPACE				ESLs				
				pН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Servi	ces			-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background	Concentration	n (ABC)		-	-	-	NSL	9	11	17	5	24	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture	•																			
TP1	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	6	8	24	16	10	50	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP1 - [LAB_DUP]	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	6	9	27	16	10	47	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH2	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	5	9	36	16	19	75	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP3	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	7	9	32	18	14	55	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH4	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	8	11	30	16	14	55	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP5	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	7	9	33	19	15	61	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH6	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	7	13	24	13	16	57	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP7	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	<4	4	10	6	2	10	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP7	1.3-1.4	Fill: Silty Clay	Fine	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	NA
BH8	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	5	8	18	12	7	30	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP9	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	7	11	23	15	9	36	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH10	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	6	10	29	15	12	47	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH10 - [LAB_DUP]	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1	NA	<25	NA	NA	NA	<0.2	<0.5	<1	<3	NA
TP11	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	6	10	26	17	11	45	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP11	0.3-0.4	Fill: Silty Gravelly Clay	Fine	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH12	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	6	12	25	17	10	38	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP13	0.0-0.1	Fill: Silty Clay	Fine	NA NA	NA	NA NA	8	10	29	17	12	47	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH14	0.0-0.2	Fill: Silty Clay	Fine	NA NA	NA NA	NA NA	5 <4	10 7	24	15	10	39	<1	NA 10.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP15 BH16	0.0-0.1	Fill: Silty Gravelly Clay	Fine	NA NA	NA NA	NA NA	<4	12	27 41	13 26	11 14	42 62	<1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<3 <3	<0.05
TP17	0.0-0.2	Fill: Silty Clay Fill: Silty Clay	Fine Fine	NA NA	NA NA	NA NA	7	9	33	17	13	71	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05 <0.05
TP17 - [LAB DUP]	0.0-0.1	Fill: Silty Clay	Fine	NA NA	NA NA	NA NA	6	8	30	16	26	77	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH18	0.0-0.1	Fill: Silty Clay	Fine	NA NA	NA NA	NA NA	8	9	32	21	14	54	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP19	0.0-0.1	Fill: Silty Clay	Fine	NA NA	NA.	NA NA	7	7	27	19	12	51	<1	NA NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP19	0.3-0.5	Fill: Silty Clay	Fine	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA.	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA
BH20	0.0-0.2	Fill: Silty Clay	Fine	NA NA	NA.	NA.	8	10	32	15	14	61	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
TP17 - [TRIPLICATE]	0.0-0.1	Fill: Silty Clay	Fine	NA.	NA.	NA.	6	9	28	12	14	48	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA.	NA NA	NA NA	NA
SDUP1	-	-	Fine	NA.	NA	NA.	8	12	27	22	11	48	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
SDUP5	-	-	Fine	NA	NA	NA	9	12	28	22	14	58	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
		1																	-			-	
Total Number of San	nples			0	0	0	25	25	25	25	25	25	26	12	26	25	25	25	26	26	26	26	24
Maximum Value				NA	NA	NA	9	13	41	26	26	77	<pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>

oncentration above the PQL

The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

EIL AND ESL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Soil Texture	рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
TP1	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
TP1 - [LAB_DUP]	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
BH2	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170		180	120	1300	5600	65	105	125	45	20
TP3	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
BH4	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	-	180	120	1300	5600	65	105	125	45	20
TP5	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
BH6	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	-	180	120	1300	5600	65	105	125	45	20
TP7	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
TP7	1.3-1.4	Fill: Silty Clay	Fine	NA	NA	NA							170	-	180	120	1300	5600	65	105	125	45	-
BH8	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	-	180	120	1300	5600	65	105	125	45	20
TP9	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170		180	120	1300	5600	65	105	125	45	20
BH10	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
BH10 - [LAB DUP]	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA							170		180				65	105	125	45	
TP11	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
TP11	0.3-0.4	Fill: Silty Gravelly Clay	Fine	NA	NA	NA																	
BH12	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170		180	120	1300	5600	65	105	125	45	20
TP13	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
BH14	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	-	180	120	1300	5600	65	105	125	45	20
TP15	0.0-0.1	Fill: Silty Gravelly Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
BH16	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170		180	120	1300	5600	65	105	125	45	20
TP17	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
TP17 - [LAB DUP]	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
BH18	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170		180	120	1300	5600	65	105	125	45	20
TP19	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170		180	120	1300	5600	65	105	125	45	20
TP19	0.3-0.5	Fill: Silty Clay	Fine	NA	NA	NA																	
BH20	0.0-0.2	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95	170	180	180	120	1300	5600	65	105	125	45	20
TP17 - [TRIPLICATE]	0.0-0.1	Fill: Silty Clay	Fine	NA	NA	NA	100	200	70	1100	35	95											
SDUP1	-	-,,	Fine	NA	NA	NA	100	200	70	1100	35	95	170		180	120	1300	5600	65	105	125	45	20
SDUP5	_		Fine	NA	NA	NA	100	200	70	1100	35	95	170		180	120	1300	5600	65	105	125	45	20

TABLE S7
SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES
All data in mg/kg unless stated otherwise

						HEAVY	METALS				PA	Hs		OC/OP	PESTICIDES		Total			TRH				BTEX CON	MPOUNDS		I
			Arsenic	Cadmium	Chromium	Connor	Lead	Mercury	Nickel	Zinc	Total	B(a)P	Total	Chloropyrifos	Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
			Arsenic	Caumium	Chromium	Copper	Leau	iviercury	Nickei	ZITIC	PAHs		Endosulfans		Harmful	Scheduled						C ₁₀ -C ₃₆			benzene	Xylenes	
PQL - Envirolab Services	5		4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
General Solid Waste CT:	1		100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
General Solid Waste SC	C1		500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Solid Waste (CT2		400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Solid Waste S	SCC2		2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	-
	Sample														'												
Sample Reference	Depth	Sample Description																									
TP1	0.0-0.1	Fill: Silty Clay	6	<0.4	8	24	16	<0.1	10	50	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
TP1 - [LAB_DUP]	0.0-0.1	Fill: Silty Clay	6	<0.4	9	27	16	<0.1	10	47	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH2	0.0-0.2	Fill: Silty Clay	5	<0.4	9	36	16	<0.1	19	75	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
TP3	0.0-0.1	Fill: Silty Clay	7	<0.4	9	32	18	<0.1	14	55	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH4	0.0-0.2	Fill: Silty Clay	8	<0.4	11	30	16	<0.1	14	55	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
TP5	0.0-0.1	Fill: Silty Clay	7	<0.4	9	33	19	<0.1	15	61	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH6	0.0-0.1	Fill: Silty Clay	7	<0.4	13	24	13	<0.1	16	57	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
TP7	0.0-0.1	Fill: Silty Clay	<4	<0.4	4	10	6	<0.1	2	10	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
TP7	1.3-1.4	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH8	0.0-0.2	Fill: Silty Clay	5	<0.4	8	18	12	<0.1	7	30	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
TP9	0.0-0.1	Fill: Silty Clay	7	<0.4	11	23	15	<0.1	9	36	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH10	0.0-0.2	Fill: Silty Clay	6	<0.4	10	29	15	<0.1	12	47	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH10 - [LAB_DUP]	0.0-0.2	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<25	NA	NA	NA	NA	<0.2	<0.5	<1	<3	NA
TP11	0.0-0.1	Fill: Silty Clay	6	<0.4	10	26	17	<0.1	11	45	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
TP11	0.3-0.4	Fill: Silty Gravelly Clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 0.5	NA	NA	NA	NA	NA	NA .	NA	NA	Not Detected
BH12	0.0-0.2	Fill: Silty Clay	6	<0.4	12	25	17	<0.1	10	38	<0.05	<0.05	NA O 4	NA 10.1	NA O.4	NA .0.1	NA -0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA NA
TP13	0.0-0.1	Fill: Silty Clay	8	<0.4	10	29	17	<0.1	12	47	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA NA
BH14	0.0-0.2	Fill: Silty Clay	5	<0.4	10 7	24	15	<0.1	10	39	<0.05	<0.05	NA r0.1	NA co.1	NA ro.1	NA co.1	NA c0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA Not Detected
TP15 BH16	0.0-0.1	Fill: Silty Gravelly Clay Fill: Silty Clay	<4 6	<0.4	12	27 41	13 26	<0.1 <0.1	11 14	42 62	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	Not Detected NA
TP17	0.0-0.2	Fill: Silty Clay	7	-	9	33	17		13	71	<0.05	<0.05	<0.1	<0.1	NA <0.1	<0.1	<0.1	<25	<50 <50	<100	<100	<50 <50	<0.2	<0.5		<3	NA NA
TP17 - [LAB DUP]	0.0-0.1	Fill: Silty Clay	6	<0.4	8	30	16	<0.1 <0.1	26	77	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1 <1	<3	NA NA
BH18	0.0-0.1	Fill: Silty Clay	8	<0.4	9	32	21	<0.1	14	54	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA NA
TP19	0.0-0.2	Fill: Silty Clay	7	<0.4	7	27	19	<0.1	12	51	<0.05	<0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA NA
TP19	0.3-0.5	Fill: Silty Clay	NA	NA	NA	NA NA	NA NA	NA	NA.	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	Not Detected
BH20	0.0-0.2	Fill: Silty Clay	8	<0.4	10	32	15	<0.1	14	61	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA NA
TP17 - [TRIPLICATE]	0.0-0.1	Fill: Silty Clay	6	<0.4	9	28	12	<0.1	14	48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
SDUP1	-	-	8	<0.4	12	27	22	<0.1	11	48	<0.05	<0.05	NA NA	NA NA	NA NA	NA.	NA.	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA NA
SDUP5	-	-	9	<0.4	12	28	22	<0.1	14	58	0.3	<0.05	NA	NA NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA NA
																											ĺ
Total Number of Sam	ples		25	25	25	25	25	25	25	25	24	24	12	12	12	12	12	26	25	25	25	25	26	26	26	26	5
Total Number of Samples Maximum Value			9	<pql< td=""><td>13</td><td>41</td><td>26</td><td><pql< td=""><td>26</td><td>77</td><td>0.3</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	13	41	26	<pql< td=""><td>26</td><td>77</td><td>0.3</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	26	77	0.3	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2 Concentration above PQL

PRELIMINARY SITE INVESTIGATION (PSI) - CONTAMINATION 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW E33177PA

TABLE S	3 /QC SUMMARY																																																									
		TRH C6 - C10	TRH >C10-C16	TRH >C16-C34 TRH >C34-C40	Benzene	Toluene	Ethylbenzene m+n-xvlene	o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	HCB	alpha-BHC	gamma- BHC	beta- BHC	Heptachlor	delta- BHC	Aldrin	Heptachlor Epoxide	Gamma- Chlordane	alpha- chlordane	Endosulfan I	pp- DDE Dieldrin	Endrin	DDD-dd	Endosulfan II	pp-DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychior	Azinprios-metriyi (Gutnion) Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dichlorvos	Dimethoate	Fenitrothion	Malathion	Parathion	Ronnel	Total PCBS	Arsenic	Cadmium Chromium VI	Copper	Lead	Mercury	Nickel Znc	
	PQL Envirolab SYD	25	50	100 100	0.2			2 1				0.1	0.1 0.	.1 0.1	0.1		0.1	0.2	0.05	0.1	0.1 0					0.1	0.1	0.1	0.1	0.1	0.1	0.1 (0.1 0									0.1	0.1	0.1			.1 0.1	0.1	0.1	0.1	0.1	4 0).4 1	. 1			1 1	
	PQL Envirolab VIC	25	50	100 100	0.2	0.5 1	.0 2.	.0 1.0	0.1	0.1	0.1	0.1	0.1 0.	.1 0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1 0	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 (0.1 (0.1	1 0.1	0.1	0.1	0.1	0.1	0.1 0.	.1 0.	.1 0.1	0.1	0.1	0.1	0.1	0.1 0	.1 0.1	0.1	0.1	0.1	0.1	4.0	1.4 1.0	0 1.0	1.0	0.1	1.0 1.0	1
																						- 1																																				
Intra	TP1 0.0-0.1	<25	<50	<100 <10	<0.2	<0.5	<1 <	2 <1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	1 <0.1	<0.1	<0.1	<0.2	<0.05	<0.1	<0.1 <	.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <	0.1 <0	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0.:	1 <0.1	<0.1	<0.1	<0.1	6 <	0.4 8	8 24	16	<0.1	10 50	Л
laboratory	SDUP1 -	<25	<50	<100 <10	<0.2	<0.5	<1 <	2 <1	< 0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	1 <0.1	<0.1	<0.1	<0.2	<0.05	<0.1	<0.1 <	.1 N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA N	A NA	NA	NA	NA	NA	NA N	IA N	IA NA	NA.	NA	NA	NA	NA N	IA NA	NA.	NA	NA	NA	8 <	0.4 17	.2 27	22	<0.1	11 48	j.
duplicate	MEAN	nc	nc	nc nc	nc	nc r	nc n	ic nc	nc	nc	nc	nc	nc n	nc no	nc	nc	nc	nc	nc	nc	nc r	c no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc n	nc n	nc nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	7 1	nc 10	.0 25.5	19	nc	10.5 49	,
	RPD %	nc	nc	nc nc	nc	nc r	nc n	ic nc	nc	nc	nc	nc	nc n	nc no	nc	nc	nc	nc	nc	nc	nc r	c no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	e nc	nc	nc	nc	nc	nc n	nc n	nc nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	29%	nc 409	12%	32%	nc	10% 4%	
																																																										П
Inter	TP5 0.0-0.1	<25	<50	<100 <10	<0.2	<0.5	<1 <	2 <1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	1 <0.1	<0.1	<0.1	<0.2	<0.05	<0.1	(0.1 <	.1 <0.	1 <0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	:0.1 <	0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1 <0	0.1 <0	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0.:	1 <0.1	<0.1	<0.1	<0.1	7 <	0.4 9	33	19	<0.1	15 61	
laboratory	SDUP5 -	<25	<50	<100 <10	<0.2	<0.5	<1 <	2 <1	0.1	<0.1	<0.1	<0.1	0.2 <0	0.1 <0.	1 <0.1	<0.1	< 0.1	<0.2	<0.05	<0.1	<0.1 <	.1 N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA I	NA N	A NA	NA	NA	NA	NA	NA N	IA N	IA NA	NA.	NA	NA	NA	NA N	IA NA	NA	NA	NA	NA	9 <	0.4 17	.2 28	22	<0.1	14 58	i
duplicate	MEAN	nc	nc	nc nc	nc	nc r	nc n	ic nc	0.075	nc	nc	nc 0).125 n	nc no	nc	nc	nc	nc	nc	nc	nc r	c no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	e nc	nc	nc	nc	nc	nc n	nc n	nc nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	8 1	nc 10	.5 30.5	20.5	nc	14.5 59.5	.5
	RPD %	nc	nc	nc nc	nc	nc r	nc n	ic nc	67%	nc	nc	nc 1	120% n	nc no	nc	nc	nc	nc	nc	nc	nc r	c no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	nc	nc	nc	nc	nc	nc n	nc n	nc nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	25%	nc 299	9% 16%	15%	nc	7% 5%	6
																																																										1
Field	TB-S1 -	NA	NA	NA NA	<0.2	<0.5	<1 <	2 <1	NA	NA	NA	NA	NA N	IA NA	A NA	NA	NA	NA	NA	NA	NA N	A NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA I	NA N	A NA	NA	NA	NA	NA	NA N	IA N	IA NA	NA.	NA	NA	NA	NA N	IA NA	NA	NA	NA	NA	NA I	NA NA	IA NA	NA	NA	NA NA	4
Blank	15/05/20																																																									
																																																										1
Trip	TS-S1	-	-		99%	98% 9	9% 10	0% 100%	-	-	-	-			-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-				-	-	-	-	-		-	-	-	-	-			T - 1			П
Spike	15/05/20																																																									7
_	Result outside of QA/QC	acceptano	ce criteria	1																																																						

PRELIMINARY SITE INVESTIGATION (PSI) - CONTAMINATION 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW E33177PA

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

CRC:

ADWG: AustralianDrinking Water Guidelines **PCBs:** Polychlorinated Biphenyls

ANZG Australian and New Zealand Guidelines PCE: Perchloroethylene (Tetrachloroethylene or Tetrachloroethene)

RS:

B(a)P: Benzo(a)pyrene PQL: **Practical Quantitation Limit**

Cooperative Research Centre Rinsate Sample **Ecological Screening Levels** ESLs: RSL: **Regional Screening Levels** GIL: **Groundwater Investigation Levels** SAC: Site Assessment Criteria HILs: **Health Investigation Levels** SSA: Site Specific Assessment

HSLs: **Health Screening Levels SSHSLs**: Site Specific Health Screening Levels

 $\textbf{HSL-SSA:} \ \ \textbf{Health Screening Level-SiteSpecific Assessment}$ TB: Trip Blank NA: Not Analysed TCA:

1,1,1 Trichloroethane (methyl chloroform) NC: Not Calculated TCE: Trichloroethylene (Trichloroethene)

NEPM: National Environmental Protection Measure TS: Trip Spike TRH:

NHMRC: National Health and Medical Research Council Total Recoverable Hydrocarbons

NL: **Not Limiting** UCL: Upper Level Confidence Limit on Mean Value No Set Limit **USEPA** United States Environmental Protection Agency NSL: OCP: Organochlorine Pesticides **VOCC:** Volatile Organic Chlorinated Compounds

OPP: Organophosphorus Pesticides WHO: World Health Organisation PAHs: Polycyclic Aromatic Hydrocarbons

ppm: Parts per million

SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO ECOLOGICAL GILS SAC All results in µg/L unless stated otherwise. PQL Envirolab SAMPLES MW8 WDUP1 2018 Services sh Wat Inorganic Compounds and Parameters NA NA Electrical Conductivity (uS/cm) 1 NSL Turbidity (NTU)

Metals and Metalloids Arsenic (As III) 0.2 3.3 1.4 3.4 admium 0.1 <0.1 <1 <0.1 <1 hromium (SAC for Cr III adopted) <1 <1 <1 0.06 Total Mercury (inorganic) 0.05 <0.05 < 0.05 11 Monocyclic Aromatic Hydrocarbons (BTEX Co 950 180 thylbenzene 80 <1 <2 <1 <2 m+p-xylene o-xylene Total xylenes 350 NSL <1 <1 Volatile Organic Compounds (VOCs), including ch ichlorodifluoromethane NSL <10 NA Chloromethane Vinyl Chloride <10 <10 NA
NA
NA
NA
NA
NA
NA
NA
NA
NA 10 10 10 Bromomethane NSL NSL <10 hloroethane <10 <10 <1 NSL 700 NSL 90 Trichlorofluoromethane 1,1-Dichloroethene rans-1,2-dichloroethene <1 1.1-dichloroethane <1 <1 <1 cis-1,2-dichloroethene NSL NSL romochloromethane 370 NSL 1900 Chloroform <1 <1 <1 NA NA NA NA 2,2-dichloropropane 1,2-dichloroethane 1,1,1-trichloroethane 1,1-dichloropropene 270 NSL <1 <1 Cyclohexane Carbon tetrachloride Benzene 950 NSL <1 <1 Dibromomethane 1,2-dichloropropane Trichloroethene 900 330 Bromodichloromethane NSL NSL <1 ans-1,3-dichloropropene <1 <1 <1 cis-1,3-dichloropropene 1,1,2-trichloroethane NSL 6500 Toluene 180 1100 <1 <1 <1 <1 1.3-dichloropropane Dibromochloromethane 1,2-dibromoethane NSL 70 NSL 55 80 etrachloroethene <1 <1 <1 <1 1,1,1,2-tetrachloroethane Chlorobenzene Ethylbenzene NSL 75 NSL 400 Bromoform <1 <2 <1 Styrene 1,1,2,2-tetrachloroethane <1 350 NSL 30 NSL o-xylene 1,2,3-trichloropropane <1 <1 sopropylbenzene Bromobenzene n-propyl benzene 2-chlorotoluene NSL NSL NSL NSL NSL NSL NA NA NA NA NA NA <1 -chlorotoluene 1.3.5-trimethyl benzene Tert-butyl benzene 1,2,4-trimethyl benzene 1,3-dichlorobenzene NSL 60 NSL 160 Sec-butyl benzene NA NA NA NA NA NA <1 <1 <1 <1 1,4-dichlorobenzene 4-isopropyl toluene 1,2-dichlorobenzene NSL NSL 85 NSL -butyl benzene <1 <1 <1 <1 1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene lexachlorobutadiene 1,2,3-trichlorobenzene
Polycyclic Aromatic Hydrocarbons (PAHs) <0.2 <0.2 0.2 16 Iaphthalene NSL cenaphthylene < 0.1 <0.1 <0.1 <0.1 cenaphthene luorene 0.1 0.1 0.1 henanthrene 0.6 Anthracene 0.1 0.1 0.1 0.1 0.1 0.2 0.01 <0.1 <0.1 1 NSL NSL NSL yrene enzo(a)anthracene <0.1 <0.1 <0.2 <0.1 Chrysene Benzo(b,j+k)fluoranthene Benzo(a)pyrene NSL 0.1 0.1 <0.1 Indeno(1,2,3-c,d)pyrene NSL <0.1 NSL <0.1 Concentration above the SAC oncentration above the PQL

TABLE G2 GROUNDWATER LABORATORY RESULTS COMPARED TO SITE SPECIFIC HSLs - RISK ASSESSMENT All results in $\mu\text{g}/\text{L}$ unless stated otherwise.

	PQL	NHMRC	WHO 2008	USEPA RSL	SAN	1PLES
	Envirolab	ADWG 2011		Tapwater	MW8	WDUP1
	Services	(v3.5 2018)		2017		
Total Recoverable Hydrocarbons (TRH)	•	•	'			-
C ₆ -C ₉ Aliphatics (assessed using F1)	10	-	15000	-	<10	<10
>C ₉ -C ₁₄ Aliphatics (assessed using F2)	50	-	100	-	<50	<50
Monocyclic Aromatic Hydrocarbons (BTEX Compo	ounds)					
Benzene	1	1	-	-	<1	<1
Toluene	1	800	-	-	<1	<1
Ethylbenzene	1	300	-	-	<1	<1
Total xylenes	2	600	_	-	<2	<2
Polycyclic Aromatic Hydrocarbons (PAHs)				L		
Naphthalene	1	_	-	6.1	<1	<1
Volatile Organic Compounds (VOCs), including ch				0.1		
Dichlorodifluoromethane	10		_	-	<10	NA
Chloromethane	10	_	_	-	<10	NA
Vinyl Chloride	10	0.3	-	-	<10	NA NA
Bromomethane	10	-	-	-	<10	NA
Chloroethane	10	-	-	-	<10	NA
Trichlorofluoromethane	10	-	-	-	<10	NA
1,1-Dichloroethene	1	30	-	-	<1	NA
Trans-1,2-dichloroethene	1	60	-	-	<1	NA
1,1-dichloroethane	1	-	-	-	<1	NA
Cis-1,2-dichloroethene	1	60	-	-	<1	NA
Bromochloromethane	1	250	-	-	<1	NA
Chloroform	1		-	-	<1	NA
2,2-dichloropropane	1	-	-	-	<1	NA
1,2-dichloroethane	1	3	-	-	<1	NA
1,1,1-trichloroethane	1	-	-	-	<1	NA
1,1-dichloropropene	1	-	-	-	<1	NA
Cyclohexane	1	-	-	-	<1	NA
Carbon tetrachloride	1	3	-	-	<1	NA
Benzene	1	1	-	-	<1	NA
Dibromomethane	1	-	-	-	<1	NA
1,2-dichloropropane	1	-	-	-	<1	NA
Trichloroethene	1	_	-	-	<1	NA
Bromodichloromethane	1	_	-	-	<1	NA
trans-1,3-dichloropropene	1	100		-	<1	NA
cis-1,3-dichloropropene	1	100	_	_	<1	NA
1,1,2-trichloroethane	1	-	_	-	<1	NA NA
Toluene		800		-	<1	
	1		-			NA NA
1,3-dichloropropane	1	-	-	-	<1	NA
Dibromochloromethane	1	-	-	-	<1	NA NA
1,2-dibromoethane	1	-	-	-	<1	NA
Tetrachloroethene	1	50	-	-	<1	NA
1,1,1,2-tetrachloroethane	1	-	-	-	<1	NA
Chlorobenzene	1	300	-	-	<1	NA
Ethylbenzene	1	300	-	-	<1	NA
Bromoform	1	-	-	-	<1	NA
m+p-xylene	2	-	-	-	<2	NA
Styrene	1	30	-	-	<1	NA
1,1,2,2-tetrachloroethane	1	-	-	-	<1	NA
o-xylene	1	-	-	-	<1	NA
1,2,3-trichloropropane	1	-	-	-	<1	NA
Isopropylbenzene	1	-	-	-	<1	NA
Bromobenzene	1	-	-	-	<1	NA
n-propyl benzene	1	-	-	-	<1	NA
2-chlorotoluene	1	-	-	-	<1	NA
4-chlorotoluene	1	-	-	-	<1	NA
1,3,5-trimethyl benzene	1	-	-	-	<1	NA
Tert-butyl benzene	1	-	-	-	<1	NA
1,2,4-trimethyl benzene	1	-	-	-	<1	NA
1,3-dichlorobenzene	1	20	-	-	<1	NA
Sec-butyl benzene	1	-	-	-	<1	NA
1,4-dichlorobenzene	1	40	_	-	<1	NA NA
4-isopropyl toluene	1	-	_	-	<1	NA
1,2-dichlorobenzene	1	1500	-	-	<1	NA NA
n-butyl benzene	1	-	-	-	<1	NA
1,2-dibromo-3-chloropropane	1	-	-	-	<1	NA
1,2,4-trichlorobenzene	1	30	-	-	<1	NA
1,2,3-trichlorobenzene Hexachlorobutadiene	1	7	-	-	<1 <1	NA NA
			_	_		

Concentration above the SAC Concentration above the PQL GIL >PQL Bold Red

VALUE

TABLE G3 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO HUMAN CONTACT GILS All results in $\mu g/L$ unless stated otherwise.

	PQL Envirolab	Recreational		IPLES WIDLING
	Envirolab Services	(10 x NHMRC ADWG)	MW8	WDUP1
norganic Compounds and Parameters H		6.5 - 8.5	7.1	NA
lectrical Conductivity (μS/cm)	1	NSL	6100	NA
urbidity (NTU)		NSL	NA	NA
Metals and Metalloids		100		
rsenic (As III)	1	100	48	47
admium :hromium (total)	0.1	20 500	<0.1 <1	<0.1 <1
Copper	1	20000	<1	<1
ead	1	100	<1	<1
otal Mercury (inorganic)	0.05	10	<0.05	<0.05
lickel	1	200	25	25
linc	1	30000	9	11
Monocyclic Aromatic Hydrocarbons (BTEX Con				
enzene	1	10	<1	<1
oluene	1	8000	<1	<1
thylbenzene	1	3000	<1	<1
n+p-xylene	2	NSL	<2	<2
-xylene otal xylenes	2	NSL 6000	<1 <2	<1 <2
olativieries /olatile Organic Compounds (VOCs), including			ν2	
Dichlorodifluoromethane	10	NSL	<10	NA
Chloromethane	10	NSL	<10	NA NA
romomethane	10	3 NSL	<10 <10	NΑ
romomethane	10			NA NA
hloroethane	10	NSL	<10	NA NA
1 Dichloroethone	10	NSL 200	<10	NA NA
,1-Dichloroethene	1	300	<1	NA NA
rans-1,2-dichloroethene	1	600 NE	<1	NA NA
,1-dichloroethane	1	NSL 600	<1	NA NA
is-1,2-dichloroethene	1	600	<1	NA NA
romochloromethane	1	2500	<1	NA NA
hloroform	1	*10·	<1	NA NA
,2-dichloropropane	1	NSL	<1	NA NA
,2-dichloroethane	1	30	<1	NA NA
,1,1-trichloroethane	1	NSL	<1	NA NA
,1-dichloropropene	1	NSL	<1	NA NA
yclohexane	1	NSL	<1	NA NA
arbon tetrachloride	1	30	<1	NA NA
enzene	1	10	<1	NA NA
ibromomethane	1	NSL	<1	NA NA
,2-dichloropropane	1	NSL	<1	NA NA
richloroethene	1	NSL	<1	NA
romodichloromethane	1	NSL	<1	NA
rans-1,3-dichloropropene	1	1000	<1	NA NA
is-1,3-dichloropropene	1	1000	<1	NA NA
,1,2-trichloroethane	1	NSL	<1	NA
oluene	1	8000	<1	NA
,3-dichloropropane	1	NSL	<1	NA NA
Dibromochloromethane	1	NSL	<1	NA
,2-dibromoethane	1	NSL	<1	NA
etrachloroethene	1	500	<1	NA
,1,1,2-tetrachloroethane	1	NSL	<1	NA
hlorobenzene	1	3000	<1	NA
thylbenzene	1	3000	<1	NA
romoform	1	NSL	<1	NA
n+p-xylene	2	NSL	<2	NA
tyrene	1	300	<1	NA
,1,2,2-tetrachloroethane	1	NSL	<1	NA
-xylene	1	NSL	<1	NA
,2,3-trichloropropane	1	NSL	<1	NA
opropylbenzene	1	NSL	<1	NA
romobenzene	1	NSL	<1	NA
-propyl benzene	1	NSL	<1	NA
-chlorotoluene	1	NSL	<1	NA
-chlorotoluene	1	NSL	<1	NA
,3,5-trimethyl benzene	1	NSL	<1	NA
ert-butyl benzene	1	NSL	<1	NA
,2,4-trimethyl benzene	1	NSL	<1	NA
,3-dichlorobenzene	1	200	<1	NA
ec-butyl benzene	1	NSL	<1	NA
4-dichlorobenzene	1	400	<1	NA
-isopropyl toluene	1	NSL	<1	NA
,2-dichlorobenzene	1	15000	<1	NA
-butyl benzene	1	NSL	<1	NA
,2-dibromo-3-chloropropane	1	NSL	<1	NA
,2,4-trichlorobenzene	1	300	<1	NA
,2,3-trichlorobenzene	1	300	<1	NA
exachlorobutadiene	1	7	<1	NA
olycyclic Aromatic Hydrocarbons (PAHs)				
aphthalene	0.2	NSL	<0.2	<0.2
cenaphthylene	0.1	NSL	<0.1	<0.1
cenaphthene	0.1	NSL	<0.1	<0.1
luorene	0.1	NSL	<0.1	<0.1
	0.1	NSL	<0.1	<0.1
henanthrene	0.1	NSL	<0.1	<0.1
	0.1	NSL	<0.1	<0.1
nthracene	0.1			<0.1
nthracene luoranthene	0.1		<0.1	
Inthracene Iuoranthene yrene	0.1	NSL	<0.1 <0.1	
henanthrene Inthracene Iuoranthene Iyrene Ienzo(a)anthracene	0.1 0.1	NSL NSL	<0.1	<0.1
inthracene luoranthene yrene ienzo(a)anthracene ihrysene	0.1 0.1 0.1	NSL NSL NSL	<0.1 <0.1	<0.1 <0.1
onthracene luoranthene yrene enzo(a)anthracene chrysene enzo(b,j+k)fluoranthene	0.1 0.1 0.1 0.2	NSL NSL NSL NSL	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2
onthracene luoranthene yrene enzo(a)anthracene chrysene enzo(b,j+k)fluoranthene enzo(a)pyrene	0.1 0.1 0.1 0.2 0.1	NSL NSL NSL NSL	<0.1 <0.1 <0.2 <0.1	<0.1 <0.1 <0.2 <0.1
onthracene luoranthene yrene enzo(a)anthracene chrysene enzo(b,j+k)fluoranthene	0.1 0.1 0.1 0.2	NSL NSL NSL NSL	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2

Concentration above the SAC Concentration above the PQL GIL >PQL VALUE Bold Red

TABLE G4 GROUNDV	/ATER QA/QC S	UMMAR	tΥ																															
			TRH C6 - C10	TRH > C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene	Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	Nickel	Zinc
	PQL Envirola	b SYD	10	50	100	100	1	1	1	2	1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
	PQL Envirola		10	50	100	100	1.0	1.0	1.0	2.0	1.0	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
Intra	MW8	2.07	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	48	<0.1	<1	<1	<1	<0.05	25	9
	WDUP1	2.07	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	47	<0.1	<1	<1	<1	<0.05	25	11
duplicate	MEAN		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	47.5	nc	nc	nc	nc	nc	25	10
аарнеасс	RPD %		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	2%	nc	nc	nc	nc	nc	0%	20%
Field Blank	TB-W1 20/05/2020		NA	NA	NA	NA	<1	<1	<1	<2	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trip Spike	TS-W1 20/05/2020		-	-	-	-	127%	117%	105%	106%	110%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Appendix C: Site Information and Site History

Selected Site Photographs

Project Ref: E33177PArpt Glenmore Park

Site Address: 1-23 Forestwood Drive, Glenmore Park, NSW

Selected Site Photos Dated: 11 May 2020

Photograph 1: Looking west/north-west at the site area.

Photograph 2: Looking south-west at the site area.

Photographs 3: Looking at the north-eastern corner of the site area.

Photograph 4: Carpark and amenities to the east of the site.

Project Ref: E33177PArpt Glenmore Park

Site Address: 1-23 Forestwood Drive, Glenmore Park, NSW

Selected Site Photos Dated: 12 May 2020

Photograph 5: Groundwater monitoring well (BH8/MW8) installed at the site.

Photograph 6: Test pit excavation.

Photographs 7: Fill material profile observed within test pits.

Photograph 8: Example of extracted fill material from test pits.

Project Ref: E33177PArpt Glenmore Park

Site Address: 1-23 Forestwood Drive, Glenmore Park, NSW

Selected Site Photos Dated: 18 May 2020

Photograph 9: View of Surveyors Creek and surrounding areas.

Photograph 10: View of Bradley Street bridge over Surveyors Creek.

Photographs 11: View of Surveyors Creek and surrounding areas.

Photograph 12: View of Mulgoa Rise Field from Bradley Street.

Lotsearch Environmental Risk and Planning Report

Date: 08 May 2020 11:38:16 Reference: LS012255 EP

Address: 1-23 Forestwood Drive, Glenmore Park, NSW 2745

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
NSW Department of Finance, Services & Innovation	13/03/2020	13/03/2020	Quarterly	-	-	-	-
NSW Department of Finance, Services & Innovation	25/06/2019	25/06/2019	As required	-	-	-	-
Environment Protection Authority	15/04/2020	15/04/2020	Monthly	1000	0	0	0
Environment Protection Authority	21/04/2020	21/04/2020	Monthly	1000	0	0	0
Environment Protection Authority	21/04/2020	11/10/2017	Monthly	1000	0	0	0
Geoscience Australia	12/02/2020	07/03/2017	Quarterly	1000	0	0	0
Geoscience Australia	05/02/2020	13/07/2012	Quarterly	1000	0	0	0
Environment Protection Authority	22/04/2020	22/04/2020	Monthly	2000	0	0	0
Department of Defence	12/02/2020	12/02/2020	Monthly	2000	0	0	0
Department of Defence	12/02/2020	12/02/2020	Monthly	2000	0	0	0
Airservices Australia	22/04/2020	22/04/2020	Monthly	2000	0	0	0
Department of Defence	04/05/2020	04/05/2020	Monthly	2000	0	0	1
Environment Protection Authority	04/02/2020	13/12/2018	Annually	1000	0	0	0
Environment Protection Authority	09/04/2020	09/04/2020	Monthly	1000	0	0	0
Environment Protection Authority	09/04/2020	09/04/2020	Monthly	1000	0	0	0
Environment Protection Authority	09/04/2020	09/04/2020	Monthly	1000	0	1	4
Hardie Grant			Not required	150	0	0	0
Hardie Grant			Not required	150	-	0	0
Hardie Grant			Not required	500	0	0	0
Hardie Grant			Not required	500	-	0	0
NSW Department of Finance, Services & Innovation	19/02/2020	19/02/2020	Quarterly	1000	0	0	5
NSW Department of Customer Service - Spatial Services	19/02/2020	19/02/2020	Quarterly	1000	0	0	0
NSW Department of Customer Service - Spatial Services	19/02/2020	19/02/2020	Quarterly	1000	0	0	0
NSW Department of Finance, Services & Innovation	19/02/2020	19/02/2020	Quarterly	1000	0	0	3
Forestry Corporation of NSW	18/01/2018	18/01/2018	As required	1000	0	0	0
NSW Office of Environment & Heritage	21/01/2020	30/09/2019	Annually	1000	0	0	1
Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000	1	1	1
NSW Department of Planning, Industry and Environment	15/03/2018	01/10/2005	As required	1000	0	0	0
	NSW Department of Finance, Services & Innovation NSW Department of Finance, Services & Innovation Environment Protection Authority Environment Protection Authority Environment Protection Authority Environment Protection Authority Geoscience Australia Geoscience Australia Environment Protection Authority Department of Defence Airservices Australia Department of Defence Environment Protection Authority Environment Protection Authority Environment Protection Authority Environment Protection Authority Hardie Grant Hardie Grant Hardie Grant Hardie Grant Hardie Grant NSW Department of Customer Services & Innovation NSW Department of Customer Service - Spatial Services NSW Department of Customer Services & Innovation Forestry Corporation of NSW NSW Office of Environment & Heritage Commonwealth of Australia (Geoscience Australia) NSW Department of Planning,	NSW Department of Finance, Services & Innovation NSW Department of Finance, Services & Innovation NSW Department of Finance, Services & Innovation Environment Protection Authority Department of Defence 12/02/2020 Department of Defence 12/02/2020 Department of Defence Department of Defence Environment Protection Authority O4/05/2020 Environment Protection Authority O9/04/2020 Environment Protection Authority O9/04/2020 Environment Protection Authority O9/04/2020 Environment Protection Authority O9/04/2020 Hardie Grant Hardie Grant Hardie Grant Hardie Grant Hardie Grant Hardie Grant Hordie Grant Hardie Grant Hardie Grant Hardie Grant Hardie Grant Hardie Grant Hardie Grant NSW Department of Customer Services Services Spatial Services NSW Department of Finance, 19/02/2020 Service - Spatial Services NSW Department of Finance, 19/02/2020 Services & Innovation Forestry Corporation of NSW NSW Office of Environment & 19/02/2020 Commonwealth of Australia NSW Department of Planning, 15/03/2018	NSW Department of Finance, Services & Innovation 13/03/2020 13/03/2020 13/03/2020 15/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2019 25/06/2020 15/04/2020 21/04/2020 21/04/2020 21/04/2020 21/04/2020 21/04/2020 21/04/2020 21/04/2020 21/04/2020 21/04/2020 21/04/2020 21/04/2020 21/04/2020 21/02/2020 21/02/2020 22/04/2020 22/0	NSW Department of Finance, Services & Innovation Environment Protection Authority 15/04/2020 15/04/2020 Monthly Environment Protection Authority 21/04/2020 11/10/2017 Monthly Environment Protection Authority 21/04/2020 11/10/2017 Monthly Geoscience Australia 12/02/2020 07/03/2017 Quarterly Geoscience Australia 05/02/2020 13/07/2012 Quarterly Environment Protection Authority 22/04/2020 22/04/2020 Monthly Department of Defence 12/02/2020 12/02/2020 Monthly Department of Defence 12/02/2020 12/02/2020 Monthly Department of Defence 12/02/2020 12/02/2020 Monthly Department of Defence 04/05/2020 04/05/2020 Monthly Environment Protection Authority 04/02/2020 13/12/2018 Annually Environment Protection Authority 09/04/2020 09/04/2020 Monthly Hardie Grant Not required Hardie Grant Protection P	NSW Department of Finance, Services & Innovation 13/03/2020 13/03/2020 Quarterly Services & Innovation 25/06/2019 25/06/2019 As required Services & Innovation 15/04/2020 15/04/2020 Monthly 1000 Environment Protection Authority 21/04/2020 21/04/2020 Monthly 1000 Environment Protection Authority 21/04/2020 21/04/2020 Monthly 1000 Environment Protection Authority 21/04/2020 21/04/2020 Monthly 1000 Geoscience Australia 12/02/2020 07/03/2017 Quarterly 1000 Geoscience Australia 05/02/2020 13/07/2012 Quarterly 1000 Environment Protection Authority 22/04/2020 22/04/2020 Monthly 2000 Environment Protection Authority 22/04/2020 12/02/2020 Monthly 2000 Department of Defence 12/02/2020 12/02/2020 Monthly 2000 Department of Defence 12/02/2020 12/02/2020 Monthly 2000 Airservices Australia 22/04/2020 22/04/2020 Monthly 2000 Department of Defence 04/05/2020 04/05/2020 Monthly 2000 Department of Defence 04/05/2020 04/05/2020 Monthly 2000 Department Protection Authority 09/04/2020 09/04/2020 Monthly 1000 Environment Protection Authority 09/04/2020 09/04/2020 09/04/2020 09/04/2020 09/04/2020 09/04/2020	NSW Department of Finance, Services & Innovation 13/03/2020 13/03/2020 Quarterty Feature Ronsite NSW Department of Finance, Services & Innovation 25/06/2019 25/06/2019 As required - - Services & Innovation 25/06/2019 25/06/2019 As required - - Environment Protection Authority 21/04/2020 15/04/2020 Monthly 1000 0 Environment Protection Authority 21/04/2020 11/10/2017 Monthly 1000 0 Geoscience Australia 12/02/2020 07/03/2017 Quarterly 1000 0 Geoscience Australia 05/02/2020 13/07/2012 Quarterly 1000 0 Environment Protection Authority 22/04/2020 12/02/2020 Monthly 2000 0 Department of Defence 12/02/2020 12/02/2020 Monthly 2000 0 Airservices Australia 22/04/2020 22/04/2020 Monthly 2000 0 Department of Defence 04/05/2020 04/05/2020 Monthly 2000	NSW Department of Finance, Services & Innovation 33/03/2020 33/03/2020 Quarterly

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018	Annually	2000	0	0	18
Geological Units 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		None planned	1000	1	-	4
Geological Structures 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		None planned	1000	0	-	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000	1	1	2
Soil Landscapes	NSW Department of Planning, Industry and Environment	12/08/2014		None planned	1000	2	-	3
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	24/04/2020	28/02/2020	Monthly	500	0	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000	1	1	1
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000	1	1	1
Dryland Salinity Potential of Western Sydney	NSW Department of Planning, Industry and Environment	12/05/2017	01/01/2002	None planned	1000	1	2	3
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	19/02/2020	19/02/2020	Quarterly	1000	0	0	0
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	24/04/2020	07/12/2018	Monthly	1000	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	26/03/2020	26/03/2020	Monthly	1000	1	3	20
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	04/02/2020	31/07/2018	Quarterly	1000	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	04/02/2020	20/11/2019	Quarterly	1000	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	12/02/2020	09/11/2018	Quarterly	1000	0	0	0
Environmental Planning Instrument Heritage	NSW Department of Planning, Industry and Environment	24/04/2020	17/04/2020	Monthly	1000	0	0	1
Bush Fire Prone Land	NSW Rural Fire Service	04/02/2020	14/12/2019	Quarterly	1000	0	1	3
Remnant Vegetation of the Cumberland Plain	NSW Office of Environment & Heritage	07/10/2014	04/08/2011	Unknown	1000	0	0	6
Ramsar Wetlands of Australia	Department of the Agriculture, Water and the Environment	08/10/2014	24/06/2011	As required	1000	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	0	0	2
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	0	0	5
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	06/05/2020	06/05/2020	Weekly	10000	-	-	-

Site Diagram

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Contaminated Land

1-23 Forestwood Drive, Glenmore Park, NSW 2745

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist (m)	Direction
N/A	No records in buffer								

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

1-23 Forestwood Drive, Glenmore Park, NSW 2745

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist (m)	Direction
	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist (m)	Direction
N/A	No records in buffer										

National Liquid Fuel Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

1-23 Forestwood Drive, Glenmore Park, NSW 2745

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

ld	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

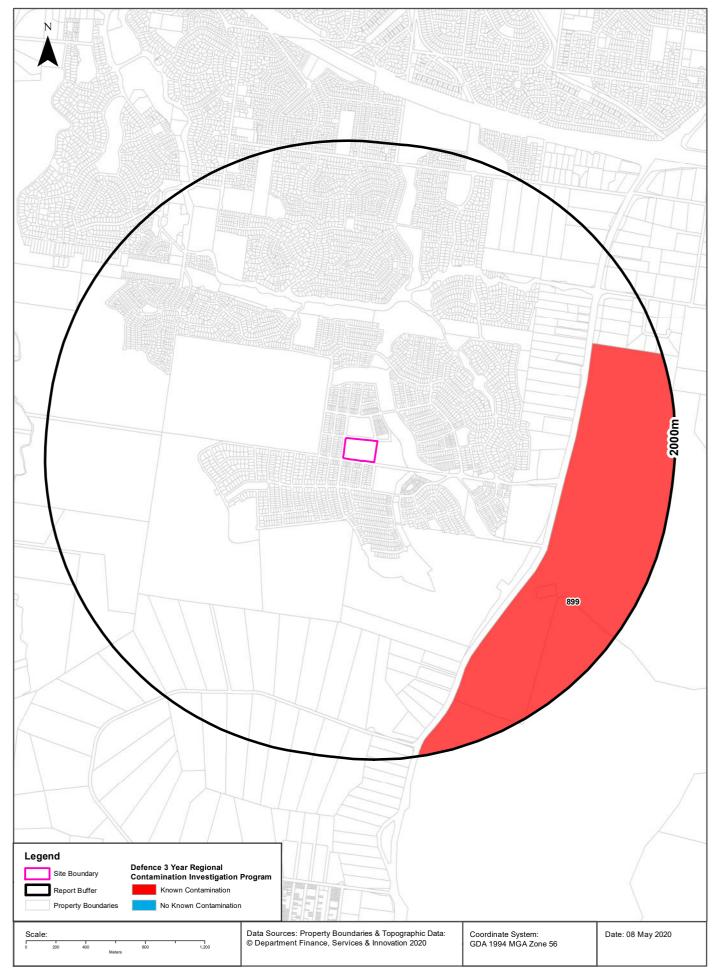
Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

N	/lap ID	Base Name	Address	Loc Conf	Dist	Dir
Ν	I/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program


Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map I	ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A		No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence 3 Year Regional Contamination Investigation Program 1-23 Forestwood Drive, Glenmore Park, NSW 2745

Defence Sites

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
899	Defence Establishment Orchard Hills	Mulgoa, New South Wales	YES	Premise Match	1268m	South East

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

1-23 Forestwood Drive, Glenmore Park, NSW 2745

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- · Radiological investigation sites in Hunter's Hill
- · Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

EPA Activities

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

POEO Licence Data Source: Environment Protection Authority
© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4426	MULGOA QUARRIES PTY LTD	LOT 1 BRADLEY STREET, ORCHARD HILLS, NSW 2748	Surrendered	03/05/2001	Other Land-Based Extraction	Premise Match	18m	South
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	144m	-
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	144m	-
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	144m	-

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1986, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
	No records in buffer						

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1986, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
	No records in buffer					

Historical Business Directories

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Dry Cleaners, Motor Garages & Service Stations 1948-1993 Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

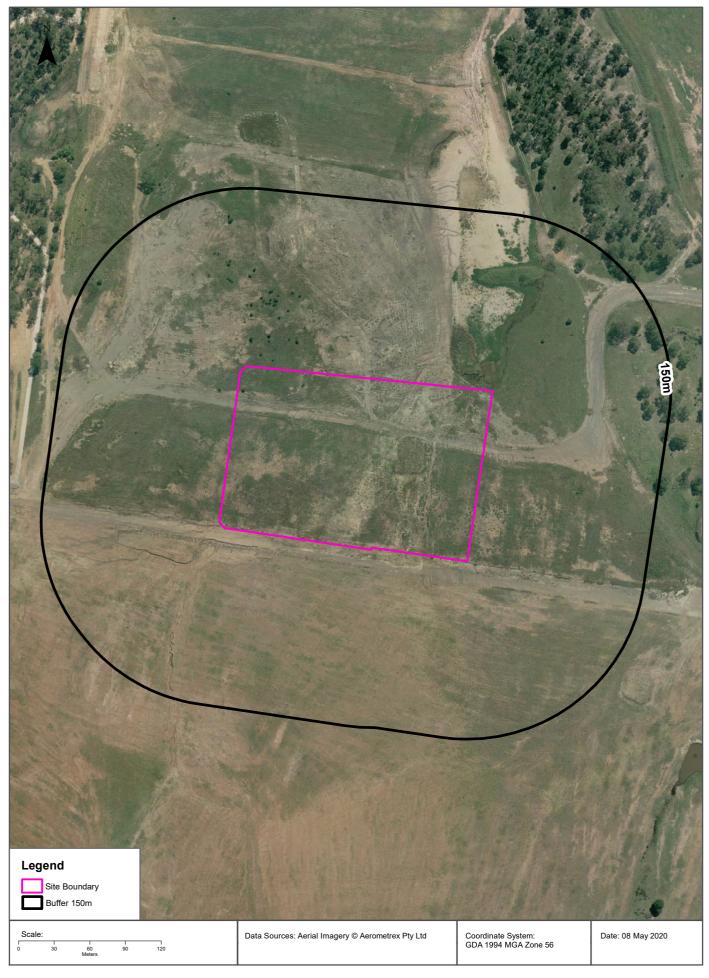
Ма	ıp ld	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
		No records in buffer						

Dry Cleaners, Motor Garages & Service Stations 1948-1993 Road or Area Matches

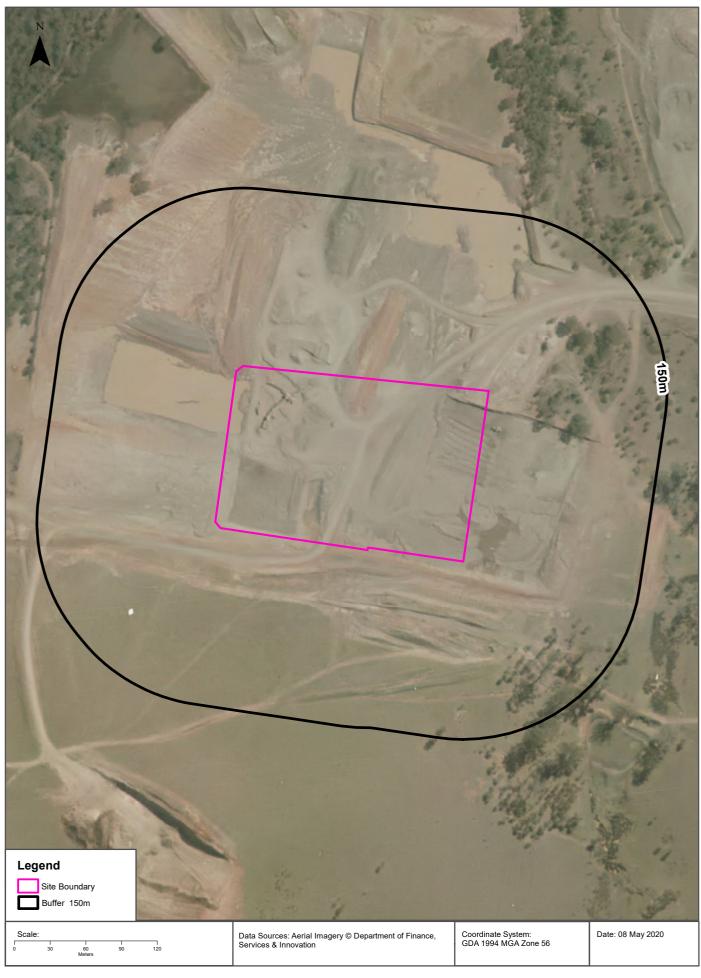
Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

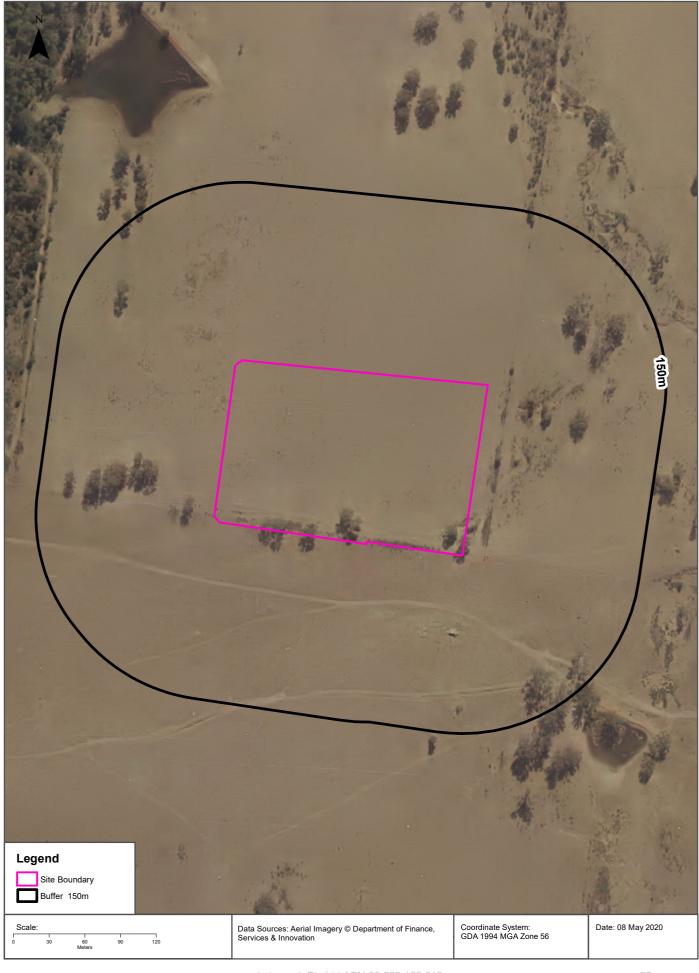
Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
	No records in buffer					

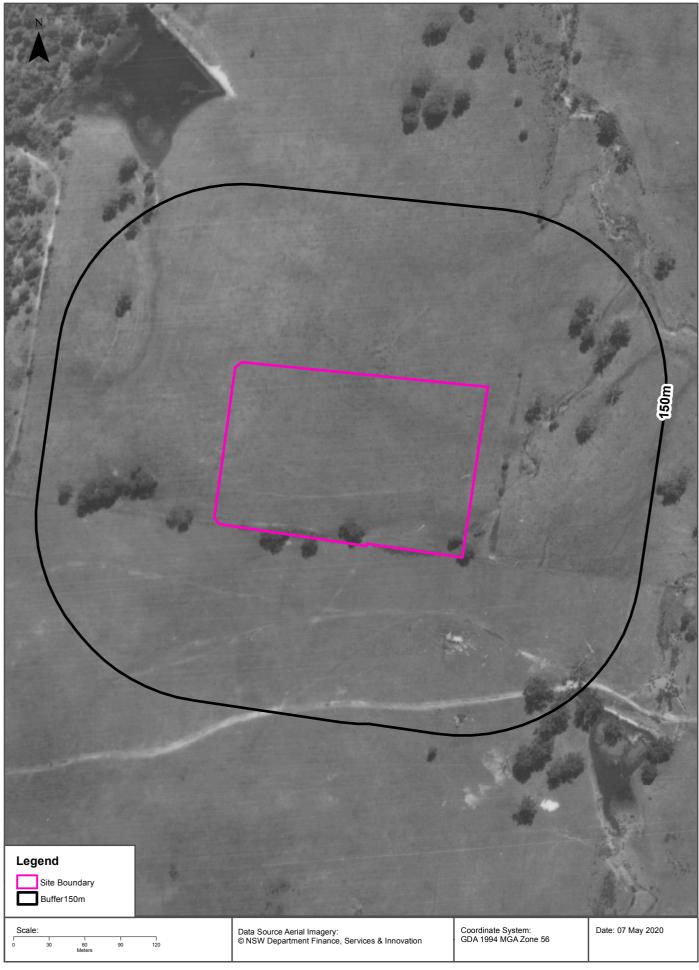


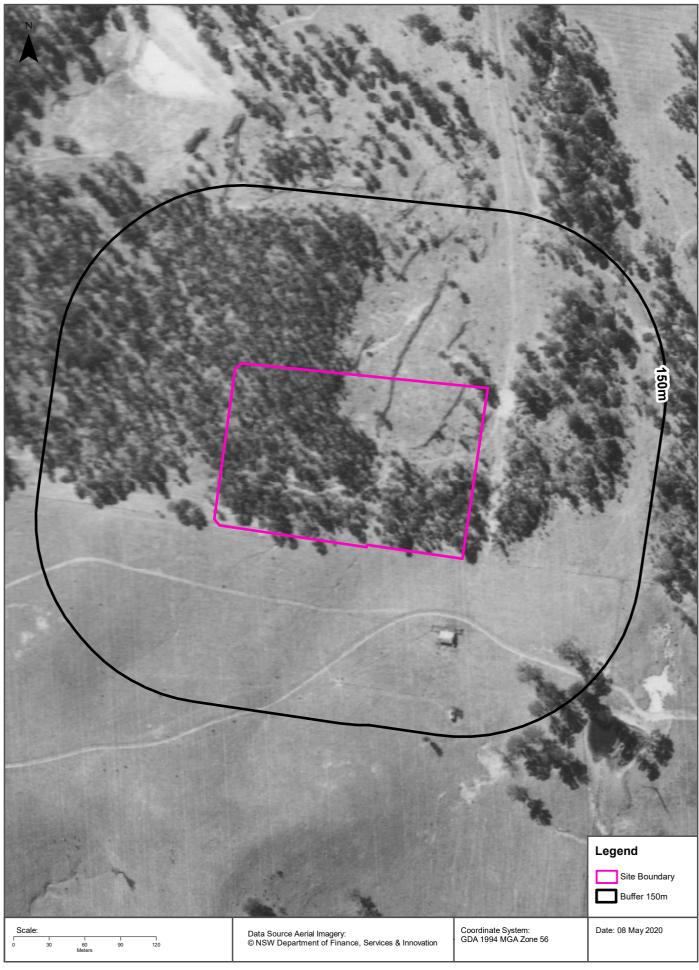
Aerial Imagery 2007 1-23 Forestwood Drive, Glenmore Park, NSW 2745


Aerial Imagery 2000 1-23 Forestwood Drive, Glenmore Park, NSW 2745

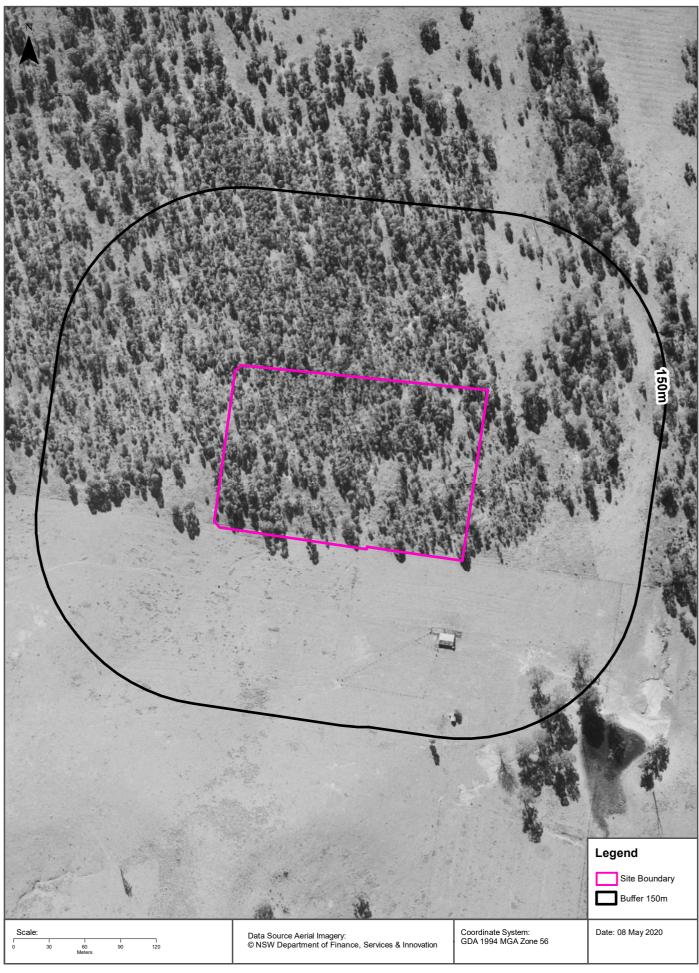
Aerial Imagery 1991 1-23 Forestwood Drive, Glenmore Park, NSW 2745

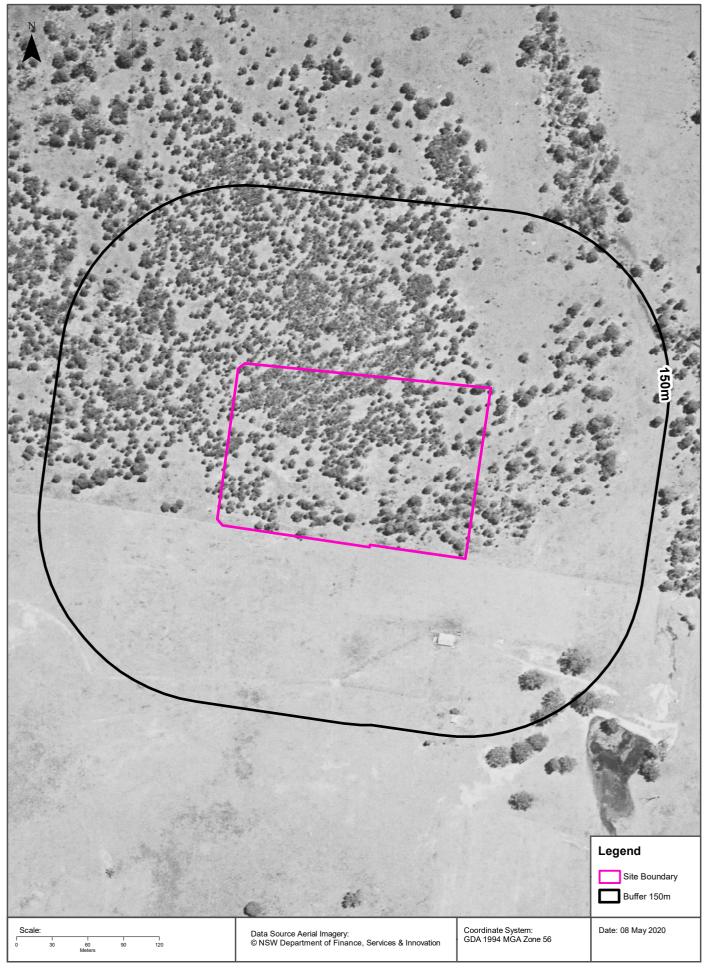


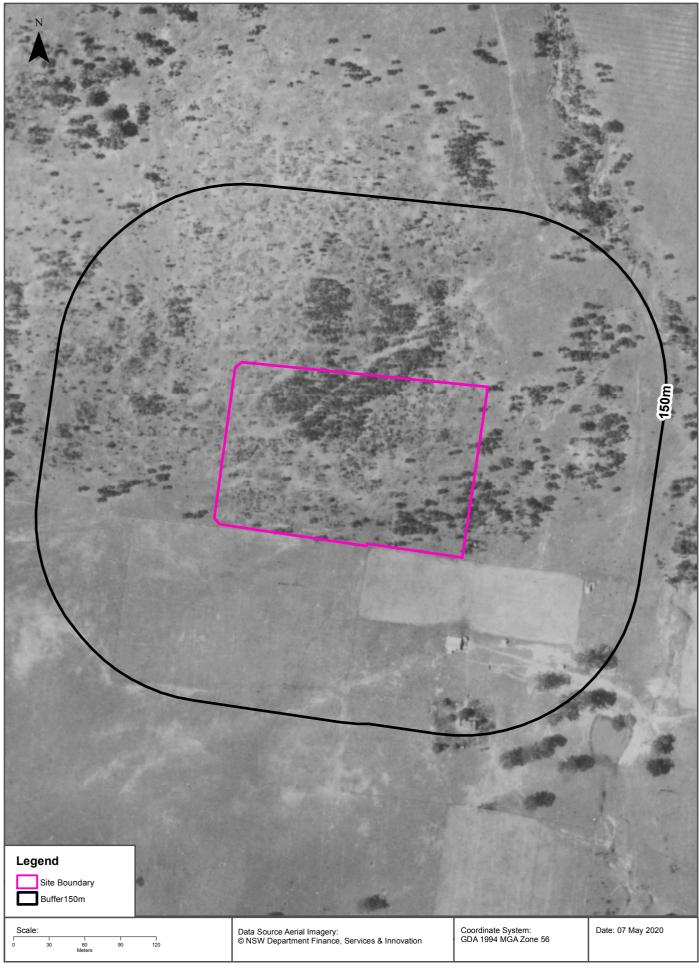


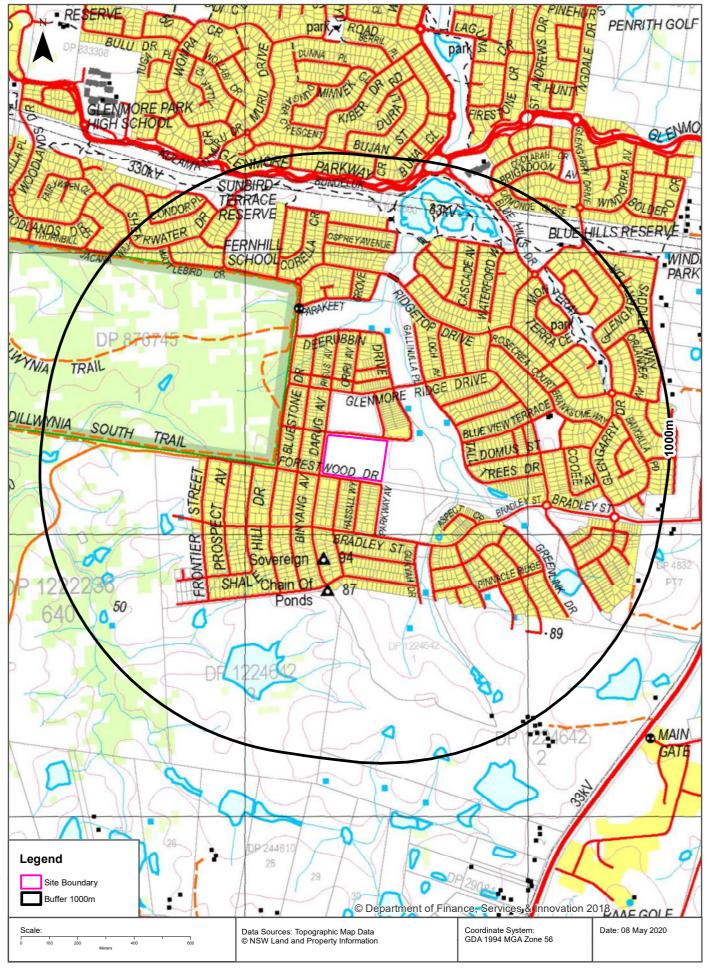


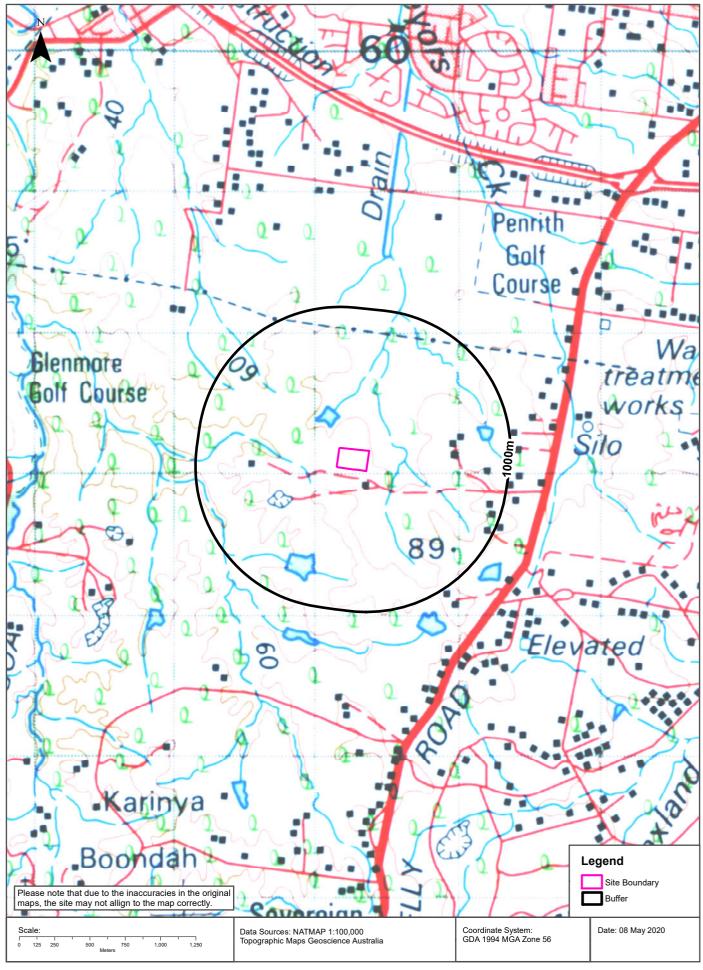
Aerial Imagery 1970 1-23 Forestwood Drive, Glenmore Park, NSW 2745

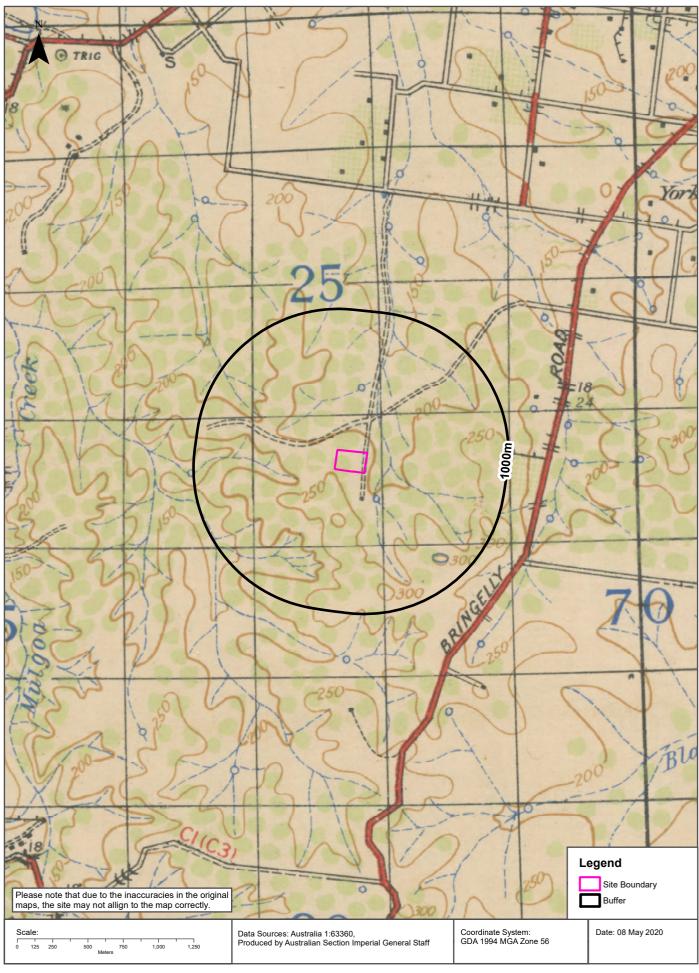


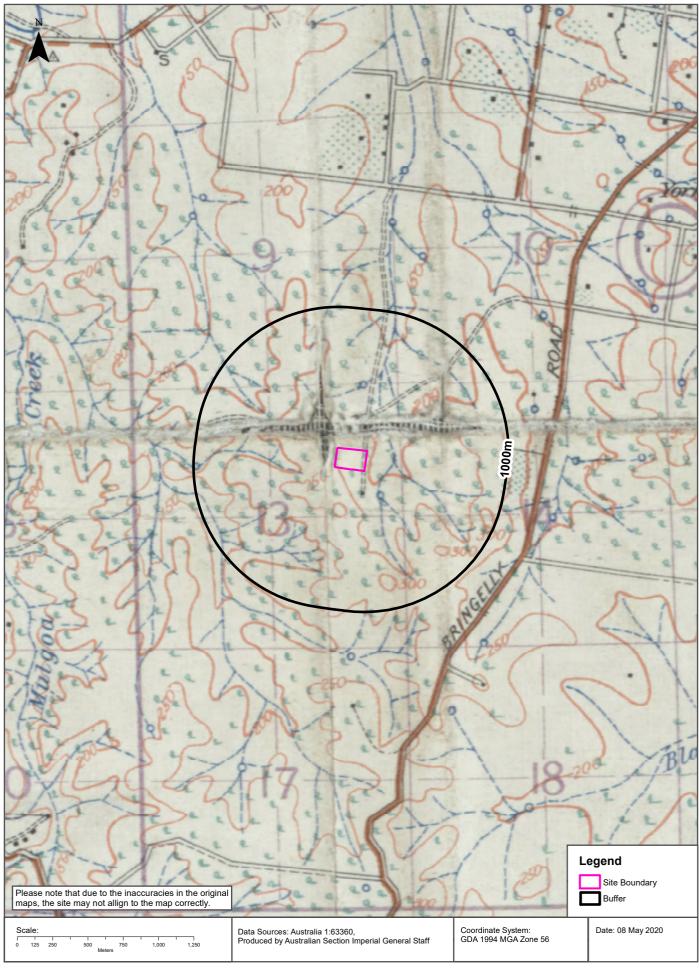


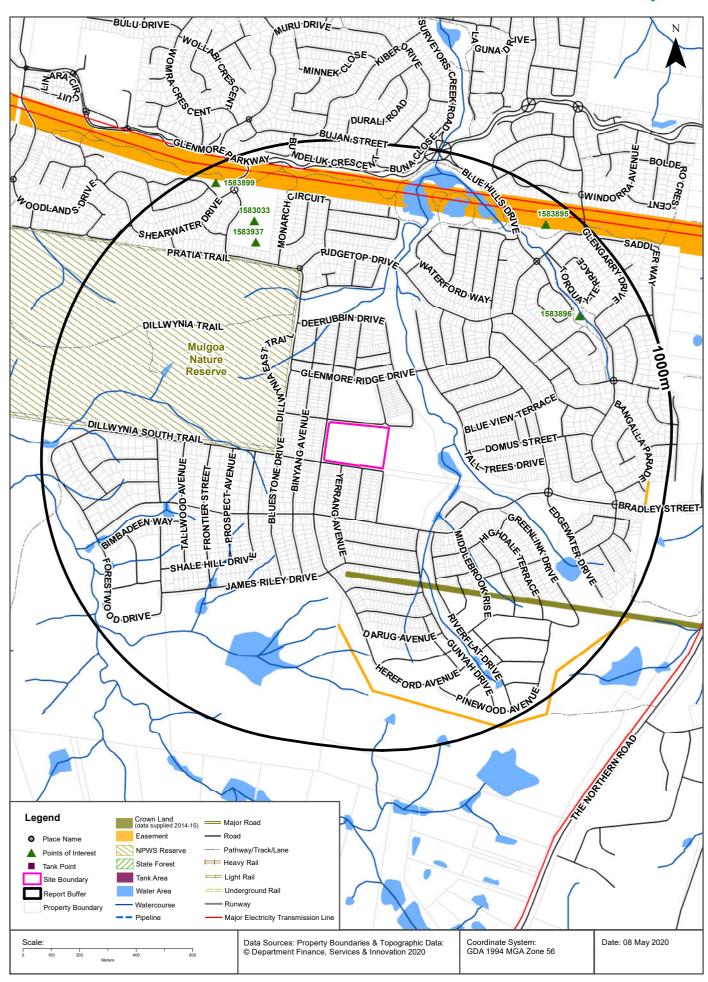





Topographic Map 2015


Historical Map 1975


Historical Map c.1942



Historical Map c.1929

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
1583937	Parking Area	Parking Area	691m	North West
1583033	Special School	FERNHILL SCHOOL	764m	North West
1583896	Park	Park	783m	North East
1583895	Sports Field	BLUE HILLS RESERVE	911m	North East
1583899	Park	SUNBIRD TERRACE RESERVE	942m	North West

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
	No records in buffer					

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
169846989	Primary	Right of way	5m	566m	South East
120115527	Primary	Undefined		785m	North
120118513	Primary	Undefined		933m	East

Easements Data Source: © Land and Property Information (2015)

 $Creative\ Commons\ 3.0\ \ \textcircled{o}\ Commonwealth\ of\ Australia\ http://creative commons.org/licenses/by/3.0/au/deed.en$

1-23 Forestwood Drive, Glenmore Park, NSW 2745

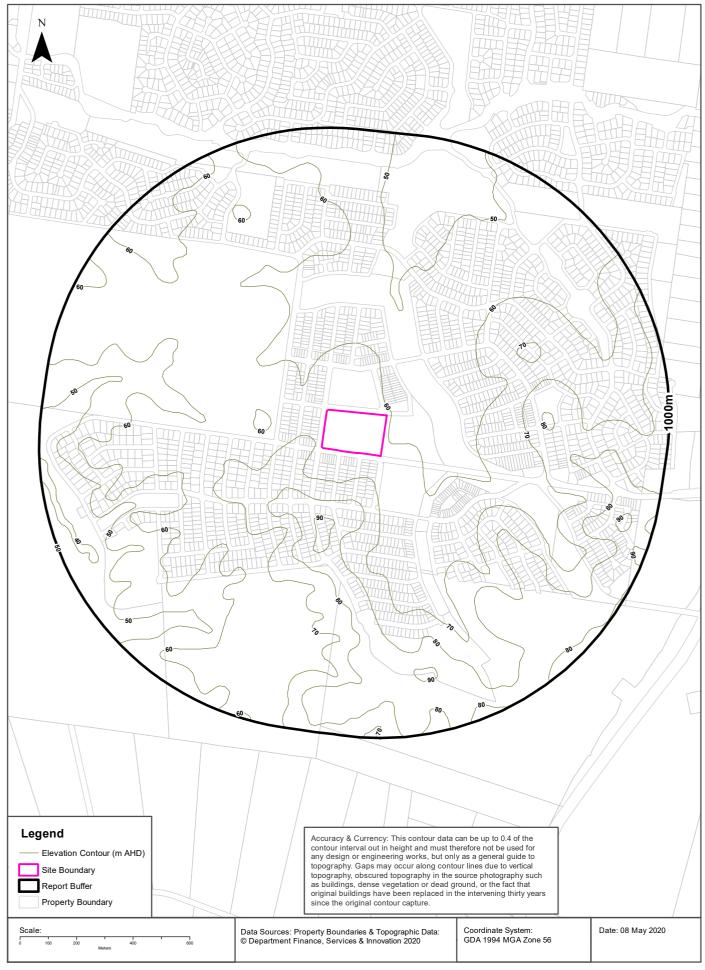
State Forest

What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves


What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N0712	NATURE RESERVE	Mulgoa Nature Reserve	23/12/1994	171m	North West

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Hydrogeology

Description of aquifers on-site:

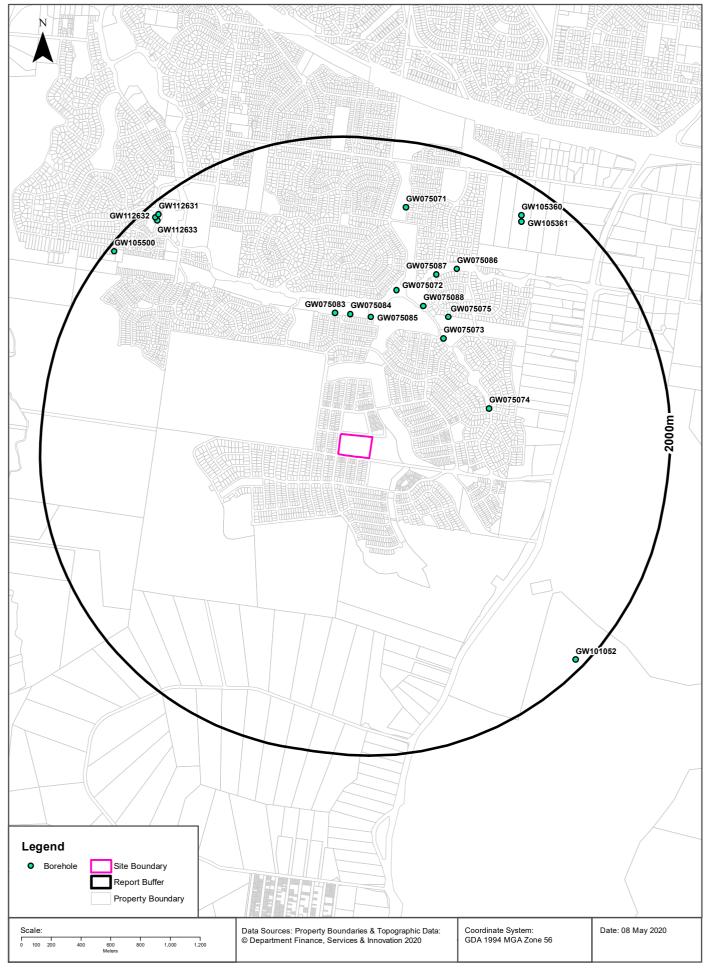
Description	
Porous, extensive highly productive aquifers	

Description of aquifers within the dataset buffer:

Description		
Porous, extensive highly pro	ductive aquifers	

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Botany Groundwater Management Zones


Groundwater management zones relating to the Botany Sand Beds aquifer within the dataset buffer:

Management Zone No.	Restriction	Distance	Direction
N/A	No records in buffer		

 ${\bf Botany\ Groundwater\ Management\ Zones\ Data\ Source: NSW\ Department\ of\ Primary\ Industries}$

Groundwater Boreholes

Hydrogeology & Groundwater

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Elev (AHD)	Dist	Dir
GW075 085		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK BORE - LAKESIDE No.1	24/03/2003	5.30	5.50			50.35	801m	North
GW075 084		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK BORE - LAKESIDE No.2	24/03/2003	5.50	6.00			55.03	807m	North
GW075 074		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK AT GLENGAR RY	14/08/2001	6.00	6.00			60.12	807m	East
GW075 083		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK BORE - LAKESIDE No.3	24/03/2003	4.50	5.00			60.64	814m	North
GW075 073		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK BORE AT LAKESIDE	14/08/2001	6.50	6.50			51.11	816m	North East
GW075 088		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK BORE - BLUE HILLS R/ABOUT	25/03/2003	8.90	8.90			49.15	945m	North East
GW075 075		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK AT BLUE HILLS OVAL	14/08/2001	2.50	2.50			53.44	955m	North East
GW075 072		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK BORE AT THUNDER DOME	13/08/2001	6.50	6.50			45.83	1001m	North
GW075 087		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK BORE - NADA PLACE	25/03/2003	1.60	1.60			53.88	1175m	North East
GW075 086		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK BORE - MANDALO NG TCE	24/03/2003	3.80	4.00			59.31	1265m	North East
GW075 071		Bore	NSW Office of Water		Monitoring Bore	GLENMOR E PARK AT ENGLEWO OD RESERVE	13/08/2001	7.20	7.20			41.99	1560m	North
GW105 361	10BL160 480	Bore		Monitoring Bore	Monitoring Bore		06/03/2004	7.00	7.00				1761m	North East
GW105 360	10BL160 480	Bore		Monitoring Bore	Monitoring Bore		06/03/2003	2.00	2.00				1795m	North East
GW112 633	10BL603 226	Bore	Private	Monitoring Bore	Monitoring Bore	Woolworths	03/09/2009	9.00	9.00				1894m	North West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW112 632	10BL603 226	Bore	Private	Monitoring Bore	Monitoring Bore	Woolworths	03/09/2009	9.00	9.00					1916m	North West
GW112 631	10BL603 226	Bore	Private	Monitoring Bore	Monitoring Bore	Woolworths	03/09/2009	9.00	9.00					1920m	North West
GW101 052	10BL158 231	Bore	Private	Monitoring Bore	Monitoring Bore		05/08/1997	32.20	32.20	6560	13.6 0		69.41	1938m	South East
GW105 500	10BL162 542, 10WA10 8629	Bore		Domestic	Domestic		12/12/2003	144.00	144.00	1020		1.100		1955m	North West

Borehole Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

Groundwater No	Drillers Log	Distance	Direction
GW075085	0.00m-2.00m CLAY, BROWN 2.00m-4.00m CLAY, LIGHT BROWN 4.00m-5.50m SHALE, BROWN	801m	North
GW075074	0.00m-0.50m TOPSOIL 0.50m-3.00m CLAY, BROWN 3.00m-4.50m CLAY, GREY 4.50m-6.00m SHALE	807m	East
GW075084	0.00m-1.00m CLAY, BROWN 1.00m-3.50m SHALE, BROWN 3.50m-6.00m SHALE, GREY	807m	North
GW075083	0.00m-1.00m CLAY, BROWN 1.00m-3.50m SHALE, BROWN 3.50m-5.00m SHALE, GREY	814m	North
GW075073	0.00m-0.50m TOPSOIL 0.50m-6.00m CLAY, BROWN 6.00m-6.50m SHALE	816m	North East
GW075088	0.00m-1.00m CLAY, BROWN 1.00m-6.00m SHALE, BROWN 6.00m-8.90m SHALE, GREY	945m	North East
GW075075	0.00m-0.30m TOPSOIL 0.30m-1.50m CLAY, BROWN 1.50m-2.50m SHALE	955m	North East
GW075072	0.00m-0.50m TOPSOIL 0.50m-4.00m CLAY, BROWN 4.00m-6.50m SANDY CLAY	1001m	North
GW075087	0.00m-1.00m CLAY, WEATHERED 1.00m-1.50m SHALE, BROWN 1.50m-1.60m IRONSTONE	1175m	North East
GW075086	0.00m-1.00m CLAY, BROWN 1.00m-3.00m SHALE, BROWN 3.00m-4.00m SHALE, GREY	1265m	North East
GW075071	0.00m-0.50m TOPSOIL 0.50m-4.50m CLAY, BROWN 4.50m-7.20m SANDY CLAY	1560m	North
GW105361	0.00m-6.70m BROWN CLAY 6.70m-7.00m SHALE	1761m	North East
GW105360	0.00m-2.00m TOPSOIL DARK CHOCOLATE	1795m	North East
GW112633	0.00m-4.00m SILT AND SHALE GREY 4.00m-9.00m SILT AND SHALE WET AND GREY	1894m	North West
GW112632	0.00m-4.00m SILT AND SHALE GREY 4.00m-9.00m SILT AND SHALE WET/ GREY	1916m	North West
GW112631	0.00m-4.00m SILT AND SHALE GREY 4.00m-9.00m SILT AND SHALE WET GREY	1920m	North West

Groundwater No	Drillers Log	Distance	Direction
GW101052	0.00m-1.20m FILL: brown and brown-red, some iron stone gravel plastic, reworked material, slight moisture. 1.20m-3.00m CLAY: light grey with red-brown streaks, silty low plasticity, firm, slight moisture. 3.00m-4.00m SHALE/SILTSTONE: brown-grey, moderately weathered semi-competent and friable, trace of brown clay bands. 4.00m-6.00m SHALE/SILTSTONE: slightly weathered, medium grey, carbonaceous in parts, low-medium hardness, competent, minor fine grained sandstone, partly ferruginised 6.00m-7.00m SHALE/SILTSTONE: slightly weathered, medium grey, carbonaceous in parts, low-medium hardness, competent, some brown-grey massive claystone, softer 7.00m-9.00m SHALE/SILTSTONE: slightly weathered, medium grey, carbonaceous in parts, low-medium hardness, competent 9.00m-10.00m SHALE/SILTSTONE: slightly weathered, dark grey, carbonaceous, low-medium hardness, competent 10.00m-11.00m SHALE/SILTSTONE: slightly weathered, medium grey, carbonaceous in parts, low-medium hardness, competent 11.00m-14.00m SHALE/SILTSTONE: slightly weathered, medium grey, carbonaceous in parts, low-medium hardness, competent 15.00m-20.00m SHALE/SILTSTONE: slightly weathered, dark grey, carbonaceous, low-medium hardness, competent 15.00m-22.00m SHALE/SILTSTONE: slightly weathered, medium grey, carbonaceous in parts, low-medium hardness, competent 22.00m-23.00m SHALE/SILTSTONE: slightly weathered, medium grey, carbonaceous in parts, low-medium hardness, competent 22.00m-24.00m SHALE/SILTSTONE: slightly weathered, dark grey, carbonaceous in parts, low-medium hardness, competent 25.00m-27.00m SHALE/SILTSTONE: slightly weathered, dark grey, carbonaceous, low-medium hardness, competent 27.00m-28.00m SHALE/SILTSTONE: slightly weathered, dark grey, dominantly carbonaceous, moderately hard, appears massive, competent 27.00m-28.00m SHALE/SILTSTONE: slightly weathered, dark grey, dominantly carbonaceous, moderately hard, appears massive, competent, some brown-grey massive claystone, softer 30.00m-30.00m SHALE/SILTSTONE: slightly weathered, dark grey, dominan	1938m	South East
GW105500	0.00m-4.00m CLAY 4.00m-65.00m SHALE 65.00m-110.00m SANDSTONE/SHALE 110.00m-144.00m SANDSTONE	1955m	North West

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology 1:100,000 1-23 Forestwood Drive, Glenmore Park, NSW 2745

Geology

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Geological Units

What are the Geological Units onsite?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Rwb	Shale, carbonaceous claystone, claystone, laminate, fine to medium- grained lithic sandstone, rare coal and tuff	Bringelly Shale	Wianamatta Group (undifferenti ated)		Middle Triassic		Penrith	1:100,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Qpc	Gravel, sand, silt, clay	Cranebrook Formation			Quaternary		Penrith	1:100,000
Rwa	Dark-grey to black claystone-siltstone and fine sandstone -siltstone laminate	Ashfield Shale	Wianamatta Group (undifferenti ated)		Middle Triassic		Penrith	1:100,000
Rwb	Shale, carbonaceous claystone, claystone, laminate, fine to medium- grained lithic sandstone, rare coal and tuff	Bringelly Shale	Wianamatta Group (undifferenti ated)		Middle Triassic		Penrith	1:100,000
Rwm	Fine to medium-grained quartz-lithic sandstone	Minchinbury Sandstone	Wianamatta Group (undifferenti ated)		Middle Triassic		Penrith	1:100,000

Geological Structures

What are the Geological Structures onsite?

Feature	Name	Description	Map Sheet	Dataset
No features				1:100,000

What are the Geological Structures within the dataset buffer?

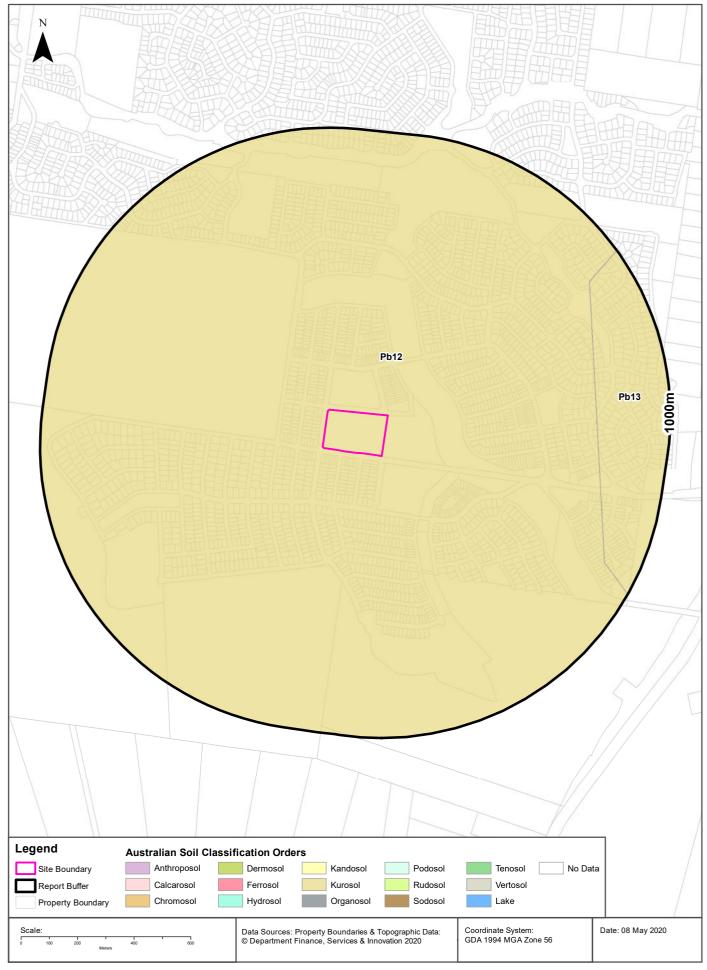
Feature	Name	Description	Map Sheet	Dataset
No features				1:100,000

Geological Data Source : NSW Department of Industry, Resources & Energy © State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No												
records in												
buffer												

Mining Subsidence District Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

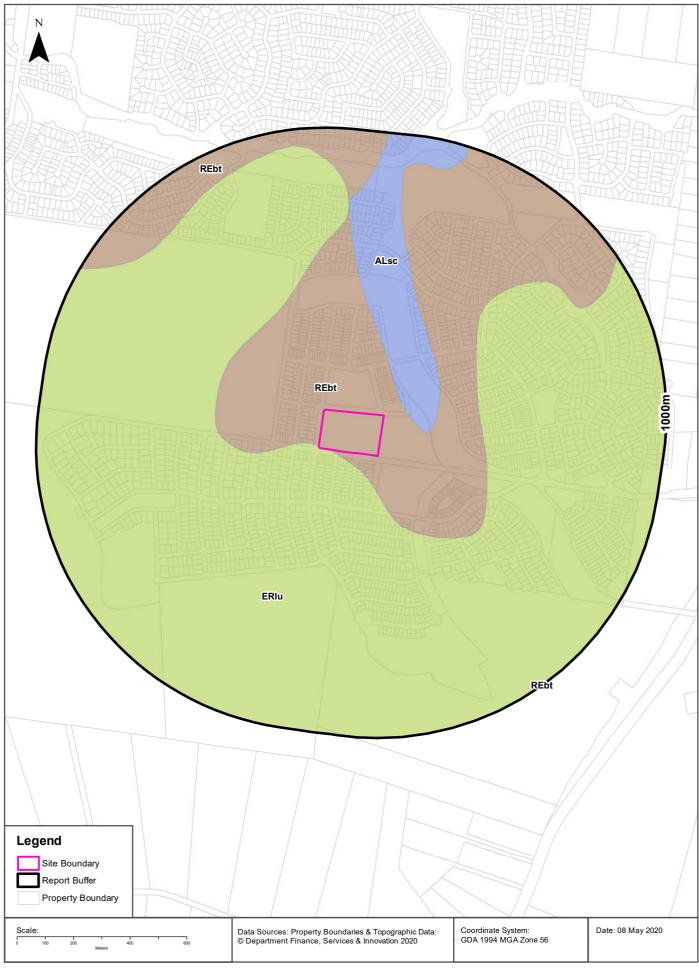
Atlas of Australian Soils

Soils

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance
Pb12	Kurosol	Gently rolling to rounded hilly country with some steep slopes and broad valleys: chief soils are hard acidic red soils (Dr2.21) with hard neutral and acidic yellow mottled soils (Dy3.42 and Dy3.41) on lower slopes and in valleys. Associated are small areas of various soils including (Gn3.54) on some ridges, (Dr3.31) on some slopes; (Dr2.23) in saddles and some mid-slope positions, and some low- lying swampy areas of (Uf6) soils and (Uc1.2) soils with peaty surfaces. Small areas of other soils such as (Db1.2) are likely throughout.	0m
Pb13	Kurosol	Ridge and valley country of gently undulating ridge tops and steep side slopes often with slumping, also rounded hilly to steep hilly areas and relatively narrow valleys: chief soils are hard acidic red soils (Dr2.21) with hard acidic yellow mottled soils (Dy3.41); in places some ironstone gravels occur in both these soils. Associated are hard neutral and alkaline red soils (Dr2.22 and Dr2.23) in saddles and some mid-slope positions; (Dy3.42 and Dy3.43) soils, usually in depressions; and small areas of undescribed soils in wet soaks and valley areas. Small areas of other soils are likely throughout.	737m

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Landscapes

Soils

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Soil Landscapes

What are the onsite Soil Landscapes?

Soil Code	Name	Group	Process	Map Sheet	Scale
ERlu	LUDDENHAM		EROSIONAL	Penrith	1:100,000
REbt	BLACKTOWN		RESIDUAL	Penrith	1:100,000

What are the Soil Landscapes within the dataset buffer?

Soil Code	Name	Group	Process	Map Sheet	Scale
ALsc	SOUTH CREEK		ALLUVIAL	Penrith	1:100,000
ERlu	LUDDENHAM		EROSIONAL	Penrith	1:100,000
REbt	BLACKTOWN		RESIDUAL	Penrith	1:100,000

Soils Landscapes Data Source : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

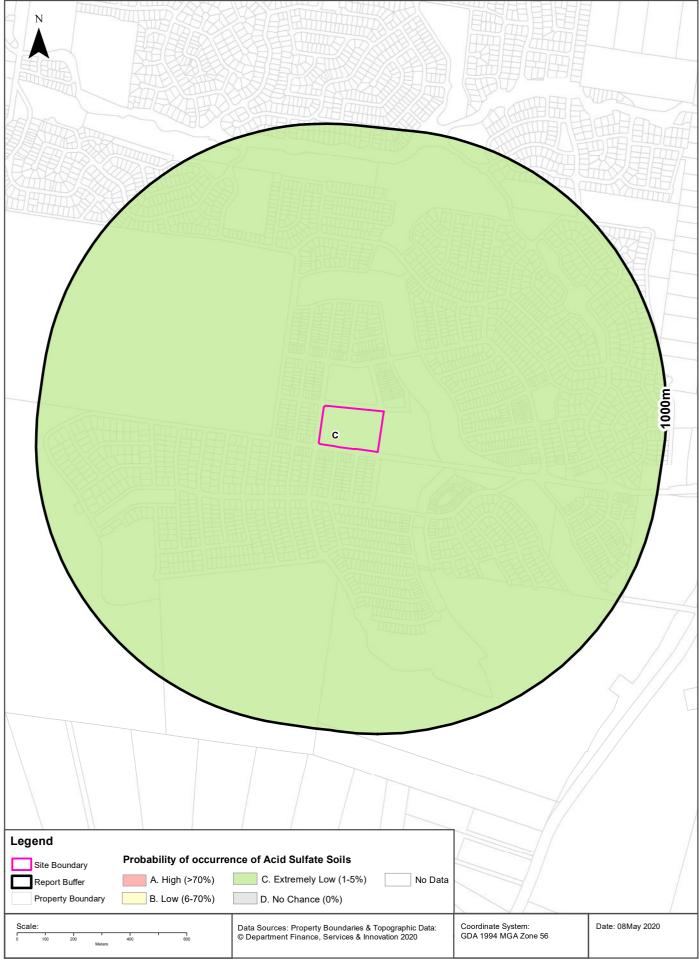
Acid Sulfate Soils

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
N/A		


If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
N/A				

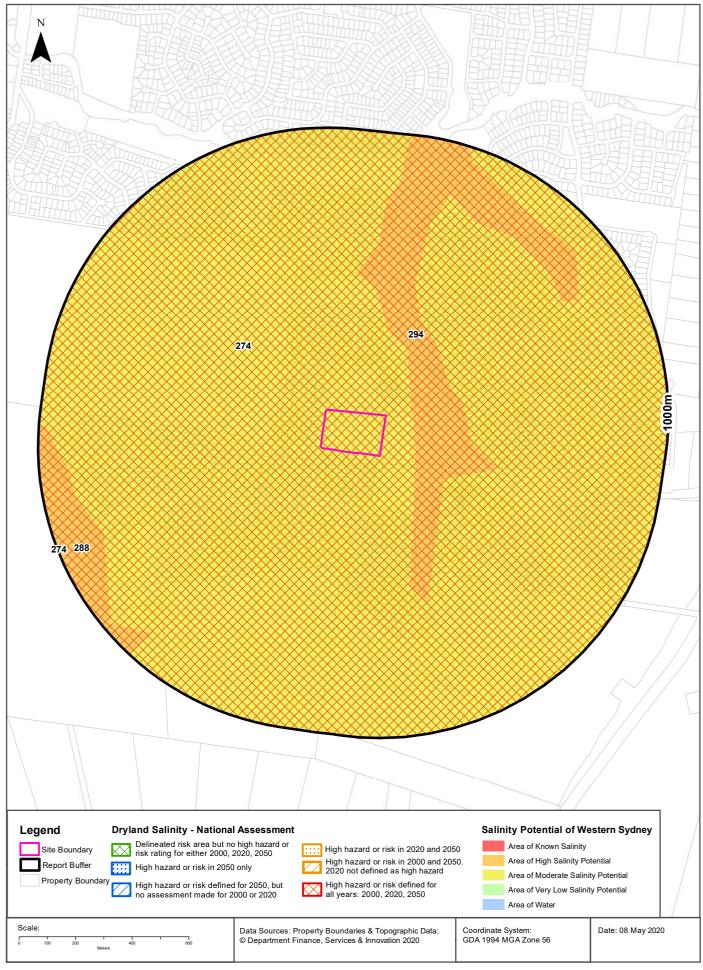
NSW Crown Copyright - Planning and Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Atlas of Australian Acid Sulfate Soils


Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Dryland Salinity

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

Yes

Is there Dryland Salinity - National Assessment data within the dataset buffer?

Yes

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
High hazard or risk	High hazard or risk	High hazard or risk	0m	Onsite

Dryland Salinity Data Source: National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Dryland Salinity Potential of Western Sydney

Dryland Salinity Potential of Western Sydney within the dataset buffer?

Feature Id	Classification	Description	Distance	Direction
274	MODERATE	Area of Moderate Salinity Potential	0m	Onsite
294	HIGH	Area of High Salinity Potential	95m	North East
288	HIGH	Area of High Salinity Potential	827m	South West

Dryland Salinity Potential of Western Sydney Data Source: NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining Subsidence Districts

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

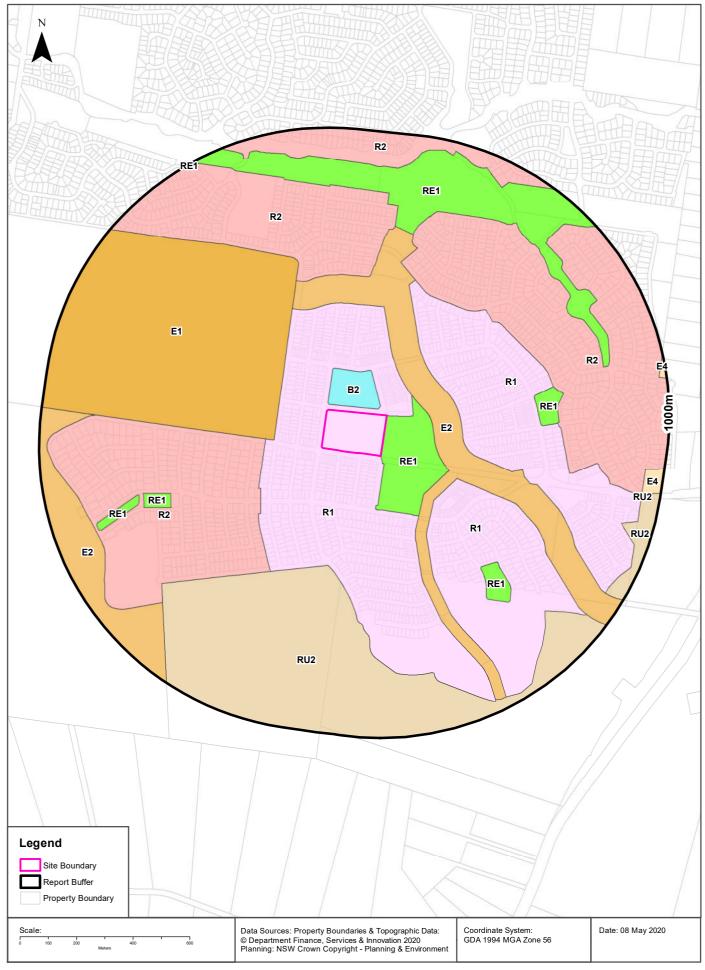
District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

State Environmental Planning Policy

1-23 Forestwood Drive, Glenmore Park, NSW 2745

State Significant Precincts


What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No Records in Buffer							

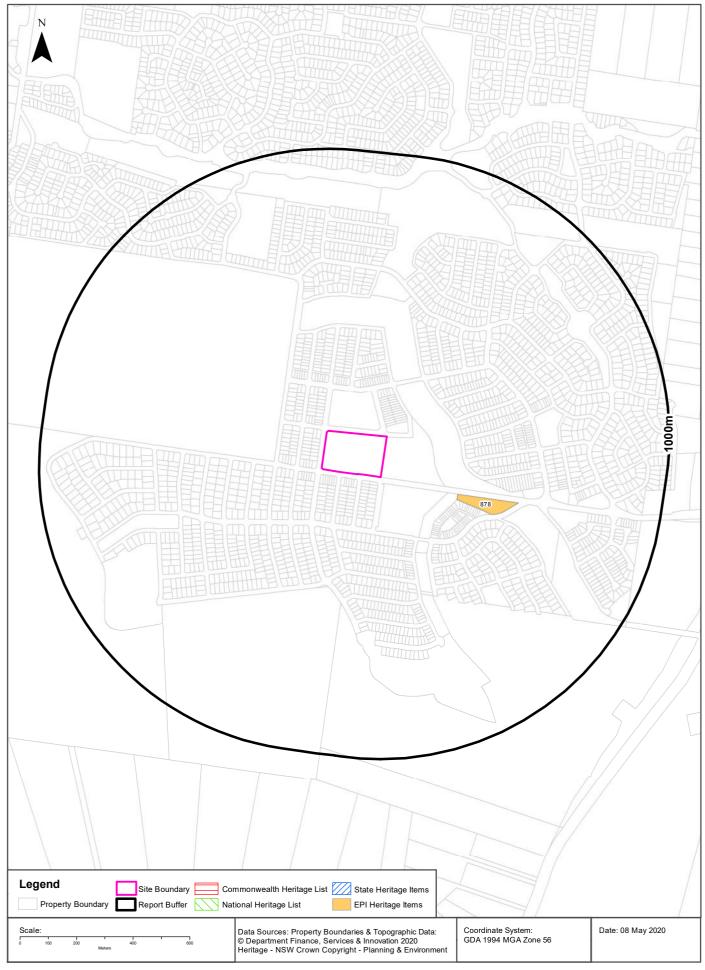
State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 \odot Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones1-23 Forestwood Drive, Glenmore Park, NSW 2745

Environmental Planning Instrument

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Land Zoning


What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R1	General Residential		Penrith Local Environmental Plan 2010	20/12/2019	20/12/2019	20/12/2019	Amendment No 23	0m	Onsite
RE1	Public Recreation		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	0m	South East
B2	Local Centre		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	19m	North
E2	Environmental Conservation		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	114m	East
E1	National Parks and Nature Reserves		Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	20/12/2019		171m	West
R2	Low Density Residential		Penrith Local Environmental Plan 2010	20/12/2019	20/12/2019	20/12/2019	Amendment No 23	201m	West
R1	General Residential		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	215m	East
R1	General Residential		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	245m	South East
RU2	Rural Landscape		Penrith Local Environmental Plan 2010	27/09/2019	27/09/2019	20/12/2019	Amendment No 22	409m	South
R2	Low Density Residential		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	453m	North East
R2	Low Density Residential		Penrith Local Environmental Plan 2010	27/09/2019	27/09/2019	20/12/2019	Amendment No 22	463m	North
RE1	Public Recreation		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	525m	East
RE1	Public Recreation		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	530m	South East
RE1	Public Recreation		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	560m	West
RE1	Public Recreation		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	650m	North
RE1	Public Recreation		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	669m	West
E2	Environmental Conservation		Penrith Local Environmental Plan 2010	20/12/2019	20/12/2019	20/12/2019	Amendment No 23	788m	South West
RU2	Rural Landscape		Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	20/12/2019		885m	East
E4	Environmental Living		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	933m	East
RU2	Rural Landscape		Penrith Local Environmental Plan 2010	28/01/2015	25/02/2015	20/12/2019	Amendment No 4	933m	East

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

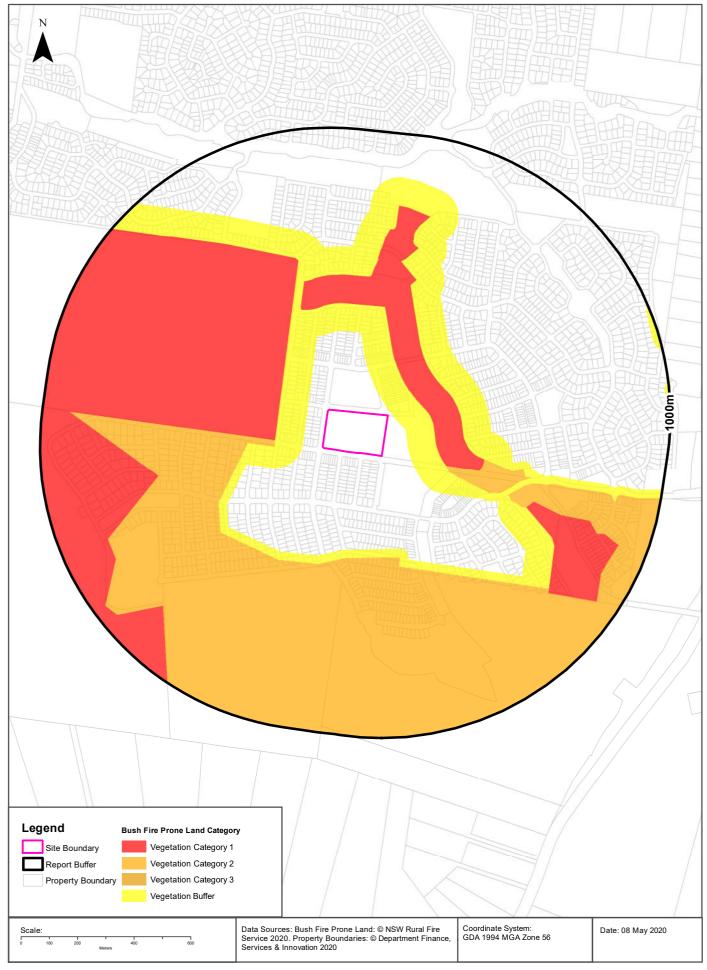
State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage


What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
878	Scarred tree and Aboriginal artefact scatter	Item - General	Local	Penrith Local Environmental Plan 2010	20/12/2019	20/12/2019	20/12/2019	279m	East

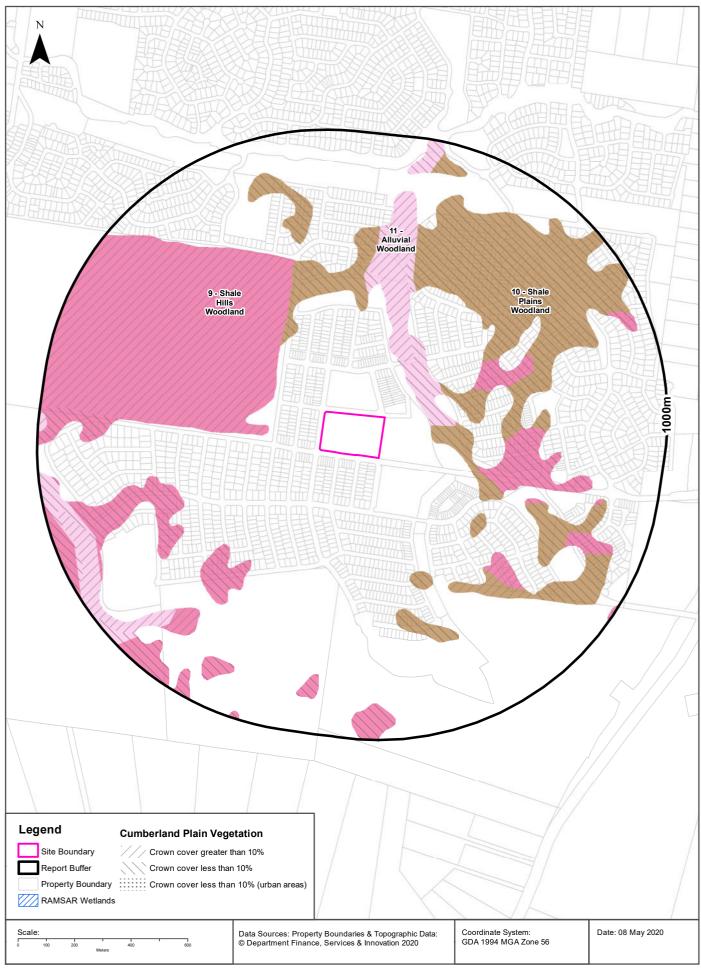
Heritage Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Bush Fire Prone Land


What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Buffer	13m	North East
Vegetation Category 1	113m	North East
Vegetation Category 2	169m	South East

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Remnant Vegetation of the Cumberland Plain

Ecological Constraints

1-23 Forestwood Drive, Glenmore Park, NSW 2745

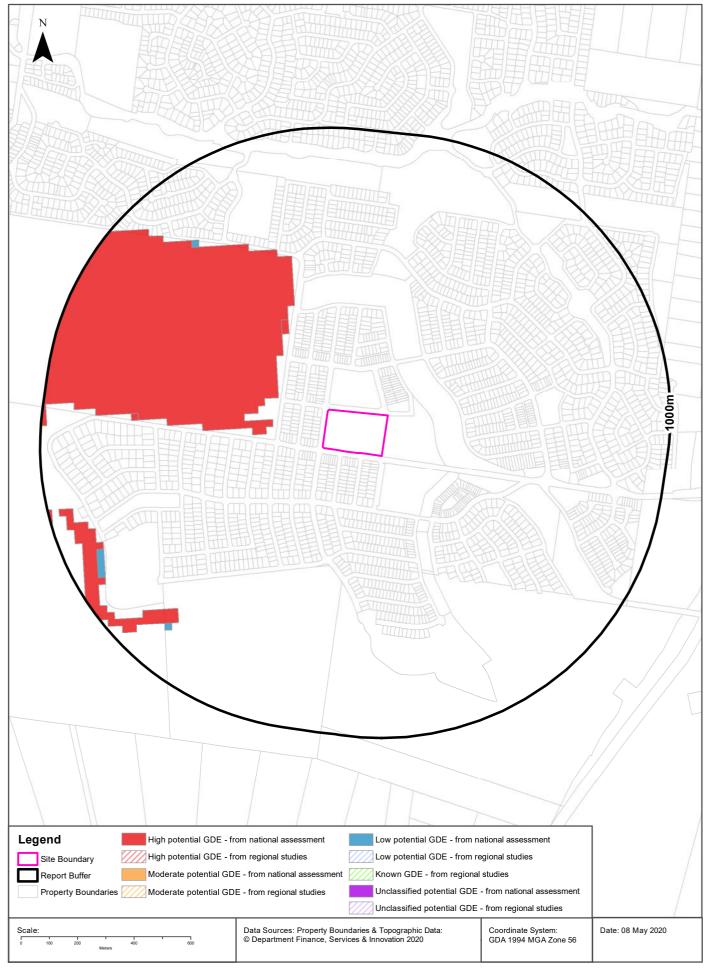
Remnant Vegetation of the Cumberland Plain

What remnant vegetation of the Cumberland Plain exists within the dataset buffer?

Description	Crown Cover	Distance	Direction
11 - Alluvial Woodland	Crown cover less than 10%	126m	North East
10 - Shale Plains Woodland	Crown cover less than 10%	164m	East
9 - Shale Hills Woodland	Crown cover greater than 10%	186m	North West
11 - Alluvial Woodland	Crown cover greater than 10%	209m	North
9 - Shale Hills Woodland	Crown cover less than 10%	325m	East
10 - Shale Plains Woodland	Crown cover greater than 10%	509m	North

Remnant Vegetation of the Cumberland Plain: NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ramsar Wetlands


What Ramsar Wetland areas exist within the dataset buffer?

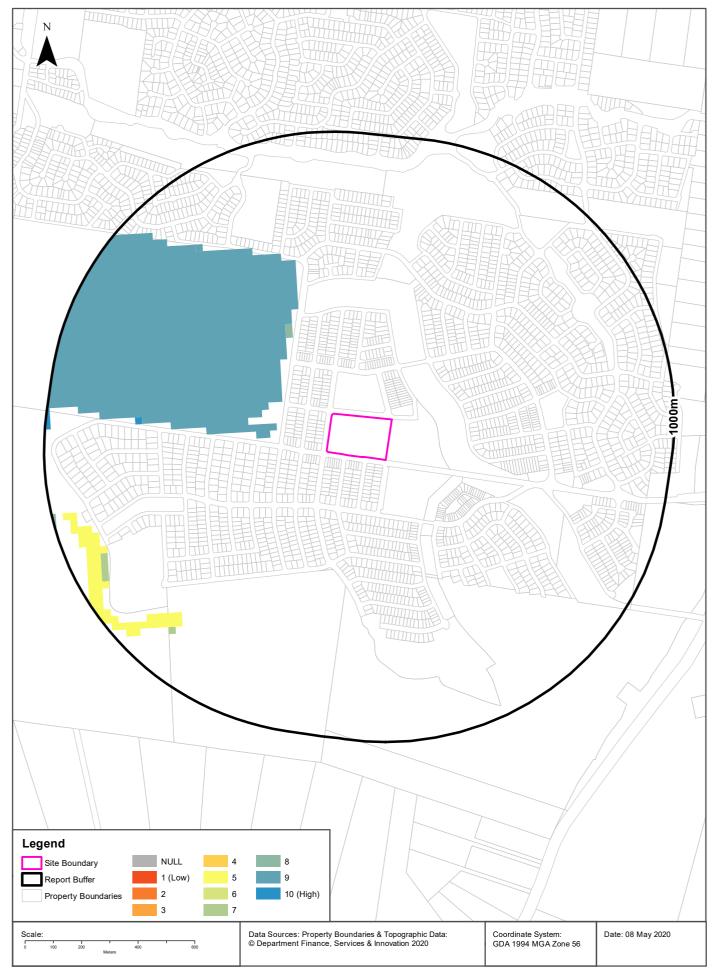
Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Environment

Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Ecological Constraints

1-23 Forestwood Drive, Glenmore Park, NSW 2745


Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	High potential GDE - from national assessment	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	179m
Terrestrial	Low potential GDE - from national assessment	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	737m

 $Groundwater\ Dependent\ Ecosystems\ Atlas\ Data\ Source:\ The\ Bureau\ of\ Meteorology$ $Creative\ Commons\ 3.0\ \ \ \ Commonwealth\ of\ Australia\ http://creativecommons.org/licenses/by/3.0/au/deed.en$

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Ecological Constraints

1-23 Forestwood Drive, Glenmore Park, NSW 2745

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	9	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	179m
Terrestrial	8	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	304m
Terrestrial	10	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	658m
Terrestrial	5	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	767m
Terrestrial	7	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	820m

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

1-23 Forestwood Drive, Glenmore Park, NSW 2745

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Heleioporus australiacus	Giant Burrowing Frog	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Amaurornis moluccana	Pale-vented Bush-hen	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardea ibis	Cattle Egret	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Calyptorhynchus banksii samueli	Red-tailed Black- Cockatoo (inland subspecies)	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Calyptorhynchus lathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Certhionyx variegatus	Pied Honeyeater	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Charadrius veredus	Oriental Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Chthonicola sagittata	Speckled Warbler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	CAMBA

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Limosa limosa	Black-tailed Godwit	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Melanodryas cucullata cucullata	Hooded Robin (south-eastern form)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Merops ornatus	Rainbow Bee- eater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius minutus	Little Curlew	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica phoenicea	Flame Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pezoporus wallicus wallicus	Eastern Ground Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Phaethon lepturus	White-tailed Tropicbird	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Plegadis falcinellus	Glossy Ibis	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Thinornis rubricollis	Hooded Plover	Critically Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Tringa glareola	Wood Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Gastropoda	Meridolum corneovirens	Cumberland Plain Land Snail	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Dasyurus viverrinus	Eastern Quoll	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petauroides volans	Greater Glider	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Petaurus australis	Yellow-bellied Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petrogale penicillata	Brush-tailed Rock-wallaby	Endangered	Not Sensitive	Vulnerable	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Antaresia stimsoni	Stimson's Python	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Aspidites ramsayi	Woma	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Eulamprus leuraensis	Blue Mountains Water Skink	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Hoplocephalus bungaroides	Broad-headed Snake	Endangered	Category 2	Vulnerable	
Animalia	Reptilia	Suta flagellum	Little Whip Snake	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Tiliqua occipitalis	Western Blue- tongued Lizard	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acacia pubescens	Downy Wattle	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Dillwynia tenuifolia		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus benthamii	Camden White Gum	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus leucoxylon subsp. pruinosa	Yellow Gum	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Grevillea juniperina subsp. juniperina	Juniper-leaved Grevillea	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Hibbertia puberula		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Isotoma fluviatilis subsp. fluviatilis		Not Listed	Not Sensitive	Extinct	
Plantae	Flora	Macadamia integrifolia	Macadamia Nut	Not Listed	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Marsdenia viridiflora subsp. viridiflora	Native Pear	Endangered Population	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Melaleuca deanei	Deane's Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Micromyrtus minutiflora		Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Persoonia hirsuta	Hairy Geebung	Endangered	Category 3	Endangered	
Plantae	Flora	Persoonia nutans	Nodding Geebung	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Pimelea spicata	Spiked Rice- flower	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Pterostylis chaetophora		Vulnerable	Category 2	Not Listed	
Plantae	Flora	Pterostylis saxicola	Sydney Plains Greenhood	Endangered	Category 2	Endangered	
Plantae	Flora	Pultenaea parviflora		Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Senna acclinis	Rainforest Cassia	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tetratheca glandulosa		Vulnerable	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species. NSW BioNet: © State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise match	Georeferenced to the site location / premise or part of site
General area or suburb match	Georeferenced with the confidence of the general/approximate area
Road match	Georeferenced to the road or rail
Road intersection	Georeferenced to the road intersection
Feature is a buffered point	Feature is a buffered point
Land adjacent to geocoded site	Land adjacent to Georeferenced Site
Network of features	Georeferenced to a network of features

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch
 has contractual arrangements or content which is freely available or methodologies
 licensed to Lotsearch by third parties with whom Lotsearch has contractual
 arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (Property) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any

- of its Third Party Content Supplier have any liability to it under or in connection with the Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms: and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Land Title Records

ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 843 842) ABN 82 147 943 842

 18/36 Osborne Road,
 Telephone: +612 9977 6713

 Manly NSW 2095
 Mobile: 0412 169 809

Email: search@alsearchers.com.au

08th May 2020

JKENVIRONMENTS PTY LIMITED 115 Wicks Road, MACQUARIE PARK NSW 2113

Attention Craig Ridley

RE: 1-23 Forestwood Drive,

Glenmore Park Job Reference: E33177PA

Current Search

Folio Identifier 1663/1166869 (title attached) DP 1166869 (plan attached) Dated 06th May 2020 Registered Proprietor:

THE MINISTER FOR EDUCATION

Title Tree Lot 1663 DP 1166869

Folio Identifier 1663/1166869

(a) (b)

Folio Identifier 1/222144 Folio Identifier 1801/1166848
CTVol 9919 Folio 8 Folio Identifier 1555/1161692

CTVol 6832 Folio 157 Folio Identifier 1400/1161693

CTVol 5789 Folio's 125 & 126 Folio Identifier 699/1155216

CTVol 4239 Folio 162 Folio Identifier 800/1155217

**** Folio Identifier 900/1155218

Folio Identifier 1000/1153500

Folio Identifier 500/1153499

Folio Identifier 400/1153498

Folio Identifier 200/1153497

Folio Identifier 100/1153496

Folio Identifier 8832/1109846

Folio Identifier 8819/1089978

Folio Identifier 2/1067073

Folio Identifier 880/1060475

Folio Identifier 8700/1046479

Folio Identifier 3/1045500

Folio Identifier 8918/1043708

Cont.

Cont.

Folio Identifier 8800/1041192 Folio Identifier 8901/1040625 Folio Identifier 8650/1038337 Folio Identifier 8794/1036719 Folio Identifier 6840/1036203 Folio Identifier 6799/1013970 Folio Identifier 8397/1008395 Folio Identifier 8200/1002570 Folio Identifier 6699/882806 Folio Identifier 8099/876748 Folio Identifier 2/876745 Folio Identifier 8028/870626 Folio Identifier 7001/844976 Folio Identifier 5795/838775 Folio Identifier 361/836799 Folio Identifier 6197/834530 Folio Identifier 4/833308 Folio Identifier 5036/832635 Folio Identifier 5158/828256 Folio Identifier 5/222785

Cont.

Cont.

Certificate of Title Volume 9801 Folio 201

Certificate of Title Volume 9696 Folio's 222 & 223

Certificate of Title Volume 9608 Folio 182

Certificate of Title Volume 6747 Folio 31

Certificate of Title Volume 6458 Folio 185 & 186

Certificate of Title Volume 4933 Folio 28

Certificate of Title Volume 2548 Folio 179

Summary of Proprietor(s) Lot 1663 DP 1166869

Year Proprietor(s)

	(Lot 1663 DP 1166869)
2014 – todate	The Minister for Education
2013 - 2014	Lensworth Glenmore Park Limited
2013 – 2013	Lensworth Glenmore Park Limited
	Holicombe Pty Limited

See Notes (a) & (b)

Note (a)

	(Lot 1 DP 222144)
1999 – 2013	Holicombe Pty Limited
1996 – 1999	JM & JA Wearn Pty Limited
1995 – 1996	Monier PGH Holdings Limited
1988 – 1995	Zacuba Pty Limited
	(Lot 1 DP 222144 – CTVol 9919 Fol 8)
1980 – 1988	Zacuba Pty Limited
1977 – 1980	Emu Plains (Rural Properties) Pty Limited
1974 - 1977	Bonds Furnishings (Liverpool) Pty Limited
1970 - 1974	Christro California Pty Limited
1965 – 1970	Garswood Pastoral Co Pty Limited
1965 – 1965	Cecil Herbert Roots, cattle dealer
	(Lots 8 to 11 DP 4832 – Area 459 Acres 1 Rood 32 Perches – CTVol
	6832 Fol 157)
1954 – 1965	Cecil Herbert Roots, cattle dealer
	(Lots 8 to 11 DP 4832 & Portions 26, 28, 29 & 30 Parish Mulgoa –
	Area 829 Acres 1 Rood 12 Perches – CTVol 5789 Fol's 125 & 126)
1948 – 1954	Cecil Herbert Roots, cattle dealer
	Patricia Eve Trafford, spinster
	(Lots 8 to 11 DP 4832 & Portions 26, 28, 29 & 30 Parish Mulgoa –
	Area 829 Acres 1 Rood 12 Perches – CTVol 4239 Fol 162)
1934 – 1948	Lillie Jane Smith, widow
(1935 - 1947)	(lease to Edgar Albert Tanner, dairy farmer)
1929 – 1934	Leslie Rowling Smith, grazier

Note (b)

	(Lot 1801 DP 1166848)
2012 – 2013	Lensworth Glenmore Park Limited
	(Lot 1555 DP 1161692)
2012 – 2012	Lensworth Glenmore Park Limited
	(Lot 1400 DP 1161693)
2012 – 2012	Lensworth Glenmore Park Limited
	(Lot 699 DP 1155216)
2011 – 2012	Lensworth Glenmore Park Limited
	(Lot 800 DP 1155217)
2011 – 2011	Lensworth Glenmore Park Limited
	(Lot 900 DP 1155218)
2011 – 2011	Lensworth Glenmore Park Limited
	(Lot 1000 DP 1153500)
2011 – 2011	Lensworth Glenmore Park Limited
	(Lot 500 DP 1153499)
2011 – 2011	Lensworth Glenmore Park Limited
	(Lot 400 DP 1153498)
2011 – 2011	Lensworth Glenmore Park Limited
	(Lot 200 DP 1153497)
2011 – 2011	Lensworth Glenmore Park Limited
	(Lot 100 DP 1153496)
2011 – 2011	Lensworth Glenmore Park Limited
	(Lot 8932 DP 1109846)
2010 – 2011	Lensworth Glenmore Park Limited
	(Lot 8819 DP 1089978)
2006 – 2010	Lensworth Glenmore Park Limited
2004 2006	(Lot 2 DP 1067073)
2004 – 2006	Lensworth Glenmore Park Limited
2004 – 2004	Nergl Developments Pty Limited
2004 - 2004	Lensworth Glenmore Park Limited
	Nergl Developments Pty Limited
2004 2004	(Lot 880 DP1060475)
2004 – 2004	Lensworth Glenmore Park Limited Nergl Developments Pty Limited
	(Lot 8700 DP 1046479)
2003 – 2004	Lensworth Glenmore Park Limited
2003 - 2004	(Lot 3 DP 1045500)
2002 – 2003	Lensworth Glenmore Park Limited
2002 – 2003	Lensworm Olemnore Fark Limited

Cont.

Cont.

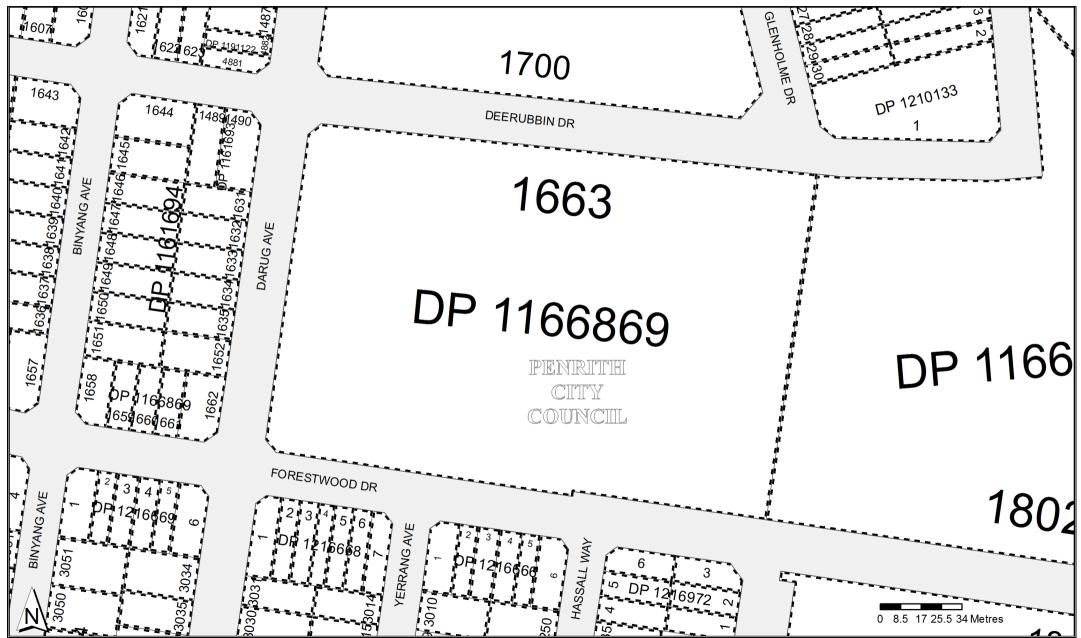
	(Lot 8919 DP 1043708)
2002 - 2002	Lensworth Glenmore Park Limited
	(Lot 8800 DP 1041192)
2002 - 2002	Lensworth Glenmore Park Limited
	(Lot 8901 DP1040625)
2002 - 2002	Lensworth Glenmore Park Limited
	(Lot 8650 DP 1038337)
2002 - 2002	Lensworth Glenmore Park Limited
	(Lot 8794 DP 1036719)
2002 - 2002	Glenmore Park Estate Limited
	(Lot 6840 DP 1036203)
2002 - 2002	Glenmore Park Estate Limited
	(Lot 6799 DP 1013970)
2000 - 2002	Glenmore Park Estate Limited
	(Lot 8397 DP 1008395)
2000 - 2000	Glenmore Park Estate Limited
	(Lot 8200 DP 1002570)
1999 - 2000	Glenmore Park Estate Limited
	(Lot 6699 DP 882806)
1999 - 2000	Glenmore Park Estate Limited
	(Lot 8099 DP 876748)
1998 – 1999	Glenmore Park Estate Limited
	(Lot 2 DP 876745)
1998 – 1998	Glenmore Park Estate Limited
	(Lot 8028 DP 870626)
1998 – 1998	Glenmore Park Estate Limited
1998 – 1998	The New South Wales Land and Housing Corporation
	(Lot 7001 DP 844976)
1994 – 1998	The New South Wales Land and Housing Corporation
	(Lot 4 DP 833308)
1993 – 1994	The New South Wales Land and Housing Corporation
	(Lot 5036 DP 832635)
1993 – 1993	The New South Wales Land and Housing Corporation
	(Lot 5 DP 222785)
1988 – 1993	The New South Wales Land and Housing Corporation

Cont.

Cont.

	(Lot 5 DP 222785 – CTVol 9801 Fol 201)
1974 – 1988	The Housing Commission of New South Wales
1967 – 1974	Tatmar Pastoral Co Pty Limited
1964 – 1967	Clifford Charles White, grazier
	(Lots 3 & 4 DP 221553 – CTVol 9696 Fol's 222 & 223)
1964 – 1964	Clifford Charles White, grazier
	(Part Portion 37 and Portion 38 Parish Mulgoa – Area 899 Acres 2
	Roods - CTVol 6747 Fol 31)
1953 – 1964	Clifford Charles White, grazier
	(Part Portion 37 and Portion 38 Parish Mulgoa – Area 899 Acres 2
	Roods - CTVol 6458 Fol's 185 & 186)
1953 – 1953	Clement Lorne Chapman, medical practioner
	Clifford Charles White, grazier
	(Part Portion 37 and Portion 38 Parish Mulgoa – Area 899 Acres 2
	Roods - CTVol 4933 Fol 28)
1938 – 1953	The Scottish Australian Investment Company Limited
	(Part Portion 37 and Portion 38 Parish Mulgoa and other lands –
	Area 1007 Acres 1 Roods 39 Perches – CTVol 2548 Fol 179)
1915 – 1938	The Scottish Australian Investment Company Limited
(1919 – 1938)	(lease to Frederick Alexander Mackenzie, dairy farmer)
	(Part Portion 37 and Portion 38 Parish Mulgoa and other lands –
	Area 1504 Acres 1 Roods 36 Perches – CTVol 1252 Fol 181)
1898 – 1915	The Scottish Australian Investment Company Limited

LAND REGISTRY


SERVICES

Ref: NOUSER

Locality: GLENMORE PARK

Parish: MULGOA **County: CUMBERLAND**

LGA: PENRITH

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA: PENRITH **County**: CUMBERLAND

			- · · · · y	
	Status	Surv/Comp	Purpose	
DP1155005 Lot(s): 18				
P541090	HISTORICAL	SURVEY	SUBDIVISION	
DP1150906	HISTORICAL	SURVEY	SUBDIVISION	
DP1162982	REGISTERED	SURVEY	SUBDIVISION	
DP1161692 Lot(s): 1500				
DP222785	HISTORICAL	SURVEY	SUBDIVISION	
DP521093	HISTORICAL	COMPILATION	SUBDIVISION	
DP597243	HISTORICAL	COMPILATION	SUBDIVISION	
DP882806	HISTORICAL	SURVEY	SUBDIVISION	
DP1002570	HISTORICAL	SURVEY	SUBDIVISION	
DP1008395	HISTORICAL	SURVEY	SUBDIVISION	
DP1013970	HISTORICAL	SURVEY	SUBDIVISION	
DP1026769	HISTORICAL	SURVEY	SUBDIVISION	
DP1036203	HISTORICAL	SURVEY	SUBDIVISION	
DP1036719	HISTORICAL	SURVEY	SUBDIVISION	
DP1038337	HISTORICAL	SURVEY	SUBDIVISION	
DP1040625	HISTORICAL	SURVEY	SUBDIVISION	
DP1041192	HISTORICAL	SURVEY	SUBDIVISION	
DP1043708	HISTORICAL	SURVEY	SUBDIVISION	
DP1045500	HISTORICAL	SURVEY	SUBDIVISION	
DP1046479	HISTORICAL	SURVEY	SUBDIVISION	
DP1050042	HISTORICAL	SURVEY	SUBDIVISION	
DP1060475	HISTORICAL	SURVEY	SUBDIVISION	
DP1067073	HISTORICAL	SURVEY	SUBDIVISION	
DP1089978	HISTORICAL	SURVEY	SUBDIVISION	
DP1109846	HISTORICAL	SURVEY	SUBDIVISION	
DP1153496	HISTORICAL	SURVEY	SUBDIVISION	
DP1153497	HISTORICAL	SURVEY	SUBDIVISION	
DP1153498	HISTORICAL	SURVEY	SUBDIVISION	
DP1153499	HISTORICAL	SURVEY	SUBDIVISION	
DP1153500	HISTORICAL	SURVEY	SUBDIVISION	
DP1155216	HISTORICAL	SURVEY	SUBDIVISION	
DP1155217	HISTORICAL	SURVEY	SUBDIVISION	
DP1155218	HISTORICAL	SURVEY	SUBDIVISION	
DP1161693	HISTORICAL	SURVEY	SUBDIVISION	
P1186348	WITHDRAWN	UNAVAILABLE	SUBDIVISION	
P1194668	REGISTERED	COMPILATION	EASEMENT	

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA: PENRITH County: CUMBERLAND

	Status	Surv/Comp	Purpose
DP1161693			
Lot(s): 1487, 1489, 1490			
DP222785	HISTORICAL	SURVEY	SUBDIVISION
DP521093	HISTORICAL	COMPILATION	SUBDIVISION
DP597243	HISTORICAL	COMPILATION	SUBDIVISION
DP882806	HISTORICAL	SURVEY	SUBDIVISION
DP1002570	HISTORICAL	SURVEY	SUBDIVISION
DP1008395	HISTORICAL	SURVEY	SUBDIVISION
DP1013970	HISTORICAL	SURVEY	SUBDIVISION
DP1026769	HISTORICAL	SURVEY	SUBDIVISION
DP1036203	HISTORICAL	SURVEY	SUBDIVISION
DP1036719	HISTORICAL	SURVEY	SUBDIVISION
DP1038337	HISTORICAL	SURVEY	SUBDIVISION
DP1040625	HISTORICAL	SURVEY	SUBDIVISION
DP1041192	HISTORICAL	SURVEY	SUBDIVISION
DP1043708	HISTORICAL	SURVEY	SUBDIVISION
DP1045500	HISTORICAL	SURVEY	SUBDIVISION
DP1046479	HISTORICAL	SURVEY	SUBDIVISION
DP1050042	HISTORICAL	SURVEY	SUBDIVISION
DP1060475	HISTORICAL	SURVEY	SUBDIVISION
DP1067073	HISTORICAL	SURVEY	SUBDIVISION
DP1089978	HISTORICAL	SURVEY	SUBDIVISION
DP1109846	HISTORICAL	SURVEY	SUBDIVISION
DP1153496	HISTORICAL	SURVEY	SUBDIVISION
DP1153497	HISTORICAL	SURVEY	SUBDIVISION
DP1153498	HISTORICAL	SURVEY	SUBDIVISION
DP1153499	HISTORICAL	SURVEY	SUBDIVISION
DP1153500	HISTORICAL	SURVEY	SUBDIVISION
DP1155216	HISTORICAL	SURVEY	SUBDIVISION
DP1155217	HISTORICAL	SURVEY	SUBDIVISION
DP1155218	HISTORICAL	SURVEY	SUBDIVISION

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA : PENRITH County : CUMBERLAND

Status Surv/Comp **Purpose** DP1161694 Lot(s): 1606, 1607, 1608, 1621, 1622, 1623, 1624, 1625, 1626, 1627, 1631, 1632, 1633, 1634, 1635, 1636, 1637, 1638, 1639, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1649, 1650, 1651, 1652 SURVEY SUBDIVISION DP222785 **HISTORICAL COMPILATION** DP521093 **HISTORICAL** SUBDIVISION DP597243 **COMPILATION** SUBDIVISION HISTORICAL DP882806 HISTORICAL SURVEY SUBDIVISION DP1002570 HISTORICAL SURVEY SUBDIVISION DP1008395 HISTORICAL SURVEY SUBDIVISION DP1013970 **HISTORICAL SURVEY** SUBDIVISION DP1026769 **HISTORICAL** SURVEY SUBDIVISION DP1036203 **HISTORICAL** SURVEY SUBDIVISION SURVEY SUBDIVISION DP1036719 HISTORICAL DP1038337 **HISTORICAL SURVEY** SUBDIVISION DP1040625 **HISTORICAL SURVEY** SUBDIVISION DP1041192 **HISTORICAL SURVEY** SUBDIVISION DP1043708 **HISTORICAL** SURVEY SUBDIVISION DP1045500 **HISTORICAL** SURVEY SUBDIVISION e e DP1046479 **HISTORICAL** SURVEY SUBDIVISION DP1050042 **HISTORICAL** SURVEY SUBDIVISION DP1060475 **HISTORICAL** SURVEY SUBDIVISION HISTORICAL DP1067073 SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION HISTORICAL **SURVEY** SUBDIVISION DP1153496 DP1153497 **SURVEY** SUBDIVISION HISTORICAL DP1153498 **HISTORICAL SURVEY** SUBDIVISION DP1153499 **HISTORICAL SURVEY** SUBDIVISION DP1153500 **HISTORICAL SURVEY** SUBDIVISION DP1155216 **HISTORICAL** SURVEY SUBDIVISION DP1155217 **HISTORICAL SURVEY** SUBDIVISION DP1155218 SURVEY **HISTORICAL** SUBDIVISION DP1161692 HISTORICAL SURVEY SUBDIVISION DP1161693 HISTORICAL SURVEY SUBDIVISION DP1163177 Lot(s): 235, 250 DP541090 HISTORICAL SURVEY SUBDIVISION HISTORICAL SURVEY SUBDIVISION DP1150906 DP1155005 HISTORICAL **SURVEY** SUBDIVISION DP1159120 HISTORICAL SURVEY SUBDIVISION DP1162982 **HISTORICAL** SURVEY SUBDIVISION DP1171501 **HISTORICAL** SURVEY SUBDIVISION DP1165172 Lot(s): 3010, 3014, 3015, 3030, 3031, 3034, 3035, 3036 DP541090 **HISTORICAL** SURVEY SUBDIVISION DP1150906 **HISTORICAL SURVEY** SUBDIVISION DP1155005 HISTORICAL SURVEY SUBDIVISION DP1171501 SURVEY SUBDIVISION HISTORICAL DP1165174 Lot(s): 3049, 3050, 3051, 3060, 3061 DP541090 **HISTORICAL** SURVEY SUBDIVISION

Caution:

P1150906

DP1155005

DP1165172

DP1171501

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

SUBDIVISION

SUBDIVISION

SUBDIVISION

SUBDIVISION

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

SURVEY

SURVEY

SURVEY

SURVEY

HISTORICAL

HISTORICAL

HISTORICAL

HISTORICAL

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA : PENRITH **County** : CUMBERLAND

DP1166371 Lot(s): 1700 ☑ DP222785 HISTORICAL SURVEY SUBDIVISION ☑ DP521093 HISTORICAL COMPILATION SUBDIVISION ☑ DP597243 HISTORICAL COMPILATION SUBDIVISION ☑ DP882806 HISTORICAL SURVEY SUBDIVISION ☑ DP1002570 HISTORICAL SURVEY SUBDIVISION ☑ DP1003895 HISTORICAL SURVEY SUBDIVISION ☑ DP1013970 HISTORICAL SURVEY SUBDIVISION ☑ DP1026769 HISTORICAL SURVEY SUBDIVISION ☑ DP1036203 HISTORICAL SURVEY SUBDIVISION ☑ DP10366719 HISTORICAL SURVEY SUBDIVISION ☑ DP1038337 HISTORICAL SURVEY SUBDIVISION ☑ DP1040625 HISTORICAL SURVEY SUBDIVISION ☑ DP1043708 HISTORICAL SURVEY SUBDIVISION ☑ DP1043709 HISTORICAL SURVEY SUBDIVISION ☑ DP1046479 HISTORICAL SURVEY SUBDIVISION ☑ DP		Status	Surv/Comp	Purpose
DP222785 HISTORICAL SURVEY SUBDIVISION DF521093 HISTORICAL COMPILATION SUBDIVISION DP597243 HISTORICAL COMPILATION SUBDIVISION DP597243 HISTORICAL COMPILATION SUBDIVISION DP597243 HISTORICAL SURVEY SUBDIVISION DP1002570 HISTORICAL SURVEY SUBDIVISION DP1003975 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP1045500 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1108464 HISTORICAL SURVEY SUBDIVISION DP1108464 HISTORICAL SURVEY SUBDIVISION DP110846 HISTORICAL SURVEY SUBDIVISION DP11053496 HISTORICAL SURVEY SUBDIVISION DP1153497 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION				
□ DP521093 HISTORICAL COMPILATION SUBDIVISION □ DP597243 HISTORICAL COMPILATION SUBDIVISION □ DP882806 HISTORICAL SURVEY SUBDIVISION □ DP1002570 HISTORICAL SURVEY SUBDIVISION □ DP1008395 HISTORICAL SURVEY SUBDIVISION □ DP1013970 HISTORICAL SURVEY SUBDIVISION □ DP1026769 HISTORICAL SURVEY SUBDIVISION □ DP1036203 HISTORICAL SURVEY SUBDIVISION □ DP1036203 HISTORICAL SURVEY SUBDIVISION □ DP1036219 HISTORICAL SURVEY SUBDIVISION □ DP1038337 HISTORICAL SURVEY SUBDIVISION □ DP1040625 HISTORICAL SURVEY SUBDIVISION □ DP1041192 HISTORICAL SURVEY SUBDIVISION □ DP1041192 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION □ DP1045500 HISTORICAL SURVEY SUBDIVISION □ DP1046479 HISTORICAL SURVEY SUBDIVISION □ DP1050042 HISTORICAL SURVEY SUBDIVISION □ DP1050042 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION				
DP597243 HISTORICAL COMPILATION SUBDIVISION DP882806 HISTORICAL SURVEY SUBDIVISION DP1002570 HISTORICAL SURVEY SUBDIVISION DP1008395 HISTORICAL SURVEY SUBDIVISION DP1008395 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP104192 HISTORICAL SURVEY SUBDIVISION DP104192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP10445500 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1066475 HISTORICAL SURVEY SUBDIVISION DP1067073 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1108466 HISTORICAL SURVEY SUBDIVISION DP11053496 HISTORICAL SURVEY SUBDIVISION DP1153497 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION				
DP882806 HISTORICAL SURVEY SUBDIVISION DP1002570 HISTORICAL SURVEY SUBDIVISION DP1008395 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP1045500 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1069978 HISTORICAL SURVEY SUBDIVISION DP10989978 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP11053496 HISTORICAL SURVEY SUBDIVISION DP1153497 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION	_			
□ DP1002570 HISTORICAL SURVEY SUBDIVISION □ DP1008395 HISTORICAL SURVEY SUBDIVISION □ DP1013970 HISTORICAL SURVEY SUBDIVISION □ DP1026769 HISTORICAL SURVEY SUBDIVISION □ DP1036203 HISTORICAL SURVEY SUBDIVISION □ DP1036719 HISTORICAL SURVEY SUBDIVISION □ DP1038337 HISTORICAL SURVEY SUBDIVISION □ DP1040625 HISTORICAL SURVEY SUBDIVISION □ DP1041192 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION □ DP1045500 HISTORICAL SURVEY SUBDIVISION □ DP1045500 HISTORICAL SURVEY SUBDIVISION □ DP1046479 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1067073 HISTORICAL SURVEY SUBDIVISION □ DP1069978 HISTORICAL SURVEY SUBDIVISION □ DP1099986 HISTORICAL SURVEY SUBDIVISION □ DP1109846 HISTORICAL SURVEY SUBDIVISION □ DP11053496 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION				
DP1008395 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP10441192 HISTORICAL SURVEY SUBDIVISION DP1044708 HISTORICAL SURVEY SUBDIVISION DP1045500 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1060075 HISTORICAL SURVEY SUBDIVISION DP1067073 HISTORICAL SURVEY SUBDIVISION DP10699978 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP10989978 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP1153496 HISTORICAL SURVEY SUBDIVISION DP1153497 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION	_			
□ DP1013970 HISTORICAL SURVEY SUBDIVISION □ DP1026769 HISTORICAL SURVEY SUBDIVISION □ DP1036203 HISTORICAL SURVEY SUBDIVISION □ DP1036719 HISTORICAL SURVEY SUBDIVISION □ DP1038337 HISTORICAL SURVEY SUBDIVISION □ DP1040625 HISTORICAL SURVEY SUBDIVISION □ DP1041192 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION □ DP1045500 HISTORICAL SURVEY SUBDIVISION □ DP104679 HISTORICAL SURVEY SUBDIVISION □ DP1050042 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1067073 HISTORICAL SURVEY SUBDIVISION □ DP1069978 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP109846 HISTORICAL SURVEY SUBDIVISION □ DP1109846 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION				
DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP1045500 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1067073 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP1153496 HISTORICAL SURVEY SUBDIVISION DP1153497 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1008395	HISTORICAL	SURVEY	SUBDIVISION
□ DP1036203 HISTORICAL SURVEY SUBDIVISION □ DP1036719 HISTORICAL SURVEY SUBDIVISION □ DP1038337 HISTORICAL SURVEY SUBDIVISION □ DP1040625 HISTORICAL SURVEY SUBDIVISION □ DP1041192 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION □ DP1045500 HISTORICAL SURVEY SUBDIVISION □ DP1046479 HISTORICAL SURVEY SUBDIVISION □ DP1050042 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1067073 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1109846 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1013970	HISTORICAL	SURVEY	SUBDIVISION
□ DP1036719 HISTORICAL SURVEY SUBDIVISION □ DP1038337 HISTORICAL SURVEY SUBDIVISION □ DP1040625 HISTORICAL SURVEY SUBDIVISION □ DP1041192 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION □ DP1045500 HISTORICAL SURVEY SUBDIVISION □ DP1046479 HISTORICAL SURVEY SUBDIVISION □ DP1050042 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1067073 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP109846 HISTORICAL SURVEY SUBDIVISION □ DP1109846 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1026769	HISTORICAL	SURVEY	SUBDIVISION
DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP1045500 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1067073 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP1153496 HISTORICAL SURVEY SUBDIVISION DP1153497 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1036203	HISTORICAL	SURVEY	SUBDIVISION
DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP1045500 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1067073 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP1153496 HISTORICAL SURVEY SUBDIVISION DP1153497 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1036719	HISTORICAL	SURVEY	SUBDIVISION
DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP1045500 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1067073 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP1153496 HISTORICAL SURVEY SUBDIVISION DP1153496 HISTORICAL SURVEY SUBDIVISION DP1153497 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1038337	HISTORICAL	SURVEY	SUBDIVISION
DP1043708 HISTORICAL SURVEY SUBDIVISION DP1045500 HISTORICAL SURVEY SUBDIVISION DP1046479 HISTORICAL SURVEY SUBDIVISION DP1050042 HISTORICAL SURVEY SUBDIVISION DP1060475 HISTORICAL SURVEY SUBDIVISION DP1067073 HISTORICAL SURVEY SUBDIVISION DP1089978 HISTORICAL SURVEY SUBDIVISION DP1109846 HISTORICAL SURVEY SUBDIVISION DP1153496 HISTORICAL SURVEY SUBDIVISION DP1153496 HISTORICAL SURVEY SUBDIVISION DP1153497 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1040625	HISTORICAL	SURVEY	SUBDIVISION
□ DP1045500 HISTORICAL SURVEY SUBDIVISION □ DP1046479 HISTORICAL SURVEY SUBDIVISION □ DP1050042 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1067073 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1109846 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1041192	HISTORICAL	SURVEY	SUBDIVISION
□ DP1046479 HISTORICAL SURVEY SUBDIVISION □ DP1050042 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1067073 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1109846 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1043708	HISTORICAL	SURVEY	SUBDIVISION
□ DP1050042 HISTORICAL SURVEY SUBDIVISION □ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1067073 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1109846 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1045500	HISTORICAL	SURVEY	SUBDIVISION
□ DP1060475 HISTORICAL SURVEY SUBDIVISION □ DP1067073 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1109846 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1046479	HISTORICAL	SURVEY	SUBDIVISION
□ DP1067073 HISTORICAL SURVEY SUBDIVISION □ DP1089978 HISTORICAL SURVEY SUBDIVISION □ DP1109846 HISTORICAL SURVEY SUBDIVISION □ DP1153496 HISTORICAL SURVEY SUBDIVISION □ DP1153497 HISTORICAL SURVEY SUBDIVISION □ DP1153498 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION □ DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1050042	HISTORICAL	SURVEY	SUBDIVISION
☐ DP1089978 HISTORICAL SURVEY SUBDIVISION ☐ DP1109846 HISTORICAL SURVEY SUBDIVISION ☐ DP1153496 HISTORICAL SURVEY SUBDIVISION ☐ DP1153497 HISTORICAL SURVEY SUBDIVISION ☐ DP1153498 HISTORICAL SURVEY SUBDIVISION ☐ DP1153499 HISTORICAL SURVEY SUBDIVISION ☐ DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1060475	HISTORICAL	SURVEY	SUBDIVISION
☑ DP1109846HISTORICALSURVEYSUBDIVISION☑ DP1153496HISTORICALSURVEYSUBDIVISION☑ DP1153497HISTORICALSURVEYSUBDIVISION☑ DP1153498HISTORICALSURVEYSUBDIVISION☑ DP1153499HISTORICALSURVEYSUBDIVISION	DP1067073	HISTORICAL	SURVEY	SUBDIVISION
■ DP1153496HISTORICALSURVEYSUBDIVISION■ DP1153497HISTORICALSURVEYSUBDIVISION■ DP1153498HISTORICALSURVEYSUBDIVISION■ DP1153499HISTORICALSURVEYSUBDIVISION	DP1089978	HISTORICAL	SURVEY	SUBDIVISION
☐ DP1153497 HISTORICAL SURVEY SUBDIVISION ☐ DP1153498 HISTORICAL SURVEY SUBDIVISION ☐ DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1109846	HISTORICAL	SURVEY	SUBDIVISION
DP1153498 HISTORICAL SURVEY SUBDIVISION DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1153496	HISTORICAL	SURVEY	SUBDIVISION
DP1153499 HISTORICAL SURVEY SUBDIVISION	DP1153497	HISTORICAL	SURVEY	SUBDIVISION
	DP1153498	HISTORICAL	SURVEY	SUBDIVISION
DP1153500 HISTORICAL SURVEY SURDIVISION	DP1153499	HISTORICAL	SURVEY	SUBDIVISION
E DI 1100000 TIIOTORICAL SURVET SUBDIVISION	DP1153500	HISTORICAL	SURVEY	SUBDIVISION
P1155216 HISTORICAL SURVEY SUBDIVISION	DP1155216	HISTORICAL	SURVEY	SUBDIVISION
DP1155217 HISTORICAL SURVEY SUBDIVISION	DP1155217	HISTORICAL	SURVEY	SUBDIVISION
P1155218 HISTORICAL SURVEY SUBDIVISION	DP1155218	HISTORICAL	SURVEY	SUBDIVISION
DP1161692 HISTORICAL SURVEY SUBDIVISION	DP1161692	HISTORICAL	SURVEY	SUBDIVISION
DP1161693 HISTORICAL SURVEY SUBDIVISION	DP1161693	HISTORICAL	SURVEY	SUBDIVISION

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA: PENRITH **County**: CUMBERLAND

	Status	Surv/Comp	Purpose	
DP1166848				
Lot(s): 1802				
DP222785	HISTORICAL	SURVEY	SUBDIVISION	
P521093	HISTORICAL	COMPILATION	SUBDIVISION	
P597243	HISTORICAL	COMPILATION	SUBDIVISION	
DP882806	HISTORICAL	SURVEY	SUBDIVISION	
DP1002570	HISTORICAL	SURVEY	SUBDIVISION	
DP1008395	HISTORICAL	SURVEY	SUBDIVISION	
DP1013970	HISTORICAL	SURVEY	SUBDIVISION	
DP1026769	HISTORICAL	SURVEY	SUBDIVISION	
DP1036203	HISTORICAL	SURVEY	SUBDIVISION	
DP1036719	HISTORICAL	SURVEY	SUBDIVISION	
DP1038337	HISTORICAL	SURVEY	SUBDIVISION	
DP1040625	HISTORICAL	SURVEY	SUBDIVISION	
DP1041192	HISTORICAL	SURVEY	SUBDIVISION	
DP1043708	HISTORICAL	SURVEY	SUBDIVISION	
DP1045500	HISTORICAL	SURVEY	SUBDIVISION	
DP1046479	HISTORICAL	SURVEY	SUBDIVISION	
DP1050042	HISTORICAL	SURVEY	SUBDIVISION	
DP1060475	HISTORICAL	SURVEY	SUBDIVISION	
DP1067073	HISTORICAL	SURVEY	SUBDIVISION	
DP1089978	HISTORICAL	SURVEY	SUBDIVISION	
DP1109846	HISTORICAL	SURVEY	SUBDIVISION	
DP1153496	HISTORICAL	SURVEY	SUBDIVISION	
DP1153497	HISTORICAL	SURVEY	SUBDIVISION	
DP1153498	HISTORICAL	SURVEY	SUBDIVISION	
DP1153499	HISTORICAL	SURVEY	SUBDIVISION	
DP1153500	HISTORICAL	SURVEY	SUBDIVISION	
DP1155216	HISTORICAL	SURVEY	SUBDIVISION	
DP1155217	HISTORICAL	SURVEY	SUBDIVISION	
DP1155218	HISTORICAL	SURVEY	SUBDIVISION	
DP1161692	HISTORICAL	SURVEY	SUBDIVISION	
DP1161693	HISTORICAL	SURVEY	SUBDIVISION	
DP1166869				
Lot(s): 1663		0.15.45.4	0.177111101011	
DP1166848	HISTORICAL	SURVEY	SUBDIVISION	
Lot(s): 1656, 1657, 1658,		CLIDVEV	CLIDDIVICION	
DP1161694	HISTORICAL	SURVEY	SUBDIVISION	

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA : PENRITH **County** : CUMBERLAND

	Status	Surv/Comp	Purpose
Lot(s): 1656, 1657, 1658, 1659, 16			
DP222144	HISTORICAL	COMPILATION	SUBDIVISION
DP222785	HISTORICAL	SURVEY	SUBDIVISION
DP521093	HISTORICAL	COMPILATION	SUBDIVISION
DP597243	HISTORICAL	COMPILATION	SUBDIVISION
DP882806	HISTORICAL	SURVEY	SUBDIVISION
DP1002570	HISTORICAL	SURVEY	SUBDIVISION
DP1008395	HISTORICAL	SURVEY	SUBDIVISION
DP1013970	HISTORICAL	SURVEY	SUBDIVISION
DP1026769	HISTORICAL	SURVEY	SUBDIVISION
DP1036203	HISTORICAL	SURVEY	SUBDIVISION
DP1036719	HISTORICAL	SURVEY	SUBDIVISION
DP1038337	HISTORICAL	SURVEY	SUBDIVISION
DP1040625	HISTORICAL	SURVEY	SUBDIVISION
DP1041192	HISTORICAL	SURVEY	SUBDIVISION
DP1043708	HISTORICAL	SURVEY	SUBDIVISION
DP1045500	HISTORICAL	SURVEY	SUBDIVISION
DP1046479	HISTORICAL	SURVEY	SUBDIVISION
DP1050042	HISTORICAL	SURVEY	SUBDIVISION
DP1060475	HISTORICAL	SURVEY	SUBDIVISION
DP1067073	HISTORICAL	SURVEY	SUBDIVISION
DP1089978	HISTORICAL	SURVEY	SUBDIVISION
DP1109846	HISTORICAL	SURVEY	SUBDIVISION
DP1153496	HISTORICAL	SURVEY	SUBDIVISION
DP1153497	HISTORICAL	SURVEY	SUBDIVISION
DP1153498	HISTORICAL	SURVEY	SUBDIVISION
DP1153499	HISTORICAL	SURVEY	SUBDIVISION
DP1153500	HISTORICAL	SURVEY	SUBDIVISION
DP1155216	HISTORICAL	SURVEY	SUBDIVISION
DP1155217	HISTORICAL	SURVEY	SUBDIVISION
DP1155218	HISTORICAL	SURVEY	SUBDIVISION
DP1161692	HISTORICAL	SURVEY	SUBDIVISION
DP1161693	HISTORICAL	SURVEY	SUBDIVISION

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA: PENRITH County: CUMBERLAND

DP1191122	
Lot(s): 4881, 4882 DP222785 HISTORICAL SURVEY SUBDIVISION DP521093 HISTORICAL COMPILATION SUBDIVISION DP597243 HISTORICAL COMPILATION SUBDIVISION DP882806 HISTORICAL SURVEY SUBDIVISION DP1002570 HISTORICAL SURVEY SUBDIVISION DP1008395 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1041708 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION	
DP222785 HISTORICAL SURVEY SUBDIVISION DP521093 HISTORICAL COMPILATION SUBDIVISION DP597243 HISTORICAL COMPILATION SUBDIVISION DP882806 HISTORICAL SURVEY SUBDIVISION DP1002570 HISTORICAL SURVEY SUBDIVISION DP1008395 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION	
DP521093 HISTORICAL COMPILATION SUBDIVISION DP597243 HISTORICAL COMPILATION SUBDIVISION DP597243 HISTORICAL SURVEY SUBDIVISION DP882806 HISTORICAL SURVEY SUBDIVISION DP1002570 HISTORICAL SURVEY SUBDIVISION DP1008395 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION	
□ DP597243 HISTORICAL COMPILATION SUBDIVISION □ DP882806 HISTORICAL SURVEY SUBDIVISION □ DP1002570 HISTORICAL SURVEY SUBDIVISION □ DP1008395 HISTORICAL SURVEY SUBDIVISION □ DP1013970 HISTORICAL SURVEY SUBDIVISION □ DP1026769 HISTORICAL SURVEY SUBDIVISION □ DP1036203 HISTORICAL SURVEY SUBDIVISION □ DP1036719 HISTORICAL SURVEY SUBDIVISION □ DP1038337 HISTORICAL SURVEY SUBDIVISION □ DP1040625 HISTORICAL SURVEY SUBDIVISION □ DP1041192 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION	
□ DP882806 HISTORICAL SURVEY SUBDIVISION □ DP1002570 HISTORICAL SURVEY SUBDIVISION □ DP1008395 HISTORICAL SURVEY SUBDIVISION □ DP1013970 HISTORICAL SURVEY SUBDIVISION □ DP1026769 HISTORICAL SURVEY SUBDIVISION □ DP1036203 HISTORICAL SURVEY SUBDIVISION □ DP1036719 HISTORICAL SURVEY SUBDIVISION □ DP1038337 HISTORICAL SURVEY SUBDIVISION □ DP1040625 HISTORICAL SURVEY SUBDIVISION □ DP1041192 HISTORICAL SURVEY SUBDIVISION □ DP1041708 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION	
DP1002570 HISTORICAL SURVEY SUBDIVISION DP1008395 HISTORICAL SURVEY SUBDIVISION DP1013970 HISTORICAL SURVEY SUBDIVISION DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION	
□ DP1008395 HISTORICAL SURVEY SUBDIVISION □ DP1013970 HISTORICAL SURVEY SUBDIVISION □ DP1026769 HISTORICAL SURVEY SUBDIVISION □ DP1036203 HISTORICAL SURVEY SUBDIVISION □ DP1036719 HISTORICAL SURVEY SUBDIVISION □ DP1038337 HISTORICAL SURVEY SUBDIVISION □ DP1040625 HISTORICAL SURVEY SUBDIVISION □ DP1041192 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION □ DP1043708 HISTORICAL SURVEY SUBDIVISION	
DP1013970 HISTORICAL SURVEY SUBDIVISION DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION	
DP1026769 HISTORICAL SURVEY SUBDIVISION DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION SUBDIVISION SUBDIVISION	
DP1036203 HISTORICAL SURVEY SUBDIVISION DP1036719 HISTORICAL SURVEY SUBDIVISION DP1038337 HISTORICAL SURVEY SUBDIVISION DP1040625 HISTORICAL SURVEY SUBDIVISION DP1041192 HISTORICAL SURVEY SUBDIVISION DP1043708 HISTORICAL SURVEY SUBDIVISION SUBDIVISION SUBDIVISION SUBDIVISION	
☑ DP1036719HISTORICALSURVEYSUBDIVISION☑ DP1038337HISTORICALSURVEYSUBDIVISION☑ DP1040625HISTORICALSURVEYSUBDIVISION☑ DP1041192HISTORICALSURVEYSUBDIVISION☑ DP1043708HISTORICALSURVEYSUBDIVISION	
☑ DP1038337HISTORICALSURVEYSUBDIVISION☑ DP1040625HISTORICALSURVEYSUBDIVISION☑ DP1041192HISTORICALSURVEYSUBDIVISION☑ DP1043708HISTORICALSURVEYSUBDIVISION	
■ DP1040625HISTORICALSURVEYSUBDIVISION■ DP1041192HISTORICALSURVEYSUBDIVISION■ DP1043708HISTORICALSURVEYSUBDIVISION	
☑ DP1041192HISTORICALSURVEYSUBDIVISION☑ DP1043708HISTORICALSURVEYSUBDIVISION	
DP1043708 HISTORICAL SURVEY SUBDIVISION	
P1045500 HISTORICAL SURVEY SUBDIVISION	
P1046479 HISTORICAL SURVEY SUBDIVISION	
P1050042 HISTORICAL SURVEY SUBDIVISION	
P1060475 HISTORICAL SURVEY SUBDIVISION	
P1067073 HISTORICAL SURVEY SUBDIVISION	
P1089978 HISTORICAL SURVEY SUBDIVISION	
PP1109846 HISTORICAL SURVEY SUBDIVISION	
P1153496 HISTORICAL SURVEY SUBDIVISION	
P1153497 HISTORICAL SURVEY SUBDIVISION	
P1153498 HISTORICAL SURVEY SUBDIVISION	
☐ DP1153499 HISTORICAL SURVEY SUBDIVISION	
P1153500 HISTORICAL SURVEY SUBDIVISION	
☐ DP1155216 HISTORICAL SURVEY SUBDIVISION	
■ DP1155217 HISTORICAL SURVEY SUBDIVISION	
■ DP1155218 HISTORICAL SURVEY SUBDIVISION	
■ DP1161693 HISTORICAL SURVEY SUBDIVISION	
DP1197216	
Lot(s): 4	
PP222144 HISTORICAL COMPILATION SUBDIVISION	
PP541090 HISTORICAL SURVEY SUBDIVISION	
■ DP1150906 HISTORICAL SURVEY SUBDIVISION	
■ DP1155005 HISTORICAL SURVEY SUBDIVISION	
■ DP1165172 HISTORICAL SURVEY SUBDIVISION	
■ DP1165174 HISTORICAL SURVEY SUBDIVISION	
■ DP1165176 HISTORICAL SURVEY SUBDIVISION	
■ DP1166869 HISTORICAL SURVEY SUBDIVISION	
■ DP1171501 HISTORICAL SURVEY SUBDIVISION	
■ DP1180358 HISTORICAL SURVEY SUBDIVISION	
P1186025 HISTORICAL SURVEY SUBDIVISION	

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: GLENMORE PARK

REGISTERED

Parish: MULGOA

SUBDIVISION

Ref: NOUSER

LGA: PENRITH County: CUMBERLAND

			•	
	Status	Surv/Comp	Purpose	
DP1210133				
Lot(s): 1	LUCTORIONI	01101/51/	OLIDDIN (IOLONI	
DP222785	HISTORICAL	SURVEY	SUBDIVISION	
P521093	HISTORICAL	COMPILATION	SUBDIVISION	
DP597243	HISTORICAL	COMPILATION	SUBDIVISION	
DP882806	HISTORICAL	SURVEY	SUBDIVISION	
DP1002570	HISTORICAL	SURVEY	SUBDIVISION	
DP1008395	HISTORICAL	SURVEY	SUBDIVISION	
DP1013970	HISTORICAL	SURVEY	SUBDIVISION	
DP1026769	HISTORICAL	SURVEY	SUBDIVISION	
DP1036203	HISTORICAL	SURVEY	SUBDIVISION	
DP1036719	HISTORICAL	SURVEY	SUBDIVISION	
DP1038337	HISTORICAL	SURVEY	SUBDIVISION	
DP1040625	HISTORICAL	SURVEY	SUBDIVISION	
DP1041192	HISTORICAL	SURVEY	SUBDIVISION	
DP1043708	HISTORICAL	SURVEY	SUBDIVISION	
DP1045500	HISTORICAL	SURVEY	SUBDIVISION	
P1046479	HISTORICAL	SURVEY	SUBDIVISION	
DP1050042	HISTORICAL	SURVEY	SUBDIVISION	
DP1060475	HISTORICAL	SURVEY	SUBDIVISION	
DP1067073	HISTORICAL	SURVEY	SUBDIVISION	
DP1089978	HISTORICAL	SURVEY	SUBDIVISION	
DP1109846	HISTORICAL	SURVEY	SUBDIVISION	
P1153496	HISTORICAL	SURVEY	SUBDIVISION	
DP1153497	HISTORICAL	SURVEY	SUBDIVISION	
DP1153498	HISTORICAL	SURVEY	SUBDIVISION	
DP1153499	HISTORICAL	SURVEY	SUBDIVISION	
P1153500	HISTORICAL	SURVEY	SUBDIVISION	
P1155216	HISTORICAL	SURVEY	SUBDIVISION	
P1155217	HISTORICAL	SURVEY	SUBDIVISION	
P1155218	HISTORICAL	SURVEY	SUBDIVISION	
P1161692	HISTORICAL	SURVEY	SUBDIVISION	
P1161693	HISTORICAL	SURVEY	SUBDIVISION	
P1166371	HISTORICAL	SURVEY	SUBDIVISION	
2				

SURVEY

DP1211385

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA: PENRITH County: CUMBERLAND

	Status	Surv/Comp	Purpose
DP1211385		•	•
Lot(s): 2, 3, 4, 27, 28, 29, 30			
DP222785	HISTORICAL	SURVEY	SUBDIVISION
DP521093	HISTORICAL	COMPILATION	SUBDIVISION
DP597243	HISTORICAL	COMPILATION	SUBDIVISION
DP882806	HISTORICAL	SURVEY	SUBDIVISION
DP1002570	HISTORICAL	SURVEY	SUBDIVISION
DP1008395	HISTORICAL	SURVEY	SUBDIVISION
DP1013970	HISTORICAL	SURVEY	SUBDIVISION
DP1026769	HISTORICAL	SURVEY	SUBDIVISION
DP1036203	HISTORICAL	SURVEY	SUBDIVISION
DP1036719	HISTORICAL	SURVEY	SUBDIVISION
DP1038337	HISTORICAL	SURVEY	SUBDIVISION
DP1040625	HISTORICAL	SURVEY	SUBDIVISION
DP1041192	HISTORICAL	SURVEY	SUBDIVISION
DP1043708	HISTORICAL	SURVEY	SUBDIVISION
DP1045500	HISTORICAL	SURVEY	SUBDIVISION
DP1046479	HISTORICAL	SURVEY	SUBDIVISION
DP1050042	HISTORICAL	SURVEY	SUBDIVISION
DP1060475	HISTORICAL	SURVEY	SUBDIVISION
DP1067073	HISTORICAL	SURVEY	SUBDIVISION
DP1089978	HISTORICAL	SURVEY	SUBDIVISION
DP1109846	HISTORICAL	SURVEY	SUBDIVISION
DP1153496	HISTORICAL	SURVEY	SUBDIVISION
DP1153497	HISTORICAL	SURVEY	SUBDIVISION
DP1153498	HISTORICAL	SURVEY	SUBDIVISION
DP1153499	HISTORICAL	SURVEY	SUBDIVISION
DP1153500	HISTORICAL	SURVEY	SUBDIVISION
DP1155216	HISTORICAL	SURVEY	SUBDIVISION
DP1155217	HISTORICAL	SURVEY	SUBDIVISION
DP1155218	HISTORICAL	SURVEY	SUBDIVISION
DP1161692	HISTORICAL	SURVEY	SUBDIVISION
DP1161693	HISTORICAL	SURVEY	SUBDIVISION
DP1166371	HISTORICAL	SURVEY	SUBDIVISION
DP1210133	HISTORICAL	SURVEY	SUBDIVISION
DP1216666			
Lot(s): 1, 2, 3, 4, 5, 6	LUCTORIONI	OLIDA(E)	OLIDDIN/IOLONI
PP445000	HISTORICAL	SURVEY	SUBDIVISION
DP1150906	HISTORICAL	SURVEY	SUBDIVISION
DP1155005	HISTORICAL	SURVEY	SUBDIVISION
PP1165172	HISTORICAL	SURVEY	SUBDIVISION
DP1171501	HISTORICAL	SURVEY	SUBDIVISION
DP1216668			
Lot(s): 1, 2, 3, 4, 5, 6, 7 DP541090	HISTORICAL	SURVEY	SUBDIVISION
P1150906	HISTORICAL	SURVEY	SUBDIVISION
DP1155005	HISTORICAL	SURVEY	SUBDIVISION
P1165172	HISTORICAL	SURVEY	SUBDIVISION
DP1171501	HISTORICAL	SURVEY	SUBDIVISION
DP1216669	1 II O I O I O I O I O	00.0021	CODDIVIOION
Lot(s): 1, 2, 3			
DP1165174	HISTORICAL	SURVEY	SUBDIVISION

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA: PENRITH County: CUMBERLAND

	Status	Surv/Comp	Purpose
Lot(s): 1, 2, 3, 4, 5, 6			
DP541090	HISTORICAL	SURVEY	SUBDIVISION
DP1150906	HISTORICAL	SURVEY	SUBDIVISION
DP1155005	HISTORICAL	SURVEY	SUBDIVISION
DP1165172	HISTORICAL	SURVEY	SUBDIVISION
DP1171501	HISTORICAL	SURVEY	SUBDIVISION
DP1216972			
Lot(s): 1, 2, 3, 4, 5, 6			
DP541090	HISTORICAL	SURVEY	SUBDIVISION
DP1150906	HISTORICAL	SURVEY	SUBDIVISION
DP1155005	HISTORICAL	SURVEY	SUBDIVISION
DP1159120	HISTORICAL	SURVEY	SUBDIVISION
DP1162982	HISTORICAL	SURVEY	SUBDIVISION
DP1163177	HISTORICAL	SURVEY	SUBDIVISION
DP1171501	HISTORICAL	SURVEY	SUBDIVISION

Locality: GLENMORE PARK

Parish: MULGOA

Ref: NOUSER

LGA : PENRITH County : CUMBERLAND

Plan	Surv/Comp	Purpose	
DP1155005	UNRESEARCHED	SUBDIVISION	
DP1155005	SURVEY	SUBDIVISION	
DP1161692	SURVEY	SUBDIVISION	
DP1161692	UNRESEARCHED	SUBDIVISION	
DP1161693	UNRESEARCHED	SUBDIVISION	
DP1161693	SURVEY	SUBDIVISION	
DP1161694	UNRESEARCHED	SUBDIVISION	
DP1161694	SURVEY	SUBDIVISION	
DP1163177	UNRESEARCHED	SUBDIVISION	
DP1163177	SURVEY	SUBDIVISION	
DP1165172	UNRESEARCHED	SUBDIVISION	
DP1165172	SURVEY	SUBDIVISION	
DP1165174	UNRESEARCHED	SUBDIVISION	
DP1165174	SURVEY	SUBDIVISION	
DP1166371	UNRESEARCHED	SUBDIVISION	
DP1166371	SURVEY	SUBDIVISION	
DP1166848	SURVEY	SUBDIVISION	
DP1166848	UNRESEARCHED	SUBDIVISION	
DP1166869	UNRESEARCHED	SUBDIVISION	
DP1166869	SURVEY	SUBDIVISION	
DP1191122	UNRESEARCHED	SUBDIVISION	
DP1191122	SURVEY	SUBDIVISION	
DP1197216	UNRESEARCHED	SUBDIVISION	
DP1197216	SURVEY	SUBDIVISION	
DP1210133	UNRESEARCHED	SUBDIVISION	
DP1210133	SURVEY	SUBDIVISION	
DP1211385	UNRESEARCHED	SUBDIVISION	
DP1211385	SURVEY	SUBDIVISION	
DP1216666	SURVEY	SUBDIVISION	
DP1216666	UNRESEARCHED	SUBDIVISION	
DP1216668	SURVEY	SUBDIVISION	
DP1216668	UNRESEARCHED	SUBDIVISION	
DP1216669	SURVEY	SUBDIVISION	
DP1216669	UNRESEARCHED	SUBDIVISION	
DP1216972	UNRESEARCHED	SUBDIVISION	
DP1216972	SURVEY	SUBDIVISION	

© Office of the Registrar-General /Src:GLOBALX /Ref:advlegs

Persons are cautioned against altering or adding to this certificate or any notification hereon

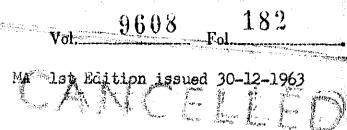
CKS

ROTO TOX

arger FTT

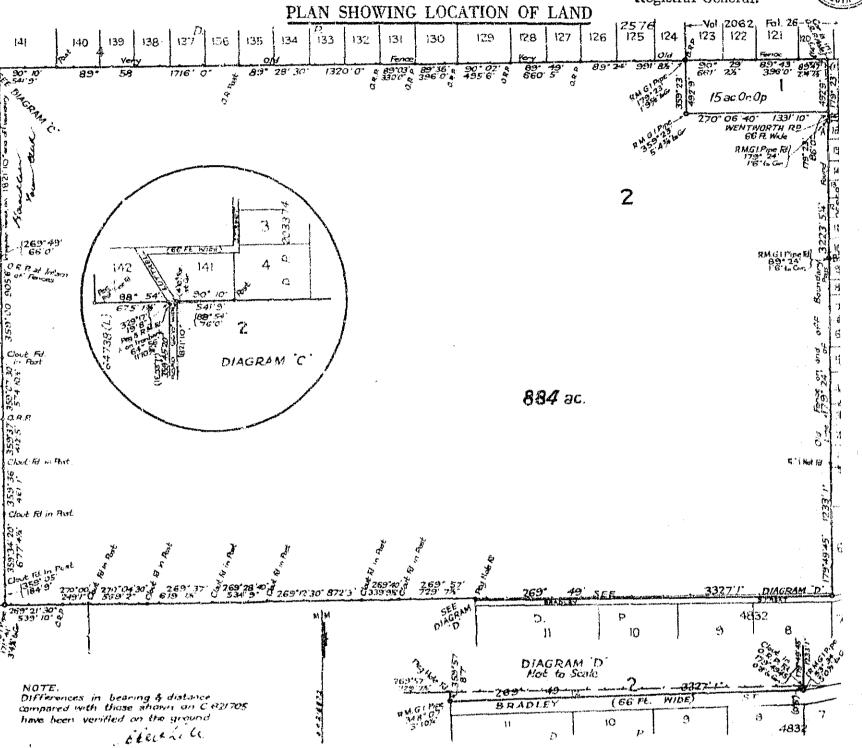
GREE

IIS OFF


WARNING.

DOCUMENT MISS

Deposited Plan.)



I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Witness

Registrar-General.

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 2 in Deposited Plan 218872 at Kingswood in the City of Penrith Parish of Mulgoa and County of Cumberland.

FIRST SCHEDULE (continued overleaf)

METROPOLITAN BUILDING INVESTMENTS LIMITED, as to that part of the land above described formerly comprised in Cortificate of Title Volume 1006 Bollo 186 and CLIFFOND CHANDES WHITE, of Kingswood, Grazier, as to that part formerly comprised in Cortificate of Title Volume 6747 Folio 31.

Registrar General.

SECOND SCHEDULE (continued overleaf)

1. Reservations and conditions, if any, contained in the Crown Grant(s) referred to in the said Deposited Plan.

Registrar General.

PERTY ACT, 1900, as amended.

Prior Title Vol. 9608 Fol. 182 For Application and Grant particulars see Deposited Plan.

© Office of the Registrar-General /Src:GLOBALX /Ref:advlegs

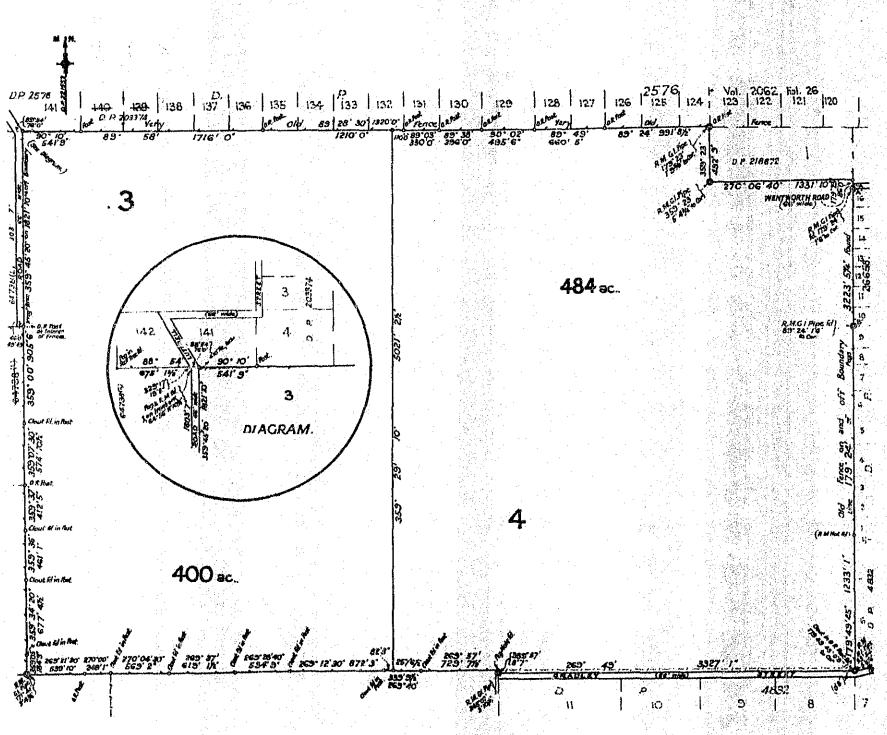
1st Edition issued 1-5-1964.

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Witness

(Page 1) Vol.

ST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON


PERSONS ARE CAUTIONED AGAIN

Registrar General

WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE

S

PLAN SHOWING LOCATION OF LAND

ESTATE AND LAND REFERRED TO.

Estate in Fee Simple in Lot in Deposited Plan 221553 at Kingswood in the City of Penrith Parish of Milroa and County of Cum

FIRST SCHEDULE (Continued overleaf)

CLIFFORD CHARLES WHITE, of Kingswood, Grazier.

Registrar General.

SECOND SCHEDULE (Continued overleaf)

1. Reservations and conditions, if any, contained in the Grown Grant(s) referred to in the said Deposited

legistrar General

ST 1509 V C N. PLIGHT, GOVERNMENT PRINTER

CO

CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

PERSONS ARE

see Deposited Plan.

PriorTitles Volume 9696 Folios 22 For Applications and Grant particulars

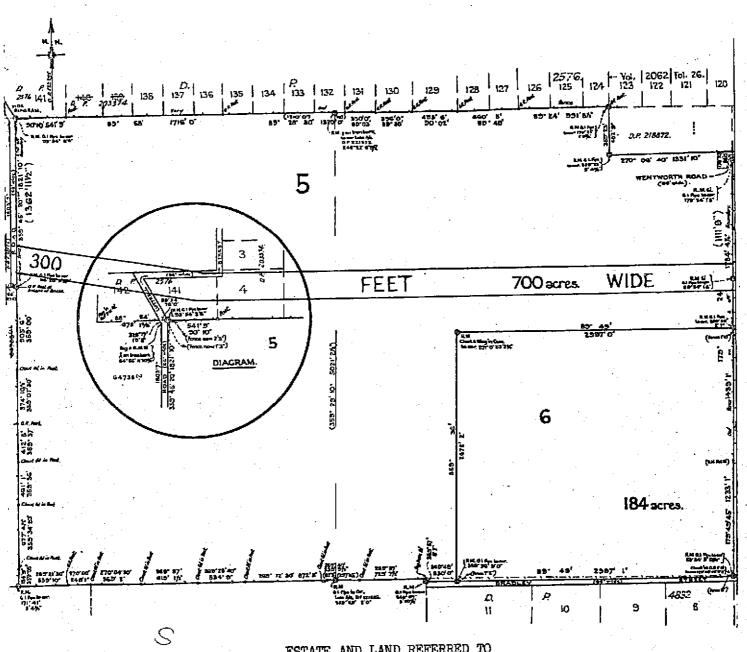
222

ID

 3801_{Fol} 2.01

1st Edition issued 10-9-1964.

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.


Witness

Registrar General.

WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE.

PLAN SHOWING LOCATION OF LAND

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 5 in Deposited Plan 222785 at Kingswood in the City of Penrith Parish of Mulgoa and County of Cumberland.

FIRST SCHEDULE (continued overleaf)

CLIFFORD CHARLES WHITE,

Registrer General

SECOND SCHEDULE (continued overleaf)

GRY 1. Reservations and conditions, if any, contained in the Crown Grant(s) referred to in the said Deposited Plan.

r 50			REGISTERED PROPRIETOR	NATURE	INSTRUMENT I NUMBER	DATE	ENTERED	Signature of Registrar Goneral	the
0귀	Flynes 195101al Co Ph The Housing Commission	at to Phy Limited Courts	s, modies	Potency Poten	7825610 457560	13-11-1973	\$3.11.1944- 4.191-1-4	Sudaleral Substant	Registrar
1088									General /Src
.loV									GLOBALX /F
									Served 1
		INSTRUMENT	SECOND SCHEDULE (continued)	ENTERED	Signature of		NOIFE	7	Heliza 18-8-18
	8	49.4	to the Commenced that by Australia brinted	- 3	β γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	Miles	ogl sten	Substans	Jal 3733
山	Round Ger	78924854	learnent for transminum has effecting the proce of land 300 feet , unde shown in sh when here with 1.892485	23.7-1970	whitepro				NS75660M (7.Pt)
<u> </u>							87		
<u>-! !</u>									
1 }									
ges)									¥
eq 2 to									
C age 7)									,
	FORM No. 62		NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF TH	THE REGISTRAR GENERAL	ARE	CANCELLED			

 ∞

NEW SOUTH WALES

Application No.1692 Prior Title Vol.6832 Fol.157 IFICATE OF TITLE ERTY ACT, 1900, as amended.

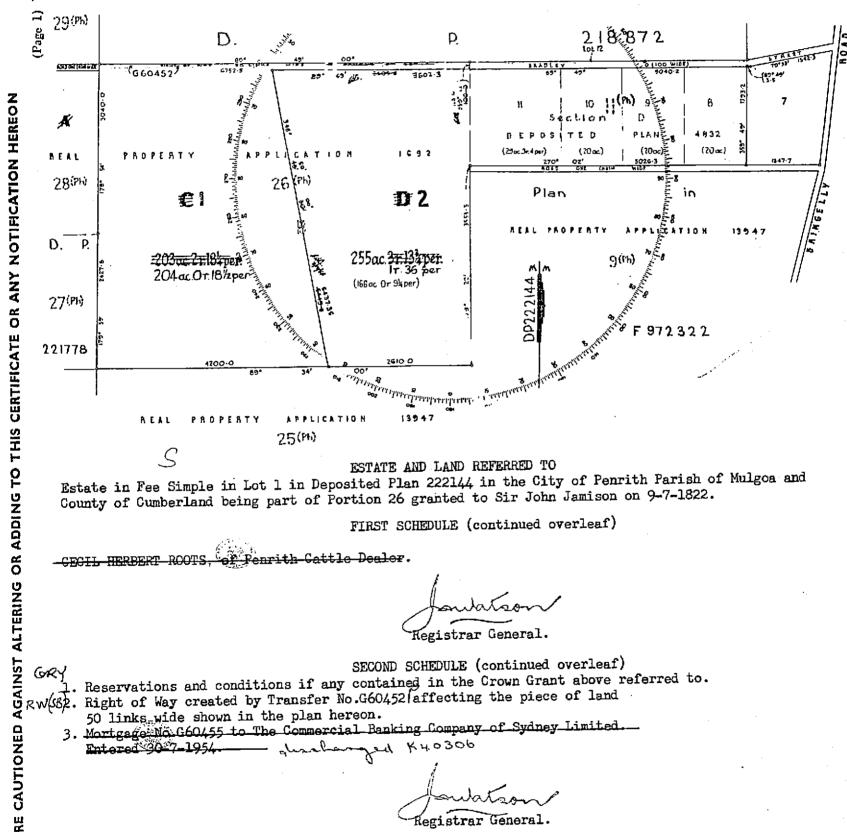
WARNING: THIS DOCUMENT MUST NOT

BE REMOVED FROM THE LAND TITLES OFFICE.

 9919_{Fol} 8 Vol.

1st Edition issued 5-2-1965

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.


MA

Witness Stohen

Registrar General.

PLAN SHOWING LOCATION OF LAND

SEE AUTO FOLID

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 1 in Deposited Plan 222144 in the City of Penrith Parish of Mulgoa and County of Cumberland being part of Portion 26 granted to Sir John Jamison on 9-7-1822.

FIRST SCHEDULE (continued overleaf)

of Penrith Cattle Dealer

Registrar General.

SECOND SCHEDULE (continued overleaf)

Reservations and conditions if any contained in the Crown Grant above referred to.

Right of Way created by Transfer No.G60452 affecting the piece of land

50 links wide shown in the plan hereon.

Mortgage No G60455 to The Commercial Banking Company of Sydney Limited

6

REGIS	rinal achebulk (continued)						612
	REGISTERED PROPRIETOR	NATÜRE	INSTRUMENT	f DATE	- ENTERED	Signature of Registrar General	/1
Tax	De Luite	Transfer	L Mro6698	98 4-9-1985 5 5 15 10 1. 2-8-1974	1 -19-8-1974	Janskam Janskam	Src: Till Sex Many
Zacuba Pty , Limited		-Application Transfer	on 0283791		29-7-1977 30-4-1980	\$ 5 mm	261,505W
							Lange Live
	\$55 AUTO [0.1.10]						NSTRALTA
	SECOND SCHEDULE (continued)	-	_				N966229 W/K
INSTRUMENT DATE	PARTICULARS	ENTERED	Signature of Registrar General		CANCELLATION		<i>S</i>
Ears garde 145619 5.8 1970 To	Garamond Parting of 1 - +	1.10.1170	Jawastaon;	Discharged	N966230	Jan Jakon	(428378/M)
N870965 -27-5-1974		4	Janvallan	Withdrawn	N966229	1	174587dm(
Mortgage	to-Gommenveelth Trading-Bank-of-Australia	29=7-1977	k	Discharged	R771587	Manage	2 22 22
							·

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

Form: 01T Release: 2

www.lpi.nsw.gov.au

TRANSFER

New South Wales Real Property Act 1900

AB186093V

		PRIVACY NOTE: this informa		ed and will become part $\frac{N}{2}$	of the public record	TY
	YEAR 2000 - 2005 Duty 6541	Vendo duty	only	D		
(A)	TORRENS TITLE	FOLIO IDENTIFIER: 2	/1067073			
(B)	LODGED BY	#91A LLPN: 1233	s or DX and Telephor 50-H ELCISO-1 234385		1330	CODES T TW (Sheriff)
(C)	TRANSFEROR	NERGL DEVELOPMENTS				(One-ma)
(D)	CONSIDERATION	The transferor acknowledges re	ceipt of the considerat	ion of \$ 1.00	M	and as regards
E)	ESTATE	the land specified above trans	fers to the transferee	an estate in fee simple	7,	
(F)	SHARE TRANSFERRED		y a signar nyonarra na anona no anana defensia diang mana mana anona manambaranda defende no na	SEATERING OF EXTERNO CONTINUES FOR EXTERNO CONTINUES AND THE STREET AND PARTY AND PROPERTY AND P	nama ayayan mahan ayan in yaka sahara aharan aha vi indoorah saman mara dina araw 190	uadada respublika kila derekari kada kila da da rada da
(G)		Encumbrances (if applicable)	Ser Marked & Charge (Additional Authorities) Ser Marked & Charge (Additional Authorities)	·····································	**************************************	**************************************
(H)	TRANSFEREE	LENSWORTH GLENMORE	PARK LIMITED (ACN 007 533 888)	COMIT	ion is
(I)		TENANCY:	e a andre a respect date property of the angular contract of the contract of t	- Natural metapolismosta esta de la constitución de	<i>(</i> 0, <i>'</i>	ion Sea
(J)	DATE	25 November	-2004		11	EVELOPMENTS)
	by the corporation was affixed pursu of the authorised	or the purposes of the Real Property in named below the common so ant to the authority specified a person(s) whose signature(s) a pergl Developments Pt	eal of which and in the presence appear(s) below.	008 527 697)	\	A.C.N. 645 734
	Signature of author	rised person:	107.	Signature of authorised p	person:	latara
	Name of authoris Office held:	d person: LENKO JOH	L SATALA	Name of authorised personal Office held:	Secretar	
	by the corporation was affixed pursu of the authorised Corporation:	or the purposes of the Real Property in named below the common so that to the authority specified a person(s) whose signature(s) are property in the purpose of the Real Property in the Property in t	eal of which and in the presence appear(s) below. rk Limited (ACI	ง 007 533 888)	S S S S S S S S S S S S S S S S S S S	You E
	Signature of auth	orised person:	~~	Signature of authorised p	person:	188
	Name of authoris Office held:	ed person: GERARD PAU	ol Dempsey	Name of authorised pers Office held:	on David May	PRICE NEUFELD ECRETARY
			Page 1 of _			

number additional pages sequentially

Land and Property Information NSW.

All handwriting must be in block capitals.

Req:R	021129 /Doc:DL 5552277 ice of the Registrar-Ge	/Rev:02-Feb-1999	/NSW LRS /Pgs:ALL /		,
⊕ OII.	Form: +97=01T_	Herar /Brc.Ghoba	IKANSFER	5552	277V
•	Licence: 026CN/0526/96		New South Wales		i ilala ilan iaan iaan bikar caar
			Real Property Act 1900		
	Instructions for filling out	Office of State Reve	enue use only		
	this form are available from the Land Titles Office	COA OF	FICE OF STATE REVE	NUE	(410)
	nom mo Lana Traco Omoc	OFI STA	MP DUTY (N.S.W. TREAS	SURY) P28	(\$10)
		1998/97 h	FICE OF STATE REVE MP DUTY (N.S.W. TREAS 1ST REC Nº 2	<u>«15/03.10</u>	
		CBOTT			
(A)	Show no more than 20 titles.	1/222144			
	If appropriate, specify the	1/222177			
	share or part transferred.				
æ	LODGED BY	LTO Box Na	ma Address or DV and To	lankana	
(15)	LODGED D1	LIO BOX Na	me, Address or DX and Te	tepnone	
		374	WBC		
		RE	FERENCE (15 character n	1975 (naximum): 73375	385-W
(C)	TRANSCEROR TARRESTATUTE	A DAI DTV I IN APPEIL (A	C NI 000 020 000		
(C)	TRANSFEROR JM & JA WE.	ARN PI I LIMITED (A	.C.N. 000 838 068)		
(D)	acknowledges receipt of the	consideration of trans	sfer from old trustee to ne	ew trustee and as regard	ls the land specified above
	transfers to the transferee an e				· · · · · · · · · · · · · · · · · · ·
(E)	Encumbrances (if applicable)	1.	2.	3.	
Œ	TRANSFEREE T	T			
(1)	TS	HOLICOMBE PTY	LIMITED (A.C.N. 082 65	57 609)	
	(s713 LGA)			,	
(G)	I TW				e d
	- `				1 1 1 2 2 2 2 2
(H)	We certify this dealing correct	for the purposes of th	e Real Property Act 1900.	DATE (1)	17 tenser 1798
	Signed in my presence by the	transferor who is perso	onally known to me.		
17	and of face and an habitation of the	0 74 7777 4 70 27			
	ecuted for and on behalf of JM				
	Y LIMITED (A.C.N. 000 838 068				
OI L	he Directors in the presence of:				
	me Willy	- ' 5	A11	10000	
*****				Nem	
Wit	ness		Signature of Director		
	MICHAEL PATA	JCK HERAGH	177		
	••••••••••••••••••••••••			COLIN WEA	RN
Nar	ne of Witness			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
	1 Cove Ave 1	lone	Name of Director		
••••	7 5000 7100 1				
Ado	dress of Witness				
			Page 1 of A	CALLE VALUE	In Anti
			Page 1 of #	CHECKED BY (LTO use)
					/

, M. L. 17. L. L. 4	De Veam.
Vitness	Signature of Secretary
MICHAEL PATRICIC HERAC	•
ame of Witness	ROBERT JOHN WEARN
1 Cove Ave Monly	Name of Secretary
ddress of Witness	
Signed in my presence by the transferee who is p	personally known to me.
xecuted for and on behalf of HOLICOMBE	
TY LIMITED (A.C.N. 082 657 609) by	
uthority of the Directors in the presence of:	
MLIV. ILLY	Allean
Vitness	Signature of Director
when tarkick Herasitm	
ame of Witness	ADRIAN COLIN WEARN
7 Cove Are Monly	Name of Director
ddress of Witness	
Much. Hy Ltg	Mean.
/itness	Signature of Secretary
MICH AGE I ATRICK HERAGIF	7
ame of Witness	ROBERT JOHN WEARN
7 Cove Ave Many	Name of Secretary
ddress of Witness	

Page # of

CHECKED BY (LTO use).....

01T Form: 1111 04-08-425

TRANSFER

New South Wales Real Property Act 1900

AH787680D

Edition: Licence:

Licensee: Corrs Chambers Westgarth

PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Registrar General to collect the information required by this form for the establishment and maintenance of the Real Property Act Register. Section 96B RP Act requires that he Register is made available to any person for search upon payment of a fee, if any.

Office of State Revenue use only

NEW SOUTH WALES DUTY

11-04-2013

0007051165-001

CODES

SECTION 18(2)

DUTY \$ *************10.00

TORRENS TITLE If appropriate, specify the part transferred

PARTS - Folio Identifiers 1658/1166869, 1659/1166869, 1660/1166869, 1661/1166869, 1662/1166869 and

1663/1166869 as formerly comprised in Folio Identifier 1/222144

LODGED BY (B)

Document	Name, Address or DX, Telephone and Customer Account Number if any
Collection	
Box	Customer Account Number: 123648F
	Corrs Chambers Westgarth
898S	Level 36, Governor Phillip Tower
	1 Farrer Place
	Sydney NSW 2000
	(02) 9210 6500
I	12 /

TRANSFEROR

HOLICOMBE PTY LIMITED ACN 082 657 609

- CONSIDERATION The transferor acknowledges receipt of the consideration of \$NIL and as regards
- the folio of the Register specified above transfers to the transferee an estate in fee simple. **ESTATE** (E)

Reference (optional): JM:9085618

- (F) SHARE **TRANSFERRED**
- Encumbrances (if applicable:) 2. 3. (G)

TRANSFEREE (H)

LENSWORTH GLENMORE PARK LIMITED ABN 59 007 533 888

TENANCY:

DATE

07-06-2013

dd mm yyyy

(J) Certified correct for the purposes of the Real Property Act

1900 and executed on behalf of the corporation named below by the authorised person(s) whose signature(s)

appear(s) below pursuant to the authority specified.

Corporation:

HOLICOMBE PTY LIMITED ACN 082 657 609

Authority:

Section 127(1) of the Corporations Act 2001

Signature of authorised person:

Signature of authorised person:

Authorised

Name of authorised person: ADRIAN COLIN WEARN DIRECTOR

Office held:

Name of authorised person: KOBERT WEARN DIRECTOR

Office held:

SEE PAGE 2 FOR EXECUTON BY THE TRANSFEREE

The transferee / transferee's solicitor / transferee's agent certifies that the eNOS data relevant to this dealing has been submitted and stored Full name: under eNOS ID No. Signature:

s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation.

ALL HANDWRITING MUST BE IN BLOCK CAPITALS

8120291/1

Page 1 of 2

Délinertin-3026

Req:R020563 /Doc:DL AH787680 /Rev:13-Jun-2013 /NSW LRS /Pgs:ALL /Prt:06-May-2020 13:02 /Seq:2 of 19 © Office of the Registrar-General /Src:GLOBALX /Ref:advlegs

THIS IS PAGE 2 OF THE TRANSFER BETWEEN HOLICOMBE PTY LIMITED (TRANSFEROR) AND LENSWORTH GLENMORE PARK LIMITED (TRANSFEREE) IN RESPECT OF PART OF THE LANDS IN FOLIO IDENTIFIERS 1658/1166869, 1659/1166869, 1660/1166869, 1661/1166869, 1662/1166869 AND 1663/1166869 AND DATED

Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below.

Signature: ...

Signatory's name: Julie Meakes

Signatory's capacity: Solicitor for the Transferee

Westpac Banking Corporation ABN 33 007 457 141

FILM WITH AH787680

Business Loan Centre NSW

1 King Street

Concord West NSW 2138

Telephone: 0297670529 Facsimile: 0297671040 Our Ref: Z:91572561

Your Ref:

5 June 2013

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Dear Sir/Madam

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited Property: Dual Entitlement Folio Identifier 1658/1166869

roporty. Buut Entitionioner one lucitation room.

We refer to the multi entitlement delivery notice (copy attached).

Westpac Banking Corporation (**Westpac**) is one of the controlling parties of folio identifier 1658/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- 2 transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:

folio identifier 1658/1166869;

folio identifier 1659/1166869;

folio identifier 1660/1166869;

folio identifier 1661/1166869;

folio identifier 1662/1166869; and

folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1658/1166869 to Legal Stream Australia Pty Ltd.

91572561-2-2-LE325-010 LE325.016 05/01/2005

Yours faithfully,

Michael Harrington
Securities Portfolio Manager

Westpac Banking Corporation ABN 33 007 457 141

FILM WITH 44787 680

Business Loan Centre NSW

1 King Street Concord West NSW 2138

Telephone: 0297670529 Facsimile: 0297671040 Our Ref: Z:91572561

Your Ref:

5 June 2013

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Dear Sir/Madam,

RE: Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited Property: Dual Entitlement Folio Identifier 1659/1166869

We refer to the multi entitlement delivery notice (copy attached).

Westpac Banking Corporation (Westpac) is one of the controlling parties of folio identifier 1659/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- 1. Discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- 2. Transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:
- (a) folio identifier 1658/1166869;
- (b) folio identifier 1659/1166869;
- (c) folio identifier 1660/1166869;
- (d) folio identifier 1661/1166869;
- (e) folio identifier 1662/1166869; and
- (f) folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1659/1166869 to Legal Stream Australia Pty Ltd.

LE325.016 05/01/2005

1 / 2

91572561-2-2-LE325-003

Yours faithfully,

Michael Harington

Securities Portfolio Manager

FILM WITH AH 787680

Westpac Banking Corporation ABN 33 007 457 141

Business Loan Centre NSW

1 King Street

Concord West NSW 2138

Telephone: 0297670529 Facsimile: 0297671040 Our Ref: Z:91572561

Your Ref: .

5 June 2013

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Dear Sir/Madam

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited

Property: Dual Entitlement Folio Identifier 1660/1166869

We refer to the multi entitlement delivery notice (copy attached).

Westpac Banking Corporation (**Westpac**) is one of the controlling parties of folio identifier 1660/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- 2 transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:
 - (a) folio identifier 1658/1166869;
 - (b) folio identifier 1659/1166869;
 - (c) folio identifier 1660/1166869;
 - (d) folio identifier 1661/1166869;
 - (e) folio identifier 1662/1166869; and
 - (f) folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1660/1166869 to Legal Stream Australia Pty Ltd.

91572561-2-2-LE325-013 LE325.016 05/01/2005

Yours faithfully,

Michael Harrington

Securities Portfolio Manager

Westpac Banking Corporation ABN 33 007 457 141

FILM WITH AH 787680

Business Loan Centre NSW

1 King Street Concord West NSW 2138

Telephone: 0297670529 Facsimile: 0297671040 Our Ref: Z:91572561

Your Ref:

5 June 2013

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Dear Sir/Madam

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited

Property: Dual Entitlement Folio Identifier 1661/1166869

We refer to the multi entitlement delivery notice (copy attached).

Westpac Banking Corporation (**Westpac**) is one of the controlling parties of folio identifier 1661/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- 2 transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:

folio identifier 1658/1166869;

folio identifier 1659/1166869;

folio identifier 1660/1166869;

folio identifier 1661/1166869;

folio identifier 1662/1166869; and

folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1661/1166869 to Legal Stream Australia Pty Ltd.

91572561-2-2-LE325-012 LE325.016 05/01/2005

Yours faithfully,

Michael Harrington

Securities Portfolio Manager

Westpac Banking Corporation ABN 33 007 457 141

FILM WITH AH787680

Business Loan Centre NSW

1 King Street

Concord West NSW 2138

Telephone: 0297670529 Facsimile: 0297671040 Our Ref: Z:91572561

Your Ref:

5 June 2013

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited Property: Dual Entitlement Folio Identifier 1662/1166869

We refer to the multi entitlement delivery notice (copy attached).

Westpac Banking Corporation (**Westpac**) is one of the controlling parties of folio identifier 1662/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:
 - (a) folio identifier 1658/1166869;
 - (b) folio identifier 1659/1166869;
 - (c) folio identifier 1660/1166869;
 - (d) folio identifier 1661/1166869;
 - (e) folio identifier 1662/1166869; and
 - (f) folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1662/1166869 to Legal Stream Australia Pty Ltd.

Yours faithfully,

Michael Harrington

Securities Portfolio Manager

Westpac Banking Corporation ABN 33 007 457 141

FILM WITH AHT 87 680

Business Loan Centre NSW

1 King Street

Concord West NSW 2138

Telephone: 0297670529 Facsimile: 0297671040 Our Ref: Z:91572561

Your Ref: .

5 June 2013

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Dear Sir/Madam

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited

Property: Dual Entitlement Folio Identifier 1663/1166869

We refer to the multi entitlement delivery notice (copy attached).

Westpac Banking Corporation (**Westpac**) is one of the controlling parties of folio identifier 1663/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- 2 transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:

folio identifier 1658/1166869;

folio identifier 1659/1166869;

folio identifier 1660/1166869:

folio identifier 1661/1166869;

folio identifier 1662/1166869; and

folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1663/1166869 to Legal Stream Australia Pty Ltd.

LE325.016 05/01/2005

Yours faithfully,

Michael Harrington Securities Portfolio Manager

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Dear Sir

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited Property: Dual Entitlement Folio Identifier 1658/1166869

We refer to the multi entitlement delivery notice (copy attached).

Legal Stream Australia Pty Ltd (Legal Stream) is one of the controlling parties of folio identifier 1658/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:

folio identifier 1658/1166869;

folio identifier 1659/1166869;

folio identifier 1660/1166869;

folio identifier 1661/1166869;

folio identifier 1662/1166869; and

folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1658/1166869 to Legal Stream Australia Pty Ltd.

Yours faithfully

Kylie Sethn

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Dear Sir

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited Property: Dual Entitlement Folio Identifier 1659/1166869

We refer to the multi entitlement delivery notice (copy attached).

Legal Stream Australia Pty Ltd (Legal Stream) is one of the controlling parties of folio identifier 1659/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:

folio identifier 1658/1166869;

folio identifier 1659/1166869;

folio identifier 1660/1166869;

folio identifier 1661/1166869;

folio identifier 1662/1166869; and

folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1659/1166869 to Legal Stream Australia Pty Ltd.

Yours faithfully

Kylie Seton

The Duty Registrar
Land and Property Information New South
Wales
Queens Square
SYDNEY NSW 2000

Dear Sir

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited Property: Dual Entitlement Folio Identifier 1660/1166869

We refer to the multi entitlement delivery notice (copy attached).

Legal Stream Australia Pty Ltd (Legal Stream) is one of the controlling parties of folio identifier 1660/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:

folio identifier 1658/1166869;

folio identifier 1659/1166869;

folio identifier 1660/1166869;

folio identifier 1661/1166869;

folio identifier 1662/1166869; and

folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1660/1166869 to Legal Stream Australia Pty Ltd.

Yours faithfully

Kylie Seton

The Duty Registrar
Land and Property Information New South
Wales
Queens Square
SYDNEY NSW 2000

Dear Sir

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited Property: Dual Entitlement Folio Identifier 1661/1166869

We refer to the multi entitlement delivery notice (copy attached).

Legal Stream Australia Pty Ltd (Legal Stream) is one of the controlling parties of folio identifier 1661/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:

folio identifier 1658/1166869;

folio identifier 1659/1166869;

folio identifier 1660/1166869;

folio identifier 1661/1166869;

folio identifier 1662/1166869; and

folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1661/1166869 to Legal Stream Australia Pty Ltd.

Yours faithfully

Kylie Seton

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Dear Sir

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited Property: Dual Entitlement Folio Identifier 1662/1166869

We refer to the multi entitlement delivery notice (copy attached).

Legal Stream Australia Pty Ltd (Legal Stream) is one of the controlling parties of folio identifier 1662/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in folio identifier 1/222144; and
- transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:

folio identifier 1658/1166869;

folio identifier 1659/1166869;

folio identifier 1660/1166869;

folio identifier 1661/1166869;

folio identifier 1662/1166869; and

folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1662/1166869 to Legal Stream Australia Pty Ltd.

Yours faithfull

Kylie Seaton

The Duty Registrar Land and Property Information New South Wales Queens Square SYDNEY NSW 2000

Dear Sir

Lensworth Glenmore Park Limited purchase from Holicombe Pty Limited Property: Dual Entitlement Folio Identifier 1663/1166869

We refer to the multi entitlement delivery notice (copy attached).

Legal Stream Australia Pty Ltd (Legal Stream) is one of the controlling parties of folio identifier 1663/1166869 and authorises the lodgement for registration of the following documents in connection with that folio identifier:

- discharge of mortgage no. AB995609 from Westpac Banking Corporation of the part formerly in 1 folio identifier 1/222144: and
- transfer between Lensworth Glenmore Park Limited as transferee and Holicombe Pty Limited as 2 transferor, in respect of the part formerly in folio identifier 1/222144, in respect of the following titles:

folio identifier 1658/1166869;

folio identifier 1659/1166869;

folio identifier 1660/1166869;

folio identifier 1661/1166869;

folio identifier 1662/1166869; and

folio identifier 1663/1166869.

Following registration of the documents numbered 1 and 2 mentioned above, you are authorised and directed to issue folio identifier 1663/1166869 to Legal Stream Australia Pty Ltd.

Yours faithfully

97-01T

Real Property Act, 1900

(4) Office of State Revenue use only OFFICE OF STATE REVENUE (N.S.W. TREASURY) 1994/95 NO STAMP DUTY IS PAYABLE ON THIS INSTRUMENTO 7

(A) LAND TRANSFERRED

Show no more than 20 References to Title. If appropriate, specify the share transferred. FOR REFERENCES TO TITLE SEE ANNEXURE A

(B) LODGED BY

MALLESONS STEPHEN JAQUES **4**₹J 1 FARRER PLACE ALBCSR0001-361 SYDNEY DX 113 SYDNEY ALB: P104822(19) Reference (max. 15 characters):

Name, Address or DX and Telephone

(C) TRANSFEROR

.. ZACUBA. PTY. LINITED. (ACN. 000. 742. 030).....

- (D) acknowledges receipt of the consideration of ... pursuant.to.a.corporate.reconstruction....... and as regards the land specified above transfers to the transferee an estate in fee simple
- (E) subject to the following ENCUMBRANCES 1.

L.T.O. Box

TRANSFEREE

ී (G)

MONIER PGH HOLDINGS LIMITED (ACN 008 631 356)

DATE 18 NGUST 1995

We certify this dealing correct for the purposes of the Real Property Act, 1900

Signed in my presence by the transferor who is personally known to me

TENANCY:

FOR EXECUTION CLAUSES SEE ANNEXURE

Signature of Witness

Name of Witness (BLOCK DETTERS)

Address of Witness

Signature of Transferor

Signed in my presence by the transferee who is personally known to me

Signature of Witness

Name of Witness (BLOCK LETTERS)

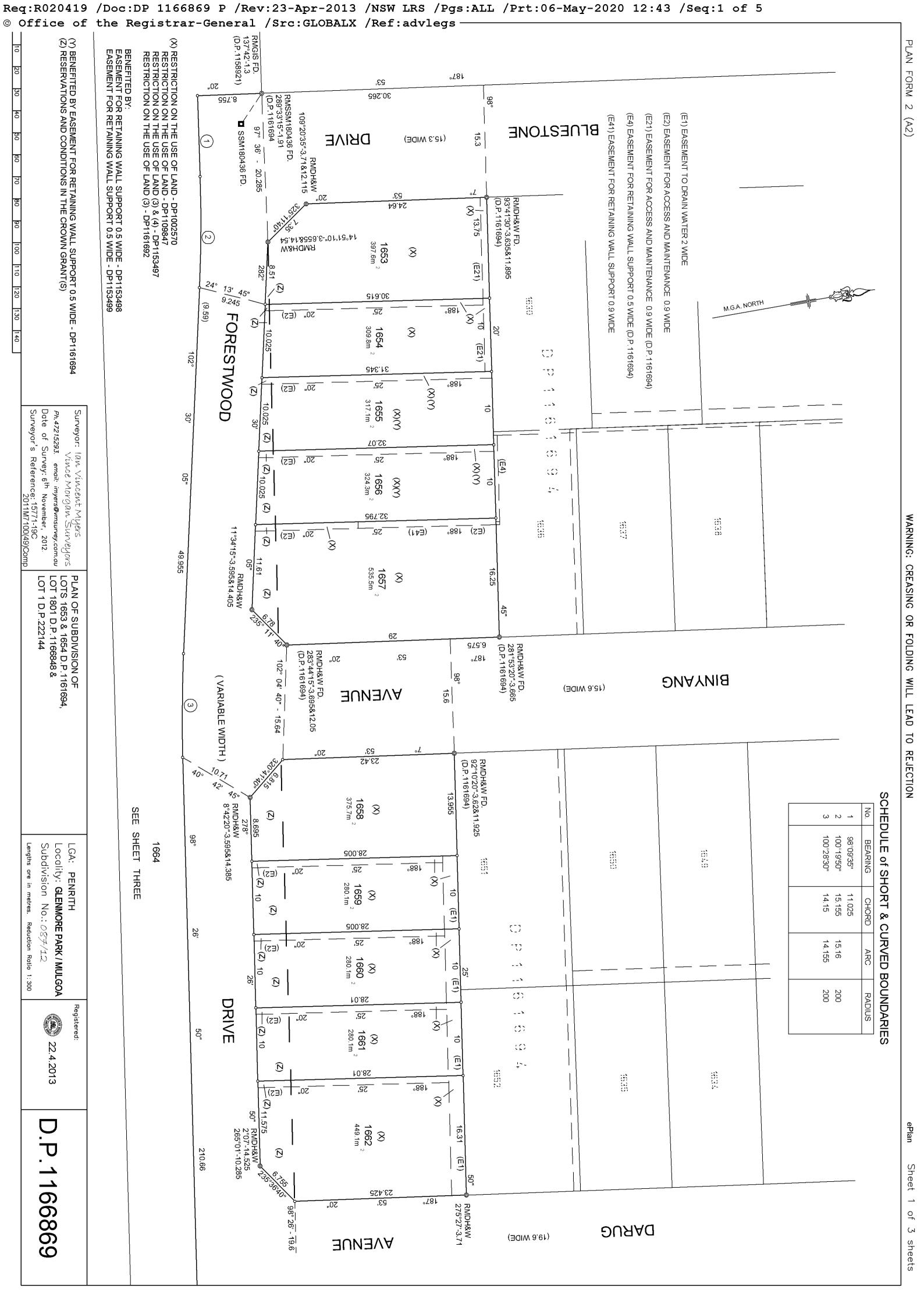
Address of Witnes

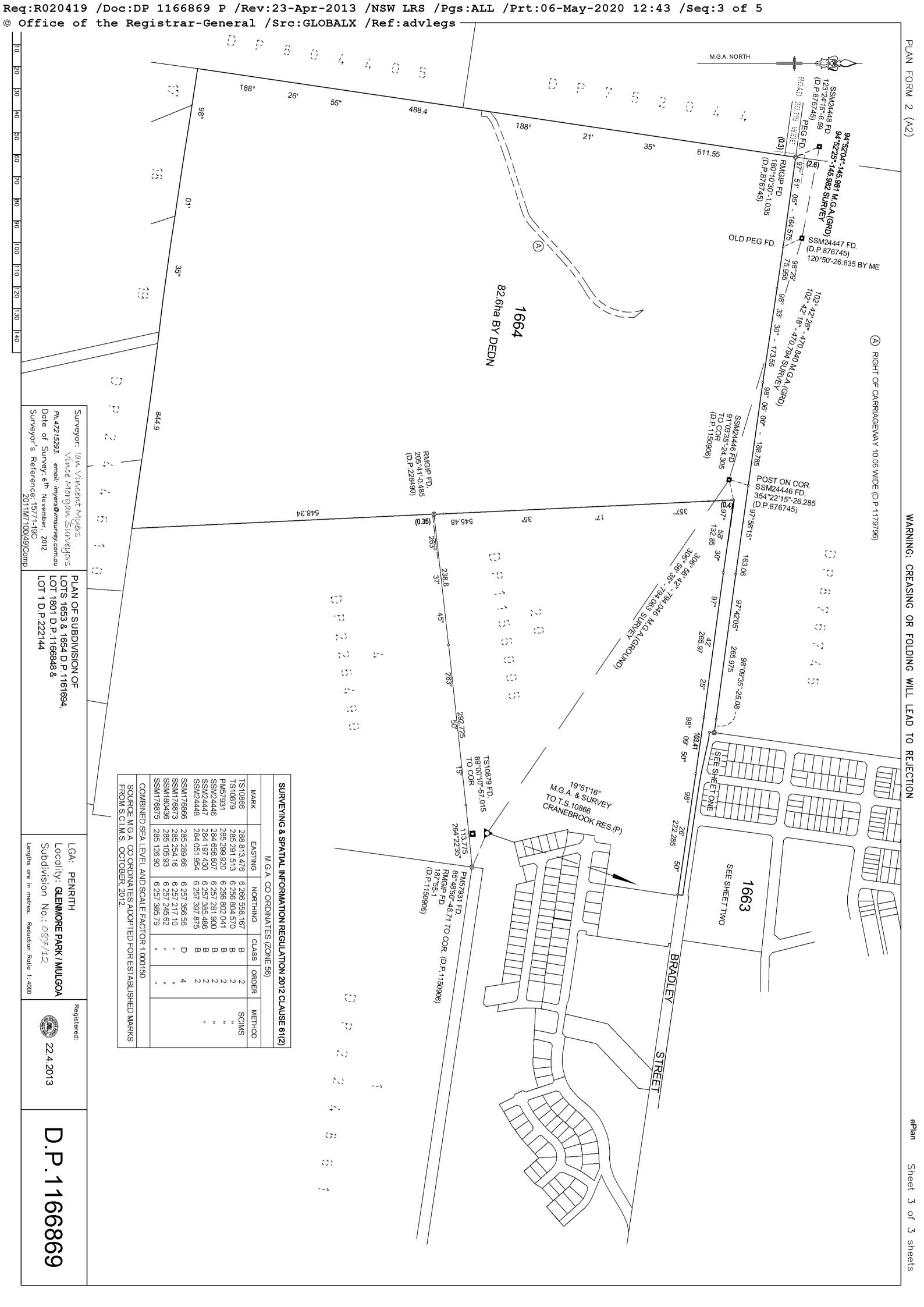
INSTRUCTIONS FOR FILLING OUT THIS FORM ARE AVAILABLE FROM THE LAND TITLES OFFICE

CHECKED BY (office use only)

This is Annexure "A" to Transfer Between: ZACUBA PTY LIMITED (as Transferor) And: MONIER PGH HOLDINGS LIMITED (as Transferee)

References to title NOW BEING Volume 10913 Folio 190 - 4/236527 Volume 10913 Folio 191 - 5/236527 Volume 10913 Folio 192 - 6/236527 Volume 10913 Folio 193 - 7/236527 Volume 10913 Folio 194 — 8/236527 Volume 10913 Folio 196 - 10/236527 Volume 10913 Folio 197 - 11/236527 Volume 10913 Folio 198 - 12/236527 Volume 10913 Folio 199 - 13/23/6527 Volume 10913 Folio 200 - 14/236527 Volume 11014 Folio 175 - 1/533788 Volume 11014 Folio 176 - 2/533788 Volume 11325 Folio 118 - 25/653888 Volume 9919 Folio 8 - 1/222144


This is the annexure containing execution clauses to Transfer Between:


ZACUBA PTY LIMITED (as Transferor)

And:

MONIER PGH HOLDINGS LIMITED (as Transferee)

We hereby certify this dealing correct for	the purposes of the Real Property Act, 1900
DATE 18 ANGUST 1995	e CUBA PTY (MA)
THE COMMON SEAL of ZACUBA PTY LIMITED is affixed in accordance with its articles of association in the presence of:)	COMMON SEAL SEAL
Signature of authorised person	Signature of authorised person
DIRÉCTOR Office held	Secretary Office held
ANTHONY FOHN TANNER Name of authorised person (block letters)	Name of authorised person (block letters)
THE COMMON SEAL of MONIER) PGH HOLDINGS LIMITED is affixed) in accordance with its articles of) association in the presence of:) Signature of authorised person	Signature of authorised person
Director Office held	್ರಿ ೀ್ಲ್ ್ನಾೕ Office held
Name of authorised person (block letters)	Name of authorised person (block letters)

PLAN FORM 6(2012) WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION ePlan

	I Obstite With band to Naobolion of an
DEPOSITED PLAN AL	OMINISTRATION SHEET Sheet 1 of 2 sheets
Registered: 22.4.2013 Office Use Only	Office Use Only
Title System: TORRENS	D.P.1166869
Purpose: SUBDIVISION	
PLAN OF SUBDIVISION OF LOTS 1653 & 1654 D.P.1161694,	LGA: PENRITH
LOT 1801 D.P.1166848 &	Locality: GLENMORE PARK / MULGOA
LOT 1 D.P.222144	Parish: MULGOA
	County: CUMBERLAND
Crown Lands NSW/Western Lands Office Approval	Survey Certificate
I,in approving this plan certify Authorised Officer	I, IAN VINCENT MYERS
that all necessary approvals in regard to the allocation of the land shown hereon have been given.	of VINCE MORGAN SURVEYORS PTY.LTD. Ph.47215293. email: imyers@vmsurvey.com.au
Signature	a surveyor registered under the Surveying & Spatial Information Act, 2002 certify that:
Date:	(s) The kind shown in the plan was ourveyed in secondance with the Surveying and Spatial Information Regulation, 2012, is accurate and
File No:	the curvey-was-completed on
	(b) The part of the land shown in the plan being Lots 1653 to 1663 was surveyed in accordance with the Surveying and Spatial
SC12/0081	Information Regulation, 2012, is accurate and the survey was completed on 6 th November, 2012. the part not surveyed was
Subdivision Certificate	compiled in accordance with that Regulation.
Deres Wood	(o) The land shown in the plan was compiled in cocordance with the
*Authorised Person/General-Manager/Accredited-Gertifier, certify that the provisions of s.109J of the Environmental Planning and	— Surveying-and-Spatial-Information-Regulation, 2012.
Assessment Act, 1979 have been satisfied in relation to the proposed subdivision, new road or reserve set out herein	Signature: Dated: 6 th November, 2012.
	Surveyor ID: 1002
Signature:	Datum Line:TS10879 TO TS10866 Type: URBAN
Accreditation No. Consent Authority PSNR ISN CITY COUNCIL	The terrain is level-undulating
Date of endorsement7/12/12	
Subdivision Certificate No. 087/12 File No. DA 10/1232	
* strike through if inapplicable	
Statements of intention to dedicate public roads,	Plans used :-
public reserves and drainage reserves.	D.P.1161694
IT IS INTENDED TO DEDICATE THE EXTENSIONS OF BLUESTONE DRIVE, BINYANG AVENUE AND	D.P.1166848 D.P.222144
DARUG AVENUE AND THE SPLAY CORNERS	D.P.1155005 D.P.1162982
AND FORESTWOOD DRIVE TO THE PUBLIC AS PUBLIC ROAD.	D.P.1179796
Signatures, Seals and Section 888 Statements should	CHD/C/OD/O DECEDENCE 45774 400 0044147400/40\O
appear on PLAN FORM 6A	SURVEYOR'S REFERENCE: 15771-19C 2011M7100(49)Comp

PLAN FORM 6A (2012)

WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION

ePlan

DEPOSITED PLAN ADMINISTRATION SHEET

Sheet 2 of 2 sheets Office Use Only

Registered:

22.4.2013

Office Use Only

D.P.1166869

PLAN OF SUBDIVISION OF LOTS 1653 & 1654 D.P.1161694. LOT 1801 D.P.1166848 & LOT 1 D.P.222144

Subdivision Certificate No.: 087/12

Date of Endorsement: 7/12/12

This sheet is for the provision of the following information as required:

- A schedule of lots and addresses See 60(c) SSI Regulation 2012
- Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act, 1919.
- Signatures and seals See 195D Conveyancing Act, 1919.
- Any information which cannot fit in the appropriate panel of sheet 1 of the Administration sheets.

PURSUANT TO SECTION 88B OF THE **CONVEYANCING ACT 1919-1964 AS** AMENDED IT IS INTENDED TO CREATE:-

- 1. RESTRICTIONS ON THE USE OF LAND
- 2. RESTRICTIONS ON THE USE OF LAND
- 3. RESTRICTIONS ON THE USE OF LAND
- 4. EASEMENT TO DRAIN WATER 2 WIDE (E1)
- 5. EASEMENT FOR ACCESS AND MAINTENANCE 0.9 WIDE (E2)
- 6. EASEMENT FOR RETAINING WALL SUPPORT 0.9 WIDE (E41)
- 7. RESTRICTIONS ON THE USE OF LAND

EXECUTED ON BUTHALF OF HOLICOMBE FTY LID ABOUTGARDSONG BY THE كسجمانياي ويحمدن وتسوعون كويميني DESTRUCTION TO SOLD SHOPPA is act zool

370725TOR SBITESIC -

Executed for and on behalf of Lensworth Glenmore Park Ltd ACN 007 533 888 by its duly authorised attorney under Power of Attorney registered in Book 4624 No. 95 who declares that he has no notification of revocation of the said Power of Attorney in the presence of:

Dan Sonderskof Lunoe

of Witness Signature

Name of Witness

133 Castlereagh Street, Sydney

Address of Witness

Wesipac Blanking Corporation ABN 33 007 457 141

Under Power of Attorney Book 4299 No. 3. MICHAEL HARRINGTON

I centify that the Attorney for the Mortgage, With whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed Missing of Winness S. That you man part

KNOWN THE SIL-AFORY FOR

Mine of Winese: GLYN CHONG.

MONTHS OF HAVE Additional William Concorn Water Down I ON HAVE

STREET ADDRESSES NOT AVAILABLE

SURVEYOR'S REFERENCE: 15771-19C 2011M7100(49)Comp

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

FOLIO: 1/222144

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 9919 FOL 8

Recorded	Number	Type of Instrument	C.T. Issue
4/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
29/4/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
11/11/1993		AMENDMENT: LOCAL GOVT AREA	
6/9/1995	0514297	TRANSFER	EDITION 1
29/3/1996 29/3/1996		TRANSFER MORTGAGE	EDITION 2
28/1/1999 28/1/1999 28/1/1999	5552276 5552277 5552278		EDITION 3
4/5/2004	AA610672	DISCHARGE OF MORTGAGE	EDITION 4
19/12/2005	AB995609	MORTGAGE	EDITION 5
28/1/2011	AF964436	REQUEST	EDITION 6
26/10/2012	DP1179796	DEPOSITED PLAN	EDITION 7
26/2/2013	АН385279	CANCELLATION OR EXTINGUISHMENT OF AN EASEMENT	
26/2/2013	АН385280		
26/2/2013	AH385281		
26/2/2013	АН385282	CANCELLATION OF RECORDING OF ABANDONED EASEMENT	
22/4/2013	DP1166869	DEPOSITED PLAN	FOLIO CANCELLED RESIDUE REMAINS

*** END OF SEARCH ***

advlegs

PRINTED ON 6/5/2020

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

06/5/2020 10:24AM

FOLIO: 2/1067073

First Title(s): OLD SYSTEM

Prior Title(s): 104/1050042 880/1060475

Recorded	Number	Type of Instrument	C.T. Issue
5/5/2004	DP1067073	DEPOSITED PLAN	FOLIO CREATED EDITION 1
28/10/2004 28/10/2004	AB55927 AB55928	DISCHARGE OF MORTGAGE TRANSFER	EDITION 2
24/12/2004	AB186093	TRANSFER	EDITION 3
31/1/2006	DP1089978	DEPOSITED PLAN	FOLIO CANCELLED RESIDUE REMAINS

*** END OF SEARCH ***

advlegs

PRINTED ON 06/5/2020

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE -----6/5/2020 12:43PM

FOLIO: 1663/1166869

First Title(s): OLD SYSTEM

Prior Title(s): 1/222144 1801/1166848

Recorded	Number	Type of Instrument	C.T. Issue
22/4/2013	DP1166869	DEPOSITED PLAN	FOLIO CREATED EDITION 1
6/6/2013	AH783006	DEPARTMENTAL DEALING	
, . ,	АН787679 АН787680	DISCHARGE OF MORTGAGE TRANSFER WITHOUT MONETARY CONSIDERATION	EDITION 2
1/8/2013	AH912367	REQUEST	EDITION 3
18/8/2014	AI814191	TRANSFER	EDITION 4
5/2/2015	AJ144168	RELEASE OR EXTINGUISHMENT OF RESTRICTION ON THE USE OF LAND	EDITION 5
14/7/2015	AJ650667	REQUEST	EDITION 6

*** END OF SEARCH ***

advlegs

PRINTED ON 6/5/2020

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1663/1166869

LAND

LOT 1663 IN DEPOSITED PLAN 1166869
AT GLENMORE PARK
LOCAL GOVERNMENT AREA PENRITH
PARISH OF MULGOA COUNTY OF CUMBERLAND
TITLE DIAGRAM DP1166869

FIRST SCHEDULE

THE MINISTER FOR EDUCATION

(T AI814191)

SECOND SCHEDULE (9 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) WITHIN THE PART(S) SHOWN SO INDICATED IN THE TITLE DIAGRAM
- 2 DP1109846 RESTRICTION(S) ON THE USE OF LAND AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 3 DP1153497 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (3) IN THE S.88B INSTRUMENT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 4 DP1153497 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (4) IN THE S.88B INSTRUMENT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 5 DP1153498 EASEMENT FOR RETAINING WALL SUPPORT 0.5 METRE(S) WIDE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM
- 6 DP1153499 EASEMENT FOR RETAINING WALL SUPPORT 0.5 METRE(S) WIDE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM
- 7 DP1161693 EASEMENT FOR PADMOUNT SUBSTATION 2.75 METRE(S) WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 8 DP1161693 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (9) IN THE S.88B INSTRUMENT AFFECTING THE SITE DESIGNATED (R1) IN THE TITLE DIAGRAM
- 9 DP1161693 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (10) IN THE S.88B INSTRUMENT AFFECTING THE SITE DESIGNATED (R2) IN THE TITLE DIAGRAM

NOTATIONS

END OF PAGE 1 - CONTINUED OVER

advlegs PRINTED ON 6/5/2020

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1663/1166869

PAGE 2

NOTATIONS (CONTINUED)

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

advlegs

PRINTED ON 6/5/2020

Obtained from NSW LRS on 06 May 2020 12:43 PM AEST

 $\ensuremath{\mathbb{C}}$ Office of the Registrar-General 2020

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. GlobalX hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900. Note: Information contained in this document is provided by GlobalX Pty Ltd, ABN 35 099 032 596, www.globalx.com.au an approved NSW Information Broker.

Appendix D: Borehole & Test pit Logs

E33177PArpt

JKEnvironments ENVIRONMENTAL LOG

Log No. TP1 1/1 SDUP1: 0.0m-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA Method: TEST PIT EXCAVATOR R.L. Surface: N/A

Date: 12/5/20				Datum:	-
Plant Type: JKX	Log	ged/Checked by: C.R./T.H.			
Groundwater Record ES ASS ASS SAL DB	Depth (m) Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering Strength/	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0.5	FILL: Silty clay, low to medium plasticity, brown and grey brown, trace of igneous and siltstone gravel, ash and root fibres. FILL: Silty clay, low to medium plasticity, brown and red brown mottled grey, trace of igneous siltstone and sandstone gravel. FILL: Silty clay, low to medium plasticity, brown, with siltstone gravel.	w <pl< td=""><td></td><td>8.8kg BUCKET NO FCF 12.63kg BUCKET NO FCF 12.66kg BUCKET NO FCF</td></pl<>		8.8kg BUCKET NO FCF 12.63kg BUCKET NO FCF 12.66kg BUCKET NO FCF
	1.5 - 2 - 2 - 3 - 3 - 3.5	END OF TEST PIT AT 1.3m			EXCAVATOR REFUSAL

DPYRIGHT

JKEnvironments ENVIRONMENTAL LOG

Log No. TP3 1/1 SDUP3: 0.0m-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA Method: TEST PIT EXCAVATOR R.L. Surface: N/A

Job No.: E331778	PA	Meth	od: TEST PIT EXCAVATOR		R	.L. Surf	face: N/A
Date: 12/5/20					D	atum:	-
Plant Type: JKX		Logo	ged/Checked by: C.R./T.H.				
Groundwater Record ES ASS ASB SAMPLES SAL DB	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0.5		FILL: Silty clay, low to medium plasticity, brown, with siltstone gravel, trace of sandstone gravel. FILL: Silty clay, low to medium plasticity, brown mottled red, orange and grey, trace of siltstone gravel and clay nodules.	w <pl< td=""><td></td><td></td><td>GRASS COVER 11.75kg BUCKET NO FCF 12.48kg BUCKET NO FCF 12.21kg BUCKET NO FCF</td></pl<>			GRASS COVER 11.75kg BUCKET NO FCF 12.48kg BUCKET NO FCF 12.21kg BUCKET NO FCF
	2		END OF TEST PIT AT 1.8m				'TC' BIT REFUSAL

PYRIGHT

JKEnvironments **ENVIRONMENTAL LOG**

Log No. TP5 SDUP5: 0.0m-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA		Metho	od: TEST PIT EXCAVATOR		R	.L. Surf	ace: N/A
Date: 12/5/20					D	atum:	-
Plant Type: JKX		Logge	ed/Checked by: C.R./T.H.				
Groundwater Record FS ASS ASS ASS ASS ASS ASS ASS ASS ASS	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	1.5 - 2.5 - 3.5		FILL: Silty clay, low to medium plasticity, brown and grey brown, trace of igneous and siltstone gravel, and root fibres. FILL: Silty clay, low to medium plasticity, brown and grey brown mottled red, with igneous and siltstone gravel, trace of ash. FILL: Silty clay, low to medium plasticity, brown mottled red and grey, trace of siltstone gravel.	w <pl< td=""><td></td><td></td><td>GRASS COVER 10.23kg BUCKET NO FCF 13.55kg BUCKET NO FCF 12.26kg BUCKET NO FCF</td></pl<>			GRASS COVER 10.23kg BUCKET NO FCF 13.55kg BUCKET NO FCF 12.26kg BUCKET NO FCF

JKEnvironments ENVIRONMENTAL LOG

Log No. **TP7**

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA Method: TEST PIT EXCAVATOR R.L. Surface: N/A

Job No. : E33177P/	4	Meth	od: TEST PIT EXCAVATOR		R	.L. Surf	face: N/A
Date: 12/5/20					D	atum:	-
Plant Type: JKX		Logo	ged/Checked by: C.R./T.H.				
Groundwater Record ES ASS ASS SAMPLES SAL DB Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION	0.5		FILL: Silty clay, low to medium plasticity, grey mottled orange brown and red brown, trace of igneous and siltstone gravel. FILL: Silty clay, low to medium plasticity, brown and grey mottled red and orange, with siltstone gravel, trace of timber fragments. FILL: Silty clay, low to medium plasticity, brown, with siltstone gravel. END OF TEST PIT AT 1.5m	w <pl< td=""><td></td><td></td><td>GRASS COVER - 0.0-0.1 NO FCF 9.02kg BUCKET NO FCF 10.64kg BUCKET NO FCF </td></pl<>			GRASS COVER - 0.0-0.1 NO FCF 9.02kg BUCKET NO FCF 10.64kg BUCKET NO FCF

PYRIGHT

JKEnvironments ENVIRONMENTAL LOG

Log No. TP9 1/1 SDUP9: 0.0m-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA Method: TEST PIT EXCAVATOR R.L. Surface: N/A

Job No.: E33177F	PA	Meth	od: TEST PIT EXCAVATOR		R	.L. Surf	face: N/A
Date: 12/5/20					D	atum:	-
Plant Type: JKX		Logg	ged/Checked by: C.R./T.H.				
Groundwater Record ASS ASB SAMPLES SAL DB	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0.5		FILL: Silty clay, low to medium plasticity, brown, trace of igneous gravel, ash and root fibres. FILL: Silty clay, low to medium plasticity, brown and grey brown, trace of igneous, sandstone and siltstone gravel.	w <pl< td=""><td>σ æ</td><td></td><td>12.26kg BUCKET NO FCF 13.04kg BUCKET NO FCF 11.96kg BUCKET NO FCF</td></pl<>	σ æ		12.26kg BUCKET NO FCF 13.04kg BUCKET NO FCF 11.96kg BUCKET NO FCF
	2.5 -						-

DPYRIGHT

Log No.
TP11

1/1
SDUP11: 0.0m-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA Method: TEST PIT EXCAVATOR R.L. Surface: N/A

Job No.: E33177	PA	Meth	od: TEST PIT EXCAVATOR		R	.L. Surf	face: N/A
Date: 12/5/20					D	atum:	-
Plant Type: JKX		Log	ged/Checked by: C.R./T.H.				
Groundwater Record ES ASS ASB SAL DB	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION	0.5		FILL: Silty clay, low to medium plasticity, brown mottled red and grey, trace of ash, igneous gravel and root fibres. FILL: Silty gravelly clay, low to medium plasticity, brown and grey, with siltstone gravel, trace of siltstone cobbles, glass and plastic. END OF TEST PIT AT 1.8m	N PL			GRASS COVER 9.02kg BUCKET NO FCF 14.52kg BUCKET NO FCF 12.79kg BUCKET NO FCF EXCAVATOR REFUSAL

PYRIGHT

Log No. TP13 1/1 SDUP13: 0.3m-0.5m

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA Method: TEST PIT EXCAVATOR R.L. Surface: N/A

Date: 12/5/20	Datum: -
Dignet Tymes 11/V	
Plant Type: JKX Logged/Checked by: C.R./	/T.H.
Groundwater Record ES ASB ASB ASB ASB ASB ASB ASB ASB ASB AS	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Penetrometer Readings (kPa.)
DRY ON COMPLETION TION FILL: Silty clay, low to medium plasticity, brown and grey broof igneous and siltstone grave and root fibres. Fill: Silty gravelly clay, low to medium plasticity, brown and red brown, siltstone gravel. FILL: Silty clay, low to medium plasticity, brown and red brown motitled grey, trace of sandstor siltstone gravel. 1.5- END OF TEST PIT AT 1.8m 2- 2.5- 3.5	m w <pl -="" 11.28kg="" 12.28kg="" 13.46kg="" bucket="" fcf="" fcf<="" no="" td=""></pl>

PYRIGHT

Log No. TP15 1/1 SDUP15: 0.0m-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA Method: TEST PIT EXCAVATOR R.L. Surface: N/A

Job No.: E33177P	'A	Meth	od: TEST PIT EXCAVATOR		R	.L. Surf	face: N/A
Date: 12/5/20					D	atum:	-
Plant Type: JKX		Log	ged/Checked by: C.R./T.H.				
Groundwater Record ES ASS ASS SAMPLES SAM DB Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0.5		FILL: Silty gravelly clay, low to medium plasticity, brown and grey brown, siltstone gravel. FILL: Silty clay, low to medium plasticity, brown, grey brown and orange brown, with siltstone gravel. END OF TEST PIT AT 1.5m	w <pl< td=""><td>σ κ</td><td>T C. W</td><td>12.68kg BUCKET NO FCF 12.26kg BUCKET NO FCF 11.78kg BUCKET NO FCF EXCAVATOR REFUSAL</td></pl<>	σ κ	T C. W	12.68kg BUCKET NO FCF 12.26kg BUCKET NO FCF 11.78kg BUCKET NO FCF EXCAVATOR REFUSAL

Log No. TP17 1/1 SDUP17: 0.2m-0.3m

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA Method: TEST PIT EXCAVATOR R.L. Surface: N/A

ı	Job I	No.: E3	33177P <i>F</i>	4		Wetr	od: TEST PIT EXCAVATOR		K	.L. Surf	ace: N/A
ı	Date:	12/5/2	20						D	atum:	-
ı	Plant	Type:	JKX			Logg	ged/Checked by: C.R./T.H.				
	Groundwater Record	ES ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
C	ORY ON OMPLE- TION			0			FILL: Silty clay, low to medium plasticity, brown mottled brown and grey, trace of siltstone gravel, ash and root fibres. FILL: Silty clay, low to medium plasticity, brown and red brown mottled orange and grey, trace of siltstone gravel.	w <pl< td=""><td></td><td></td><td>10.20kg BUCKET NO FCF 10.12kg BUCKET NO FCF 10.94kg BUCKET NO FCF EXCAVATOR</td></pl<>			10.20kg BUCKET NO FCF 10.12kg BUCKET NO FCF 10.94kg BUCKET NO FCF EXCAVATOR
				2 2.5 			END OF TEST PIT AT 1.8m				EXCAVATOR - REFUSAL

PYRIGHT

Log No. TP19 1/1 SDUP19: 0.3m-0.5m

Environmental logs are not to be used for geotechnical purposes

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: E33177PA Method: TEST PIT EXCAVATOR R.L. Surface: N/A

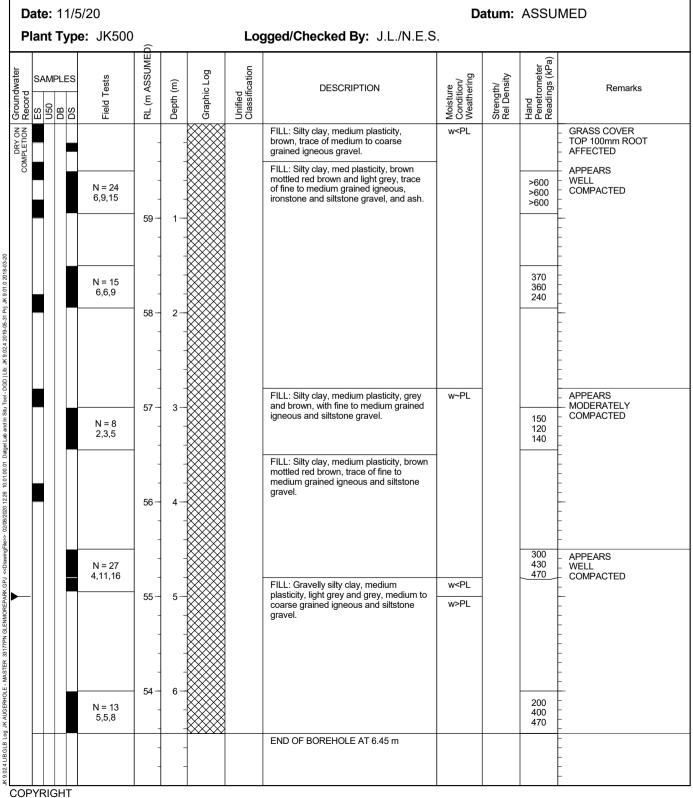
Job No. : E33177PA	Meth	nod: TEST PIT EXCAVATOR		R	.L. Surf	face: N/A
Date: 12/5/20				D	atum:	-
Plant Type: JKX	Log	ged/Checked by: C.R./T.H.				
Groundwater Record ES ASS ASS SAL DB Field Tests	Depth (m) Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION	90 5 5 0 0 5 5 0 1.5 - 2	FILL: Silty clay, low to medium plasticity, brown and red brown, trace of igneous and siltstone gravel, ash and root fibres. FILL: Silty clay, low to medium plasticity, brown mottled red and orange, trace of igneous, sandstone and siltstone gravel and plastic.	W <pl td="" w<pl<=""><td>Str. Ree Ree Ree Ree Ree Ree Ree Ree Ree Re</td><td>Ha Pe Re Re</td><td>13.24kg BUCKET NO FCF 13.04kg BUCKET NO FCF 12.86kg BUCKET NO FCF</td></pl>	Str. Ree Ree Ree Ree Ree Ree Ree Ree Ree Re	Ha Pe Re Re	13.24kg BUCKET NO FCF 13.04kg BUCKET NO FCF 12.86kg BUCKET NO FCF
	3.5					_

BOREHOLE LOG

Borehole No.

2

1 / 1


SDUP2: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~60 m

BOREHOLE LOG

COPYRIGHT

Borehole No.

4

1 / 1

SDUP4: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

PROPOSED PUBLIC SCHOOL Project:

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

J	ob No	o.: 3	33177PN				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~59.2 m
D	ate: 1	11/5	/20						Da	atum:	ASSU	MED
P	lant 1	Туре	: JK500				Log	gged/Checked By: J.L./N.E.S				
Groundwater Record	SAMP 090	PLES SQ	Field Tests	RL (m ASSUMED)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			N = 29 9,16,13	59 — - -	-			FILL: Silty clay, medium plasticity, brown, with medium to coarse grained igneous and siltstone gravel, trace of fine to medium grained sand, roots and root fibres.	w <pl< th=""><th></th><th>>600 >600 >600</th><th>- GRASS COVER - TOP 100mm ROOT - AFFECTED - APPEARS - WELL - COMPACTED</th></pl<>		>600 >600 >600	- GRASS COVER - TOP 100mm ROOT - AFFECTED - APPEARS - WELL - COMPACTED
018-03-20				58 -	1 - -			as above, but low to medium plasticity, brown mottled red brown.			>600	- - - - - -
2.4 2019-05-31 Prj: JK 9.01.0 20			N = 21 10,8,13	- 57 -	2-						>600 >600 >600	- - - - -
and in Situ Tool - DGD Lib: JK 9.0			N = 26	56 —	3-						>600 >600	-
<cdrwmgfrles> 02005/200 1228 10.0100 01 Datget Lab and in Sku 10ol - DGD Lbc. JK 9.024 2019-56-51 Prg. JK 9.01 0.2018-55-52</cdrwmgfrles>			12,13,13	-	- - - 4 —						>600	- - - - - -
wingFile>> 02/06				55 -	-			FILL: Sitty clay, medium plasticity, brown and grey mottled red brown, with fine to coarse grained siltstone and igneous gravel.	w~PL		420	- - - -
			N = 20 4,9,11	-	5-			(-			260 300	- - - -
JK 9/024 LIBGELB Log JK AUGERHOLE - MASTER 38177PN GLENMOREPARK.GP.			N = 20 8,8,12	54 — - - - 53 —	- - - 6-							-
				-	-	-		END OF BOREHOLE AT 6.45 m				- - - - -

K

BOREHOLE LOG

Borehole No.

6

1 / 2

SDUP6: 0.0m-0.1m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~60.9 m

Jo	ob No.	: 33177PN				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~60.9 m
Da	ate: 11	1/5/20						Da	atum:	ASSU	MED
PI	ant Ty	/pe: JK500	<u> </u>			Lo	gged/Checked By: J.L./N.E.S				
Groundwater Record	SAMPLE 020 080	DS 6	RL (m ASSUMED)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
<u> </u>		N = 26 8,14,12	60	1-			FILL: Silty clay, medium plasticity, brown, trace of fine to coarse grained igneous, ironstone and siltstone gravel, roots and root fibres.	w <pl< td=""><td></td><td>>600 >600 >600</td><td>- GRASS COVER - TOP 100mm ROOT - AFFECTED - APPEARS - WELL - COMPACTED</td></pl<>		>600 >600 >600	- GRASS COVER - TOP 100mm ROOT - AFFECTED - APPEARS - WELL - COMPACTED
		N = 14 5,6,8	59 —	2			FILL: Sitty clay, medium plasticity, brown and grey, with coarse grained igneous and siltstone gravel, trace of fine grained sand.			480 500	
		N = 7 3,4,3	58	3-				w~PL		480 190 450	- APPEARS - MODERATELY - COMPACTED
COMPLETION		N > 10 2,4,6/10mm REFUSAL	57 — - - - 56 — -	5-						320 380 390	- APPEARS - WELL - COMPACTED
•		N = 17 3,7,10	- 55 — - -	6-			FILL: Silty clay, medium plasticity, grey and brown, with medium to coarse grained igneous and siltstone gravel.	w <pl w="">PL</pl>		450 520 430	- APPEARS - MODERATELY

BOREHOLE LOG

Borehole No.

6

2 / 2

SDUP6: 0.0m-0.1m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~60.9 m

	ate: 11/								atum:	ASSU	MED
P	lant Typ	be : JK500	<u> </u>			Lo	gged/Checked By: J.L./N.E.S				
Groundwater Record	SAMPLES 090 090 SQ	Field Tests	RL (m ASSUMED)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
JK 9.0.24.1 BIGEB Log JK ALCERHOLE - MASTER 33177PN GLENMOREPARK GFJ <-Chraving-files> 02/06/2020 12:26 *10 010 00 ID Bagol Lab and in Stur Tool - DGD Lib.: JK 9.024.2 09-05-31 Pp; JK 9.01 0.2019-03-20		N = 9 5,4,5 N = 8 2,3,5	53 - 52 - 51 - 50 - 50 - 50 - 50 - 50 - 50 - 50	8— 8— 9— 10— 11— 11— 12—			FILL: Silty clay, medium plasticity, grey and brown, with medium to coarse grained igneous and siltstone gravel. (continued)	w>PL		70 40 60	APPEARS MODERATELY COMPACTED
IBGLB Log JK AUGERHOLE - MASTER 33177PN GL			48	13			END OF BOREHOLE AT 12.45 m			140	
K 9.02.4			47 –	-							- -
	PYRIGHT	1									

COPYRIGHT

BOREHOLE LOG

Borehole No.

8

1 / 1

SDUP8: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

PROPOSED PUBLIC SCHOOL Project:

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~60 m

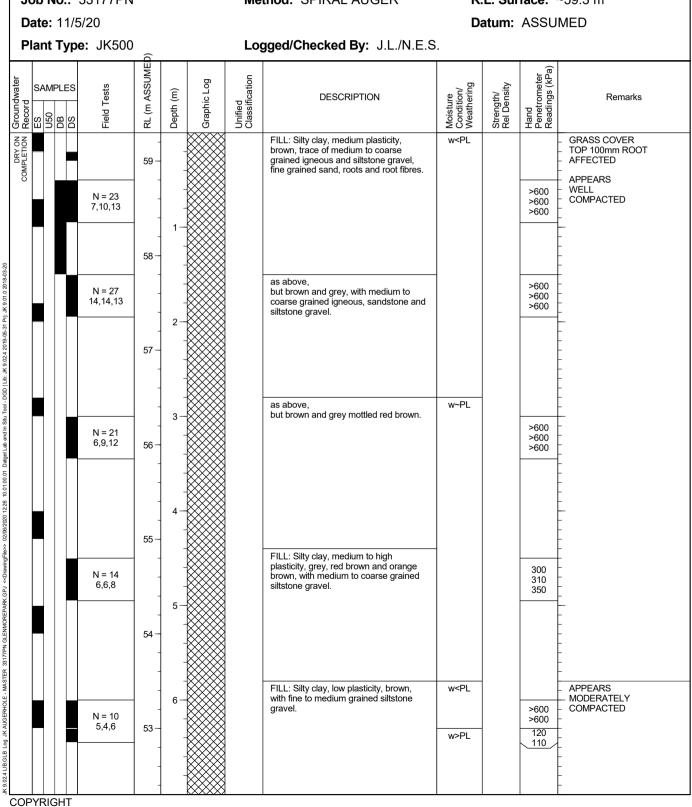
D	ate: 1	1/5/2	20						D	atum:	ASSU	MED
Р	lant T	ype:	JK500				Lo	gged/Checked By: J.L./N.E.S				
Groundwater Record	SAMPL	LES DO	Field Tests	RL (m ASSUMED)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			N = 20 3,10,10 N = 25 8,8,17	59 -				FILL: Sitty clay, medium plasticity, brown mottled red brown, trace of medium to coarse grained igneous and siltstone gravel, roots and root fibres.	w≺PL		>600 >600 >600 >600 >600 >600 >600	GRASS COVER TOP 100mm ROOT AFFECTED APPEARS WELL COMPACTED
AFTER 1 HR ON 7 DAYS I			N = 15 9,8,7	57	3 — - - - -			FILL: Gravelly silty clay, medium plasticity, grey and brown, medium to coarse grained igneous and siltstone gravel.				
>			N = 12 2,5,7	56	4 —			FILL: Silty clay, medium plasticity, brown mottled orange brown and grey, trace of fine to medium grained siltstone gravel.	w>PL		210 220 260	GROUNDWATER MONITORING WELL INSTALLED TO 6.0m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 3.0m TO 6.0m. CASING 0.1m TO 3.0m. 2mm SAND FILTER PACK 2.4m TO 6.0m. BENTONITE SEAL 0.1m TO 2.4m. COMPLETED WITH A CONCRETED GATIC COVER.
			N = 5 2,2,3	- 54 - -	6			FILL: Gravelly silty clay, medium plasticity, grey, medium to coarse grained siltstone gravel. END OF BOREHOLE AT 6.45 m			150 160	- APPEARS - MODERATELY - COMPACTED
	YRIGH	HT		-	-							-

BOREHOLE LOG

Borehole No.

10

1 / 2


SDUP10: 0.0m-0.2m

NSW DEPARTMENT OF EDUCATION Client:

PROPOSED PUBLIC SCHOOL **Project:**

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

R.L. Surface: ~59.3 m Job No.: 33177PN Method: SPIRAL AUGER

BOREHOLE LOG

COPYRIGHT

Borehole No.

10

2 / 2

SDUP10: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

PROPOSED PUBLIC SCHOOL Project:

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Joh No 22477DN Mathadi CDIDAL ALICED

J	ob No	o.: 3	3177PN				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~59.3 m
D	ate: 1	11/5/	20						Da	atum:	ASSU	MED
P	lant 1	Гуре	: JK500	<u> </u>			Log	gged/Checked By: J.L./N.E.S				
Groundwater Record	SAMPI CES CO	LES	Field Tests	RL (m ASSUMED)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			N = 6 2,2,4	52 51 50	8—			FILL: Silty clay, medium plasticity, yellow brown, trace of fine grained sand, and fine to medium grained ironstone gravel.	w>PL	<i></i>	100 80 150	- APPEARS - MODERATELY - COMPACTED
K 9.02.4 LBGLB Log JK ALGERHOLE - MASTER 33177PN GLENMOREPARK GPJ -< DrawingFles> 020042020 1228 10.0100.01 Datget Lab and in Stu Tool - DGD Lib. JK 9.02.4 2019-05-31 Pr. JK 9.01 0.2018-03-20				49 —				FILL: Silty clay, low plasticity, grey and dark grey with medium to coarse			150	
8177PN GLENMOREPARK.GPJ < <drawingfile>> 02/08</drawingfile>			N = 22 5,15,7	48	- - - 12 -			dark grey, with medium to coarse grained siltstone gravel. END OF BOREHOLE AT 12.45 m			110 120 150	COMPACTED COMPACTED COMPACTED COMPACTED
JK 9.02.4 LIB.GLB Log JK AUGERHOLE - MASTER 3:				- - 46 -	- 13 — - - -							

BOREHOLE LOG

Borehole No.

12

1 / 1

SDUP12: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~60.8 m

"		••••	331771 IN					illou. Of INAL AUGEN	11	L. Jui	iucc.	00.0 111
	Date:	: 12/	5/20						Da	atum:	ASSU	MED
F	Plant	Тур	e : JK500				Lo	gged/Checked By: J.L./N.E.S	3 .			
Groundwater	SAN SECOND IN SE	MPLES	Field Tests	RL (m ASSUMED)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON				-	-			FILL: Silty clay, medium plasticity, brown grey, trace of fine to medium grained igneous and ironstone gravel, roots and root fibres.	w <pl< td=""><td></td><td></td><td>GRASS COVER TOP 100mm ROOT AFFECTED</td></pl<>			GRASS COVER TOP 100mm ROOT AFFECTED
č			N = 22 4,9,13	60 — -	- 1 -			FILL: Silty clay, medium plasticity, grey and brown, with medium to coarse grained siltstone gravel, trace of fine to medium grained ironstone gravel.			>600 >600 >600	- APPEARS - WELL - COMPACTED - -
8-03-20				-	-			FILL: Silty clay, medium plasticity, brown and grey, with medium to coarse grained igneous, ironstone and siltstone	w~PL			- - - -
5-31 Prj: JK 9.01.0 201			N = 12 5,5,7	59 -	2-			grained igneous, ironstone and sitistone gravel.			380 390 360	- - - -
K GPJ <-DrawingFile> 02/06/2020 1226 10 01 00 01 Dagel Lab and in Stu Tool - DGD [Lb: JK 9 024 2019-05-31 Pp; JK 9 01 10 2018-03-20 ND 02 02 02 02 02 02 02 02 02 02 02 02 02				58 –	-							-
patgel Lab and In Situ Tool			N = 7 4,3,4	-	3-						280 250 220	APPEARS MODERATELY COMPACTED -
20 12:26 10.01.00.01 D				57 —	4-			FILL: Silty clay, medium plasticity, grey,	w <pl< td=""><td></td><td></td><td>- - - - - APPEARS</td></pl<>			- - - - - APPEARS
wingFile>> 02/06/20				-	-			with medium to coarse grained siltstone gravel.			>450	- WELL - COMPACTED
OREPARK.GPJ < <dr< td=""><td></td><td></td><td>N = 21 12,10,11</td><td>56 -</td><td>5-</td><td></td><td></td><td></td><td></td><td></td><td>>600 >600</td><td>- - -</td></dr<>			N = 21 12,10,11	56 -	5-						>600 >600	- - -
JK 9.024 LIB.GLB Log JK AUGERHÖLE - MASTER 33177PN GLENMOREPARY				55 —	-							-
SLB Log JK AUGERHOL			N=SPT 10/ 20mm REFUSAL	-	- b -	- x x x x x x x x x x x x x x x x x x x		END OF BOREHOLE AT 6.02 m				SPT REFUSAL ON OBSTRUCTION IN FILL
	PYRI	CUT		54 –	-	-						- - -

BOREHOLE LOG

Borehole No.

14

1 / 1

SDUP14: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~60.1 m

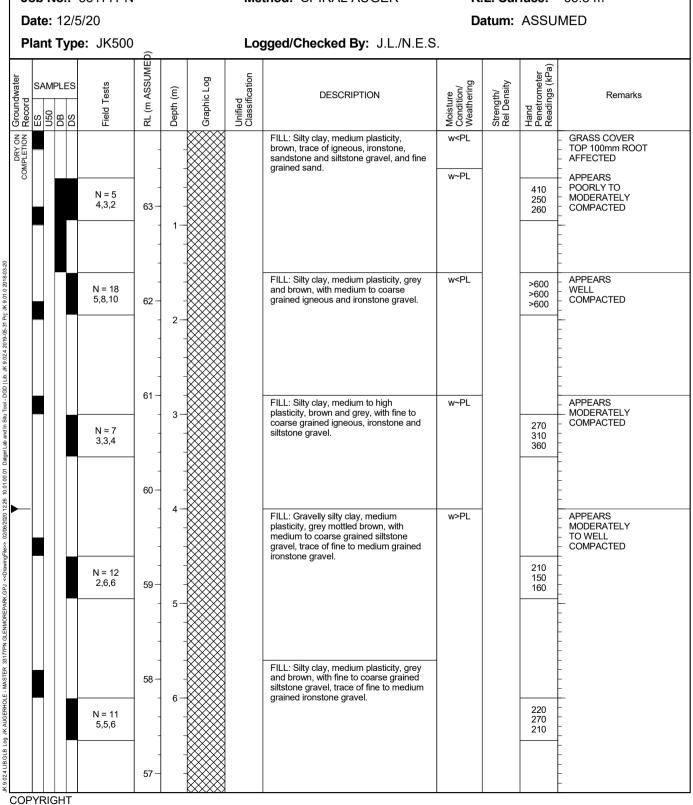
JOD	NO.:	33177PN				ivie	thod: SPIRAL AUGER	K.	L. Sur	Tace:	~60.1 m
Date	: 12/	5/20						Da	atum:	ASSU	MED
Plan	t Typ	e: JK500	<u> </u>			Log	gged/Checked By: J.L./N.E.S				
Record ES ES	MPLES 090 090	Field Tests	RL (m ASSUMED)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION			60 -	-			FILL: Silty clay, medium plasticity, brown and grey, with fine to coarse grained igneous, ironstone and siltstone gravel.	w <pl< td=""><td></td><td></td><td>- GRASS COVER - TOP 100mm ROOT - AFFECTED - - APPEARS</td></pl<>			- GRASS COVER - TOP 100mm ROOT - AFFECTED - - APPEARS
		N = 16 5,6,10	-	- - 1						>600 >600 >600	- WELL - COMPACTED
			59 -	- -							- - - -
		N = 17 8,7,10	-	2-						>600 >600 >600	- - - -
			58 - -	-							- - - -
			-	3-							- - - -
		N = 22 8,12,10	57 - -	- -						>600 >600 >600	- - - -
			- 56 -	4 —							- - - -
		N = 12	-	- -						>600	- - - -
		7,6,6	55 -	5-						>600 450	- - -
			-	-							- - - -
		N = 8	- 54	6-				w>PL		200	- - - - APPEARS - MODERATELY
		3,3,5	-	-			END OF BOREHOLE AT 6.45 m			290 240	- COMPACTED
			-	-							- - -

BOREHOLE LOG

Borehole No.

16

1 / 2


SDUP16: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~63.8 m

K

BOREHOLE LOG

Borehole No.

16

2 / 2

SDUP16: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~63.8 m

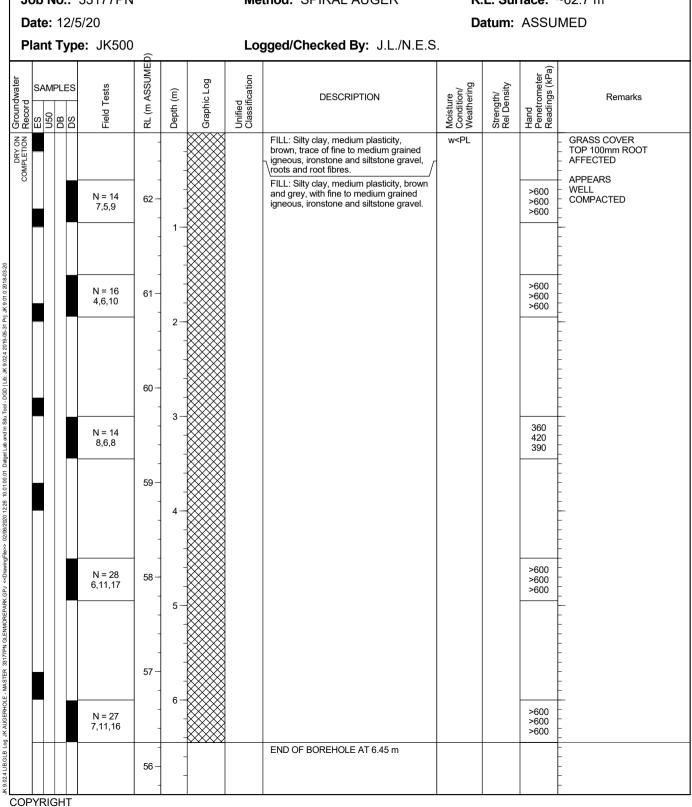
'	Job No.: 331//PN							Method: SPIRAL AUGER R.L. Surface: ~63.8 m					
	Da	te: 1	2/5/2	20						Da	atum:	ASSU	MED
	Pla	ant T	уре:	JK500				Lo	Logged/Checked By: J.L./N.E.S.				
Groundwater	Graphic Log		Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks				
					56 —	- - -			FILL: Sitty clay, medium plasticity, grey and brown, with fine to coarse grained siltstone gravel, trace of fine to medium grained ironstone gravel. (continued)	w>PL			APPEARS MODERATELY TO WELL COMPACTED
. JK 9.01.0 2018-03-20					55 —	8-			FILL: Gravelly silty clay, medium plasticity, grey, fine to coarse grained sandstone and siltstone gravel.				- APPEARS - WELL - COMPACTED
b: JK 9.02.4 2019-05-31 Prj				N = 18 5,5,13	-	9							TOO GRAVELLY FOR HP TESTING
atgel Lab and In Situ Tool - DGD Lii					54 — - -	- 10 — -							- - - - - -
DrawingFile>> 02/06/2020 12:26 10.01.00.01 D					- 53 - - - -	- - 11 – - -			FILL: Silty clay, medium to high plasticity, grey mottled brown, with medium to coarse grained siltstone gravel, trace of fine to medium grained ironstone gravel.				-
ARK.GPJ < <d< td=""><td></td><td></td><td></td><td></td><td>52 -</td><td>12 –</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>- - -</td></d<>					52 -	12 –						-	- - -
N GLENMOREP				N = 23 5,11,12	-							380 430 400	- - -
JK 9.024 LIBG1B Log JK AUSERHOLE - MASTER 33177PN GLENMOREPARK GFJ <-DrawingFile> 02/06/2020 1/228 1/0 0/10 0/1 Daggel Lab and in Stu Tool - DGD Lib. JK 9.024 2019-05-31 Prj JK 9.01 1.0 2018-03-20					51 — - -	- 13 — - -			END OF BOREHOLE AT 12.45 m				
		(DICI			50 –	-	_					-	- -

BOREHOLE LOG

Borehole No.

18

1 / 1


SDUP18: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

PROPOSED PUBLIC SCHOOL **Project:**

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

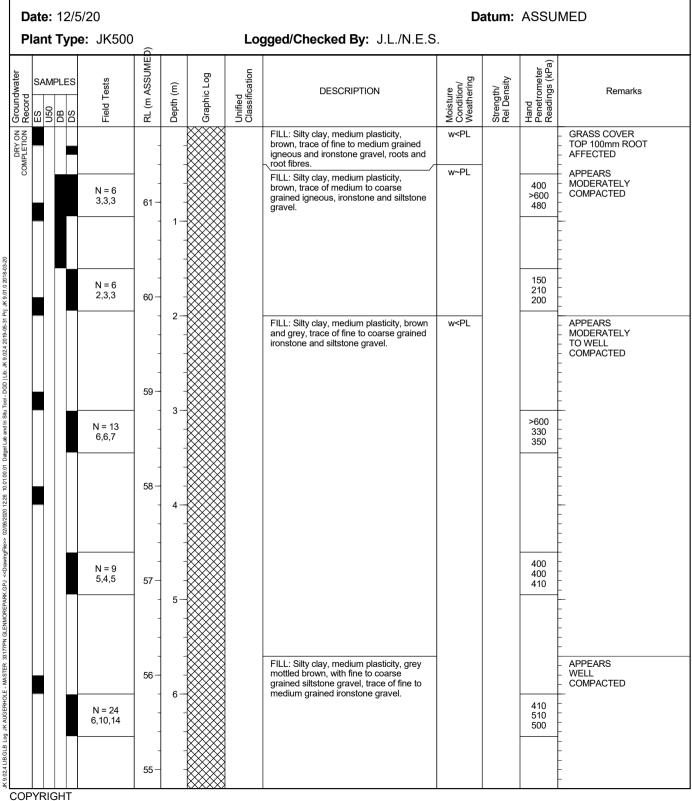
R.L. Surface: ~62.7 m Job No.: 33177PN Method: SPIRAL AUGER

K

BOREHOLE LOG

Borehole No. 20

1 / 2


SDUP20: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~61.8 m

K

BOREHOLE LOG

Borehole No. 20

2 / 2

SDUP20: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~61.8 m

`	_		•									
	Date: 12/5/20 Plant Type: JK500									atum:	ASSU	MED
I	Plant T	ype:	JK500	<u> </u>			Loç	gged/Checked By: J.L./N.E.S				
Groundwater	Groundwater Record ES U50 DB DS OS Field Tests		RL (m ASSUMED)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks	
				54 —	- - - 8 —			FILL: Sitty clay, medium plasticity, grey mottled brown, with fine to coarse grained siltstone gravel, trace of fine to medium grained ironstone gravel. (continued)	w <pl< td=""><td></td><td></td><td></td></pl<>			
.02.4 2019-05-31 Prj: JK 9.01.0 2018-03-20			I = 8 2,3,5	53 -	9-			FILL: Sitty clay, medium plasticity, grey mottled brown, trace of fine to medium grained ironstone and siltstone gravel.	w~PL		550 190 220	- APPEARS - MODERATELY - TO WELL - COMPACTED
0.01 Datgel Lab and In Situ Tool - DGD Lib: JK 9				52 — - -	- 10 — -							- - - - - - - - - -
.GPJ < <drawingfile>> 02/06/2020 12:26 10.01.0</drawingfile>				51 -	- 11 — - -			FILL: Sitty clay, medium to high plasticity, brown mottled light grey and red brown, trace of fine to medium grained ironstone and siltstone gravel.				- - - - - - - - -
PN GLENMOREPAR			= 10	-	12						240 350 250	- - - -
K 9 02.4 LIB GLB Log JK AUGERHOLE - MASTER 33177PN GLENMOREPARK GPJ < OnawingFile> 02/06/2020 12.26 10 01:00 OI Dagoi Lab and in Shir Tool - DGD [Lib. JK 9 02.4 2016-05:31 Pr] JK 8 01 0 2018-03-20				49	- 13 — - -			END OF BOREHOLE AT 12.45 m				- - - - - - - - - -
	PYRIGH			48 –	=							- - -

COPYRIGHT

BOREHOLE LOG

Borehole No. 21

1 / 1

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~58.3 m

1 000 110	551771 N	ı			IVIC	illod. Of INAL AUGEN	11.	L. Jui	iacc.	30.3 111
Date: 11	Date: 11/5/20						Da	atum:	ASSU	MED
Plant Type: JK500 Logged/Checked By: J.L./N.E.S.										
Groundwater Record ES U50 DB	Record Record Record Resord Re		Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
DRY ON COMPLETION	N = 23 6,11,12	58	-			FILL: Sitty clay, medium plasticity, brown, trace of fine to medium grained igneous, ironstone, sandstone and siltstone gravel, fine grained sand, roots and root fibres.	w <pl< td=""><td></td><td>>600 >600 >600</td><td>GRASS COVER TOP 100mm ROOT AFFECTED APPEARS WELL COMPACTED</td></pl<>		>600 >600 >600	GRASS COVER TOP 100mm ROOT AFFECTED APPEARS WELL COMPACTED
02.4 2019-da-51 Prj. JK 9.01 to azitedos-20	N = 25 7,10,15	57 - - - - - - - - - -	2-			as above, but brown and light grey, with medium to coarse grained igneous and siltstone gravel.			>600 >600 >600	
00.01 Dälgel Like and in Shu 1001- Licu, Inx., an s.	N = 8 4,3,5	55 —	3-			as above, but mottled yellow brown, with medium to coarse grained ironstone gravel, and trace of fine grained sand.	w~PL		390 390 500	- APPEARS - MODERATELY - COMPACTED
REPARCGEJ. «CURWIGHES» UZURIZUZU 1221 1UU 1.	N = 9 2,4,5	54 — - - -	4			FILL: Silty clay, low to medium plasticity, dark brown and grey, with medium to coarse grained ironstone and siltstone gravel.			300 130 210	
MK 9 024 LIBGLIB Log JK AUGERHOLE - NASTER 3517PN GLENMOREPARK GPJ - «CDawngFie»> 02/05/2020 1227 10.01.00.01 DageLL& and in Stu Tool - DGD Lib. JK 9,024 20/6-GF-31 Prj. JK 9.01 0.20/18-05-20	N = 6 2,3,3	53 - - - 52	6			FILL: Silty clay, medium plasticity, light brown, with medium to coarse grained ironstone and siltstone gravel.	w>PL		150 150 180	
COPYRIGHT		-	-	-		END OF BOREHOLE AT 6.45 m				-

BOREHOLE LOG

Borehole No.

22

1 / 1

SDUP22: 0.0m-0.2m

Client: NSW DEPARTMENT OF EDUCATION

Project: PROPOSED PUBLIC SCHOOL

Location: 1-23 FORESTWOOD DRIVE, GLENMORE PARK, NSW

Job No.: 33177PN Method: SPIRAL AUGER R.L. Surface: ~61.8 m

J	Job No. : 33177PN				Method: SPIRAL AUGER R.L. Surface: ∼61.8 m					~61.8 m		
D	ate	: 12	/5/20						Da	atum:	ASSU	MED
Р	Plant Type: JK500						Log	gged/Checked By: J.L./N.E.S				
Groundwater Record	SAM	MPLE	DS 0	RL (m ASSUMED)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			N = 18 8,8,10 N = 22 7,10,12	61	1			FILL: Silty clay, medium plasticity, brown mottled orange brown, trace of fine to medium grained igneous, ironstone, sandstone and siltstone gravel, fine to medium grained sand, roots and root fibres. FILL: Silty clay, medium plasticity, grey and brown, with medium to coarse grained siltstone gravel, trace of fine to medium grained ironstone gravel.	w <pl< td=""><td><u>от</u></td><td>>600 >600 >600 >600 >600 >600 >600 >600</td><td>- GRASS COVER - TOP 100mm ROOT - AFFECTED - APPEARS - WELL - COMPACTED</td></pl<>	<u>от</u>	>600 >600 >600 >600 >600 >600 >600 >600	- GRASS COVER - TOP 100mm ROOT - AFFECTED - APPEARS - WELL - COMPACTED
			N = 14 7,8,6	- - - 58 — -	3						>600 510 450	
			N = 12 6,6,6	57 —	5- 5- - - - - -						450 450 >600 >600 >600	
			7,8,10	- 55 —	-			END OF BOREHOLE AT 6.45 m			>600	- - - - - -

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties—soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	<4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	>50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)		
Very Soft (VS)	≤25	≤ 12		
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25		
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50		
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100		
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200		
Hard (Hd)	> 400	> 200		
Friable (Fr)	Strength not attainable – soil crumbles			

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

1

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

3

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

SYMBOL LEGENDS

<u>SOIL</u>	ROCK
FILL	CONGLOMERATE
TOPSOIL	SANDSTONE
CLAY (CL, CI, CH)	SHALE/MUDSTONE
SILT (ML, MH)	SILTSTONE
SAND (SP, SW)	CLAYSTONE
GRAVEL (GP, GW)	COAL
SANDY CLAY (CL, CI, CH)	LAMINITE
SILTY CLAY (CL, CI, CH)	LIMESTONE
CLAYEY SAND (SC)	PHYLLITE, SCHIST
SILTY SAND (SM)	TUFF
GRAVELLY CLAY (CL, CI, CH)	GRANITE, GABBRO
CLAYEY GRAVEL (GC)	DOLERITE, DIORITE
SANDY SILT (ML, MH)	BASALT, ANDESITE
완설보 보설보 보설보 보설보	QUARTZITE

OTHER MATERIALS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

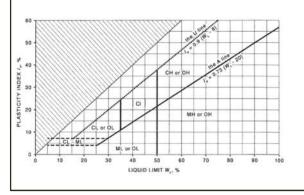
М	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory Classification		
ionis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	$C_u > 4$ 1 < $C_c < 3$	
rsizefract	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
uding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt	
ofsailexdu		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay	
rethan 65%c greaterthan	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤5% fines	$C_u > 6$ 1 < $C_c < 3$	
oil (more:	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
Carse grained soil (more than 65% of soil excluding oversize fraction is greater than 0,075mm)	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty		
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A	

						Laboratory Classification	
Majo	or Divisions	Group Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
exduding mm)	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ainedsoils (more than 35% of soil excl. oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35%. se than		OL	Organic silt	Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY	МН	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
xoils (m e fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
inegrainedsoils (more than oversize fraction is les		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

5

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour

LOG SYMBOLS

Log Column	Symbol	De	finition				
Groundwater Record		— Sta	anding water level.	Time delay following compl	etion of drilling/excavation may be shown.		
	—с	Ext	ent of borehole/te	est pit collapse shortly after o	drilling/excavation.		
	-		Groundwater seepage into borehole or test pit noted during drilling or excavation.				
Samples	U50 DB DS ASB ASS		Sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos analysis. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.				
Field Tests	N = 17 4, 7, 10	fig	ures show blows pe		tween depths indicated by lines. Individual usal' refers to apparent hammer refusal within		
		7 fig	ures show blows pe	on Test (SCPT) performed between depths indicated by lines. Individuer 150mm penetration for 60° solid cone driven by SPT hammer. 'R' referefusal within the corresponding 150mm depth increment.			
	VNS = 25 PID = 100		Vane shear reading in kPa of undrained shear strength. Photoionisation detector reading in ppm (soil sample headspace test).				
Moisture Condition (Fine Grained Soils) (Coarse Grained Soils)	Fine Grained Soils) $w \approx PL$ $w < PL$ $w \approx LL$ $w > LL$		Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit. DRY – runs freely through fingers.				
	M W		 MOIST – does not run freely but no free water visible on soil surface. WET – free water visible on soil surface. 				
Strength (Consistency) Cohesive Soils	VS S F St VSt Hd Fr ()		VERY SOFT — unconfined compressive strength ≤ 25kPa. SOFT — unconfined compressive strength > 25kPa and ≤ 50kPa. FIRM — unconfined compressive strength > 50kPa and ≤ 100kPa. STIFF — unconfined compressive strength > 100kPa and ≤ 200kPa. VERY STIFF — unconfined compressive strength > 200kPa and ≤ 400kPa. HARD — unconfined compressive strength > 400kPa. FRIABLE — strength not attainable, soil crumbles. Bracketed symbol indicates estimated consistency based on tactile examination or other assessment.				
Density Index/ Relative Density				Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)		
(Cohesionless Soils)	VL L		RY LOOSE	≤15	0-4		
	MD		ose Edium dense	> 15 and ≤ 35 > 35 and ≤ 65	4 – 10 10 – 30		
	D		NSE	> 65 and ≤ 85	30 – 50		
	VD		RY DENSE	> 85 > 85	> 50 > 50		
	()				sed on ease of drilling or other assessment.		
Hand Penetrometer 300 N			Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.				

Log Column	Symbol	Definition	
Remarks	'V' bit	Hardened steel "	V' shaped bit.
	'TC' bit	Twin pronged tu	ngsten carbide bit.
	T ₆₀	Penetration of au without rotation	uger string in mm under static load of rig applied by drill head hydraulics of augers.
	Soil Origin	The geological or	rigin of the soil can generally be described as:
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock.
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock.
		ALLUVIAL	– soil deposited by creeks and rivers.
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents.
		MARINE	– soil deposited in a marine environment.
		AEOLIAN	 soil carried and deposited by wind.
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits.
		LITTORAL	– beach deposited soil.

Classification of Material Weathering

Term Abbreviat		viation	Definition			
Residual Soil		RS		Material is weathered to such an extent that it has soil properties. Mas structure and material texture and fabric of original rock are no longer visible but the soil has not been significantly transported.		
Extremely Weathered	y Weathered XW		W	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.		
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.		
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.		
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.		
Fresh		F	R	Rock shows no sign of decomposition of individual minerals or colour changes		

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength				
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment			
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.			
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.			
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.			
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.			
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.			
Extremely High Strength	EH	> 200	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.			

Appendix E: Laboratory Reports & COC Documents

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 242855

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33177PA, Glenmore Park
Number of Samples	134 soil
Date samples received	14/05/2020
Date completed instructions received	14/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	21/05/2020			
Date of Issue	20/05/2020			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		242855-1	242855-4	242855-10	242855-13	242855-18
Your Reference	UNITS	TP1	BH2	TP3	BH4	TP5
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1
Date Sampled		12/05/2020	11/05/2020	12/05/2020	11/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	94	92	92	91	92

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		242855-22	242855-33	242855-35	242855-36	242855-42
Your Reference	UNITS	вн6	TP7	TP7	вн8	TP9
Depth		0.0-0.1	0.0-0.1	1.3-1.4	0.0-0.2	0.0-0.1
Date Sampled		11/05/2020	12/05/2020	12/05/2020	11/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	92	75	93	90	91

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		242855-46	242855-56	242855-59	242855-65	242855-69
Your Reference	UNITS	BH10	TP11	BH12	TP13	BH14
Depth		0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2
Date Sampled		11/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	18/05/2020	15/05/2020	15/05/2020	18/05/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	92	91	91	88	93

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		242855-75	242855-78	242855-86	242855-89	242855-95
Your Reference	UNITS	TP15	BH16	TP17	BH18	TP19
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	18/05/2020	18/05/2020	18/05/2020	18/05/2020	18/05/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	92	91	94	95	95

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		242855-98	242855-113	242855-133	242855-134
Your Reference	UNITS	BH20	SDUP1	TS-S1	TB-S1
Depth		0.0-0.2	-	-	-
Date Sampled		12/05/2020	12/05/2020	11/05/2020	11/05/2020
Type of sample		soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	18/05/2020	18/05/2020	18/05/2020	18/05/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	[NA]	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	[NA]	<25
Benzene	mg/kg	<0.2	<0.2	99%	<0.2
Toluene	mg/kg	<0.5	<0.5	98%	<0.5
Ethylbenzene	mg/kg	<1	<1	99%	<1
m+p-xylene	mg/kg	<2	<2	100%	<2
o-Xylene	mg/kg	<1	<1	100%	<1
naphthalene	mg/kg	<1	<1	[NA]	<1
Total +ve Xylenes	mg/kg	<3	<3	[NA]	<3
Surrogate aaa-Trifluorotoluene	%	94	91	84	94

svTRH (C10-C40) in Soil						
Our Reference		242855-1	242855-4	242855-10	242855-13	242855-18
Your Reference	UNITS	TP1	BH2	TP3	BH4	TP5
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1
Date Sampled		12/05/2020	11/05/2020	12/05/2020	11/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	110	110	110	113	109

svTRH (C10-C40) in Soil						
Our Reference		242855-22	242855-33	242855-35	242855-36	242855-42
Your Reference	UNITS	BH6	TP7	TP7	BH8	TP9
Depth		0.0-0.1	0.0-0.1	1.3-1.4	0.0-0.2	0.0-0.1
Date Sampled		11/05/2020	12/05/2020	12/05/2020	11/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	113	107	111	109	108

svTRH (C10-C40) in Soil									
Our Reference		242855-46	242855-56	242855-59	242855-65	242855-69			
Your Reference	UNITS	BH10	TP11	BH12	TP13	BH14			
Depth		0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2			
Date Sampled		11/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020			
Type of sample		soil	soil	soil	soil	soil			
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020			
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020			
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50			
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100			
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100			
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50			
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50			
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100			
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100			
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50			
Surrogate o-Terphenyl	%	110	106	113	111	108			

svTRH (C10-C40) in Soil									
Our Reference		242855-75	242855-78	242855-86	242855-89	242855-95			
Your Reference	UNITS	TP15	BH16	TP17	BH18	TP19			
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1			
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020			
Type of sample		soil	soil	soil	soil	soil			
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020			
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020			
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50			
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100			
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100			
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50			
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50			
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100			
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100			
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50			
Surrogate o-Terphenyl	%	107	113	106	108	101			

svTRH (C10-C40) in Soil			
Our Reference		242855-98	242855-113
Your Reference	UNITS	BH20	SDUP1
Depth		0.0-0.2	-
Date Sampled		12/05/2020	12/05/2020
Type of sample		soil	soil
Date extracted	-	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	109	110

PAHs in Soil						
Our Reference		242855-1	242855-4	242855-10	242855-13	242855-18
Your Reference	UNITS	TP1	BH2	TP3	BH4	TP5
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1
Date Sampled		12/05/2020	11/05/2020	12/05/2020	11/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	114	116	96	99	110

PAHs in Soil						
Our Reference		242855-22	242855-33	242855-36	242855-42	242855-46
Your Reference	UNITS	BH6	TP7	BH8	TP9	BH10
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2
Date Sampled		11/05/2020	12/05/2020	11/05/2020	12/05/2020	11/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	108	120	124	125	125

PAHs in Soil						
Our Reference		242855-56	242855-59	242855-65	242855-69	242855-75
Your Reference	UNITS	TP11	BH12	TP13	BH14	TP15
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	124	113	115	121	130

PAHs in Soil						
Our Reference		242855-78	242855-86	242855-89	242855-95	242855-98
Your Reference	UNITS	BH16	TP17	BH18	TP19	BH20
Depth		0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	127	128	103	125	107

Envirolab Reference: 242855 Revision No: R00

Page | 11 of 36

PAHs in Soil		
Our Reference		242855-113
Your Reference	UNITS	SDUP1
Depth		-
Date Sampled		12/05/2020
Type of sample		soil
Date extracted	-	15/05/2020
Date analysed	-	15/05/2020
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	124

Organochlorine Pesticides in soil						
Our Reference		242855-1	242855-10	242855-18	242855-33	242855-46
Your Reference	UNITS	TP1	TP3	TP5	TP7	BH10
Depth		0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.2
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	11/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	108	88	121	127

Organochlorine Pesticides in soil						
Our Reference		242855-56	242855-65	242855-75	242855-86	242855-98
Your Reference	UNITS	TP11	TP13	TP15	TP17	BH20
Depth		0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.2
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	98	104	112	115

Organophosphorus Pesticides in Soil						
Our Reference		242855-1	242855-10	242855-18	242855-33	242855-46
Your Reference	UNITS	TP1	TP3	TP5	TP7	BH10
Depth		0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.2
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	11/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	108	88	121	127

Organophosphorus Pesticides in Soil						
Our Reference		242855-56	242855-65	242855-75	242855-86	242855-98
Your Reference	UNITS	TP11	TP13	TP15	TP17	BH20
Depth		0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.2
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	98	104	112	115

PCBs in Soil						
Our Reference		242855-1	242855-10	242855-18	242855-33	242855-46
Your Reference	UNITS	TP1	TP3	TP5	TP7	BH10
Depth		0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.2
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	11/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	108	88	121	127

PCBs in Soil						
Our Reference		242855-56	242855-65	242855-75	242855-86	242855-98
Your Reference	UNITS	TP11	TP13	TP15	TP17	BH20
Depth		0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.2
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	98	104	112	115

Acid Extractable metals in soil						
Our Reference		242855-1	242855-4	242855-10	242855-13	242855-18
Your Reference	UNITS	TP1	BH2	TP3	BH4	TP5
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1
Date Sampled		12/05/2020	11/05/2020	12/05/2020	11/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Arsenic	mg/kg	6	5	7	8	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	9	9	11	9
Copper	mg/kg	24	36	32	30	33
Lead	mg/kg	16	16	18	16	19
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	19	14	14	15
Zinc	mg/kg	50	75	55	55	61

Acid Extractable metals in soil						
Our Reference		242855-22	242855-33	242855-36	242855-42	242855-46
Your Reference	UNITS	ВН6	TP7	ВН8	TP9	BH10
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2
Date Sampled		11/05/2020	12/05/2020	11/05/2020	12/05/2020	11/05/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Arsenic	mg/kg	7	<4	5	7	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	4	8	11	10
Copper	mg/kg	24	10	18	23	29
Lead	mg/kg	13	6	12	15	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	16	2	7	9	12
Zinc	mg/kg	57	10	30	36	47

Acid Extractable metals in soil						
Our Reference		242855-56	242855-59	242855-65	242855-69	242855-75
Your Reference	UNITS	TP11	BH12	TP13	BH14	TP15
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Arsenic	mg/kg	6	6	8	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	10	12	10	10	7
Copper	mg/kg	26	25	29	24	27
Lead	mg/kg	17	17	17	15	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	10	12	10	11
Zinc	mg/kg	45	38	47	39	42

Acid Extractable metals in soil						
Our Reference		242855-78	242855-86	242855-89	242855-95	242855-98
Your Reference	UNITS	BH16	TP17	BH18	TP19	BH20
Depth		0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Arsenic	mg/kg	6	7	8	7	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	12	9	9	7	10
Copper	mg/kg	41	33	32	27	32
Lead	mg/kg	26	17	21	19	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	14	13	14	12	14
Zinc	mg/kg	62	71	54	51	61

Acid Extractable metals in soil			
Our Reference		242855-113	242855-135
Your Reference	UNITS	SDUP1	TP17 - [TRIPLICATE]
Depth		-	0.0-0.1
Date Sampled		12/05/2020	12/05/2020
Type of sample		soil	soil
Date prepared	-	15/05/2020	15/05/2020
Date analysed	-	15/05/2020	15/05/2020
Arsenic	mg/kg	8	6
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	12	9
Copper	mg/kg	27	28
Lead	mg/kg	22	12
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	11	14
Zinc	mg/kg	48	48

Moisture						
Our Reference		242855-1	242855-4	242855-10	242855-13	242855-18
Your Reference	UNITS	TP1	BH2	TP3	BH4	TP5
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1
Date Sampled		12/05/2020	11/05/2020	12/05/2020	11/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	18/05/2020	18/05/2020	18/05/2020	18/05/2020	18/05/2020
Moisture	%	7.6	8.0	7.3	7.8	5.3
Moisture						
Our Reference		242855-22	242855-33	242855-35	242855-36	242855-42
Your Reference	UNITS	BH6	TP7	TP7	BH8	TP9
Depth		0.0-0.1	0.0-0.1	1.3-1.4	0.0-0.2	0.0-0.1
Date Sampled		11/05/2020	12/05/2020	12/05/2020	11/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	18/05/2020	18/05/2020	18/05/2020	18/05/2020	18/05/2020
Moisture	%	8.4	6.0	6.5	7.4	9.1
Moisture						
Our Reference		242855-46	242855-56	242855-59	242855-65	242855-69
Your Reference	UNITS	BH10	TP11	BH12	TP13	BH14
Depth		0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2
Date Sampled		11/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	18/05/2020	18/05/2020	18/05/2020	18/05/2020	18/05/2020
Moisture	%	8.4	8.0	10	12	8.1
Moisture						
Our Reference		242855-75	242855-78	242855-86	242855-89	242855-95
Your Reference	UNITS	TP15	BH16	TP17	BH18	TP19
Depth		0.0-0.1	0.0-0.2	0.0-0.1	0.0-0.2	0.0-0.1
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/05/2020	15/05/2020	15/05/2020	15/05/2020	15/05/2020
Date analysed	-	18/05/2020	18/05/2020	18/05/2020	18/05/2020	18/05/2020
Moisture	%	8.0	8.6	9.2	8.1	7.5

Moisture			
Our Reference		242855-98	242855-113
Your Reference	UNITS	BH20	SDUP1
Depth		0.0-0.2	-
Date Sampled		12/05/2020	12/05/2020
Type of sample		soil	soil
Date prepared	-	15/05/2020	15/05/2020
Date analysed	-	18/05/2020	18/05/2020
Moisture	%	5.3	8.2

Asbestos ID - soils NEPM - ASB-001						
Our Reference		242855-18	242855-33	242855-57	242855-75	242855-96
Your Reference	UNITS	TP5	TP7	TP11	TP15	TP19
Depth		0.0-0.1	0.0-0.1	0.3-0.4	0.0-0.1	0.3-0.5
Date Sampled		12/05/2020	12/05/2020	12/05/2020	12/05/2020	12/05/2020
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	19/05/2020	19/05/2020	19/05/2020	19/05/2020	19/05/2020
Sample mass tested	g	612.47	522.51	737.46	802.62	685.77
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit o 0.1g/kg Organic fibres			
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_	-	-	_
FA and AF Estimation*	g	_	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Envirolab Reference: 242855 Page | 23 of 36 Revision No: R00

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Envirolab Reference: 242855

Revision No: R00

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	242855-10
Date extracted	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Date analysed	-			18/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	96	95
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	96	95
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	98	98
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	93	93
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	95	92
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	98	96
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	92	89
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	91	1	94	92	2	91	92

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil							Duplicate		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	[NT]
Date extracted	-			[NT]	46	15/05/2020	15/05/2020		15/05/2020	
Date analysed	-			[NT]	46	15/05/2020	15/05/2020		18/05/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	46	<25	<25	0	94	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	46	<25	<25	0	94	
Benzene	mg/kg	0.2	Org-023	[NT]	46	<0.2	<0.2	0	97	
Toluene	mg/kg	0.5	Org-023	[NT]	46	<0.5	<0.5	0	91	
Ethylbenzene	mg/kg	1	Org-023	[NT]	46	<1	<1	0	91	
m+p-xylene	mg/kg	2	Org-023	[NT]	46	<2	<2	0	95	
o-Xylene	mg/kg	1	Org-023	[NT]	46	<1	<1	0	89	
naphthalene	mg/kg	1	Org-023	[NT]	46	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	46	92	85	8	90	

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	86	15/05/2020	15/05/2020			
Date analysed	-			[NT]	86	18/05/2020	18/05/2020			
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	86	<25	<25	0		
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	86	<25	<25	0		
Benzene	mg/kg	0.2	Org-023	[NT]	86	<0.2	<0.2	0		
Toluene	mg/kg	0.5	Org-023	[NT]	86	<0.5	<0.5	0		
Ethylbenzene	mg/kg	1	Org-023	[NT]	86	<1	<1	0		
m+p-xylene	mg/kg	2	Org-023	[NT]	86	<2	<2	0		
o-Xylene	mg/kg	1	Org-023	[NT]	86	<1	<1	0		
naphthalene	mg/kg	1	Org-023	[NT]	86	<1	<1	0		
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	86	94	95	1		

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	242855-10
Date extracted	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Date analysed	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	122	82
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	108	87
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	77	107
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	122	82
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	108	87
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	77	107
Surrogate o-Terphenyl	%		Org-020	105	1	110	111	1	130	110

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	[NT]
Date extracted	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
Date analysed	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	86	<50	<50	0	74	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	86	<100	<100	0	124	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	86	<100	<100	0	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	86	<50	<50	0	74	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	86	<100	<100	0	124	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	86	<100	<100	0	92	
Surrogate o-Terphenyl	%		Org-020	[NT]	86	106	103	3	124	

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	242855-10
Date extracted	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Date analysed	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	96
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	86
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	122	98
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	90
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	92
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	72
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	96	86
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	139	1	114	104	9	79	78

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	[NT]
Date extracted	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
Date analysed	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	104	
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	96	
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	124	
Anthracene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	120	
Pyrene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	78	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	76	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	86	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	86	<0.05	<0.05	0	98	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	86	128	119	7	113	

QUALITY CON	ITROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	242855-10
Date extracted	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Date analysed	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	98
нсв	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	107
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	86
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	112
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	130	94
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	100
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	118
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	81	75
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	71
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	70
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	90	1	101	103	2	104	98

QUALITY CO	NTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	[NT]
Date extracted	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
Date analysed	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	96	
НСВ	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	104	
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	122	
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	130	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	126	
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	124	
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	94	
Endrin	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	102	
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	83	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	72	
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	86	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	[NT]	86	112	132	16	90	

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	242855-10
Date extracted	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Date analysed	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	92
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	113	104
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	100
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	122	120
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	110
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	124	122
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	134	120
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	90	1	101	103	2	104	98

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	[NT]
Date extracted	-				86	15/05/2020	15/05/2020		15/05/2020	
Date analysed	-				86	15/05/2020	15/05/2020		15/05/2020	
Dichlorvos	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	78	
Dimethoate	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	121	
Fenitrothion	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	98	
Malathion	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	98	
Chlorpyriphos	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	100	
Parathion	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	126	
Bromophos-ethyl	mg/kg	0.1	Org-022		86	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	128	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		86	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025		86	112	132	16	90	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	242855-10
Date extracted	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Date analysed	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	120	97
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	90	1	101	103	2	104	98

QUALI	TY CONTRO	L: PCBs	in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	[NT]
Date extracted	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
Date analysed	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	86	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	86	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	86	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	86	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	86	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	86	<0.1	<0.1	0	114	
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	86	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	[NT]	86	112	132	16	90	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	242855-10
Date prepared	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Date analysed	-			15/05/2020	1	15/05/2020	15/05/2020		15/05/2020	15/05/2020
Arsenic	mg/kg	4	Metals-020	<4	1	6	6	0	107	89
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	105	82
Chromium	mg/kg	1	Metals-020	<1	1	8	9	12	104	83
Copper	mg/kg	1	Metals-020	<1	1	24	27	12	106	108
Lead	mg/kg	1	Metals-020	<1	1	16	16	0	107	87
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	83	82
Nickel	mg/kg	1	Metals-020	<1	1	10	10	0	104	87
Zinc	mg/kg	1	Metals-020	<1	1	50	47	6	111	101

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	[NT]
Date prepared	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
Date analysed	-			[NT]	86	15/05/2020	15/05/2020		15/05/2020	
Arsenic	mg/kg	4	Metals-020	[NT]	86	7	6	15	105	
Cadmium	mg/kg	0.4	Metals-020	[NT]	86	<0.4	<0.4	0	102	
Chromium	mg/kg	1	Metals-020	[NT]	86	9	8	12	101	
Copper	mg/kg	1	Metals-020	[NT]	86	33	30	10	102	
Lead	mg/kg	1	Metals-020	[NT]	86	17	16	6	104	
Mercury	mg/kg	0.1	Metals-021	[NT]	86	<0.1	<0.1	0	85	
Nickel	mg/kg	1	Metals-020	[NT]	86	13	26	67	100	
Zinc	mg/kg	1	Metals-020	[NT]	86	71	77	8	107	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 242855 Page | 35 of 36

Revision No: R00

Report Comments

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 242855-86 for Ni. Therefore a triplicate result has been issued as laboratory sample number 242855-135.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Reference: 242855 Page | 36 of 36

Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway

Sample Login Details	
Your reference	E33177PA, Glenmore Park
Envirolab Reference	242855
Date Sample Received	14/05/2020
Date Instructions Received	14/05/2020
Date Results Expected to be Reported	21/05/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	134 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	20.1
Cooling Method	Ice
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst							
Phone: 02 9910 6200	Phone: 02 9910 6200							
Fax: 02 9910 6201	Fax: 02 9910 6201							
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au							

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
TP1-0.0-0.1	✓	✓	✓	✓	✓	✓	✓		
TP1-0.2-0.3									✓
TP1-0.8-1.0									✓
BH2-0.0-0.2	✓	✓	✓				✓		
BH2-0.4-0.6									✓
BH2-0.8-1.0									✓
BH2-1.8-2.0									✓
BH2-2.8-3.0									✓
BH2-3.8-4.0									✓
TP3-0.0-0.1	✓	✓	✓	✓	✓	✓	✓		
TP3-0.5-0.6									✓
TP3-1.0-1.2									✓
BH4-0.0-0.2	✓	✓	✓				✓		
BH4-0.6-0.8									✓
BH4-1.8-2.0									✓
BH4-2.8-3.0									✓
BH4-5.6-5.8									✓
TP5-0.0-0.1	✓	✓	✓	✓	✓	✓	✓	✓	
TP5-0.2-0.4									✓
TP5-0.8-1.0									✓
TP5-1.3-1.5									✓
BH6-0.0-0.1	✓	✓	✓				✓		
BH6-0.3-0.5									✓
BH6-0.9-1.1									✓
BH6-1.8-2.0									✓
BH6-2.8-3.0									✓
BH6-3.8-4.0									✓
BH6-4.8-5.0									✓
BH6-6.7-7.0									✓
BH6-8.4-8.7									✓
BH6-10.2-10.5									✓
BH6-11.8-12.0									✓

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
TP7-0.0-0.1	✓	✓	✓	✓	✓	✓	✓	✓	
TP7-0.4-0.5									✓
TP7-1.3-1.4	✓	✓							
BH8-0.0-0.2	✓	✓	✓				✓		
BH8-0.8-1.0									✓
BH8-1.8-2.0									✓
BH8-2.8-3.0									✓
BH8-3.8-4.0									✓
BH8-4.8-5.0									✓
TP9-0.0-0.1	✓	✓	✓				✓		
TP9-0.3-0.5									✓
TP9-1.2-1.3									✓
TP9-1.8-2.0									✓
BH10-0.0-0.2	✓	✓	✓	✓	✓	✓	✓		
BH10-0.7-1.0									✓
BH10-1.8-2.0									√
BH10-2.8-3.0									✓
BH10-4.0-4.3									✓
BH10-5.0-5.3									✓
BH10-6.0-6.3									✓
BH10-7.0-7.3									✓
BH10-8.7-9.0									✓
BH10-11.7-12.0									✓
TP11-0.0-0.1	✓	✓	✓	✓	✓	✓	✓		
TP11-0.3-0.4								✓	
TP11-1.2-1.4									✓
BH12-0.0-0.2	✓	✓	✓				✓		
BH12-0.8-1.0									✓
BH12-1.8-2.0									✓
BH12-2.8-3.0									✓
BH12-4.3-4.5									✓
BH12-5.7-6.0									✓

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
TP13-0.0-0.1	✓	✓	✓	✓	✓	✓	1		
TP13-0.3-0.5									✓
TP13-0.9-1.0									✓
TP13-1.6-1.7									✓
BH14-0.0-0.2	✓	✓	✓				✓		
BH14-0.8-1.0									✓
BH14-1.8-2.0									✓
BH14-2.8-3.0									✓
BH14-4.3-4.5									✓
BH14-5.7-6.0									✓
TP15-0.0-0.1	✓	✓	✓	✓	✓	✓	✓	✓	
TP15-0.6-0.7									✓
TP15-1.3-1.4									✓
BH16-0.0-0.2	✓	✓	✓				✓		
BH16-0.8-1.0									✓
BH16-1.8-2.0									✓
BH16-2.8-3.0									✓
BH16-4.3-4.5									✓
BH16-5.7-6.0									✓
BH16-8.0-8.3									✓
BH16-10.7-11.0									✓
TP17-0.0-0.1	✓	✓	✓	✓	✓	✓	✓		
TP17-0.2-0.3									✓
TP17-1.2-1.3									✓
BH18-0.0-0.2	✓	✓	✓				✓		
BH18-0.8-1.0									✓
BH18-1.8-2.0									✓
BH18-2.8-3.0									✓
BH18-3.7-4.0									✓
BH18-5.7-6.0									✓
TP19-0.0-0.1	✓	✓	✓				✓		
TP19-0.3-0.5								✓	

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
TP19-1.2-1.3									✓
BH20-0.0-0.2	✓	✓	✓	✓	✓	✓	✓		
BH20-0.8-1.0									✓
BH20-1.8-2.0									✓
BH20-2.8-3.0									✓ ✓
BH20-3.8-4.0									✓
BH20-5.8-6.0									✓
BH20-7.8-8.0									✓
BH20-9.0-9.2									✓
BH20-11.0-11.2									✓
BH22-0.0-0.2									✓
BH22-0.8-1.0									√
BH22-1.8-2.0									✓
BH22-2.8-3.0									✓
BH22-4.3-4.5									✓
BH22-5.8-6.0									✓
SDUP1	✓	✓	✓				✓		
SDUP2									✓
SDUP3									✓
SDUP4									✓
SDUP6									✓
SDUP7									✓
SDUP8									✓
SDUP9									✓
SDUP10									✓
SDUP11									✓
SDUP12									✓
SDUP13									✓
SDUP14									✓
SDUP15									✓
SDUP16									✓
SDUP17									✓

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
SDUP18									✓
SDUP19									✓
SDUP20									✓
SDUP22									✓
TS-S1	✓								
TB-S1	✓								

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM FROM: TO: ENVIROLAB SERVICES PTY LTD E33177PA JKE Job 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 P: (02) 99106200 **Date Results** STANDARD **REAR OF 115 WICKS ROAD** F: (02) 99106201 Required: **MACQUARIE PARK, NSW 2113** P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 1 of 6 Attention: Anthony Barkway Sample Preserved in Esky on Ice Location: **Glenmore Park Tests Required** CR / JL Sampler: Sample Description TRH/BTEX Combo 2 Combo 32 Metals Combo 6 BTEX Combo (**PAHs** Date Lab Sample Depth (m) PID Asbestos Sampled Ref: Number G. A Fill: Silty Clay 12/05/2020 TP1 0.0-0.1 G, A Fill: Silty Clay TP1 0.2-0.3 12/05/2020 0 Fill: Silty Clay G. A 12/05/2020 TP1 0.8-1.0 Envirolab Services G, A O Fill: Silty Clay вн2 0.0-0.2 11/05/2020 12 Ashley St EUĄĮKOCIJB Chatswood NSW 2067 5 G, A 0 Fill: Silty Clay 11/05/2020 вн2 0.4-0.6 Ph: (02) 9910 6200 2112855 Job No G, A 0.1 Fill: Silty Clay 11/05/2020 BH2 0.8-1.0 G, A 0.2 Fill: Silty Clay 11/05/2020 BH2 1.8-2.0 Date Received Time Received: 8 Fill: Silty Clay G, A 620 11/05/2020 BH2 2.8-3.0 By: Temp Cool/Ambient G, A 0 Fill: Silty Clay 11/05/2020 вн2 3.8-4.0 TE ALEBAC G. A 0 Fill: Silty Clay tack broken/Nane 12/05/2020 TP3 0.0-0.1 Security I 1) G, A 0 Fill: Silty Clay ТРЗ 0.5-0.6 12/05/2020 G, A n Fill: Silty Clay TP3 1.0-1.2 12/05/2020 G, A n Fill: Silty Clay 0.0-0.2 11/05/2020 BH4 G, A 0 Fill: Silty Clay 11/05/2020 BH4 0.6-0.8 G, A 0.1 Fill: Silty Clay 11/05/2020 BH4 1.8-2.0 لما G, A 0.1 Fill: Silty Clay 11/05/2020 вн4 2.8-3.0 Fill: Silty Clay G, A 11/05/2020 5.6-5.8 вн4 18 G, A Fill: Silty Clay 12/05/2020 TP5 0:0-0.1 Fill: Silty Clay G, A 12/05/2020 TP5 0.2-0.4 Fill: Silty Clay G, A w TP5 0.8-1.0 12/05/2020 21 Fill: Silty Clay G, A 12/05/2020 TP5 1.3-1.5 22 G, A Fill: Silty Clay 11/05/2020 вн6 0.0-0.1 G, A 0.4 Fill: Silty Clay 11/05/2020 0.3-0.5 BH6 G, A 0 Fill: Silty Clay 21 11/05/2020 вн6 0.9-1.1 74 G, A Fill: Silty Clay 11/05/2020 Вне 1.8-2.0 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G2 - 150mg Glass Jar A - Ziplock Asbestos Bag V - Vial P - Plastic Bag Relinquished By: Time: Received By: Date: 13/5/2020 Milence 12/51 1620

SAMPLE AND CHAIN OF CUSTODY FORM

12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200			JKE Job Number: Date Resi Required	ults	E33177PA STANDARD			<u> </u>		FROM	J OF 1	L5 WIG	KS RC	AD		nen	nts		
Attention: Aileen			Page:	•	2 of 6		İ			P: 02-	9888	5000		F: 02-	9888 ! Barkv				
Location:	Glenm	ore Pa	rk								Sam	ple Pr	eserv	ed in E	sky o	n Ice			
Sampler:	CR / JL	I		· ·			is is				Г	T	ests R	equire	ed -				_
Date Sampled	Lab Ref:	1	nple nber	Depth (m)	Sample Container	PID	Sample Description	Combo 2	Combo 3	Combo 6	Combo 6a	8 Metals	PAHs	ткн/втех	втех	Asbestos NEPM			
11/05/2020	26	вн6	<u> </u>	2.8-3.0	G, A	0	Fill: Silty Clay												
11/05/2020	21	вн6	ļ	3.8-4.0	G, A	0	Fill: Silty Clay		ļ										
11/05/2020	28	вн6_		4.8-5.0	G, A	0.2	Fill: Silty Clay												
11/05/2020	29	вн6		6.7-7.0	G, A	0.1	Fill: Silty Clay												
11/05/2020	33	вн6		8.4-8.7	G, A	0.1	Fill: Silty Clay												
11/05/2020	31	вн6		10.2-10.5	G, A	0.1	Fill: Silty Clay												
11/05/2020	32	вн6		11.8-12.0	G, A	0.2	Fill: Silty Clay												
12/05/2020	33	TP7	,	0.0-0.1	G, A	0	Fill: Silty Clay			X						X			
12/05/2020	34	TP7	-	0.4-0.5	G, A	0.1	Fill: Silty Clay									, ,			
12/05/2020	35	TP7		1.3-1.4	G, A	3.1	Fill: Silty Clay							X					
11/05/2020	36	вн8		0.0-0.2	G, A	0	Fill: Silty Clay		X										
11/05/2020	34	вн8		0.8-1.0	G, A	0	Fill: Silty Clay												
11/05/2020	38	вн8		1.8-2.0	G, A	0	Fill: Silty Clay												
11/05/2020	39	вн8		2.8-3.0	G, A	0.4	Fill: Gravelly Silty Clay					•							
11/05/2020	40	вн8		3.8-4.0	G, A	0.2	Fill: Gravelly Silty Clay			-									
11/05/2020	41	вн8		4.8-5.0	G, A	0.1	Fill: Silty Clay												
12/05/2020	100	TP9		0.0-0.1	G, A	0	Fill: Silty Clay	-	X		<u> </u>								\neg
12/05/2020	113	TP9		0.3-0.5	G, A	. 0	Fill: Silty Clay	-					-						
12/05/2020	44	TP9		1.2-1.3	G, A	0	Fill: Silty Clay									-			
12/05/2020	पंट	TP9	•	1.8-2.0	G, A	0	Fill: Silty Clay									}			
11/05/2020	46	вн10		0.0-0.2	G, A	0	Fill: Silty Clay			V									\exists
11/05/2020	107	вн10		0.7-1.0	G, A	0.3	Fill: Silty Clay		-		-								
11/05/2020	ur	внто		1.8-2.0	G, A	0.1	Fill: Silty Clay												\dashv
11/05/2020	49	внто		2.8-3.0	G, A	0.3	Fill: Silty Clay				 	-							\dashv
11/05/2020	50	BH10	_	4.0-4.3	G, A	0.1	Fill: Silty Clay		-			-							\dashv
Remarks (con			tion li			Sample Containers: G - 250mg Glass Jar A - Ziplock Asbestos P - Plastic Bag			Jar	G2 - 150mg Glass Jar lag V - Vial									
Relinquished	gà:				Date:			Time	:			Recei	ved B	y: 			Date:		

SAMPLE AND CHAIN OF CUSTODY FORM FROM: E33177PA ENVIROLAB SERVICES PTY LTD JKE Job Number: 12 ASHLEY STREET **JK**Environments CHATSWOOD NSW 2067 STANDARD REAR OF 115 WICKS ROAD P: (02) 99106200 **Date Results** MACQUARIE PARK, NSW 2113 F: (02) 99106201 Required: P: 02-9888 5000 F: 02-9888 5001 3 of 6 Page: Attention: Attention: Aileen Anthony Barkway Sample Preserved in Esky on Ice Glenmore Par Location: **Tests Required** CR / JL Sampler: Sample Description Combo 6a **Asbestos NEP** Sample Container TRH/BTEX 8 Metals Combo 3 Combo 2 Combo (PAHS Date Lab Sample BTEX Depth (m) PID Sampled Ref: Number 51 G, A 0.2 Fill: Silty Clay вн10 11/05/2020 5.0-5.3 G, A 0.3 Fill: Silty Clay 11/05/2020 BH10 6.0-6.3 G, A Fill: Silty Clay 11/05/2020 вн10 7.0-7.3 Fill: Silty Clay G, A 11/05/2020 BH10 8.7-9.0 4 G, A 0.1 Fill: Silty Clay BH10 11/05/2020 11.7-12.0 Fill: Silty Clay 0 12/05/2020 TP11 G, A 0.0-0.1 Fill: Silty G, A 0 27 12/05/2020 TP11 0.3-0.4 **Gravelly Clay** Fill: Silty 4 0 G, A 12/05/2020 TP1: 1.2-1.4 **Gravelly Clay** G, A 0 Fill: Silty Clay 12/05/2020 BH1 0.0-0.2 (0 BH1 G, A 0 Fill: Silty Clay 12/05/2020 0.8-1.0 G, A 0.1 Fill: Silty Clay 12/05/2020 BH12 1.8-2.0 G, A 0.2 Fill: Silty Clay bz 12/05/2020 BH12 2.8-3.0 63 G, A 0 Fill: Silty Clay 12/05/2020 вн12 4.3-4.5 64 0 Fill: Silty Clay G, A 12/05/2020 BH12 5.7-6.0 p? G, A 0 Fill: Silty Clay 12/05/2020 TP13 0.0-0.1 Fill: Silty 60 G, A 0 тр13 12/05/2020 0.3-0.5 **Gravelly Clay** 107 Fill: Silty Clay 12/05/2020 TP13 G, A 0 0.9-1.0 99 G, A 0 Fill: Silty Clay 12/05/2020 1.6-1.7 BH14 G, A 0 Fill: Silty Clay 12/05/2020 0.0-0.2 70 BH14 G, A 0 Fill: Silty Clay 12/05/2020 0.8-1.0 71 BH14 G, A 0 Fill: Silty Clay 12/05/2020 1.8-2.0 72 BH14 G, A 0 Fill: Silty Clay 12/05/2020 2.8-3.0 G, A 1.0 Fill: Silty Clay 12/05/2020 BH14 4.3-4.5 G. A O Fill: Silty Clay 12/05/2020 5.7-6.0 Fill: Silty 77]₁₁₉₁₅ G, A O 12/05/2020 0.0-0.1 **Gravelly Clay** Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G2 - 150mg Glass Jar A - Ziplock Asbestos Bag V - Vial P - Plastic Bag Relinguished By: Date: Time: Received By: Date:

SAMPLE AND CHAIN OF CUSTODY FORM FROM: TO: ENVIROLAB SERVICES PTY LTD JKE Job E33177PA 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 **Date Results** STANDARD P: (02) 99106200 **REAR OF 115 WICKS ROAD** F: (02) 99106201 Required: **MACQUARIE PARK, NSW 2113** P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 4 of 6 Attention: Anthony Barkway Sample Preserved in Esky on Ice Glenmore Park Location: Tests Required CR / JL Sampler: Asbestos NEPN Sample Description Sample Container TRH/BTEX Combo 2 Combo 6a 8 Metals Combo 3 Combo 6 PAHS Date Lab Sample BTEX Depth (m) PID Sampled Ref: Number \mathcal{H} G, A 0.5 Fill: Silty Clay 12/05/2020 TP15 0.6-0.7 G, A Fill: Silty Clay 7 HTP15 12/05/2020 1.3-1.4 G, A Fill: Silty Clay 12/05/2020 BH16 0.0-0.2 G, A Fill: Silty Clay 12/05/2020 BH16 0.8-1.0 G, A 0 Fill: Silty Clay 80 12/05/2020 BH16 1.8-2.0 K G, A 0.1 Fill: Silty Clay 12/05/2020 BH16 2.8-3.0 Fill: Gravelly 0.7 82 G, A 12/05/2020 BH16 4.3-4.5 Silty Clay 83 8.0 G, A Fill: Silty Clay 12/05/2020 **BH16** 5.7-6.0 Fill: Gravelly G, A 0.7 12/05/2020 BH16 8.0-8.3 Clay 85 G, A 8.0 Fill: Silty Clay 12/05/2020 BH16 10.7-11.0 86 Fill: Silty Clay G, A 12/05/2020 TP17 0.0-0.1 87 G, A 0 Fill: Silty Clay 12/05/2020 TP17 0.2-0.3 88 G, A 0 Fill: Silty Clay 12/05/2020 **TP17** 1.2-1.3 G, A 0 Fill: Silty Clay 12/05/2020 BH18 0.0-0.2 90 G, A 0 Fill: Silty Clay 12/05/2020 BH18 0.8-1.0 41 G, A 0 Fill: Silty Clay 12/05/2020 **BH18** 1.8-2.0 97 G, A 0 Fill: Silty Clay 12/05/2020 BH18 2.8-3.0 43 G, A 0.3 Fill: Silty Clay 12/05/2020 BH18 3.7-4.0 G, A 0.3 Fill: Silty Clay 12/05/2020 BH18 5.7-6.0 G, A Fill: Silty Clay US 12/05/2020 TP19 0.0-0.1 46 G, A Fill: Silty Clay 12/05/2020 TP19 0.3-0.5 97 G. A 0 Fill: Silty Clay 12/05/2020 TP19 1.2-1.3 O Fill: Silty Clay G, A 12/05/2020 0.0-0.2 внро i (i) G, A 0 Fill: Silty Clay 12/05/2020 0.8-1.0 G, A 0.3 Fill: Silty Clay 12/05/2020 BH20 1.8-2.0 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G2 - 150mg Glass Jar A - Ziplock Asbestos Bag V - Vial P - Plastic Bag Relinquished By: Date: Date: Time: Received By:

j. "

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 F: (02) 99106201			JKE Job E33177PA Number: Date Results STANDARD Required:		JKEnvironment REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001					nts									
Attention: Aileen				Page:		5 of 6													
Location:	Glenm	ore Pa	ark	4	<u> </u>						Sam	ple Pr	eserv	ed in E	sky o	n Ice			
Sampler:	CR / JL	<u>. </u>		g-, -f i ,	, , , , , , , , , , , , , , , , , , , ,							To	ests R	equire	ed				
Date Sampled	Lab Ref:	1	mple mber	Depth (m)	Sample Container	PID	Sample Description	Сотро 2	Combo 3.	Combo 6	Combo 6a	8 Metals	PAHs	ткн/втех	ВТЕХ	Asbestos NEPM			
12/05/2020	10]	вн20		2.8-3.0	G, A	1.9	Fill: Silty Clay												
12/05/2020	102	вн20		3.8-4.0	G, A	2.8	Fill: Silty Clay				L.				-				
12/05/2020	103	вн20		5.8-6.0	G, A	0	Fill: Silty Clay												
12/05/2020	101	BH20		7.8-8.0	G, A	0	Fill: Silty Clay					,						ļ.	
12/05/2020	105	BH20		9.0-9.2	G, A	0	Fill: Silty Clay												
12/05/2020	106	вн20		11.0-11.2	G, A	0	Fill: Silty Clay					-							
12/05/2020	107	BH22		0.0-0.2	G, A	0	Fill: Silty Clay												
12/05/2020	108	BH22		0.8-1.0	G, A	0	Fill: Silty Clay												
12/05/2020	109	BH22		1.8-2.0	G, A	0	Fill: Silty Clay												
12/05/2020	110	BH22		2.8-3.0	G, A	ó	Fill: Silty Clay												
12/05/2020	111	вн22		4.3-4.5	G, A	0	Fill: Silty Clay												
12/05/2020	117	BH22		5.8-6.0	G, A	0	Fill: Silty Clay					,							
12/05/2020	113	SDUP	1	-	G		Duplicate		X										
11/05/2020	114	SDUP	2	-	G		Duplicate												
12/05/2020	115	SDUF	3	-	G		Duplicate												
11/05/2020	116	SDUF	4	-	G		Duplicate								-				
12/05/2020	_	SDUF		-	G		Duplicate		X		Se	\mathcal{N}	18	55	1 C	- /			
11/05/2020	117	SDUF	·6	- .	G		Duplicate										,		
12/05/2020	118	SDUF	7	-	G.		Duplicate					<u> </u>							
11/05/2020	8.00	SDU	8	-	G		Duplicate												
12/05/2020	120	SDU		-	G		Duplicate									·			
11/05/2020	120	SDUP		-	G		Duplicate												
12/05/2020	122	SDUF		-	G		Duplicate												
12/05/2020	100	SDUP	•		G		Duplicate	,		٦.	1					-			
12/05/2020	120	SDUF			G		Duplicate										-	\Box	H
Remarks (con	nments			mits required	: Date:	Sample Containers: G - 250mg Glass Jar A - Ziplock Asbestos Bi P - Plastic Bag ate: Time:				Jar									
Relinquished By:				vale:			une	•			vecel	vea B	у.		ļ	Date:			

242855

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB SI 12 ASHLEY STI CHATSWOOD P: (02) 991062 F: (02) 991062 Attention: Ail	REET NSW 2 200				JKE Job Number: Date Resi Required Page:		E33177PA STANDARD 6 of 6					FROM: JKEnvironments REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Anthony Barkway								
Location:	Glenm	ore Park		/							Sam	imple Preserved in Esky on Ice								
Sampler:	CR-/ JL		Ĺ		-		, I					T	ests R	equire	d		·	—		
Date Sampled	Lab Ref:	Samp Numb	1 1	Depth (m)	Sample Container	PID	Sample Description	Combo 2	Сотро 3	Combo 6	Combo 6a	8 Metals	PAHs	ткн/втех	втех	Asbestos NEPM				
12/05/2020	125	SDUP14		-	G	-	Duplicate													
12/05/2020		SDUP15		-	G	-	Duplicate					,								
12/05/2020		SDUP16		-	G	-	Duplicate													
12/05/2020	128	SDUP17			G	-	Duplicate		ļ											
12/05/2020	129	SDUP18		-	G	-	Duplicate													
12/05/2020		SDUP19		<u>-</u>	G	, -	Duplicate		1		c 1	. ,		· V	C					
12/05/2020	131	SDUP20		_	G	-	Duplicate													
12/05/2020	132	SDUP22		· -	G		Duplicate							-						
11/05/2020	133	TS-S1_			v	•	Spike								X	,				
11/05/2020	134	TB-S1	,		·G2		Blank							`	Х				*	
Remarks (con Relinquished		/detecti	on lir	nits required	Date:		,	G - 2! A - Zi	astic E	Glass . Asbes		G2 - 150mg Glass Jar ag V - Vial Received By: Date:								

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 21106

Client Details	
Client	JK Environments
Attention	A Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33177PA
Number of Samples	1 SOIL
Date samples received	19/05/2020
Date completed instructions received	19/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	25/05/2020				
Date of Issue	25/05/2020				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/I	EC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		21106-1
Your Reference	UNITS	SDUP5
Date Sampled		12/05/2020
Type of sample		SOIL
Date extracted	-	20/05/2020
Date analysed	-	20/05/2020
vTRH C ₆ - C ₉	mg/kg	<25
vTRH C ₆ - C ₁₀	mg/kg	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total BTEX	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	106

TRH Soil C10-C40 NEPM		
Our Reference		21106-1
Your Reference	UNITS	SDUP5
Date Sampled		12/05/2020
Type of sample		SOIL
Date extracted	-	20/05/2020
Date analysed	-	21/05/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	94

PAHs in Soil		
Our Reference		21106-1
Your Reference	UNITS	SDUP5
Date Sampled		12/05/2020
Type of sample		SOIL
Date extracted	-	20/05/2020
Date analysed	-	25/05/2020
Naphthalene	mg/kg	0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.2
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	0.3
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d ₁₄	%	128

Acid Extractable metals in soil		
Our Reference		21106-1
Your Reference	UNITS	SDUP5
Date Sampled		12/05/2020
Type of sample		SOIL
Date digested	-	20/05/2020
Date analysed	-	21/05/2020
Arsenic	mg/kg	9
Cadmium	mg/kg	<0.4
Chromium	mg/kg	12
Copper	mg/kg	28
Lead	mg/kg	22
Mercury	mg/kg	<0.1
Nickel	mg/kg	14
Zinc	mg/kg	58

Moisture		
Our Reference		21106-1
Your Reference	UNITS	SDUP5
Date Sampled		12/05/2020
Type of sample		SOIL
Date prepared	-	20/05/2020
Date analysed	-	21/05/2020
Moisture	%	6.6

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore"="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Du	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			20/05/2020	[NT]		[NT]	[NT]	20/05/2020	
Date analysed	-			20/05/2020	[NT]		[NT]	[NT]	20/05/2020	
vTRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	84	
vTRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	84	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	82	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	86	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	82	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	85	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	85	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	111	[NT]		[NT]	[NT]	110	

QUALITY CONTROL: TRH Soil C10-C40 NEPM				Du	Duplicate			covery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			20/05/2020	[NT]		[NT]	[NT]	20/05/2020	
Date analysed	-			21/05/2020	[NT]		[NT]	[NT]	21/05/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	79	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	83	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	93	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	79	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	83	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	93	
Surrogate o-Terphenyl	%		Org-020	93	[NT]		[NT]	[NT]	95	

QUA	LITY CONTRO	TY CONTROL: PAHs in Soil				Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			20/05/2020	[NT]		[NT]	[NT]	20/05/2020	
Date analysed	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Naphthalene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	88	
Acenaphthylene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	90	
Acenaphthene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	90	
Phenanthrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	90	
Anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94	
Pyrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	92	
Benzo(a)anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	90	
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022	<0.05	[NT]		[NT]	[NT]	78	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-022	130	[NT]		[NT]	[NT]	124	

QUALITY CONTROL: Acid Extractable metals in soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date digested	-			20/05/2020	[NT]		[NT]	[NT]	20/05/2020	
Date analysed	-			21/05/2020	[NT]		[NT]	[NT]	21/05/2020	
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	[NT]		[NT]	[NT]	103	
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	[NT]		[NT]	[NT]	104	
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	104	
Copper	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	101	
Lead	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	102	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]		[NT]	[NT]	100	
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	105	
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	102	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 21106 Page | 13 of 13

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	A Barkway

Sample Login Details		
Your reference	E33177PA	
Envirolab Reference	21106	
Date Sample Received	19/05/2020	
Date Instructions Received	19/05/2020	
Date Results Expected to be Reported	25/05/2020	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 SOIL
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	15.1
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Pamela Adams	Chris De Luca
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	Acid Extractable metalsin soil
SDUP5	✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

SAMPLE AND CHAIN OF CUSTODY FORM (<u>TO:</u> FROM: ENVIROLAB SERVICES PTY LTD E33177PA JKE Job 12 ASHLEY STREET Number: CHATSWOOD NSW 2067 **JK**Environments P: (02) 99106200 Date Results STANDARD REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 1 of 6 Attention: Anthony Barkway Location: Glenmore Park Sample Preserved in Esky on Ice CR / JL Sampler: **Tests Required** Asbestos NEPM Sample Description Sample Container Combo 33 Combo 2 Sample | RH/BTEX Date Lab Combo 6 8 Metals Combo 6 PAHS Depth (m) PID 똆 Sampled Ref: Number 12/05/2020 G, A 0 Fill: Silty Clay TP1 0.0-0.1 12/05/2020 G, A ٥ Fill: Silty Clay TP1 0.2-0.3 G, A 0 12/05/2020 TP1 Fill: Silty Clay 0.8-1.0 11/05/2020 G, A n Fill: Silty Clay BH2 0.0-0.2 Envirolab Services επίδικουλε 5 0 G. A Chatswood NSW 2067 Fill: Silty Clay 11/05/2020 вн2 0.4-0.6 Ph: (02) 9910 6200 Ğ, A 0.1 11/05/2020 BH2 0.8-1.0 Fill: Silty Clay Job No 242855 7 11/05/2020 вн2 G, A 0.2 Fill: Silty Clay 1.8-2.0 8 Time Received: G, A 0 Fill: Silty Clay 11/05/2020 8H2 2.8-3.0 620 Received By: (A)
Temp Cool/Ambien 11/05/2020 G, A 0 Fill: Silty Clay BH2 3.8-4.0 Geolingi rechtepack Security I Legy Proten/Nane 10 G, A 0 Fill: Silty Clay 12/05/2020 ТРЗ 0.0-0.1 1) G. A 0 Fill: Silty Clay 12/05/2020 TP3 0.5-0.6 12 12/05/2020 TP3 G, A 0 Fill: Silty Clay 1.0-1.2 G, A 11/05/2020 0 Fill: Silty Clay вн4 0.0-0.2 G, A ٠O Fill: Silty Clay 11/05/2020 ВН4 0.6-0.8 15 11/05/2020 ВН4 G. A 0.1 Fill: Silty Clay 1.8-2.0 الم G, A 0.1 Fill: Silty Clay 11/05/2020 вн4 2.8-3.0 G. A 0.1 Fill: Silty Clay 11/05/2020 **BH4** 5.6-5.8 18 G. A a 12/05/2020 TP5 0.0-0.1 Fill: Silty Clay G, A 0 . Fill: Silty Clay 12/05/2020 TP5 0.2-0.4 w G, A 0 Fill: Silty Clay 12/05/2020 TP5 0.8-1.0 Envirolat Services ENVIROU 21 25 Rese rch Drive G, A 0 Fill: Silty Clay 12/05/2020 Croydon South VIC 3136 TP5 1.3-1.5 (03) 763 **2500** 12 G, A α Fill: Silty Clay 11/05/2020 вн6 Job No 0.0-0.1 2110G, A 11/05/2020 0.4 Fill: Silty Clay BH6 0.3-0.5 1915/20 Data Redeived 2:20 21 Time Redeived 11/05/2020 G, A 0 Fill: Silty Clay pm BHE 0.9-1.1 24 154 Fill: Silty Clay 11/05/2020 Івна G, A 0 Temp: Collyn bient 1.8-2.0 Remarks (comments/detection limits required): Sample Containers: G2 - 150mg Glass Vall (Intact) Broken/None G - 250mg Glass Jar I_{1} A - Ziplock Asbestos Bag V - Vial P - Plastic Bag Relinquished By: Time: Received By: 13/5/2020 MOTE 1620 C. Millence 12/5/20 15:40

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: E33177PA ENVIROLAB SERVICES PTY LTD JKE Job 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 P: (02) 99106200 Date Results STANDARD **REAR OF 115 WICKS ROAD** F: (02) 99106201 Required: **MACQUARIE PARK, NSW 2113** P: 02-9888 5000 F: 02-9888 5001 Attention: Anthony Barkway 5.of 6 Attention: Aileen Page: Sample Preserved in Esky on Ice Glenmore Park Location: **Tests Required** Sampler: CR/JL Asbestos NEP! Sample Container Description Combo 6 Sample TRH/BTEX Combo 2 8 Metals Combo 3 PAHs Date Lab Sample Combo (BTEX Depth (m) PID Sampled Ref: Number 101 G, A 1.9 Fill: Silty Clay вн20 12/05/2020 2.8-3.0 2.8 102 G, A Fill: Silty Clay 12/05/2020 Внго 3.8-4.0 G, A 0 103 |вн20 Fill: Silty Clay 12/05/2020 5.8-6.0 [OI G, A 0 Fill: Silty Clay BH20 12/05/2020 7.8 8.0 G, A 0 Fill: Silty Clay 12/05/2020 BH20 9.0-9.2 106 G, A Fill: Silty Clay 12/05/2020 BH20 11.0-11.2 |D7 G, A 0 Fill: Silty Clay BH22 12/05/2020 0.0-0.2 108 0 Fill: Silty Clay G. A ervices ВН22 12/05/2020 0.8-1.0 h Drive Eńvikou Croyden South VC 3136 G, A 0 Fill: Silty Clay BH22 12/05/2020 1.8-2.0 Ph: (03) 9763 2500 , o` <u> ქ</u>ცე|Na: Fill: Slity Clay 110 G, A 21106 12/05/2020 BH22 2.8-3.0 G, A 0 Fill: Silty Clay Ш 19/5 (20 23 200 M 12/05/2020 BH22 4.3-4.5 Date Received: Time Received: G, A 0 Fill: Silty Clay BH22 12/05/2020 5.8-6:0 15-1 (Co G Duplicate 12/05/2020 SDUP1 ng: rds/ice аск 114 Ğ Duplicate SDUP2 11/05/2020 Security: (ita / Broken / Non G Duplicate 12/05/2020 SDUP3 G Duplicate ()P 11/05/2020 SDUP4 TOVIC SEINC G Duplicate 12/05/2020 SDUP5 G Duplicate 117 11/05/2020 SDUP6 18 G Duplicate 12/05/2020 SDUP7 G Duplicate 11/05/2020 SDUP8 120 G Duplicate 12/05/2020 SDUP9 120 G Duplicate 11/05/2020 SDÚP10 122 G **Duplicate** 12/05/2020 SDUP11 G Duplicate 12/05/2020 SDUP12 174 G Duplicate 12/05/2020 SDUP13 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G2 - 150mg Glass Jar A - Ziplock Asbestos Bag V - Vial P - Plastic Bag Relinquished By: W JUNE Date: Received By: Date: ELS 18/5/0 (OS)-2:20pm - KS 1915/20 '- MIXIEMA

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 243106

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33177PA, Glenmore Park
Number of Samples	5 Water
Date samples received	18/05/2020
Date completed instructions received	18/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	25/05/2020
Date of Issue	25/05/2020
NATA Accreditation Number 2901. This	document shall not be reproduced except in full.
Accredited for compliance with ISO/IEC	17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

VOCs in water		
Our Reference		243106-1
Your Reference	UNITS	MW8
Date Sampled		18/05/2020
Type of sample		Water
Date extracted	-	20/05/2020
Date analysed	-	21/05/2020
Dichlorodifluoromethane	μg/L	<10
Chloromethane	μg/L	<10
Vinyl Chloride	μg/L	<10
Bromomethane	μg/L	<10
Chloroethane	μg/L	<10
Trichlorofluoromethane	μg/L	<10
1,1-Dichloroethene	μg/L	<1
Trans-1,2-dichloroethene	μg/L	<1
1,1-dichloroethane	μg/L	<1
Cis-1,2-dichloroethene	μg/L	<1
Bromochloromethane	μg/L	<1
Chloroform	μg/L	<1
2,2-dichloropropane	μg/L	<1
1,2-dichloroethane	μg/L	<1
1,1,1-trichloroethane	μg/L	<1
1,1-dichloropropene	μg/L	<1
Cyclohexane	μg/L	<1
Carbon tetrachloride	μg/L	<1
Benzene	μg/L	<1
Dibromomethane	μg/L	<1
1,2-dichloropropane	μg/L	<1
Trichloroethene	μg/L	<1
Bromodichloromethane	μg/L	<1
trans-1,3-dichloropropene	μg/L	<1
cis-1,3-dichloropropene	μg/L	<1
1,1,2-trichloroethane	μg/L	<1
Toluene	μg/L	<1
1,3-dichloropropane	μg/L	<1
Dibromochloromethane	μg/L	<1
1,2-dibromoethane	μg/L	<1
Tetrachloroethene	μg/L	<1
1,1,1,2-tetrachloroethane	μg/L	<1
Chlorobenzene	μg/L	<1
Ethylbenzene	μg/L	<1

VOCs in water		
Our Reference		243106-1
Your Reference	UNITS	MW8
Date Sampled		18/05/2020
Type of sample		Water
Bromoform	μg/L	<1
m+p-xylene	μg/L	<2
Styrene	μg/L	<1
1,1,2,2-tetrachloroethane	μg/L	<1
o-xylene	μg/L	<1
1,2,3-trichloropropane	μg/L	<1
Isopropylbenzene	μg/L	<1
Bromobenzene	μg/L	<1
n-propyl benzene	μg/L	<1
2-chlorotoluene	μg/L	<1
4-chlorotoluene	μg/L	<1
1,3,5-trimethyl benzene	μg/L	<1
Tert-butyl benzene	μg/L	<1
1,2,4-trimethyl benzene	μg/L	<1
1,3-dichlorobenzene	μg/L	<1
Sec-butyl benzene	μg/L	<1
1,4-dichlorobenzene	μg/L	<1
4-isopropyl toluene	μg/L	<1
1,2-dichlorobenzene	μg/L	<1
n-butyl benzene	μg/L	<1
1,2-dibromo-3-chloropropane	μg/L	<1
1,2,4-trichlorobenzene	μg/L	<1
Hexachlorobutadiene	μg/L	<1
1,2,3-trichlorobenzene	μg/L	<1
Surrogate Dibromofluoromethane	%	114
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	102

vTRH(C6-C10)/BTEXN in Water					
Our Reference		243106-1	243106-2	243106-4	243106-5
Your Reference	UNITS	MW8	WDUP1	TB-W1	TS-W1
Date Sampled		18/05/2020	18/05/2020	18/05/2020	18/05/2020
Type of sample		Water	Water	Water	Water
Date extracted	-	20/05/2020	20/05/2020	20/05/2020	20/05/2020
Date analysed	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020
TRH C ₆ - C ₉	μg/L	<10	<10	[NA]	[NA]
TRH C ₆ - C ₁₀	μg/L	<10	<10	[NA]	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	[NA]	[NA]
Benzene	μg/L	<1	<1	<1	127%
Toluene	μg/L	<1	<1	<1	117%
Ethylbenzene	μg/L	<1	<1	<1	105%
m+p-xylene	μg/L	<2	<2	<2	106%
o-xylene	μg/L	<1	<1	<1	110%
Naphthalene	μg/L	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	114	114	112	112
Surrogate toluene-d8	%	98	99	97	101
Surrogate 4-BFB	%	102	103	103	106

svTRH (C10-C40) in Water			
Our Reference		243106-1	243106-2
Your Reference	UNITS	MW8	WDUP1
Date Sampled		18/05/2020	18/05/2020
Type of sample		Water	Water
Date extracted	-	19/05/2020	19/05/2020
Date analysed	-	19/05/2020	19/05/2020
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100
Surrogate o-Terphenyl	%	83	104

PAHs in Water - Low Level			
Our Reference		243106-1	243106-2
Your Reference	UNITS	MW8	WDUP1
Date Sampled		18/05/2020	18/05/2020
Type of sample		Water	Water
Date extracted	-	19/05/2020	19/05/2020
Date analysed	-	19/05/2020	19/05/2020
Naphthalene	μg/L	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	70	94

HM in water - dissolved			
Our Reference		243106-1	243106-2
Your Reference	UNITS	MW8	WDUP1
Date Sampled		18/05/2020	18/05/2020
Type of sample		Water	Water
Date prepared	-	19/05/2020	19/05/2020
Date analysed	-	19/05/2020	19/05/2020
Arsenic-Dissolved	μg/L	48	47
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	<1	<1
Lead-Dissolved	μg/L	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05
Nickel-Dissolved	μg/L	25	25
Zinc-Dissolved	μg/L	9	11

Miscellaneous Inorganics		
Our Reference		243106-1
Your Reference	UNITS	MW8
Date Sampled		18/05/2020
Type of sample		Water
Date prepared	-	18/05/2020
Date analysed	-	18/05/2020
рН	pH Units	7.1
Electrical Conductivity	μS/cm	6,100

Cations in water Dissolved		
Our Reference		243106-1
Your Reference	UNITS	MW8
Date Sampled		18/05/2020
Type of sample		Water
Date digested	-	20/05/2020
Date analysed	-	20/05/2020
Calcium - Dissolved	mg/L	53
Magnesium - Dissolved	mg/L	150
Hardness	mgCaCO 3 /L	740

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUAL	ITY CONTROL	: VOCs ii	n water			Dι	uplicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			20/05/2020	[NT]		[NT]	[NT]	20/05/2020	
Date analysed	-			21/05/2020	[NT]		[NT]	[NT]	21/05/2020	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
2,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	
1,1-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromomethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	106	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
1,2-dibromoethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALITY CONTROL: VOCs in water						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	111	[NT]		[NT]	[NT]	107		
Surrogate toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	100		
Surrogate 4-BFB	%		Org-023	103	[NT]		[NT]	[NT]	102		

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			20/05/2020	[NT]		[NT]	[NT]	20/05/2020	
Date analysed	-			21/05/2020	[NT]		[NT]	[NT]	21/05/2020	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	101	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	101	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	101	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	111	[NT]		[NT]	[NT]	107	
Surrogate toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-023	103	[NT]		[NT]	[NT]	102	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			19/05/2020	[NT]		[NT]	[NT]	19/05/2020	
Date analysed	-			19/05/2020	[NT]		[NT]	[NT]	19/05/2020	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	95	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	95	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-020	92	[NT]		[NT]	[NT]	83	

QUALITY C	ONTROL: PAH	s in Wate	er - Low Level		_	Du	plicate		Spike Rec	overy <u></u> %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			19/05/2020	[NT]		[NT]	[NT]	19/05/2020	
Date analysed	-			19/05/2020	[NT]		[NT]	[NT]	19/05/2020	
Naphthalene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	110	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112	
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	101	[NT]		[NT]	[NT]	115	

QUALITY CC	NTROL: HN	l in water	- dissolved		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date prepared	-			19/05/2020	[NT]		[NT]	[NT]	19/05/2020		
Date analysed	-			19/05/2020	[NT]		[NT]	[NT]	19/05/2020		
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96		
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	95		
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	108		
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	113		
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100		
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	96		
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102		
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100		

QUALITY CONTROL: Miscellaneous Inorganics						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			18/05/2020	[NT]		[NT]	[NT]	18/05/2020	
Date analysed	-			18/05/2020	[NT]		[NT]	[NT]	18/05/2020	
рН	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	102	

QUALITY CONTROL: Cations in water Dissolved						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			20/05/2020	[NT]		[NT]	[NT]	20/05/2020	
Date analysed	-			20/05/2020	[NT]		[NT]	[NT]	20/05/2020	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	87	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	87	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 243106 Page | 20 of 20

Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	A Barkway

Sample Login Details	
Your reference	E33177PA, Glenmore Park
Envirolab Reference	243106
Date Sample Received	18/05/2020
Date Instructions Received	18/05/2020
Date Results Expected to be Reported	25/05/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9.6
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID		vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	HM in water - dissolved	Hd	Electrical Conductivity	Cations in water Dissolved	On Hold
MW8	✓	✓	✓	✓	✓	✓	✓	✓	
WDUP1		✓	✓	✓	✓				
WDUP2									✓
TB-W1		✓							
TS-W1		✓							

The '\sigma' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: ENVIROLAB SERVICES PTY LTD JKE Job E33177PA 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 P: (02) 99106200 **Date Results** STANDARD **REAR OF 115 WICKS ROAD** F: (02) 99106201 Required: **MACQUARIE PARK, NSW 2113** P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 1 of 1 Anthony Barkway Attention: Glenmore Park Sample Preserved in Esky on Ice Location: Sampler: CR **Tests Required** Sample Description Combo 2 Combo 3L 8 Metals TRH/BTEX pH / EC Lab Date Sample VOCs PAHS BTEX Sample Containers PID Sampled Ref: Number G1, V, H, PVC 0.2 Water X X X х 18/05/2020 MW8 **G1, V, H, PVC** Х Duplicate 18/05/2020 WDUP1 G1, V, H, PVC Duplicate

18/05/2020)	WDL	JP2				<u> </u>											
18/05/2020	4	тв-у	V1	v	-	Blank						i		х				
18/05/2020	5	TS-V	/1	v		Spike								х				
					i i									:				
	,									-1						·		
														.]				
			envikou	Chataura - I star	ley St	,						. `						
			Job No:	Chatswood NSI Ph: (02) 991	7 2067 0 62 00	·												
			Date Rec	Ph: (02) 991 243106 18/5/20 eived: 1435			,			:								
			Received Temp: &	By: 87)														
	r		Security:	celicepack htact/Broken/None	3						,				, e		-	
_																		
Remarks (com All				required): C (2000) Detection I	imits Plea	ise	G1 - 5 V - BT	00mL EX Vi		r Glas H - Hi	N EON	ash P	VC		₹			
Relinquished I	Date: 18/5/2020 - 13:40			13:40	PVC - HDPE Plastic Bottles Time: Received By: Sason Day					20	Date: 1485							
				,														

Appendix F: Report Explanatory Notes

Standard Sampling Procedure

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by JKE. The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

A. Soil Sampling

- Prepare a borehole/test pit log or made a note of the sample description for stockpiles.
- Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The work area should be at a distance from the drill rig/excavator such that the machine can operate in a safe manner.
- Ensure all sampling equipment has been decontaminated prior to use.
- Remove any surface debris from the immediate area of the sampling location.
- Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possible to prevent the loss of any volatiles. If possible, fill the glass jars completely.
- Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- Label the sampling containers with the JKE job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- Photoionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples
 using the soil sample headspace method. Headspace measurements are taken following equilibration of the
 headspace gasses in partly filled zip-lock plastic bags. PID headspace data is recorded on the borehole/test pit
 log and the chain of custody forms.
- Record the lithology of the sample and sample depth on the borehole/test pit log generally in accordance with AS1726-2017¹⁹.
- Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab. All samples are preserved in accordance with the standards outlined in the report.
- Check for the presence of groundwater after completion of each borehole using an electronic dip metre or water whistle. Boreholes should be left open until the end of fieldwork where it is safe to do so. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

B. <u>Decontamination Procedures for Soil Sampling Equipment</u>

- All sampling equipment should be decontaminated between every sampling location. This excludes single use PVC tubing used for push tubes etc. Equipment and materials required for the decontamination include:
 - Phosphate free detergent (Decon 90);
 - Potable water;
 - Stiff brushes; and
 - Plastic sheets.
- Ensure the decontamination materials are clean prior to proceeding with the decontamination.
- Fill both buckets with clean potable water and add phosphate free detergent to one bucket.
- In the bucket containing the detergent, scrub the sampling equipment until all the material attached to the equipment has been removed.
- Rinse sampling equipment in the bucket containing potable water.
- Place cleaned equipment on clean plastic sheets.

¹⁹ Standards Australia, (2017), Geotechnical Site Investigations. (AS1726-2017)

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes, then the equipment should not be used until it has been thoroughly cleaned.

C. Groundwater Sampling

Groundwater samples are more sensitive to contamination than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard.

The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells (well
 development) to remove any water introduced during the drilling process and/or the water that is disturbed during
 installation of the monitoring well. This should be completed prior to purging and sampling.
- Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior
 to purging or sampling, the condition of each well should observed and any anomalies recorded on the field data
 sheets. The following information should be noted: the condition of the well, noting any signs of damage,
 tampering or complete destruction; the condition and operation of the well lock; the condition of the protective
 casing and the cement footing (raised or cracked); and, the presence of water between protective casing and
 well.
- Measure the groundwater level from the collar of the piezometer/monitoring well using an electronic dip meter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micro-purge (or other low flow) techniques.
- Layout and organize all equipment associated with groundwater sampling in a location where they will not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment generally required includes:
 - Stericup single-use filters (for heavy metals samples);
 - Bucket with volume increments;
 - Sample containers: teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles;
 - Bucket with volume increments;
 - Flow cell;
 - pH/EC/Eh/Temperature meters;
 - Plastic drums used for transportation of purged water;
 - Esky and ice;
 - Nitrile gloves;
 - Distilled water (for cleaning);
 - Electronic dip meter;
 - Low flow peristaltic pump and associated tubing; and
 - Groundwater sampling forms.
- Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The procedure for decontamination of groundwater equipment is outlined at the end of this section.
- Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow sampling equipment to reduce the disturbance of the water column and loss of volatiles.

- During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential and groundwater levels are monitored (where possible) using calibrated field instruments to assess the development of steady state conditions. Steady state conditions are generally considered to have been achieved when the difference in the pH measurements is less than 0.2 units, the difference in conductivity is less than 10% and whilst the well is no longer in draw-down.
- All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples are obtained directly from the pump tubing and placed in appropriate glass bottles, BTEX vials or plastic bottles.
- All samples are preserved in accordance with water sampling requirements specified by the laboratory and placed in an insulated container with ice. Groundwater samples are preserved by immediate storage in an insulated sample container with ice.
- At the end of each water sampling complete a chain of custody form for samples being sent to the laboratory.

D. <u>Decontamination Procedures for Groundwater Sampling Equipment</u>

- All equipment associated with the groundwater sampling procedure (other than single-use items) are decontaminated between every sampling location.
- The following equipment and materials are required for the decontamination procedure:
 - Phosphate free detergent;
 - Potable water;
 - Distilled water; and
 - Plastic Sheets or bulk bags (plastic bags).
- Fill one bucket with clean potable water and phosphate free detergent, and one bucket with distilled water.
- Flush potable water and detergent through pump head. Wash sampling equipment and pump head using brushes in the bucket containing detergent until all materials attached to the equipment are removed.
- Flush pump head with distilled water.
- Change water and detergent solution after each sampling location.
- Rinse sampling equipment in the bucket containing distilled water.
- Place cleaned equipment on clean plastic sheets.
- If all materials are not removed by this procedure that equipment should not be used until it has been thoroughly cleaned

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²⁰ methods and those described in *Environmental Sampling and Analysis, A Practical Guide*, (1991)²¹. The NEPM (2013) is consistent with these documents.

A. Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

B. Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

 $^{^{20}}$ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

²¹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. Blanks

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix G: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. <u>INTRODUCTION</u>

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in Section 6.1 of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this assessment is provided in the following table:

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Intra-laboratory duplicate (soil)	SDUP1 (primary sample TP1 0.0-0.1m)	Approximately 5% of primary samples	Heavy metals, TRH/BTEX and PAHs
Inter-laboratory duplicate (soil)	SDUP5 (primary sample TP5 0.0-0.1m)	Approximately 5% of primary samples	Heavy metals, TRH/BTEX and PAHs
Intra-laboratory duplicate (groundwater)	WDUP1 (primary sample MW8)	Approximately 33% of primary samples	Heavy metals, TRH/BTEX, PAHs and VOCs
Trip spike	TS-S1 (15/05/20) – Soil TS-W1 (20/05/20) - Groundwater	One for the assessment of soil and one for the assessment of groundwater to demonstrate adequacy of preservation, storage and transport methods	BTEX
Trip blank	TB-S1 (15/05/20) – Soil TB-W1 (20/05/20) - Groundwater	One for the assessment of soil and one for the assessment of groundwater to demonstrate adequacy of preservation, storage and transport methods	BTEX

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table S8 and Table G4) attached to the assessment report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report.

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field/Trip Blanks

Acceptable targets for field blank samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%. This is in line with spike recovery limits adopted by the laboratory for organic analysis.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

Method Blanks

All results less than PQL.

B. DATA EVALUATION

1. Sample Collection, Storage, Transport and Analysis

Samples were collected by trained field staff in accordance with the JKE SSP. The SSP was developed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

JKE note that the temperature on receipt of soil samples was reported to be up to 20.1°C. JKE understand that the temperature is measured at the laboratory using an infrared temperature probe by scanning the outside of the sample container (i.e. one sample jar/container at the time of registering the samples). This procedure is not considered to be robust as there is a potential for the outside of the jar to warm to ambient temperature, or at least to increase from that of the internal contents, relatively quickly. On this basis, JKE are of the opinion that the temperatures reported on the Sample Receipts are unlikely to be reliable or representative of the overall batch. This is further supported by the trip spike recovery results (discussed further below) which reported adequate recovery in the range of 98% to 100% for soil, demonstrating that recovery of volatiles was acceptable and storage/transport/preservation methods were robust.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. <u>Laboratory PQLs</u>

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC. With the exception of the vinyl chloride PQL for groundwater analysis which was 10 times greater than the ecological SAC. In light of the VOC concentrations reported for groundwater, JKE are of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the assessment.

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

- Elevated RPDs were reported for several PAH compounds in soil SDUP5/TP5 (0.0-0.1m); and
- Elevated RPDs were also reported for heavy metals lead and chromium in soil SDUP1/TP1 (0.0-0.1m).

Values outside the acceptable limits have been attributed to the heterogeneous nature of fill material strata from which these samples were collected and the difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices. In addition, detectable concentrations of these analytes were relatively low and close to the laboratory PQLs which would yield higher RPD values for detected variations. Both the primary and duplicate results were screened against the SAC, therefore the RPD exceedances are not significant.

Field/Trip Blanks

During the investigation, one soil and one water trip blank was placed in the esky during sampling and transported back to the laboratory. The results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

Trip Spikes

The results for soil ranged from 98% to 100%. The results for water ranged from 105% to 127%. These results indicated that field preservation methods were appropriate.

4. <u>Laboratory QA/QC</u>

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this assessment.

One laboratory RPD exceeded for nickel. This exceedance was minor and a triplicate was analysed (See lab report 242855). The result is attributed to minor heterogeneity in the fill and is not significant as the nickel concentrations were well below the SAC.

C. DATA QUALITY SUMMARY

JKE are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These non-conformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

There was only one groundwater monitoring event undertaken for the PSI. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods. However, given the low contaminant concentrations reported, the site history and the surrounding land uses, this is not considered to alter the conclusions of the PSI.

Appendix H: Field Work Documents

lient:	NSW Department of	of Education		Job No.:		E33177PA			
roject:	Proposed Public So	chool				Well No.	:	MWK	
ocation:	1-23 Forestwood D	rive, GLENMORE F	PARK, NSW			Depth (n	6.0m		
WELL FINISH DETAILS								_	
		IXI							
ELL DE	Gatic C VELOPMENT DETAIL	Cover 🛛	Standpi	ре 🔲			Other (de	escribe)	
ethod:	VELOPINENT DETAIL			Tewn Da	-foo ()				
ate:		T/01000		SWL - Be				2,0	
ndertake	n Dv	11/5/2	070				•••••	15.2	-0
	Removed:	951		SWL - Af				2.5	7~
	ng (ppm):			Time – Ar	ter:			12.5	10
omments		1.0							
	MENT MEASUREME	NTS							
Vol	ume Removed	Temp (°C)		DO	E	C			T = 4 10
	(L)			ng/L)		/cm)		H	Eh (mV)
		21.3	2.	<u> </u>	300	***********	7.1	1	242.0
	-5_	21.9	3.	9	6469	56	7.2	6	217.7
		220	2	1	73		7.	32	202,0
	0	21,9	25	3	72	561	7.	32	1946
	15	220	2	9	72	29	7.3	27	183.1
	20	22 3	4.	2	72 6a	2C	7.7	33	1715
2.5		121.9	12	_	7642		7.41		1150.2
30		21.9	4	_	7067		7.35		1412
	35	21.9				1002		35	1303
	40	21.9		4.0		6977		5	123.4
	15	21.5	5	5.2				27	11157
16	0	219	2.5	2.5		6963		3	166.2
	55	21.8	12.	B	64	53	7.3		97.9
	<u>60</u>	21.56	2.4	-	69	57	7.3	1	93.3
	<u> </u>	21.5	12.	5	67	91	7.5	5	993
	70	219	2.3	2	698	46	7.4	12	91.0
	7-5	219		4	644		7.4		3510
	3.0	21.9	2.2		697	34	7.3	56	79.0
۷	35	21,3	2.0	2	689	16	7	51	1824
	70	218	20	_	699	1	7.2	8	146
9	5	21.9	12	1	7010	3	7.7	5	68.5
		3						0.7	
					GE.				
mments	:Odours (YES N), NAPL/PSH (YE	S (NO) SI	neen (YES	(NO), Ste	ady Stat	e Achieve	YES /	NO)
SI Used:	4		4-		7				
		A	*						
and D	12 77	0/0 6 15							
sted By:	S. R.	PCG7 Rema	rks: dy state cond	ditions					
to Toots ≐	: In/s				0.2 units	differenc	e in the co	nductivei	ty less than 10%
ite Tested	7		WL stable/no			2	12"		., .000 triair 10 /0
	- t-	4				5			12

WATER QUALITY METER CALIBRATION FORM

Client: NSW Departm	ISW Department of Education							
Project: Proposed Publ	Proposed Public School							
Location: 1-23 Forestwo	1-23 Forestwood Drive, GLENMORE PARK, NSW							
Job Number: E33177PA								
DISSOLVED OXYGEN								
Make: 151	Model: 4							
Date of calibration: 11/5/2026	Name of Calibrator: C 2 101 Gy							
Span value: 70% to 130%	*							
Measured value: <a>G / <a>								
Measured reading Acceptable (Yes/No):								
	рН							
Make: 751	Model:							
Date of calibration: 11/5/2020	Name of Calibrator: C RIOLCY							
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 02/21 Lot No: 342068							
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: (1/20 Lot No: 336994							
Measured reading of Buffer 1: 7.84.								
Measured reading of Buffer 2: ムタの								
Slope:	Measured reading Acceptable (Yes No) NO							
	EC							
Make: V61	Model: 4							
	ator: C. PIDLEY Temperature: 15.6 °C							
Calibration solution: 1413 N5/Cr	Expiry date: 12/20 Lot'No: 336223							
Theoretical conductivity at temperature (see solution	on container): 1 7 Φ μS/cm							
Measured conductivity: 119年 µS/cm	Measured reading Acceptable (Yes/No):							
	REDOX							
Make: YSI	Model: 4							
Date of calibration: 1 /6/2020	Name of Calibrator: C. R. OL C. J.							
Calibration solution: 240~V	Expiry date: 01/24 Lot No: 3622							
Theoretical redox value: 240mV								
Measured redox reading: 200\ mV	Measured reading Acceptable (Yes/No):							

Client:		NSW Department of Education						Job No.: E33177PA					
Project:				Proposed Public School						MWB			
Location:				ve, GLENMORE	PARK, NS	 SW		Depth (m):		6,00			
WELL FINI	SH	1											
X	Gatic Cov				Standpipe				Other (desc	cribe)			
WELL PUR	GE DETAIL	_S:							0.50				
Method:				ALTIC PUM	<u>.P</u>		SWL - Bef		2.05	<u></u>			
Date:				12020			Time – Bei		09:5	<u> </u>			
Undertakei	n By:			idley			Total Vol F		6.51				
Pump Prog				.27			PID (ppm):	:	0.2				
		G MEASURI	EMENTS				DO						
Time		SWL (m)	Vol (L)	Notes	5	Temp (°C)	(mg/L)	EC (μS/cm)	pH	Eh (mV)			
გ.	5	2,0%		turbid		19.5	26	5185	679	175.1			
6		2.00	1			20.5	0.9	5347	674	25.5			
10	.5	208	2	SLIGHT TU	2010	20.6	0.4	53 58	6.80	42			
16		2.07	2.5	VERRY SILIC		20.7	0,6	5376	6.79	7.3			
21-		208	35	CLEAR		20.4	2.4	5336	6.92	6.7			
26.4	5	2.09	4.	"	()	20.9	0.9	5341	6.8	51			
<i>-</i> 3₫		2.05	4.8	~	"1	20.6	1.7	5374	6.88	6.7			
36.	5	2.06	6	"	11	20.0	0.9	5402	6.82	7.9			
40		206	6,5	"		20.9	1.0	5414	6.41	7.2			
				START SAN	prins		CX45-21-00-20						
										Mana Enna West State			
**************			***********										
		7 A											
								1					

***********								1					
							İ		1				
									1				
	*********						1						

							 	-					

				************			ļ						
Commente	· Odoure ^	VES // NO	/NADI /D	SH (YES / NO),	Sheen (VE	S(/ NO)	leady State	Achieved (YF	S) / NO)				
				mber,2 xBTE						ed plastic			
YSI used:	3					OUP 1				sample			
Tested By:	Craig Ridle	у	esta i superiori con conse	Remarks:									
Date Tested	1 18/	6/2020) #	- Steady stat	te condition	is	3		duativitu la-	e than 100/			
			-					erence in con-	uuclivity ies	ร เกลก 10%			
Checked By: VB Date: VVS 20				10% and SWL stable/not in drawdown									

WATER QUALITY METER CALIBRATION FORM

Client: NSW Departm	NSW Department of Education							
Project: Proposed Publ	Proposed Public School							
Location: 1-23 Forestwo	1-23 Forestwood Drive, GLENMORE PARK, NSW							
Job Number: E33177PA								
DISSOLVED OXYGEN								
Make: Y51 (3)	Model:							
Date of calibration: 16/5/20	Name of Calibrator: CRIDLES							
Span value: 70% to 130%								
Measured value:								
Measured reading Acceptable (Yes/No):								
	рН							
Make: \(\sqrt{61} \) (3)	Model:							
Date of calibration: 18/3/2020	Name of Calibrator: CQIDLCY							
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 02/2 Lot No: 342069							
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: []/20 Lot No: 336994							
Measured reading of Buffer 1: 6.97.								
Measured reading of Buffer 2: 401								
Slope:	Measured reading Acceptable (Yes/No):							
	EC							
Make: , Y5 (3)	Model:							
	rator: C. PIOLES Temperature: °C							
Calibration solution: 1415	Expiry date: 12/20 Lot No: 338233							
Theoretical conductivity at temperature (see solution	on container): 1170 μS/cm							
Measured conductivity: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Measured reading Acceptable (Yes/No):							
	REDOX							
Make: Y51 (3)	Model:							
Date of calibration: 18/5/20	Name of Calibrator: CRNLS							
Calibration solution:	Expiry date: 01/24 Lot No: 3822							
Theoretical redox value: 240m\								
Measured redox reading: 234, 6 mV Measured reading Acceptable (Yes/No):								

PID FIELD CALIBRATION FORM

Client:	NSW Department of Education								
Project:	Proposed Public School								
Location:	1-23 Forestwood Drive, GLENMORE PARK, NSW								
Job Number:	E33177PA								
	Р	ID							
		P100 (d	Date of last factory						
Make: MINIRA @	Model: LITE	Unit: areas	calibration 20/1/20						
Date of calibration:	15/2000	Name of Calibrator: 💪 🕡	iol (4						
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm						
	ეთ ppm	Error in measured reading:	± O ppm						
Measured reading Acceptab	ole (Yes/No):								
	Р	ID							
Make:MINIRAE	Model: └ा७ €	Unit: GREEN	Date of last factory calibration: 20/1/2020						
Date of calibration: $ rac{4}{5} $	5/2020	Name of Calibrator: C-RX	DL Gary						
Calibration gas: Iso-butylen		Calibration Gas Concentration: 100.0 ppm							
Measured reading:	ppm ppm	Error in measured reading: ± O ppm							
Measured reading Acceptab	ole (Yes/No): 765 -		.*						
	Р	ID							
Make:	Model:	Unit:	Date of last factory calibration:						
Date of calibration:		Name of Calibrator:							
Calibration gas: Iso-butylen	е	Calibration Gas Concentration: 100.0 ppm							
Measured reading:	ppm	Error in measured reading: ± ppm							
Measured reading Acceptab	le (Yes/No):								
	Р	ID							
			Date of last factory						
Make:	Model:	Unit:	calibration:						
Date of calibration:		Name of Calibrator:							
Calibration gas: Iso-butylen	е	Calibration Gas Concentration: 100.0 ppm							
Measured reading:	ppm	Error in measured reading: ± ppm							
Measured reading Acceptab	le (Yes/No):								
	Р	ID							
Make:	Model:	Unit:	Date of last factory calibration:						
Date of calibration:		Name of Calibrator:							
Calibration gas: Iso-butylen	e	Calibration Gas Concentration: 100.0 ppm							
Measured reading: ppm Error in measured reading: ± ppm									
Measured reading Acceptab	le (Yes/No):								

Appendix I: Guidelines and Reference Documents

Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2018). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW Office of Environment and Heritage (OEH), (2011). Guidelines for Consultants Reporting on Contaminated Sites

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy No.55 - Remediation of Land 1998 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia