

GEO-LOGIX PTY LTD

ABN 86 116 892 936

Unit 2309 4 Daydream Street Warriewood, NSW 2102

P 02 9979 1722F 02 9979 1222

W www.geo-logix.com.au

29 July 2020

Mr Michal Rumble Fabcot Pty Ltd 1 Woolworths Way Bella Vista NSW 2153

SUBJECT: Groundwater Monitoring Event

SITE: 11-13 Percy Street, Auburn NSW

Dear Michael,

Geo-Logix Pty Ltd (Geo-Logix) was engaged by Fabcot Pty Ltd (Fabcot) to complete a program of monitoring, sampling, and analysis of groundwater at 11 – 13 Percy Street, Auburn, NSW 2144 (Figure 1) Fabcot intends to redevelop the site as a Customer Fulfilment Centre (CFC), comprising a single storey warehouse and distribution centre for online sales. Under the proposed development the western portion of the building would be constructed as slab on grade, and the eastern portion as suspended slab above the floodway area of the adjacent Haslams Creek.

Geo-Logix completed a Detailed Site Investigation of the site in mid 2019 to evaluate the suitability of the site for the proposed development. The investigation identified trichloroethene (TCE) and its degradant products cis-1,2-dichloroethene (DCE) and vinyl chloride (VC) in shallow groundwater across the eastern and northern portion of the site. The extent of impacted groundwater was defined laterally by wells on the neighbouring down gradient property 15 Percy Street, and vertically through deeper wells installed in the underlying bedrock groundwater unit.

Under the proposed development, TCE, DCE and VC impacted groundwater was not considered to present a condition requiring remediation. The objective of the groundwater monitoring event was to evaluate current groundwater contaminant conditions to confirm the findings of the Geo-Logix (2019) DSI Report.

SITE DESCRIPTION

The site comprises two rectangular shaped lots encompassing an area of approximately 3.25 hectares (Ha). The Lots are bound by Percy Street to the northwest, Haslams Creek to the southeast and commercial/ industrial on adjacent properties. At the time of the investigation (Geo-Logix 2019), the western half of the site (Lot 1) was occupied by Chameleon Touring Systems, a stage lighting and equipment supplier and the eastern half of the site (Lot 2) was occupied by a Holden vehicle accessories and auto detailing service centre.

The site is underlain by two groundwater bearing units: a shallow unconfined aquifer within the alluvial deposits of the former Haslams Creek and a deeper semi-confined aquifer within bedrock shale deposits. Groundwater flow within the alluvium is recorded as variable with an inferred flow direction to the north and northeast. The deeper aquifer is also inferred as flowing to the northeast and is not

considered to be in hydraulic connectivity with the overlying alluvial groundwater. Further discussion of the hydrochemical facies of each groundwater unit is discussed In Geol-Logix DSI Report (2019).

The monitoring well network is made up of a total of 28 wells: 20 alluvial groundwater monitoring wells (MW101 to MW121) and five bedrock groundwater monitoring wells (MW201 to MW205) installed as part of the recent works by Geo-Logix and three shallow groundwater wells (GW1, GW2 and GW04) installed as part of an investigation by WSP in 2012. A summary of the current groundwater monitoring network is presented in the table below and illustrated in Figure 2.

Area	Well ID	TOC elevation (mAHD)	Total well depth (mbgl)	Screened Interval (mbgl)	Comments
		Alluviu	ım water bearing unit	ı	
	MW101	6.772	7.7	4.7-7.7	
	MW102	5.836	5.2	2.2-5.2	
	MW103	4.532	4.0	1.0-4.0	
	MW104	4.372	4.0	1.0-4.0	
	MW106	4.602	4.0	1.0-4.0	
	MW107	7.173	4.0	1.0-4.0	
Onsite wells	MW108	7.070	4.0	1.0-4.0	
(11-13 Percy	MW109	6.964	4.0	1.0-4.0	
Street)	MW110	7.230	4.5	1.5-4.5	
	MW111	5.853	5.0	2.0-5.0	
	MW112	5.130	5.0	1.0-4.0	
	MW113	7.240	5.8	2.8-5.8	
	MW114	7.250	5.8	2.8-5.8	
	MW115	4.400	3.5	0.5-3.5	
	MW116	4.300	3.5	0.5-3.5	
	MW117	4.590	6.0	3.0-6.0	
	MW118	5.360	4.2	1.2-4.2	
Offsite wells (13 Percy Street)	MW119	5.380	4.5	1.5-4.5	
(13 Felcy Street)	MW120	5.530	6.0	3.0-6.0	
	MW121	6.740	6.5	3.5-6.5	
	GW1	7.021	4.5	1.5-4.5	
WSP 2012	GW2	7.074	4.0	1.0-4.0	
	GW04	4.864	4.0	1.0-4.0	
		Bedroe	ck water bearing unit		<u>, </u>
Onsite wells	MW201	5.750	12.0	8.711.7	Paired with MW102
(11-13 Percy	MW202	4.950	14.0	11.0-14.0	Paired with GW04
Street)	MW203	7.010	11.8	10.0-11.8	Paired with MW108
Offsite wells	MW204	4.580	12.0	9.0-12.0	Paired with MW117
(13 Percy Street)	MW205	5.370	13.5	10.5-13.5	Paired with MW119

SCOPE OF WORKS

Field sampling was completed by Geo-Logix between 27 and 29 May 2020 and comprised:

- Gauging and sampling of groundwater wells using low flow sampling methods;
- Analysis of groundwater sampled for identified contaminants of concern, including Total Recoverable Hydrocarbons (TRH) and Volatile Organic Carbons (VOCs)including TCE, cis-1,2-DCE and VC.

METHODOLOGY

Groundwater gauging and sampling

Groundwater wells were sampled over a period of three consecutive days by suitably experienced Geo-Logix personnel using calibrated water quality meter and peristaltic low-flow pump. Copies of calibration certificates are available in Attachment A.

Prior to purging and sampling an interface probe was used to measure the static water level (SWL) in each bore and any non-aqueous phase liquid (NAPL), including thickness.

Groundwater samples were collected by dedicating ½" LDPE tubing into each well. The LDPE tubing was connected to disposable silicon tubing that runs through a peristaltic pump. The peristaltic pump was set to very low flow rates to reduce sample turbidity. During well purging water parameters including pH, dissolved oxygen, turbidity, conductivity, redox and temperature were measured. Groundwater samples were collected when water quality parameters and head elevation stabilised. Where the stabilisation of head elevation was unable to be achieved due to low groundwater recharge, groundwater samples were collected upon stabilisation of water quality parameters.

Field chemistry notes are included in Attachment B.

Groundwater samples were collected in HCL preserved 40 mL vials and 0.25 litre unpreserved amber glass bottles. Samples were labelled, placed on ice in an esky and transported under chain of custody to Eurofins, a NATA Accredited Laboratory.

Quality Control procedures included decontaminating sampling equipment with a solution of Decon 90 and deionised water and rinsing with water between each sampling location. Disposable gloves were changed between each sampling location.

Quality Assurance

Quality control (QC) sampling was undertaken in general accordance with specifications outlined in AS4482.1, *Guide to Sampling and Investigation of Potentially Contaminated Soil.* Field QC samples were collected and summarised below.

Sample Identification	Sample Type	Sample Matrix	Rate of Collection
D1	Field duplicate of MW203	Water	1 in 14 samples
T1	Field triplicate of MW203	Water	1 in 14 samples
D2	Field duplicate of MW205	Water	1 in 14 samples
T2	Field triplicate of MW205	Water	1 in 14 samples
R1	Equipment Rinsate	Water	1 per day of sampling
R2	Equipment Rinsate	Water	1 per day of sampling

The laboratory internal QC procedures are consistent with NEPM policy on laboratory analysis of contaminated waters.

GROUNDWATER ASSESSMENT CRITERIA

Groundwater assessment criteria was defined in the recent detailed site investigation. For continuity, analytical results have been compared against the same criteria, outlined below.

NEPM Health Screening Levels D (HSLs D)

HSLs are Tier 1 risk based generic groundwater assessment criteria used for the assessment of potential risks to human health from chronic inhalation exposure of petroleum vapours emanating from petroleum contaminated groundwater (vapour risk). They are intentionally conservative and based on a reasonable worst-case scenario for generic soil types, contamination depth and land use settings including Residential (HSLs A/B), Open Space/Recreational (HSLs C) and Commercial Industrial (HSLs D).

Groundwater HSLs D for sand geology and depths 2 - <4 m was conservatively adopted on the basis groundwater was encountered at a maximum depth of 3.3 metres below ground (mbg) in variable geology.

ANZG (2018) Guidelines for Fresh and Marine Quality

Trigger values are adopted from ANZECC 2000 Guidelines for Fresh and Marine Water Quality. They are not acceptance criteria they are used as trigger values for further consideration of groundwater contamination when exceeded. Where available, Freshwater and Marine water Quality trigger values for 95% level of species protection were applied given the nearest point of groundwater discharge was Haslams Creek which flows north along the southeast boundary of the site and discharges into Homebush Bay approximately 0.8 km northeast.

Australian Drinking Water Guidelines (ADWG)

While groundwater is not being accessed for domestic use in proximity to the site, the Australian Drinking Water Guidelines were conservatively considered.

US EPA Regional Screening Levels

The ADWG does not include criteria for TCE. The most appropriate criteria is the tap water guideline from US EPA RSLs (USEPA, 2018), which is a health-based guideline utilising current toxicity information on TCE. The RSL for the lowest of the threshold and non-threshold criteria for a 1x10⁻⁵ risk has been adopted.

RESULTS

Groundwater Flow Characteristics

Groundwater was recorded at depths of between 0.34 and 3.315 mBGL (TOC) within the alluvium and between 0.49 and 2.28 mBGL in bedrock groundwater. Figure 3 and Figure 4 illustrate static water level (SWL) and inferred groundwater flow direction for shallow (alluvium) and deep (bedrock) groundwater respectively. Groundwater flow is similar to that reported previously, flow is inferred towards the northeast within the shallow alluvial aquifer and to the north within the deeper bedrock aquifer.

Average groundwater field chemistry values recorded during the recent groundwater monitoring event are summarised in the table below Error! Reference source not found. A comprehensive summary of field chemistry (Error! Reference source not found.) along with field data sheets are included at the back of this report.

Average Water Quality Values	Shallow Groundwater (Alluvium)	Deep Groundwater (Bedrock)
Electrical Conductivity (mS/cm)	59.4	50.2
pH	6.6	6.4
Redox (mV)	58.5	12.1
Dissolved Oxygen (mg/L)	17.2	5.2
Temperature (oC)	21.1	21.0

Groundwater quality at the site does not meet Australian Drinking Water Guidelines (NHMRC, 2011) with respect to TDS and pH and is generally too saline for irrigation of crops and watering livestock (ANZECC, 2000). Water quality characteristics indicate groundwater at the site is of limited beneficial use. The results are consistent with previous findings.

Analytical Results

TRH C₆-C₁₀ was detected at concentrations greater than vapour intrusion assessment criteria in groundwater sample MW102. TRH was not detected at elevated concentrations in all other groundwater samples analysed (Table 1).

The triplicate sample T2 recorded a concentration of benzene of $2\mu g/L$, above the drinking water criteria of $1\mu g/L$, whilst the corresponding primary sample (MW205) recorded a concentration at the drinking water limit $(1\mu g/L)$.

Very low concentration of ethylbenzene was recorded at MW107(1 μ g/L), MW13 (4 μ g/L) MW117 (1 μ g/L).

TCE was detected at concentrations above low reliability freshwater protection criteria in groundwater sample MW102 and at concentrations greater than USEPA tap water criteria groundwater samples MW102, MW111 and GW04 (Table 2).

cis-1,2-DCE was detected at concentrations above drinking water GILs in groundwater samples MW102, MW104 and GW04.

VC was detected at concentrations above drinking water GILs in groundwater samples MW102, MW104, and GW04 and above freshwater GILs in groundwater sample GW04.

TCE, cis-1,2-DCE and VC were not detected in groundwater samples collected from off-site groundwater wells or on and off-site bedrock groundwater wells.

Laboratory reports are included in Attachment C.

QA/QC Assessment

Water duplicate/ triplicate results are within the adopted acceptance criteria of 30-50% (AS4482.1) relative percent difference (RPD). Geo-Logix accepts the integrity of the analytical data.

VOCs were not detected in the rinsate samples, confirming decontamination measures were adequate to prevent cross contamination.

A summary of Laboratory QA/QC data is presented on the following table.

Report #	Analysis Within Holding Time	Surroga Recove		Lab. Duplicate RPD %	Lab. Matrix Spike Recovery	Lab. Control Sample	Lab. Method Blank			
723066-W	✓	✓	✓		✓	✓	✓			
723567-W	✓	✓		✓	✓	✓	✓			
723067-W	✓	✓		✓	✓	✓	✓			
724501-W	✓	✓		✓	√	✓	✓			
		√	= Pas	s X = Fail (See Belov	w)	1				
Quality Assurance	Criteria		Quality Control Criteria							
Holding Times			Accuracy							
VOCs 7 days water	er		Matrix spike, control sample 70-130% and 30-130%							
TRH 7 days, water	r		Surrogate recovery 50-150%							
			Precision							
			Method Blank - Not detected							
			Dupl	licate - No limit (<10xE	EQL), 0-50% (10-20:	xEQL), 0-200% (>2	20xEQL)			

DISCUSSION AND CONCLUSION

Comparison of groundwater contaminant concentrations from this sampling event have been compared against historical data to evaluate potential for worsening conditions or otherwise at the site. It should be noted that there is insufficient data to undertake formal trend analysis of contaminant concentrations.

Total Recoverable Hydrocarbons

Comparison of TRH (C_6 - C_{10}) concentration in groundwater samples from the recent monitoring event against those from the 2019 investigation indicate comparable concentrations between the two events. A comparison is presented on the following table:

Analyte	Sample ID	Concentration (μg/L)					
		May 2020	05 and 06/06/2019				
	MW111	50	40				
	GW01	ND	30				
TDI (54)	MW102	12,000	13,000				
TRH (F1)	MW104	260	170				
	GW02	70	80				
	GW04	1,200	1,400				

It is evident that TRH analysis is identifying chlorinated ethenes (TCE, DCE, VC) in groundwater.

Volatile Organic Compounds

TCE, cis-1,2-DCE and VC concentrations from the current investigation and various sampling events completed in 2019 is presented in the following table. With the exception of cis-1,2-DCE in sample MW102 collected during this investigation, there is no evidence of worsening groundwater contaminant conditions. The results are generally comparable and display variation typical of environmental contamination data.

Avaluta	5			Concentra	ntion (µg/L)		
Analyte	ID	May 2020	27/09/2019	26/08/2019	20/08/2019	18/06/2019	5/06/2019
	GW04	240 ^d	170 ^d	-	-	280 ^d	310 ^d
Trichloroethene	MW102	8,500b	5,500b	2,800 b	-	6,100 b	8,300 b
(TCE)	MW104	ND	ND	-	ND	-	ND
	MW111	13 ^d	-	-	11 ^d	-	13 ^d
	GW04	530	380	-	-	910	1,300
cis-1,2- dichloroethene	MW102	4,600	1,200	1,000	-	1,900	2,000
(DCE)	MW104	170	-	-	160	-	170
	MW111	25	-	-	22	-	24
	GW04	340 ^b	160 b	-	-	410 ^b	680 ^b
Vinyl Chloride	MW102	72 ^a	33ª	ND	-	ND	ND
(VC)	MW104	29ª	-	-	22ª	-	26 a
	MW111	ND	-	-	7ª	-	9ª

Notes:

^aHSL-D, ^bFreshwater 95%, ^cMarine 95%, ^dDrinking water

ND = Non-detect.

A longer temporal dataset is available for well GW04 as it was sampled by WSP in 2012. Comparison of TCE, cis-1,2-DCE and VC in groundwater at GW04 from 2012, 2019 (maximum detected) and May 2020 is presented in the table below.

Awalista	GW04	GW04 Contaminant Concentration (ug/L)							
Analyte	WSP (2012)	Geo-Logix (2019)	Geo-Logix (2020)						
TCE	1,200	310	240						
DCE	1,200	1,300	530						
VC	950	410	340						
Total TCE / DCE / VC	3,350	2,020	1,110						

The results show a decreasing concentration trend for all three analytes, continued breakdown of TCE to cis,1-2-DCE and VC and an overall reduction in contaminant mass.

With the exception of cis-1,2-DCE in groundwater sample MW102, the results of the groundwater investigation did not find any evidence of worsening groundwater contaminant conditions. The absence of increasing TCE concentrations in groundwater across the site suggests the cis-1,2-DCE increase is attributed to natural variation, and not from an increasing mass of contaminant in groundwater.

The absence of increasing TCE concentrations and the demonstration of continued degradation of TCE and its breakdown products in groundwater beneath the site confirms the findings of the DSI report. No remediation of groundwater or on-going groundwater monitoring is considered warranted under the proposed Fabcot development.

[&]quot;-" = no sample taken on this date.

Please do not hesitate to contact Geo-Logix directly (02) 9979 1722 should you require further information.

Yours sincerely,

Elin Griffiths BSc (Hons), MSc Senior Hydrogeologist Ben Pearce BSc (Hons), CEnvP#321 Principal

FIGURES

Figure 1: Site Vicinity Map

Figure 2: Groundwater Well Locations

Figure 3: Static Water Levels and Inferred Groundwater Flow Direction, Shallow, May 2020

Figure 4: Static Water Levels and Inferred Groundwater Flow Direction, Deep, May 2020

TABLES

Table 1: Summary of Groundwater Analytical Data – Petroleum Hydrocarbons

Table 2: Summary of Groundwater Analytical Data – Volatile Organic Compounds

ATTACHMENTS

Attachment A: Calibration Certificates

Attachment B - Groundwater Sample Logs and Field Chemistry Results

Attachment C – Laboratory Certificates and Chain of Custody

REFERENCES

Australian Standard (2005) AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Volatile and Semi-volatile compounds. Standards Australia.

Australian Standard (2005) AS 4482.2-1999 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 2: Volatile substances. Standards Australia.

Geo-Logix (2019), *Detailed Site Investigation, 11-13 Percy Street*, report 1901048Rpt01FinalV02_22Nov19.

NEPC (1999, Amended) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), National Environment Protection Council, April 2013.

US EPA, 2018, *Regional Screening Levels*, https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables, last accessed 21 July 2020.

LIMITATIONS

This report sets out the findings of a groundwater investigation by Geo-Logix.

This report should be read in full, and no conclusion or other section of the report may be used or relied on in isolation, or taken as representative of the report as a whole. No responsibility is accepted by Geo-Logix, and any duty of care that may arise but for this statement is excluded, in relation to any use of any part of this report other than on this basis.

This report has been prepared for the sole benefit of and use by the Client. No other person may rely on the report for any purpose whatsoever except with Geo-Logix's express written consent. Any duty of care to third parties that would or may arise in respect of persons other than the Client, but for this statement, is excluded.

Geo-Logix owns the copyright in this report. No copies of this report are to be made or distributed by any person without express written consent to do so from Geo-Logix. If the Client provides a copy of this report to a third party, without Geo-Logix's consent, the Client indemnifies Geo-Logix against all loss, including without limitation consequential loss, damage and/or liability, howsoever arising, in connection with any use or reliance by a Third Party.

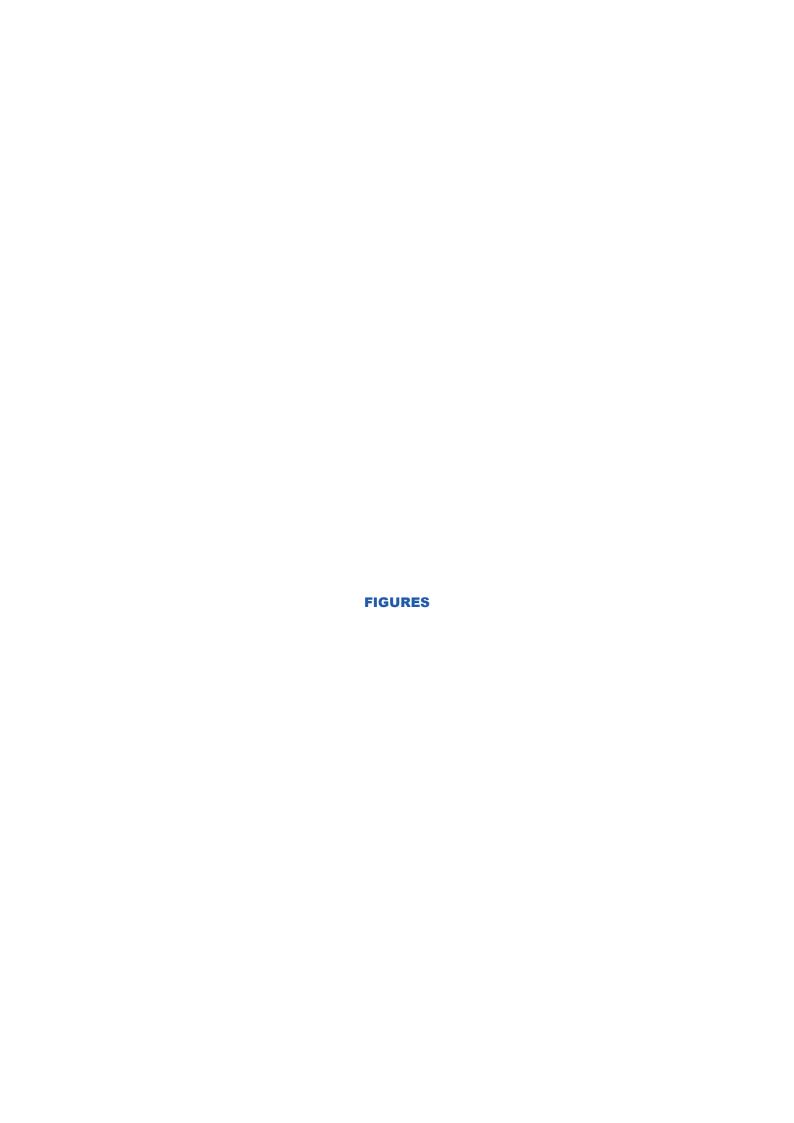
The works undertaken by Geo-Logix are based solely on the scope of works, as agreed by the Client (Scope of Works). No other investigations, sampling, monitoring works or reporting will be carried out other than as expressly provided in the Scope of Works. A COPY OF THE SCOPE OF WORKS IS AVAILABLE ON REQUEST.

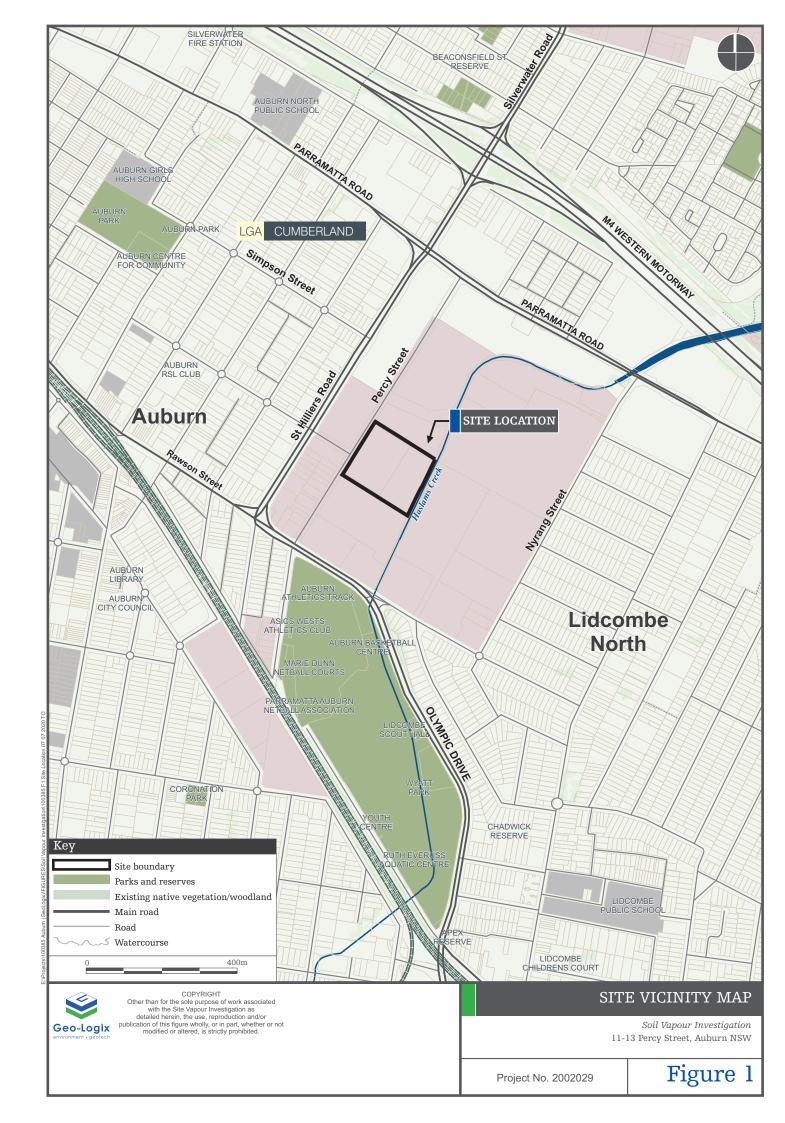
The conclusions stated in this report are based solely on the information, Scope of Works, analysis and data that are stated or expressly referred to in this report.

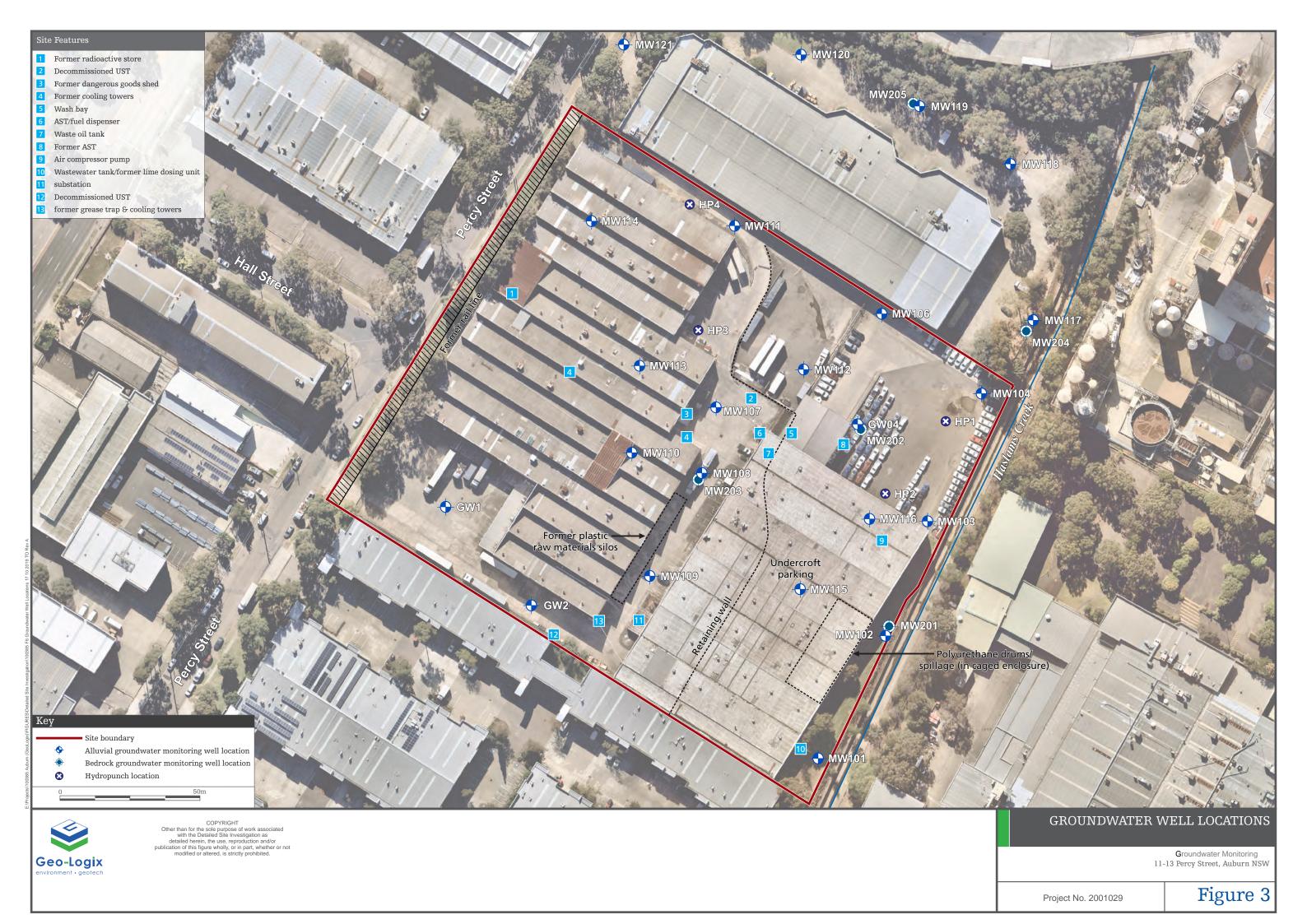
To the extent that the information and data relied upon to prepare this report has been conveyed to Geo-Logix by the Client or third parties orally or in the form of documents, Geo-Logix has assumed that the information and data are completely accurate and has not sought independently to verify the accuracy of the information or data. Geo-Logix assumes no responsibility or duty of care in respect of any errors or omissions in the information or data provided to it.

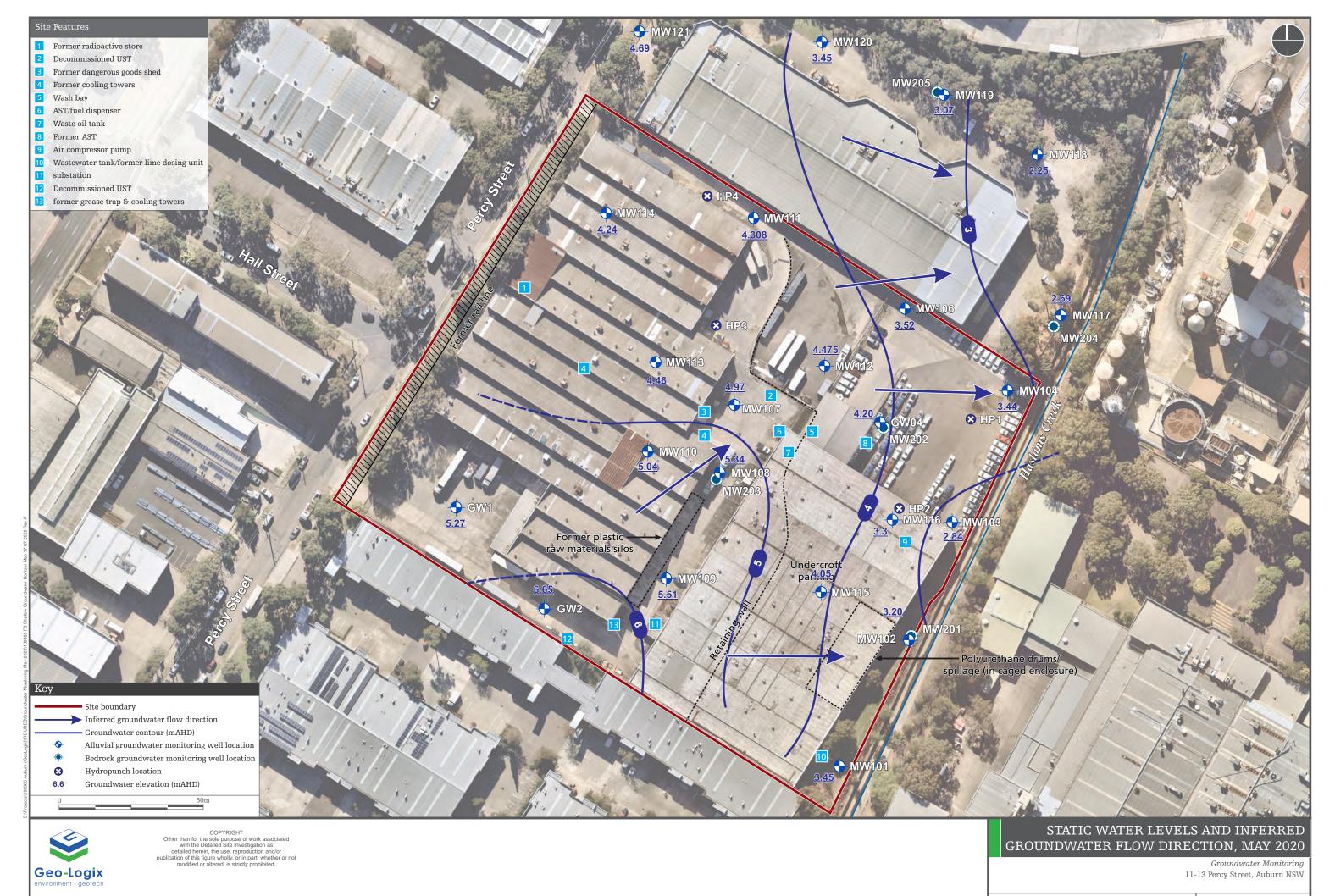
Without limiting the paragraph above, where laboratory tests have been carried out by others on Geo-Logix's behalf, the tests are reproduced in this report on the assumption that the tests are accurate. Geo-Logix has not sought independently to verify the accuracy of those tests and assumes no responsibility in respect of them.

Geo-Logix assumes no responsibility in respect of any changes in the condition of the Site which have occurred since the time when Geo-Logix gathered data and/or took samples from the Site on its groundwater investigations dated **27 to 29 May 2020**.

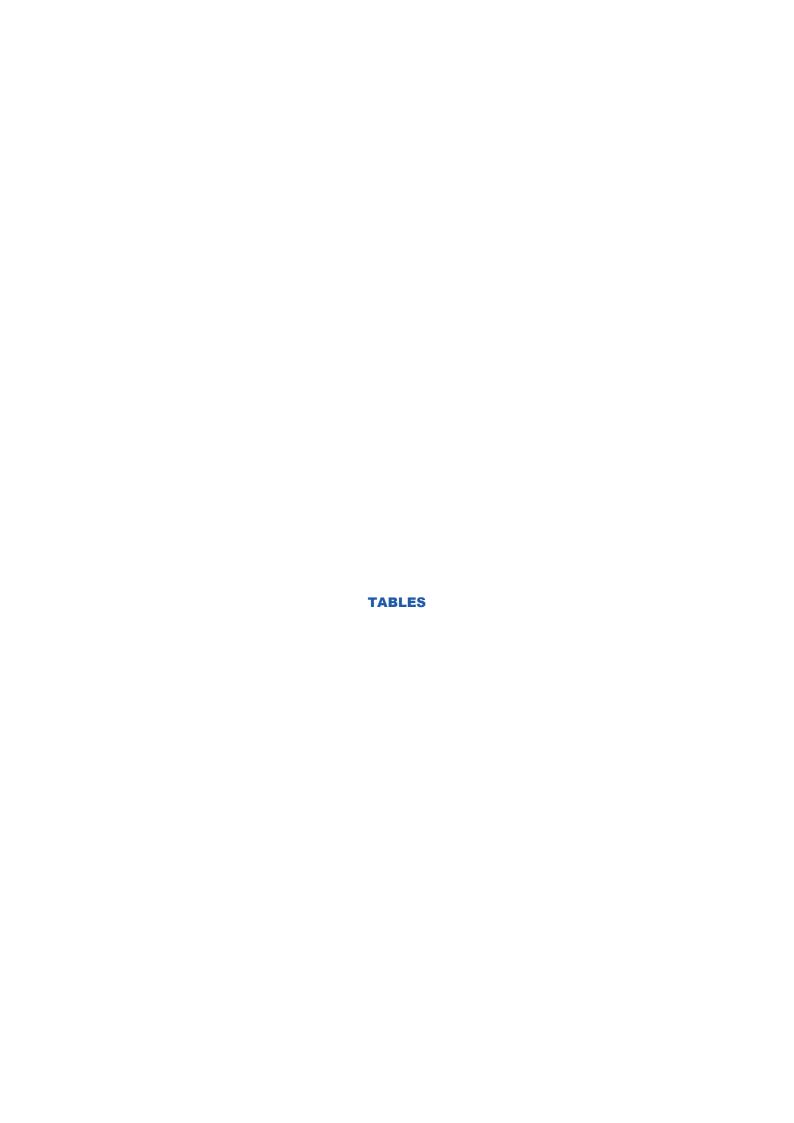

Where the Scope of Works does not include offsite investigations, Geo-Logix provides no warranty as to offsite conditions, including the extent if any to which substances in the Site may be emanating off site, and if so whether any adjoining sites have been or may be impacted by contamination originating from the Site.


Subsurface site conditions are typically heterogeneous, and may change with time. Samples taken from different points on the Site may not enable inferences to be drawn about the condition of areas of the Site significantly removed from the sample points, or about the condition of any part of the Site whatsoever, in particular where the proposed inferences are to be drawn a long time after the date of the report.


Geo-Logix has prepared this report with the diligence, care and skill which a reasonable person would expect from a reputable environmental consultancy and in accordance with environmental regulatory


authority and industry standards, guidelines and assessment criteria applicable as at the date of this report. Industry standards and environmental criteria change frequently, and may change at any time after the date of this report

.



Project No. 2001029 Figure 3

Figure 4

Project No. 2001029

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	GW01	GW02	GW04	MW101	MW102
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	9/06/2020	27/05/2020
TRH C ₆ -C ₁₀							< 20	70	1,200	< 20	12,000
	-	-	-	-	-			70			
TRH C ₆ -C ₁₀ less BTEX (F1)	6,000	-	-	-	-				1,200	< 20	12,000
TRH >C ₁₀ -C ₁₆	-	-	-	-	-		< 50	< 50	< 50	< 50	120
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	NL	-	-	-	-			< 50	< 50	< 50	120
TRH >C ₁₆ -C ₃₄	-	-	-	-	-		< 100	< 100	< 100	300	200
TRH >C ₃₄ -C ₄₀	-	-	-	-	-		< 100	< 100	< 100	< 100	< 100
Dearens	F 000	050	700	4			- 4	- 4	- 10	- 4	- 4
Benzene	5,000	950	700	1	-		< 1	< 1	< 10	< 1	< 1
Toluene	NL	-	-	800	-		< 1	< 1	< 10	< 1	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 1	< 10	< 1	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 2	< 20	< 2	< 2
o-Xylene	-	350	-	-	-		< 1	< 1	< 10	< 1	< 1
Xylenes - Total	NL	-	-	600	-		< 3	< 3	< 30	< 3	< 3
Naphthalene (MAH method)	NL	16	70	-	-			< 10	< 100	< 10	< 10

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

7 1120 20 10 Caladonio Valado, inclinio Vaccio, 60% oposido protection

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

HSLs - D Sand 2 to <4 m	Freshwater	Marine		RSL						
		Marine								
2 to <4 m			Drinking	Resident	Sample ID	MW103	MW104	MW106	MW107	MW108
	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
						. 22	000	. 00	. 00	. 00
	-	-	-	-						< 20
6,000	-	-	-	-						< 20
-	-	-	-	-		< 50		140	< 50	120
NL	-	-	-	-		< 50	< 50	140	< 50	120
-	-	-	-	-		400	400	600	< 100	400
-	-	-	-	-		< 100	< 100	< 100	< 100	< 100
5,000	950	700	1	-		< 1	< 5	< 1	< 1	< 1
NL	-	-	800	-		< 1	< 5	< 1	< 1	< 1
NL	-	-	300	-		< 1	< 5	< 1	1	< 1
-	-	-	-	-		< 2	< 10	< 2	< 2	< 2
-	350	-	-	-		< 1	< 5	< 1	< 1	< 1
NL	-	-	600	-		< 3	< 15	< 3	< 3	< 3
NL	16	70	-	-		< 10	< 50	< 10	< 10	< 10
	NL - - 5,000 NL NL - -	6,000	6,000 NL 5,000 950 700 NL NL NL NL NL NL NL	6,000	6,000	6,000	6,000 < 20 < 50 NL < 50 < 50 < 400 < 100 5,000 950 700 1 - < 1 NL 800 - < 1 NL 300 - < 1 NL 600 - < 3	6,000 < 20 260 < 50 < 50 NL < 50 < 50 NL 400 400 < 100 < 100 5,000 950 700 1 - < 1 < 5 NL 800 - < 1 < 5 NL 300 - < 1 < 5 NL 600 - < 35 NL 600 - < 33 < 15	6,000 <	6,000 < 20 260 < 20 < 20 < 20 < < 50

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

HSLs - D Sand 2 to <4 m - 6,000 - NL	Freshwater 95% - - -	Marine 95% - -	Drinking Water	RSL Resident Tapwater	Sample ID Date	MW109 27/05/2020	MW110 27/05/2020	MW111 27/05/2020	MW112 27/05/2020	MW113 27/05/2020
2 to <4 m - 6,000 -	95% - -	95% - -	Water -	Tapwater						
- 6,000 -	-	-	-	•	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
6,000	-	-		-						
-						< 20	< 20	50	< 20	40
	-		-	-		< 20	< 20	50	< 20	20
NL		-	-	-		< 50	< 50	50	100	< 50
	-	-	-	-		< 50	< 50	50	100	< 50
-	-	-	-	-		200	< 100	600	200	< 100
-	-	-	-	-		< 100	< 100	< 100	< 100	< 100
5,000	950	700	1	_		< 1	< 1	< 1	< 1	< 1
NL	-	-	800	-		< 1	< 1	< 1	< 1	< 1
NL	-	-	300	-		< 1	< 1	< 1	< 1	4
-	-	-	-	-		< 2	< 2	< 2	< 2	9
-	350	-	-	-		< 1	< 1	< 1	< 1	4
NL	-	-	600	-		< 3	< 3	< 3	< 3	13
NL	16	70	-	-		< 10	< 10	< 10	< 10	< 10
	- 5,000 NL NL - - NL						< 100 5,000 950 700 1 - < 1 NL 800 - < 1 NL 300 - < 1 < 2 - 350 < 1 NL 600 - < 3	< 100 < 100 5,000 950 700 1 - < 1 < 1 NL 800 - < 1 < 1 NL 300 - < 1 < 1 < 2 < 2 - 350 < 1 NL 600 - < 3 < 3	< 100 < 100 < 100 5,000 950 700 1 - < 1 < 1 < 1 NL 800 - < 1 < 1 < 1 NL 300 - < 1 < 1 < 1 < 2 < 2 < 2 - 350 < 1 < 1 NL 600 - < 3 < 3 < 3	< 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW114	MW115	MW116	MW117	MW118
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
TDU O O							. 00	1.00	1.00	1.00	1.00
TRH C ₆ -C ₁₀	-	-	-	-	-		< 20	< 20	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	6,000	-	-	-	-		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	-	-	-	-		< 50	< 50	90	< 50	< 50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	NL	-	-	-	-		< 50	< 50	90	< 50	< 50
TRH >C ₁₆ -C ₃₄	-	-	-	-	-		< 100	< 100	500	< 100	300
TRH >C ₃₄ -C ₄₀	-	-	-	-	-		< 100	< 100	< 100	< 100	< 100
_											
Benzene	5,000	950	700	1	-		< 1	< 1	< 1	< 1	< 1
Toluene	NL	-	-	800	-		< 1	< 1	< 1	< 1	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 1	< 1	1	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 2	< 2	< 2	< 2
o-Xylene	-	350	-	-	-		< 1	< 1	< 1	< 1	< 1
Xylenes - Total	NL	-	-	600	-		< 3	< 3	< 3	< 3	< 3
Naphthalene (MAH method)	NL	16	70	-	-		< 10	< 10	< 10	< 10	< 10

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW119	MW120	MW121	MW201	MW202
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	29/05/2020	28/05/2020
TRH C ₆ -C ₁₀			-				< 20	< 20	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	6,000	-		-	-		< 20	< 20	< 20	< 20	< 20
TRH >C ₁₀ -C ₁₆	-		_				< 50	520	< 50	60	< 50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	NL	_	_	_	_		< 50	520	< 50	60	< 50
TRH >C ₁₆ -C ₃₄	-	-	-	-	_		< 100	1,200	200	< 100	< 100
TRH >C ₃₄ -C ₄₀	-	-	-	-	-		< 100	< 100	< 100	< 100	< 100
Benzene	5,000	950	700	1	-		< 1	< 1	< 1	< 1	< 1
Toluene	NL	-	-	800	-		< 1	< 1	< 1	< 1	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 1	< 1	< 1	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 2	< 2	< 2	< 2
o-Xylene	-	350	-	-	-		< 1	< 1	< 1	< 1	< 1
Xylenes - Total	NL	-	-	600	-		< 3	< 3	< 3	< 3	< 3
Naphthalene (MAH method)	NL	16	70	-	-		< 10	< 10	< 10	< 10	< 10

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</p>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW203	D1	RPD_D1	T1	RPD_T1
	2 to <4 m	95%	95%	Water	Tapwater	Date	29/05/2020	29/05/2020	-	29/05/2020	-
TRH C ₆ -C ₁₀	-	-	-	-	-		< 20	< 20	nc	< 20	nc
TRH C ₆ -C ₁₀ less BTEX (F1)	6,000	-	-	-	-		< 20	< 20	nc	< 20	nc
TRH >C ₁₀ -C ₁₆	-	-	-	-	-		< 50	80	nc	< 50	nc
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	NL	-	-	-	-		< 50	80	nc	< 50	nc
TRH >C ₁₆ -C ₃₄	-	-	-	-	-		< 100	< 100	nc	< 100	nc
TRH >C ₃₄ -C ₄₀	-	-	-	-	-		< 100	< 100	nc	< 100	nc
Benzene	5,000	950	700	1	-		< 1	< 1	nc	< 1	nc
Toluene	NL	-	-	800	-		< 1	< 1	nc	< 1	nc
Ethylbenzene	NL	-	-	300	-		< 1	< 1	nc	< 1	nc
m&p-Xylenes	-	-	-	-	-		< 2	< 2	nc	< 2	nc
o-Xylene	-	350	-	-	-		< 1	< 1	nc	< 1	nc
Xylenes - Total	NL	-	-	600	-		< 3	< 3	nc	< 3	nc
Naphthalene (MAH method)	NL	16	70	-	-		< 10	< 10	nc	< 10	nc

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW204	MW205	D2	RPD_D2	T2
	2 to <4 m	95%	95%	Water	Tapwater	Date	29/05/2020	29/05/2020	29/05/2020	-	29/05/2020
TRH C ₆ -C ₁₀	-	-	-	_	-		< 20	< 20	< 20	nc	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	6,000	-	-	_	_		< 20	< 20	< 20	nc	< 20
TRH >C10-C16	-	-	-	-	-		< 50	< 50	< 50	nc	< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	-	-	-		< 50	< 50	< 50	nc	< 50
TRH >C ₁₆ -C ₃₄	-	-	-	-	-		< 100	< 100	< 100	nc	< 100
TRH >C ₃₄ -C ₄₀	-	-	-	-	-		< 100	< 100	< 100	nc	< 100
Benzene	5,000	950	700	1	-		< 1	1	1	0%	2
Toluene	NL	-	-	800	-		< 1	< 1	< 1	nc	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 1	< 1	nc	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 2	< 2	nc	< 2
o-Xylene	-	350	-	-	-		< 1	< 1	< 1	nc	< 1
Xylenes - Total	NL	-	-	600	-		< 3	< 3	< 3	nc	< 3
Naphthalene (MAH method)	NL	16	70	-	-		< 10	< 10	< 10	nc	< 10

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	RPD_T2	VP6/0.5-0.6	VP10/0.3-0.4	VP16/0.3-0.5	R1
	2 to <4 m	95%	95%	Water	Tapwater	Date	-	26/05/2020	26/05/2020	26/05/2020	27/05/2020
TRH C ₆ -C ₁₀	-						пс	< 20,000	< 20,000	< 20,000	
TRH C ₆ -C ₁₀ less BTEX (F1)	6,000	-	-	-	-		nc	< 20,000	< 20,000	< 20,000	
TRH >C ₁₀ -C ₁₆	-	-	-	-	-		nc	< 50,000	< 50,000	< 50,000	
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	NL	-	-	-	-		nc	< 50,000	< 50,000	< 50,000	
TRH >C ₁₆ -C ₃₄	-	-	-	-	-		nc	< 100,000	< 100,000	< 100,000	
TRH >C ₃₄ -C ₄₀	-	-	-	-	-		nc	< 100,000	< 100,000	< 100,000	
Benzene	5,000	950	700	1	_		67%	< 100	< 100	< 100	< 1
Toluene	NL	-	-	800	-		nc	< 100	< 100	< 100	< 1
Ethylbenzene	NL	-	-	300	-		nc	< 100	< 100	< 100	< 1
m&p-Xylenes	-	-	-	-	-		nc	< 200	< 200	< 200	< 2
o-Xylene	-	350	-	-	-		nc	< 100	< 100	< 100	< 1
Xylenes - Total	NL	-	-	600	-		nc	< 300	< 300	< 300	< 3
Naphthalene (MAH method)	NL	16	70	-	-		nc	< 500	< 500	< 500	

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0). Total concentrations in µg/L

Total concentrations in pg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5			
	HSLs - D				RSL			
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	R2	GW01-
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	9/06/2020
TRH C ₆ -C ₁₀	-	-	-	-	-			
TRH C ₆ -C ₁₀ less BTEX (F1)	6,000	-	-	-	-			
TRH >C ₁₀ -C ₁₆	-	-	-	-	-			
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	NL	-	-	-	-			
TRH >C ₁₆ -C ₃₄	-	-	-	-	-			
TRH >C ₃₄ -C ₄₀	-	-	-	-	-			
Benzene	5,000	950	700	1	-		< 1	
Toluene	NL	-	-	800	-		< 1	
Ethylbenzene	NL	-	-	300	-		< 1	
m&p-Xylenes	-	-	-	-	-		< 2	
o-Xylene	-	350	-	-	-		< 1	
Xylenes - Total	NL	-	-	600	-		< 3	
Naphthalene (MAH method)	NL	16	70	-	-			

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0). Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	GW01	GW02	GW04	MW101	MW102
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	9/06/2020	27/05/2020
1.1-Dichloroethane	-	-	-	-	-		< 1	< 1	480	< 1	3
1.1-Dichloroethene	-	700	-	30	-		< 1	< 1	130	< 1	31
1.1.1-Trichloroethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
1.1.1.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
1.1.2-Trichloroethane	-	6,500	1,900	-	-		< 1	< 1	< 10	< 1	110
1.1.2.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
1.2-Dibromoethane	-	-	-	1	-		< 1	< 1	< 10	< 1	< 1
1.2-Dichlorobenzene	-	160	-	1,500	-		< 1	< 1	< 10	< 1	< 1
1.2-Dichloroethane	-	-	-	3	-		< 1	< 1	< 10	< 1	2
1.2-Dichloroethene (Total)	-	-	-	60	-		ND	ND	542	ND	4,750
1.2-Dichloropropane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
1.2.3-Trichloropropane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
1.2.4-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
1.3-Dichlorobenzene	-	260	-	-	-		< 1	< 1	< 10	< 1	< 1
1.3-Dichloropropane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
1.3.5-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
1.4-Dichlorobenzene	-	60	-	40	-		< 1	< 1	< 10	< 1	< 1
2-Butanone (MEK)	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
2-Propanone (Acetone)	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	GW01	GW02	GW04	MW101	MW102
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	9/06/2020	27/05/2020
4-Chlorotoluene	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
4-Methyl-2-pentanone (MIBK)	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Allyl chloride	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Benzene	5,000	950	700	1	-		< 1	< 1	< 10	< 1	< 1
Bromobenzene	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Bromochloromethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Bromodichloromethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Bromoform	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Bromomethane	-	-	-	1	-		< 1	< 1	< 10	< 1	< 1
Carbon disulfide	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Carbon tetrachloride	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Chlorobenzene	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Chloroethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Chloroform	-	-	-	-	-		< 5	< 5	< 50	< 5	< 5
Chloromethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
cis-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	530	< 1	4,600
cis-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Dibromochloromethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Dibromomethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1

Notes:

 $\label{eq:criteria} \textit{1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m.}$

Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	GW01	GW02	GW04	MW101	MW102
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	9/06/2020	27/05/2020
Dichlorodifluoromethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 1	< 10	< 1	< 1
lodomethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Isopropyl benzene (Cumene)	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 2	< 20	< 2	< 2
Methylene chloride	-	-	-	4	-		< 1	< 1	< 100	< 1	< 1
o-Xylene	-	350	-	-	-		< 1	< 1	< 10	< 1	< 1
Styrene	-	-	-	30	-		< 1	< 1	< 10	< 1	< 1
Tetrachloroethene	-	-	-	50	-		< 1	< 1	< 10	< 1	2
Toluene	NL	-	-	800	-		< 1	< 1	< 10	< 1	< 1
trans-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	12	< 1	150
trans-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Trichloroethene	-	330	-	-	2.8		< 1	< 1	240	< 1	8,500
Trichlorofluoromethane	-	-	-	-	-		< 1	< 1	< 10	< 1	< 1
Vinyl chloride	-	100	-	0.3	-		< 1	< 1	340	< 1	72
Xylenes - Total	NL	-	-	600	-		< 3	< 3	< 30	< 3	< 3

Notes:

 $\label{eq:criteria} \textit{1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m.}$

Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW103	MW104	MW106	MW107	MW108
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
1.1-Dichloroethane	-	-	-	-	-		< 1	31	< 1	< 1	< 1
1.1-Dichloroethene	-	700	-	30	-		< 1	26	< 1	< 1	< 1
1.1.1-Trichloroethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
1.1.1.2-Tetrachloroethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
1.1.2-Trichloroethane	-	6,500	1,900	-	-		< 1	< 5	< 1	< 1	< 1
1.1.2.2-Tetrachloroethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
1.2-Dibromoethane	-	-	-	1	-		< 1	< 5	< 1	< 1	< 1
1.2-Dichlorobenzene	-	160	-	1,500	-		< 1	< 5	< 1	< 1	< 1
1.2-Dichloroethane	-	-	-	3	-		< 1	< 5	< 1	< 1	< 1
1.2-Dichloroethene (Total)	-	-	-	60	-		ND	170	ND	ND	ND
1.2-Dichloropropane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
1.2.3-Trichloropropane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
1.2.4-Trimethylbenzene	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
1.3-Dichlorobenzene	-	260	-	-	-		< 1	< 5	< 1	< 1	< 1
1.3-Dichloropropane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
1.3.5-Trimethylbenzene	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
1.4-Dichlorobenzene	-	60	-	40	-		< 1	< 5	< 1	< 1	< 1
2-Butanone (MEK)	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
2-Propanone (Acetone)	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1

Notes:

 $\label{eq:criteria} \textit{1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m.}$

Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW103	MW104	MW106	MW107	MW108
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
4-Chlorotoluene	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
4-Methyl-2-pentanone (MIBK)	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Allyl chloride	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Benzene	5,000	950	700	1	-		< 1	< 5	< 1	< 1	< 1
Bromobenzene	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Bromochloromethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Bromodichloromethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Bromoform	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Bromomethane	-	-	-	1	-		< 1	< 5	< 1	< 1	< 1
Carbon disulfide	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Carbon tetrachloride	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Chlorobenzene	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Chloroethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Chloroform	-	-	-	-	-		< 5	< 25	< 5	< 5	< 5
Chloromethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
cis-1.2-Dichloroethene	-	-	-	-	-		< 1	170	< 1	< 1	< 1
cis-1.3-Dichloropropene	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Dibromochloromethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Dibromomethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW103	MW104	MW106	MW107	MW108
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Dichlorodifluoromethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 5	< 1	1	< 1
Iodomethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Isopropyl benzene (Cumene)	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 10	< 2	< 2	< 2
Methylene chloride	-	-	-	4	-		< 1	< 50	< 1	< 1	< 1
o-Xylene	-	350	-	-	-		< 1	< 5	< 1	< 1	< 1
Styrene	-	-	-	30	-		< 1	< 5	< 1	< 1	< 1
Tetrachloroethene	-	-	-	50	-		< 1	< 5	< 1	< 1	< 1
Toluene	NL	-	-	800	-		< 1	< 5	< 1	< 1	< 1
trans-1.2-Dichloroethene	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
trans-1.3-Dichloropropene	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Trichloroethene	-	330	-	-	2.8		< 1	< 5	< 1	< 1	< 1
Trichlorofluoromethane	-	-	-	-	-		< 1	< 5	< 1	< 1	< 1
Vinyl chloride	-	100	-	0.3	-		< 1	29	< 1	< 1	< 1
Xylenes - Total	NL	-	-	600	-		< 3	< 15	< 3	< 3	< 3

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW109	MW110	MW111	MW112	MW113
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
1.1-Dichloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.1-Dichloroethene	-	700	-	30	-		< 1	< 1	< 1	< 1	< 1
1.1.1-Trichloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.1.1.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.1.2-Trichloroethane	-	6,500	1,900	-	-		< 1	< 1	< 1	< 1	< 1
1.1.2.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.2-Dibromoethane	-	-	-	1	-		< 1	< 1	< 1	< 1	< 1
1.2-Dichlorobenzene	-	160	-	1,500	-		< 1	< 1	< 1	< 1	< 1
1.2-Dichloroethane	-	-	-	3	-		< 1	< 1	< 1	< 1	< 1
1.2-Dichloroethene (Total)	-	-	-	60	-		ND	ND	27.	ND	ND
1.2-Dichloropropane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.2.3-Trichloropropane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.2.4-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.3-Dichlorobenzene	-	260	-	-	-		< 1	< 1	< 1	< 1	< 1
1.3-Dichloropropane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.3.5-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.4-Dichlorobenzene	-	60	-	40	-		< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
2-Propanone (Acetone)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW109	MW110	MW111	MW112	MW113
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
4-Chlorotoluene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
4-Methyl-2-pentanone (MIBK)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Allyl chloride	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Benzene	5,000	950	700	1	-		< 1	< 1	< 1	< 1	< 1
Bromobenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromochloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromoform	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromomethane	-	-	-	1	-		< 1	< 1	< 1	< 1	< 1
Carbon disulfide	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Chlorobenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Chloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Chloroform	-	-	-	-	-		< 5	< 5	< 5	< 5	< 5
Chloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
cis-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	25	< 1	< 1
cis-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Dibromomethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1

Notes:

 $\label{eq:criteria} \textit{1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m.}$

Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2 Freshwater 95%	Criteria 3 Marine 95%	Criteria 4 Drinking Water	Criteria 5 RSL Resident Tapwater	Sample ID Date	MW109 27/05/2020	MW110 27/05/2020	MW111 27/05/2020	MW112 27/05/2020	MW113 27/05/2020
	HSLs - D										
	Sand										
	2 to <4 m										
Dichlorodifluoromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 1	< 1	< 1	4
Iodomethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Isopropyl benzene (Cumene)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 2	< 2	< 2	9
Methylene chloride	-	-	-	4	-		< 1	< 1	< 1	< 1	< 1
o-Xylene	-	350	-	-	-		< 1	< 1	< 1	< 1	4
Styrene	-	-	-	30	-		< 1	< 1	< 1	< 1	< 1
Tetrachloroethene	-	-	-	50	-		< 1	< 1	< 1	< 1	< 1
Toluene	NL	-	-	800	-		< 1	< 1	< 1	< 1	< 1
trans-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	2	< 1	< 1
trans-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Trichloroethene	-	330	-	-	2.8		< 1	< 1	13	< 1	< 1
Trichlorofluoromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Vinyl chloride	-	100	-	0.3	-		< 1	< 1	< 1	< 1	< 1
Xylenes - Total	NL	-	-	600	-		< 3	< 3	< 3	< 3	13

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1 HSLs - D Sand 2 to <4 m	Criteria 2 Freshwater 95%	Criteria 3 Marine 95%	Criteria 4 Drinking Water	Criteria 5 RSL Resident Tapwater	Sample ID Date	MW114 27/05/2020	MW115 27/05/2020	MW116 27/05/2020	MW117 27/05/2020	MW118 27/05/2020
1.1-Dichloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.1-Dichloroethene	-	700	-	30	-		< 1	< 1	< 1	< 1	< 1
1.1.1-Trichloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.1.1.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.1.2-Trichloroethane	-	6,500	1,900	-	-		< 1	< 1	< 1	< 1	< 1
1.1.2.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.2-Dibromoethane	-	-	-	1	-		< 1	< 1	< 1	< 1	< 1
1.2-Dichlorobenzene	-	160	-	1,500	-		< 1	< 1	< 1	< 1	< 1
1.2-Dichloroethane	-	-	-	3	-		< 1	< 1	< 1	< 1	< 1
1.2-Dichloroethene (Total)	-	-	-	60	-		ND	ND	ND	ND	ND
1.2-Dichloropropane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.2.3-Trichloropropane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.2.4-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.3-Dichlorobenzene	-	260	-	-	-		< 1	< 1	< 1	< 1	< 1
1.3-Dichloropropane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.3.5-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.4-Dichlorobenzene	-	60	-	40	-		< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
2-Propanone (Acetone)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW114	MW115	MW116	MW117	MW118
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
4-Chlorotoluene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
4-Methyl-2-pentanone (MIBK)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Allyl chloride	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Benzene	5,000	950	700	1	-		< 1	< 1	< 1	< 1	< 1
Bromobenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromochloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromoform	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromomethane	-	-	-	1	-		< 1	< 1	< 1	< 1	< 1
Carbon disulfide	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Chlorobenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Chloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Chloroform	-	-	-	-	-		< 5	< 5	< 5	< 5	< 5
Chloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
cis-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
cis-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Dibromomethane	_	-	-	-	-		< 1	< 1	< 1	< 1	< 1

Notes:

 $\label{eq:criteria} \textit{1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m.}$

Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW114	MW115	MW116	MW117	MW118
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Dichlorodifluoromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 1	< 1	1	< 1
Iodomethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Isopropyl benzene (Cumene)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 2	< 2	< 2	< 2
Methylene chloride	-	-	-	4	-		< 1	< 1	< 1	< 1	< 1
o-Xylene	-	350	-	-	-		< 1	< 1	< 1	< 1	< 1
Styrene	-	-	-	30	-		< 1	< 1	< 1	< 1	< 1
Tetrachloroethene	-	-	-	50	-		< 1	< 1	< 1	< 1	< 1
Toluene	NL	-	-	800	-		< 1	< 1	< 1	< 1	< 1
trans-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
trans-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Trichloroethene	-	330	-	-	2.8		< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Vinyl chloride	-	100	-	0.3	-		< 1	< 1	< 1	< 1	< 1
Xylenes - Total	NL	-	-	600	-		< 3	< 3	< 3	< 3	< 3

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</p>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW119	MW120	MW121	MW201	MW202
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	29/05/2020	28/05/2020
1.1-Dichloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.1-Dichloroethene	-	700	-	30	-		< 1	< 1	< 1	< 1	< 1
1.1.1-Trichloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.1.1.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.1.2-Trichloroethane	-	6,500	1,900	-	-		< 1	< 1	< 1	< 1	< 1
1.1.2.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.2-Dibromoethane	-	-	-	1	-		< 1	< 1	< 1	< 1	< 1
1.2-Dichlorobenzene	-	160	-	1,500	-		< 1	< 1	< 1	< 1	< 1
1.2-Dichloroethane	-	-	-	3	-		< 1	< 1	< 1	< 1	< 1
1.2-Dichloroethene (Total)	-	-	-	60	-		ND	ND	ND	ND	ND
1.2-Dichloropropane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.2.3-Trichloropropane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.2.4-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.3-Dichlorobenzene	-	260	-	-	-		< 1	< 1	< 1	< 1	< 1
1.3-Dichloropropane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.3.5-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
1.4-Dichlorobenzene	-	60	-	40	-		< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
2-Propanone (Acetone)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW119	MW120	MW121	MW201	MW202
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	29/05/2020	28/05/2020
4-Chlorotoluene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
4-Methyl-2-pentanone (MIBK)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Allyl chloride	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Benzene	5,000	950	700	1	-		< 1	< 1	< 1	< 1	< 1
Bromobenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromochloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromoform	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Bromomethane	-	-	-	1	-		< 1	< 1	< 1	< 1	< 1
Carbon disulfide	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Chlorobenzene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Chloroethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Chloroform	-	-	-	-	-		< 5	< 5	< 5	< 5	< 5
Chloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
cis-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
cis-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Dibromomethane	-	-	-	_	_		< 1	< 1	< 1	< 1	< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW119	MW120	MW121	MW201	MW202
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	27/05/2020	27/05/2020	29/05/2020	28/05/2020
Dichlorodifluoromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 1	< 1	< 1	< 1
Iodomethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Isopropyl benzene (Cumene)	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 2	< 2	< 2	< 2
Methylene chloride	-	-	-	4	-		< 1	< 1	< 1	< 1	< 1
o-Xylene	-	350	-	-	-		< 1	< 1	< 1	< 1	< 1
Styrene	-	-	-	30	-		< 1	< 1	< 1	< 1	< 1
Tetrachloroethene	-	-	-	50	-		< 1	< 1	< 1	< 1	< 1
Toluene	NL	-	-	800	-		< 1	< 1	< 1	< 1	< 1
trans-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
trans-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Trichloroethene	-	330	-	-	2.8		< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	-	-	-	-	-		< 1	< 1	< 1	< 1	< 1
Vinyl chloride	-	100	-	0.3	-		< 1	< 1	< 1	< 1	< 1
Xylenes - Total	NL	-	-	600	-		< 3	< 3	< 3	< 3	< 3

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0). Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW203	D1	RPD_D1	T1	RPD_T1
	2 to <4 m	95%	95%	Water	Tapwater	Date	29/05/2020	29/05/2020	-	29/05/2020	-
1.1-Dichloroethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
1.1-Dichloroethene	-	700	-	30	-		< 1	< 1	nc	< 1	nc
1.1.1-Trichloroethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
1.1.1.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
1.1.2-Trichloroethane	-	6,500	1,900	-	-		< 1	< 1	nc	< 1	nc
1.1.2.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
1.2-Dibromoethane	-	-	-	1	-		< 1	< 1	nc	< 1	nc
1.2-Dichlorobenzene	-	160	-	1,500	-		< 1	< 1	nc	< 1	nc
1.2-Dichloroethane	-	-	-	3	-		< 1	< 1	nc	< 1	nc
1.2-Dichloroethene (Total)	-	-	-	60	-		ND	ND	nc	ND	nc
1.2-Dichloropropane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
1.2.3-Trichloropropane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
1.2.4-Trimethylbenzene	-	-	-	-	-		< 1	< 1	nc	< 1	nc
1.3-Dichlorobenzene	-	260	-	-	-		< 1	< 1	nc	< 1	nc
1.3-Dichloropropane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
1.3.5-Trimethylbenzene	-	-	-	-	-		< 1	< 1	nc	< 1	nc
1.4-Dichlorobenzene	-	60	-	40	-		< 1	< 1	nc	< 1	nc
2-Butanone (MEK)	-	-	-	-	-		< 1	< 1	nc	< 1	nc
2-Propanone (Acetone)	-	-	-	-	-		< 1	< 1	nc	< 1	nc

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW203	D1	RPD_D1	T1	RPD_T1
	2 to <4 m	95%	95%	Water	Tapwater	Date	29/05/2020	29/05/2020	-	29/05/2020	-
4-Chlorotoluene	_	-	-	-	-		< 1	< 1	nc	< 1	nc
4-Methyl-2-pentanone (MIBK)	-	-	_	-	_		< 1	< 1	nc	< 1	пс
Allyl chloride	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Benzene	5,000	950	700	1	-		< 1	< 1	nc	< 1	nc
Bromobenzene	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Bromochloromethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Bromodichloromethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Bromoform	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Bromomethane	-	-	-	1	-		< 1	< 1	nc	< 1	nc
Carbon disulfide	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Carbon tetrachloride	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Chlorobenzene	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Chloroethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Chloroform	-	-	-	-	-		< 5	< 5	nc	< 5	nc
Chloromethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
cis-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	nc	< 1	nc
cis-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Dibromochloromethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Dibromomethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW203	D1	RPD_D1	T1	RPD_T1
	2 to <4 m	95%	95%	Water	Tapwater	Date	29/05/2020	29/05/2020	-	29/05/2020	-
Dichlorodifluoromethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Ethylbenzene	NL	-	-	300	-		< 1	< 1	nc	< 1	пс
Iodomethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Isopropyl benzene (Cumene)	-	-	-	-	-		< 1	< 1	nc	< 1	nc
m&p-Xylenes	-	-	-	-	-		< 2	< 2	nc	< 2	nc
Methylene chloride	-	-	-	4	-		< 1	< 1	nc	< 1	nc
o-Xylene	-	350	-	-	-		< 1	< 1	nc	< 1	nc
Styrene	-	-	-	30	-		< 1	< 1	nc	< 1	nc
Tetrachloroethene	-	-	-	50	-		< 1	< 1	nc	< 1	nc
Toluene	NL	-	-	800	-		< 1	< 1	nc	< 1	nc
trans-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	nc	< 1	nc
trans-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Trichloroethene	-	330	-	-	2.8		< 1	< 1	nc	< 1	nc
Trichlorofluoromethane	-	-	-	-	-		< 1	< 1	nc	< 1	nc
Vinyl chloride	-	100	-	0.3	-		< 1	< 1	nc	< 1	nc
Xylenes - Total	NL	-	-	600	-		< 3	< 3	nc	< 3	nc

Notes:

 $\label{eq:criteria} \textit{1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m.}$

Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW204	MW205	D2	RPD_D2	T2
	2 to <4 m	95%	95%	Water	Tapwater	Date	29/05/2020	29/05/2020	29/05/2020	-	29/05/2020
1.1-Dichloroethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
1.1-Dichloroethene	-	700	-	30	-		< 1	< 1	< 1	nc	< 1
1.1.1-Trichloroethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
1.1.1.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
1.1.2-Trichloroethane	-	6,500	1,900	-	-		< 1	< 1	< 1	nc	< 1
1.1.2.2-Tetrachloroethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
1.2-Dibromoethane	-	-	-	1	-		< 1	< 1	< 1	nc	< 1
1.2-Dichlorobenzene	-	160	-	1,500	-		< 1	< 1	< 1	nc	< 1
1.2-Dichloroethane	-	-	-	3	-		< 1	< 1	< 1	nc	< 1
1.2-Dichloroethene (Total)	-	-	-	60	-		ND	ND	ND	nc	ND
1.2-Dichloropropane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
1.2.3-Trichloropropane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
1.2.4-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
1.3-Dichlorobenzene	-	260	-	-	-		< 1	< 1	< 1	nc	< 1
1.3-Dichloropropane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
1.3.5-Trimethylbenzene	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
1.4-Dichlorobenzene	-	60	-	40	-		< 1	< 1	< 1	nc	< 1
2-Butanone (MEK)	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
2-Propanone (Acetone)	-	-	-	-	-		< 1	< 1	< 1	пс	< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW204	MW205	D2	RPD_D2	T2
	2 to <4 m	95%	95%	Water	Tapwater	Date	29/05/2020	29/05/2020	29/05/2020	-	29/05/2020
4-Chlorotoluene	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
4-Methyl-2-pentanone (MIBK)	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Allyl chloride	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Benzene	5,000	950	700	1	-		< 1	1	1	0%	2
Bromobenzene	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Bromochloromethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Bromodichloromethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Bromoform	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Bromomethane	-	-	-	1	-		< 1	< 1	< 1	nc	< 1
Carbon disulfide	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Carbon tetrachloride	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Chlorobenzene	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Chloroethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Chloroform	-	-	-	-	-		< 5	< 5	< 5	nc	< 5
Chloromethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
cis-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
cis-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Dibromochloromethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Dibromomethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	MW204	MW205	D2	RPD_D2	T2
	2 to <4 m	95%	95%	Water	Tapwater	Date	29/05/2020	29/05/2020	29/05/2020	-	29/05/2020
Dichlorodifluoromethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Ethylbenzene	NL	-	-	300	-		< 1	< 1	< 1	nc	< 1
Iodomethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Isopropyl benzene (Cumene)	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
m&p-Xylenes	-	-	-	-	-		< 2	< 2	< 2	nc	< 2
Methylene chloride	-	-	-	4	-		< 1	< 1	< 1	nc	< 1
o-Xylene	-	350	-	-	-		< 1	< 1	< 1	nc	< 1
Styrene	-	-	-	30	-		< 1	< 1	< 1	nc	< 1
Tetrachloroethene	-	-	-	50	-		< 1	< 1	< 1	nc	< 1
Toluene	NL	-	-	800	-		< 1	< 1	< 1	nc	< 1
trans-1.2-Dichloroethene	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
trans-1.3-Dichloropropene	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Trichloroethene	-	330	-	-	2.8		< 1	< 1	< 1	nc	< 1
Trichlorofluoromethane	-	-	-	-	-		< 1	< 1	< 1	nc	< 1
Vinyl chloride	-	100	-	0.3	-		< 1	< 1	< 1	nc	< 1
Xylenes - Total	NL	-	-	600	-		< 3	< 3	< 3	nc	< 3

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	RPD_T2	VP6/0.5-0.6	VP10/0.3-0.4	VP16/0.3-0.5	R1
	2 to <4 m	95%	95%	Water	Tapwater	Date	-	26/05/2020	26/05/2020	26/05/2020	27/05/2020
1.1-Dichloroethane	-	-	-	-	-		nc				< 1
1.1-Dichloroethene	-	700	-	30	-		nc				< 1
1.1.1-Trichloroethane	-	-	-	-	-		nc				< 1
1.1.1.2-Tetrachloroethane	-	-	-	-	-		nc				< 1
1.1.2-Trichloroethane	-	6,500	1,900	-	-		nc				< 1
1.1.2.2-Tetrachloroethane	-	-	-	-	-		nc				< 1
1.2-Dibromoethane	-	-	-	1	-		nc				< 1
1.2-Dichlorobenzene	-	160	-	1,500	-		nc				< 1
1.2-Dichloroethane	-	-	-	3	-		nc				< 1
1.2-Dichloroethene (Total)	-	-	-	60	-		nc				ND
1.2-Dichloropropane	-	-	-	-	-		nc				< 1
1.2.3-Trichloropropane	-	-	-	-	-		nc				< 1
1.2.4-Trimethylbenzene	-	-	-	-	-		nc				< 1
1.3-Dichlorobenzene	-	260	-	-	-		nc				< 1
1.3-Dichloropropane	-	-	-	-	-		nc				< 1
1.3.5-Trimethylbenzene	-	-	-	-	-		nc				< 1
1.4-Dichlorobenzene	-	60	-	40	-		nc				< 1
2-Butanone (MEK)	-	-	-	-	-		nc				< 1
2-Propanone (Acetone)	-	-	-	-	-		nc				< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	RPD_T2	VP6/0.5-0.6	VP10/0.3-0.4	VP16/0.3-0.5	R1
	2 to <4 m	95%	95%	Water	Tapwater	Date	-	26/05/2020	26/05/2020	26/05/2020	27/05/2020
4-Chlorotoluene	-	-	-	-	-		nc				< 1
4-Methyl-2-pentanone (MIBK)	-	-	-	-	-		nc				< 1
Allyl chloride	-	-	-	-	-		nc				< 1
Benzene	5,000	950	700	1	-		67%	< 100	< 100	< 100	< 1
Bromobenzene	-	-	-	-	-		nc				< 1
Bromochloromethane	-	-	-	-	-		nc				< 1
Bromodichloromethane	-	-	-	-	-		nc				< 1
Bromoform	-	-	-	-	-		nc				< 1
Bromomethane	-	-	-	1	-		nc				< 1
Carbon disulfide	-	-	-	-	-		nc				< 1
Carbon tetrachloride	-	-	-	-	-		nc				< 1
Chlorobenzene	-	-	-	-	-		nc				< 1
Chloroethane	-	-	-	-	-		nc				< 1
Chloroform	-	-	-	-	-		nc				< 5
Chloromethane	-	-	-	-	-		nc				< 1
cis-1.2-Dichloroethene	-	-	-	-	-		nc				< 1
cis-1.3-Dichloropropene	-	-	-	-	-		nc				< 1
Dibromochloromethane	-	-	-	-	-		nc				< 1
Dibromomethane	-	-	-	-	-		nc				< 1

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5						
	HSLs - D				RSL						
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	RPD_T2	VP6/0.5-0.6	VP10/0.3-0.4	VP16/0.3-0.5	R1
	2 to <4 m	95%	95%	Water	Tapwater	Date	-	26/05/2020	26/05/2020	26/05/2020	27/05/2020
Dichlorodifluoromethane	-	-	-	-	-		nc				< 1
Ethylbenzene	NL	-	-	300	-		nc	< 100	< 100	< 100	< 1
Iodomethane	-	-	-	-	-		nc				< 1
Isopropyl benzene (Cumene)	-	-	-	-	-		nc				< 1
m&p-Xylenes	-	-	-	-	-		nc	< 200	< 200	< 200	< 2
Methylene chloride	-	-	-	4	-		nc				< 1
o-Xylene	-	350	-	-	-		nc	< 100	< 100	< 100	< 1
Styrene	-	-	-	30	-		nc				< 1
Tetrachloroethene	-	-	-	50	-		nc				< 1
Toluene	NL	-	-	800	-		nc	< 100	< 100	< 100	< 1
trans-1.2-Dichloroethene	-	-	-	-	-		nc				< 1
trans-1.3-Dichloropropene	-	-	-	-	-		nc				< 1
Trichloroethene	-	330	-	-	2.8		nc				< 1
Trichlorofluoromethane	-	-	-	-	-		nc				< 1
Vinyl chloride	-	100	-	0.3	-		nc				< 1
Xylenes - Total	NL	-	-	600	-		nc	< 300	< 300	< 300	< 3

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5			
	HSLs - D				RSL			
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	R2	GW01-
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	9/06/2020
1.1-Dichloroethane	-	-	-	-	-		< 1	
1.1-Dichloroethene	-	700	-	30	-		< 1	
1.1.1-Trichloroethane	-	-	-	-	-		< 1	
1.1.1.2-Tetrachloroethane	-	-	-	-	-		< 1	
1.1.2-Trichloroethane	-	6,500	1,900	-	-		< 1	
1.1.2.2-Tetrachloroethane	-	-	-	-	-		< 1	
1.2-Dibromoethane	-	-	-	1	-		< 1	
1.2-Dichlorobenzene	-	160	-	1,500	-		< 1	
1.2-Dichloroethane	-	-	-	3	-		< 1	
1.2-Dichloroethene (Total)	-	-	-	60	-		ND	
1.2-Dichloropropane	-	-	-	-	-		< 1	
1.2.3-Trichloropropane	-	-	-	-	-		< 1	
1.2.4-Trimethylbenzene	-	-	-	-	-		< 1	
1.3-Dichlorobenzene	-	260	-	-	-		< 1	
1.3-Dichloropropane	-	-	-	-	-		< 1	
1.3.5-Trimethylbenzene	-	-	-	-	-		< 1	
1.4-Dichlorobenzene	-	60	-	40	-		< 1	
2-Butanone (MEK)	-	-	-	-	-		< 1	
2-Propanone (Acetone)	-	-	-	-	-		< 1	

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5			
	HSLs - D				RSL			
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	R2	GW01-
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	9/06/2020
4-Chlorotoluene	-	-	-	-	-		< 1	
4-Methyl-2-pentanone (MIBK)	-	-	-	-	-		< 1	
Allyl chloride	-	-	-	-	-		< 1	
Benzene	5,000	950	700	1	-		< 1	
Bromobenzene	-	-	-	-	-		< 1	
Bromochloromethane	-	-	-	-	-		< 1	
Bromodichloromethane	-	-	-	-	-		< 1	
Bromoform	-	-	-	-	-		< 1	
Bromomethane	-	-	-	1	-		< 1	
Carbon disulfide	-	-	-	-	-		< 1	
Carbon tetrachloride	-	-	-	-	-		< 1	
Chlorobenzene	-	-	-	-	-		< 1	
Chloroethane	-	-	-	-	-		< 1	
Chloroform	-	-	-	-	-		< 5	
Chloromethane	-	-	-	-	-		< 1	
cis-1.2-Dichloroethene	-	-	-	-	-		< 1	
cis-1.3-Dichloropropene	-	-	-	-	-		< 1	
Dibromochloromethane	-	-	-	-	-		< 1	
Dibromomethane	-	-	-	-	-		< 1	

Notes:

 $\label{eq:criteria} \textit{1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m.}$

Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205

T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Groundwater Monitoring Event

Project No.: 2001029

11-13 Percy Street Auburn NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5			
	HSLs - D				RSL			
	Sand	Freshwater	Marine	Drinking	Resident	Sample ID	R2	GW01-
	2 to <4 m	95%	95%	Water	Tapwater	Date	27/05/2020	9/06/2020
Dichlorodifluoromethane							< 1	
	-	-	-	-	-			
Ethylbenzene	NL	-	-	300	-		< 1	
Iodomethane	-	-	-	-	-		< 1	
Isopropyl benzene (Cumene)	-	-	-	-	-		< 1	
m&p-Xylenes	-	-	-	-	-		< 2	
Methylene chloride	-	-	-	4	-		< 1	
o-Xylene	-	350	-	-	-		< 1	
Styrene	-	-	-	30	-		< 1	
Tetrachloroethene	-	-	-	50	-		< 1	
Toluene	NL	-	-	800	-		< 1	
trans-1.2-Dichloroethene	-	-	-	-	-		< 1	
trans-1.3-Dichloropropene	-	-	-	-	-		< 1	
Trichloroethene	-	330	-	-	2.8		< 1	
Trichlorofluoromethane	-	-	-	-	-		< 1	
Vinyl chloride	-	100	-	0.3	-		< 1	
Xylenes - Total	NL	-	-	600	-		< 3	

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Groundwater Health Screening Levels for vapour intrusion, sand 2 to <4m. Criteria 2 = ANZG 2018 Guideline values, Freswater, 95% species protection.

Criteria 3 = ANZG 2018 Guideline values, Marine water, 95% species protection.

Criteria 4 = NHMRC, Australian Drinking Water Guidelines, 2018.

Criteria 5 = US EPA (2019) Regional Screening Level (RSL), Generic Tables, Resident Tapwater (TR=1E-06, THQ=1.0).

Total concentrations in µg/L

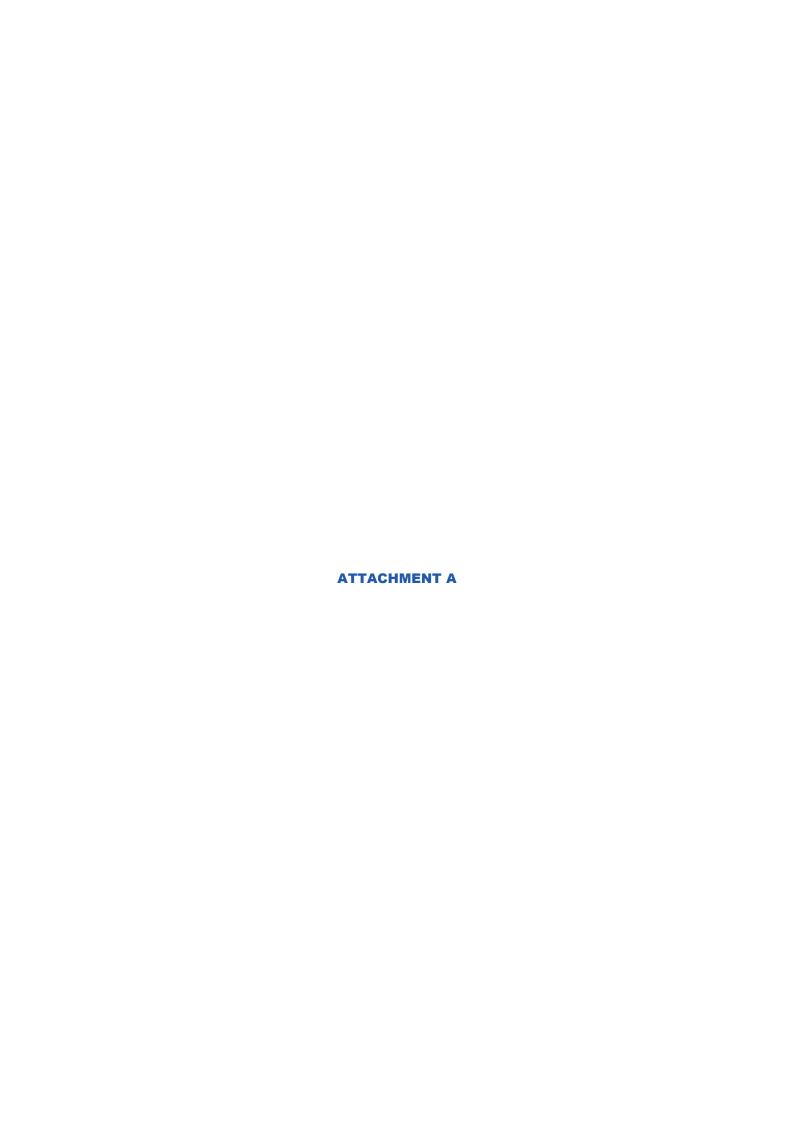
- = assessment criteria not available

NL = not limiting

D1 = duplicate of MW203

T1 = triplicate of MW203

D2 = duplicate of MW205


T2 = triplicate of MW205

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

Multi Parameter Water Meter

Instrument YSI Quatro Pro Plus

Serial No. 18L102024

Item	Test	Pass	Comments
Battery	Charge Condition	✓	
	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation (segments)	✓	
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	✓	
	2. mV	✓	
	3. EC	✓	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle	Instrument Reading
				Number	
1. pH 7.00		pH 7.00		330737	pH 7.00
2. pH 4.00		pH 4.00		330734	pH 3.94
3. pH 10.00		pH 10.00		338775	pH 9.83
3. mV		229.6mV		346052/342074	230.1mV
4. EC		2.76mS		333787	2.74mS
5. D.O		0.00ppm		1904288592	0.04ppm
6. Temp		22.1°C		MultiTherm	21.8°C

Calibrated by: Sarah Lian

Calibration date: 21/05/2020

Next calibration due: 20/06/2020

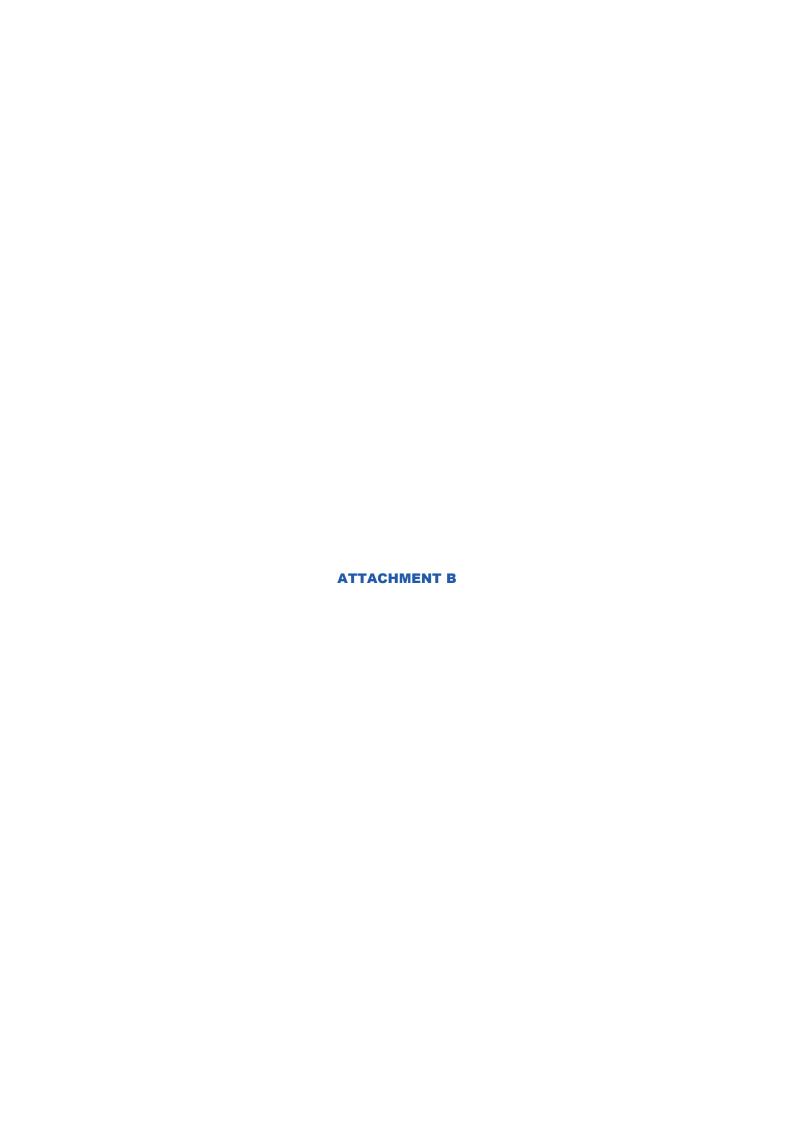
Multi Parameter Water Meter

Instrument YSI Quatro Pro Plus

Serial No. 11C100764

Item	Test	Pass	Comments
Battery	Charge Condition	✓	
	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation	✓	
	(segments)		
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	✓	
	2. mV	✓	
	3. EC	✓	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper	✓	
	Settings	✓	
Software	Version	✓	
Data logger	Operation	✓	
Download	Operation	✓	
Other tests:			

Certificate of Calibration


This is to certify that the above instrument has been calibrated to the following specifications:

Serial no	Standard Solutions	Certified	Solution Bottle	Instrument Reading
			Number	
	pH 10.00		352607	pH 9.81
	pH 7.00		330737	pH 7.00
	pH 4.00		330734	pH 4.06
	236.2mV		346052/342074	235.9mV
	2.76mS		333787	2.76mS
	0.00 ppm		1904288592	0.00ppm
	19°C		MultiTherm	17.5°C
	Serial no	pH 10.00 pH 7.00 pH 4.00 236.2mV 2.76mS 0.00 ppm	pH 10.00 pH 7.00 pH 4.00 236.2mV 2.76mS 0.00 ppm	Number pH 10.00 352607 pH 7.00 330737 pH 4.00 330734 236.2mV 346052/342074 2.76mS 333787 0.00 ppm 1904288592

Calibrated by: Sarah Lian

Calibration date: 05/06/2020

Next calibration due: 02/12/2020

Summary of Field Chemistry – May 2020

ID	SWL (mAHD)	рН	EC (mS/cm)	ORP (mV)	DO (mg/L)	Temp (°C)	Colour	Odour	Comment
MW101	3.457	6.58	13000	2.7	0.34	20	moderately turbid	none	
MW102	3.209	7.15	104.4	9.3	5.51	20	cloudy	hydrocarbon odour	
MW103	2.847	5.17	40.6	51.3	2.35	22.8	minor sheen	none	
MW104	3.445	6.02	8.5	62.4	3.95	22.7	brown with faint sheen	none	
MW106	3.52	6.28	20	-42.2	3.61	20.9	cloudy, faint sheen	none	
MW107	4.974	8.05	12.2	-7	2.9	21.1	clear	faint sulphur odour	
MW108	5.346	6.63	4.9	24.2	2.13	21.4	cloudy brown, faint sheen		
MW109	5.813	6.81	24.2	-83.9	0.62	21	cloudy	strong sulphur odour	
MW110	5.041	6.72	104.7	-0.5	5.01	19.7	slightly cloudy	none	
MW111	4.308	6.43	501	13.7	6.07	21.5	cloudy brown, faint sheen	none	
MW112	4.475	6.69	67.1	57.2	1.14	NR	clear	none	
MW113	4.86	6.28	58.3	175.8	2.76	20.4	slightly cloudy brown	none	
MW114	4.281	6.99	95.6	404.2	4.15	19.3	clear	none	
MW115	4.056	6.24	52	31.5	2.71	18.8	yellow with faint sheen	metallic odour	
MW116	3.3	6.03	35.1	12.9	1.33	19.5	slightly cloudy with faint sheen	none	
MW117	2.692	6.17	23.8	160.1	1.19	21.1	clear	none	
MW118	2.256	6.75	80	11.8	0.67	NR	slightly brown at first	none	
MW119	3.074	6.57	4.5	-29.1	305	20.4	brown with faint sheen	metallic and sulphur odour	
MW120	3.852	7.73	77.9	5.7	2.87	20.9	cloudy	sulphur and hydrocarbon odour	
MW121	4.691	6.69	37.4	147.8	2.79	21.3	slightly cloudy	none	
GW1	5.272	6.65	10015	1.1	0.22	24.7	cloudy	none	
GW2	6.651	7.42	22.6	-8.1	6.41	20.7	slightly cloudy	none	

ID	SWL (mAHD)	рН	EC (mS/cm)	ORP (mV)	DO (mg/L)	Temp (°C)	Colour	Odour	Comment
GW04	4.207	6.78	42.2	239.2	4.71	22.5	clear	faint odour	
MW201	4.929	6.63	82.7	38.4	1.09	19.5	cloudy with faint sheen	none	
MW202	4.46	6.17	69.8	78.1	1.05	21.7	clear		water appeared carbonated?
MW203	4.89	6.53	6.4	9.6	20.01	21	clear	none	QAQC sample #1
MW204	3.7167	6.53	43.2	-68	0.82	20.9	clear	sulphur odour	
MW205	3.089	6.27	49.2	2.2	2.91	20.4	clear	faint sulphur odour	QAQC sample #2

m

GROUNDWATER SAMPLE LOG

WELL ID: MWIOL

-									
PROJECT	INFORMATION	A REAL PROPERTY.	1 1 3 7	1 1922 3	3000	2 12 14 1	NA LINE		
PROJECT NUI	MBER: 70	01029		INITIALS:	(P				
DATE:	7	7/5		WEATHER:	Sunny				
SAMPLING ME	ETHOD:	LOW FLOW:	HYDRA	SLEEVE:	BAILER	: 🗆			
WELL GAU	GING DETAILS	10000			10/A 3 1.9 1				
STANDING WA	ATER LEVEL (mBT	00: 3.315	TOTAL	DEPTH (mBTOC) :	70127				
DEPTH TO PSH (mBTOC): THICKNESS OF PSH (m):									
	-			₩.					
FIELD PAR	AMETERS								
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)		
8:35	3.872	405	6.52	13000	20.7	0.34	20.0		
8:40	3.860	6L	6.88	116.5	-8.3	5.17	20.0		
8. 45	3. 860	7.5L	6.66	83.1	421.8	5.73	14.9		
8:50	3.828	96	6.61	72.4	33.6	5.78	19.9		
8:55	3.828	lossL	6.58	67.8	3901	4.98	19.9		
9:60	3857	12 L	6.58	6809	41.7	4.21	19.9		
							P.		
						2	10.		
				400					
TOTAL PURGE V	OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):					
ODCERVAT	TONG PURING		A VALUE WELL	12 30			N. Kramanan P.		
	IONS DURING	ALC: UNITED IN	THE PARTY I	10000		TO ALL PA			
NOTES: (WELL	CONDITION, COLOUR	CLARITY, ODOUR)	Initial	high sedin	ent modern	lely Kurba	done		
Sha	bilised			Ú	,	(
RECHARGE BE	HAVIOUR:	FAST RECHA	RGING 3	-	SLOW RECHARGI	NG (<80% RECHAR	GE AFTER 2 HRS)		
							ozwiekemio, i		
WELL SAM	PLING	The same of		1	10 19		2 2 2 3		
DTW (mbTOC):	(AT SAMPLING)	\$180 B	.857						
Part will	ORIGINAL			UPLICATE		TRIPLIC	CATE		
SAMPLE ID:	MWIGI		MPLE ID:		SAMI	SAMPLE ID:			
SAMPLE TIME:	905	SA	MPLE TIME:		SAM	SAMPLE TIME:			
NO. CONTAINE	RS: YE Viel	2+ambor NO	. CONTAINERS		NO. 0	CONTAINERS	4		
ANALYSIS:		AN	ALYSIS:		ANAI	_YSIS:			

							The second second
PROJECT II	NFORMATION			N. Carlotte			
PROJECT NUM	MBER: 2001	029		INITIALS: C	P		
DATE:	28/5			WEATHER: S	anny		· Shar
SAMPLING ME	THOD:	LOW FLOW:	HYDRA	ASLEEVE:	BAILER	R: 🗌	
4-3-3-3-3-3	S. C. S. SY.	VICES CONTRACTOR	- C) - 1 - 1 - 1		- 40 mg lan	mark Contra	
	GING DETAILS	- 1.0	E. Line	SE NEW	2 4		A 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	TER LEVEL (mBT	oc): 2.67	/		30947	TIME:	
DEPTH TO PSI	H (mBTOC):		THICKN	IESS OF PSH (m):			
FIELD PAR	AMETERS	STEEL STEEL	To Page	200		The state of	
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV)+/-10MV	DO (MG/L) +/-10%	TEMP (°C)
9:20	3.575	286	7.25	136.1	1.6	246	20.6
9:25	3.575	3.86	7.60	118.1	4.1	3.4	20.0
9:30	3.575	408/	7015	104.4	9.3	5.51	2002
4:35	082.5	(08)	10 (2	(0 (0 1	(- 2		
					74000		
			29	15 sonal	os take	en withe	HWQ
			05 0	/ 1 1			
		-		Court I			
#							
TOTAL PURGE V	/OLUME (L):		APPROX. SAMPLE	E PURGE RATE (LPM):			1
OBSERVA"	TIONS DURING	SAMPLING					
NOTES: (WELL	CONDITION, COLOU	R, CLARITY, ODOUR)	(A. te	clear with	Som o	paule S	Spended
laa	d 28/5)	(Class	(3	/ / A	-		1 110
(ca	01 2013	(Clear,	with Strong	initial adol	100		
RECHARGE B	EHAVIOUR:	FAST RECH	HARGING L		SLOW RECHAR	GING (<80% RECHA	RGE AFTER 2 HRS)
WELL SAN	IPLING		A POLICE				1 19 74 11 10
): (AT SAMPLING)	All Carat	. 1.1.	1 2010		19 21 TO	
Distribution	ORIGINAL	HII sompple		on 29/5	-tru	TRIP	LICATE
SAMPLE ID:		7				MPLE ID:	
SAMPLE ID: MU107 SAMPLE TIME: 10:00 SAMPLE TIME: 10:10						MPLE TIME:	
NO. CONTAIN	10.00	-	O. CONTAINERS	10:10		. CONTAINERS	
	14 V	71.	ANALYSIS:	(4 V Z	7/1	IALYSIS:	
ANALYSIS:			ANALTOIS:		, An	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

					2011			
PROJECT II	NFORMATION							
PROJECT NUM	1BER: 200	1029		INITIALS:	P			
DATE:	27/	5		WEATHER: S	my			
SAMPLING ME	THOD:	LOW FLOW:	HYDR	ASLEEVE:	BAILER	₹: 🔲		
WELL GAU	GING DETAILS	Var		Ber Park			The state of the s	
STANDING WA	TER LEVEL (mBT	DC): 16685	TOTAL	DEPTH (mBTOC) :	3.160	TIME:		
DEPTH TO PSI	H (mBTOC):	ZINUS		NESS OF PSH (m):				
			17.5	- Con 194				
FIELD PAR	AMETERS			5 T. P. T. L.	15 35 15			
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)	
2 00	2.425	4.5	5.15	44.8	58.2	2.93	23.0	
3:05	2.435	SL	5.14	43.2	54.8	2.59	22.4	
3:10	2.441	5.46	5.17	40.6	51.3	2.35	22.8	
				-	-	2		
						,		
							Zu.	
TOTAL PURGE V	/OLUME (L):		APPROX. SAMPI	LE PURGE RATE (LPM):				
OBCERVA	TIONS DURING	CAMPLING	-		The same		The state of	
1110 02		THE RESERVE OF THE PARTY OF THE	2 1	A CANAL		- 0		
NOTES: (WELL	CONDITION, COLOU	R, CLARITY, ODOUR)	Bulk	- 1000 F	of the sale	W. She	e ka	
			Very	minor sl	ncerl	#2 E	08-	
RECHARGE B	BEHAVIOUR:	FAST REC	HARGING		SLOW RECHAP	RGING (<80% RECHA	RGE AFTER 2 HRS)	
						12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		
WELL SAN	IPLING						IN ECCU	
DTW (mbTOC	(AT SAMPLING)	2-447 0						
	ORIGINAL			DUPLICATE		TRIP	LICATE	
SAMPLE ID:	MW 10=	3	SAMPLE ID:		S	AMPLE ID:		
SAMPLE TIM			SAMPLE TIME:		S	AMPLE TIME:		
NO. CONTAIN	31	1,244	NO. CONTAINERS	3	N	O. CONTAINERS		
			ANALYSIS:		A	ANALYSIS:		

Geo-Logix	

- NOOLOT	IN ORMATION						
PROJECT NUI	MBER: (1.00	1009		INITIALS:	CP		
DATE:	271	5		WEATHER:	Surry		
SAMPLING ME	ETHOD:	LOW FLOW:	HYDRA	SLEEVE:	LAILER	: 🗆	
WELL GAU	IGING DETAILS				1		K - 18 - 18
STANDING WA	ATER LEVEL (mBT	DC): 0092	7 TOTALI	DEPTH (mBTOC) :	3.598	TIME	
DEPTH TO PS	H (mBTOC):		THICKN	ESS OF PSH (m):		TIME:C	1.00
FIELD PAR	AMETERS	25 14 15 1	- W. C.	THE REAL PROPERTY.	10000		
The street	-	TOTAL	PH	CONDUCTIVITY	REDOX	P.O.	B - 154
TIME	DTW (mbTOC)	DISCHARGE (L)	+/- 0.1	(MS/CM) +/- 3%	(MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
360J	0.451	8	6.23	8.1	47.4	201	22.7
2:07	0.451	10	6.11	8-2	58.0	4.59	72.7
2:12	0.455	12	6.07	8.3	62.3	4.07	2207
2:17	0.456	14	6.02	8.5	62.3	3.95	22.7
					27.		
TOTAL PURGE V	/OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):			
OBSERVAT	TIONS DURING	SAMPLING		THE REAL PROPERTY.	11/10	30 30	
	. CONDITION, COLOUR			" . I L L A /	- I		
NOTES. (WELL	. CONDITION, COLOUR	, CLARITY, ODOUR)	Brown	with light	Sheen		
				<i>'</i>			
RECHARGE BI	EHAVIOUR:	FAST RECHA	ARGING .		SLOW RECHARG	NG (<80% RECHARG	GE AFTER 2 HRS)
14/E1 L 0444	DI ING	100	notice and				
WELL SAM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 0	But The		35-1	2 10 10	
DTW (mbTOC)	: (AT SAMPLING)	0.956					
0.11451.5.15	ORIGINAL			UPLICATE E/		TRIPLIC	CATE
SAMPLE TIME	MW 104			WIOY		PLE ID:	
SAMPLE TIME	00 1 01			30956		PLE TIME:	
NO. CONTAINE	=K5: Y+ U		. CONTAINERS	420, 2	/4	CONTAINERS	
ANALYSIS: ANALYSIS: ANALYSIS:							

WELL ID: MW106

		1 100 100	V V III - V	- 10 1 2	
PROJECT INFORMATION			W		
PROJECT NUMBER: 2001 024		INITIALS:	Sunny		
DATE: 28/5		WEATHER:	Sunny		
SAMPLING METHOD: LOW FLOW:	HYDRA	ASLEEVE:	AILER:		
		TO SERVICE DE LA CONTRACTOR DE LA CONTRA			
WELL GAUGING DETAILS				+ 1-1-12-	
STANDING WATER LEVEL (mBTOC): 1.08	2 TOTAL	DEPTH (mBTOC) : *	3.770	TIME:	
DEPTH TO PSH (mBTOC):	THICKN	IESS OF PSH (m):			
	In the last of the last of the	1 1 1 1 1 1	E 50 1 5 1	1000	
FIELD PARAMETERS					in in the said
TIME DTW (mbTOC) TOTAL DISCHARGE	PH (L) +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
12:55 2001.657 2.5	6.25	30.8	-46a1	3.59	20.9
13:00 1.671 2.4L		21.2	74.9	3074	20.8
13:00 1.692 3.31	~#	20.0	- 42.2	3.61	20.4
		1			·
					2
TOTAL PURGE VOLUME (L):	APPROX. SAMPLI	E PURGE RATE (LPM):			
OBSERVATIONS DURING SAMPLING		2 124 5	, S. A. B. T	TO HEST	To be the
			1 (
NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOL	(R) Cloudy	Syr ye W	wher brown	casing 1	ight sheen
		1 0			
RECHARGE BEHAVIOUR: FAST F	RECHARGING		SLOW RECHARG	SING (<80% RECHAP	RGE AFTER 2 HRS)
					And the second
WELL SAMPLING	100		S. Town	1000	15 7 6 5 4 10
DTW (mbTOC): (AT SAMPLING) 1.700					
ORIGINAL		DUPLICATE		TRIPL	ICATE
SAMPLE ID: NINOS MW106	SAMPLE ID:		SAI	MPLE ID:	
SAMPLE TIME: 13:05	SAMPLE TIME:		SAI	MPLE TIME:	
NO. CONTAINERS: Y & V 2 A	NO. CONTAINERS			CONTAINERS	
ANALYSIS:		ANALYSIS:			

ORIGINAL FIELD RECORD

PROJECT II	NFORMATION				AND R	1925 7530	A STATE OF THE STA
PROJECT NUMBER: 200 029 INITIALS: C/S							
DATE: 29/5 WEATHER: Ocercust							
SAMPLING ME	THOD:	LOW FLOW:	HYDRA	SLEEVE:	BAILER	k: 🔲	
WELL GAU	GING DETAILS						
STANDING WA	TER LEVEL (mBTC	DC): 1.354	TOTAL	DEPTH (mBTOC) : 5	3.810	TIME:	
DEPTH TO PS	H (mBTOC):		THICKN	ESS OF PSH (m):			
FIELD PAR	AMETERS		- Charles	12 10 10		Of Wall	
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV)+/-10MV	DO (MG/L) +/-10%	TEMP (°C)
08:50	1.942	2.41	7-88	13.8	408)	2.78	21.0
08:55		2.51	7.98	12.7	0	3,24	21.1
09:00	20101	206L	8.05	1202	-4.0	2.9	2102
09:05	2.192	2074	8.05	12-2	-7	2.90	21.1
TOTAL PURGE V	/OLUME (L):		APPROX. SAMPLE	E PURGE RATE (LPM):			
	air and and	30/3/10				Charles - 10a	122000433
OBSERVA [*]	TIONS DURING	SAMPLING		7 18 117			
NOTES: (WELL	CONDITION, COLOUI	R, CLARITY, ODOUR)	Clear S	light odour	weak s	Salphur Sa	ell
			//	7		1	
RECHARGE B	BEHAVIOUR:	FAST RECH	ARGING		SLOW RECHAR	GING (<80% RECHA	RGE AFTER 2 HRS)
WELL SAN	MPLING	12 3 10	4	19713	1 45		MARKET
): (AT SAMPLING)	2, 199	A 4 1 4 5		.11		
2.11 (ORIGINAL	4		DUPLICATE		TRIP	LICATE
SAMPLE ID:	MW 10	> s	AMPLE ID:		SA	MPLE ID:	
SAMPLE TIME			AMPLE TIME:		SA	MPLE TIME:	
NO. CONTAIN	.1 1.		O. CONTAINERS		NC). CONTAINERS	
ANALYSIS:		A	NALYSIS:		AN	IALYSIS:	

PROJECT NUMBER: 700 6 29 INITIALS: CP DATE: 28/5/20 WEATHER: SCARU SAMPLING METHOD: LOW FLOW: PHYDRASLEEVE: BAILER: SAMPLE ID: SAMPL								
WELL GAUGING DETAILS STANDING MATTER LEVEL (mBTOC): \(\cdot \) 72 \(\cdot \) TOTAL DEPTH (mBTOC): \(\cdot \) 3385 TIME: WELL GAUGING DETAILS STANDING WATER LEVEL (mBTOC): \(\cdot \) 72 \(\cdot \) TOTAL DEPTH (mBTOC): \(\cdot \) 72 \(\cdot \) THICKNESS OF PSH (m): THE DITW (mSTOC): \(\cdot \) TOTAL PPH (mSTOC): \(\cdot \) 105CHARGE (t) PH (MSCAP) +3 98 (M) +10 08 (MAD) +10 08 (MAD	PROJECT INFORMATION				1 703	ART NAME OF A		
WEATHER: SAMPLING METHOD: LOW FLOW: PHYDRASLEEVE: BAILER: SAMPLING METHOD: LOW FLOW: PHYDRASLEEVE: BAILER: SAMPLING METHOD: LOW FLOW: PHYDRASLEEVE: BAILER: SAMPLE ID: SAMPLE ID	PROJECT NUMBER: 700 (629		INITIALS:	CP				
SAMPLE DIT (INSTANCE AND LINE APPROX. SAMPLE PURGE RATE (IPM): WELL GAUGING DETAILS STANDING WATER LEVEL (INSTOC): \.\.72\cup TOTAL DEPTH (INSTOC): \.\.3385 TIME: DEPTH TO PSH (INSTOC): \.\.72\cup TOTAL DEPTH (INSTOC): \.\.3385 TIME: DEPTH TO PSH (INSTOC): \.\.72\cup TOTAL DEPTH (INSTOC): \.\.3385 TIME: FIELD PARAMETERS TIME DTW (INSTOC) DISCHARGE (II) PH CONDUCTIVITY (INSTOM) PH (
STANDING WATER LEVEL (mBTOC): \\ 72 \qquad \text{TOTAL DEPTH (mBTOC): } \\ \text{TIME: } \\ \text{TIME: } \\ \text{TIME: } \\ \text{DTW (mBTOC): } \\ \text{TIME: } \\ \text{TIME: } \\ \text{DTW (mBTOC): } \\ \text{TIME: } \\ \text{TIME: } \\ \text{DTW (mBTOC): } \\ \text{TIME: } \\ \text{DTW (mBTOC): } \\ \text{DTW (mBTOC): } \\ \text{TOTAL } \\ \text{DTW (mBTOC): } \\ DTW (mBTOC):		HYDR/		/	: 🗆			
THICKNESS OF PSH (m): THICKNES OF PSH (m): THICKNESS OF PSH (m):	WELL GAUGING DETAILS	1	September 1					
THICKNESS OF PSH (m): PIELD PARAMETERS TIME DTW (metroc) DISCHARGE (L) PH (MSCA) + 5% (MV) + 10MV (MSCA) + 10% (MSCA) +	STANDING WATER LEVEL (mBTOC) : \ 67	24 TOTAL	DEPTH (mBTOC) :	3.385	TIME:			
TIME DTW (nbtoc) DISCHARGE (L) PH	DEPTH TO PSH (mBTOC):	THICK	NESS OF PSH (m):					
TIME DTW (mbTOC) DISCHARGE (L) 4-0.1 (MS) 4-3% (MV) 4-10MV (MGL) 4-10% (MGL) 4	FIELD PARAMETERS		Land Co.	18.720	33 148			
4:23 1.877 36 G.63 26.2 26.2 1.32 21.3 4:28 1.877 36 G.63 24.9 21.2 72.2 71.2 71.4 4:28 1.887 G.63 24.9 21.2 72.2 71.2 71.4 4:28 1.887 G.63 24.9 21.2 72.2 71.2 71.4 TOTAL PURGE VOLUME (L): APPROX. SAMPLE PURGE RATE (LPM): OBSERVATIONS DURING SAMPLING NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (-80% RECHARGE AFTER 2 HRS) WELL SAMPLING ORIGINAL DUPLICATE SAMPLE ID: SAMPLE ID: SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: UNLANABLE. DANABLE TIME: NO. CONTAINERS NO. CONTAINERS					(MG/L) +/-10%			
4:23 877 36 6-63 26-2 1.32 21.3 4:28 1.87 36 6-63 24.9 24.2 72.2 21.4 4:28 1.87 1.87 1.87 21.4 5-66 24.9 24.2 72.2 72.2 72.2 72.2 5-66 24.9 24.2 72.2 72.2 72.2 72.2 5-66 24.9 24.2 72.2 72.2 72.2 72.2 5-66 24.9 24.2 72.2 72.2 72.2 72.2 5-66 24.9 24.2 72.2 72.2 72.2 72.2 72.2 5-66 24.9 24.2 72.2 72.2 72.2 72.2 72.2 5-66 24.2 72.2 72.2 72.2 72.2 72.2 72.2 5-66 24.2 72.2 72.2 72.2 72.2 72.2 72.2 5-66 24.2 72.2 7	94:18 1.876 2.2	L 607	27.0	3000	0.91			
WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL SAMPLE ID: SAMPLE ID: SAMPLE TIME: V-30 SAMPLE TIME: NO. CONTAINERS: VILL SAMPLE ID: SAMPLE TIME: NO. CONTAINERS		6.63	26.2	26.2	1,32	21-3		
OBSERVATIONS DURING SAMPLING NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL ORIGINAL SAMPLE ID: SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS.		6.63	2409	29.2	213	21.4		
OBSERVATIONS DURING SAMPLING NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL ORIGINAL SAMPLE ID: SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS.	•							
OBSERVATIONS DURING SAMPLING NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL ORIGINAL SAMPLE ID: SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS.								
OBSERVATIONS DURING SAMPLING NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL ORIGINAL SAMPLE ID: SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS.								
OBSERVATIONS DURING SAMPLING NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL ORIGINAL SAMPLE ID: SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS.								
OBSERVATIONS DURING SAMPLING NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (~80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL DUPLICATE SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS.								
OBSERVATIONS DURING SAMPLING NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (~80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL DUPLICATE SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS.								
OBSERVATIONS DURING SAMPLING NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (~80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL DUPLICATE SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS.								
NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL DUPLICATE SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS:	TOTAL PURGE VOLUME (L):	APPROX. SAMPL	E PURGE RATE (LPM):					
NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL DUPLICATE SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS:			- 11-20	1 7 5 4 7 1				
RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS) WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL DUPLICATE SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS ANALYSIS:	OBSERVATIONS DURING SAMPLIN				1000	The state of the state of		
WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL DUPLICATE SAMPLE ID: SAMPLE TIME: Y-30 NO. CONTAINERS: Y+U 2+A NO. CONTAINERS NO. CONTAINERS ANALYSIS:	NOTES: (WELL CONDITION, COLOUR, CLARITY, OD	OUR) Quik	brown m	. Inor sha	Sh			
WELL SAMPLING DTW (mbTOC): (AT SAMPLING) ORIGINAL DUPLICATE SAMPLE ID: SAMPLE TIME: Y-30 NO. CONTAINERS: Y+U 2+A NO. CONTAINERS NO. CONTAINERS ANALYSIS:								
DTW (mbTOC): (AT SAMPLING) ORIGINAL DUPLICATE SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: Y+U 2-A NO. CONTAINERS ANALYSIS:	RECHARGE BEHAVIOUR: FAST	T RECHARGING		SLOW RECHARG	GING (<80% RECHA	RGE AFTER 2 HRS)		
ORIGINAL DUPLICATE TRIPLICATE SAMPLE ID: SAMPLE TIME: SAMPLE TIME: NO. CONTAINERS: NO. CONTAINERS TRIPLICATE TRIPLICATE SAMPLE ID: SAMPLE TIME: NO. CONTAINERS NO. CONTAINERS	WELL SAMPLING	N. of the latest	Selement Ser	Civiles				
ORIGINAL DUPLICATE TRIPLICATE SAMPLE ID: SAMPLE ID: SAMPLE TIME: NO. CONTAINERS: VAU 2-A NO. CONTAINERS TRIPLICATE SAMPLE ID: SAMPLE TIME: NO. CONTAINERS NO. CONTAINERS	DTW (mbTOC): (AT SAMPLING) / S	90						
SAMPLE ID: SAMPLE ID: SAMPLE ID: SAMPLE TIME: Y:30 SAMPLE TIME: SAMPLE TIME: NO. CONTAINERS: Y+U 2+A NO. CONTAINERS ANALYSIS:			DUPLICATE		TRIP	LICATE		
SAMPLE TIME: SAMPLE TIME: NO. CONTAINERS: Y+U 2+A NO. CONTAINERS NO. CONTAINERS ANALYSIS:		SAMPLE ID:		SA	MPLE ID:			
NO. CONTAINERS: 4+U 2+A NO. CONTAINERS NO. CONTAINERS	the Lorentz Control of	SAMPLE TIME:		SA	MPLE TIME:			
ANALYSIS	1.50	NO. CONTAINERS		NO	. CONTAINERS			
	ANALYSIS:	ANALYSIS:		AN	ALYSIS:			

		1000	- No. of Contract	F- 1, 12 15	A STATE OF THE STA
PROJECT INFORMATION				100	
PROJECT NUMBER: 200 629		INITIALS: C/>			
DATE: 28/5		WEATHER: C	loyely		
SAMPLING METHOD: LOW FLOW:	HYDRA	ASLEEVE:	BAILER:		
WELL GAUGING DETAILS					
STANDING WATER LEVEL (MBTOC):	TOTAL	DEPTH (mBTOC) :	3-897	TIME:	
DEPTH TO PSH (mBTOC):	THICKN	NESS OF PSH (m):		. 7	
7			V HESSELVE D	DESCRIPTION OF	A STATE OF THE PARTY OF THE PAR
FIELD PARAMETERS	E-WELL E			15 5 W	D. DVIVE
TIME DTW (mbTOC) TOTAL DISCHARGE	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX_ (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
16:38 2.292 3.26	6.82	2501	-8701	1.67	2004
16:43 2.351 3.35		2405	-83.6	2.23	2004
16:48 2.416 3.51	6.81	240.2	-83.9	2.62	50.0
	2 3				· a·
ν,					
			9-		
				Ÿ	
					7
		,			
TOTAL PURGE VOLUME (L):	APPROX. SAMPL	E PURGE RATE (LPM):			
OBSERVATIONS DURING SAMPLING	THE PARTY OF	3. 27 H		E STORY	ACCOUNT.
NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOU	R) Lerg	muddy, her	vi cillo	her Stan	.11
(VELLE SOLISHIST) COLORS	Ver	many her	any smil	nu Spr	423
PERMANANTAL FACTOR	ECHARGING		SLOW RECHARG	ING (<80% RECHAI	RGE AFTER 2 HRS)
RECHARGE BEHAVIOUR: FAST R	ECHANGING L		020777120777170		
WELL SAMPLING	-X 24 - 3 5		1 2 7 7 1		
DTW (mbTOC): (AT SAMPLING) 2.497	£.				
ORIGINAL		DUPLICATE		TRIPL	ICATE
SAMPLE ID: MW 109	SAMPLE ID:		SAM	IPLE ID:	
SAMPLE TIME: 16!50	SAMPLE TIME:		SAM	IPLE TIME:	
NO. CONTAINERS: 44 V 244	NO. CONTAINERS		NO.	CONTAINERS	
ANALYSIS:	ANALYSIS:		ANA	LYSIS:	

WELL ID:

MWIIO

PROJECT I	NFORMATION		5-3-		37, 37		
ROJECT NUM	ABER: 20	01029			99		
DATE:	29/5			WEATHER:	ndoors		
SAMPLING ME	ETHOD:	.OW FLOW:	HYDRA	SLEEVE:	BAILER	: 🗆	
WELL GAU	IGING DETAILS	At DE TO					
STANDING WA	ATER LEVEL (mBTC	10): 2-18	TOTAL	DEPTH (mBTOC) :	4.285	TIME:	
DEPTH TO PS	H (mBTOC):		THICKN	ESS OF PSH (m):			
FIELD PAR	AMETERS		1300	10%	110	Thursday,	
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV)+/-10MV	DO (MG/L) +/-10%	TEMP (°C)
10:40	2.531	1.5L	6.74	1324	-220	4.43	20,1
0:45	2.550	1.96	6.7	116.7	-1100	4.63	19.8
10:50	2.570	2.34	6-71	108-7	-	4.87	19.7
10:55	2.590	2.75L	6.72	104.7	-1.2 -9.5	5.01	19.
TOTAL PURGE	VOLUME (L):		APPROX. SAMPL	E PURGE RATE (LPM):			
OBSERVA	TIONS DURING	SAMPLING			PH W	A STATE	
	L CONDITION, COLOU	THE RESERVE OF THE PARTY OF THE	lon	s flow, s	lightly	Closedy	Sample
RECHARGE	BEHAVIOUR:	FAST REC	HARGING		SLOW RECHAR	CGING (<80% RECHA	RGE AFTER 2 HRS)
WELL SA	MPLING	176.00		F 27-181			THE PERSON
DTW (mbTO	C): (AT SAMPLING)	2.600	<u>ک</u>				
	ORIGINAL			DUPLICATE		TRIP	LICATE
SAMPLE ID:	MUIIO	;	SAMPLE ID:		SA	AMPLE ID:	
SAMPLE TIM			SAMPLE TIME:		SA	AMPLE TIME:	
NO. CONTAI	1	2+A	NO. CONTAINERS		NO	O. CONTAINERS	
ANALYSIS:		/	ANALYSIS:		Al	NALYSIS:	

ORIGINAL FIELD RECORD

W

WELL ID: MWIII

	THE RESIDENCE OF THE PARTY OF T				
PROJECT INFORMATION					
PROJECT NUMBER: 200 024	INITIALS:				
DATE: 28/5	WEATHER: Swang				
SAMPLING METHOD: LOW FLOW:	HYDRASLEEVE: BAILER:				
WELL GAUGING DETAILS					
STANDING WATER LEVEL (mBTOC):	TOTAL DEPTH (mBTOC): 4, 775				
DEPTH TO PSH (mBTOC):	THICKNESS OF PSH (m):				
FIELD PARAMETERS					
TIME DTW (mbTOC) TOTAL DISCHARGE (L)	PH CONDUCTIVITY REDOX DO TEMP (°C) (MS/CM) +/- 3% (MV) +/- 10MV				
7:30 2.076 3	6.36 58.6 22.1 2.52 21.4				
7:35 2.098 402	6035 4301 3702 3.02 21.5				
7:40 20048 504	G. 34 37.9 45.1 2.85 21.6				
7:45 7-096 6.6	6.34 36.1 51.7 2.61 21.7				
distinct confeer Charge					
8:00 2.093 9L	6043/ 5001/ 13.7 6.07 21.5				
3 e					
TOTAL PURGE VOLUME (L):	APPROX. SAMPLE PURGE RATE (LPM):				
OBSERVATIONS DURING SAMPLING					
NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR	Murkey brown no sheen				
charge to clear	during samplaing				
RECHARGE BEHAVIOUR: FAST RECHARGING (<80% RECHARGE AFTER 2 HRS)					
WELL SAMPLING					
DTW (mbTOC): (AT SAMPLING) 2.0 4 4					
ORIGINAL	DUPLICATE Extre TRIPLICATE				
SAMPLEID: MW 111	SAMPLE ID: (SAMPLE ID:				
SAMPLE TIME: \$205	SAMPLE TIME: SAMPLE TIME:				
NO. CONTAINERS: YX V 2+ A	NO. CONTAINERS Y JU 24A NO. CONTAINERS				
ANALYSIS:	ANALYSIS: ANALYSIS:				

ORIGINAL FIELD RECORD

WELL ID: MW112

PROJECT II	NFORMATION					198	
PROJECT NUM	IBER: 2001	024		INITIALS:	CP		
DATE:	28/5			WEATHER:	Loudy		
SAMPLING ME	THOD:	LOW FLOW:	HYDRA	SLEEVE:	BAILER	: 🗆	
				7			
WELL GAU	GING DETAILS	10.00					
STANDING WA	TER LEVEL (mBTC	oc): 0.65	TOTAL	DEPTH (mBTOC) :	4.040	TIME:	
DEPTH TO PS	H (mBTOC):		THICKN	ESS OF PSH (m):			No.
		CONTRACTOR OF THE PARTY OF THE	Color of the Color	The latest	VIII 1837	(10 May 1)	
FIELD PAR	AMETERS						THE RESERVE
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/@M) +/- 3%	REDOX (MV)+/-10MV	DO (MG/L) +/-10%	TEMP (°C)
4:00	10074	2.66	6-75	85.2	4703	1.26	
4:00	1.074	3.81	6.72	87.1	53.0	1.21	
4:10	10077	SL	6.69	6701	57. 2	1014	
18					34		
3							*
							-
TOTAL PURGE V	/OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):			
					- 11.00		
OBSERVA"	TIONS DURING	SAMPLING				200	THE STATE OF THE
NOTES: (WELL	CONDITION, COLOUR	R, CLARITY, ODOUR)	Clear				
RECHARGE B	EHAVIOUR:	FAST RECH	HARGING		SLOW RECHARG	GING (<80% RECHARG	GE AFTER 2 HRS)
					7		
WELL SAN	IPLING		100		1 9 65	0 3 3 5 8	
DTW (mbTOC); (AT SAMPLING)	10077					
	ORIGINAL			DUPLICATE		TRIPLI	CATE
SAMPLE ID:	My/1/2	S	SAMPLE ID:			MPLE ID:	
SAMPLE TIMI	- 17		SAMPLE TIME:			MPLE TIME:	
NO. CONTAIN	IERS: YAV	- / /	IO. CONTAINERS			. CONTAINERS	
ANALYSIS:			NALYSIS:		AN	ALYSIS:	

ORIGINAL FIELD RECORD

PROJECT INFORMATION				To a state of the same	
PROJECT NUMBER: 2001 02	g	INITIALS: C	>		
DATE: 28/5		WEATHER:	Juars		
SAMPLING METHOD: LOW FLO	OW: HYDRA	SLEEVE:	BAILER:		
WELL GAUGING DETAILS					
STANDING WATER LEVEL (mBTOC): 2	TOTAL	DEPTH (mBTOC) :	5.75		
DEPTH TO PSH (mBTOC):		ESS OF PSH (m):		TIME:	
FIELD PARAMETERS					
	OTAL PH HARGE (L) +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV (M	DO MG/L) +/-10% TEMP (°C)	
12:10 2.839 3	6.38	5-901	180.5 1	.88 20.1	
	L 6030	58.2		279 20.3	
12:20 2.837 8	L 6028	58.5	175.8 3	20.4	
				E I	
	Lappay and	EUDOS TATE (1914)			
TOTAL PURGE VOLUME (L):	APPROX. SAMPLE	PURGE RATE (LPM):			
OBSERVATIONS DURING SAMP	LING	· 对非 以还是	17 July 17 1	0 75 377 157	
NOTES: (WELL CONDITION, COLOUR, CLARIT	y, odour) Very	La Co	1.1	a ld/ de le	
1 1 1		murrey in.	or a pump	, mild/moderate	
turbidity when s	amps taken			г	
RECHARGE BEHAVIOUR:	FAST RECHARGING	S	LOW RECHARGING	(<80% RECHARGE AFTER 2 HRS)	
WELL SAMPLING	CENTRE !	13 14	2017	11/2/16	
DTW (mbTOC): (AT SAMPLING) 2.8	39				
ORIGINAL		DUPLICATE		TRIPLICATE	
SAMPLE ID: MW13	SAMPLE ID:		SAMPLE	ID:	
SAMPLE TIME: 12:22	SAMPLE TIME:		SAMPLE	TIME:	
NO. CONTAINERS: 4 2 2 24 A	NO. CONTAINERS		NO. CON	ITAINERS	
ANALYSIS:	ANALYSIS:		ANALYS	ANALYSIS:	

PROJECT INFORMATION								
PROJECT NUMBER: 201029				INITIALS: CF				
DATE: 28/5				WEATHER: Luclours				
SAMPLING METHOD: LOW FLOW: HYDRASLEEVE: BAILER:								
WELL GAUGING DETAILS								
STANDING WATER LEVEL (mBTOC): 2 9 9 TIME:								
DEPTH TO PSH (mBTOC): THICKNESS OF PSH (m):								
FIELD PARAMETERS								
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)	
11.30	3.172	2	699	1039	385.2	4.35	14.3	
11:35	3.128	2056		9702	40001	4.23	14.2	
राउप०	3.172	341	6.99	95.6	404.2	4.15	19.3	
							~	
							1	
		-						
TOTAL PURGE VOLUME (L):		APPROX SAMPLE	PURGE RATE (LPM):					
TOTAL PURGE VOLUME (L): APPROX. SAMPLE PURGE RATE (LPM):								
OBSERVATIONS DURING SAMPLING								
NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) Class mostly dear to the condition of the c								
white								
RECHARGE BEHAVIOUR: FAST RECHARGING SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS)								
WELL SAMPLING								
DTW (mbTOC): (AT SAMPLING) 3. 17(
ORIGINAL			DUPLICATE		7	TRIPLICATE		
SAMPLE ID: MW119			SAMPLE ID:		SAM	SAMPLE ID:		
SAMPLE TIME: 11:42			SAMPLE TIME:			SAMPLE TIME:		
NO. CONTAINERS: Y V 2+ A			NO. CONTAINERS			NO. CONTAINERS		
ANALYSIS:			ANALYSIS:			ANALYSIS:		

PROJECT INF	FORMATION		TITUTE	A SECTION		of They be	
PROJECT NUMBI		1024			P		
DATE:	28/5			WEATHER: Se	nny		
SAMPLING METH	HOD: L	OW FLOW:	HYDRA	SLEEVE:	BAILER	2:	
WELL GAUGI			建设	SA 2012			
STANDING WATE	ER LEVEL (mBTO	c): 0.341	TOTAL	DEPTH (mBTOC) :	3.300	TIME:	
DEPTH TO PSH (mBTOC):		THICKN	ESS OF PSH (m):			
FIELD PARAM	METERS			10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T - 10 15 X		E PLOUT
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
	0.517	SOLL	6.27	5207	3/01	502	8.7
14:20	00521	7.5L	6.24	56.7	31.6	2.38	18.8
14:25	0.529	94	6.24	25.0	31.5	2.71	
	40	1					
	-	SPARKE					
	79						
TOTAL PURGE VOL	LIME (LV:		APPROX SAMPLE	PURGE RATE (LPM):			
TOTAL FORGE VOL	LOINE (L).		ALTITOX, SAMILEE	TOTOL TOTTE (EL MI).			-
OBSERVATION	ONS DURING	SAMPLING					A 30 95-75
NOTES: (WELL CO	ONDITION, COLOUR	, CLARITY, ODOUR)	bery sh	May sha	adia wa	fer, Skin 1	hischle.
				10. 11. 1	<i>c</i> 1.	. A	z. 6
	RECHARGE BEHAVIOUR: FAST RECHARGING TO SLOW RECHARGING (<80% RECHARGE AFTER 2 HRS)						
RECHARGE BEH	HAVIOUR:	FAST REC	HARGING 🗀		SLOW RECHARG	JING (<80% RECHAR	GE AFTER 2 HRS)
WELL SAMP	LING	-	The Party	J. 19	E SAT		
DTW (mbTOC): ((AT SAMPLING)					**	
	ORIGINAL			DUPLICATE		TRIPL	ICATE
SAMPLE ID:	MW/15	:	SAMPLE ID:		SA	MPLE ID:	
SAMPLE TIME:	14:26		SAMPLE TIME:		SA	MPLE TIME:	
NO. CONTAINER	RS: 4+V	2+A	NO. CONTAINERS		NO	. CONTAINERS	
ANALYSIS:	6		ANALYSIS:		AN	ALYSIS:	

PROJECT	NFORMATION						
PROJECT NUM	MBER: 700(029		INITIALS:	CP		
DATE:	2815			WEATHER: IN	doors		
SAMPLING ME	THOD:	LOW FLOW:	HYDRA	ASLEEVE:	ВА	ILER:	7
WELL GAU	GING DETAILS	The state	200	19 FA TO		1969	F 188 + 188
STANDING WA	TER LEVEL (mBTC	DC): 1.000	TOTAL	DEPTH (mBTOC) :	3 538	TIME:	
DEPTH TO PS	H (mBTOC):		THICK	NESS OF PSH (m):		TIME.	
FIELD PAR	AMETERS			***		- 81 12	
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV)+/-10M	DO (MG/L) +/-10%	TEMP (°C)
13:38	1.598	3.16	6-08	34.7	160	1.54	14.5
13:43	1.611	3.3L	6.05	361	11.9	1.37	19.5
13:48	1.627	3.5	6.03	35.1	12.9	1033	19.5
					3		
							1
							14
			ADDROX GAMOU	F DUDOS DATE (LDM)			
TOTAL PURGE V	OLUME (L):		APPROX. SAMPLI	E PURGE RATE (LPM):			
OBSERVAT	TIONS DURING	SAMPLING		e Personal		14 14 17	
NOTES: (WELL	. CONDITION, COLOUP	R, CLARITY, ODOUR)	Slydla	cloudy w:	14 1	ght sheen	bucket.
RECHARGE B	EHAVIOUR:	FAST RECH	ARGING		SLOW RECH	HARGING (<80% RECHAI	RGE AFTER 2 HRS)
WELL SAM	IPLING	THE STATE OF	N. Ca	PE PASSER		1917/9	S. R. S.
DTW (mbTOC): (AT SAMPLING)	1.631					
	ORIGINAL			DUPLICATE		TRIPL	ICATE
SAMPLE ID:	MW116	S	AMPLE ID:			SAMPLE ID:	<u> </u>
SAMPLE TIME	13:50	S	AMPLE TIME:			SAMPLE TIME:	
NO. CONTAIN		21A N	O. CONTAINERS			NO. CONTAINERS	
ANALYSIS:	1		NALYSIS:			ANALYSIS:	

PROJECT I	NFORMATION	11153	100	9-18-67	The same of	San	The state of the
PROJECT NUM	IBER: 20	001029		INITIALS:	CP		
DATE:	7	915		WEATHER:	DNZZle		
		OW FLOW:	LIVERA	SLEEVE:	BAILER		
SAMPLING ME	THOD:	_OW FLOW.	ПТОК	ASLEEVE. LJ	DAILLIN		
WELL GAU	GING DETAILS	THE REAL PROPERTY.			* 15 -6		
STANDING WA	TER LEVEL (mBTC	DC): 1,298	TOTAL	DEPTH (mBTOC) :	6.202	TIME:	
DEPTH TO PS	H (mBTOC):		THICKN	ESS OF PSH (m):		T IIVIE.	
					- E 1		Marie Commence
FIELD PAR	AMETERS		Thursday, St.				
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
12:43	7-523	3.8	6-17	31.6	169-0	1-11	2100
12:47	2.529	SL	6-18	31.7	164.4	1.00	2101
12:53	2. 528	6L	6017	23.8	16001	1.19	21-1
7							
TOTAL PURGE V	OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):			
OPCEDVA	TIONS DURING	SAMPLING			40 -00	27711	1 374 67
OBSERVA	HONS DUKING	SAMPLING	<u> </u>	(P)	10/13/1		1.10
NOTES: (WELL	. CONDITION, COLOUF	R, CLARITY, ODOUR)	Initial	brown pi	rge, mos	ly clear	sample &WQ
- Ém					0	-	
RECHARGE B	EHAVIOUR:	FAST RECH	ARGING	*	SLOW RECHARG	SING (<80% RECHAR	RGE AFTER 2 HRS)
WELL SAN	IPLING					24 7 4	Brand Line
DTW (mbTOC): (AT SAMPLING)	12.529					
	ORIGINAL			DUPLICATE		TRIPL	ICATE
SAMPLE ID:	MWIIT	S	AMPLE ID:		SAI	MPLE ID:	
SAMPLE TIME	12:55	S	AMPLE TIME:		SAI	MPLE TIME:	
NO. CONTAIN	ERS: 4, V	21A N	O. CONTAINERS		NO.	CONTAINERS	
ANALYSIS:	7		NALYSIS:		ANA	ALYSIS:	

PROJECT II	NFORMATION						
PROJECT NUM	IBER: 2001	024		INITIALS:	(P		is.
DATE:		4 29/	5	WEATHER:	dercast		
SAMPLING ME	THOD:	LOW FLOW:	HYDRA	SLEEVE:	BAILER	: 🗆	
WELL GAU	GING DETAILS		1-30 ST			5.5	10 100
STANDING WA	TER LEVEL (mBTC	oc): 3-10 t	TOTAL I	DEPTH (mBTOC):	4,209	TIME:	
DEPTH TO PSH	i (mBTOC):		THICKN	ESS OF PSH (m):		111112.	
FIELD PARA	AMETERS	17/07	P LE S	N. L. VIII	A TOTAL	100	
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
2:05	3.175	200ml	6075	80.0	1268	0.67	0.68
					-		
			Cool	swoter, s	c. d. 1.c		
				40000, 3	angle forb	EP1	
	4						
TOTAL BUDGE VI	OLLIBATE (L).		ADDDOV SAMDLE	DURCE DATE (LDM).			
TOTAL PURGE V	OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):			
OBSERVAT	IONS DURING	SAMPLING					
NOTES: (WELL	CONDITION, COLOUR	, CLARITY, ODOUR)	1 ght	bown	purce in.	th made	ratela
×	clear s	amples.			, w.		7
RECHARGE BE		FAST REC	HARGING		SLOW RECHARG	GING (<80% RECHAR	GE AFTER 2 HRS)
10/51 1 - 0.44	DI ING						State Was
WELL SAM		7					N. C. C.
DTW (mbTOC):	ORIGINAL	5.178		DUPLICATE	Feld II	TRIPL	CATE
SAMPLE ID:	MWII	0	SAMPLE ID:	, o, E(0), (E	SAN	MPLE ID:	
SAMPLE TIME:		_	SAMPLE TIME:			IPLE TIME:	
NO. CONTAINE		2+A	NO. CONTAINERS		NO.	CONTAINERS	
ANALYSIS:	ı		ANALYSIS:		ANA	ALYSIS:	

WELL ID:

MW119

PROJECT II	NFORMATION		101 4	Mark Street		135 80 %	
PROJECT NUM	IBER: Omal	029		INITIALS:	CP		
DATE:	29/5			WEATHER:	Overcas	L	
		LOW FLOW:					
SAMPLING ME	THOD:	LOW FLOW:	HY	DRASLEEVE:	BAILER:		
WELL GAU	GING DETAILS		3113	68-52-5	65 30		
STANDING WA	TER LEVEL (mBTC	DC): 2.306	то	FAL DEPTH (mBTOC) : (4.47		
DEPTH TO PSI		7.200		CKNESS OF PSH (m):		TIME:	
							- 3
FIELD PAR	AMETERS						
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
14:47	2498	3L	6.52	608	-43.4	4-82	20.4
14:52	20498	4L	6.52	5.4	-33.9	2.51	20.5
14:53		4.46	6055		-29.2	3-17	20.3
13:02	2.503	4.7L	6.57	-	-2901	3.05	2004
	(6						
							-
TOTAL PURGE V	OLUME (L):		APPROX. SAM	MPLE PURGE RATE (LPM):			
ORCEDVAT	TONE DUDING	CAMPLING	I TOB	VIEW NAME OF THE PARTY OF		3 10000	100
UBSERVAI	IONS DURING	SAMPLING	d 8/3	A STATE OF STREET	THE REAL PROPERTY.		
NOTES: (WELL	CONDITION, COLOUR	, CLARITY, ODOUR)	Mude	ly brown, s	Sheen metal	¿& sulpi	har sell
00	dour	107		1 1	<i>5</i> ″ 	fo	
RECHARGE BE	HAVIOUR:	FAST RECH	ARGING	/	SLOW RECHARGIN	IG (<80% RECHAR	GE AFTER 2 HRS)
WELL SAM	PLING	F1 - 3" -1	1500			1 S18	117 12 14 150
DTW (mbTOC):	: (AT SAMPLING)	1300	2.50	4			A 18 18 18 18 18 18 18 18 18 18 18 18 18
	ORIGINAL		3 3	DUPLICATE		TRIPLI	CATE
SAMPLE ID:	Dr MWI	19 s	AMPLE ID:		SAMP	LE ID:	
SAMPLE TIME:	BA 12	:05 s	AMPLE TIME:		SAMP	LE TIME:	
NO. CONTAINE	RS: 411	_	O. CONTAINEI	RS	NO. CO	ONTAINERS	
ANALYSIS:	170	A.	NALYSIS:		ANAL	veie.	

		ACCUPATION OF	3 50	7.110	T-110		
PROJECT II	NFORMATION	Comments.					
PROJECT NUM		1629		INITIALS:	CP		
DATE:	29/9	>		WEATHER:	Cloudy		
SAMPLING ME	THOD:	LOW FLOW:	HYDRA	SLEEVE:	BALEF	₹: 🗌	
	AUGUS SANIO					THE STATE OF	
WELL GAU	GING DETAILS	Control of the last of the las			366		
STANDING WA	ATER LEVEL (mBTC	oc): 10678	TOTAL	DEPTH (mBTOC) :	5.931	TIME:	. 1.
DEPTH TO PSI	H (mBTOC):	41 at	THICKN	ESS OF PSH (m):			
						76 4	
FIELD PAR	AMETERS				A STEVE S	1 2 5	
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV)+/-10MV	DO (MG/L) +/-10%	TEMP (°C)
16:18	20246	1024	7054	100.2	23,4	4.93	20,4
(6:23	20154	1091	7.57	88.9	-1104	1072	20.7
16:28	2.482	141	7.63	8703	-3.9	2.14	20.8
16:33	2.495	209L	7.70	34.4	0.8	2.63	2009
16 37	2.5/17	3.3L	7.73	77.9	5.7	2.87	2009
16.37	20-14/1		<i>/</i> ^	, , , ,			
·			0				
2.2							
TOTAL PURGE V	/OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):			
						17 THE R. P. LEWIS CO., LANSING	NAME OF TAXABLE
OBSERVAT	TIONS DURING	SAMPLING	والإناف				
NOTES: (WELL	CONDITION, COLOUR	R, CLARITY, ODOUR)	\$	moderate.	poor C	lar.ty	
Sc	one slight	Sulphur	d oil	odour	Ĭ.	/	
RECHARGE B	EHAVIOUR:	FAST RECHAI		4	SLOW RECHAR	GING (<80% RECHA	RGE AFTER 2 HRS)
							,
WELL SAM	IPLING	A STATE OF	HI BUT				
DTW (mbTOC)): (AT SAMPLING)	2.527					7
	ORIGINAL			DUPLICATE	A LINEAR IN	TRIP	LICATE
SAMPLE ID:	MW120	SAF	MPLE ID:		SA	MPLE ID:	
SAMPLE TIME			MPLE TIME:		SA	MPLE TIME:	
NO. CONTAIN	Y.A.	2+A NO.	CONTAINERS		NO	. CONTAINERS	
ANALYSIS:			ALYSIS:		AN	ALYSIS:	

PROJECT	INFORMATION						
PROJECT NU	mber: 2 <i>00</i>	1029		INITIALS:	P		
DATE:	29/5			WEATHER: C	overcas t	1 d. 22/	<u>e</u>
SAMPLING M	ETHOD:	LOW FLOW:	HYDRA	SLEEVE:	BAILER	R: 🗆	
WELL GAU	JGING DETAILS			100		100	4 14 55
STANDING W	ATER LEVEL (mBT	00): 0082	TOTAL	DEPTH (mBTOC) :	11.78	TIME:	
DEPTH TO PS	SH (mBTOC):		THICKNI	ESS OF PSH (m):			
FIELD PAF	RAMETERS	7 1 1 1	P1362		UNET.	E THE	6 1 1 1 1 1
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
10:30	10054	3L	669	74.4	4407	1.03	195
(0:35	1.058	5L	6.65	75.3	39.5	(.36	14.5
10:40	1.061	71	W 6.63	82.7	38.4	1.09	14.5
		800					
5							
TOTAL PURGE	VOLUME (I.)	-	ADDDOV SAMDLE	PURGE RATÉ (LPM):			
TOTAL PURGE	VOLUME (L):		APPROX. SAMPLE	FORGE RATE (LFW).			
OBSERVA	TIONS DURING	SAMPLING	A FILES				
NOTES: (WEL	L CONDITION, COLOU	R, CLARITY, ODOUR)	Sligh	He Cloud	ly with	some light	sheen
	11			19 (1000)	7	SURY 17"	Grant I
	A PART OF THE PART				7		Γ1
RECHARGE	BEHAVIOUR:	FAST RECH.	ARGING L		SLOW RECHARG	GING (<80% RECHARG	GE AFTER 2 HRS)
WELL SAI	MPLING						
DTW (mbTO	C): (AT SAMPLING)	10061					
	ORIGINAL			UPLICATE		TRIPLIC	CATE
SAMPLE ID:	MW201	SA	AMPLE ID:		SAI	MPLE ID:	
SAMPLE TIM			AMPLE TIME:		SAI	MPLE TIME:	
NO. CONTAIL	NERS: YLV	2+A NO	O. CONTAINERS		NO	. CONTAINERS	
ANALYSIS:		Al	NALYSIS:		AN	ALYSIS:	

WELL ID: MW202

	NEODINE	Marine Commission	A STATE OF THE PARTY OF THE PAR		MIT (DET		
	NFORMATION	15/15/19	A K TOP	navel la fai	200	1 1 2 1 1 1 2	N. S. P. Tale
PROJECT NUM	-	029			7		
DATE:	28/5		_	WEATHER:	sunny		
SAMPLING ME	THOD:	LOW FLOW:	HYDRA	ASLEEVE:	BAILER	: <u> </u>	
67 - 17 5					5-325-1	20 miles	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	GING DETAILS	AND DESCRIPTION OF THE PERSON NAMED IN			ALTERNATION OF		State of the last
STANDING W	ATER LEVEL (mBT0	oc): 0-49C) TOTAL	DEPTH (mBTOC) :	14.102	TIME:	
DEPTH TO PS	H (mBTOC):		THICKN	IESS OF PSH (m):			
FIEL O DAD	AMETERS		IN STREET	11 11 19 10		(100°) 1	12 3 3 3 3 3 3 4
FIELD PAR	AWETERS	THE PARTY	5 5 5 THE		PEDOX		2 2 3 3 4 3
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
3:05	0,529	4076	6-31	78.1	54.7	3.82	20.8
3:10	0.540	6.6L	6.22	7005	72.3	2.77	210)
3:15	0.549	8.5L	6.19	79.2	77.3	1.25	21.7
3:20	0,549	10.3L	6-17	69.8	7801	1005	21.7
					,		
						1	
TOTAL PURGE	VOLUME (L):		APPROX. SAMPLE	E PURGE RATE (LPM):			
OBSERVA	TIONS DURING	SAMPLING	4		172-124		
	L CONDITION, COLOUR	The San San		al a	10.	1_	10.1
NOTES: (WELL	L CONDITION, COLOUR	R, CLARITT, ODOOR)	very	clear, wa	Her upper	ars carpo	incorry,
				r'			
RECHARGE E	BEHAVIOUR:	FAST REC	HARGING L		SLOW RECHARG	GING (<80% RECHAR	RGE AFTER 2 HRS)
				3000	181 4.5	1	110000000000000000000000000000000000000
WELL SAN	IPLING -		the state of		461,50	The little	1000 -1 1000
DTW (mbTOC): (AT SAMPLING)	1	0.549				
	ORIGINAL			DUPLICATE	H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ICATE
SAMPLE ID:	· MW		SAMPLE ID:			MPLE ID:	
SAMPLE TIM	2.20		SAMPLE TIME:			MPLE TIME:	
NO. CONTAIN	IERS: ULV	2-14	NO. CONTAINERS			CONTAINERS	
ANALYSIS:			ANALYSIS:		AN	ALYSIS:	

ORIGINAL FIELD RECORD

Version: V2 Issued: October 2016 Review: January 2022

PROJECTI	NFORMATION	7	E 1-52	170	S-100 E-1	111111111111111111111111111111111111111	4 45 14
PROJECT NUM	MBER: 2001	529		INITIALS:	>		
DATE:	2-9/5				orely		
SAMPLING ME			HYDRA	SLEEVE:	BAILER	₹: 🗌	
WELL GAU	GING DETAILS					1	
STANDING WA	ATER LEVEL (mBT	00): 2120	TOTAL	DEPTH (mBTOC) :	1-732		
DEPTH TO PSI	H (mBTOC):			ESS OF PSH (m):		TIME:	
		St 151-4	*			-	
FIELD PAR	AMETERS				ATE.		
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
09:28	2135	31	6.53	7.5	18.4	1.38	20.4
09:33	2.135	48L	6.53	6.7	13.8	1.44	20.8
09:38	l _	B.9L-	6.53	6.4	9.6	2001	21.0
				*			
TOTAL PURGE V	OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):			
OBSERVAT	TIONS DURING	SAMPLING	3 - 2	P. F. F. L.	100	-	
NOTES: (WELL	CONDITION, COLOUR	R, CLARITY, ODOUR)		Clear			
				Clear			
RECHARGE B	EHAVIOUR:	FAST RECH	HARGING		SLOW RECHARG	SING (<80% RECHAR	(GE AFTER 2 HRS)
WELL SAM	IPLING	17 25 10		y 7 1 2 5 5			
DTW (mbTOC)	: (AT SAMPLING)	20135					
	ORIGINAL	100		DUPLICATE		TRIPL	ICATE
SAMPLE ID:	MW203		SAMPLE ID:	D1		MPLE ID:	7
SAMPLE TIME	04-1		SAMPLE TIME:	9:43			9:46
NO. CONTAIN	ERS: V 4	141-	IO. CONTAINERS	U+4,4	72	CONTAINERS	Ux4, A+2
ANALYSIS:		A	NALYSIS:		AN	ALYSIS:	.31

DDO (ECT.)	NFORMATION	200	1000000	WATER F	1000		
13 134				INITIAL O	<i>C</i> >		
PROJECT NUM		1029		INITIALS:	CP		
DATE:	29/5		1	WEATHER:			
SAMPLING ME	THOD:	LOW FLOW:	HYDRA	SLEEVE:	BAILER:	: Ll 	
WELL GALL	GING DETAILS	S. Carlotte	Marine St.	1 7 200	1 17 12 18	Name of Street, or	W 100 100 100 100 100 100 100 100 100 10
	ATER LEVEL (mBTC		S63 TOTAL	DEPTH (mBTOC) : ¿	K DU Lin	176	
DEPTH TO PSI		,o,. U. 8		ESS OF PSH (m):	crospic	TIME:	
DEPTH TO PSI	н (mв гос): 		THIONIN	ESS OF FSR (III).			
FIELD PAR	AMETERS	THE PARTY NAMED IN		01112	15 14 64	The Control	
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
13:21	10351	SL	G-53	4904	-625	0086	20,9
13:26	1.354	5.8L	6.53	4707	-67.3	0.82	20.9
13:31	10357	6.5L	6.53	43-2	-680	0.82	20.9
							16 T
	(2)					3	
TOTAL PURGE V	OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):			
OBSERVA1	TIONS DURING	SAMPLING	100	43 31,00	WARTER	7 4 9	100
		SHEW AND THE	Cl		10-	أداريم	
NOTES: (WELL CONDITION, COLOUR, CLARITY, ODOUR) (lear with moderate Sulphu Sulphu							
Odour.							
RECHARGE B	EHAVIOUR:	FAST REC	HARGING 🖳		SLOW RECHARG	ING (<80% RECHAR	RGE AFTER 2 HRS)
WELL SAM	IPLING	100	THE WEST	133 B	11	NA CAT	N - 3 % 10
DTW (mbTOC)): (AT SAMPLING)						
	ORIGINAL			OUPLICATE		TRIPL	ICATE
SAMPLE ID:	MW 201	4	SAMPLE ID:		SAM	IPLE ID:	
SAMPLE TIME	1	-	SAMPLE TIME:		SAM	IPLE TIME:	
NO. CONTAIN			NO. CONTAINERS		NO.	CONTAINERS	
ANALYSIS:	- 1		ANALYSIS:		ANA	LYSIS:	

WELL ID: MW 205

							4 2 1	
PROJECT	NFORMATION				TO SK			
PROJECT NUM	MBER:	201480 2	001029	INITIALS:	(P			
DATE:	29/	15		WEATHER:) rizzle			
SAMPLING ME	ETHOD: I	LOW FLOW:	HYDRA	SLEEVE:	BAILER	k:		
	GING DETAILS			A STATE OF STATE OF				
STANDING WA	ATER LEVEL (mBTC	001:20281	TOTAL	DEPTH (mBTOC) :	13.496	TIME:		
DEPTH TO PS	9.1		THICKN	ESS OF PSH (m):		THAIE.		
X.	1 10			ACTION OF STREET				
FIELD PAR	AMETERS					FEET OF THE		
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)	
415:24	2.683	2L	6-14	5401	-6.5	3.80	204	
15:29		2.9	6025	50.2	007	3.11	2004	
15:34		3.7	6.26	49.0	2.4	3.03	20.4	
15:34	2-689	405L	8.27	49.2	2,2	2.91	20.4	
							,	
	V							
	· ·							
TOTAL PURGE V	/OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):				
OBSERVA	TIONS DURING	SAMPLING		A TOP	7 9 6			
NOTES: (WELL	. CONDITION, COLOUR	R, CLARITY, ODOUR)	Clear	Slight Sul	phur odo	ur	·c	
		4			7			
DEQUIPE ===	FUAVIOUS	E107.5=C::	inomo 🗇		CLOW DECUADO	NO / spory Empire	DOE ASTER OF IDO.	
RECHARGE B	EHAVIOUR:	FAST RECH	AKGING 🖾		SLOW RECHARG	GING (<80% RECHAI	RGE AFTER 2 HRS)	
WELL SAM	IPLING		STEEL STEEL					
DTW (mbTOC): (AT SAMPLING)	2-684						
	ORIGINAL			UPLICATE		TRIPL	ICATE	
SAMPLE ID:	MW	205 si	AMPLE ID:	D2	SAM	MPLE ID:	TZ	
SAMPLE TIME	15:3	5 s	AMPLE TIME:		SAM	SAMPLE TIME:		
NO. CONTAIN	ERS: YLV		D. CONTAINERS		NO.	CONTAINERS		
ANALYSIS:	`		NALYSIS:		ANA	ALYSIS:		

ANALYSIS:

ANALYSIS:

Geo-Logix

PROJECT INFORMATION	District of 2		303 PR (08)	503 E 13 5	688
					VERY PARTY
PROJECT NUMBER: 200 (0 29			P		
DATE: 29/5		WEATHER: S	nng		
SAMPLING METHOD: LOW FLOW:	HYDRA	SLEEVE:	BAILER:	: []	0
					Aller Marie Cons
WELL GAUGING DETAILS					
STANDING WATER LEVEL (mBTOC) : 2	149 TOTAL	DEPTH (mBTOC) :	4.700	TIME:	
DEPTH TO PSH (mBTOC):		ESS OF PSH (m):		THE.	
					Les Comments of the last
FIELD PARAMETERS					
TIME DTW (mbTOC) TOTAL DISCHARGE	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)
17:05 3.006 2.2L	6-77	Y .58	150.8	3.45	51.3
17:10 3.007 4L	6.7	43.2	155.6	3.21	21.3
17:15 3:00 7 5.8L	6.69	3704	14708	2.79	2103
		, N			
- 1			*		
	8				
West of the state		8			
TOTAL PURGE VOLUME (L):	APPROX. SAMPLE	PURGE RATE (LPM):			
OBSERVATIONS DURING SAMPLING					
NOTES; (WELL CONDITION, COLOUR, CLARITY, ODOU	3) 50	hurbidity	S. C.	*	Market School St.
THE LESS (TITLE SOME STATE OF SOME SERVICE). SERVICE OF SOME S	30 re	turbia. M	1		
		7			
RECHARGE BEHAVIOUR: FAST RE	ECHARGING	9	SLOW RECHARG	ING (<80% RECHAR	GE AFTER 2 HRS)
WELL SAMPLING					
DTW (mbTOC): (AT SAMPLING) 7:16				1	
	MANAGE C	UPLICATE	TE, ISTORY	TRIPL	ICATE
ORIGINAL			The second second	IPLE ID:	
	SAMPLE ID:		SAM	IFLE IU.	
	SAMPLE ID:			IPLE TIME:	
SAMPLE ID: MW 2	-		SAM	0	

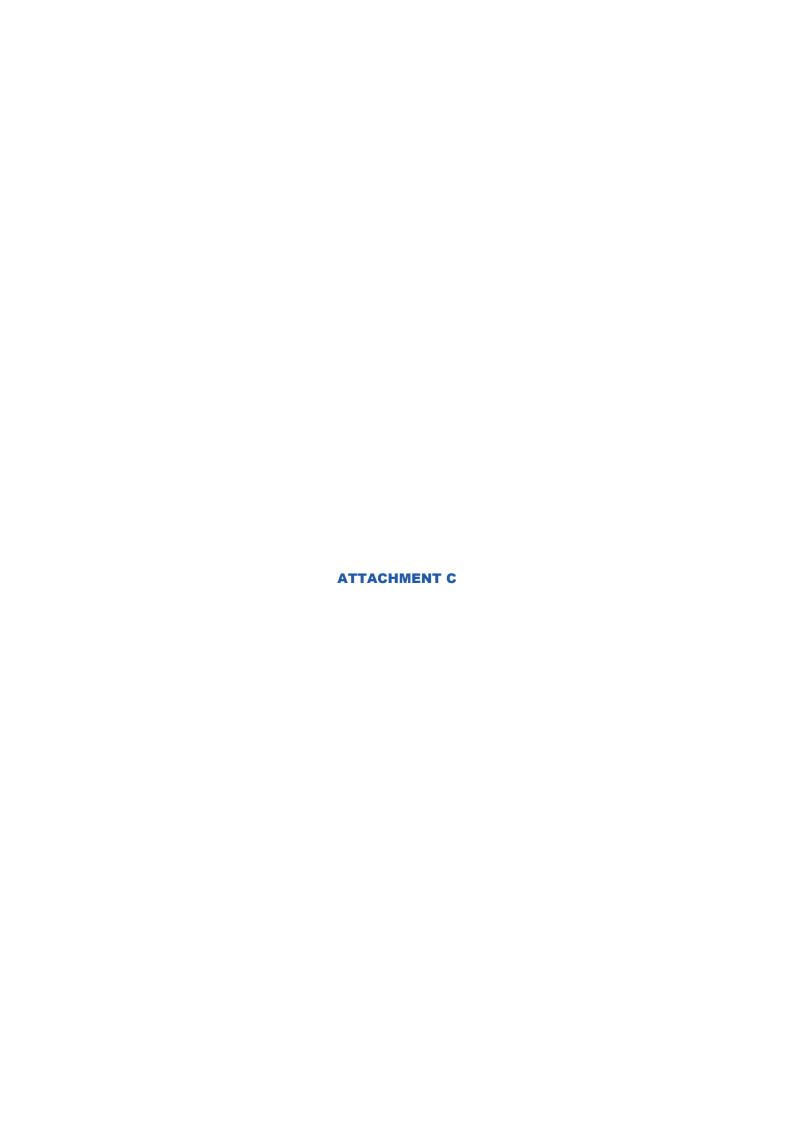
WELL ID: GWOL

PROJECT INFORMATION										
PROJECT NUM	MBER: 2001	029		INITIALS:	P		-			
DATE:	27/5	-			Sunry					
SAMPLING ME	•	LOW FLOW:	HYDRA	ASLEEVE:	BAILER	R: 🗌				
WELL GAUGING DETAILS										
STANDING WATER LEVEL (MBTOC): 1. 749 TOTAL DEPTH (MBTOC): 4.2 74										
DEPTH TO PSH (mBTOC): THICKNESS OF PSH (m):										
FIELD PAR	AMETERS						F ME SALES			
TIME	DTW (mbTOC)	TOTAL DISCHARGE (L)	PH +/- 0.1	CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)			
7:30	1.952	S	6-64	9973	4.9	0.33	2406			
7:35	1.954	TAL		9969	13.3	0.27	24.7			
7:40	1,955	94	6.65	16015	1901	0.22	2407			
		**								
41.95						4.				
TOTAL PURGE V	OLUME (L):		APPROX. SAMPLE	PURGE RATE (LPM):						
OBSERVAT	IONS DURING	SAMPLING		No to the						
NOTES: (WELL	CONDITION, COLOUR	R. CLARITY, ODOUR)	Well Les	y murkey	an initial	Maral S	ione			
ven	sediant =	ich water	1 /	Intuilly steel		7 7				
RECHARGE BI		FAST REC		7	/	GING (<80% RECHAP	RGE AFTER 2 HRS)			
WELL SAM	PLING									
DTW (mbTOC)	: (AT SAMPLING)	10955					:1			
	ORIGINAL			DUPLICATE		The o	ICATE			
SAMPLE ID:	Mawol		SAMPLE ID:			MPLE ID:	<i>y</i>			
SAMPLE TIME	1.77		SAMPLE TIME:			MPLE TIME:				
NO. CONTAIN	ERS: Y L U	24/4	NO. CONTAINERS			CONTAINERS				
ANALYSIS:			ANALYSIS:		ANA	ALYSIS:				

WELL ID: GW02

Geo-Logix			4	400Z		
PROJECT INFORMATION PROJECT NUMBER: 2000 DATE: 29/5 SAMPLING METHOD: LO	29 WFLOW:	HYDRA		CP nng BAILER	k: 🗆	
WELL GAUGING DETAILS STANDING WATER LEVEL (MBTOC DEPTH TO PSH (MBTOC):	:00423		DEPTH (mBTOC) : 3	3.581	TIME:	
\$:05 0.244 \$:09 0.243	2.76 70 4016 70		CONDUCTIVITY (MS/CM) +1-3% 25.0 27.9	REDOX (MV) +/- 10MV	DO (MG/L) +/-10% 2 6 9 7	TEMP (°C) 20.8 20.8
2:18 0-846	80/L 70	,40 ,42	23.1 22.7 22.6	-4.9 -8.1	5-2 5-18 6-41	20.7
TOTAL PURGE VOLUME (L):		OX. SAMPLE	PURGE RATE (LPM):			
OBSERVATIONS DURING S NOTES: (WELL CONDITION, COLOUR, C		igh Aly	# Cloudy	SLOW RECHARG	/ GING (<80% RECHA	RGE AFTER 2 HRS)
ORIGINAL	844	D	DUPLICATE			LICATE
SAMPLE ID: (16) 02 SAMPLE TIME: \$25	SAMPLE SAMPLE			SAF	MPLE ID:	

ANALYSIS:


ANALYSIS:

ANALYSIS:

WELL ID: GWOO!

PROJECT INFORMATION										
PROJECT NUMBER: 2001 029		INITIALS: CI	>							
DATE: 24/5		WEATHER:	rizzle							
SAMPLING METHOD: LOW FLOW:	HYDRA	ASLEEVE:	BAILEF	R: 🗌						
WELL GAUGING DETAILS										
STANDING WATER LEVEL (mBTOC): 0.657 TOTAL DEPTH (mBTOC): 3.654										
DEPTH TO PSH (mBTOC):		IESS OF PSH (m):		TIME:						
FIELD PARAMETERS										
TIME DTW (mbTOC) TOTAL DISCHARCE		CONDUCTIVITY (MS/CM) +/- 3%	REDOX (MV) +/- 10MV	DO (MG/L) +/-10%	TEMP (°C)					
11:22 6135 BL	6091	51-1	284.1	4067	21.9					
11:27 10138 4.26	6.88	49.2	25701	4.45	22.1					
11-22 10129 5096		47.2	229-2	4.55	22.3					
11:27 10321 6026	6.80	46.8	22101	4.41	22.3					
11:32 1.362 7.41	6.78	42.2	239.2	4.71	22.5					
TOTAL PURGE VOLUME (L):	ABDDOY SAMPLE	: PURGE RATE (LPM):								
TOTAL PURGE VOLUME (L).	AFFROX. SAIVIFLE	PORGE RATE (EPW).								
OBSERVATIONS DURING SAMPLIN	G									
NOTES: (WELL CONDITION, COLOUR, CLARITY, OD	our) massl.	clear w	The class	Lalan						
	110-114	cled, m	31.9	y- voluci						
RECHARGE BEHAVIOUR: FAST	RECHARGING M		SLOW RECHAR	GING (<80% RECHAI	RGE AFTER 2 HRS)					
WELL SAMPLING										
DTW (mbTOC): (AT SAMPLING) (362										
ORIGINAL		DUPLICATE EX	tra	TRIPL	ICATE					
SAMPLE ID: GWOY	SAMPLE ID:	GWOY	SAI	MPLE ID:						
SAMPLE TIME: 11:33	SAMPLE TIME:		SAMPLE TIME:							
NO. CONTAINERS: 4/1/2A	NO. CONTAINERS	*	NO	. CONTAINERS						
ANALYSIS:	ANALYSIS:		AN	ALYSIS:						

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 1 of 24

Report Number: 723066-W-V2

Attention: Ben Pearce

 Report
 723066-W-V2

 Project name
 AUBURN

 Project ID
 2001029

 Received Date
 Jun 01, 2020

Client Sample ID			MW101	MW102	MW103	R16MW104
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn02363	S20-Jn02364	S20-Jn02365	S20-Jn02366
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F						
TRH C10-C14	0.05	mg/L	< 0.05	0.12	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	0.2	0.3	0.3
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	0.32	0.4	0.3
TRH C6-C9	0.02	mg/L	-	12	< 0.02	0.24
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.01	mg/L	-	< 0.01	< 0.01	< 0.05
TRH C6-C10	0.02	mg/L	-	12	< 0.02	0.26
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	12	< 0.02	0.26
TRH >C10-C16	0.05	mg/L	< 0.05	0.12	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	0.12	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	0.2	0.4	0.4
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	0.32	0.4	0.4
Volatile Organics	·					
1.1-Dichloroethane	0.001	mg/L	-	0.003	< 0.001	0.031
1.1-Dichloroethene	0.001	mg/L	-	0.031	< 0.001	0.026
1.1.1-Trichloroethane	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.1.1.2-Tetrachloroethane	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.1.2-Trichloroethane	0.001	mg/L	-	0.11	< 0.001	< 0.005
1.1.2.2-Tetrachloroethane	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.2-Dibromoethane	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.2-Dichlorobenzene	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.2-Dichloroethane	0.001	mg/L	-	0.002	< 0.001	< 0.005
1.2-Dichloropropane	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.2.3-Trichloropropane	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.2.4-Trimethylbenzene	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.3-Dichlorobenzene	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.3-Dichloropropane	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.3.5-Trimethylbenzene	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
1.4-Dichlorobenzene	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
2-Butanone (MEK)	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
2-Propanone (Acetone)	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
4-Chlorotoluene	0.001	mg/L	-	< 0.001	< 0.001	< 0.005
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	-	< 0.001	< 0.001	< 0.005

Client Sample ID			MW101	MW102	MW103	R16MW104	
Sample Matrix			Water	Water	Water	Water	
Eurofins Sample No.				S20-Jn02364	S20-Jn02365	S20-Jn02366	
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020	
Test/Reference	LOR	Unit	,,,	,,	,,		
Volatile Organics	LOIC	Offic					
Allyl chloride	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Benzene	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Bromobenzene	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Bromochloromethane	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Bromodichloromethane	0.001	mg/L		< 0.001	< 0.001	< 0.005	
Bromoform	0.001	mg/L		< 0.001	< 0.001	< 0.005	
Bromomethane	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Carbon disulfide	0.001	mg/L		< 0.001	< 0.001	< 0.005	
Carbon Tetrachloride	0.001	mg/L		< 0.001	< 0.001	< 0.005	
Chlorobenzene	0.001	mg/L		< 0.001	< 0.001	< 0.005	
Chloroethane	0.001	mg/L		< 0.001	< 0.001	< 0.005	
Chloroform	0.001	mg/L	_	< 0.005	< 0.005	< 0.005	
Chloromethane	0.003	mg/L	_	< 0.003	< 0.003	< 0.025	
cis-1.2-Dichloroethene	0.001	mg/L	_	4.6	< 0.001	0.17	
cis-1.3-Dichloropropene	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Dibromochloromethane	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Dibromomethane	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Dichlorodifluoromethane	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Ethylbenzene	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Iodomethane	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Isopropyl benzene (Cumene)	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
m&p-Xylenes	0.002	mg/L	_	< 0.002	< 0.002	< 0.01	
Methylene Chloride	0.001	mg/L	_	< 0.001	< 0.001	< 0.05	
o-Xylene	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Styrene	0.001	mg/L	_	< 0.001	< 0.001	< 0.005	
Tetrachloroethene	0.001	mg/L	-	0.002	< 0.001	< 0.005	
Toluene	0.001	mg/L	-	< 0.001	< 0.001	< 0.005	
trans-1.2-Dichloroethene	0.001	mg/L	-	0.15	< 0.001	< 0.005	
trans-1.3-Dichloropropene	0.001	mg/L	-	< 0.001	< 0.001	< 0.005	
Trichloroethene	0.001	mg/L	-	8.5	< 0.001	< 0.005	
Trichlorofluoromethane	0.001	mg/L	-	< 0.001	< 0.001	< 0.005	
Vinyl chloride	0.001	mg/L	-	0.072	< 0.001	0.029	
Xylenes - Total*	0.003	mg/L	-	< 0.003	< 0.003	< 0.015	
Total MAH*	0.003	mg/L	-	< 0.003	< 0.003	< 0.01	
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	-	13.467	< 0.005	0.225	
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	-	13.395	< 0.005	0.196	
4-Bromofluorobenzene (surr.)	1	%	-	68	95	69	
Toluene-d8 (surr.)	1	%	-	88	96	68	

Page 2 of 24

Client Sample ID			MW106	MW107	MW108	MW109
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn02367	S20-Jn02368	S20-Jn02369	S20-Jn02370
•						
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac		Г				
TRH C10-C14	0.05	mg/L	0.10	< 0.05	0.11	< 0.05
TRH C15-C28	0.1	mg/L	0.5	< 0.1	0.4	0.2
TRH C29-C36	0.1	mg/L	0.2	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	0.8	< 0.1	0.51	0.2
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Total Recoverable Hydrocarbons - 2013 NEPM Frac						
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	0.14	< 0.05	0.12	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	0.14	< 0.05	0.12	< 0.05
TRH >C16-C34 TRH >C34-C40	0.1	mg/L	0.6 < 0.1	< 0.1	0.4	0.2
TRH >C34-C40 TRH >C10-C40 (total)*	0.1	mg/L mg/L	0.74	< 0.1 < 0.1	< 0.1 0.52	< 0.1
Volatile Organics	1 0.1	IIIg/∟	0.74	< 0.1	0.52	0.2
1.1-Dichloroethane	0.001	m a /l	- 0.001	< 0.001	. 0.001	- 0.001
1.1-Dichloroethane	0.001	mg/L	< 0.001		< 0.001	< 0.001
1.1.1-Dichloroethene	0.001	mg/L	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.7Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Page 3 of 24

Client Sample ID			MW106	MW107	MW108	MW109
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn02367	S20-Jn02368	S20-Jn02369	S20-Jn02370
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Volatile Organics						
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	0.001	< 0.001	< 0.001
lodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	93	87	94	92
Toluene-d8 (surr.)	1	%	93	92	91	95

Client Sample ID Sample Matrix			MW110 Water	MW111 Water	MW112 Water	MW113 Water
Eurofins Sample No.			S20-Jn02371	S20-Jn02372	S20-Jn02373	S20-Jn02374
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	0.10	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	0.6	0.2	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	0.6	0.3	< 0.1
TRH C6-C9	0.02	mg/L	< 0.02	0.05	< 0.02	0.03
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	0.05	< 0.02	0.04
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	0.05	< 0.02	0.02
TRH >C10-C16	0.05	mg/L	< 0.05	0.05	0.10	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	0.05	0.1	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	0.6	0.2	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	0.65	0.3	< 0.1

Client Sample ID			MW110	MW111	MW112	MW113
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn02371	S20-Jn02372	S20-Jn02373	S20-Jn02374
•						
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Volatile Organics	<u> </u>	T				
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform Promomethans	0.001	mg/L	< 0.001 < 0.001	< 0.001	< 0.001	< 0.001 < 0.001
Bromomethane Corbon disulfida	0.001	mg/L	< 0.001	< 0.001	< 0.001 < 0.001	< 0.001
Carbon disulfide Carbon Tetrachloride	0.001	mg/L		< 0.001		< 0.001
	0.001	mg/L mg/L	< 0.001	< 0.001	< 0.001 < 0.001	
Chloropthana	0.001 0.001		< 0.001 < 0.001	< 0.001 < 0.001	< 0.001	< 0.001 < 0.001
Chloroethane Chloroform	0.001	mg/L mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloromethane	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	0.025	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.004
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.004
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.009
Methylene Chloride	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.003
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.004
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.004
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	0.002	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.002	< 0.001	< 0.001

Page 5 of 24

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			MW110 Water S20-Jn02371 May 27, 2020	MW111 Water S20-Jn02372 May 27, 2020	MW112 Water S20-Jn02373 May 27, 2020	MW113 Water S20-Jn02374 May 27, 2020
Test/Reference	LOR	Unit				
Volatile Organics						
Trichloroethene	0.001	mg/L	< 0.001	0.013	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	0.013
Total MAH*	0.003	mg/L	< 0.003	< 0.003	< 0.003	0.017
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	0.04	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	0.04	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	85	99	95	96
Toluene-d8 (surr.)	1	%	88	102	98	99

Client Sample ID			MW114	MW115	MW116	MW117
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn02375	S20-Jn02376	S20-Jn02377	S20-Jn02378
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C10-C14	0.05	mg/L	0.08	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	0.4	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	0.5	< 0.1
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	0.09	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	0.09	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	0.5	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	0.59	< 0.1
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			MW114	MW115	MW116	MW117
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn02375	S20-Jn02376	S20-Jn02377	S20-Jn02378
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
•	LOD	Linit	May 27, 2020	May 21, 2020	Way 21, 2020	Way 27, 2020
Test/Reference	LOR	Unit				
Volatile Organics	0.004		0.004	0.004	0.004	0.004
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene Drawn a chlass markha a c	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane Corbon disultida	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon disulfide Carbon Tetrachloride	0.001	mg/L	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.001	mg/L mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroform	0.001	mg/L	< 0.001	< 0.005	< 0.005	< 0.001
Chloromethane	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Methylene Chloride	0.001	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	86	90	100	97
Toluene-d8 (surr.)	1	%	80	93	95	98

Page 7 of 24

Client Sample ID			MW118	MW119	MW120	MW121
Sample Matrix			Water	Water	Water	Water
•						
Eurofins Sample No.			S20-Jn02379	S20-Jn02380	S20-Jn02381	S20-Jn02382
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions					
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	0.24	< 0.05
TRH C15-C28	0.1	mg/L	0.3	< 0.1	1.4	0.2
TRH C29-C36	0.1	mg/L	0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	0.4	< 0.1	1.64	0.2
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Total Recoverable Hydrocarbons - 2013 NEPM Fra						
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	0.52	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	0.52	< 0.05
TRH > C16-C34	0.1	mg/L	0.3	< 0.1	1.2	0.2
TRH > C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	0.3	< 0.1	1.72	0.2
Volatile Organics	0.004		0.004	0.004	0.004	0.004
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane 1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Trichloroethane	0.001	mg/L	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
1.2-Dibromoethane	0.001	mg/L mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Distribution and 1.2-Distr	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Page 8 of 24

Client Sample ID			MW118	MW119	MW120	MW121
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn02379	S20-Jn02380	S20-Jn02381	S20-Jn02382
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Volatile Organics	·					
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	98	97	96	95
Toluene-d8 (surr.)	1	%	101	105	93	98

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			GW01 Water S20-Jn02383 May 27, 2020	GW02 Water S20-Jn02384 May 27, 2020	R16GW04 Water S20-Jn02385 May 27, 2020	MW201 Water S20-Jn02386 May 29, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C10-C14	0.05	mg/L	-	< 0.05	< 0.05	0.08
TRH C15-C28	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
TRH C6-C9	0.02	mg/L	< 0.02	0.06	1.1	< 0.02
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.01	mg/L	-	< 0.01	< 0.1	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	0.07	1.2	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	0.07	1.2	< 0.02
TRH >C10-C16	0.05	mg/L	-	< 0.05	< 0.05	0.06
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	-	< 0.05	< 0.05	0.06
TRH >C16-C34	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	-	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	-	< 0.1	< 0.1	< 0.1

Page 9 of 24

Client Sample ID			GW01	GW02	R16 GW04	MW201
Sample Matrix			Water	Water	Water	Water
•						
Eurofins Sample No.			S20-Jn02383	S20-Jn02384	S20-Jn02385	S20-Jn02386
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 29, 2020
Test/Reference	LOR	Unit				
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	0.48	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	0.13	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Bromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Chloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.05	< 0.005
Chloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	0.53	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
lodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.02	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001	< 0.1	< 0.001
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	0.012	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001

Page 10 of 24

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			GW01 Water S20-Jn02383 May 27, 2020	GW02 Water S20-Jn02384 May 27, 2020	R16GW04 Water S20-Jn02385 May 27, 2020	MW201 Water S20-Jn02386 May 29, 2020
Test/Reference	LOR	Unit				
Volatile Organics						
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	0.24	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.01	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	0.34	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.03	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003	< 0.02	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	1.252	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	0.912	< 0.005
4-Bromofluorobenzene (surr.)	1	%	92	94	81	87
Toluene-d8 (surr.)	1	%	100	100	74	90

Client Sample ID			MW202	MW203	MW204	MW205
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn02387	S20-Jn02388	S20-Jn02389	S20-Jn02390
Date Sampled			May 28, 2020	May 29, 2020	May 29, 2020	May 29, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Page 11 of 24

Client Sample ID			MW202	MW203	MW204	MW205
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn02387	S20-Jn02388	S20-Jn02389	S20-Jn02390
Date Sampled			May 28, 2020	May 29, 2020	May 29, 2020	May 29, 2020
•	LOD	Linit	May 20, 2020	May 25, 2020	Way 23, 2020	Way 25, 2020
Test/Reference	LOR	Unit				
Volatile Organics	0.004		0.004	0.004	0.004	0.004
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.001
Bromobenzene Drawn a chlass markha a c	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane Corbon disultida	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon disulfide Carbon Tetrachloride	0.001	mg/L	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.001	mg/L mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroform	0.001	mg/L	< 0.001	< 0.005	< 0.005	< 0.001
Chloromethane	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Methylene Chloride	0.001	mg/L	< 0.002	< 0.002	< 0.001	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	86	90	90	84
Toluene-d8 (surr.)	1	%	87	92	89	85

Client Sample ID			D1	D2
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Jn02391	S20-Jn02392
Date Sampled			May 29, 2020	May 29, 2020
Test/Reference	LOR	Unit	, , ,	
Total Recoverable Hydrocarbons - 1999 NEPM		U U III		
TRH C10-C14	0.05	mg/L	0.10	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	0.1	< 0.1
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	0.08	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	0.08	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1
Volatile Organics				
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001
Benzene Bromobenzene	0.001	mg/L	< 0.001 < 0.001	0.001 < 0.001
Bromochloromethane	0.001	mg/L mg/L	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001
Bromomethane	0.001	mg/L	< 0.001	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001
Chloroethane	0.001	mg/L	< 0.001	< 0.001
Chloroform	0.005	mg/L	< 0.005	< 0.005
Chloromethane	0.001	mg/L	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001

Client Sample ID			D1	D2
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Jn02391	S20-Jn02392
Date Sampled			May 29, 2020	May 29, 2020
Test/Reference	LOR	Unit		
Volatile Organics				
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	78	84
Toluene-d8 (surr.)	1	%	81	86

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 02, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 02, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 02, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Jun 02, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Volatile Organics	Sydney	Jul 22, 2020	7 Days

⁻ Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

Geo-Logix P/L

Bld Q2 Level 3, 2309/4 Daydream St

Warriewood

NSW 2102

Project Name: Project ID:

AUBURN 2001029

Order No.: 3826

Report #: 723066 Phone: 02 9979 1722

02 9979 1222 Fax:

Sydney

Received: Jun 1, 2020 2:50 PM

Due: Jun 9, 2020 **Priority:** 5 Day **Contact Name:** Ben Pearce

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								TRH C6-C9	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B9
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71										
Sydr	ney Laboratory	- NATA Site # 1	8217			Χ	Х	Х	Х	Χ	Χ	Χ	Χ	Χ
Brisbane Laboratory - NATA Site # 20794														
Perti	h Laboratory - N	IATA Site # 237	36											
Exte	rnal Laboratory	,												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	MW101	May 27, 2020		Water	S20-Jn02363				Х	Χ				
2	MW102	May 27, 2020		Water	S20-Jn02364						Х		Х	
3	MW103	May 27, 2020		Water	S20-Jn02365						Χ		Х	
4	MW104	May 27, 2020		Water	S20-Jn02366						Χ		Х	
5	MW106	May 27, 2020		Water	S20-Jn02367						Χ		Х	
6	MW107	May 27, 2020		Water	S20-Jn02368						Χ		Х	
7	MW108	May 27, 2020		Water	S20-Jn02369						Χ		Х	
8	MW109	May 27, 2020		Water	S20-Jn02370						Χ		Х	
9	MW110	May 27, 2020		Water	S20-Jn02371						Χ		Χ	
10	MW111	May 27, 2020		Water	S20-Jn02372						Х		Х	

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Geo-Logix P/L

Bld Q2 Level 3, 2309/4 Daydream St

Warriewood

NSW 2102

Project Name: Project ID:

AUBURN 2001029

Order No.: 3826

Report #: 723066 Phone: 02 9979 1722

02 9979 1222 Fax:

Eurofins Analytical Services Manager: Ursula Long

5 Day

New Zealand

Jun 1, 2020 2:50 PM

Jun 9, 2020

Ben Pearce

Sample Detail						HOLD	TRH C6-C10	TRH C6-C9	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B9
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	71										
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Χ
Bris	bane Laborator	y - NATA Site #	20794											
Pert	h Laboratory - I	NATA Site # 237	36		_									
11	MW112	May 27, 2020		Water	S20-Jn02373						Х		Х	
12	MW113	May 27, 2020		Water	S20-Jn02374						Х		Х	
13	MW114	May 27, 2020		Water	S20-Jn02375						Χ		Х	
14	MW115	May 27, 2020		Water	S20-Jn02376						Χ		Х	
15	MW116	May 27, 2020		Water	S20-Jn02377						Χ		Х	
16	MW117	May 27, 2020		Water	S20-Jn02378						Χ		Х	
17	MW118	May 27, 2020		Water	S20-Jn02379						Χ		Х	
18	MW119	May 27, 2020		Water	S20-Jn02380						Χ		Х	
19	MW120	May 27, 2020		Water	S20-Jn02381						Х		Х	
20	MW121	May 27, 2020		Water	S20-Jn02382						Х		Х	
21	GW01	May 27, 2020		Water	S20-Jn02383		Х	Х			Х			
22	GW02	May 27, 2020		Water	S20-Jn02384						Χ		Х	
23	GW04	May 27, 2020		Water	S20-Jn02385						Χ		Х	

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane Perth 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 NATA # 1261

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 Site # 23736

Received:

Priority:

Contact Name:

Due:

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

Geo-Logix P/L

Bld Q2 Level 3, 2309/4 Daydream St

Warriewood NSW 2102

Project Name:

Project ID:

AUBURN 2001029

Order No.: 3826

Report #: 723066 Phone: 02 9979 1722

02 9979 1222 Fax:

Eurofins Analytical Services Manager: Ursula Long

5 Day

New Zealand

Auckland

IANZ # 1327

Jun 9, 2020

Ben Pearce

Jun 1, 2020 2:50 PM

Sample Detail								TRH C6-C9	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B9
Melbourne Laboratory - NATA Site # 1254 & 14271														
Sydney Laboratory - NATA Site # 18217						Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794														
		IATA Site # 237	36	ı										
24	MW201	May 29, 2020		Water	S20-Jn02386						Х		Х	
25	MW202	May 28, 2020		Water	S20-Jn02387						Х		Х	
26	MW203	May 29, 2020		Water	S20-Jn02388						Х		Х	
27	MW204	May 29, 2020		Water	S20-Jn02389						Χ		Х	
28	MW205	May 29, 2020		Water	S20-Jn02390						Χ		Х	
29	D1	May 29, 2020		Water	S20-Jn02391						Х		Х	
30	D2	May 29, 2020		Water	S20-Jn02392						Χ		Χ	
31	R1	May 29, 2020		Water	S20-Jn02393	Х								
32	R2	May 29, 2020		Water	S20-Jn02394	Х								
33	VP6/0.5-0.6	May 26, 2020		Soil	S20-Jn02395							Χ		Х
34	VP10/0.3-0.4	May 26, 2020		Soil	S20-Jn02396							Х		Х
35	VP16/0.3-0.5	May 26, 2020		Soil	S20-Jn02397							Х		Х
Test	Test Counts						1	1	1	1	29	3	28	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Page 19 of 24

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Total Recoverable Hydrocarbons - 1999 NEPM Fractio	ns				
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractio	ns				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide Carbon Tetrachloride	mg/L	< 0.001 < 0.001	0.001	Pass Pass	
	mg/L	< 0.001	0.001	Pass	
Chlorosthana	mg/L				
Chloroform	mg/L	< 0.001	0.001	Pass	
Chloropothono	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Dibromomethane			mg/L	< 0.001			0.001	Pass	
Dichlorodifluoromethane			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
Iodomethane			mg/L	< 0.001			0.001	Pass	
Isopropyl benzene (Cumene)			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes			mg/L	< 0.002			0.002	Pass	
Methylene Chloride			mg/L	< 0.001			0.001	Pass	
o-Xylene			mg/L	< 0.001			0.001	Pass	
Styrene			mg/L	< 0.001			0.001	Pass	
Tetrachloroethene			mg/L	< 0.001			0.001	Pass	
Toluene			mg/L	< 0.001			0.001	Pass	
trans-1.2-Dichloroethene			mg/L	< 0.001			0.001	Pass	
trans-1.3-Dichloropropene			mg/L	< 0.001			0.001	Pass	
Trichloroethene			mg/L	< 0.001			0.001	Pass	
Trichlorofluoromethane			mg/L	< 0.001			0.001	Pass	
Vinyl chloride			mg/L	< 0.001			0.001	Pass	
Xylenes - Total*			mg/L	< 0.003			0.003	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions							
TRH C10-C14			%	123			70-130	Pass	
TRH C6-C9			%	85			70-130	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions							
Naphthalene			%	100			70-130	Pass	
TRH C6-C10			%	86			70-130	Pass	
TRH >C10-C16			%	127			70-130	Pass	
LCS - % Recovery									
Volatile Organics									
1.1-Dichloroethene			%	126			70-130	Pass	
1.1.1-Trichloroethane			%	106			70-130	Pass	
1.2-Dichlorobenzene			%	118			70-130	Pass	
1.2-Dichloroethane			%	109			70-130	Pass	
Benzene			%	110			70-130	Pass	
Ethylbenzene			%	116			70-130	Pass	
m&p-Xylenes			%	126			70-130	Pass	
o-Xylene			%	120			70-130	Pass	
Toluene			%	119			70-130	Pass	
Trichloroethene			%	114			70-130	Pass	
Xylenes - Total*			%	124			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C10-C14	S20-Jn02345	NCP	%	77			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	S20-Jn02345	NCP	%	75			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
		1	. ——				000/	Dana	
TRH C10-C14	S20-Jn02363	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
-	S20-Jn02363 S20-Jn02363	CP CP	mg/L mg/L	< 0.05 < 0.1	< 0.05	<1 <1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons -	2013 NEDM Fract	ione		Result 1	Result 2	RPD			
TRH >C10-C16	S20-Jn02363	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S20-Jn02363	CP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
TRH >C34-C40	S20-Jn02363	CP		< 0.1	< 0.1	<1	30%		
	320-31102303	CF	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate Trial Brown and Inc. 11 and Inc. 12 and Inc.	4000 NEDM F	•		Door It 4	D 11 0	DDD	l		
Total Recoverable Hydrocarbons -			,,	Result 1	Result 2	RPD	000/		
TRH C6-C9	S20-Jn00030	NCP	mg/L	0.17	0.18	6.0	30%	Pass	
Duplicate				T			Г		
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD		_	
Naphthalene	S20-Jn00030	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S20-Jn00030	NCP	mg/L	0.18	0.19	6.0	30%	Pass	
Duplicate							I		
Volatile Organics	·	1		Result 1	Result 2	RPD			
1.1-Dichloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1-Dichloroethene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1-Trichloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2-Trichloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dibromoethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichlorobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloropropane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.3-Trichloropropane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.4-Trimethylbenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichlorobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichloropropane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
· ·	S20-Jn00030	NCP		< 0.001	< 0.001	<1	30%	Pass	
1.3.5-Trimethylbenzene	•		mg/L						
1.4-Dichlorobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Butanone (MEK)	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Propanone (Acetone)	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Chlorotoluene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Allyl chloride	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromochloromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromodichloromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromoform	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromomethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon disulfide	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon Tetrachloride	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chlorobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroform	S20-Jn00030	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chloromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
cis-1.2-Dichloroethene	S20-Jn00030	NCP	mg/L	0.007	0.006	9.0	30%	Pass	
cis-1.3-Dichloropropene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromochloromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromomethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dichlorodifluoromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	\$20-Jn00030 \$20-Jn00030	NCP		< 0.001	< 0.001		30%		
Ethylbenzene			mg/L	i		<1		Pass	
lodomethane	\$20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Isopropyl benzene (Cumene)	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S20-Jn00030	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	

Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Methylene Chloride	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
o-Xylene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Styrene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Tetrachloroethene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.3-Dichloropropene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichloroethene	S20-Jn00030	NCP	mg/L	0.11	0.10	2.0	30%	Pass	
Trichlorofluoromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Vinyl chloride	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S20-Jn00030	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Page 23 of 24

Comments

This report has been revised (V2) to amend VOC results for S20-Jn02364.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

R16 The LORs have been raised due to the high concentration of one or more analytes

Authorised By

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Geo-Logix P/L Company name:

Contact name: Ben Pearce Project name: **AUBURN** Project ID: 2001029 COC number: Not provided

Turn around time: 5 Day

Jun 1, 2020 2:50 PM Date/Time received:

Eurofins reference: 723066

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 6.2 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- XSplit sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). Notes^{N/A}

Semi volatile TRH analysis on GW01 cancelled. Vials not received for sample MW101, volatile analysis cancelled. Amber for sample GW04 to be received.

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Ben Pearce - bpearce@geo-logix.com.au.

Geo-Logix Pty Ltd	Droiget Manager	PO PO	CHAIN OF CUSTODY	DΥ	Page of 2	3282		
2309/4 Daydream St							ļ	
Warriewood, NSW 2102	Contact email:	preame	@ sec-los-t-com-au	24	Quote Reference:			
ABN: 86 116 892 936	Project Name:	Aubum			Send Invoice to:	accounts@geo-logix.com.au	ıu	
P: (02) 9979 1722 F: (02) 9979 1722	Project Number:	2001029	Date Submitted:	16/2020	TAT required:			
TOTAL POOL OF THE PARTY	S. Infant		ANALYSI	ANALYSIS REQUIRED				
		Matrix				/) OH)		
	ı	ill r r int, filters		DMPOSITE RH - C6 - C10 RH - C10 - C40 DCs FEXN	AHS CBs CPs PPs nenols etals - M8	etals - Lead etals - Specify ** CLP sbestos (ID only sbestos (WA DC preign Materials	old	Eurofins MGT Suite Codes
101 MK	27/5	1		* インナ				B1 TRH/BTEXN B1A TRH/MAH
XE 102	2/8/5	\		トメ	{			
MW 103	27/5	1		N X	T.			B2A TRH/MAH/Pb B3 PAH/Phenols
holaví	27/5	1		ト人人				
SOI MW	2/8/5	\		ド ス				B5 TRH/BTEXN/PAH/Phenois
10] WW/	29/5	1		アメ				
801 MIN	28/5	\		トメ				B7A TRH/BTEXN/PAH/Phenois/M8
501 M 12	28/5	1		XX				
MW 110	28/5	1		XXX				B10 TRH/BTEXWPAH/OCP/OPP/M8
111 mw/	28/5	1		* * *				B11 Na/K/Ca/Mg/Cl/SO ₄ /CO ₃ /HCO ₃ /NH ₃ /NO ₃
SI ME	28/5	,)		K				B11A B11/Alkalinity B11B B11/EC/TDS
SII MW	28/5	-		人人人				B12 TRH/BTEXN/Oxygenates/Ethanol
hil my	28/5	/		* * * *				B12A TRH/BTEXN/Oxygenates B13 OCP/PCB
SII MW	28/5	_		× ×				
911 MW	28/5	(人人				B16 TDS/SQ,/CH,/Alk/BOD/COD/HPC/CUB
71 WX 17	2/182	1		XX				
SII MW	29/5	\		* *				B18 CI-/SO ₄ /pH
bil mw	29/5	_		KKX				
Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr e+, Cr 3+,	Pb, Zn, Hg, Cr ⁶⁺ , Cr	Fe ²⁺ , Fe ³⁺ , Be, B,	Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bl, Sb Chain of Cus	o, Ag, Ba, TI, Bi, Sb Chain of Custody				
Relinquished by: Lacken Penyel batertime: 16/20 Signature:	Pengel Gaterin	me: <u>1/6/20</u> Signatu	Coergoly	Received by: Received by:	Date/Time: / '	Date/Time: 1.6.2 Signature:	12.75.4	
Q3 2.1 Qf_Q24 Eurofins Chain of Custody					02/06/2	0 2125 PM	# 72	# #23066 Review: January 2022

Relinquished by: Coden Pengel Batertime: 16/20 signature: 4 pengelin Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr e*, Cr *, Fe 2*, Fe 3*, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb P: (02) 9979 1722 F: (02) 9979 1222 Building Q2, Level 3 ABN: 86 116 892 936 2309/4 Daydream St Warriewood, NSW 2102 **Geo-Logix Pty Ltd** Lab ID R2 28/5 UP16/0-3-0-7 26/5 MW201 MW121 MW120 MW205 29/5 MW 203 29/5 CMOI Mw204 29/5 MW202 28/5 CWO2 P2 Sample ID 29/5 29/5 29/5 24/5 29/5 29/5 29/5 24/5 Project Number: Project Name: Contact email: Project Manager: ___ Date soil bpeared geo-logitions an 2001029 Date Submitted: water Matrix Ben air paint, filters other **CHAIN OF CUSTODY** Comments ANALYSIS REQUIRED Received by: 1000 01 Chain of Custody COMPOSITE 1 λ K 1 7 1 7 TRH - C6 - C10 N K h ٨ X 7 7 TRH - C10 - C40 X X 7 7 ٨ A X \wedge X VOCs Χ BTEXN PAHs **PCBs** TAT required: Send Invoice to: Purchase Order No: Page 2 of 2 Quote Reference: Date/Time: 7 6 · 20 Signature: **OCPs OPPs** Phenois Metals - M8 accounts@geo-logix.com.au Metals - Lead Metals - Specify ** TCLP Asbestos (ID only) Asbestos (WA DOH) Foreign Materials Conductivity (EC) рΗ Hold 89 139 SUITE B16 TDS/SO₄/CH₄/Alk/BOD/COD/HPC/CUB B18 CI-/SO₄/pH B17 SO₄/NO₃/Fe++/HPC/CUB B15 OCP/OPP/PCB B20 CEC/%ESP/Ca/Ma/Na/K B14 OCP/OPP B13 OCP/PCB B12A TRH/BTEXN/Oxygenates B11B B11/EC/TDS B11A B11/Alkalinity B11 Na/K/Ca/Mg/Cl/SO₃/CO₃/HCO₃/NH₃/NO₃ B10 TRH/BTEXN/PAH/OCP/OPP/M8 B7A TRH/BTEXN/PAH/Phenois/M8 B7 B6 B4A 2 В B12 TRH/BTEXN/Oxygenates/Ethanol B2A TRH/MAH/Pb TRH/BTEXN/PAH/Phenols TRH/MAH **Eurofins MGT Suite** TRH/BTEXN/PAH/OCP/M8 TRH/VOC/PAH/M8 TRH/BTEXN/PAH/M8 TRH/BTEXN/M8 TRH/BTEXN/M7 TRH/BTEXN/PAH PAH/PhenoIs TRH/BTEXN/Pb TRH/BTEXN Codes

Q3.2.1 QF_024 Eurofins Chain of Custody

Version: V1 Issued: June 2015 Review: January 2022

#AU04_Enviro_Sample_NSW

To: Ben Pearce **Subject:** RE: 723066

From: Ben Pearce [mailto:bpearce@geo-logix.com.au]

Sent: Tuesday, 2 June 2020 1:19 PM **To:** #AU04_Enviro_Sample_NSW

Subject: RE: 723066

Hi Luca,

No, I need the TRH C10 - C40 cancelled for GW01 as we don't know which bottles are actually GW01 and not GW04.

I'll send in new bottles for GW04.

We will need to resample MW101.

Thanks

Ben

Website: www.eurofins.com.au/environmental-testing

From: Ben Pearce [mailto:bpearce@geo-logix.com.au]

Sent: Tuesday, 2 June 2020 12:49 PM **To:** #AU04_Enviro_Sample_NSW

Subject: RE: 723066

Hi Luca,

Can you please cancel semi volatile TRH analysis on GW01. We have more ambers for GW04 we will send to the lab today.

Thanks,

Ben

From: EnviroSampleNSW@eurofins.com <EnviroSampleNSW@eurofins.com>

Sent: Tuesday, 2 June 2020 12:43 PM

To: Ben Pearce < bpearce@geo-logix.com.au >

Subject: RE: 723066

Correct Ben

Kind Regards,

Luca Dominici Enviro Sample NSW Sample Receipt NSW

Eurofins | Environment Testing Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone : +61 2 9900 8421

Email: EnviroSampleNSW@Eurofins.com

Website: www.eurofins.com.au/environmental-testing

From: Ben Pearce [mailto:bpearce@geo-logix.com.au]

Sent: Tuesday, 2 June 2020 12:40 PM **To:** #AU04_Enviro_Sample_NSW

Subject: RE: 723066

OK thanks Luca,

So you didn't receive any vials for MW101 or ambers for GW04, is that correct?

Regards,

Ben

From: EnviroSampleNSW@eurofins.com <EnviroSampleNSW@eurofins.com>

Sent: Tuesday, 2 June 2020 12:36 PM

To: Ben Pearce < bpearce@geo-logix.com.au >

Subject: RE: 723066

Hi Ben,

My bad, please see amendments below

Kind Regards,

Luca Dominici Enviro Sample NSW Sample Receipt NSW

Eurofins | Environment Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone : +61 2 9900 8421

Email: EnviroSampleNSW@Eurofins.com

Website: www.eurofins.com.au/environmental-testing

From: Ben Pearce [mailto:bpearce@geo-logix.com.au]

Sent: Tuesday, 2 June 2020 12:30 PM **To:** #AU04_Enviro_Sample_NSW **Cc:** Ursula Long; Caden Pengelly

Subject: RE: 723066

Hi Luca,

Sorry I don't follow – you received 4 x ambers labelled MW101 and no ambers for MW104, and no vials for MW101?

The photos are of GW01.

Thanks,

Ben

From: EnviroSampleNSW@eurofins.com

Sent: Tuesday, 2 June 2020 11:23 AM

To: Ben Pearce < bpearce@geo-logix.com.au >

Cc: UrsulaLong@eurofins.com

Subject: 723066

Hi Ben,

We are processing samples logged under report #723066.

Please note that we received 4 ambers labelled as GW01, while 2 of them should be GW04. Are you able to advise which is which going by the picture attached?

Also vials for MW101 were not received.

Please let me know if I can give you further details

Kind Regards,

Luca Dominici Enviro Sample NSW Sample Receipt NSW

Eurofins | Environment Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone : +61 2 9900 8421

Email : <u>EnviroSampleNSW@Eurofins.com</u>

Website: www.eurofins.com.au/environmental-testing

Click here to report this email as spam.

ScannedByWebsenseForEurofins

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ben Pearce

 Report
 723567-W

 Project name
 AUBURN

 Project ID
 2001029

 Received Date
 Jun 03, 2020

Client Sample ID Sample Matrix Eurofins Sample No.				GW04 Water S20-Jn06201
Date Sampled				May 29, 2020
Test/Reference		LOR	Unit	
Total Recoverable Hydrocarbons - 1999	NEPM Fract	ions		
TRH C10-C14		0.05	mg/L	< 0.05
TRH C15-C28		0.1	mg/L	< 0.1
TRH C29-C36		0.1	mg/L	< 0.1
TRH C10-C36 (Total)		0.1	mg/L	< 0.1
Total Recoverable Hydrocarbons - 2013	NEPM Fract	ions		
TRH >C10-C16		0.05	mg/L	< 0.05
TRH >C16-C34		0.1	mg/L	< 0.1
TRH >C34-C40		0.1	mg/L	< 0.1
TRH >C10-C40 (total)*		0.1	mg/L	< 0.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 03, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 03, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

|___ |___

Australia

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

Geo-Logix P/L

Bld Q2 Level 3, 2309/4 Daydream St

Warriewood

NSW 2102

Project Name: Project ID:

AUBURN 2001029

Order No.: PO3826 Report #: 723567

Phone: 02 9979 1722 02 9979 1222 Fax:

Received: Jun 3, 2020 3:03 PM

Due: Jun 11, 2020 **Priority:** 5 Day **Contact Name:** Ben Pearce

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Total Recoverable Hydrocarbons - 2013 NEPM Fractions
Melb	ourne Laborato	ry - NATA Site	# 1254 & 142	71			
Sydr	ey Laboratory	NATA Site # 1	8217			Х	Х
Brisk	pane Laboratory	/ - NATA Site #	20794				
Perth	n Laboratory - N	IATA Site # 237	36				
Exte	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	GW04	May 29, 2020		Water	S20-Jn06201	Х	Х
Test	Counts					1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions							
TRH C10-C14			mg/L	< 0.05			0.05	Pass	
TRH C15-C28			mg/L	< 0.1			0.1	Pass	
TRH C29-C36			mg/L	< 0.1			0.1	Pass	
Method Blank									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions							
TRH >C10-C16			mg/L	< 0.05			0.05	Pass	
TRH >C16-C34			mg/L	< 0.1			0.1	Pass	
TRH >C34-C40			mg/L	< 0.1			0.1	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions							
TRH C10-C14			%	83			70-130	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions							
TRH >C10-C16	T		%	81			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons -	- 1999 NEPM Fract	tions		Result 1					
TRH C10-C14	S20-Jn04500	NCP	%	74			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1					
TRH >C10-C16	S20-Jn04500	NCP	%	72			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	- 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C10-C14	S20-Jn04894	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S20-Jn04894	NCP	mg/L	0.2	< 0.1	60	30%	Fail	Q15
TRH C29-C36	S20-Jn04894	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH >C10-C16	S20-Jn04894	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S20-Jn04894	NCP	mg/L	0.1	< 0.1	81	30%	Fail	Q15
TRH >C34-C40	S20-Jn04894	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Page 5 of 6

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Ursula Long Analytical Services Manager
Andrew Sullivan Senior Analyst-Organic (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Geo-Logix P/L Company name:

Contact name: Ben Pearce Project name: **AUBURN** Project ID: 2001029 COC number: Not provided

Turn around time: 5 Day

Jun 3, 2020 3:03 PM Date/Time received:

Eurofins reference: 723567

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 11.7 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

Only unpreserved amber bottle received. Sample logged for semi-vol TRH fraction.

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Ben Pearce - bpearce@geo-logix.com.au.

etals**(Girde) Ac, Cd, Cr, Cu, Ni, Pb, Zh, Hg, Cr, P*, Fe P*, Be, B, Ai, V, Min, Fe, Co, Se, Sr, Sn, Mo, Aq, Ba, Ti, Bi, Sb Chain of Custody	Geo-Logix Pty Ltd Building Q2, Level 3 2309/4 Daydream St Warriewood, NSW 2102 ABN: 86 116 892 936 P: (02) 9979 1722 F: (02) 9979 1222 F: (02) 9979 1222 Lab ID Sample ID	CHAIN Contact email: Project Name: Project Number: Date Matrix paint, filters other CC CHAIN C CHAIN C	Date Submittee		VOCs BTEXN PAHs	Page Purchase Quote Re Send Invo	Metals - M8	Metals - Lead Metals - Specify ** TCLP Asbestos (ID only) Asbestos (WA DOH) Foreign Materials	Asbestos (ID only) Asbestos (WA DOH) Foreign Materials	Conductivity (EC)	Hold
Custody		soil water air		TRH - C6 - C10	VOCs BTEXN	PCBs OCPs	Phenois	Metals - Specify **	Asbestos (WA DOH)		
Metals*Telerical As, Cot. Cr. Cu, Ni, Pb. Zn, Hg, Cr. Cr. Cr. Ps. Fee **, Fee **, Fee **, Fee S., Se, Sr, Sn, Mo, Ag, Ba, TT, Bi, Sb Chain of Custody	2	×		X							
tetase**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr**, Cr**, Fe**, Ba, B, Ai, V, Mn, Fe, Co, Sa, Sr, Sn, Mo, Aq, Ba, Ti, Bi, Sb Chain of Custody Chain of Custody											
Tetals**(Circle) As, Cd. Cr. Cu, Ni, Pb. Zn, Hg, Cr.**, Cr.**, Fe.3*, Ba, B, Ai, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Aa, Ba, Ti, Bi Sb Chain of Custody Chain of Custody											
tetals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ^{5*} , Fe ^{3*} , Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi Sb Chain of Custody											
letals**(circle) As, Cd. Cr, Cu, Ni, Pb, Zn, Hg, Cr, or, Cr, Sr, Fe, Sr, Ee, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bl, Sb Chain of Custody Chain of Custody											
letals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zh, Hg, Cr ^{e,} , Cr ^{9,} , Fe ^{3,*} , Be, B, Ai, Y, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb Chain of Custody											
tetals**(circle) As Cd. Cr. Cu. Ni. Pb. Zn, Hg. Cr. Pt. Fe Pt. Fe St. Be, B, Al, V, Mn. Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi Sb Chain of Custody Chain of Custody											
letals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr. 6*, Cr. 3*, Fe. 2*, Fe. 3*, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb Chain of Custody Chain of Custody											
letals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ^{6*} , Cr ^{3*} , Fe ^{2*} , Fe ^{3*} , Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb Chain of Custody											
letals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁶⁺ , Cr ³⁺ , Fe ²⁺ , Fe ³⁺ , Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb Chain of Custody											
letals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁶⁺ , Cr ³⁺ , Fe ²⁺ , Fe ³⁺ , Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb Chain of Custody											
letals**(circle) As, Cd. Cr, Cu, Ni, Pb. Zn, Hg, Cr ⁶⁺ , Cr ³⁺ , Fe ²⁺ , Fe ³⁺ , Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb Chain of Custody											
letals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁶⁺ , Cr ³⁺ , Fe ²⁺ , Fe ³⁺ , Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb Chain of Custody											
letals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁶⁺ , Cr ³⁺ , Fe ²⁺ , Fe ³⁺ , Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb Chain of Custody											
Chain of Custody	Metals**(circle) As, Cd, Cr, Cu, Ni, F	b, Zn, Hg, Cr ⁶⁺ , Cr ³⁺ , Fe ²⁺ , Fe ³⁺ , Be, B, .	۹۱, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Ti	Bi, Sb							
			Cha	in of Cust	ody						

Q3.2.1 QF_034 Chain of Custody

Relinquished by: Bon PeyCl Date/Time 3/6/20 Signature:

Received by:

Date/Time: 3/6 3'03 Signature:

723567

Version: V1 Date Issued: April 2019 Review Date: April 2021

who would

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ben Pearce

Report 724501-W

Project name ADDITIONAL - AUBURN

Project ID 2001029
Received Date Jun 09, 2020

Client Sample ID			R1	R2
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Jn13533	S20-Jn13534
Date Sampled			May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit		
Volatile Organics	LOIK	Offic		
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001
Bromomethane	0.001	mg/L	< 0.001	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001
Chloroethane	0.001	mg/L	< 0.001	< 0.001
Chloroform	0.005	mg/L	< 0.005	< 0.005
Chloromethane	0.001	mg/L	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001

Client Sample ID			R1	R2
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Jn13533	S20-Jn13534
Date Sampled			May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit		
Volatile Organics				
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
lodomethane	0.001	mg/L	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	82	84
Toluene-d8 (surr.)	1	%	86	83

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeVolatile OrganicsSydneyJun 10, 20207 Days

- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Rolleston, Christchurch 7675 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 IANZ # 1327

Company Name:

ABN - 50 005 085 521

Address:

Geo-Logix P/L

Bld Q2 Level 3, 2309/4 Daydream St

Warriewood

NSW 2102

Project Name:

ADDITIONAL - AUBURN

Project ID: 2001029 Order No.: 3826 Report #: 724501

Phone: 02 9979 1722 02 9979 1222 Fax:

Received: Jun 9, 2020 5:27 PM

Due: Jun 16, 2020 **Priority:** 5 Day **Contact Name:** Ben Pearce

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Volatile Organics Sample Detail

Melbourne Laboratory - NATA Site # 1254 & 14271	
Sydney Laboratory - NATA Site # 18217	Х
Brisbane Laboratory - NATA Site # 20794	

Perth Laboratory - NATA Site # 23736

External Laboratory

No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID	
1	R1	May 27, 2020		Water	S20-Jn13533	Х
2	R2	May 27, 2020		Water	S20-Jn13534	Х
Test	Counts					2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	ma/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
Iodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloropernene		< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
HIGHIOLOGUICHE	mg/L	<u> </u>	0.001	rass	<u> </u>

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Trichlorofluoromethane			mg/L	< 0.001			0.001	Pass	
Vinyl chloride			mg/L	< 0.001			0.001	Pass	
Xylenes - Total*			mg/L	< 0.003			0.003	Pass	
LCS - % Recovery				•					
Volatile Organics									
1.1-Dichloroethene			%	126			70-130	Pass	
1.1.1-Trichloroethane			%	106			70-130	Pass	
1.2-Dichlorobenzene			%	118			70-130	Pass	
1.2-Dichloroethane			%	109			70-130	Pass	
Benzene			%	110			70-130	Pass	
Ethylbenzene			%	116			70-130	Pass	
m&p-Xylenes			%	126			70-130	Pass	
o-Xylene			%	120			70-130	Pass	
Toluene			%	119			70-130	Pass	
Trichloroethene			%	114			70-130	Pass	
Xylenes - Total*			%	124			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1-Dichloroethene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1-Trichloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2-Trichloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dibromoethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichlorobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloropropane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.3-Trichloropropane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.4-Trimethylbenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichlorobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichloropropane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3.5-Trimethylbenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.4-Dichlorobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Butanone (MEK)	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Propanone (Acetone)	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Chlorotoluene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Allyl chloride	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromochloromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromodichloromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromoform	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromomethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon disulfide	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon Tetrachloride	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chlorobenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroform	S20-Jn00030	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chloromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
cis-1.2-Dichloroethene	S20-Jn00030	NCP	mg/L	0.007	0.006	9.0	30%	Pass	
cis-1.3-Dichloropropene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Dibromochloromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromomethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dichlorodifluoromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iodomethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Isopropyl benzene (Cumene)	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S20-Jn00030	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methylene Chloride	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
o-Xylene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Styrene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Tetrachloroethene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.3-Dichloropropene	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichloroethene	S20-Jn00030	NCP	mg/L	0.11	0.10	2.0	30%	Pass	
Trichlorofluoromethane	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Vinyl chloride	S20-Jn00030	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S20-Jn00030	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised By

Ursula Long Analytical Services Manager

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Site # 18

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: Geo-Logix P/L

Contact name: Ben Pearce

ADDITIONAL - AUBURN Project name:

Project ID: 2001029 COC number: Not provided

Turn around time: 5 Day

Jun 9, 2020 5:27 PM Date/Time received:

Eurofins reference: 724501

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 6.2 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Ben Pearce - bpearce@geo-logix.com.au.

#AU04_Enviro_Sample_NSW

Ben

To: Asim Khan
RE: 5 DAY TAT ADDITIONAL ANALYSIS FW: Eurofins Test Results - Report 723066: Site AUBURN (2001029)

From: Ben Pearce

Sent: Tuesday, 9 June 2020 5:16 PM
To: Asim Khan AsimKhan@eurofins.com
Cc: Ursula Long

UrsulaLong @eurofins.com
Subject: RE: Eurofins Test Results - Report 723066: Site AUBURN (2001029)

EXTERNAL EMAIL*

Hi Asim,
Can you please run samples R1 and R2 for VOCs please.
Thanks,

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ben Pearce

 Report
 723067-W

 Project name
 AUBURN

 Project ID
 2001029

 Received Date
 Jun 01, 2020

Client Sample ID			T1	T2
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Jn02422	S20-Jn02423
Date Sampled			May 29, 2020	May 29, 2020
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 N		J 0		
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1
Volatile Organics	<u>'</u>			
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	0.002
Bromobenzene	0.001	mg/L	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001
Bromomethane	0.001	mg/L	< 0.001	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001

Client Sample ID			T1	T2
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Jn02422	S20-Jn02423
Date Sampled			May 29, 2020	May 29, 2020
Test/Reference	LOR	Unit		
Volatile Organics	1 2011	O THE		
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001
Chloroethane	0.001	mg/L	< 0.001	< 0.001
Chloroform	0.005	mg/L	< 0.005	< 0.005
Chloromethane	0.001	mg/L	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
lodomethane	0.001	mg/L	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	98	107
Toluene-d8 (surr.)	1	%	88	103
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			1
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jun 03, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jun 03, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jun 03, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Volatile Organics	Melbourne	Jun 03, 2020	7 Days

- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices (USEPA 8260)

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

Geo-Logix P/L

Bld Q2 Level 3, 2309/4 Daydream St

Warriewood

NSW 2102

Project Name: Project ID:

AUBURN 2001029

Order No.: 3826 Report #: 723067

Phone: 02 9979 1722 02 9979 1222 Fax:

Received: Jun 1, 2020 2:25 PM

Due: Jun 9, 2020 **Priority:** 5 Day **Contact Name:** Ben Pearce

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail										
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	.71		Х	Х				
Sydr	ney Laboratory	- NATA Site # 1	8217								
Brisl	oane Laborator	y - NATA Site #	20794								
Pertl	Laboratory - N	IATA Site # 237	36								
Exte	rnal Laboratory				1						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	T1	May 29, 2020		Water	S20-Jn02422	Х	Х				
2 T2 May 29, 2020 Water S20-Jn02423											
Test	Fest Counts										

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	

Te	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Styrene			mg/L	< 0.001		0.001	Pass	
Tetrachloroethene	Tetrachloroethene			< 0.001		0.001	Pass	
Toluene			mg/L	< 0.001		0.001	Pass	
trans-1.2-Dichloroethene			mg/L	< 0.001		0.001	Pass	
trans-1.3-Dichloropropene			mg/L	< 0.001		0.001	Pass	
Trichloroethene			mg/L	< 0.001		0.001	Pass	
Trichlorofluoromethane			mg/L	< 0.001		0.001	Pass	
Vinyl chloride			mg/L	< 0.001		0.001	Pass	
Xylenes - Total*			mg/L	< 0.003		0.003	Pass	
Method Blank								
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions						
Naphthalene			mg/L	< 0.01		0.01	Pass	
TRH C6-C10			mg/L	< 0.02		0.02	Pass	
TRH >C10-C16			mg/L	< 0.05		0.05	Pass	
TRH >C16-C34			mg/L	< 0.1		0.1	Pass	
TRH >C34-C40			mg/L	< 0.1		0.1	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions						
TRH C6-C9			%	111		70-130	Pass	
TRH C10-C14			%	97		70-130	Pass	
LCS - % Recovery					<u>'</u>			
Volatile Organics								
1.1-Dichloroethene			%	94		70-130	Pass	
1.1.1-Trichloroethane			%	85		70-130	Pass	
1.2-Dichlorobenzene			%	98		70-130	Pass	
1.2-Dichloroethane			%	92		70-130	Pass	
Benzene			%	101		70-130	Pass	
Ethylbenzene			%	110		70-130	Pass	
m&p-Xylenes			%	109		70-130	Pass	
Toluene			%	90		70-130	Pass	
Trichloroethene			%	90		70-130	Pass	
Xylenes - Total*			%	109		70-130	Pass	
LCS - % Recovery			70	100		70 100	1 455	
Total Recoverable Hydrocarbo	ns - 2013 NFPM Fract	ions						
Naphthalene	113 - 2013 NEI WITTACE		%	96		70-130	Pass	
TRH C6-C10			%	105		70-130	Pass	
TRH >C10-C16			%	91		70-130	Pass	
		QA				Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1		Limits	Limits	Code
Spike - % Recovery								
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1				
TRH C10-C14	M20-Jn04754	NCP	%	73		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	M20-Jn04754	NCP	%	73		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	M20-My42570	NCP	%	86		70-130	Pass	
Spike - % Recovery								
Volatile Organics				Result 1				
Benzene	M20-My42570	NCP	%	100		70-130	Pass	
Ethylbenzene	M20-My42570	NCP	%	90		70-130	Pass	
m&p-Xylenes	M20-My42570	NCP	%	90		70-130	Pass	
o-Xylene	M20-My42570	NCP	%	89		70-130	Pass	
	, , , , ,		-					

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total*	M20-My42570	NCP	%	90			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1					
Naphthalene	M20-My42570	NCP	%	83			70-130	Pass	
TRH C6-C10	M20-My42570	NCP	%	82			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C10-C14	M20-Jn05918	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M20-Jn05918	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M20-Jn05918	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH >C10-C16	M20-Jn05918	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M20-Jn05918	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M20-Jn05918	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	M20-My42568	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Benzene	M20-My42568	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M20-My42568	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M20-My42568	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M20-My42568	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M20-My42568	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	M20-My42568	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M20-My42568	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M20-My42568	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised By

N02

Analytical Services Manager Ursula Long Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequent and the client, or any other person or company resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequent and standard standar

Report Number: 723067-W

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Site # 18

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: Geo-Logix P/L

Contact name: Ben Pearce Project name: **AUBURN** Project ID: 2001029 COC number: Not provided

Turn around time: 5 Day

Jun 1, 2020 2:25 PM Date/Time received:

Eurofins reference: 723067

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 13 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Ben Pearce - bpearce@geo-logix.com.au.

Version: V1 Issued: June 2015 Review: January 2022

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ben Pearce

 Report
 724784-W

 Project name
 AUBURN

 Project ID
 2001029

 Received Date
 Jun 10, 2020

Client Sample ID			MW101	GW01
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Jn16998	S20-Jn16999
Date Sampled			Jun 09, 2020	Jun 09, 2020
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 N				
TRH C6-C9	0.02	mg/L	< 0.02	-
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1
Volatile Organics				
1.1-Dichloroethane	0.001	mg/L	< 0.001	-
1.1-Dichloroethene	0.001	mg/L	< 0.001	-
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	-
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	-
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	-
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	-
1.2-Dibromoethane	0.001	mg/L	< 0.001	-
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	-
1.2-Dichloroethane	0.001	mg/L	< 0.001	-
1.2-Dichloropropane	0.001	mg/L	< 0.001	-
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	-
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	-
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	-
1.3-Dichloropropane	0.001	mg/L	< 0.001	-
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	-
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	-
2-Butanone (MEK)	0.001	mg/L	< 0.001	-
2-Propanone (Acetone)	0.001	mg/L	< 0.001	-
4-Chlorotoluene	0.001	mg/L	< 0.001	-
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	-
Allyl chloride	0.001	mg/L	< 0.001	-
Benzene	0.001	mg/L	< 0.001	-
Bromobenzene	0.001	mg/L	< 0.001	-
Bromochloromethane	0.001	mg/L	< 0.001	-
Bromodichloromethane	0.001	mg/L	< 0.001	-
Bromoform	0.001	mg/L	< 0.001	-
Bromomethane	0.001	mg/L	< 0.001	-
Carbon disulfide	0.001	mg/L	< 0.001	-
Carbon Tetrachloride	0.001	mg/L	< 0.001	-

Client Sample ID			MW101	GW01
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Jn16998	S20-Jn16999
Date Sampled			Jun 09, 2020	Jun 09, 2020
Test/Reference	LOR	Unit		
Volatile Organics				
Chlorobenzene	0.001	mg/L	< 0.001	-
Chloroethane	0.001	mg/L	< 0.001	-
Chloroform	0.005	mg/L	< 0.005	-
Chloromethane	0.001	mg/L	< 0.001	-
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	-
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	-
Dibromochloromethane	0.001	mg/L	< 0.001	-
Dibromomethane	0.001	mg/L	< 0.001	-
Dichlorodifluoromethane	0.001	mg/L	< 0.001	-
Ethylbenzene	0.001	mg/L	< 0.001	-
lodomethane	0.001	mg/L	< 0.001	-
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	-
m&p-Xylenes	0.002	mg/L	< 0.002	-
Methylene Chloride	0.001	mg/L	< 0.001	=
o-Xylene	0.001	mg/L	< 0.001	=
Styrene	0.001	mg/L	< 0.001	-
Tetrachloroethene	0.001	mg/L	< 0.001	=
Toluene	0.001	mg/L	< 0.001	-
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	=
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	-
Trichloroethene	0.001	mg/L	< 0.001	=
Trichlorofluoromethane	0.001	mg/L	< 0.001	=
Vinyl chloride	0.001	mg/L	< 0.001	-
Xylenes - Total*	0.003	mg/L	< 0.003	-
Total MAH*	0.003	mg/L	< 0.003	-
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	-
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	-
4-Bromofluorobenzene (surr.)	1	%	79	-
Toluene-d8 (surr.)	1	%	80	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-
TRH C6-C10	0.02	mg/L	< 0.02	-
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-
TRH >C16-C34	0.1	mg/L	0.3	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	0.3	< 0.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 11, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 11, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 11, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Volatile Organics	Sydney	Jun 11, 2020	7 Days

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

Geo-Logix P/L

Bld Q2 Level 3, 2309/4 Daydream St

Warriewood

NSW 2102

Project Name: Project ID:

AUBURN 2001029

Order No.: 3868

Sydney

Report #: Phone:

Fax:

724784 02 9979 1722 02 9979 1222 Received: Jun 10, 2020 1:40 PM

Due: Jun 17, 2020 **Priority:** 5 Day **Contact Name:** Ben Pearce

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sa	mple Detail			Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Volatile Organics	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71					
Sydr	ey Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х
Brist	oane Laboratory	y - NATA Site #	20794						
Pertl	n Laboratory - N	IATA Site # 237	36						
Exte	rnal Laboratory				_				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	MW101	Jun 09, 2020		Water	S20-Jn16998			Х	Х
2	GW01	Jun 09, 2020		Water	S20-Jn16999	Х	Х		
Test	Counts					1	1	1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Page 5 of 10

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Styrene			mg/L	< 0.001		0.001	Pass	
Tetrachloroethene			mg/L	< 0.001		0.001	Pass	
Toluene			mg/L	< 0.001		0.001	Pass	
trans-1.2-Dichloroethene			mg/L	< 0.001		0.001	Pass	
trans-1.3-Dichloropropene			mg/L	< 0.001		0.001	Pass	
Trichloroethene			mg/L	< 0.001		0.001	Pass	
Trichlorofluoromethane			mg/L	< 0.001		0.001	Pass	
Vinyl chloride			mg/L	< 0.001		0.001	Pass	
Xylenes - Total*			mg/L	< 0.003		0.003	Pass	
Method Blank								
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions						
Naphthalene			mg/L	< 0.01		0.01	Pass	
TRH C6-C10			mg/L	< 0.02		0.02	Pass	
TRH >C10-C16			mg/L	< 0.05		0.05	Pass	
TRH >C16-C34			mg/L	< 0.1		0.1	Pass	
TRH >C34-C40			mg/L	< 0.1		0.1	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions						
TRH C6-C9			%	84		70-130	Pass	
TRH C10-C14			%	77		70-130	Pass	
LCS - % Recovery			,,,			70.00		
Volatile Organics								
1.1-Dichloroethene			%	103		70-130	Pass	
1.1.1-Trichloroethane			%	91		70-130	Pass	
1.2-Dichlorobenzene			%	100		70-130	Pass	
1.2-Dichloroethane			%	101		70-130	Pass	
Benzene			%	100		70-130	Pass	
Ethylbenzene			%	97		70-130	Pass	
m&p-Xylenes			%	98		70-130	Pass	
o-Xylene			%	96		70-130	Pass	
Toluene			%	102		70-130	Pass	
Trichloroethene			%	95		70-130	Pass	
Xylenes - Total*			%	97		70-130	Pass	
LCS - % Recovery			70	91		70-130	Fass	
•	2012 NEDM Front	tions		l	Т	T	l	
Total Recoverable Hydrocarbons	- 2013 NEPW Fract	tions	0/	100		70-130	Door	
Naphthalene TRU CC C40			%	106			Pass	
TRH C6-C10			%	84		70-130	Pass	
TRH >C10-C16		04	%	77		70-130	Pass	Ouglifuin a
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1				
TRH C6-C9	S20-Jn16383	NCP	%	83		70-130	Pass	
Spike - % Recovery								
Volatile Organics				Result 1				
1.1-Dichloroethene	S20-Jn16383	NCP	%	92		70-130	Pass	
1.1.1-Trichloroethane	S20-Jn16383	NCP	%	84		70-130	Pass	
1.2-Dichlorobenzene	S20-Jn16383	NCP	%	86		70-130	Pass	
1.2-Dichloroethane	S20-Jn16383	NCP	%	95		70-130	Pass	
Benzene	S20-Jn16383	NCP	%	89		70-130	Pass	
	S20-Jn16383	NCP	%	91		70-130	Pass	
Ethylbenzene	1 020 01110000	1		1				
Ethylbenzene m&p-Xylenes	S20ln16383	NCP	%	1 91	l l	/O-13O	I Pass	
m&p-Xylenes	S20-Jn16383 S20-Jn16383	NCP NCP	%	91		70-130 70-130	Pass	
,	S20-Jn16383 S20-Jn16383 S20-Jn16383	NCP NCP	% % %	90		70-130 70-130 70-130	Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total*	S20-Jn16383	NCP	%	91			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	S20-Jn16383	NCP	%	87			70-130	Pass	
TRH C6-C10	S20-Jn16383	NCP	%	81			70-130	Pass	
TRH >C10-C16	S20-Jn13246	NCP	%	77			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate								ı	
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-Jn18584	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S20-Jn12435	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S20-Jn12435	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S20-Jn12435	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1-Dichloroethene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1-Trichloroethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2-Trichloroethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dibromoethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichlorobenzene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloroethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloropropane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.3-Trichloropropane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.4-Trimethylbenzene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichlorobenzene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichloropropane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3.5-Trimethylbenzene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.4-Dichlorobenzene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Butanone (MEK)	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Propanone (Acetone)	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Chlorotoluene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Allyl chloride	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromobenzene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromochloromethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromodichloromethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromoform	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromomethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon disulfide	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon Tetrachloride	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chlorobenzene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroform	S20-Jn18584	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chloromethane	S20-Jn18584	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
cis-1.2-Dichloroethene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
cis-1.3-Dichloropropene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromochloromethane	S20-Jn18584	NCP		< 0.001	< 0.001		30%		
	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromomethane Dishloredifluoremethane			mg/L			<1		Pass	
Dichlorodifluoromethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001 < 0.001	<1 <1	30%	Pass Pass	

Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
lodomethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Isopropyl benzene (Cumene)	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S20-Jn18584	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methylene Chloride	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
o-Xylene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Styrene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Tetrachloroethene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.3-Dichloropropene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichloroethene	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichlorofluoromethane	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Vinyl chloride	S20-Jn18584	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S20-Jn18584	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-Jn18584	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S20-Jn18584	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S20-Jn12435	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S20-Jn12435	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S20-Jn12435	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised By

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Site # 18

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: Geo-Logix P/L

Contact name: Ben Pearce Project name: **AUBURN** Project ID: 2001029 COC number: Not provided

Turn around time: 5 Day

Jun 10, 2020 1:40 PM Date/Time received:

Eurofins reference: 724784

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 8 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Ben Pearce - bpearce@geo-logix.com.au.

Geo-Logix Pty Ltd Building Q2, Level 3

CHAIN OF CUSTODY

Project Manager: Ben Pearle

2309/4 Daydream St Warriewood, NSW 2102

Contact email:

Project Name:

b pearce@glo-logit.com.au

P: (02) 9979 1722 F: (02) 9979 1222

ABN: 86 116 892 936

Project Number: 200 | 029

Date Submitted: (0

of \

Purchase Order No:

Quote Reference:

Send Invoice to: accounts@geo-logix.com.au

TAT required:

Standard

				N.	Matr	ix				1	er Ear		П					75				-	H)							
Lab ID	Sample ID	Date	soil	water	air	paint, filters	other	Comments	COMPOSITE	TDH CR C40	TRH - C10 - C40	VOCs	BTEXN	PAHS	PCBs	OCPs	OPPs	Phenois	Metals - M8	Metals - Lead Metals - Specify **	TCLP	Asbestos (ID only)	Asbestos (WA DOH)	Foreign Materials	Conductivity (EC)	Н		Hold	SUITE	Eurofins MGT Suite Codes
	MWIOI	9/6	0,	V	- 10					×		X	///																	B1 TRH/BTEXN
				-				11.11			×		•							100										B1A TRH/MAH B2 TRH/BTEXN/Pb
	awoi	9/6		-				Hold vials, festamb	ers		_	-	11							853					New Y					B2A TRH/MAH/Pb
																												ST.		B3 PAH/Phenols
ME FULL				100							110		1			100					risk is						I journ	W.		B4 TRH/BTEXN/PAH
			1 100	-		-						+			THE R	-														B4A TRH/BTEXN/PAH/PhenoIs
9-10																													36.2	B5 TRH/BTEXN/M7
															1															B6 TRH/BTEXN/M8
T TORY	THE PERSON											1	J.F.					31/2							7 1 5			Filth	Wales	B7 TRH/BTEXN/PAH/M8
						16									1000													1000		B7A TRH/BTEXN/PAH/PhenoIs/M8
										3			1 1															18		B8 TRH/VOC/PAH/M8
																														B9 TRH/BTEXN/PAH/OCP/M8 B10 TRH/BTEXN/PAH/OCP/OPP/M8
													100		1112															B11 Na/K/Ca/Mg/Cl/SO ₄ /CO ₃ /HCO ₃ /NH ₃ /N
						1					786		1								100		199						E Leve	B11A B11/Alkalinity
																							T. Cali							B11B B11/EC/TDS
													1																	B12 TRH/BTEXN/Oxygenates/Ethanol
					-								-				Jan 1	8 -	75							100				B12A TRH/BTEXN/Oxygenates
						100									8.49		10 1												E 1	B13 OCP/PCB
																						WW.								B14 OCP/OPP
								2000 100 100 100 100			70 10		T/A			100						15/5				100	100			B15 OCP/OPP/PCB
																														B16 TDS/SO ₄ /CH ₄ /Alk/BOD/COD/HPC/CU
					V								1		1860	100									4.02	1-1		V.		B17 SO ₄ /NO ₃ /Fe++/HPC/CUB
												1	1			Name of	No.	24											100	B18 CI-/SO ₄ /pH
																		J.S. D			-					No.	By was			B19 N/P/K
Allow Yen (1)								A SERVICE ASSESSMENT OF THE SERVICE ASSESSME								5-8	187	48%									10 000			B20 CEC/%ESP/Ca/Ma/Na/K

Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr e+, Cr 3+, Fe 2+, Fe 3+, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb

Chain of Custody

Caden Pengelly Date/Time: 0/6/20 Signature: (pengling)

R: Meussa Birkett (Eurofins)

Received by

10.0620