

ISPT Pty Ltd c/o Aliro Management Pty Ltd

Phase 1 and Phase 2 Environmental Site Assessment

Prospect Logistics Estate Pemulwuy, NSW

3 June 2020 58238/130144 (Rev 0) JBS&G Australia Pty Ltd

Table of Contents

Abb	reviatio	ns		vi
Exec	utive S	ummary.		vii
1.	Intro	duction		1
	1.1	Backgro	ound	1
	1.2	Objectiv	ves	1
	1.3	Scope o	of Works	2
	1.4	Propose	ed Development	3
2.	Site 0	Condition	and Surrounding Environment	4
	2.1	Site Ide	ntification	4
	2.2	Site Cor	ndition	4
		2.2.1	Lot 107 DP 1028208	4
		2.2.2	Lot 63 DP 752051	4
		2.2.3	Lot 10 DP 1022044	4
	2.3	Surroun	nding Land Use	5
	2.4	Topogra	aphy	5
	2.5	Geology	y & Soils	6
	2.6	Acid Sul	lfate Soils	6
	2.7	Hydrolo	ogy	6
	2.8	Hydroge	eology	7
	2.9	Meteor	ology	8
3.	Site F	History		9
	3.1	Aerial P	hotographs	9
	3.2	Historic	al Land Title Records	11
	3.3	EPA Rec	cords	11
	3.4	EPA Per	r- and Poly- Fluoroalkyl Substances (PFAS) Register	11
	3.5	Australi	ian and NSW Heritage Register	11
	3.6	Council	Records	12
		3.6.1	Council Planning Certificates	12
		3.6.2	Council Letter	12
	3.7	Boral Le	etter	13
	3.8	SafeWo	ork NSW Dangerous Goods Records	13
	3.9	Integrity	y Assessment	13
	3.10	Summa	ry	13
4.	Previ	ous Inves	stigations	14
	4.1	Lot 10 D	DP 1022044 – Austral Masonry	14

		4.1.1	Clyde (2000)	
		4.1.2	Coffey Due Diligence Environmental Site Assessment (Coffe	y 2013)16
		4.1.3	Combined Phase 1 and Phase 2 Environmental Assessment 2017)	•
	4.2	Lot 107	7 DP 1028208 – Boral House	18
		4.2.1	JBS&G Preliminary Contaminated Land Assessment (JBS&G	2019a) 18
		4.2.2	South East Boral House - Asbestos Clearance (JBS&G 2020).	19
	4.3	Lot 63	DP 752051 – 615A Great Western Highway	19
		4.3.1	Due Diligence Contamination Investigation, Douglas Partner 2018)	•
		4.3.2	Due Diligence Assessment (JBS&G 2018)	20
		4.3.3	Detailed Site Investigation (JBS&G 2019b)	21
		4.3.4	Remedial Action Plan (JBS&G 2019c)	23
5.	Data	Gaps		24
6.	Cond	ceptual Si	ite Model	26
	6.1	Areas c	of Environmental Concern	26
	6.2	Potenti	ially Contaminated Media	26
	6.3	Potenti	ial for Migration	27
	6.4	Potenti	ial Exposure Pathways	28
	6.5	Potenti	ial Receptors	28
	6.6	Prefere	ential Pathways	29
7.	Sam	pling and	Analysis Plan	30
	7.1	Data Q	uality Objectives	30
		7.1.1	Identify the Decision	30
		7.1.2	Identify Inputs to the Decision	31
		7.1.3	Define the Study Boundaries	31
		7.1.4	Develop a Decision Rule	31
		7.1.5	Specific Limits on Decision Errors	32
	7.2	Optimi	se the Design of Obtaining Data	34
		7.2.1	Soil Sampling Methodology	34
		7.2.2	Duplicate and Triplicate Sample Preparation	34
		7.2.3	Laboratory Analysis	35
8.	Asse	ssment C	Priteria	36
	8.1	Regula	tory Guidelines	36
	8.2	Assessr	ment Criteria Selection	36
		8.2.1	Soil and Sediment Assessment Criteria	36
		8.2.2	Groundwater and Surface Water Assessment Criteria	37

9.	Quali	ity Assurance/Quality Control	39
10.	Resul	lts	40
	10.1	Soil Results	40
	10.2	Soil Field Observations	40
	10.3	Soil Analytical Results	40
		10.3.1 Heavy Metals	40
		10.3.2 PAHs	41
		10.3.3 TRH/BTEX	41
		10.3.4 OCPs/PCBs	41
		10.3.5 Asbestos	41
11.	Site C	Characterisation	42
	11.1	Are there any unacceptable risks to future site users from soil/groundwater/surface water?	42
	11.2	Are there any chemical mixtures?	44
	11.3	Are there any aesthetic issues?	44
	11.4		
		site?	
	11.5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	11.6	, 51	
12.	Key F	indings	46
13.	Concl	lusions and Recommendations	49
14.	Limita	ations	50
List	of Ta	bles	
Table	1.1: Si	ite Address, Cadastre and Area	vii
Table	1.1: Si	Site Address, Cadastre and Area	1
Table	2.1: S	Summary of Site Details	4
Table	2.2: R	Registered Groundwater Bore Search Summary	7
Table	3.1 Su	ummary of Historical Aerial Imagery Review	9
Table	6.1 Ar	reas of Environmental Concern and Associated Contaminants of Poter Concern	
Table	6.2: P	Potentially Contaminated Media	27

List of Figures

Figure 1	Site Location
Figure 2a	Site Layout
Figure 2b	Site Features
Figure 3	Sample Location

Figure 4 Areas of Environmental Concern

Figure 5 Soil Exceedances

Appendices

Appendix A Concept Design Plans

Appendix B Analytical Tables

Appendix C Groundwater Bore Search

Appendix D Aerial Photographs

Appendix E Land Title Records

Appendix F EPA Searches

Appendix G Heritage Records

Appendix H Council Records

Appendix I Boral Letter

Appendix J SafeWork NSW Dangerous Goods Search

Appendix K Woodward-Clyde (2000) Figure

Appendix L Detailed QA/QC Assessment

Appendix M Soil Borelogs

Appendix N Detailed Laboratory Certificates

Abbreviations

Term	Definition
ACM	Asbestos Containing Material
AEC	Area of Environmental Concern
AF/FA	Asbestos Fines/Fibrous Asbestos
AHD	Australian Height Datum
Aliro	Aliro Management Pty Ltd
ASS	Acid Sulfate Soils
AST	Aboveground Storage Tank
AQ	Asbestos Quantification
bgs	Below Ground Surface
BOM	Bureau of Meteorology
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes
COPC	Contaminants of Potential Concern
Council	Cumberland Council
CSM	Conceptual Site Model
DGI	Data Gap Investigation
DLWC	Department of Land and Water Conservation
DP	Deposited Plan
DPI	Department of Primary Industry
DPIE	Department of Planning, Industry and the Environment
EPA	Environment Protection Authority
ESA	Environmental Site Assessment
ha	Hectare
ISPT	ISPT Pty Ltd
JBS&G	JBS&G Australia Pty Ltd
LEP	Local Environmental Plan
LOR	Limit of Reporting
LPI	Land and Property Information
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NSW	New South Wales
ОСР	Organochlorine Pesticides
OEH	Office of Environment and Heritage
PAH	Polycyclic Aromatic Hydrocarbons
РСВ	Polychlorinated Biphenyls
PFAS	Per and Polyfluoroalkyl Substances
PSI	Preliminary Site Investigation
RAP	Remedial Action Plan
RPD	Relative Percent Difference
sVOC	Semi Volatile Organic Compounds
SSDA	State Significant Development Application
TPH	Total Petroleum Hydrocarbons
TRH	Total Recoverable Hydrocarbons
UCL	Upper Confidence Limit
UST	Underground Storage Tank
VOC	Volatile Organic Compounds
100	Totalic Organic compounds

Executive Summary

JBS&G Australia Pty Ltd (JBS&G) has been engaged by ISPT Pty Ltd (ISPT, the client) care of Aliro Management Pty Ltd (Aliro) to prepare a combined Phase 1 and Phase 2 Environmental Site Assessment (ESA) for the Prospect Logistics Estate State (the site) Significant Development (SSD) project application. The proposed development comprises an 18.7-hectare (ha) parcel of land, the cadastral identifiers and approximate area of each are shown in **Table 1.1**. The site location, layout and cadastral boundaries are shown on **Figure 1**, **Figure 2a** and **Figure 2b** respectively.

Table 1.1: Site Address, Cadastre and Area

Address	Cadastre	Area (ha)
44 Clunies Ross Street, Pemulwuy, NSW, 2145	Lot 10 DP 1022044	12.58
Clunies Ross Street, Pemulwuy, NSW, 2145	Lot 107 DP 1028208	5.07
615A Great Western Highway, Pemulwuy, NSW 2145	Lot 63 DP 752051	0.81
Clunies Ross Street, Pemulwuy, NSW, 2145	Lot 216 DP 1030744	0.28
Clunies Ross Street, Pemulwuy NSW, 2145	Lot 601 DP 1047403	0.03
	Approximate Site Area	18.77

It is understood ISPT/Aliro have developed a Concept Proposal for submission to the NSW Department of Planning, Industry and Environment (DPIE) for a future commercial/industrial warehouse logistics estate. To address the key issues outlined in the Planning Secretary's Environmental Assessment Requirements (SEARs¹) and to satisfy the requirements of *State Environmental Planning Policy No. 55 – Remediation of Land* (SEPP 55), a Phase 1 and Phase 2 ESA of potential site-wide contamination, consistent with a detailed site investigations (DSI), is required to demonstrate the site is suitable or can be made suitable for its proposed uses.

Based on client supplied conceptual design plans (**Appendix A**) it is understood ISPT/Aliro is seeking approval for a commercial/industrial precinct, including several large open plan warehouses and associated hardstand drives/loading dock and car park areas.

The site currently comprises two commercial/industrial properties (Austral Masonry and Boral House) historically utilised for manufacturing/light industrial and commercial uses (associated with the former Boral Brick facility and regional quarrying activities), and a vacant land parcel (former Cumberland Council depot/stockpile yard, Lot 63).

The site has been subject to a number of previous investigations which identified several areas of environmental concern (AEC) and isolated soil/sediment and surface/groundwater contamination associated with historic land use activities. Lot 63 DP 752051 (former Cumberland Council depot/stockpile yard) has been subject to detailed site investigations and preparation of a remedial action plan (RAP) and is currently being remediated for commercial/industrial land use to address identified soil contamination.

Review of previous investigation identified a range of data gaps in the current characterisation of potentially contaminating activities at the site. As part of the investigation herein, JBS&G conducted additional sampling/analysis on Lot 107 DP 1028208 to address identified data gaps where the site was accessible. Based on the intrusive investigation, fill material was identified to be generally consistent with that previously observed. With the exception of a chromium concentration at one location marginally exceeding the adopted ecological criterion, all other contaminants of potential concern (COPC) were reported below the adopted site criteria (pursuant to commercial/industrial land use).

Planning Secretary's Environment Assessment Requirements. Prospect Logistics Estate – Clunies Ross Street, Prospect. SSD-10399 issued 16 December 2019 for Aliro Management Pty Ltd (SEARs)

As part of the Phase 1 and Phase 2 ESA/DSI, a detailed conceptual site model (CSM) of potential contamination sources, pathways and receptors was developed to guide the investigations.

Based on the assessment outlined herein and subject to the limitations (**Section 14**), the following was noted:

- The site has historically been utilised for a combination of commercial and light industrial
 activities associated with regional quarrying and manufacturing and has been subject to
 significant ground disturbance. Following cessation of large-scale quarrying activities, the
 northern portion of the site has continued to be utilised for masonry/manufacturing
 activities (Austral Masonry) with the southern portion utilised for commercial (Boral Offices)
 and vacant land (Council depot/stockpiling yard);
- The Phase 1 and Phase 2 ESA outlined herein identified potential AECs (Figure 4) and associated COPC related to current and/or former land uses including a range of commercial/industrial activities;
- Review of historic contamination assessments identified the following with regard to the current contamination status of the site:
 - o Investigations across Lot 10 DP 1022044, when combined, have generally satisfied the sampling density requirements as per EPA (1995) and NEPC (2013);
 - A range of potentially contaminating land use activities, including the presence of current/former petroleum and chemical storage, hazardous building materials, waste material production and placement of fill of unknown origin were identified and targeted by previous investigations;
 - Fill is present across the majority of the site to depths of between 0.1 m and 4 m bgs and was noted to comprise a combination of sandy gravelly clays and reworked natural materials (shales/dolerite);
 - Lot 63 DP 752051 has been subject to extensive characterisation and is currently being remediated (as part of the sales contract between ISPT and Council) to make the site suitable for commercial/industrial land use without the requirement for ongoing management;
 - The same impacted fill profile identified on Lot 63 DP 752051 was identified extending beyond the Lot boundary to the south (Lot 107 DP 1028208), albeit to a limited extent. Approximately 300 m² of asbestos impacted soil surrounding Lot 63 in lot 107 are considered to represent an unacceptable health risk requiring remediation and/or management;
 - O Potential remains for the same fill profile to be present adjacent to Lot 63 in other areas of the site;
 - Asbestos previously identified at the site surface in the southern portion of Lot 107 (JBS&G 2019a) was subsequently removed as part of make safe works (JBS&G 2019c), based on previous investigations the potential remained for further asbestos containing material (ACM) to be present within a former service easement within the southern portion of Lot 107;
 - Asbestos was identified at one location adjacent to current structures (identified to contain hazardous building materials) in Lot 10 DP 1022044;
 - Former underground petroleum storage systems (UPSS) and other petroleum storage (current/former) have been identified at the site which will require removal

- (formal decommissioning²) and/or management including potentially impacted soils and/or groundwater relevant to the proposed land use in (NEPC 2013);
- Soil sampling did not identify the presence of chemical COPC above the adopted health criteria across the site;
- Copper and zinc concentrations exceeding the ecological criterial within Lot 107 at three locations (adjacent to Lot 63) were reported the distinct fill material noted to contain ACM and scrap metal (currently being remediated on Lot 63) and were considered likely associated with metal waste inclusions. The reported concentrations were not considered to represent an unacceptable ecological risk under the proposed redevelopment scenario;
- Low level chromium concentrations at several locations are considered representative of natural background conditions associated with the underlying geology (ultramafic and mafic igneous rock) and were not considered to represent an unacceptable ecological risk at the site;
- A single B(a)P concentration exceeding the ecological criteria was not considered to represent an unacceptable risk for the intended commercial/industrial use of at the site;
- Limited sediment assessment identified low level heavy metal concentrations exceeding the conservative ecological assessment criteria (ANZG 2019) for the 95% species protection in freshwater environments. Heavy metals were considered not to represent an unacceptable risk at the site, noting they were likely reflective of natural background conditions (associated with the underlying geology and/or conditions to be expected in urban environments); and
- Limited surface water and groundwater analysis at the site did not identify gross or widespread contamination. Low level heavy metal concentrations reported above the adopted ecological site criteria are considered reflective of regional background conditions as to be expected in urban/industrial environments and are not considered to represent an unacceptable risk at the site or to downgradient disturbed natural environments (Girraween Creek).
- Detailed review of previous investigation identified a range of data gaps (Section 5) based on the identified AECs and COPCs identified as part of the Phase 1 and Phase 2 ESA outlined herein;
- The implementation of an additional targeted sampling plan (12 additional sample locations) outlined herein indicated the following:
 - Fill material within the south western portion of the site is generally consistent with reworked natural material (shales and dolerite) as previously identified across the site and is considered to not represent an unacceptable risk at the site;
 - Chromium reported above the adopted ecological criterion at one location (TP07)
 was considered representative of the underlying igneous geology (subject to
 quarrying) and was not considered to represent an unacceptable risk to future
 ecological receptors; and

^{• 2} In accordance with Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008, Department of Environment, Climate Change and Water NSW, September 2009 (DECC 2009).

- No further ACM was identified within the former service easement. Noting detailed intrusive investigation was precluded by dense vegetation. Should further asbestos infrastructure (conduits) be present within this portion of the site then it is anticipated it can be dealt with under an unexpected finds protocol, to be implemented during future remedial/redevelopment works.
- Based on the findings of the intrusive investigation outlined herein, it is considered that data gaps identified for Lot 107 DP 1028208 have been adequately addressed.

Based on the results of the investigation and subject to the limitations in **Section 14**, JBS&G conclude the site can be made suitable for the proposed land use subject to remediation/management of identified contamination. The investigation outlined herein is considered to have generally satisfied the requirements of the SEARS. JBS&G note further investigation to address additional identified data gaps was not possible during the preparation of the SSDA due to COVID-19 safety precautions.

JBS&G recommend that a data gap investigation (DGI) be conducted prior to issue of a construction certificate to address identified potential areas of environmental concern and further define the extent of contamination at the site (Section 5) following which a Remedial Action Plan (RAP) be prepared to describe the required remediation and validation works to ensure the site is suitable for the proposed commercial industrial land use without ongoing management.

1. Introduction

1.1 Background

JBS&G Australia Pty Ltd (JBS&G) has been engaged by ISPT Pty Ltd (ISPT, the client) care of Aliro Management Pty Ltd (Aliro) to prepare a combined Phase 1 and Phase 2 Environmental Site Assessment (ESA) for the Prospect Logistics Estate State (the site) Significant Development (SSD) project application. The proposed development comprises an 18.7 hectare (ha) parcel of land, the cadastral identifiers and approximate area of each are shown in **Table 1.1**. The site location, layout and cadastral boundaries and features are shown on **Figure 1**, **Figure 2a** and **2b**, respectively.

Table 1.1: Site Address, Cadastre and Area

Address	Cadastre	Area (ha)
44 Clunies Ross Street, Pemulwuy, NSW, 2145	Lot 10 DP 1022044	12.58
Clunies Ross Street, Pemulwuy, NSW, 2145	Lot 107 DP 1028208	5.07
615A Great Western Highway, Pemulwuy, NSW 2145	Lot 63 DP 752051	0.81
Clunies Ross Street, Pemulwuy, NSW, 2145	Lot 216 DP 1030744	0.28
Clunies Ross Street, Pemulwuy NSW, 2145	Lot 601 DP 1047403	0.03
	Approximate Site Area	18.77

It is understood ISPT/Aliro have developed a Concept Proposal for submission to the NSW Department of Planning, Industry and Environment (DPIE) for a future commercial/industrial warehouse logistics estate. To address the key issues outlined in the Planning Secretary's Environmental Assessment Requirements (SEARs³) and to satisfy the requirements of *State Environmental Planning Policy No. 55 – Remediation of Land* (SEPP 55), a Phase 1 and Phase 2 ESA of potential site-wide contamination, consistent with a detailed site investigations (DSI), is required to demonstrate the site is suitable or can be made suitable for its proposed uses.

Based on client supplied conceptual design plans (**Appendix A**) it is understood ISPT/Aliro is seeking approval for a commercial/industrial precinct, including several large open plan warehouses and associated hardstand drives/loading dock and car park areas.

The site currently comprises two commercial/industrial properties (Austral Masonry and Boral House) historically utilised for manufacturing/light industrial and commercial uses (associated with the former Boral Brick facility and regional quarrying activities), and a vacant land parcel (former Cumberland Council depot/stockpile yard, Lot 63).

The site has been subject to a number of previous investigations which identified several areas of environmental concern (AEC) and isolated soil/sediment and surface/groundwater contamination associated with historic land use activities. Lot 63 DP 752051 (former Cumberland Council depot/stockpile yard) has been subject to detailed site investigations and preparation of a remedial action plan (RAP) and is currently being remediated for commercial/industrial land use to address identified soil contamination.

The investigation was developed in accordance with guidelines made or approved by the NSW Environment Protection Authority (EPA) and relevant Australian Standards.

1.2 Objectives

The objectives of the Phase 1 and Phase 2 ESA are to:

Planning Secretary's Environment Assessment Requirements. Prospect Logistics Estate – Clunies Ross Street, Prospect. SSD-10399 issued 16 December 2019 for Aliro Management Pty Ltd (SEARs)

- Collate and review available data, including previous investigations, and supplement this
 with current information to identify areas of potential AECs and associated contaminants of
 potential concern (COPCs) as may be present at the site;
- Review and document regional geological, hydrogeological, topographical and services infrastructure information to identify site media and potential contaminant transportation pathways at the site;
- Develop and document a conceptual site model (CSM) of potential contamination sources, pathways and receptors to guide the investigations;
- Identify potential data gaps across the site and assess the potential for contamination as a result of current/former land use activities; and
- Address the key contamination issues in the SEARs and the requirements of SEPP 55 to demonstrate the suitability of the site for development or provide recommendations that will enable the site to be considered suitable prior to commencement of future use(s).

1.3 Scope of Works

To achieve the objectives of the investigation, the scope of works comprised:

- A review of previous investigations as made available by the client including:
 - Phase 1 and Phase 2 ESA (Lot 10 DP 1022044) Woodward-Clyde Pty Ltd dated (Woodward-Clyde, 2000⁴);
 - Due Diligence ESA, Former Boral Prospect Clunies Ross Street, Prospect NSW 2148. Coffey Environments Australia Pty Ltd dated 2 May 2013 (Coffey 2013⁵);
 - Combined Phase 1 and Phase 2 ESA, Prospect Mansonry, 44 Clunies Ross Street, Prospect.
 DLA Environmental Services Pty Ltd dated 2 March 2017 (DLA 2017⁶);
 - Clunies Ross Street Preliminary Contaminated Land Assessment. JBS&G Australia Pty Ltd dated 17 June 2019 (JBS&G 2019a⁷);
 - South East Boral House Visual Asbestos Clearance. JBS&G Australia Pty Ltd dated 11 February 2020 (JBS&G 2020⁸);
 - Due Diligence Contamination Investigation, 615A Great Western Highway, Pemulwuy.
 Douglas Partners Pty Ltd dated 7 December 2018 (DP 2018⁹);
 - Additional Land Contamination Assessment 615A Great Western Highway. JBS&G Australia Pty Ltd dated 18 December 2018 (JBS&G 2018¹⁰);
 - Detailed Site Investigation, 615 A Great Western Highway, Pemulwuy. JBS&G Australia
 Pty Ltd dated 1 April 2019 (JBS&G 2019b¹¹); and

⁴ Phase 1 and Phase 2 Environmental Site Assessment – Boral Block and Paving Facility, Greystanes, NSW. Woodward-Clyde Pty Limited

Due Diligence Environmental Site Assessment – Clunies Ross Street, Prospect, NSW. Coffey Environments Pty Ltd dated 2 May 2013 reference ENAURHOD04463AA (Coffey 2013).

Combined Phase 1 and Phase 2 Environmental Assessment, Prospect Masonry, 44 Clunies Ross Street, Prospect NSW 2148. DLA Environmental Services Pty Ltd, dated 2 March 2017, Ref: DL4032_S006335. DLA (2017)

Preliminary Contaminated Land Assessment – Lot 107 DP 1028208, Clunies Ross Street, Pemulwuy, NSW (Rev 1). JBS&G Australia Pty Ltd dated 17 June 2019 (JBS&G 2019a)

South East Boral House – Asbestos Clearance (Rev 1). JBS&G Australia Pty document 56425/127379 Ltd dated 11 February 2020 (JBS&G 2020)

Report on Due Diligence Contamination Investigation - Proposed Commercial Development 615A Great Western Highway, Pemulwuy. Douglas Partners Pty Ltd dated 7 December 2018, DP (2018);

Additional Land Contamination Assessment – 615A Great Western Highway, Pemulwuy, NSW. JBS&G Australia Pty Ltd dated 18 December 2018 reference 55756/119840 Revision 1 (JBS&G 2018)

Detailed Site Investigation – 615A Great Western Highway, Pemulwuy, NSW. JBS&G Australia Pty Ltd, reference 56047/121406 Rev 1 dated 1 April 2019 (JBS&G 2019b)

- Remedial Action Plan, 615A Great Western Highway. JBS&G Australia Pty Ltd dated 16 July 2019 (2019c¹²).
- An updated review of available site history and background information to identify potential areas of environmental concern and associated contaminants of concern including:
 - Records of publicly available information held by NSW EPA, where readily available;
 - Records of publicly available information regarding heritage, where readily available;
 and
 - Update licensed groundwater bores data present within a 1 km radius of the assessment area available on the online NSW Office of Water.
- Review of the environmental setting including topography, geology and hydrogeology of the site and surrounding areas;
- Review of historic aerial photographs and land title records;
- Development and documentation of a CSM based on available information;
- Development of the sampling, analytical and quality plan (SAQP) and associated data quality objectives (DQOs) in accordance with relevant EPA guidelines;
- A detailed inspection of the site to confirm the desktop findings and identify the presence of additional AECs;
- Advancement of 12 testpit locations and sampling and analysis of soil for COPC within the south western portion of Lot 107 DP1028208 provide adequate characterisation of materials within this accessible portion of the site;
- Comparison of collected and relevant historic data against EPA published and/or relevant endorsed criteria to facilitate an assessment of land use suitability; and
- Collation of a representative site data set and preparation of this combined Phase 1 and Phase 2 ESA report, consistent with a DSI, in general accordance with the requirements of EPA and NEPC (2013) guidelines presenting the outcomes of the assessment and associated conclusions.

1.4 Proposed Development

Review of architectural design plans (**Appendix A**) indicates that the site is proposed to be developed to accommodate seven large warehouses with attached office space and surrounding paved areas to accommodate truck and car parking with minor landscaped garden beds covering approximately 50 % of the site developable area.

Remedial Action Plan – 615A Great Western Highway, Pemulwuy, NSW. JBS&G Australia Pty Ltd, reference 56047/123106 Rev 1 dated 16 July 2019 (JBS&G 2019c)

2. Site Condition and Surrounding Environment

2.1 Site Identification

The location of the site and surrounds is shown in **Figure 1.** The current layout is shown in **Figure 2b** and the proposed site development layout is shown in **Appendix A**. Site details are summarised in **Table 2.1** and discussed in detail in the following section.

Table 2.1: Summary of Site Details

į			
	Lot 10 DP 1022044		
Site Legal Identifier	Lot 107 DP 1028208		
(as shown on Figure 2a)	Lot 63 DP 752051		
(as shown on rigure 2a)	Lot 216 DP 1030744		
	Lot 601 DP 1047403		
	Lot 10 DP 1022044 - 44 Clunies Ross Street, Pemulwuy, NSW, 2145		
	Lot 107 DP 1028208 - Clunies Ross Street, Pemulwuy, NSW, 2145		
Site Address	Lot 63 DP 752051 - 615A Great Western Highway, Pemulwuy, NSW 2145		
	Lot 216 DP 1030744 - Clunies Ross Street, Pemulwuy, NSW, 2145		
	Lot 601 DP 1047403 - Clunies Ross Street, Pemulwuy NSW, 2145		
Site Area	Approximately 18.77 ha		
Approximate Relative Level	106 m AHD – south eastern site extent		
(RL) m Australian Height	52 m AHD – north eastern site extent		
Datum (AHD)	32 III AIID – HOLLI Eastern Site extent		
Local Government Authority	Cumberland City Council		
Local Government Authority	Blacktown City Council		
Site Geographic Coordinates (MGA 56)	Refer to Figure 2a		
Current Zoning	Zone IN1 General Industrial		
Proposed Zoning	Zone IN1 General Industrial		
Previous Land Uses	Agricultural and commercial/industrial (offices, quarrying, manufacturing)		
Current Land Uses	Vacant land and commercial/industrial (offices, masonry)		
Proposed Land Uses	Commercial/industrial Precinct with warehousing, concrete hardstand carpark areas,		
r roposeu Land Oses	drives with minor landscaped areas.		

2.2 Site Condition

The site currently comprises two commercial/industrial properties (Austral Masonry and Boral House) and a vacant land parcel (former Cumberland Council depot/stockpile yard currently being remediated for commercial/industrial land use). Key features are shown on **Figure 2b**.

2.2.1 Lot 107 DP 1028208

The southern portion of the site (Lot 107 DP 1028208) was noted to contain two rectangular multistorey office buildings of glass, sheet metal and concrete construction. Significant cutting into the natural hillslope was observed along the south eastern building extent to facilitate current site levels. The area surrounding the structures comprised a combination of asphaltic pavement (car park areas), concrete footpaths, gravelled structural base coarse (within the immediate vicinity of the buildings) and landscaped garden beds/turfed lawns. The south western portion of the lot contained well established vegetation and the south eastern portion comprised part of "Prospect Hill" and was notably vacant grassed land. Two pad mounted electrical transformers were observed to the east of the buildings.

2.2.2 Lot 63 DP 752051

The central eastern portion of the site (Lot 63 DP 752051) was notably undergoing remediation works, with several stockpiles of impacted fill material stockpiled and covered with orange geofabric.

2.2.3 Lot 10 DP 1022044

As reported by DLA (2017), Lot 10 DP 1022044 contained two large warehouse buildings (Plant 1 and Plant 2, **Figure 2b**) surrounded by hardstand pavement material storage yards, asphaltic car parks

and concrete/asphaltic loading docks/driveways. An office building was situated in the central north east, with a smaller (former brickworks office) situated in the central east. Several settling ponds (both earthen and concrete lined) and a recycled water treatment wetland were present in the north west of the site. Petroleum and chemical storage areas were observed (**Figure 2b**), including a series of oxide and LPG above ground storage tanks (ASTs) and a single Diesel AST. Several hydraulic oil stores were observed, with minor surface staining noted. DLA (2017) reported the presence of a disused vent pipe affixed to the central brickworks office, associated with a formerly identified petroleum underground storage tank (UST).

Waste and/or raw material storage was observed within the western portion of the site and surrounding a shed in the central portion of the site (south of Plant 2, **Figure 2b**). Material storage included manufacturing by-products (slag/ash). Existing structures were noted to contain hazardous building materials (asbestos).

Review of the description for Lot 10 DP 1022044 as presented by DLA (2017) was generally consistent with the current site configuration as observed by JBS&G on 9 March 2020.

2.3 Surrounding Land Use

The current land use of adjacent properties or properties across adjacent roads is summarised below.

- North The site is bound to the north by a vacant vegetated parcel of land which is dissected by Girraween Creek;
- South The site is bound to the south by vacant land then commercial/industrial allotments (large open plan warehouses);
- East The southern portion of the site is bound to the east by an earthen road and a vacant parcel of land associated with Prospect Hill. The remainder of the site is bound to the east by Clunies Ross Street across which there are low density residential allotments and commercial/industrial warehouses; and
- West The site is primarily bound to the west by commercial/industrial allotments (large open plan warehouses). Girraween Creek meanders to the west and a single large setting pit (which extends within the site boundary) was present to the north west.

The closest environmental receptor is Girraween Creek located approximately 35 m north west of the site to the south of The Great Western Highway.

2.4 Topography

A review of topographical information available on SIX Maps¹³ indicates that the site is located within a gently undulating regional topography. The south of the site is situated atop a regional high point (Prospect Hill, **Figure 2b**). Site levels were noted to fall slightly to the south and west of the crest, with the majority of the site falling towards the north/northwest, towards Girraween Creek.

Ground levels of approximately 106 m AHD are present atop Prospect Hill, falling to 52 m AHD along the northern site boundary, in close proximity to Girraween Creek.

As discussed in **Section 2.2** the site inspection indicated that portions of Prospect Hill toward the north and east of Boral House (Lot 107 DP 1028208) had been subject to cutting activities to facilitate the development of site buildings and hardstand pavements. Other areas of the site appear to have been subject to minor cut and fill activities to facilitate the levelled construction of the built form (particularly surrounding Plant 1 and Plant 2 within Lot 10 DP 1022044). It is considered that as part of historic redevelopment activities there is the potential for substantial

http://maps.six.nsw.gov.au/ Six Maps accessed by JBS&G on 4 March 2020.

quantities of fill to have been imported to the site to establish site levels or as may have been associated with regional historic quarrying activities.

2.5 Geology & Soils

Reference to the online ESPADE 2.0 tool hosted by the Office of Environment and Heritage (OEH 2019¹⁴) and the 1:100 000 Geological Series Penrith Geological Survey of NSW Sheet 9030 (DMR 1991¹⁵) indicates that the site is present within the following natural geological and soil landscapes:

- Geology: Northern portion of site is situated on Bringelly Shale comprising shale, carbonaceous claystone, laminate and fine to medium grained lithic sandstone, rare coal tuff of the Wianamatta Group; the southern portion of site lies on Jurassic Prospect Picrite – comprising picrite, dolerite and minor basalt;
- Landscape: Topography varies from level plains to undulating terrain, and has been disturbed by human activity to a depth of at least 100 cm. Most of these areas have been levelled to slopes of <5 %;
- **Soils**: Northern portion of site is situated on Blacktown soil horizon comprising red and brown podzols on crests, yellow podzols on lower slopes and drainage lines; the southern portion of the site contains Disturbed Terrain the original soil has been removed, greatly disturbed or buried. Landfill includes soil, rock, building and waste material; and
 - Limitations: Blacktown moderately reactive highly plastic subsoil, localised seasonal waterlogging and water erosion hazard, localised surface movement potential.
 Disturbed Terrain dependent on the nature of fill material often includes subsidence resulting in a mass, movement hazard, soil impermeability leading to poor drainage, and low fertility.

The above geology is noted to be generally consistent with those documented in previous investigations as discussed in **Section 4.**

Past assessment activities as discussed in **Section 4** have identified fill material (reclamation) to variable depths underlying the site.

2.6 Acid Sulfate Soils

Review of the Acid Sulfate Soil Risk Map from Australian Soil Resource Information System (ASRIS¹⁶) indicates that the site is located within an area of *'no known occurrence of Acid Sulfate Soils'*.

With consideration to the site setting and geological and soil characteristics of the site, management of development activities is not required to address the potential for impact on ASS.

2.7 Hydrology

Girraween Creek, a tributary of Toongabbie Creek and in turn the Parramatta River, is located approximately 35 m north of the north western site boundary. The Girraween Creek sub-catchment covers an area of 936 ha extending from the eastern edge of Prospect Reservoir through Fox Hills Golf Course, Girraween Park and a linear recreation reserve in Toongabbie until its confluence with Toongabbie Creek in McCoy Park.

As discussed in **Section 2.2**, the site comprises a combination of unpaved (aggregate covered) storage yards/vegetated surfaces, sealed (buildings/hardstand pavement) surfaces and contains a series of settling ponds (within the north western portion of site). As such, precipitation falling onto the site in unsealed areas is expected to infiltrate surface soils at a rate reflective of the permeability

¹⁴ ESPADE 2.0. NSW Office of Environment and Heritage, Accessed 4 March 2020, OEH 2019

Penrith Geological Series Sheet 9030 (Edition 1) 1983. Geological Survey of NSW, Department of Mineral and Resources (DMR 1991)

¹⁶ Australian Soil Resource Information System, http://www.asris.csiro.au/, accessed 4 March 2020 (ASRIS)

of the underlying site soils (**Section 2.5**) and be directed toward engineered settling ponds and subsequently discharged to Girraween Creek to the north of the site and subsequently to a flood retention basin constructed within the Girraween Creek alignment as discussed in **Section 3.7**.

In sealed areas of the site surface waters are anticipated to be redirected into the site stormwater infrastructure and directed to the municipal stormwater network. In periods of heavy or prolonged rainfall, following surface soil saturation, excess water movement is expected to follow the topographic gradient and be collected by downgradient neighbouring stormwater drainage networks and transferred to the regional stormwater network and/or discharged to Girraween Creek.

2.8 Hydrogeology

Registered bore information obtained from the Water NSW online database (WNSW¹⁷) is included as **Attachment C**. The search identified 10 groundwater bores to be located within a 1 km radius of the site, with information summarised in **Table 2.2** following.

Table 2.2: Registered Groundwater Bore Search Summary

Bore Number	Approximate distance from site	Intended Use	Drilled depth (m below ground surface (bgs))	Standing Water Level (m bgs)	Geological Material
GW101177	0.70 km west	Industrial	150	14.00 Water bearing zones from 25- 30m, 56-60m and 125-140m	Overburden to 2.50 m, weathered sandstone to 15.00, shale to 60 m and sandstone to 150 m.
GW113201	0.10 km east	Monitoring	21.30	13.84	_1
GW113202	0.20 km southeast	Monitoring	21.5	16.30	_1
GW113203	0.30 km southeast	Monitoring	19.20	14.98	_1
GW107831	0.70 km southeast	Monitoring	7.40	_1	Fill to 1.60 m, gravelly clay to 2.90 m, clay to 4.70, shale to 6.00 and hard clay to 7.40.
GW107832	0.350 km east	Monitoring	4.00	_1	Brown soil to 0.20 m, red brown clay to 1.3 m, brown and grey shale to 4.0 m.
GW112893	0.36 km north	Exploration	16.00	_1	_1
GW112894	0.35 km north	Exploration	20.00	_1	_1
GW112895	0.33 km north	Exploration	27.00	_1	_1
GW112896	0.33 km north	Exploration	21.30	_1	_1

^{1.} No information presented

Given the majority of the site is underlain by disturbed terrain overlying a dolerite/picrite formation and Bringelly Shale, there is a potential for perched water at the fill/natural and soil/rock interface. Three groundwater monitoring wells were installed to a depth of 8 m bgs within Lot 107 DP 1028208 (MW01 to MW03) as part of JBS&G (2019). Groundwater was not encountered at these locations up to 8 m bgs. DLA (2017) reported groundwater in one well installed on Lot 10 DP 1022044, the depth of which was not reported. Notwithstanding, groundwater was sampled from this well indicating the presence of shallower groundwater toward the north of the site (< 6 m bgs). Coffey (2013) reported groundwater seepage at 3.3 m bgs indicating the potential for perched groundwater at the fill/natural interface.

Based on the reported geology, topography and site observations, the permanent groundwater table is likely to be variable across the site and is expected to be encountered at depth (greater than 13 m

Water New South Wales, http://realtimedate.waternsw.com.au accessed 4 March 2020.

bgs) within the southern portion of the site and located within zones of higher permeability associated with bedrock faults, joints and weathered zones. Groundwater is anticipated to be encountered at shallower depths toward the north of the site and is expected to flow northwest towards Girraween Creek

2.9 Meteorology

A review of average climatic data for the nearest Bureau of Meteorology monitoring location (Prospect Reservoir¹⁸) indicates the site is located within the following meteorological setting:

- Average minimum temperatures vary from 6.1 °C in July to 17.8 °C in February;
- Average maximum temperatures vary from 16.9 °C in July to 28.6 °C in January;
- The average annual rainfall is approximately 873.7 mm with rainfall greater than 1 mm occurring on an average of 83.9 days per year; and
- Monthly rainfall varies from 46.5 mm in September to 98.8 mm in February.

http://www.bom.gov.au/climate/averages/tables/cw_066062.shtml, Commonwealth of Australia, 2013 Bureau of Meteorology, Product IDCJCM0028 accessed by JBS&G on 12 March 2020.

3. Site History

3.1 Aerial Photographs

Copies of historical aerial photographs from regular intervals were obtained from the NSW Department of Finance, Services and Innovation in addition to recent aerial imagery from NearMap. Imagery is presented in relation to the site boundaries in **Appendix D**. Relevant information from the aerial imagery review is summarised in **Table 3.1.**

Table 3.1 Summary of Historical Aerial Imagery Review

Year	Observations
1930	 The site comprised a vacant parcel of land which was free of notable vegetation. The image quality precluded a detailed review of the site and surrounding area, however, the majority of the site appeared to be utilised as agricultural land with a small earthen road traversing the north western portion.
	 A small patch of trees was present to the east of the site and there was evidence of an elevated ridgeline and gully erosion to the south east. Girraween Creek was present to the north west, beyond which appeared to be agricultural plots and several small associated structures (rural residential/agricultural buildings)
1943	 A "U" shaped earthen access road had been established dissecting the northern portion of the site which appeared to have been cut into the hillslope. Several small rectangular buildings had been constructed adjacent to the roadway and ground disturbance was evident toward the southern portion of the site. The road, buildings and ground disturbance observed were presumably associated with smaller scale blue metal production likely occurring at the time, as indicated by the historic land titles (Section 3.2)
	 The surrounding area appeared similar to the previous aerial photograph with further roadway construction and several new warehouse sheds having been built to the east and west.
1961	• The accessway and small sheds had been de-established and the construction of a large warehouse (Plant 2, Figure 2b) in the central portion of the site was evident. The footprint of the warehouse area had been levelled and the importation of material was apparent to establish site levels. A large stockpile of rock/potential waste was present within the central northern portion of the site (within the "U" of the former road) and a small drainage easement was noted in the north extending beyond the site to Girraween Creek. Some minor erosional features were present in the south east. The remainder of the site remained unchanged.
	 The surrounding area appeared generally similar to the previous aerial photograph. Demolition of the small shed structures and construction of several large warehouses to the north east of the site had occurred. Land to the east appeared to have been subdivided into rectangular lots (presumably for agriculture/livestock) and a large water retention basin established further east. Land to the south and south west contained large stockpiles of material and evident ground disturbance activities, presumably associated with regional quarrying activities further south (Prospect Quarry).
1970	• The construction of the large warehouse in the central portion of the site had been completed. Several small storage sheds, stored products and vehicles were identified surrounding the warehouse. Several rectangular structures noted to the immediate south of the central portion of the warehouse are possibly petroleum storage tanks which were reported to be present at the site during this time (Woodward-Clyde (2000), as discussed in Section 4.1.1). A material processing yard was evident to the south west of the warehouse and comprised several large stockpiles of material and a single small square warehouse. An access road had been established through the centre of the southern portion of the site. Ground disturbance was apparent along the south eastern boundary.
	 Several large stockpiles of material were apparent to the west of the site and several roadways had been better established providing access to the south (toward the former Prospect Quarry).
1982	 The material storage yard to the north of the warehouse had been extended including an area of radial soil dumping to the north west. Further finished product storage was evident. Large

Year	Observations
	stockpiles of material were present across the majority of the central southern portion of the site surfaces either side of the shed in the material processing area, and extended beyond the western site boundary. Ground disturbance/potential quarrying was occurring in the south west of the site. Dense vegetation had been established in the south east and north east of the site. The surrounding area appeared similar to the previous aerial photograph with the exception of
	thick vegetation to the south west of the site.
1991	• The majority of stockpiled material appeared to have been removed and/or levelled across the southern portion of the site and several temporary roadways were present. Ground disturbance was apparent in the northern portion of the site including the presence of a large bank of soil extending beyond the northern site boundary (in an area formerly covered by vegetation) associated with civil works being undertaken to construct a flood retention basin within the alignment of Girraween Creek. The aerial photograph indicates the works appeared to be generally consistent with those described by Boral Bricks and Blacktown City Council (Section 3.7). Stockpiling of material was observed along the north east extent of the material holding yard (central north of the site).
	 With the exception of ground disturbance to the north of the site, the surrounding area appeared similar to the previous aerial photograph. The alignment of Girraweek Creek had been altered (channelised), presumably as part of the flood retention basin works.
2002	• The northern portion of the site had undergone significant redevelopment, comprising newly constructed warehouse/office buildings, hardstand material storage yards and carparking areas in the northeast. Several minor additions to the central warehouse were noted. The southern portion of the site was undergoing redevelopment and contained two newly constructed commercial buildings where the current Boral House exists and associated bituminous car park areas which were still under construction. Two temporary structures (e.g. construction sheds) are present at the southeast boundary.
	 Clunies Ross Street had been constructed adjacent to the east of the site. The land to the west appeared to be being redeveloped and had been stripped and levelled with two warehouses constructed further west, and Foundation Place almost completed. A retention basin associated with the adjacent redevelopment was apparent and extended to within the north western portion of the site.
2015	 The majority of the site remained unchanged other than construction of the southern portion of the site had been completed. Some felling of trees and establishment of grassed areas to the south of Boral House had occurred.
2016	 Clunies Ross Street to the east had been paved. Redevelopment of large commercial warehouse properties to the south and west of the site had been completed. A large residential subdivision had been constructed to the east of Clunies Ross Street. Warehouse buildings to the north east had been demolished and construction of a new large open plan warehouse had occurred.
2020	 The site appeared similar to the previous aerial photograph with the notable exception of remediation works being undertaken in Lot 63 DP 752051 within the central eastern portion of the site adjacent.
	 Additional construction had been undertaken on the residential subdivision to the east of Clunies Ross Street.

In summary, the site appeared to have been vacant pastoral/agricultural land and subject to minor quarrying activities prior to being utilised for bulk material storage associated with regional quarrying activities and manufacturing (Boral Bricks) and was subject to ground disturbance (stockpiling/filling) from the 1960s to the late 1990s. Manufacturing has been ongoing in the northern portion of the site (Austral Masonry) and the southern portion has been utilised for a combination of commercial land use (Boral/Greystanes House) with adjacent vacant land utilised as a carpark (minor occupancy).

3.2 Historical Land Title Records

Detailed historical land title records are included in **Appendix E**. A summary of the historical title documentation records as obtained by JBS&G and as provided reviewed in previous investigations (**Section 4**) for the site is provided below.

The historical land title records indicate that Lot 107 DP 1028208 has historically been utilised for agricultural purposes (owned by dairy farmers) prior to its use for regional quarrying/manufacturing activities. Following cessation of quarrying activities, the land title records indicate the property was utilised for commercial purposes (Boral Brick head offices). It is understood ISPT have acquired the property which is currently vacant.

Historical title records for Lot 63 DP 752051 indicate that the lot was Crown Land prior to 1963 and the proprietor of the site was the Council of the Municipality of Holroyd from 1963. An amalgamation of the Municipality of Holroyd, now Cumberland Council occurred in 2016 and it is understood Cumberland Council has been the owner of the property and is currently under acquisition by ISPT.

Historical title records included in DLA (2017) for Lot 10 DP 1022044 (included in **Appendix E**) indicate the lot was historically utilised for regional quarrying (blue metal) and agricultural (dairy farming) activities prior to large scale manufacturing associated with regional quarrying activities (Boral Bricks). It is understood the site has continued to be used for masonry manufacturing activities under occupation by Austral Masonry and is owned by IPST.

3.3 EPA Records

A search of the NSW EPA's public register maintained under the *Protection of the Environment Operations Act 1997* (POEO Act) was undertaken and is included as **Appendix F**.

The search identified that, for the site, there were:

- No prevention, clean up or prohibition notices; and
- No transfer, variation, suspension, surrender or revocation of an environmental protection licence.

The search indicated Austral Masonry (NSW) Pty Ltd previously owned by Boral Recycling Pty Ltd holds an Environmental Protection Licence (EPL 4664) for concrete works. JBS&G note manufacturing activities conducted under this licence are generally low risk and are not considered to represent a significant potential for contamination.

A search was undertaken through the EPA public contaminated land register and is included as **Appendix F**. The search identified that there have been no notices issued under the *Contaminated Land Management Act 1997* (CLM Act) for the site and immediate surrounds.

The site has not been notified to the EPA under section 60 of the CLM Act with regards to contamination. An excerpt of the list of properties notified to the EPA is included in **Appendix F**. Review of the list of properties notified to the EPA did not identify any nearby properties that may represent a contamination migration risk to the site.

3.4 EPA Per- and Poly- Fluoroalkyl Substances (PFAS) Register

A search was undertaken through the EPA PFAS register of contaminated sites and is included in **Appendix F**. The search identified that there are no sites in the Pemulwuy, Prospect or Greystanes area notified to the EPA with regards to PFAS contamination.

3.5 Australian and NSW Heritage Register

With the exception of a large body of igneous rock (Prospect Hil), a search of the Australian Heritage Trust database and the NSW Heritage Inventory did not reveal any heritage listed items at the site or

on immediately adjoining properties. Heritage information covers Aboriginal as well as European heritage and is included in **Appendix G**.

Prospect Hill, which forms part of the site's south eastern portion, is listed as a Historic Landmark by the NSW OEH. The search indicates Prospect Hill has state significance due to a combination of its unique landscape feature as Sydney's largest body of igneous rock and association with historical records.

3.6 Council Records

3.6.1 Council Planning Certificates

Planning Certificates issued under Section 10.7 (2 & 5) of the *Environmental Planning and Assessment Act 1979* (EP&A Act)) were obtained for the site from Cumberland Council for Lot 63 and Lot 107 and are included in **Appendix H**. The planning certificates included the following information regarding to the site:

- The site is located within Zone IN1 General Industrial;
- The site is subject to Holroyd Development Control Plan (DCP, 2013);
- The site is part of the Western Sydney Employment Area (2009) SEPP;
- The site is not affected by coastal protection, mine subsidence, road widening and road realignment, flood related development controls or land reserved for acquisition;
- The site does not have an adopted policy in relation to bush fire, tidal inundation, subsidence or acid sulfate soil (ASS);
- The site is affected by Council's adopted policy on contaminated land, however there are no matters under s59(2) of the CLM Act applying to the site, and Council is not aware of any site verification certificates for the site;
- With regard to contamination, Council's records indicated that the site has been used for the dumping of waste and fill;
- Council is not aware that the site is affected by loose-fill asbestos insulation; and
- The Department of Land and Water Conservation indicates that the site is subject to potential salinity issues.

Records procured by JBS&G are consistent with those reported by others for the broader site including Lot 10 DP 1022044 (DLA 2017).

3.6.2 Council Letter

A copy of a letter of correspondence from then Holroyd City Council (dated 6 June 2008), provided in DP (2018), indicated that a historic letter issued to Boral Bricks, dated 20 September 1995 specified that there was the use of Council's land (Lot 63 DP 752051) for the "dumping of waste and fill" material.

Whilst the exact location referred to was not reported an attached hand drawn map indicated it likely referred to the Council lot (Lot 63 DP 752051) which forms part of the site as defined herein. The letter indicated the northern portion of the lot contained stockpiles of "waste brick, rubbish and aggregate". This is consistent with observations made by Woodward-Cyde (2000). The letter indicated southern portion of the Lot 63 comprised a relatively flat area of soft soils with isolated stockpiles of timber palates and waste material. Copies of the Council letter are provided in **Appendix H**. JBS&G note this property is currently undergoing remediation to remove identified asbestos, heavy metal and aesthetic issues such that the land is suitable for ongoing commercial/industrial land use (unencumbered by management).

3.7 Boral Letter

A copy of letter dated 9 November 1989 outlining discussions between Boral Quarries and the then Water Resource Commission (Blacktown City Council) regarding the construction of a flood retention basin associated with Girraween Creek catchment was provided to JBS&G for review. A copy of the letter is provided in **Appendix I**. The letter provided design plans for a retention basin to the north of the site, which was proposed to extend to within the site (Boral Quarry). Review of the letter indicated that as part of the construction of the flood retention basin, Boral would accept 10,000m³ of fill material to batter the basin from 30 m within the site boundary, to above the 55.2 m flood levels. The discussion indicated site levels would be filled westward approximately 300 m. Review of aerial photographs (specifically the 1991 image, **Section 3.1** and **Appendix D**) indicates the proposed design and construction of the flood retention basin likely occurred, as generally outlined.

3.8 SafeWork NSW Dangerous Goods Records

DLA (2017) conducted a search of the Storage of Hazardous Chemicals database from SafeWork NSW for Lot 10 DP 1022044. Detailed records are provided in **Appendix J**. Review of the search indicated that dangerous goods licences have formerly been held within Lot 10 DP 1022044 including:

- Liquified Petroleum Gas (LPG);
- Dissolved acetylene;
- Compressed oxygen;
- · Argon shield universal; and
- Compressed argon.

Woodward-Clyde (2000) reported the presence of a UST in the central east of the site, adjacent to the former brickworks office (**Figure 2b**). The UST was reported to provide fuel to adjacent kilns (and potentially fuel for truck fuelling) and was subsequently decommissioned (filled with water) in 1983. Relevant records/details as to decommissioning of the UST were not provided. Further, anecdotal evidence indicates several diesel ASTs were present within the central portion of the site (**Figure 2b**).

In addition to the above, the detailed site inspection indicated a 2,500 L diesel AST and small LPG AST were present on Lot 107 DP 1028208. These tanks were noted to be relatively new, appropriately bunded and without evidence of spills/leaks (JBS&G 2019a).

3.9 Integrity Assessment

Based on the range of sources and the consistency of the historical information as provided in **Section 3**, it is considered that the historical assessments undertaken at the site, outlined in **Section 4** provide an acceptable level of accuracy with respect to identifying potentially contaminating activities historically occurring at the site.

3.10 Summary

In summary, the site appeared to have been vacant pastoral/agricultural land and subject to minor quarrying activities prior to being utilised for bulk material storage associated with regional quarrying activities and manufacturing (Boral Bricks). The site was subject to ground disturbance (stockpiling/filling) from the 1960s to the late 1990s. Manufacturing has been ongoing in the northern portion of the site (Austral Masonry) and the southern portion has been utilised for a combination of commercial land use (Boral/Greystanes House) with adjacent vacant land utilised as a carpark (minor occupancy).

There are no notices or other information on state and local government records (other than the Council letter, **Section 3.6.2**) and data bases pertaining to contamination matters at the site.

4. Previous Investigations

The following sections provide a summary of the information and site characterisation data presented within assessment reports prepared by JBS&G and by others which have been made available for review by JBS&G. These reports include both historical and information relating to investigations conducted at that time.

Comments in relation to COPC are provided in the following text in relation to assessment criteria adopted by the author at the time of report preparation. This comprises the range of health investigation levels presented in NEPC (1999¹⁹) and EPA (1994²⁰) for investigation results generally up to and including the end of 2012, and later guidelines provided by ANZECC (2000²¹) for groundwater thresholds and NEPC (2013²²) for results from 2012.

Exceedances of currently adopted assessment criteria at the site are shown in accompanying summary results tables (**Appendix B**) and **Figure 5**. This is considered appropriate to assess the nature and distribution of contaminants as part of the Phase 1 and Phase 2 ESA (DSI) outlined herein and identify any contamination issues requiring further consideration in relation to proposed development of the site.

4.1 Lot 10 DP 1022044 – Austral Masonry

4.1.1 Phase 1 and Phase 2 Environmental Site Assessment – Woodward-Clyde (2000)

The following is a summary of information presented in an excerpt of Woodward-Clyde (2000) (as provided in Coffey (2013)). Detailed analytical results were not cited by JBS&G. As such the information has been summarised to provide broad site background information and supplement more recent environmental data at the site. A detailed map of the site features and AECs as identified and prepared by Woodward-Clyde (2000) is provided in **Appendix K** and as relevant on **Figure 2b** and **Figure 4**. JBS&G note there are discrepancies between site features as described in the report and that shown on the provided site diagram (**Appendix K**) (notable transcript errors regarding geographic reference points and locations) which have been resolved as part of the summary below.

Woodward-Clyde (2000) conducted a Phase 1 and Phase 2 ESA for the Boral Block and Paving Facility (now Austral Masonry). As part of the site history review the following was noted based on site observations and anecdotal evidence (discussions with site personnel at the time):

- One disused 10,000 L petrol and/or diesel UST (installed in 1962) was identified beneath brick pavers near the brickworks office (understood to have been drained and water filled in 1983). A bunded heavy fuel oil tank farm was noted to have been present at the site (removed prior to 1984) comprising 4 x 45,000 L ASTs in the south-eastern corner of the former brick works factory building (kiln firing);
- Various operating facilities were present on the site including one fuel oil AST outside the
 north western wall of the besser block factory, two in-ground (concrete) oxide effluent tanks
 connected to the settling pits, minor hydraulic oil spills, two above ground LPG tanks (7,500
 L) near the former tank farm, 8 steel ASTs storing oxides, a first flush pit and disused
 machinery area outside the western wall of the former brickworks factory;

National Environment Protection (Assessment of Site Contamination) Measure, 1999. National Environment Protection Council, 1999 (NEPC 1999)

²⁰ Contaminated Sites: Guidelines for Assessing Service Station Sites. NSW EPA December 1994 (EPA 1994)

Australian and New Zealand Guidelines for Fresh and Marine Waste Quality, Volume 1. Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand, October 2000 (ANZECC 2000)

National Environment Protection (Assessment of Site Contamination) Measure, 1999 Amendment No. 1. National Environment Protection Council 2013 (NEPC 2013)

- Asbestos building materials were noted in structures, including fuel lines to kilns. An area of buried asbestos in plastic bags (lagging from a portion of the kiln fuel oil lines) was reported to a depth of 3 m in an area fringing a disused shed to the west²³ of the former factory building in 1978 (Figure 2b). The buried asbestos was noted to have been backfilled with "waste material", the nature of which was unable to be ascertained. In addition, the following is noted:
 - Buried asbestos was subsequently believed to have been disposed off-site in 1996 based on an internal audit report prepared in 1999 by Boral (not cited). Based on anecdotal evidence, an asbestos survey was carried out at the site. Documentation was not provided by Woodward-Clyde (2000); and
 - JBS&G consider the reported location of the buried waste (Appendix K) to be incorrectly inferred around the existing shed to the south of the warehouse and was more likely present in vicinity of a former shed identified to the south west of the current shed (as evidenced in the 1991 aerial photograph (Section 3.1)) which was subsequently demolished.
- Two former oil (drum) stores were identified to the northern end of the former factory building which contained various oils, grease and solvents (**Figure 2b**). An internal audit by Boral in 1996 (not cited by Woodward-Clyde or JBS&G) noted that the surface soils in the area were contaminated with oil;
- It was noted that ash was deployed in manufacturing Besser bricks. The ash was noted to
 have been stockpiled on unsealed ground 100 m west of the former factory building. The
 exact location of stockpiled ash was unable to be ascertained by JBS&G;
- Woodward-Clyde cited an internal audit report by prepared by Boral (1996) (a copy of which was not provided) indicated the following:
 - Various polychlorinated biphenyl (PCB) containing equipment (transformers and capacitors) were present on the site in various locations including outside the southwestern wall of the factory building (Figure 2b). The capacitors were reportedly disposed off-site when Boral vacated the site.; and
 - A large stockpile of waste (bricks and raw materials) was present to the south east of the Plant 1 (consistent with Section 3.6.2).
- Wastewater from the colouring machines (oxides) and polishers was identified to be pumped via underground lines to two settling pits prior to being direct to an overland wastewater recycling system;
- Localised staining was observed underlying large manufacturing equipment (besser block presses) within the factory building; and
- Disused machinery was being stored outside the western wall of the former brickworks factory building on sealed and unsealed ground.

Woodward-Clyde (2000) undertook a program of soil, sediment and surface water sampling and analysis to assess the potential impacts from the identified land uses. The investigation included the advancement of 87 soil bores (**Figure 3**) across the site. Analytical data was not cited by JBS&G. Woodward-Clyde reported:

Note, the figure (Appendix *) shows this to be to the south of the factory building.

- Generally low levels of contaminants with most analytes below the criteria for industrial land use (compared against NEPC 1999). Traces of TPH were detected in three soil samples below the relevant criteria (maximum concentration of 665 mg/kg in SB73); and
- Water and sediment samples showed low levels of contamination, all of which were within
 the relevant human health criteria for industrial land use, although some of the latter
 exceeded the (then) interim sediment quality guidelines for chromium, copper, nickel, lead
 and zinc.

JBS&G note the investigation involved the collection of composite samples to target AECs and provide broad site coverage. Sampling and analysis for COPCs was considered to be generally appropriate. Noting the lapse in time since the investigation was conducted, Woodward-Clyde (2000) is generally considered to provide a reasonable baseline understanding of the site setting and potential contamination sources under occupation by Boral Bricks, prior to occupation of the lot by Austral Masonry.

4.1.2 Coffey Due Diligence Environmental Site Assessment (Coffey 2013)

Coffey conducted a due diligence assessment within Lot 10 DP 1022044 and Lot 216 DP 1030744, with the objective to identify existing contamination status at the site and determine the suitability of the area for ongoing commercia/industrial land use.

The scope of work undertaken by Coffey (2013) the following:

- Review of previous environmental site assessment conducted by Woodward-Clyde (2000);
- Targeted soil, sediment and surface water investigation program at selected AECs, supplemented by a limited sampling program in low risk areas to provide broad site coverage which involved the collection of:
 - Soil samples from 40 borehole locations (BH1 BH40) and sediment samples from 3 locations (SED1 SED3) (Figure 3), with selected samples analysed for heavy metals, polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, toluene, xylene (BTEX), total petroleum hydrocarbons (TPHs), organochlorine pesticides (OCPs), PCBs and asbestos. Laboratory results were then compared against the Health-based Investigation Level (HIL-F), Table 5-A of NEPC (1999) pursuant to commercial/industrial land use; and
 - Surface water samples from 3 locations (SW1 SW3), with selected sampled analysed for heavy metals, PAHs, BTEX, and TPHs and compared against ANZECC (2000) 95% species protection for freshwater aquatic ecosystems.

Data as presented by Coffey (2013) is provided in **Table A** (**Appendix B**). The following was reported by Coffey (2013):

- Laboratory analysis of selected soil and sediment samples returned concentrations below the respective laboratory limit of reporting (LOR);
- Laboratory analysis of surface water samples returned concentrations below the respective LOR with the exception of sample SW2, where heavy metal concentrations returned minor exceedances of the adopted criteria for arsenic, cadmium, chromium, cobalt, copper, lead, nickel, and zinc. The surface water sample was collected from a concrete lined settling pit located to the west of Plant 1 (Figure 3);
- Groundwater seepage was reported at a depth of 3.3 m bgs at one borehole location (BH17).
 JBS&G note this may indicate the potential for perched groundwater at the site; and

Asbestos was identified at sample BH8/0.0-0.2m. Coffey inferred that the asbestos was
potentially sourced from fall-out from asbestos roofing which was adjacent the sample
location.

In summary, Coffey (2013) concluded that no gross or widespread contamination existed for the portion of the site and deemed the property was suitable for a continued commercial/industrial land use scenario.

JBS&G note given the due diligence nature of the assessment, laboratory analysis was conducted for a limited suite of contaminants and did not address all COPC for identified AECs. No PCB or semi/volatile organic compound (s/VOC) analysis was conducted in vicinity of waste oil and petroleum storage and handing areas. The investigation did not address potential contamination associated with known former petroleum storage infrastructure, including a former UST identified by Woodward-Clyde. Groundwater was not assessed as part of the investigation.

Coffey (2013) did not conduct further investigation in an area noted by Woodward-Clyde (2000) to contain buried asbestos waste (**Figure 2b**). Noting Woodward-Clyde (2000) reported the asbestos waste to have been removed in 1996 (based on anecdotal evidence only), JBS&G consider the potential for residual asbestos impacts within this area to remain.

Coffey (2013) reported that the thickness of the fill material could not be determined during the investigation, however the maximum recorded depth of 4 m was encountered at BH22. Noting this, no sampling and analysis of fill material was conducted at depth (predominate fill analysis was conducted within the top 0.5 m bgs).

4.1.3 Combined Phase 1 and Phase 2 Environmental Assessment (DLA 2017)

This report prepared for a Lot 10 DP 1022044 documents a Phase 1 and 2 ESA to provide an overview of the potential impacts of past and current land use activities on the site since the initial assessment was conducted by Woodward-Clyde (2000). The scope of works undertaken for DLA (2017) is outlined below. Historic sampling locations are shown in **Figure 3**. The investigation included the following:

- Detailed site inspection and identification of 15 AECs;
- The collection soil samples from 32 borehole locations and two sediment samples; and
- Collection of surface water samples from two locations and the installation and sampling of a single groundwater monitoring well.

Data as presented by DLA (2019) is provided in **Table A** (**Appendix B**). Based on the environmental program, the following was presented:

- Various anthropogenic wastes (ash, building rubble and other filling) were noted in soil, albeit to a limited extent.
- Analysis of collected soil and sediment samples indicated that all concentrations were below the relevant NEPC (2013) health criteria (HIL-D) and ecological screening levels (ESLs) for a commercial/industrial land use scenario;
- Low level copper concentrations were reported to exceed the adopted ecological criteria for 95% species protection for freshwater in two surface water samples collected from settling ponds (SP2 and SP3) and in groundwater from one monitoring well (MW30);
- Hazardous building materials (asbestos, PCBs) were identified within current/former site structures:
- DLA indicated that previous investigations reported the existence of ACM burial at 'AEC10', however no sample locations were made available to JBS&G; and

• In the present state DLA consider the site to be suitable for continuing commercial/industrial land use.

JBS&G note DLA (2017) did not compare analytical results against relevant Ecological Investigation Levels (EILs) pursuant to the requirements of NEPC (2013). DLA (2017) did not conduct further investigation in an area noted by Woodward-Clyde (2000) to contain buried asbestos waste (**Figure 2b**). Noting Woodward-Clyde (2000) reported the asbestos waste to have been removed in 1996 (based on anecdotal evidence only), JBS&G consider the potential for residual asbestos impacts within this area to remain.

DLA (2017) conducted a broad suite of analysis to target identified AECs. JBS&G note samples were not collected nor analysed from surface soils (or directly underlying hardstand pavement). Samples were collected at a depth of 0.5-0.6 m bgs. As such, JBS&G consider that should localised contamination be present in surface soils (including potential leaks/spills associated with hydrocarbon/chemical storage and/or asbestos contamination from known hazardous building materials etc.) they may not have been captured as part of the investigation.

JBS&G note that only one groundwater well was investigated (BH/MW30), whereas a minimum of three wells should be installed to determine flow direction and to determine baseline groundwater conditions around former petroleum storage locations, particularly underground petroleum storage systems (UPSS) as identified at the site (**Figure 2bb**).

4.2 Lot 107 DP 1028208 - Boral House

4.2.1 JBS&G Preliminary Contaminated Land Assessment (JBS&G 2019a²⁴)

JBS&G conducted a preliminary contaminated land assessment within Lot 107 in DP 1028208, with the objective to assess the contamination status of the site and feasibility of proposed future developments.

JBS&G (2019a) conducted a detailed site inspection which identified the presence of fill materials associated with historic land use (significant ground disturbance), two electrical transformers and general site activities associated with more recent land use (vehicle storage) which may pose potential sources of contamination. JBS&G (2019a) noted petroleum storage within this portion of the site including a single 2,500 L diesel AST and small LPG AST, which were observed to be in good condition, appropriately bunded with no evidence of leaks or spills. Given the age and condition of the ASTs, JBSG did not consider the ASTs to pose a potential risk of soil, soil vapour or groundwater contamination nor a risk to current/future site receptors. As such no further consideration was warranted

The scope of works comprised the following:

- Review of environmental setting, planning certificates, EPA licences and environmental incidents, historical photographs, as well as heritage records pertaining to the site and immediate surrounds;
- Advancement of 43 soil sampling locations (27 test pits), eight surface samples, four hand augers and three boreholes to depths between 0.1 and 8 m bgs and collection of representative soil samples;
- Conversion of three boreholes to groundwater monitoring wells to 8 m bgs, however collection of groundwater samples was not undertaken as the wells remained dry during the investigation; and

Preliminary Contaminated Land Assessment – Lot 107 DP 1028208, Clunies Ross Street, Pemulwuy, NSW (Rev 1), dated 17 June 2019

• Comparison of laboratory results against commercial/industrial land use criteria (HIL-D), as derived from NEPC (2013).

Based on the investigation the following was reported:

- Laboratory results returned concentrations of heavy metals and PAHs above the adopted ecological criteria, however JBS&G (2019) did not consider the minor exceedances to represent an unacceptable risk under a proposed commercial/industrial land use scenario, and given the existence of established and healthy site vegetation;
- The three installed groundwater wells were reported to be dry at the time of investigation, as such no groundwater samples were collected. Groundwater was therefore inferred to be present at depths greater than 8 m bgs;
- Approximately 300 m³ of asbestos impacted in-situ fill material was identified adjacent to the north eastern portion of the lot;
- Asbestos fragments were observed in an embankment, associated with former service infrastructure (conduit/service pit);
- Approximately 50m³ of scattered anthropogenic material including building and demolition waste (brick, concrete, scrap metal) and general rubbish (discarded fencing, tyres etc) were identified in the south western portion of the site; and
- In summary, JBSG (2019) concluded that remediation/management of asbestos impacted soil was required in ensure the site was suitable for commercial/industrial site suitability.

4.2.2 South East Boral House - Asbestos Clearance (JBS&G 2020²⁵)

JBS&G conducted an asbestos clearance following make-safe works (by others) to remove previously identified (JBS&G 2019a) bonded ACM at the sites surface within the southern portion of the site (associated with former site service infrastructure). JBS&G (2020) concluded that, following make-safe works, bonded ACM at the site surface had been adequately removed and that the area was safe for re-occupation under normal controls. JBS&G (2020) noted the potential remained for further ACM infrastructure to be potentially present within the adjacent embankment/service easement.

4.3 Lot 63 DP 752051 – 615A Great Western Highway

Lot 63 in DP 752051 (615A Great Western Highway) is currently being remediated in accordance with the Remedial Action Plan (RAP) (JBS&G 2019c, **Section 4.3.4**) prepared for this portion of the site as part of the contract of sale between the Cumberland Council and ISPT. Lot 63 in DP 752051 is currently being remediated for commercial/industrial land use, unencumbered by any environmental planning instrument (i.e. environmental management plan (EMP)).

The following summary of previous investigations for Lot 63 has been presented, noting that, given the site is currently being remediated and is subject to NSW EPA accredited Site Auditor review (to ensure the site is suitable for commercial/industrial land use) no further evaluation of the lot specific data set for was warranted as part of the investigation outlined herein (beyond the summary presented below) and as such has been excluded from the evaluation of the current contamination status of the site as discussed in **Section 11**.

South East Boral House – Asbestos Clearance (Rev 1). JBS&G Australia Pty document 56425/127379 Ltd dated 11 February 2020 (JBS&G 2020)

4.3.1 Due Diligence Contamination Investigation, Douglas Partners (DP 2018²⁶)

Douglas Partners (DP) completed a due diligence investigation for a portion of the site (Lot 63 DP 752051) in December 2018 to assess potential contamination and draw conclusions regarding the site suitability for the proposed redevelopment.

The due diligence comprised a combined desktop study and limited soil sampling across accessible portions of the site. DP (2018) reviewed and included two earlier reports relating to the site:

- Alliance Geotechnical Pty Ltd, Supplementary Stage 1 Preliminary Site Investigation, 615A
 Great Western Highway, Pemulwuy, NSW, Lot 63 in DP752051, reference 8068-ER-1-1 dated
 10 October 2018 (Alliance 2018; and
- Geotechnique Pty Ltd, Preliminary Contamination Assessment (Revised), Lot 63 in DP752051, Clunies Ross Street, Pemulwuy, NSW, reference 11762/1-AAR1, dated 28 July 2008 (Geotechnique 2008).

The intrusive investigation was limited to the advancement of seven (7) test pits via excavator within accessible areas of the site.

Key findings of the DP due diligence are summarised below:

- The site comprised a generally vacant vegetated parcel of land which had been subject to significant ground disturbance (filling) between 1965 and 1982.
- Potential sources of contamination at the site were identified as:
 - o Imported fill; and
 - o Fly tipped waste.
- Soil analysis undertaken on collected samples indicated that chemicals of concern were generally within the adopted site assessment criteria (NEPC (2013) HIL D – Commercial/Industrial land use);
- Field works reported fill containing anthropogenic material (glass, brick, tyre, plastic, concrete etc.) to a maximum depth of 1.5 m below ground level. Weathered dolomite was encountered underlying fill materials at three locations;
- Fill was noted to contain elevated heavy metal concentrations;
- Surface anthropogenic materials were identified and require removal prior to commencement of earthworks. It was estimated 20 to 40 m³ of waste will require to be removed; and
- Bonded ACM was identified at three of the seven advanced locations (TP1, TP4 and TP5).

The findings from the limited intrusive investigation supported Douglas Partners' conclusion following the desk top study of a low potential for contamination across the this portion of the site.

JBS&G note the number of sampling locations advanced in DP (2018) was not acquiescent with EPA (1995²⁷) Sampling Design Guidelines for an area of 8 114 m².

4.3.2 Due Diligence Assessment (JBS&G 2018)

JBS&G (2018) conducted a due diligence assessment to further characterise the extent of potential asbestos impacts at the site. The investigation included a review of DP (2018) and the

Report on Due Diligence Contamination Investigation - Proposed Commercial Development 615A Great Western Highway, Pemulwuy. Douglas Partners Pty Ltd dated 7 December 2018, DP (2018);

²⁷ Contaminated Sites: Sampling Design Guidelines. NSW EPA 1995 (EPA 1995)

implementation of a sampling program in accordance with relevant EPA made or endorsed guidelines.

The field program involved the advancement of 20 test pit locations via an excavator on an approximate grid across the site. Asbestos analysis undertaken on collected soil samples indicated the following:

- Trace asbestos fines/friable asbestos (AF/FA) within fill material at six (JB03, JB06, JB08, JB10, JB11 and JB16) of the 20 advanced sample locations. AF/FA exceeded the adopted health-based criterion in fill at one sample location (JB06);
- ACM fragments were identified within fill at 10 (JB01, JB02, JB03, JB05, JB06, JB07, JB08, JB09, JB10 and JB16) of the 20 advanced sample locations; and
- Aesthetic issues in the form of general and building/demolition waste within the fill material
 were identified. JBS&G (2018) noted where fill material is to remain, consideration should
 be given to placement of impacted soils within areas where they will not be
 accessible/observable to future site occupants/workers upon completion of development
 activities.

JBS&G (2018) made the following conclusions/recommendations:

- It was recommended that, prior to submission of development applications to Council, the client conducts a detailed investigation of the lot to refine the remedial extent required to make the site suitable for the proposed land uses;
- The site will require to be managed under an asbestos management plan (AMP) given the identification of asbestos in exceedances of site suitability criteria; and
- Additional investigations and a remedial action plan (RAP) would be required to be prepared
 to address the presence of the aforementioned impacts and provide an appropriate
 framework for implementation of management/remediation activities and subsequent
 validation to demonstrate the suitability of the lot.

4.3.3 Detailed Site Investigation (JBS&G 2019b)

JBS&G (2019b) conducted a DSI to further characterise the lot and refine the remedial extents. The investigation comprised a review of previous investigations, updated EPA/heritage searches, and involved implementation of a systematic and targeted soil sampling program (48 test pit locations in total). The sampling density was double EPA 1995 sampling design guidelines as required by WA DOH (2018²⁸) which are referenced by NEPC (2013).

Asbestos quantification (AQ) was completed on fill material to a maximum depth of 3.0 m bgs. Asbestos impacted fill was restricted to a distinct fill horizon which overlayed reworked dolerite/shale and/or natural soil/bedrock which was reported to be free of anthropogenic material and asbestos.

JBS&G (2019b) reported the following:

- Surface (0-0.1 m) ACM was observed at 29 of the advanced sample locations;
- Sub-surface ACM (present/absent) was reported in fill at 30 locations;
- ACM in fill (below 0.1 m bgs) exceeded the adopted commercial/industrial health screening level (HSL D) criterion in 10 L samples (NEPC 2013 protocol) at six locations (AQ14 0-0.4, AQ24 0.1-1.1, AQ27 0.1-0.7, AQ32 0.1-0.7, AQ34 0-1.0 and AQ38 0.1-1.1). ACM was

²⁸ Guidelines for the Assessment Remediation and Management of Asbestos-Contaminated Sites in Western Australia, May 2009. Western Australia Department of Health (DOH), (DOH 2018)

reported below the adopted ACM HSL D criterion in 10 L samples in fill (below 0.1 m bgs) at 21 additional locations;

- A total of 98 soil samples were submitted to the laboratory for asbestos analysis. Five samples (AQ19 0.1-0.9, AQ20 0.1-1.1, AQ40 0.1-1.1, QC01 (AQ40 0.1-1.1) and AQ44 0.1.-0.6) from fill at four locations exceeded the adopted AF/FA HSL D criterion of 0.001% w/w in 10 L samples. Ten additional locations reported trace levels of AF/FA in fill below the adopted AF/FA criterion;
- Based on the results, asbestos impacted fill (absence/presence) was restricted to a discrete soil type of brown silty clay with varied inclusions of porcelain, brick, metal, slag, timber identified from surface to a maximum depth of 2.0 m bgs across the majority of the lot. Anthropogenic inclusions observed in fill under a commercial/industrial land use scenario were not considered to pose an unacceptable aesthetic issue with the notable exception of fill within the north eastern portion of the lot;
- Lead was reported at two locations (three samples; AQ40 0.5-1.1 (2100 mg/kg) and duplicate QC01J (1900 mg/kg) and AQ45 0.1-0.2 (1800 mg/kg)) exceeding the adopted health criterion. Following statistical evaluation of the data set, the lead exceedances were not considered to represent an unacceptable health risk;
- Heavy metal concentrations exceeded the adopted ecological criteria at a number of locations. However, with consideration of the proposed development comprising a commercial/industrial allotment surfaced by hardstands these exceedances were not considered to represent unacceptable risk noting established site vegetation at the time of investigation appeared healthy and any future flora to be established in this portion of the site would likely be within constructed garden beds/imported growing media;
- Fill was reported to contain low leachate properties and not to represent a risk to
 groundwater. Noting the proposed development will is anticipated to be largely paved,
 groundwater infiltration and in turn migration is limited. It was noted that fill at sample
 AQ40 0.5-1.1 reported a lead concentration which demonstrated a moderate leachability.
 Notwithstanding this material was required to be removed due to the reported AF/FA
 exceedances (AQ40 0.1-1.1);
- Based on a detailed desktop assessment, groundwater was noted likely to be saline and located at depth, and on this basis it was not considered be suitable for beneficial re-use;
- Bulk anthropogenic / building and construction waste was identified at the lot surface and in areas of fill at depth and was considered to pose an aesthetic issue which required remediation (removal). It was estimated approximately 100 to 200 m³ of waste was present on site;
- Reworked dolerite/shale materials and natural weathered dolerite were identified underlying fill materials. There was no evidence of staining, odours, ACM or gross anthropogenic waste observed in materials underlying fill at the lot; and
- Based on review of the analytical results fill materials and reworked natural soils at the lot were reported to generally fall within the general solid waste (GSW) (non-protrusible) NSW Waste Classification (EPA 2014²⁹) thresholds, and classifiable as Special (Asbestos) Waste where asbestos is present. Fill at sample location AQ40 0.5-1.1 was classifiable as restricted solid waste (RSW)/Special (asbestos).

JBS&G (2019b) concluded:

²⁹ Waste Classification Guidelines Part 1: Classifying Waste. NSW EPA 2014 (EPA 2014)

- A RAP should be prepared for the lot to address the above aesthetic and asbestos impacted media as follows:
 - surficial and sub-surface anthropogenic materials representing an aesthetic issue requiring remediation;
 - AF/FA impacted fill at five locations (DSI and inclusive of JBS&G (2018)). It was estimated approximately 550 m³ of AF/FA impacted fill required removal from the area; and
 - ACM was identified within a discrete fill horizon and considered to pose an unacceptable health risk requiring remediation to facilitate commercial/industrial land use without ongoing management. Following removal of AF/FA impacted fill, it was estimated that 3 800 m³ of ACM impacted soil required remediation.

4.3.4 Remedial Action Plan (JBS&G 2019c)

JBS&G (2019c) prepared a detailed RAP to address unacceptable levels of asbestos and anthropogenic waste identified in JBS&G (2019b) to make the site suitable for commercial/industrial land use unencumbered by any management plans (EMP etc.). The preferred remedial method was to excavate and dispose of friable asbestos hotspots (offsite), with the balance of impacted fill to be excavated and subject to rake/tyne and picking of bonded ACM and anthropogenic waste considered to pose human health and aesthetic issue, respectively.

5. Data Gaps

Based on the review of the site history and previous site investigation data, the following data gaps have been identified in relation to the site:

Lot 216 DP 1030744

 Additional sampling and analysis required to address identified sources of potential contamination (surface water/groundwater/sediment and surface soils/fill) and satisfy the required sampling density in accordance with the Sampling Design Guidelines (EPA 1995³⁰) and NEPC (2013).

Lot 601 DP 1047403

 Additional sampling and analysis required to address identified sources of potential contamination (fill) and satisfy the required sampling density in accordance with EPA (1995) and NEPC (2013).

Lot 10 DP 1022044

- Additional sampling and analysis for a range of COPC (not adequately assessed in previous investigations) is required for surface water, sediment, soil and groundwater including VOCs and PFAS;
- Additional groundwater sampling and analysis is required down gradient of historic and current petroleum storage (ASTs and USTs) and/or chemical storage and handing areas;
- Additional soil sampling and analysis for a range of COPC is required (in surface soils and at depth) down gradient of historic and current petroleum storage (ASTs and USTs) and/or chemical storage and handling areas;
- Additional sampling and analysis of fill material is required from within the fill profile at depth (noting previous investigation generally assessed shallow fill) which excluded a substantial portion of identified fill material;
- No sampling and analysis of soil has been conducted underlying existing site structures (Plant 1 and Plant 2 (Figure 2b)), as such, sampling and analysis is required;
- Additional screening of asbestos in soil is required for land surrounding Lot 63 DP 752051 (615A Great Western Highway) which has been extensively filled and identified to contain bonded and non-bonded (friable) asbestos and anthropogenic materials representing a potential human health and aesthetic issue (Section 4.3), respectively;
- Additional screening of potential residual waste and asbestos in soil is required in vicinity of a former "disused shed" located in the south west of the lot to confirm the previously reported buried waste material and asbestos lagging have been adequately removed;
- Additional investigation is required to assess soil physiochemical parameters such as pH and cation exchange capacity (CEC) to enable appropriate consideration of potential ecological risks consistent with current NEPC (2013) NEPM guidelines.
- No soil vapour assessment has been completed and this is required in areas identified as containing current and/or former potential sources of volatile contaminants; and
- Additional assessment is required to address the nature/extent of potential contamination associated with the presence of hazardous building materials (ACM, heavy metals, PCBs)

³⁰ Contaminated Sites: Sampling Design Guidelines. NSW Environment Protection Authority 1995 (EPA 1995)

identified within existing/former site structures which may have contaminated surrounding soils (due to damage/breakages/weathering etc).

Lot 107 DP 1028208

- Additional sampling and analysis required to satisfy the required sampling density in accordance with EPA (1995) and NEPC (2013);
- No soil assessment has been completed within the south western portion of the lot. This is required noting JBS&G (2019a) identified the presence of large stockpiles of shale (fill), which may contain potential contamination (buried anthropogenic material/other waste material); and
- The potential remains for further ACM to be buried within a former service easement/embankment identified in the south west of the site.

Note, additional investigation to address the data gaps identified above are to be completed prior to issue of a construction certificate.

6. Conceptual Site Model

6.1 Areas of Environmental Concern

Based on the site history review and observations of site conditions during the detailed site inspection, areas of environmental concern and potential contaminants of concern have been identified for the assessment and are presented in **Table 6.1**. Site features are shown on **Figure 2b**, AECs are shown on **Figure 4**.

Table 6.1 Areas of Environmental Concern and Associated Contaminants of Potential Concern

Area of Environmental Concern (AEC)	COPC	Location
AEC 1: Fill material from unknown sources	Heavy metals, PAHs, TRH, BTEX, OCPs, PCBs, PFAS and asbestos.	Entire Site
AEC 2: Potential Impacted Fill from	Heavy metals, asbestos and aesthetic	Lot 10 DP 1022044
Known Source	issues.	Lot 107 DP 1028208
AEC 3: Settling Ponds	Sediment Heavy metals, PAHs, OCPs/PCBs, TRH, VOC, asbestos and PFAS. Surface Water Heavy metals, PAHs, TRH/BTEX, VOCs, nitrate/nitrite, ammonia and PFAS.	Lot 10 DP 1022044 Lot 216 DP 1030744
AEC 4: Petroleum Storage	Heavy metals, PAHs, TRH/BTEX, VOC, sVOC	Lot 10 DP 1022044 Lot 107 DP 1028208
AEC 5: Hydraulic Oil Storage	Heavy metals, PAHs, TRH/BTEX, PCB and VOC/sVOC	Lot 10 DP 1022044
AEC 6: Raw Material/Waste Storage	Heavy metals, PAHs, TRH/BTEX, OCP, PCB, PFAS and asbestos	Lot 10 DP 1022044
AEC 7: Chemical Storage	Heavy metals, PAHs, PCBs, VOC/sVOC, TRH and PFAS.	Lot 10 DP 1022044
AEC 8: Hazardous Building Materials	Heavy metals, PCBs and asbestos.	Lot 10 DP 1022044 Lot 107 DP 1028208
AEC 9: Electrical Transformers	Heavy metals and PCBs.	Lot 10 DP 1022044 Lot 107 DP1028208
AEC 10: Parking areas	Heavy metals, TRH/BTEX and VOC.	Lot 10 DP 1022044 Lot 107 DP 1028208 Lot 63 DP 72051
AEC 11: Former location of inferred buried asbestos and waste material.	Heavy metals, PAHs, TRH, BTEX, OCPs, PCBs, PFAS and asbestos.	Lot 10 DP 1022044

6.2 Potentially Contaminated Media

Potentially contaminated media present at the assessment area include:

- Sediments;
- Fill materials;
- Natural soils/bedrock;
- Soil vapour;
- Surface waters; and
- Groundwater.

Table 6.2 below provides a breakdown of potentially contaminated media with identified AECs presented in **Table 6.1**.

Table 6.2: Potentially Contaminated Media

AEC	Potentially	Comment
AEC	Contaminated Media	Comment
AEC 1	Fill material	Potential remains for contamination in fill material resultant from
		historical/current manufacturing land uses, importation of fill materials of
		unknown origin or use of site waste materials to create former/existing site
		levels and/or as may be associated with former agricultural/industrial land use.
	Natural soils	Natural soils underlie fill materials and may potentially be impacted by the
		downward migration of contaminants through fill, particularly in open areas
		where infiltration is possible and/or where seepage water may pass through
		fill. Natural soils may also be impacted by contaminated groundwater
		migration.
	Groundwater	There is the potential for the leaching of contaminants vertically from fill into
4500	en	groundwater and/or potential off-site impacts.
AEC 2	Fill material	Potential remains for fill material with known heavy metal, asbestos and
		anthropogenic waste on Lot 63 DP752051 to extend beyond the lot boundary
	N. 1. 11	to other areas of the site.
	Natural soils	Natural soils underlie fill materials and may potentially be impacted by the
		downward migration of contaminants through fill, particularly in open areas
		where infiltration is possible and/or where seepage water may pass through
		fill. Natural soils may also be impacted by contaminated groundwater
	Groundwater	migration. There is the notantial for the leaching of contaminants vertically from fill into
	Groundwater	There is the potential for the leaching of contaminants vertically from fill into groundwater and/or potential off-site impacts.
AEC 3	Surface water	Potential remains for contamination in surface waters resultant from
ALC 3	Surface water	historical/current manufacturing land uses.
	Sediment	Potential remains for accumulation of contaminants within setting ponds,
	Scament	particularly those that are highly sorbed and/or readily transported
		hydrologically.
	Groundwater	There is the potential for the migration of contaminants vertically from surface
		water/sediment leaching into groundwater.
AEC 4, 5, 7, 9	Fill material	Potential remains for contamination in fill resultant from spills, leaks of
and 10		chemical, oil, petroleum and vehicle storage associated with the
		commercial/industrial land use of the site.
	Natural soils	Natural soils underlie fill materials and may potentially be impacted by the
		downward migration of contaminants through fill, particularly in open areas
		where infiltration is possible or where subsurface leakage (i.e from USTs) could
		occur or seepage water passes. Natural soils may also be impacted by
		contaminated groundwater migration.
	Soil vapour	Given the potential volatile nature of some contaminants, there is a potential
		for ground gas/soil vapour to be a contaminated medium.
	Groundwater	There is the potential for the leaching of contaminants vertically from fill into
		groundwater and/or potential off-site impacts.
AEC 6	Fill material/natural	Potential remains for contamination in fill material resultant from raw material
	soils	and/or waste material storage (fly ash/slag) used to create former/existing site
		levels. Given the nature and distribution of waste material there may be
		potential for the downward migration of contaminates through fill to the
	=======================================	underlying natural soils and groundwater.
AEC 8	Fill material	Potential remains for hazardous building materials to have contaminated
		surrounding surface soil/fill material.
AEC 11	Fill material/natural	Potential remains for contamination in fill material associated with formerly
	soils/groundwater	identified buried waste and asbestos. Given the nature of waste material is
		generally unknown there may be potential for the downward migration of
		contaminates through fill to the underlying natural soils and groundwater.

6.3 Potential for Migration

Contaminants generally migrate from a site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants identified as part of the site/assessment area history review and previous investigation are generally in either a solid form (e.g. heavy metals, asbestos, etc.) and liquid form (e.g. fuel, lubricants, etc.), however, dependent upon concentrations, there is the potential for TRH/VOC impacts to occur in a vapour form also in soils underlying the site.

As the site is covered by a combination of concrete/asphaltic pavement and vegetation (landscape garden beds, grass cover and timbered areas), the potential for windblown dust migration of contamination from the site is generally low. The potential for contamination migration via surface water movement and infiltration of water and subsequent migration through the soil profile is considered generally to be low were impermeable pavements and moderate where exposed surface soil is present. Drainage lines and non-bunded settling ponds are present (Lot 10 DP1022044), these are considered to be a potential vector for contamination migration via surface water and sediments as such in these areas there is a moderate to high potential of subsequent contaminant migration through the soil profile (dependant on the nature of potential contamination).

Notwithstanding, given that the underlying natural soil is anticipated to be of a low permeability (silty clays) which retard the movement of subsurface water, there is considered to be a low risk of potential for migration of contamination through surface soils and subsequently via groundwater at depth (dependant on the nature and distribution of contamination). Notwithstanding, the risk of groundwater impact is higher where current/former petroleum/chemical storage has been identified (particularly USTs).

The vapour generation potential associated with volatile and semi-volatile potential contaminants of concern (TRH, BTEX, VOCs) are identified as a potential migration pathway, particularly in areas where subsurface infrastructure, such as stormwater, sewer, USTs underlie the site.

6.4 Potential Exposure Pathways

Based on the contaminants of concern identified in various media as discussed above, the potential exposure pathways for the site include:

- Inhalation of potential COPC including asbestos, heavy metal impacted dust and/or vapours
 migrating upwards from fill material of unknown origins or impacted surface soils resulting
 from historical leaks/spills, industrial activities etc.; and/or
- Potential dermal and oral contact to impacted soils as present at shallow depths and/or accessible by future service excavations across the extent of the site; and/or
- Potential oral and dermal contact to surface waters and sediments within current/former settling pits as accessible by current and future site users and/or during future excavation/redevelopment; and/or
- Potential contaminant uptake by vegetation within landscaped areas.

6.5 Potential Receptors

Potential human populations who may be exposed to site impacts in the future (if they are not remediated or appropriate management is not implemented prior to or during development) include:

 Current and future site occupants/workers/visitors who may potentially be exposed to contaminants of concern through direct contact with impacted soils / groundwater / surface

waters and sediments and/or inhalation of dusts/fibres/vapours associated with impacted soils; and/or

- Excavation/construction/maintenance workers conducting activities at the site, who may
 potentially be exposed to contaminants of concern through direct contact with impacted
 soils/groundwater/vapours present within excavations and/or inhalation of dusts/fibres
 associated with impacted soils;
- Flora species established on the site;
- Downgradient ecological receptors including the fresh water Girraween Creek; and
- Existing and/or future users/occupants of adjoining residential, commercial/industrial properties should contamination be identified to be migrating from the current site.

6.6 Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that result in the preferential migration of COPC as either liquids or gases.

Man-made preferential pathways are present throughout the assessment area, generally associated with fill materials, and at near surface depths over the remainder of the assessment area. Fill materials are anticipated to have a high permeability.

Sub-surface services are also present, or will be present as part of site redevelopment, throughout the assessment area. Preferential pathways can be created by the generally higher permeability backfill used to re-instate these trenches.

Preferential pathways are also important in the assessment of potential off-site sources of COPC. Preferential pathways are potentially present in the adjoining road network, as associated with service easements.

7. Sampling and Analysis Plan

7.1 Data Quality Objectives

Data quality objectives (DQOs) were developed for the investigation, as discussed in the following sections.

Lot 63 in DP 752051 (615A Great Western Highway) is currently being remediated in accordance with the RAP (JBS&G 2019c) prepared for this portion of the site (**Section 4.3.4**) as part of the contract of sale between the Cumberland Council and ISPT for commercial/industrial land use, unencumbered by any environmental planning instrument. As such, no further assessment was required as part of the current investigation.

State the Problem

The site is proposed to be redeveloped to accommodate a commercial/industrial warehouse logistics estate (Section 1.4). Following review of previous investigations (Section 4) conducted at the site, data gaps that pose potential risks from soil, groundwater/surface water and vapour contamination were identified at the site. As such, additional environmental data is required to sufficiently characterise the site to enable a RAP to be prepared that, when successfully implemented, will ensure the assessment area is suitable for the intended land use.

The investigation outlined herein has been undertaken to address identified data gaps in accessible areas of the site. As discussed in **Section 5**, additional investigation is required to be undertaken in the south western portion of the site to sufficiently characterise site fill material in accordance with relevant EPA made and endorsed guidelines and to ensure the sampling density as specified in EPA (1995) and NEPC (2013) are achieved.

Further, previous investigations have been restricted to portions of the site. As such, a site wide Phase 1 and Phase 2 ESA is required to address the potential for contamination at the site with regard to the proposed commercial/industrial land use. Information of known and potential site contamination conditions inferred from the desktop assessment, review of previous investigations (Section 4) and observations made during the site inspection and current investigation, resulted in the development of the CSM presented in Section 6, and the respective data forms the basis of the Phase 1 and Phase 2 ESA (DSI) as outlined herein.

7.1.1 Identify the Decision

Based on the decision-making process for assessing urban redevelopment sites detailed in EPA (2017³¹), the following decisions must be made:

- Are there any unacceptable risks to likely future on-site receptors from soil/sediment/groundwater/surface water?
- Are there any impacts of chemical mixtures?
- Are there any aesthetic issues at the site?
- Is there any evidence of, or potential for, migration of contaminants from the site?
- Is a site management strategy required?
- Are there any data gaps on site?

Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd edition), NSW Environmental Protection Authority, October 2017 (EPA 2017)

7.1.2 Identify Inputs to the Decision

Inputs identified to provide sufficient data to make the decisions nominated above include:

- Desktop review and update of readily available records including those held by the NSW EPA, department of Environment and Heritage and site setting including a review of site geology, hydrology, hydrogeology etc;
- Desktop review of the available historic contamination assessment reports to identify areas
 of potential concern and collation of relevant data to be utilised as part of the Phase 1 and
 Phase 2 ESA (DSI) report outlined herein;
- Detailed site inspection/walkover;
- Observations and interpretation of fill and natural material through intrusive investigation and screening of site soils;
- Soil sampling and analysis from within the accessible south western portion of Lot 107
 DP1028208 to provide adequate characterisation data of materials within this portion of the site;
- Development of appropriate assessment criteria for evaluation of soil impacts;
- Field parameters measured utilising calibrated equipment during the intrusive investigation;
- Laboratory analysis of soil samples of potentially contaminated media for contaminants of concern; and
- Confirmation that data generated by sample analysis are of an acceptable quality to allow reliable comparison to assessment criteria by review of quality assurance / quality control (QA/QC) as per the data quality indicators established in Section 7.1.5.

Specifically, sufficient data needs to be collected from each of the identified potentially impacted media in the identified AECs for the associated COPCs (**Table 6.1**).

7.1.3 Define the Study Boundaries

The lateral study boundaries are limited to the assessment area of the site as shown on **Figure 2b.** The vertical extent of the investigation was to a maximum depth of 2 m (TP03), 0.5 m into natural materials.

Seasonality was not assessed as part of this investigation. Data is therefore representative of the timing and duration of the current investigation in which site inspection and sampling occurred.

7.1.4 Develop a Decision Rule

Analytical data for potentially contaminated media was assessed against NSW EPA endorsed criteria as identified in **Section 8**.

Statistical analysis of the soil data set was undertaken, if required, in accordance with relevant guidance documents. The following statistical criteria was adopted:

- No analyte concentration in any sample exceeds the adopted criterion; or
- The upper 95% confidence limit on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion; and
- No single analyte concentration shall exceed 250% of the adopted criterion; and
- The standard deviation of the results for an analyte must be less than 50% of the criterion.

The decision rules adopted to answer the decisions identified in **Section 7.1.2** are summarised in **Table 7.1**.

Table 7.1 Summary of Decision Rules

Decisions Required to be Made	Decision Rule
1. Are there any unacceptable risks to on-	Analytical data was compared against EPA endorsed criteria.
site future receptors from soils/sediments	The criteria in Section 8.2 were adopted with respect to soil/sediment and
or groundwater/surface water?	groundwater/surface water.
	If the statistical criteria were satisfied, the answer to the decision was No .
	If the criteria were not satisfied, the answer to the decision was Yes .
2. Are there any chemical mixtures?	Were there more than one group of contaminants present which increase
	the risk of harm?
	If there is, the answer to the decision was Yes .
	Otherwise, the answer to the decision was No .
3. Are there any aesthetic issues?	If there were any ACM fragments on the ground surface, any unacceptable
	odours or soil discolouration, or excessive extraneous/foreign/waste
	materials, the answer to the decision was Yes .
	Otherwise, the answer to the decision was No .
4. Is there any evidence of, or potential	Based on assessment results, was there any evidence of, or the potential for,
for, migration of contaminants from the	migration of unacceptable contaminant concentrations to migrate from the
site?	site?
	If yes, the answer to the decisions was Yes .
	Otherwise, the answer to the decision was No .
6. Is a site management strategy required?	Is the answer to any of the above decisions Yes?
	If Yes , a site management strategy is required.
	If No , a site management strategy is not required.
6. Are there any data gaps?	Were there any data gaps identified that require further investigation.
	If Yes , further investigation is required.
	If No , no further investigation is required.

7.1.5 Specific Limits on Decision Errors

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW EPA and NEPC (2013) and appropriate indicators of data quality (DQIs) established for the project as discussed below in relation to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters). The acceptable limit on decision error is 95 % compliance with DQIs.

The DQIs and data assessment criteria are summarised in **Table 7.2**.

- Precision measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory
 data that are generated during this study is a measure of the closeness of the analytical
 results obtained by a method to the 'true' value. Accuracy is assessed by reference to
 the analytical results of laboratory control samples, laboratory spikes and analyses
 against reference standards.
- Representativeness expresses the degree which sample data accurately and
 precisely represent a characteristic of a population or an environmental condition.
 Representativeness is achieved by collecting samples on a representative basis across
 the site, and by using an adequate number of sample locations to characterise the site
 to the required accuracy.

- **Comparability** expresses the confidence with which one data set can be compared with another. This is achieved by maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is determined by there being sufficient valid data generated during the study.
- **Sensitivity** expresses the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted site assessment criteria.

Table 7.2 Data Quality Indicators

Table 7.2 Data Quality illuicators		
Data Quality Indicators	Frequency	Data Quality Criteria
Precision		
Split duplicates (intra laboratory)	1/20 samples ¹	<50% RPD ¹
Blind duplicates (inter laboratory)	1/20 samples ¹	<50% RPD ¹
Laboratory Duplicates	1/20 samples	<50% RPD ¹
Accuracy		
Surrogate spikes	All organic samples	70-130%
Laboratory control samples	1 per lab batch	70-130%
Matrix spikes	1 per lab batch	70-130%
Representativeness		
Sampling appropriate for media and analytes	All samples	_2
Samples extracted and analysed within holding times.	-	Soil: organics (14 days), inorganics (6 months)
Laboratory Blanks	1 per lab batch	< LOR
Trip spike	1 per lab batch	70-130% recovery
Storage blank	1 per lab batch	<lor< td=""></lor<>
Rinsate sample	1 per sampling event when non-disposable sampling equipment used	<lor< td=""></lor<>
Comparability		
Standard operating procedures for sample collection & handling	All samples	All samples
Standard analytical methods used for all analyses	All samples	National Association of Testing Authorities (NATA) accreditation
Consistent field conditions, sampling staff and laboratory analysis	All samples	All samples ²
Limits of reporting appropriate and consistent	All samples	All samples ²
Completeness		
Sample description and COCs completed and appropriate	All samples	All samples ²
Appropriate documentation	All samples	All samples ²
Satisfactory frequency and result for QC samples		95% compliance
Data from critical samples is considered valid	-	Critical samples valid
Sensitivity		
Analytical methods and limits of recovery appropriate for media and adopted Site assessment criteria	All samples	LOR<= Site assessment criteria

- 1 If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment was made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.
- ² A qualitative assessment of compliance with standard procedures and appropriate sample collection methods was completed during the DQI compliance assessment.

7.2 Optimise the Design of Obtaining Data

Various strategies for developing a statistically based sampling plan are identified in EPA (1995), including judgemental, random, systematic and stratified sampling patterns. For an area of 5 ha, EPA (1995) recommends a minimum of 55 sampling locations.

Based on the finding of previous investigations (**Section 4**) and in accordance with EPA (1995), sampling within Lot 107 DP 1028208 was a targeted sampling approach was undertaken to ensure the identified data gaps in this area of the site (**Section 5**) were addressed.

Historically 43 sample locations were advanced within Lot 107 DP1028208. To supplement the existing site characterisation an additional 12 sample locations were advanced to assess fill material within the south western portion of the site and to meet the minimum soil sampling density in EPA (1995).

Based upon the objectives of the investigation and the available site use information, the density of the investigation undertaken is considered appropriate.

Based on review of previous investigations (**Section 4**), JBS&G consider the number of systematic sample locations across the majority of the site to have been satisfied in accordance with EPA (1995) and NEPC (2013) as shown on **Figure 3**. A range of data gaps including those addressed herein require targeted investigation as presented in **Section 5**.

7.2.1 Soil Sampling Methodology

The adopted soil sampling methodologies for the assessment outlined herein were completed via mechanical advancement of soil sampling locations via an excavator and the collection of soil samples, conducted in general accordance with the requirements of NEPC (2013) and other relevant EPA made or endorsed guidelines.

To assess for COPC identified in **Table 5.1**, discrete 500 mL bag samples and 250 mL jar samples of soil were collected at regular intervals based on the encountered strata at each sample location. Discrete soil samples were collected as grab samples and taken directly from the hand excavator bucket to avoid the loss of volatile compounds and immediately transferred to laboratory supplied sample jars. A new pair of nitrile gloves was worn for each sample. The sample containers were then transferred to a chilled esky for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed and forwarded with the samples to the testing laboratory. Based upon field observations, samples were analysed in accordance with the analytical schedule detailed in **Table 7.3.**

Not all samples collected were analysed. Specific samples were chosen for analysis based on the findings of the previous investigations, desktop review, field observations and to provide detailed and broad site contamination characterisation.

For QA/QC purposes, as part of investigations (**Section 4**) field duplicates and triplicates were planned at a rate of 1/20 primary samples. Rinsate samples were obtained from non-disposable sampling equipment and trip spike and trip blank samples accompanied sampling events where appropriate/required. Standard industry methods were implemented by suitably qualified, trained and experienced consultants. It is noted not all QA/QC samples were utilised, however the methodology allowed for collection of data able to be relied upon for the investigation objectives.

During the collection of soil samples, features such as seepage, discolouration, staining, odours and other indicators of contamination were noted. A calibrated Photo Ionisation Detector (PID) was utilised to screen for Volatile Organic Compounds (VOCs) within the sampled material.

7.2.2 Duplicate and Triplicate Sample Preparation

Investigations by JBS&G involved the collection of samples from selected locations using standard operating procedures including equipment decontamination and replication, whereby sufficient soil

was collected to provide a primary, blind (intra-laboratory) duplicate and split (inter-laboratory) duplicate (triplicate) samples.

The collected soil samples were divided laterally into three samples with minimal disturbance to reduce the potential for loss of volatiles and placed in three clean glass jars and sample bags as appropriate.

Each sample was labelled with primary, duplicate or triplicate sample identification before being placed in the same chilled esky for transport to the laboratory.

JBS&G note additional duplicate and triplicate sampling was conducted by Coffey (2013) and DLA (2017) as part of the investigations. Detailed QA/QC assessment as prepared by others is provided in **Appendix L.**

7.2.3 Laboratory Analysis

JBS&G contracted Eurofins MGT (Eurofins) as laboratory for the required chemical analyses. Eurofins was NATA accredited for the required analyses. In addition, the laboratories were required to meet JBS&G's internal quality assurance/quality control (QA/QC) requirements.

The following **Table 7.3** summarises the analysis schedule as completed as part of the current investigation, which forms part of the site wide Phase 1 and Phase 2 ESA outlined herein.

Table 7.3 Analytical Schedule

Lot	Sample Type	No. of Sampling Locations	Analyses
Lot 107 DP	Soil	12 Locations	Heavy Metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 12 samples
1028208		(test pit samples)	PAH – 12 samples
			TRH/BTEX – 12 samples
			OCP/PCB – 12 samples
			Asbestos (500 mL) – 12 samples
			pH/CEC – 2 samples

A rinsate sample was obtained from non-disposable sampling equipment throughout the sampling activities and submitted for analysis at the completion of the sampling event.

8. Assessment Criteria

The following outlines the criteria adopted as part of the current assessment and as relevant to the evaluation of the site data set (inclusive of data as presented in historic investigations outlined in **Section 4**, as discussed in **Section 11**.

8.1 Regulatory Guidelines

The following guidelines are applicable to the site:

- National Environment Protection (Assessment of Site Contamination) Measure 1999,
 National Environment Protection Council, 2013 (NEPC 2013);
- Waste Classification Guidelines, NSW EPA, 2014 (EPA 2014);
- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995 (EPA 1995);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, NSW OEH, 2011 (OEH 2011³²);
- Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd edition), NSW EPA, October 2017 (EPA 2017);
- Guidelines for the Assessment Remediation and Management of Asbestos-Contaminated Sites in Western Australia, May 2009 (updated 2018). Western Australia Department of Health (DOH), (DOH 2018);
- Australia and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018); and
- Guidelines for Managing Risks in Recreational Water. National Health and Medical Research Council, Canberra (NHMRC 2008).

8.2 Assessment Criteria Selection

8.2.1 Soil and Sediment Assessment Criteria

The proposed development and ongoing use of the site is equivalent to a NEPC (2013) land use scenario of commercial/industrial (HIL D). Concentrations of contaminants in soil were compared against HILs and HSLs, and EILs and ESLs, as outlined below:

- HILs: HIL D Commercial/Industrial;
- HSLs: HSL D Commercial/Industrial (Clay fine textured soils);
- EILs and ESLs: Commercial/Industrial (aged soils);
- Management Levels for Commercial/Industrial (Clay fine textured soils) (NEPC 2013); and
- Aesthetic considerations as per NEPC (2013).

Where there are no NSW EPA endorsed thresholds for individual contaminants of concern the laboratory LOR was adopted as an initial screening value for the purposes of this assessment.

Note, as a conservative measure consideration was given to ANZG interim sediment quality guidelines (ISQG) default guideline values (DGVs) for sediment analysis, noting the samples were collected from small man-made retention basins (not from the receiving natural freshwater environment).

³² JBS&G note revised reporting guidelines were release in April 2020 after the reporting herein had been substantially completed.

A criterion of absence/presence (i.e. no visible) has been adopted for asbestos to achieve the objectives of the investigation. Aesthetics were also considered in the assessment of site suitability consistent with EPA (2017) and NEPC (2013).

Table 8.1 below details derived soil EILs as per NEPC (2013) guidance. Note, pH and CEC are calculated averages based on reported values (**Table A, Appendix B**). This is considered appropriate given fill material and natural generally comprised silty clays. All EIL values are in mg/kg unless otherwise specified.

Table 8.1 Derivation of Soil ElLs

Table 6.1 Delivation of 3011 E1E3	
Physical I	Parameters
pH (pH units)⁵	CEC (meq/100g) ⁵
6	33
Investiga	tion Levels
	EIL
Contaminant	Commercial and Industrial Land Use
	(mg/kg)
Arsenic	160
Chromium (III)	310 ⁶
Copper	320 ¹
DDT	640
Lead	1800
Naphthalene	370
Nickel	730 ²
Zinc	620 ³

¹Selected utilising the CEC value to determine the most conservative EIL.

Review of ground conditions as reported by others (Section 4) and shown in detailed borehole/testpit logs (Appendix M) indicated fill and underlying natural materials encountered in Lot 10 DP 1022044, Lot 216 DP 1030744 and Lot 601 DP 1047403 were generally consistent with that reported by JBS&G in other areas of the site. As such, the derived EILs in Table 8.1 above were applied to the site data set as a whole (Table A, Appendix B). This is considered appropriate to assess for potential risks to ecological receptors at the site as part of the Phase 1 and Phase 2 ESA outlined herein.

8.2.2 Groundwater and Surface Water Assessment Criteria

Groundwater and surface water analytical data evaluated as part of the site wide investigation has been compared against the following groundwater criteria:

- Criteria for the 95% protection in freshwater ecosystems presented in ANZG (2018);
- GIL for fresh water as presented in NEPC (2013);
- Groundwater Health Screening Levels, HSL D (vapour intrusion for clay 2-<4m) for specified VOCs;
- Groundwater Health Screening Levels, HSL D (vapour intrusion for clay 4-<8m) for specified VOCs; and
- Criteria for recreational water (factor of 10 times applied) as presented in NHMRC (as amended Oct 2017).

Consideration was given to groundwater investigation levels (GILs) for drinking water, as presented in NEPC (2013). GILs were not considered applicable as part of this investigation due to

³ Selected based on the value for CEC.

⁴ Selected based on value for pH and CEC resulting in the most conservative EIL.

⁵ pH and CEC are based on an average reported value, noting fill and natural comprised silty clays. This is considered appropriate for the purposes of the investigation. Detailed results are provided in **Table A, Appendix A.**

⁶ Based on a conservative assumption of 20% clay content.

the reported saline nature of groundwater underlying the site and as such lack of beneficial reuse as potable water.

9. Quality Assurance/Quality Control

The results of the quality assurance and quality control (QA/QC) assessment are provided in **Appendix L**.

In summary, based on the results of the QA/QC assessment the field sampling and handling procedures across the site produced QA/QC results which indicate that the soil data collected as part of the intrusive investigation is of an acceptable quality for the current investigation objectives.

The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within its recommended control limits during the period when the samples from this program were analysed.

Based on the results of the field and laboratory QA/QC program, the soil data is of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.

10. Results

10.1 Soil Results

Soil sampling results collected as part of the investigation to address identified data gaps for Lot 107 DP 1028208 (Boral House), as outlined in **Section 5**, are summarised in the following sections.

10.2 Soil Field Observations

Sample locations are shown on Figure 3, field logs are provided in Appendix M.

Fill material was noted at all sample locations and generally comprised a brown heterogeneous reworked topsoil with inclusions of organics (mulch/rootlets), lithic grey shale fragments, minor igneous road base gravel and variable trace anthropogenic material (crushed concrete/brick) in some locations. Fill comprising structural basecourse (recycled aggregate) was observed surrounding site structures. Fill material was noted to depths of between 0.1 and 1.5 m bgs (TP203).

No odorous or stained soils or gross anthropogenic waste was observed during the investigation.

No further evidence of service infrastructure (conduits/service pits) containing ACM was identified within the south western portion of the site along the alignment of a presumed former service easement. Note, dense vegetation precluded a detailed intrusive investigation along the embankment. Previous investigations (JBS&G 2019a) have identified bonded and non-bonded (friable) asbestos impacted fill Bonded ACM was observed within clay fill along the north eastern boundary of Lot 107 DP 1028208 adjacent to Lot 63 DP 752051.

Reworked natural fill material was observed to be free from indicators of contamination and/or anthropogenic materials and comprised the following material types:

- Grey lithic shale was observed within topsoils and at the ground surface within the
 western/south western portion of the site. The shale was likely associated with historic brick
 manufacturing; and
- Reworked dolerite was observed underlying fill materials and generally comprised an orange brown clay with inclusions of highly weathered dolerite fragments.

Natural material underlying fill and/or reworked natural soils comprised a well sorted, compact, orange brown silty clay with weathered dolerite noted at depth. JBS&G note that materials logged as weathered dolerite may comprise a combination of igneous materials (basalt/picrite) but were not able to be distinguished visually by the current investigation methods given their similar physical properties.

10.3 Soil Analytical Results

Soil analytical results are summarised in **Table A**, **Attachment B** and detailed laboratory certificates of analysis are included in **Attachment N**. Details pertaining to the analysis are summarised in the following sections.

10.3.1 Heavy Metals

Heavy metal concentrations were reported below the adopted human health criteria for all samples submitted for analysis.

Heavy metal concentrations exceeded the adopted ecological criteria for chromium at one sample location TP07 0-0.1. The reported elevated chromium concentrations are likely associated with

weathering and accumulation of heavy metals from mafic or ultramafic rocks (dolerite and basalts³³) which naturally occur underlying the site and surrounding area. As such, the reported heavy metal concentration is considered likely representative of background soil conditions.

JBS&G note well established vegetation in vicinity of TP207 (which reported heavy metals in exceedance of the ecological criteria) was visibly healthy and noting the proposed land use (commercial/industrial), the reported exceedances of the ecological criteria are considered unlikely to represent a risk to future ecological receptors at the site.

10.3.2 PAHs

Concentrations of PAHs were reported below the laboratory LOR for all samples submitted for analysis.

10.3.3 TRH/BTEX

All concentrations of TRH/BTEX were reported below the laboratory LOR or adopted site criteria for all samples submitted for analysis.

10.3.4 OCPs/PCBs

All concentrations of OCPs/PCBs were reported below the laboratory LOR for all samples submitted for analysis.

10.3.5 Asbestos

No ACM or AF/FA was observed or reported in any sample collected or submitted for analysis.

Composition of the Earth's Crust and Distribution of the Elements. In: Siegel, F.R., Ed., Review of Research on Modern Problems in Geochemistry, Paris, International Association for Geochemistry and Cosmochemistry, Earth Science Series, 16, 13-37. Mielke, J.E. (1979).

11. Site Characterisation

Multiple phases of investigation have been undertaken at the site between 2000 and 2020 (**Section 4**). Previous investigations have involved the advancement of a total of 279 sampling locations (soil bores/test pits/sediment samples) across accessible areas of the site with good systematic coverage generally achieved across the site, with sampling densities increased/targeted in some areas of greater potential for land contamination.

The following sections provide an evaluation of the site data set, which forms the Phase 1 and Phase 2 ESA (DSI) outlined herein. Sample locations are shown on **Figure 3**, exceedances of the adopted site criteria (as outlined in **Section 8**) are presented in analytical tables (**Appendix B**) and on **Figure 5**.

11.1 Are there any unacceptable risks to future site users from soil/groundwater/surface water?

Soil

JBS&G note Lot 63 in DP 752051 is currently being remediated for commercial/industrial land use, unencumbered by any environmental planning instrument (i.e. environmental management plan (EMP)). The DSI (JBS&G 2019b), RAP (JBS&G 2019c) and the remediation/validation works (upon completion) have been/will be subject to NSW EPA Site Auditor review. As such, given a Site Audit Statement (SAS) will be prepared for this portion of the site to ensure the lot is suitable for commercial/industrial land use, no further consideration to the identified soil contamination within this portion of the site (Section 4.4) was warranted.

The current investigation included the advancement and sampling/analysis of an additional 12 locations (TP200-TP211) to address data gaps identified for Lot 107 DP 1028208, as discussed in Section 5. With the exception of chromium at one location (TP207) which exceeded the adopted ecological criterion, all other COPC were reported below the adopted human health and ecological site criteria (pursuant to NEPC (2013)). Elevated chromium was reported at two additional locations (TP05 and TP06) during previous investigation (JBS&G 2019a) and is considered to be associated with local igneous rock underlying the site and present as reworked natural material in filled areas, which contain naturally elevated heavy metal concentrations, particularly chromium and nickel, and are considered not to represent an unacceptable ecological risk at the site.

Sample SS05 (JBS&G 2019a) reported a Benzo(a)Pyrene (B(a)P) concentration of 7.1 mg/kg exceeding the adopted ecological screening level of 1.4 mg/kg (commercial/industrial, NEPC 2013). B(a)P concentrations are likely associated with historic industrial land use at the site. NEPC (2013) states that plants grown in PAH impacted soils have only limited ability to take up and incorporate anthropogenic PAHs through their roots and into their biomass, especially those PAHs with higher molecular weights including B(a)P. As such, and with consideration to the proposed land use (commercial/industrial), JBS&G consider that minor exceedances of the adopted ecological criterion for B(a)P at one location do not represent an unacceptable risk to ecological receptors at the site.

With the exception of the north eastern extent of Lot 107 DP 1028208 (as discussed below) fill material within the southern portion of the site generally comprised reworked natural materials (shale and dolerite) with minor anthropogenic inclusions noted at relatively few locations. Isolated areas were noted to contain bulk building and demolition waste (brick and concrete) which may be considered to pose an unacceptable aesthetic issue (albeit to a limited extent given the proposed commercial/industrial land use), particularly in landscaped areas if not suitably covered.

Previous investigations (Coffey 2013 and DLA 2017) identified the presence of fill material across the majority of Lot 10 DP 1022044, generally comprising gravelly silty sands and clays with varied inclusions of sandstone and shale. Fill containing anthropogenic material (minor building rubble/waste) was reported at some locations. Fill was reported at depths of between 0.1 m bgs to a maximum of 4 m bgs at BH22 (Coffey 2013). Coffey (2013) reported difficulty in determining the

extent of fill across the area. DLA (2017) logged clays with lithic shale fragments at depth, noting lithic shale encountered within clay may be representative of reworked fill materials as associated with remnant historic manufacturing activities (Boral Bricks) and site filling activities as identified at the site. Weathered igneous rock (potentially reworked associated with former quarrying activities) was reported by JBS&G in the southern portion of the site.

Sampling and analysis from within these horizons of potentially reworked natural materials and within natural soil at depth did not report concentrations of COPC above the adopted site criteria and as such, they are not considered to represent an unacceptable risk at the site.

Coffey (2013) and DLA (2017) analysed selected soil samples for COPC across the broader site area (**Figure 3**) which including heavy metals, TRH/BTEX, PAHs, OCPs/PCBs and asbestos. Analysis of selected soil samples reported concentrations of COPC below the adopted criteria and as such site soils were not considered to represent an unacceptable risk at the site. Detailed analytical results are presented in **Table A, Appendix A**.

Asbestos impacted soil (bonded and friable) was identified at five sample locations (HA02 to HA04, AQ10, AQ13 and AQ15), within the north eastern portion of Lot 107 DP 1028208 adjacent to Lot 63 DP 752051 to a maximum depth of 0.6 m bgs. Asbestos impacted fill comprised a distinct material type with inclusions of glass, porcelain, scrap metal and fragments of bonded ACM, consistent with impacted fill identified by JBS&G (2019b). Samples collected from this fill horizon also reported elevated concentrations of zinc (HA01, HA02 and HA03) and copper (HA02) above the adopted ecological criteria (pursuant to NEPC 2013)) which are not considered to represent an unacceptable ecological risk under the current commercial/industrial redevelopment scenario (hardstand pavement covering the majority of the site).

Based on visual observations and the analytical results presented in JBS&G (2019a), fill material containing ACM and anthropogenic waste was considered to be generally constrained to an area adjacent to Lot 63 to the inferred extent outlined on **Figure 5**. It is estimated there is approximately 285 m³ of material impacted with bonded asbestos and 15 m³ of material impacted with friable asbestos within this portion of the site.

Based on the observations of fill material extending beyond the Lot 63 boundary to Lot 107, JBS&G consider there is the potential for further asbestos and anthropogenic waste impacts to be present in the surrounding soils within Lot 10 DP 1022044. As such, further investigation may be required to determine the nature and extent of potential contamination in other areas of the site.

Coffey (2013) reported the presence of bonded asbestos at one location (BH08 0-0.2) which was presumed to be associated with fallout from hazardous building materials affixed to Plant 2 (ACM roofing). Asbestos present in surface soils exceed the adopted HSL (NEPC 2013) and as such, surface soils surrounding site structures known to contain hazardous building materials are considered to be potentially impacted with ACM. Further, former infrastructure (buried conduits suspected to be present at the site) were identified to potentially contain ACM.

JBS&G consider the identified asbestos impacts to represent an unacceptable human health risk requiring remediation/management.

JBS&G note buried asbestos was previously identified in vicinity of a disused shed on Lot 107 DP 1022044 (Woodward-Clyde 2000) which was reportedly disposed of in 1996. The inferred area is shown on **Figure 2b**. Further investigation (Coffey 2013 and DLA 2017) did not confirm asbestos waste in this area had been removed. As such there is the potential for residual asbestos to be present in this area, dependant on the nature and distribution of the impact and/or any former removal activities.

JBS&G consider the potential for isolated hydrocarbon and/or other chemical impacts in soil (surface and at depth in vicinity of UPSS) in immediate vicinity of current and/or former chemical/petroleum storage and handling areas identified at the site

Sediment

As part of the Phase 1 and Phase 2 ESA outlined herein, JBS&G compared sediment data to relevant DGVs for freshwater ecosystems (ANZG 2019). The results indicated minor heavy metal exceedances of copper and nickel at sample locations SED1, SED2 (Coffey 2013) and SD3 (DLA 2017) as shown on **Figure 5**. Analytical results are presented in **Table A** (**Appendix B**).

JBS&G note the adopted criteria have been established for sediments within natural freshwater environmental settings. The sediment samples were collected from within engineered settling ponds/water basins external to the downgradient receiving environment (Girraween Creek). Given the underlying geology of the site (igneous rock), sediments are considered likely to contain elevated heavy metal concentrations as associated with natural background conditions. Further, Girraween Creek is considered to be a highly urbanised tributary and not an ecologically sensitive environment.

As such, the minor exceedances of the adopted criteria in sediments are considered not to represent an unacceptable risk to onsite or potential offsite ecological receptors.

Surface Water and Groundwater

JBS&G (2019a) noted groundwater was not reported within three monitoring wells installed to 8 m bgs in the southern portion of the site. As discussed in **Section 2.8**, groundwater within the southern portion of the site is anticipated to be located at great depth (>13 m bgs) and as such is not considered to pose a risk to future users and/or site receptors given the lack of source receptor pathways and/or beneficial reuse opportunities.

Groundwater is anticipated to be encountered at shallower depths towards the north of the site and a series of exposed settling ponds are present in the north west. Limited surface water and groundwater assessment conducted by Coffey (2013) and DLA (2017) (analytical data presented in **Appendix B**) reported minor exceedances of heavy metals. Given the underlying geology of the site (igneous rock), heavy metals in surface/groundwater are likely to be attributed to the natural background heavy metal concentrations and are representative of background concentrations to be expected in urban/industrial settings. Further, Girraween Creek is considered to be a highly urbanised tributary and not an ecologically sensitive environment.

As such, the minor exceedances of the adopted criteria in surface/groundwater are considered not to represent an unacceptable risk to onsite or potential offsite ecological receptors. Notwithstanding the above, there may be the potential for isolated hydrocarbon impacts to groundwater in vicinity of current/former petroleum storage (particularly UPSS).

11.2 Are there any chemical mixtures?

While a range of potential chemical mixtures have been identified within the site area, no chemical mixtures have been identified at elevated concentrations within site media. Should chemical mixtures exist in the form of contamination at the site, they can readily be addressed by management/remediation requirements as required based on individual contaminant concentrations.

11.3 Are there any aesthetic issues?

Based on the assessment outlined herein, asbestos containing materials at the site surface in Lot 107 DP 1028208 and as may be associated with fallout from existing structures on Lot 10 DP 1022044 are considered to represent an unacceptable aesthetic issue. Further, generally inert building and demolition waste (concrete/brick) identified within *in-situ* soil on Lot 107 DP 1028208 (co-mingled

with asbestos) and at the surface of the site in the south western portion are considered to potentially represent an aesthetic issue (in accordance with NEPC (2013)).

11.4 Is there any evidence of, or potential for, migration of contaminants from the site?

The potential for migration of contaminants across the majority of the site was considered to be low, based on the following:

- COPC were generally identified to be in solid form (asbestos and heavy metals);
- Migration through subsurface groundwater infiltration is considered to be greatly reduced by the underlying natural silty clays and substantially limited under the redevelopment plan presented in **Appendix A**, comprising hardstand pavements across the majority of the site;
- The migration of ACM and/or fibrous asbestos is unlikely where identified within *in-situ* fill material (in the absence of ground disturbance);
- The absence of significant contaminant impacts in groundwater, particularly given anticipated depth to groundwater, although there may be some isolated impacts around fuel storage areas, noting these are not located near inferred downgradient site boundaries; and
- The absence of identified contaminant impacts in subsurface soil below impacted fill material.

A moderate potential for the migration of contaminants was identified where ACM impacted surface soils may be present surrounding existing site infrastructure (albeit to a limited extent, noting ACM was only observed in surface soils surrounding site infrastructure at one location (BH8, Coffey (2013)), and as may associated with the presence of a series of surface water settling ponds which notably discharge from the site to the north west (**Figure 2b**).

Based on the surface water and sediment data presented as part of the investigation outlined herein (**Appendix A**) and discussed above, the potential for migration of potential contamination from the site via settling ponds is considered to be low in the absence of identified gross or widespread contamination and with consideration to the reported contaminant concentrations being generally acquiescent with urban background concentrations.

11.5 Is a site management strategy required?

Based on the findings of this investigation, it is considered the site can be made suitable for the intended commercial/industrial use subject to the implementation of additional data gap investigations (DGI) (Section 11.6), and preparation of a RAP to address the identified impacts without ongoing management.

11.6 Are there any data gaps?

As part of the investigation outlined herein, JBS&G consider data gaps identified for Lot 107 DP 1028208 to have been generally addressed. As discussed in **Section 4** and **Section 5**, while the site has been generally well characterised by various investigations including the current assessment, a range of data gaps have been identified at the site. These data gaps are required to be addressed by targeted investigations to confirm the extent of management required.

Notwithstanding, based on review of the site data set presented herein and the nature of identified data gaps (comprising common potential sources of common contamination that can be readily dealt with), JBS&G do not consider that potential contamination as associated with the identified data gaps would preclude redevelopment of the site for commercial industrial land use, in accordance with SEPP 55 regulation.

12. Key Findings

Subject to the limitations in **Section 14**, the following key findings are presented.

- The site has historically been utilised for a combination of commercial and light industrial
 activities associated with regional quarrying and manufacturing and has been subject to
 significant ground disturbance. Following cessation of large scale quarrying activities, the
 northern portion of the site has continued to be utilised for masonry/manufacturing
 activities (Austral Masonry) with the southern portion utilised for commercial (Boral Offices)
 and vacant land (Council depot/stockpiling yard);
- The Phase 1 and Phase 2 ESA outlined herein identified potential AECs (Figure 4) and associated COPC related to current and/or former land uses including a range of commercial/industrial activities;
- Review of historic contamination assessments identified the following with regard to the current contamination status of the site:
 - Investigations across Lot 10 DP 1022044, when combined, have generally satisfied the sampling density requirements as per EPA (1995) and NEPC (2013);
 - A range of potentially contaminating land use activities, including the presence of current/former petroleum and chemical storage, hazardous building materials, waste material production and placement of fill of unknown origin were identified and targeted by previous investigations;
 - Fill is present across the majority of the site to depths of between 0.1 m and 4 m bgs and was noted to comprise a combination of sandy gravelly clays and reworked natural materials (shales/dolerite);
 - Lot 63 DP 752051 has been subject to extensive characterisation and is currently being remediated (as part of the sales contract between ISPT and Council) to make the site suitable for commercial/industrial land use without the requirement for ongoing management;
 - The same impacted fill profile identified on Lot 63 DP 752051 was identified extending beyond the Lot boundary to the south (Lot 107 DP 1028208), albeit to a limited extent. Approximately 300 m² of asbestos impacted soil surrounding Lot 63 in lot 107 are considered to represent an unacceptable health risk requiring remediation and/or management;
 - Potential remains for the same fill profile to be present adjacent to Lot 63 in other areas of the site;
 - Asbestos previously identified at the site surface in the southern portion of Lot 107 (JBS&G 2019a) was subsequently removed as part of make safe works (JBS&G 2019c), based on previous investigations the potential remained for further ACM to be present within a former service easement within the southern portion of Lot 107;
 - Asbestos was identified at one location adjacent to current structures (identified to contain hazardous building materials) in Lot 10 DP 1022044;

- Former UPSS and other petroleum storage (current/former) have been identified at the site which will require removal (formal decommissioning³⁴) and/or management including potentially impacted soils and/or groundwater relevant to the proposed land use in (NEPC 2013);
- Soil sampling did not identify the presence of chemical COPC above the adopted health criteria across the site;
- Copper and zinc concentrations exceeding the ecological criterial within Lot 107 at three locations (adjacent to Lot 63) were reported the distinct fill material noted to contain ACM and scrap metal (currently being remediated on Lot 63) and were considered likely associated with metal waste inclusions. The reported concentrations were not considered to represent an unacceptable ecological risk under the proposed redevelopment scenario;
- Low level chromium concentrations at several locations are considered representative of natural background conditions associated with the underlying geology (ultramafic and mafic igneous rock) and were not considered to represent an unacceptable ecological risk at the site;
- A single B(a)P concentration exceeding the ecological criteria was not considered to represent an unacceptable risk for the intended commercial/industrial use of at the site;
- Limited sediment assessment identified low level heavy metal concentrations exceeding the conservative ecological assessment criteria (ANZG 2019) for the 95% species protection in freshwater environments. Heavy metals were considered not to represent an unacceptable risk at the site, noting they were likely reflective of natural background conditions (associated with the underlying geology and/or conditions to be expected in urban environments); and
- Limited surface water and groundwater analysis at the site did not identify gross or widespread contamination. Low level heavy metal concentrations reported above the adopted ecological site criteria are considered reflective of regional background conditions as to be expected in urban/industrial environments and are not considered to represent an unacceptable risk at the site or to downgradient disturbed natural environments (Girraween Creek).
- Detailed review of previous investigation identified a range of data gaps (Section 5) based on the identified AECs and COPCs identified as part of the Phase 1 and Phase 2 ESA outlined herein;
- The implementation of an additional targeted sampling plan (12 additional sample locations) outlined herein indicated the following:
 - Fill material within the south western portion of the site is generally consistent with reworked natural material (shales and dolerite) as previously identified across the site and is considered to not represent an unacceptable risk at the site;
 - Chromium reported above the adopted ecological criterion at one location (TP07) was considered representative of the underlying igneous geology (subject to

^{• 34} In accordance with Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems)

Regulation 2008, Department of Environment, Climate Change and Water NSW, September 2009 (DECC 2009).

- quarrying) and was not considered to represent an unacceptable risk to future ecological receptors; and
- No further ACM was identified within the former service easement. Noting detailed intrusive investigation precluded by dense vegetation. Should further asbestos infrastructure (conduits) be present within this portion of the site then it is anticipated it can be dealt with under an unexpected finds protocol, to be implemented during future remedial/redevelopment works.
- Based on the findings of the intrusive investigation outlined herein, it is considered that data gaps identified for Lot 107 DP 1028208 have been adequately addressed.

13. Conclusions and Recommendations

Based on the results of the investigation and subject to the limitations in **Section 14**, JBS&G conclude the site can be made suitable for the proposed land use subject to remediation/management of identified contamination. The investigation outlined herein is considered to have generally satisfied the requirements of the SEARS.

JBS&G recommend that a DGI be conducted prior to issue of a construction certificate to address identified potential contamination at the site (**Section 5**) following which a RAP be prepared to describe the required remediation and validation works to ensure the site is suitable for the proposed commercial industrial land use without ongoing management.

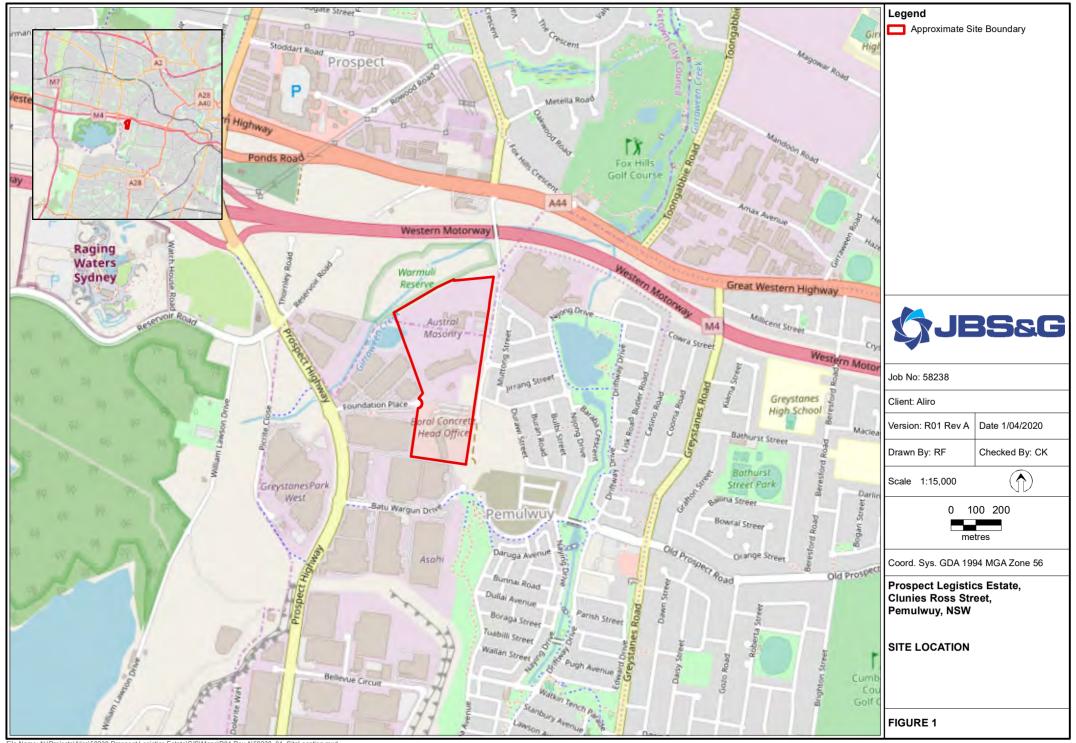
14. Limitations

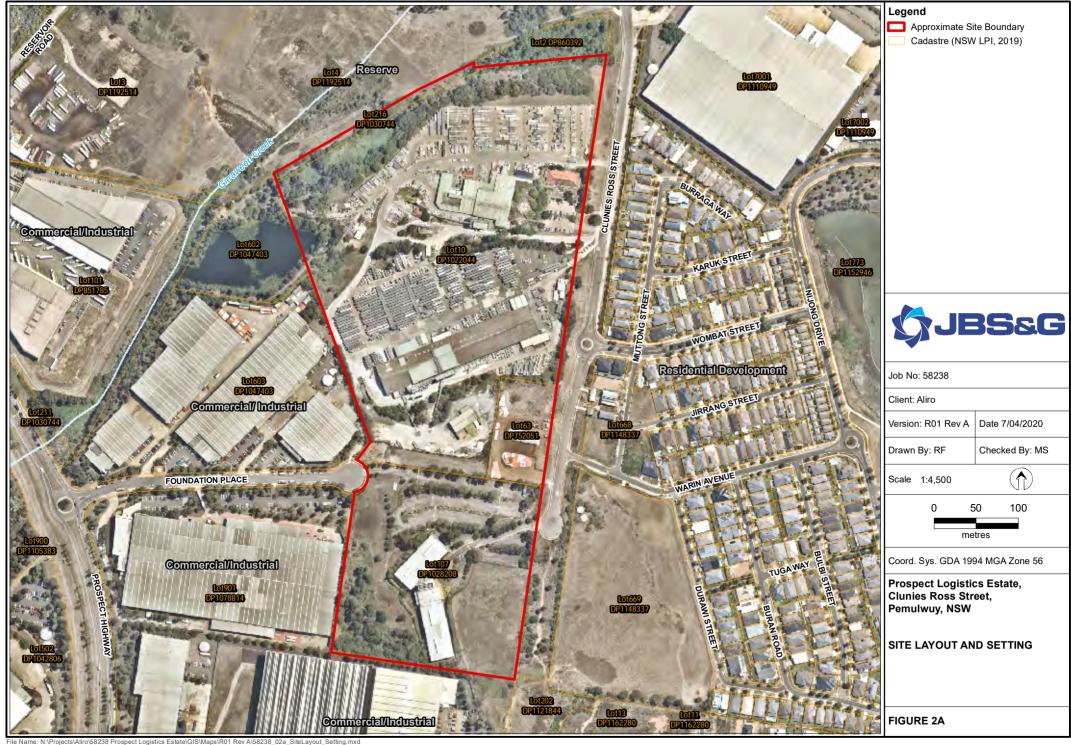
This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

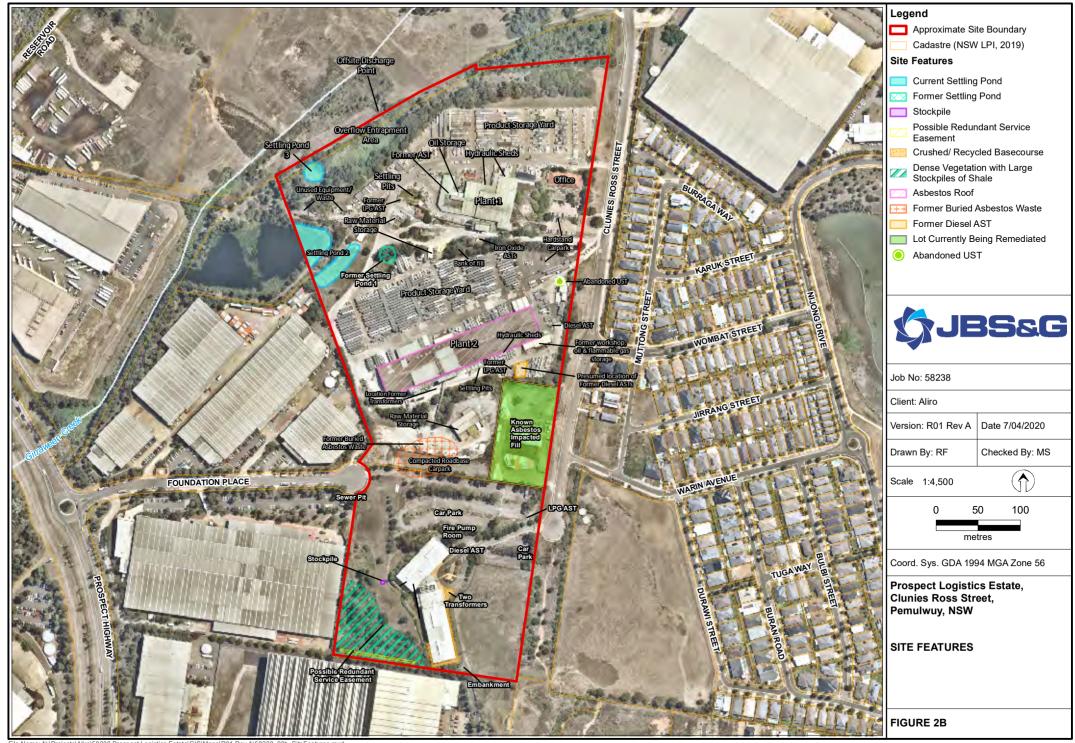
The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

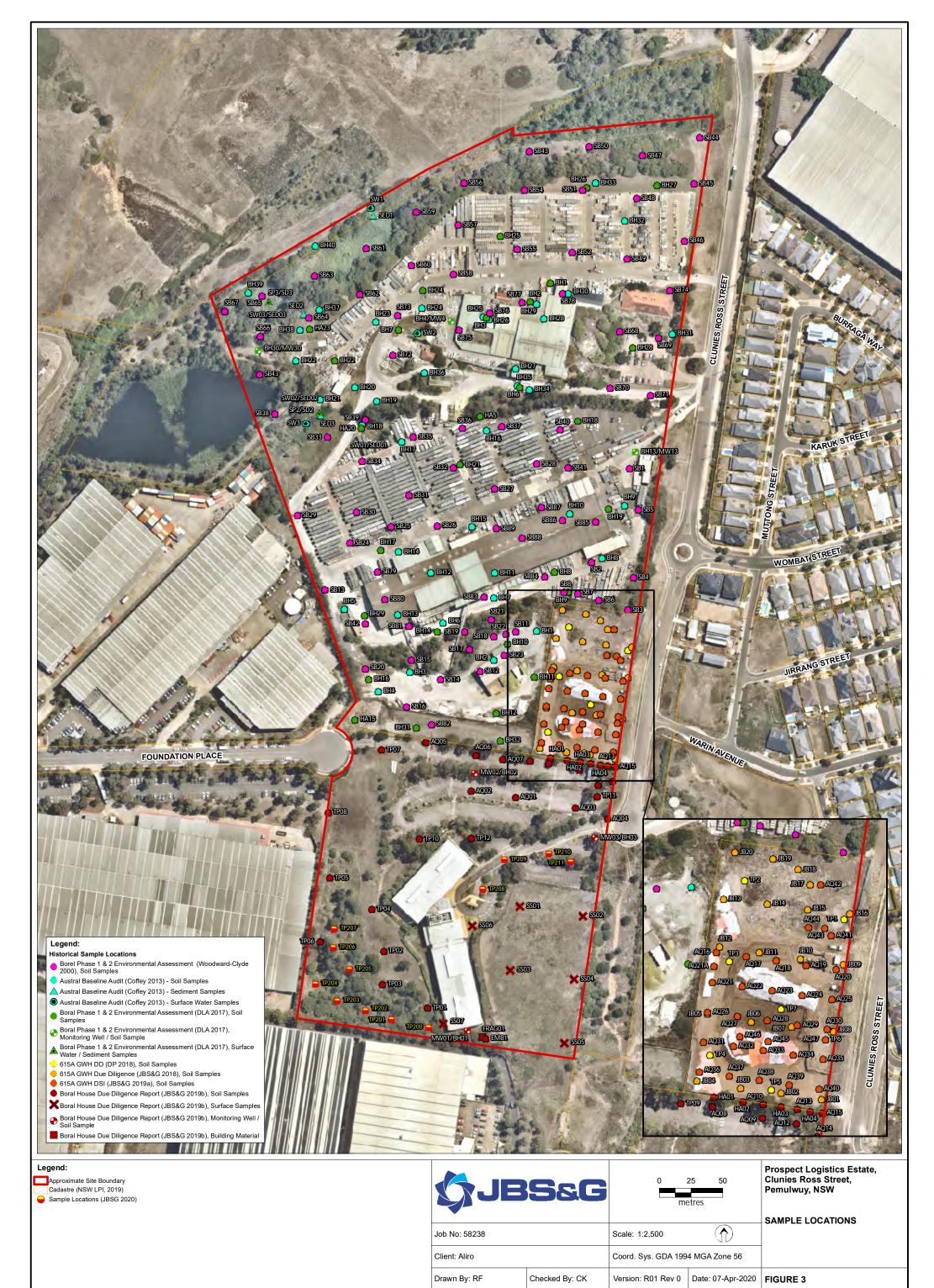
JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquiries.

Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.

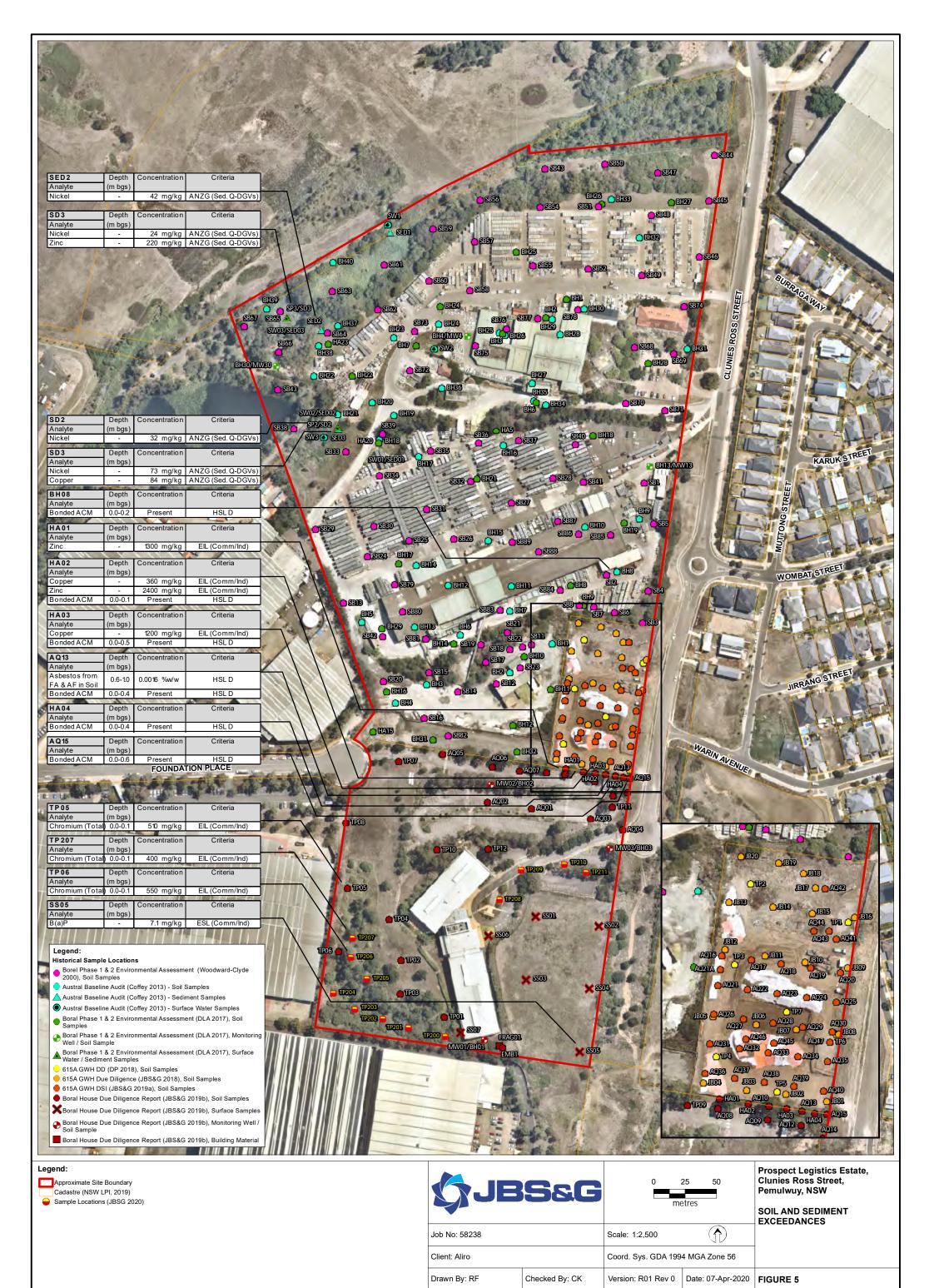

Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

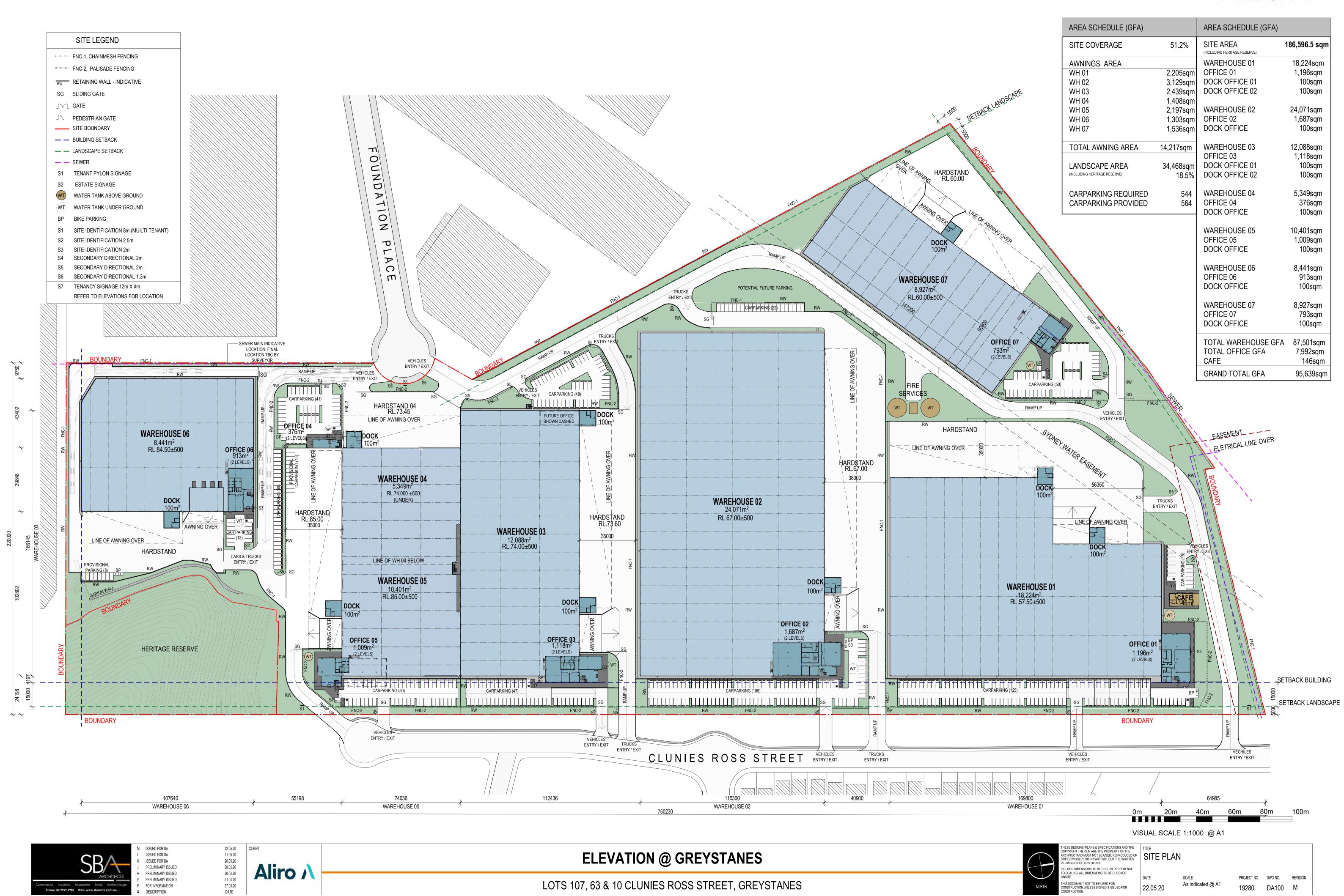

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.


This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.



Figures





Appendix A Concept Design Plans

Appendix B Analytical Tables

					Metals &	k Metallo	ids					TPHs	(NEPC 1	1999)				1	TRHs (NEP	C 2013)						ВТ	EXN										Poly	cyclic Ar	omatic H	Hydrocart	bons					
JBS&G	সূত্র সূত্র মুম্ব	Cadmium	Chromium (Total)	Cobalt	Copper	r me/k	Mercury (Inorganic)	Nickel	Ttanium Ttanium	Ziuc	C6-C9 Fraction	지 C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	조10-C36 Fraction (Total)	>C10-C16 Fraction	>c16-c34 Fraction	bay >C34-C40 Fraction	>C10-C40 Fraction (Total)	>C10-C16 less Naphthalene (F2)	C6-C10 Fraction	C6-C10 less BTEX (F1)	Benzene	BY/8u BTEX (Total)	Ethylbenzene Baj/au	mg/kg	Xylene (o)	Xylene (m & p)	Xylene (Total)	Maphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Carcinogenic PAHs as B(a)P TEQ	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Mg/kg mg/kg	PAHS (Total)	Pyrene	Benzo(b,j+k)flouranthene
	mg/kg	0.4	mg/kg	mg/kg	mg/kg	mg/s	g mg/k	g mg/kg	mg/kg	mg/kg	20 20	20 20	mg/kg 50	mg/kg 50	mg/kg 50	mg/kg 50	100			mg/kg 50	20																									
(2019) - Sediment Quality DGVs	20	1.5	80	+	65	50		21		200				280#1		50	100	100	50	50	20	20	0.1		0.1	0.1	0.1	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.05	0.5	0.1	0.1		0.1	0.1	0.1	0.1	0.5	0.1	0.2
2013 EIL - Commercial Industrial (Specific)	160	1.5	310#2		320#3			73084		620 ^{#5}	280	280	280**	280	200								_							370																
2013 ESL Commercial and Industrial, Fine Soil	100		310		320	100	_	/30		620							2500 ^{#6}	cc00#6		170 ^{#7}		215#7	95**6		40r#6	135 ^{#6}			95#6	370					1.426											
2013 HSL Asbestos in Soil - Bonded ACM - Commercial/Industrial - HSL D				+				_									2300	0000		1/0		213	33		103	155			22						1.4											
2013 HSL Asbestos in Soil - FA & AF - HSL																																														
2013 Mgnt Limits - Commercial and Industrial, Fine																1000#10	5000	10000			800#11																									
013 Soil HIL D	3000*12	900	3600#1	4000	240000	0 1500	730#1	5 6000		400000						1000					000																		40 ^{#16}					4000#17		
013 Soil HSL D for Vapour Intrusion - Clay 0 to <1m																				999999"1	9	310 ^{#20}	4		999999	999999			999999	999999																
013 Soil HSL D for Vapour Intrusion - Clay 1 to <2m																				999999"1		480 ^{#20}	6		999999	999999			999999	999999																
2013 Soil HSL D for Vapour Intrusion - Clay 2 to <4m																				999999#1		999999#20	9		999999	999999			999999	999999																

	strial, Fine Soil	_		_		_	_		4	4	_	4	_	_	_	_	_	_	2500	0#6 660	U	170"7	_	215	95**	_	185	135 ^{#6}	_	_	95**6	_		_	_	1.4	$\overline{}$	$\overline{}$		_	_	_	_	_	_	
	ded ACM - Commercial/Industrial - HSL D												_																																	
NEPM 2013 HSL Asbestos in Soil - FA &	k AF - HSL																																													
NEPM 2013 Mgnt Limits - Commercial	l and Industrial, Fine												-					1000	^{#10} 500	0 100	000		800#11	1																						
NEPM 2013 Soil HIL D		2000	#12 QO) 260	no#13 40	nnn 24	40000	1500#14	4 730 ^{#15}	5 600)	40000	100					2000																					At	#16				4000#17	7	
NEPM 2013 Soil HSL D for Vapour Intru	usion. Clau 0 to x1 m	3000	30	300	JU 40	500 24	10000	1300	730	0000	_	4000											q	27	0 4		000000	99999	0		999999	000000							40					4000		
																						999999"	_	310"2																						
NEPM 2013 Soil HSL D for Vapour Intru	usion - Clay 1 to <2m																					999999"	2	480"	9 6			999999			999999															
NEPM 2013 Soil HSL D for Vapour Intru	usion - Clay 2 to <4m																					999999	9	999999	^{#20} 9		999999	999999	9		999999	999999														
Field_ID Sampled_Date-Time	ne Lab_Report_Number Matrix_Type																																													
Coffey (2013)																																														
BH01 0.0-0.2 20/02/2013	- Soil	<2	<0.	4 <	<5 <	<5	13	<5	<0.05	<5	220	11		<10	. <	100 -	:100 <1	00 -	-				1 -		<0.5		<0.5	<0.5	<0.5	<1	<1.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	- <	0.5 <0.	0.5 <1	.11 <0	0.5 <0	0.5 <0.	5 <0.5	<1	<0.5	
BH02 0.0-0.2 19/02/2013	- Soil	2.5	_	_	_	_	120		<0.05		1100		_		_	-	1200	-	_	-		_	_	_	-	_	10.0		10.0				<0.5 <0.				-	:0.5 <0.		_		-		_	<0.5	-
				-										-	-	-	-			 -		+	+-	-		+-	<u> </u>	+ -	+ -		-															
BH03 0.0-0.2 20/02/2013	- Soil				24 4		20		<0.05					-	_	-	-					+	+ -	-	- :						-		<0.5 <0.					0.5 <0.						_		
BH04 0.0-0.1 20/02/2013	- Soil	_	_	_	·5 <	_	5.3		<0.05		_		_	<10	_		100 <1	00 -	-			-	-	-	<0.5	-		<0.5		-	<1.5	<0.5	<0.5 <0.	-	_	-	-	0.5 <0.		.11 <0).5 <0	0.5 <0.	5 <0.5	<1	<0.5	
BH05 0.0-0.2 20/02/2013	- Soil	2.8	0.4	1 4	12 1	17	34	13	0.34	57	120	51		-	.	-	- -	- -	-			-	-	-		-	-	-	-	-	-	-	- -	-	-	-			- -	- -	-	- -	-	-	-	- -
BH06 0.16-0.26 18/02/2013	- Soil	3.3	2.3	1 1	13 9	99	41	<5	<0.05	5 61	690	35	; -	<10	. <	100	:100 <1	00 -	-	-		-	-	-	< 0.5	-	<0.5	<0.5	<0.5	<1	<1.5	-		-	-	-	-			- -	-		-	-	-	
BH06 1.0-1.1 19/02/2013	- Soil	6.3	<0.	4 7	70 6	66	48	<5	<0.05	360	1200	0 68	3	-		-			-			-	-	-	-	-	-	-	-	-	-			-	-	-					-		-	-	-	
BH07 0.08-0.13 18/02/2013	- Soil	- 1	5		5 1	20	7.7		<0.05				,		-	.							٠.	<u> </u>		٠.	٠.	T .	-	- 1				T -		-	-	_			.		—	<u> </u>	+ .	T. T.
BH07 0.2-0.3 18/02/2013	- Soil	2.4	_	_	-	-	40	<5		5 75				<10	_	_	100 <1	-		_	-	+	+-	-	<0.5	+ -	<0.5	<0.5	<0.5	-4	<1.5	<0.5		<0.5	-0.5		_	:0.5 <0.	_	_	_	0.5 <0.	5 <0.5	<1	<0.5	+
				_	_									×10		100	100 (1	- 00	-	 -	· ·	+	+ -	-	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, -	VU.3	VU.3	VU.3		V1.5	VU.3	QU.3 QU.	0.5	VU.3	VU.3		3.3	7.5	.11	7.5	J.3 \ \U.	3 (0.3	- 1	V0.3	
BH07 0.4-0.5 18/02/2013	- Soil	4.4	_	_		-	46	<5			_	_	_	-		-						-	<u> </u>	-	_ ·	<u> </u>	-	-	-	-	-	-		<u> </u>		-					-		-	-	-	
BH08 0.0-0.2 20/02/2013	- Soil	<2	0.5	. 4	11 6	5.8	61	68	0.39	31	310	190	0 1	<10	- 1	90	340 53	80 -	-			-	-	-	<0.5	-	<0.5	<0.5	<0.5	<1	<1.5	<0.5	<0.5 <0.	<0.5	<0.5	<0.5	- <	:0.5 <0.	0.5 <1	.11 <0).5 <0	0.5 <0.	5 <0.5	<1	<0.5	
BH09 0.0-0.1 20/02/2013	- Soil	3.5		4 <	<5 <	<5	19	<5	<0.05	7.1	130			<10	. <	100	100 <1	00 -	-		- -	-	-	-	<0.5	5 -	<0.5	<0.5	<0.5	<1	<1.5	<0.5	<0.5 <0.	<0.5	<0.5	<0.5	- <	:0.5 <0.	0.5 <1	.11 <0).5 <0	0.5 <0.	5 <0.5	<1	<0.5	- -
BH10 0.16-0.26 20/02/2013	- Soil	4.6	<0.	4 4	11 2	26	64	5.4	<0.05	91	470	56	; T	<10	. <	100	100 <1	00 -	-	1	-	-	-	-	<0.5	· -	<0.5	<0.5	<0.5	<1	<1.5	- 1		-	-	-	T	- 7	-			- -	-	-	-	
BH11 0.19-0.29 20/02/2013	- Soil	3.4	2.7	1	17 4	48	63	<5	<0.05	5 92	520	41		<10	. <	100	:100 <1	00 -	-	Τ.			-	-	<0.5	-	<0.5			<1	<1.5	- 1		-	-	-	- 1	- 7	-	. .	-		-	-	-	
BH12 0.4-0.5 20/02/2013	- Soil		1.5		_		75		<0.05					<10		100			1 -	1 -		T .	1 .	1 -	_				<0.5			- 1		1 -	١.				\neg	.	.	. -	1 -	T -	1 -	1 . 1 .
BH13 0.13-0.23 20/02/2013	- Soil	-		_	30 6		56		<0.05					<10	_	-	120 1	_			.	+ -	+ -			-			<0.5					+-	_		-					. -	+	<u> </u>	+	
		_	_	_		_									_			_	-	-	-	+ -	+ -	-	_	_							- -	+ -	<u> </u>	-					_		-	-	+ -	+
BH14 0.19-0.29 18/02/2013	- Soil				39 5				<0.05					<10		100 -			-	-	-	+ -	+ -	-		<u> </u>			<0.5				- -	+-	-	-				- -	-	- -	-	-	+ -	+-+-
BH15 0.15-0.25 18/02/2013	- Soil		0.6		60 5		42		<0.05			-	_	<10			100 <1		-			-	-	-		-			<0.5			-	- -	1 -	-	-				- -	- -	- -	-	-	-	1 - 1 -
BH16 0.0-0.2 20/02/2013	- Soil	2.1	<0.	4 9	94 7	7.3	30		<0.05			83	3 -	<10	_		100 <1		-	-	- -	-	-	-		5 -			<0.5	<1	<1.5	· [-	-	-	-	- -		- -	-	- -	-	-	-	
BH17 0.5-0.6 19/02/2013	- Soil	4.2	<0.	4 8	.6 <	<5	38	<5	<0.05	5.1	360	17	7 -	<10	. <	100	100 <1	00 -	-	-	-	-	-	-	<0.5	<1.5	<0.5	<0.5	<0.5	<1	<1.5	<0.5	<0.5 <0.	<0.5	<0.5	<0.5	- <	:0.5 <0.	J.5 <1	.11 <0	0.5 <0	0.5 <0.	5 <0.5	<1	<0.5	
BH17 0.5-0.6 19/02/2013	- Soil	4.2	<0.	4 8	.6 <	<5	38	<5	<0.05	5 5.1	360	17	, .	<10	. <	100	:100 <1	00 -	-			-	-	-	<0.5	<1.5	<0.5	<0.5	<0.5	<1	<1.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	- <	0.5 <0.	0.5 <1	.11 <0).5 <0	0.5 <0.	5 <0.5	<1	<0.5	
BH17 0.5-6.0 19/02/2013	- Soil	4.2					38	<5	<0.05					<10			:100 <1		<u> </u>	Τ.		· .	٠.	T .	<0.5		<0.5	<0.5					<0.5 <0.					0.5 <0.								
BH18 0.0-0.2 20/02/2013	- Soil	3.3	_	_	_	_	22	13						120	+	-	1200 12	-	_	+	_	_	+	_	10.5	-	10.5	10.5	10.3		12.5		<0.5 <0.					:0.5 <0.						_		
		_	_	_			_	_						-		-		-				-	+ -	<u> </u>	-		-	-	-	-:-	-	<0.5	<0.5 <0.	VU.5	<0.5				0.5 <1.		J.5 <i< td=""><td>J.5 <u.< td=""><td>5 <0.5</td><td><1</td><td><0.5</td><td>+</td></u.<></td></i<>	J.5 <u.< td=""><td>5 <0.5</td><td><1</td><td><0.5</td><td>+</td></u.<>	5 <0.5	<1	<0.5	+
BH19 0.4-0.5 19/02/2013	- Soil	2.4		_			110		<0.05				_	<10	-		100 <1	- 00				-	+ -	-	<0.5	_	<0.5	<0.5	<0.5	<1	<1.5			<u> </u>	-	_		_	_	_	_		-	-	+ -	+
BH19 1.0-1.1 19/02/2013	- Soil	9.8		_			43	15		_	_		0	-		-			-			-	-	-	_ ·	-	-	-	-	-	-	-		-	_			_					-	-		
BH20 0.0-0.2 20/02/2013	- Soil	2.6	<0.	4 3	38 1	15	27	7.5	<0.05	38	98	31		-	.	-	- -	- -	-		- -	-	-	-		-	-	-	-	-	-	<0.5	<0.5 <0.	<0.5	<0.5	<0.5	<	:0.5 <0.	J.5 <1	.11 <0).5 <0	0.5 <0.	5 <0.5	<1	<0.5	
BH21 0.0-0.2 19/02/2013	- Soil	3.3	<0.	4 3	33 1	10	26	<5	<0.05	31	330	22	2	-	.	-			-			-	-	-		-	-	-	-	-	-	<0.5	<0.5 <0.	<0.5	<0.5	<0.5	<	:0.5 <0.	J.5 <1	.11 <0).5 <0	0.5 <0.	5 <0.5	<1	<0.5	
BH21 1.0-1.1 19/02/2013	- Soil	<2	<0.	4 1	14 <	<5	12	<5	<0.05	6.7	380	14		-		-			-			-	-	-	-	-	-	-	-	-	-			-	-	-					-		-	-	-	
BH21 3.0-3.1 19/02/2013	- Soil	- 5	<0.	4 (99 9	99	18	7.5	<0.05	110	82	36		<10		100	:100 <1	nn .		Τ.		· .	T .		<0.5	5 -	<0.5	<0.5	<0.5	<1	<15	- 1		٠.		-			_		. —		٠.	· .	T .	T
BH21 3.9-4.0 19/02/2013	- Soil				73 5		34		<0.05					10			- 100	-	+-	_	-	+	+-	 	- 10.3	,					-	-		+ :	<u> </u>	-					-		+ -	-	+-	+++
BH22 0.0-0.1 19/02/2013	- Soil		0.4	-	-		80						_	-	_	_	-		-	+-	_	+ -	+-	-		+-	-	-	+ -	_	-			+-	<u> </u>	-					-		+-	-	+-	+
				_					<0.05					-	_	-						-	+ -	-	<u> </u>	+ -	<u> </u>	+ -		-	-			+ -		-					-		+ -	-	+ -	
BH23 0.08-0.18 19/02/2013	- Soil	4.8	141		-		110	<5						<10			100 <1		-			-	-	-	<0.5		<0.5							-	-	-				- -	-		-	-	-	
BH23 0.5-0.6 19/02/2013	- Soil	6.1	<0.	4 3	31 2	22	35	13	<0.05	65	57			<10			100 <1		-			-	-	-	<0.5	-	<0.5	<0.5			<1.5	<0.5		-	-	-	-		-		-		-	-	-	
BH24 0.08-0.18 19/02/2013	- Soil	4.4	<0.	4 1	11 2	21	76	<5	<0.05	5 59	600	33	3 ·	<10	. <	100	:100 <1	00 -	- -	- -	- -	-	-	-	<0.5	5 -	<0.5	<0.5	<0.5	<1	<1.5	- 1	- -	-	-	-		- -	-	- -	-	- -	-	-	-	- -
BH24 0.5-0.6 19/02/2013	- Soil	4.6	<0.	4 2	20 1	13	29	8.2	<0.05	5 40	17	51		-		-			-			-	-	-	-	-	-	-	-	-	-			-	-	-			-		-		-	-	-	
BH24 1.1-1.2 19/02/2013	- Soil	2.6		_			57	<5						<10	. <	100	:100 <1	00 -	-	Τ.		-	T -		<0.5		<0.5	<0.5	<0.5	<1	<1.5	- 1		٠.		-			_		.		-	-	T -	
BH25 0.19-0.29 18/02/2013	- Soil	2.6		_			78	<5						<10		100							٠.		<0.5		<0.5					<0.5	<0.5 <0.5	-0.5	<0.5	<0.5		:0.5 <0	0.5	11 0	15 /	0.5 <0.	5 <0.5	<1	<0.5	T. T.
BH26 0.18-0.28 18/02/2013	- Soil		3.2	_			70	_	<0.05				_	<10	_	100				_	-	+	+ -	-		;	<0.5				<1.5	VO.5			1010		-							1		
			0.12		-														-		· ·	-	+ -	<u> </u>		_						-:-		_	_			_	_	_	_	_	_	-	_	
BH27 0.17-0.27 18/02/2013	- Soil	_	1.3	_			58		<0.05					<10		100		_					-	-				<0.5			<1.5	<0.5	<0.5 <0.					0.5 <0.				0.5 <0.	5 <0.5	<1	<0.5	
BH27 0.4-0.5 18/02/2013	- Soil				L7 6				<0.05					<10		100			-			-	-	-					<0.5			-								- -	-	- -	-	-	-	1 - 1 -
BH28 0.16-0.26 18/02/2013	- Soil	4	5.8	1 1	13 5	58 :	100	<5	<0.05	87	750			<10	. <	100	100 <1	00 -	-	-	- -	-	-	-	<0.5	5 -			<0.5				<0.5 <0.	<0.5	<0.5	<0.5	- <	:0.5 <0.	J.5 <1	.11 <0	0.5 <0	0.5 <0.	5 <0.5	<1	<0.5	- -
BH29 0.19-0.29 18/02/2013	- Soil	2.7	<0.	4 6	53 4	47	37	6	<0.05	130	130	34	1 7	<10	. <	100	100 <1	00 -	-	-		-	-	-	<0.5	-	<0.5	<0.5	<0.5	<1	<1.5	<0.5	<0.5 <0.	<0.5	<0.5	<0.5	- <	:0.5 <0.	J.5 <1	.11 <0	0.5 <0	0.5 <0.	5 <0.5	<1	<0.5	
BH30 0.19-0.29 18/02/2013	- Soil	23	0.4	1 1	19 1	14	33	190	0.23	27	19			<10	. 1	40	180 32	20 -	-	T -		-	-	T -		- 5	<0.5					- 1		-	T -	-	- 1				-		-	T -	-	
BH31 0.0-0.2 20/02/2013	- Soil	3.4	_				12		<0.05					<10		100			-	T .			-		<0.5		<0.5				<1.5	.		1 -	١.	- 1			\neg	. .	.		-	-	-	1 - 1 -
BH31 0.4-0.5 20/02/2013	- Soil		- 3.		. +		.		1	1	1 -	1		<10			100 <1					1	1		<0.5		<0.5							1 -	1 -			$\overline{}$	\rightarrow	.	.	.	-	-	-	
BH32 0.08-0.18 20/02/2013	- Soil	3.4	<0.	4 .	18 6	5.9	12	5.1	<0.05	5 19	290	29					-00 1				.	+ -	+ -	 	0.3	1	10.3	~0.3	-0.3	-4	-2			+ -	_						.	. -	+ -	<u> </u>	+ -	
		6	_											-		-		-	+-	+-	-	+ -	+-		+-	+-	+ -	+ -	+					+ -	+ -		\rightarrow			-	-		+ -	-	+-	+
BH33 0.0-0.2 20/02/2013	- Soil	_	_	_			23		<0.05					-	-	-		-	-	-	-	+ -	+ -	-	⊢ •	+-	<u> </u>	+	+ -		-			+-	H -	-				-	-		+ -	-	+ -	+
BH34 0.09-0.19 19/02/2013	- Soil	<2	_				36	<5						-	-	-	-	-	-			-	-	-	-	-	-	-		-	-	-	- -	-	-	-				- -	-	- -	-	-	-	+-+-
BH34 1.0-1.1 19/02/2013	- Soil	4.4			27 9		19		<0.05					<10			100 <1		-		- -	-	-	-	<0.5	-			<0.5		<1.5	·	- -	-	-	-	-	- -	-	- -	-	- -	-	-	-	- -
BH35 0.08-0.18 18/02/2013	- Soil	2.1	2.3	8	.9 4	42	12	6.1	<0.05	6.8	220	35	; ·	<10	- <	100	100 <1	00 -	-	-	-	-	-	-	<0.5		<0.5	<0.5	<0.5	<1	<1.5	- 1		-	-	-		- -	-	- -	-	- -	-	-	-	
BH35 0.4-0.5 18/02/2013	- Soil	2.3	1.7	8	.4 2	21	36	<5	<0.05	9.6	290	24	.	-	.	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	- 1		-	- -	-		-	-	-	
BH36 0.0-0.2 20/02/2013	- Soil	_	_	4 9	-	-	40	19						<10		100	100 10	00 -	٠.	Τ.			1 -		<0.5			<0.5		<1	<1.5	<0.5	<0.5 <0.	<0.5	<0.5	<0.5		:0.5 <0.	0.5 <1	.11 <0).5 <1).5 <n< td=""><td>5 <0.5</td><td><1</td><td><0.5</td><td></td></n<>	5 <0.5	<1	<0.5	
BH37 0.0-0.2 21/02/2013	- Soil	_	_	_	60 9				<0.05		_				-		100 <1					+ -	1		_				<0.5							-			- 1		-		-	1 2	10.5	
		-	_			-	-								_			_		+-	-	+ -	+ -	-	_	_								+-	+-		\rightarrow			-	-	-	+ -	<u> </u>	+-	+
	- Soil	_	<0.				35		<0.05					<10	_	-	100 <1	UU -	-	-	-	+ -	+-	-	<0.5	-		<0.5			<1.5			+-	H -	-				-	-		+ -	-	+-	+-+-
BH38 0.4-0.5 21/02/2013	- Soil	2.5					47	16		5 120				-		-	- -	-	-	-	-	-	-	-	-	-	-	-		-	-		- -	-	-	-			\perp	- -	- -	- -	-	-	-	+-+-
BH39 0.0-0.2 21/02/2013	- Soil	4.1	_				48		<0.05					-	-	-	- -				-	-	-	-		-	-	-	-	-	-	- 1	- -	1 -	-	-	-	- -	-	- -	-	- -	-	-	-	
BH40 0.0-0.2 21/02/2013	- Soil	3.1	<0.	4 5	50 2	26	30	7.9	<0.05	5 40	53	26	; T	-		- T			-	T -			-	-	T -	-	-	-	- 1	- 1	-	- 1		-	-	- 1	-	- 1	-	- -	- T	- -	-	-	-	
DUP2 18/02/2013	- Soil	<2	4.1	1			45	<5			590			<10	. <	100	:100 <1	00 -	-	1 -		-	-	-	<0.5	<1.5	<0.5	<0.5	<0.5	<1	<1.5	<0.5	- -	-	-	-	- 1	- 7	-	- -	- 1		-	-	-	
DUP3 19/02/2013	- Soil	<2					20	<5						<10		100		_	1 -	Η.		T .	1 -	1 -	_	<1.5				<1	<1.5	<0.5	<0.5 <0.	5 <0.5	<0.5	<0.5		:0.5 <0	0.5 <1	.11 <0).5 <1	0.5 <0.	5 <0.5	<1	<0.5	1 . 1 .
	- Soil	<4	_	-		-	-	4		-					_							+ -	+ -	<u> </u>	-	-	-							-			-	-	-	-	-	-	-	<u> </u>	_	
DUP3A 19/02/2013			141	•	_		14							<25	_	100	:100	-	-	-	-	+ -	+ -	—	<0.2	-	<1	<0.5	<1	<2	<3	<0.1	<0.1 <0.	l <0.1	<0.1	<0.05	- +	0.1 <0	0.1 <0.	172 <0	J.1 <(0.1 <0.	1 <0.1	-	<0.1	+-+-
DUP5 19/02/2013	- Soil		<0.				40		<0.05					-	_	-	- -	-	-	-	-	-	-	-	-	-	-	-		-	-		- -	-	-	-			\perp	- -	-	- -	-	-	-	+-+-
DUP5A 19/02/2013	- Soil	_	_	_	54 3		49	7	_			52		<25		100	100	-	-			-	-	-	<0.2	2 -	<1	<0.5	<1	<2	<3	<1		-	-	-	-	- -	- -	- -	-		-	-	-	
DUP7A 20/02/2013	- Soil	4	<0.	4 4	19 1	15	22	13	<0.1	42	84	38	<u> </u>	-		-	-	-	-		- -	-	-	-	-	-	-	-	-	- 1	-	<u>-</u> I			-	- 1	-		-		-		-	-	-	
	- Sediment	<2	<0.	4 1	12 6	5.1	17							<10 <	50 <	100	:100 <1	00 -	-	1		-	-	-	-	-	-	-	-	-	-	-		-	-	-	- 1		-		-		-	-	-	
SED1 21/02/2013																			_	_	_	_	_		-				_	\rightarrow	_	$\overline{}$	-			$\overline{}$									_	+
	- Sediment	<2			55 1	16	21	<5	< 0.05	42	190	32	2 4	<10 <	50 <	100 -	<100 <1	DO I -	- 1	- 1 -	. -		-	-		-	-	-	-	- 1	- 1	- 1	- -			- 1	-				-		-	-	-	1 - 1 -
SED1 21/02/2013 SED2 21/02/2013 SED3 21/02/2013			<0.	4 6	55 1				<0.05										-	+-		+ -	+ -	-	+-	+ :-	-	+ -	+					-	-	-			==	- -	-		-	-	+ -	+ + -

1

				- 1	Metals &	Metalloid	ls					TPHs (NEPC 199	99)				TF	RHs (NEP	C 2013)						BT	TEXN										Pol	ycyclic A	romatic I	Hydrocar	bons						
JBS&G	Arsenic (Total)	Cad mium	Chromium (Total)	Cobalt	Copper	mg/kg	Me rcury (Inorganic)	Nickel	Zitanium Ba/8au	Zinc mg/kg	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	K. Lu-Cao Fraction (Total)	>C10-C16 Fraction	>C16-C34 Fraction	>C34-C40 Fraction	Na >C10-C40 Fraction (Total)	>C10-C16 less Naphthalene (F2)	Ze-C10 Fraction	교 CG-C10 less BTEX (F1)	Benzene mg/kg	BTEX (Total)	Ethylbenzene	Toluene	xylene (o)	Xylene (m & p)	Xylene (Total)	Naphthalene	Acenaphthene	Bay/Bu Acenaphthylene	Anthracene Say/au	Benz(a)anthracene	Benzo(a)pyrene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Carcinogenic PAHs as B(a)P TEQ	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Phenanthrene	PAHs (Total)	Pyrene	Benzo(b,j+kjflourantnene Trotal Positive PAHs	וטנמו בישוועה ישים
	niig/kg	0.4	1 IIIg/kg	IIIg/kg	mg/kg	1 1 1	0.1	1 IIIg/kg	IIIg/kg	1 1	20					50		100	50	50	20	20	0.1	IIIg/kg	mg/kg 0.1	mg/kg 0.1		0.2	mg/kg 0.3	mg/kg 0.1			0.1		0.05	0.5	0.1	0.1	IIIg/kg	0.1		mg/kg r				0.2 0.	
ZG (2019) - Sediment Quality DGVs	20	1.5	80		65	50		21		200			280#1 2		280	30	100	100	30	30	20	20	0.1		0.1	0.1	0.1	0.2	0.5	0.1	0.1	0.1	0.1	0.1	0.03	0.5	0.1	0.1		0.1	0.1	0.1	0.1	0.5	0.1	0.2 0.	.05
PM 2013 EIL - Commercial Industrial (Specific)	160	1.3									280**	280"	280 2	280 2	100	_														370	-												-	\rightarrow	-	-	_
PM 2013 ESL Commercial and Industrial, Fine Soil	100		310 112		320#3	1000		730**		620 ^{#5}				_	_			85				#7	25		25	25			25	3/0	-				25								\rightarrow	\rightarrow	\rightarrow	\rightarrow	
PM 2013 HSL Asbestos in Soil - Bonded ACM - Commercial/Industrial - HSL D						_	_	_				_	_	_	_		2500 ^{#6}	6600		170"7	_	215#7	95**6		185**6	135**	_		95**6		-				1.4			_					\rightarrow	\rightarrow	$\overline{}$	-	
PM 2013 HSL Asbestos in Soil - Bonded ACM - Commercial/Industrial - HSL D PM 2013 HSL Asbestos in Soil - FA & AF - HSL															_																												\rightarrow	\rightarrow	\rightarrow	-	
													_	_	_	#10	5000				#11																								_		_
PM 2013 Mgnt Limits - Commercial and Industrial, Fine	417	000	#17	1000	240000										10	000*10	5000	10000			800#11										-								#1C				\rightarrow	417	\rightarrow		
PM 2013 Soil HIL D	3000#12	900	3600"13	4000	240000	1500**	730"13	6000		400000											10	#70			000000	000000			000000	000000									40 ^{#16}					4000#17			
PM 2013 Soil HSL D for Vapour Intrusion - Clay 0 to <1m																				999999"		310	4						999999																		
PM 2013 Soil HSL D for Vapour Intrusion - Clay 1 to <2m																				999999"1		480#20	6			999999			999999																		
PM 2013 Soil HSL D for Vapour Intrusion - Clay 2 to <4m																				999999"1	9	999999#20	9		999999	999999			999999	999999																	

NEPM 2013 HSL As	sbestos in Soil - FA & AF -	- HSL																											
NEPM 2013 Mgnt I	Limits - Commercial and I	Industrial, Fine													1000#10	5000 10	0000		800#11										
NEPM 2013 Soil HI	IL D			3000#12	900	3600 ^{#13} 4000	240000	1500#14	730#15	6000	400000																	40 ^{#16}	4000#17
NEPM 2013 Soil HS	SL D for Vapour Intrusion	n - Clay 0 to <1m																999999	9	310 ^{#20}	4	999999	999999		999999 999999				
NEPM 2013 Soil HS	SL D for Vapour Intrusion	n - Clay 1 to <2m																999999#1	9	480 ^{#20}	6	999999	999999		999999 999999				
	SL D for Vapour Intrusion																	222222	9	0000000#20	0	999999			999999 999999				
WEI WI EULD SON TIS	SE D TOT Vapour Intrasion	Cidy 2 to 44iii				<u> </u>							<u> </u>					222222		22222		333333	333333		333333				
Field ID	Sampled Date-Time	Lab Danast Number	Matrix Tune																										
	3ampieu_Date-Time	Lab_Report_Number	Matrix_Type							_							_												
DLA (2017)																													
	8/02/2017		Soil			200 -	24		<0.1		26	<25	- <100 <10			<100 <					<0.2 -	<1			<1 <0.1		0.1 <0.1 <0.1 <0.05		1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	8/02/2017		Soil	18	<0.4	15 -	84	19	<0.1	22 -	60		- <100 <10			-200	100 <50	<1	<25		<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05		1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	7/02/2017	-	Soil	<4	<0.4	12 -	67	4	<0.1	56 -	33		- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0			1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH4 1.9-2.0	7/02/2017	-	Soil	<4	< 0.4	53 -	14	8	<0.1	52 -	21	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH4 5.9-6.0	7/02/2017	-	Soil	9	<0.4	9 -	39	15	<0.1	15 -	55	<25	- <100 <10	00 -	<50	<100 <	:100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH6 0.5-0.6	8/02/2017	-	Soil	<4	< 0.4	67 -	48	10	<0.1	69 -	45	<25	- <100 <10	00 -	<50	<100 <	:100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH6 1.9-2.0	8/02/2017		Soil	<4	<0.4	46 -	39	10	<0.1	61 -	47	<25	- <100 <10	00 -	<50	<100 <	:100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	8/02/2017		Soil		<0.4	20 -	16	15	<0.1	22 -	17	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017		Soil	-	<0.4	-	37	12	<0.1	_	48	<25	- <100 <10		<50		:100 <50	<1	<25	<25	<0.2 -	<1		1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil		<0.4		44	4	<0.1		56	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2	4	-0.0	1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.1 - <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017		Soil		<0.4			4			57		- <100 <10		<50		100 <50	<1			<0.2 -	-					0.1 <0.1 <0.1 <0.05		
	., . , .			-	_	-		-	<0.1		_	<25							<25	<25		<1		$\overline{}$	<1 <0.1				1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	8/02/2017		Soil		<0.4				<0.1		26	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		4 4	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
2110 210 210	8/02/2017	-	Soil		<0.4		40	4	<0.1		54	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	10.0	<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil	-	<0.4	-	130	14	<0.1	35 -	61		- <100 <10		<50		100 <50		<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil	<4	<0.4	220 -	42	4	<0.1	220 -	57	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	1012	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH11 0.5-0.6	8/02/2017	-	Soil	<4	<0.4	7 -	62	5	<0.1	5 -	18	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	8/02/2017		Soil	<4	<0.4	140 -	43	4	<0.1	120 -	38	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	8/02/2017		Soil	-	<0.4	25 -	39	17	<0.1	69 -	130	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017		Soil		<0.4		24	13	<0.1	19 -	49	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2	<1		1 0	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	7/02/2017		Soil		<0.4		45	4	<0.1	160 -	45	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2	4	1010	1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	0.0 0.0 0.0	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	7/02/2017		Soil	-	<0.4	-	36	16	<0.1		82	<25	- <100 <10		<50		100 <50		<25	<25	<0.2	4		1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05		1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	7/02/2017	· ·	Soil		<0.4	-	43	17	<0.1		-		- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		4 4	<1 <0.1		0.1 <0.1 <0.1 <0.05		1 <0.1 <0.1 <0.05 <0.1 <0.2 -
21120 111110	7/02/2017 8/02/2017	-	Soil	-	<0.4	-				310 -	62 54	<25	- <100 <10	30	<50 <50	1200	100 <50	<1	<25	<25		_	1010			10.12	3.1 40.1 40.03	10:1 10:1 10:172 10:1 10:	
	0,00,000	-					46	3					1200 120			-200					<0.2 -	<1		4 4		-0.12		0.0 0.0.0	
	8/02/2017	-	Soil		<0.4		40	3	<0.1	360 -	47	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil	-	<0.4	15 -	44	13	<0.1	28 -	53	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil		<0.4	21 -	44	18	<0.1	28 -	55	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
BH17 0.5-0.6	8/02/2017	-	Soil	<4	<0.4	290 -	31	4	<0.1	240 -	45	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH17 1.9-2.0	8/02/2017	-	Soil	<4	<0.4	230 -	48	5	<0.1	250 -	59	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH18 0.5-0.6	8/02/2017		Soil	4	<0.4	11 -	36	15	<0.1	31 -	62	<25	- <100 <10	00 -	<50	<100 <	:100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH18 1.9-2.0	8/02/2017		Soil	5	<0.4	12 -	37	14	<0.1	32 -	58	<25	- <100 <10	00 -	<50	<100 <	:100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH19 0.5-0.6	8/02/2017		Soil	<4	<0.4	38 -	37	9	<0.1	56 -	41	<25	- <100 <10	00 -	<50	<100 <	:100 <50	<1	<25	<25	<0.2 -	<1	<0.5	1 2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	8/02/2017		Soil		1		33	16	<0.1		200	<25	- <100 <10	00 -	<50		100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05		1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH2 0.5-0.6	8/02/2017		Soil	-	<0.4	-	41	12	<0.1		37	<25	- <100 <10	0 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	_	Soil	-	<0.4	-	32	13	<0.1	17 -	48		- <100 <10		<50		100 <50		<25	<25	<0.2	4		1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil		<0.4	14 -	34	18	<0.1	23 -	63	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2	4		1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.1 - <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil	_	_			_							<50			_			<0.2			-					
	.,.,			_	<0.4	13 -	28	14	<0.1	23 -	61	<25	- <100 <10					<1	<25	<25		<1	<0.5	4 4	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	7/02/2017	-	Soil	-	<0.4	14 -	22	4	<0.1	9 -	16	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	7/02/2017		Soil		<0.4	100 -	22	6	<0.1	65 -	22	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil		<0.4		42	13	<0.1	29 -	47	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05		1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH24 1.9-2.0	8/02/2017	-	Soil		<0.4		38	15	<0.1	80 -	55	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH25 0.5-0.6	8/02/2017	-	Soil	<4	<0.4	13 -	57	11	<0.1	49 -	58	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	 <0.1 <0.1 <0.172 <0.1 <0. 	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH25 1.9-2.0	8/02/2017	-	Soil	5	<0.4	12 -	21	15	<0.1	9 -	25	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	4 4	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH26 0.5-0.6	7/02/2017	-	Soil	<4	<0.4	60 -	34	11	<0.1	62 -	39	<25	- <100 <10	00 -	<50	<100 <	:100 <50	<1	<25	<25	<0.2 -	<1	<0.5	1 2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH26 1.9-2.0	7/02/2017		Soil	5	<0.4	19 -	18	16	<0.1	10 -	16	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	· <0.1 <0.1 <0.172 <0.1 <0.	
BH27 0.5-0.6	7/02/2017		Soil	\rightarrow	<0.4	160 -	18	16	<0.1	48 -	25	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2	<1		1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
BH27 1.9-2.0	7/02/2017		Soil		<0.4	110 -	52	14	<0.1	56 -	59	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2	<1	<0.5	1 2	<1 <0.1		0.1 <0.1 <0.1 0.06	- <0.1 <0.1 0.121 0.2 <0.	
	8/02/2017		Soil		<0.4	31 -	57	11	<0.1	68 -	35		- <100 <10		<50		100 <50	<1			<0.2 -	<1		1 2			0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.121 0.2 <0.1	
	8/02/2017	· ·	Soil	***	<0.4	12 -	22	111	<0.1	9 -		<25 <25	- <100 <10		<50		100 <50	<1	<25 <25	<25	<0.2 -	<1			<1 <0.1		0.1 <0.1 <0.1 <0.05		
	., . , .	-			_			8	-	-	15	_								<25				$\overline{}$					
	8/02/2017	-	Soil		<0.4		43	5	<0.1		60	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil		<0.4		37	5	<0.1		33	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil	$\overline{}$	<0.4		38	13	<0.1		45	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		4 4	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
BH3 1.9-2.0	8/02/2017	-	Soil	<4	<0.4	29 -	19	13	<0.1	58 -	56	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
21100 010 010	7/02/2017	-	Soil	<4	<0.4		16	4		11 -	14	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
BH30 5.9-6.0	7/02/2017	-	Soil	<4	<0.4	130 -	26	9	<0.1	59 -	62	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	8/02/2017	-	Soil	<4	<0.4	10 -	36	6	<0.1	12 -	19	<25	- <100 <10		<50		:100 <50	<1	<25	<25	<0.2 -	<1	<0.5	1 2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	8/02/2017		Soil	_	<0.4	19 -	34	18	<0.1	25 -	70	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017		Soil	-	<0.4	7 -	22	4	<0.1	4 -	13	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0. - <0.1 <0.1 <0.172 <0.1 <0.	
	8/02/2017	-	Soil		<0.4	200 -	34	4	<0.1	140 -	35	<25	- <100 <10		<50	-	100 <50	<1	<25	<25	<0.2	<1	<0.5	1 2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.1 - <0.1 <0.1 <0.172 <0.1 <0.1	
	8/02/2017	.	Soil		<0.4		40	28	<0.1		40	<25	- 110 37		<50		410 740	<1	<25	<25	<0.2 -	<1		1 0	<1 <0.1		1 02 0.7 0.94	- 0.8 <0.1 1.137 1.2 <0.1	
	8/02/2017	· ·	Soil	-	<0.4		40	28	<0.1		40	<25	- 120 37		<50		320 630	<1	<25	<25	<0.2 -	<1		4 4	<1 <0.1			- 0.6 0.2 1.124 1.3 <0.	
	., . , .	<u> </u>		$\overline{}$	_		_	_	_	_	_	_		_				_				-		$\overline{}$					
	9/02/2017	-	Soil	_	<0.4		43	19	<0.1		79		- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	9/02/2017	-	Soil	_	<0.4		44	10	<0.1		68	<25	- <100 <10		<50		100 <50		<25	<25	<0.2 -	<1	1010	4 4	<1 <0.1		0.1 <0.1 <0.1 <0.05		1 <0.1 0.1 0.1 <0.1 <0.2 -
	9/02/2017	-	Soil	-	<0.4		25	17	<0.1		34	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1		<1 <2	<1 <0.1				1 <0.1 <0.1 <0.05 <0.1 <0.2 -
	9/02/2017	-	Soil	<4	<0.4		26	11	<0.1	110 -	29		- <100 <10		<50		:100 <50	<1	<25	<25	<0.2 -	<1		4 4	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
	9/02/2017	-	Soil	5	<0.4	24 -	30	16	<0.1	33 -	58	<25	- <100 <10		<50		100 <50	<1	<25	<25	<0.2 -	<1	<0.5	4 4	<1 <0.1		0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	
HA5 0.4-0.5	9/02/2017	-	Soil	5	<0.4	25 -	35	15	<0.1	44 -	59	<25	- <100 <10	00 -	<50	<100 <	100 <50	<1	<25	<25	<0.2 -	<1	<0.5	<1 <2	<1 <0.1	<0.1 <0	0.1 <0.1 <0.1 <0.05	- <0.1 <0.1 <0.172 <0.1 <0.	1 <0.1 <0.1 <0.05 <0.1 <0.2 -
SD2	2/08/2017	-	Sediment	<2	<0.4	50 -	34	7	<0.05	32 -	57	-		-	<50	<100 <	:100 <50	<1	<25	<25	<0.2 -	<1	<0.5	4 4	<1 <0.1	<0.5 <0	0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <1.21 <0.5 <0.	5 <0.5 <0.5 <0.5
	2/08/2017	-	Sediment			20 -	60			24 -	220			-			240 <50		<25	<25	<0.2 -	<1		1 2	<1 <0.1			<0.5 <0.5 <0.5 <1.21 <0.5 <0.	
																		-											

2

				- 1	Metals & N	Metalloid	ds					TPH	(NEPC 1	999)					TRHs (NE	PC 2013)						B	TEXN										Pol	lycyclic A	Aromatic	Hydroca	arbons					
JBS&G	Arsenic (Total)	Cadmium	Chromium (Total)	Cobalt	Copper	Lead	Mercury (Inorganic)	Nickel	Titanium	Zinc	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Total)	>C10-C16 Fraction	>C16-C34 Fraction	>C34-C40 Fraction	>C10-C40 Fraction (Total)	>C10-C16 less Naphthalene (F2)	C6-C10 Fraction	C6-C10 less BTEX (F1)	Benzene	BTEX (Total)	Ethylbenzene	Toluene	Xylene (o)	Xylene (m & p)	Xylene (Total)	Naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Carcinogenic PAHs as B(a)P TEQ	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Phenanthrene	PAHs (Total)	Pyrene	Benzo(b,j+k)flouranthene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	, mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k
	2	0.4	1		1	1	0.1	1		1	20	20	50	50	50	50	100	100	50	50	20	20	0.1		0.1	0.1	0.1	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.05	0.5	0.1	0.1		0.1	0.1	0.1	0.1	0.5	0.1	0.2
) - Sediment Quality DGVs	20	1.5	80		65	50	0.15	21		200	280#1	280#1	280*1	280"1	280																															
EIL - Commercial Industrial (Specific)	160		310#2		320#3	1800		730#4		620 ^{#5}																				370																
ESL Commercial and Industrial, Fine Soil																	2500#6	6600 ⁴	86	170#7		215#7	95**6		185 ^{#6}	135**6			95**6						1.4#6											
HSL Asbestos in Soil - Bonded ACM - Commercial/Industrial - HSL D																																														
HSL Asbestos in Soil - FA & AF - HSL																																														
Mgnt Limits - Commercial and Industrial, Fine																1000*1	5000	1000	0		800#11																									
oil HIL D	3000#12	900	3600#13	4000	240000	1500"1	730#15	6000		400000																													40#16					4000#17		
oil HSL D for Vapour Intrusion - Clay 0 to <1m																				999999	119	310#20	4		999999	999999	9		999999	999999																
Soil HSL D for Vapour Intrusion - Clay 1 to <2m																				999999		480 ^{#20}	6		999999	999999	9		999999	999999																
Soil HSL D for Vapour Intrusion - Clay 2 to <4m																				999999	119	999999 ^a	0 9		999999	999999	9		999999	999999																

NEPM 2013 EIL	- Commercial Industri	al (Specific)		160		310 ^{#2}	320#3	1800		730#4	620 ^{#5}																370												
	Commercial and Indu	,													_	2500	6600		170 17		215#7	95**6	185**6	135 ^{#6}		95#6			\vdash	1.4°	16								
		nded ACM - Commercial/In	ndustrial - HSL D												_		_																_						
	Asbestos in Soil - FA														-	#10 5000	10000			#11						_							_				_	_	
NEPM 2013 Mg NEPM 2013 Soil	nt Limits - Commercia	il and Industrial, Fine		2000#12	900	3600 ^{#13} 400	0 240000	4500#14	720#15	6000	400000				10	00*10 5000	10000			800#11														o#16			4000	0#17	
	HSL D for Vapour Inti	rusion - Clay 0 to <1m		3000	300	3600 400	240000	1500	730	0000	400000								999999*19		310 ^{#20}	4	999999	999999		999999	999999						- 4	0			4000		
	HSL D for Vapour Inti																		999999*19		480 ^{#20}	6	999999	999999			999999												
NEPM 2013 Soil	HSL D for Vapour Inti	rusion - Clay 2 to <4m																	999999#19		99999 ^{#20}	9	999999	999999		999999	999999												
Field_ID	Sampled_Date-Tir	me Lab_Report_Numb	er Matrix_Type																																				
JBS&G (2019b) EMB1	30/05/2019	658838	Soil	<2	<0.4	190 -	66	11	<0.1	130 -	160	<20	22 57	91	170	<50 120	<100	120	<50	<20	<20	<0.1	<0.1	<0.1	<0.1 <0.2	<0.3	<0.5	<0.5 <0.5	<0.5	<0.5 <0.9	5 <0.5	<0.5	05 <	1 21 <0.5	<0.5	<0.5 <0	15 <0	5 <01	
FRAG01	30/05/2019	658838	Soil	1	-		-	_			-	-					-		-	-			-	-		-	-												
HA01	30/05/2019	658838	Soil	13	2.4	130 -	220	430	0.2	150 -	1300	-		-	-		-	-	-	-	-		-	-		-	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	5 <0.5	<0.5 <	:0.5 <:	1.21 <0.5	<0.5	<0.5 <0	J.5 <0.	.5 <0.5	
HA02	30/05/2019	658838	Soil	22			360	930	0.3	170 -	2400		20 53			<50 <100		<100	<50	<20	<20	<0.1 -	<0.1		<0.1 <0.2		<0.5		<0.5			<0.5 <			<0.5	<0.5 <0	0.5 <0.5	.5 <0.5	
HA03	30/05/2019	658838	Soil	15			250	1100	0.2	180 -	1200	<20	20 120	110	250 -	<50 180	<100	180	<50	<20	<20	<0.1 -	<0.1	<0.1	<0.1 0.3	<0.3	<0.5			<0.5 <0.5			:0.5 <:				0.5 <0.5	-	
HA04	30/05/2019	658838	Soil	4.5			120	150	<0.1	140 -	380				-		-	-	-	-	-		-	-		-	<0.5			<0.5 <0.5				1.21 <0.5		<0.5 <0	0.5 <0.5	-	
SS01 SS02	30/05/2019 30/05/2019	658838 658838	Soil Soil	3.2 2.5	<0.4	91 -	66 49	16	<0.1	120 - 66 -	92	<20 <	20 130 30 180			<50 210 <50 340		210 470	<50 <50	<20	<20 <20	<0.1 -	<0.1		<0.1 <0.2 <0.1 <0.2		<0.5 <0.5	<0.5 <0.5 <0.5 <0.5		<0.5 <0.5	_		-	1.21 <0.5 1.21 <0.5	-	<0.5 <0	0.5 <0.5	.5 <0.5 .5 <0.5	
SS03	30/05/2019	658838	Soil	<2	-		84	20	<0.1	120 -	100		- 100		-		- 150		-	-	- 1		- 40.1	- 40.1		- 40.3	<0.5			<0.5 <0.5	-		-	1.21 <0.5	-	<0.5 <0	1.5 <0.	.5 <0.5	$\overline{}$
SS04	30/05/2019	658838	Soil	2.7	<0.4		67	16	<0.1	84 -	98	1 - 1		1 - 1	-		T -	- 1	-	- 1	- 1		-	-		T -	<0.5		<0.5			<0.5 <		.15 0.7		0.5 <0	0.5 4.2		
SS05	30/05/2019	658838	Soil	2.9	<0.4	86 -	69	23	<0.1	78 -	89	-		-	-		-	-	-	-	-		-	-		-	<0.5	0.6 1.2	3.5	7.5 7.1	3.4	5.9	1.3 10	0.98 15	0.6	5.2 1	10 89.3	.3 13	
SS06	3/06/2019	659015	Soil		-		-	-	-		-	-		-	·		-	- T	-	-	-]	- -	-	-		-	-	- -	- T		-		-		-	-			1 - 1 -
SS07	3/06/2019	659015	Soil	1	-		+ -	-	+	- -	+-			150	-				-		-					-		- -		- -	+ -		-			-	-	+-	+ - + -
MW01 0-0.1 MW01 1.9-1.0	30/05/2019	658838 658838	Soil Soil	1			+ -	1	+:-		+ -	<20 <	20 230	160	390	<50 350	<100	350	<50	<20	<20	<0.1 -	0.6	<0.1	1.2 3.2	4.4	<0.5		+ : +		+ -	+ - +	-		+ -	-			+ : + : -
MW01 1.9-1.0	30/05/2019	658838	Soil	<2	<0.4	94 -	53	<5	<0.1	310 -	98	1:1	. :	1 . 1	-	- 1	+ :	1	-	- 1			+ :	+ -		+ :	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	5 <0.5	<0.5 <	:0.5 <:	1.21 <0.5	<0.5	<0.5 <0	0.5 <0.5	.5 <0.5	+ - + -
MW02 0.9-1.0	30/05/2019	658838	Soil	4	<0.4		70	20		270 -	140	1 - 1	- -	1 - 1	.	- -	-	1 - 1	-	-	- 1	- -	-	1 -		1 -	<0.5			<0.5 <0.5				1.21 <0.5			0.5 <0.5		
MW02 0-0.1	30/05/2019	658838	Soil	-	-		-	-	-	- -	-	-		-		- -	-	- 1	-	-		- -	-	I -		-	-	- -	-	- -	1 -	- 1	-		- 1	-			
MW03 0.9-1.0		658838	Soil	<2	_		22	7.3		53 -	75	1.0				87 660	_	917	87	<40	<40	<0.2 -	<0.2		<0.2 <0.4		1010		10.0		5 <0.5	10.0		1.21 <0.5		1010	0.5 2.2		
QA02	30/05/2019	658838 218764	Soil	<2			61	<5	19.2	280 -	100		20 <50		-	<50 <100		<100	<50 <50	<20	<20	<0.1 -	<0.1	_	<0.1 <0.2		<0.5	<0.5 <0.5		<0.5 <0.5				1.21 <0.5	10.0	<0.5 <0	.5 <0.5	.5 <0.5	
QC02 MW03 7.9-8.0	30/05/2019	218764 658838	Soil	<4	<0.4		44	-	1912	140 -	98	<25 <		<100 <50	_	<50 <100 <50 <100		<50 <100	<50 <50	<25 <20	<20	<0.2 -	<0.1		<1 <2		<0.1	<0.1 <0.1 <0.5 <0.5	_	<0.1 <0.0	-	_	0.1 <0		<0.1		0.1 -	<0.1 .5 <0.5	10.00
TP01 0.3-0.4	30/05/2019	658838	Soil	- '-	-		- 40		- 1	340 -	- 30	- 1			- 1		- <100	- 100	-	-			- 0.1	- 40.1		- 40.5	- 40.5		-		_				- 40.5	- 0.5	.5 (0.5	3 (0.3	+
TP01 0-0.1	30/05/2019	658838	Soil	2.2			62	5.2		180 -	100	<20 <			<50	<50 <100	<100	<100	<50	<20	<20	<0.1 -	<0.1	<0.1	<0.1 <0.2	<0.3	<0.5	<0.5 <0.5		_				1.21 <0.5	<0.5	<0.5 <0	0.5 <0.5	.5 <0.5	
TP01 1.4-1.5	30/05/2019	658838	Soil	-	-		-	-	-		-	-		-			-	-	-	-	-	- -	-	-		-	-		-		-	-	-		-	-		-	
TP01 1-1.1	30/05/2019	658838	Soil	-	-		-	-	-		-	<20 <	20 <50	<50	<50 -	<50 <100	<100	<100	<50	<20	<20	<0.1 -	<0.1	<0.1	<0.1 <0.2	<0.3	<0.5		-		-	-	-		-	-			
TP02 0-0.1	30/05/2019	658838	Soil	-	-		-	-			-	-			•		-	-	-	-	-		-	-		-						-	-		-				+ - + -
TP02 1-1.1 TP03 0-0.1	30/05/2019	658838 658838	Soil Soil	<2 4.9	<0.4	160 -	51 38	<5 11	<0.1	430 - 110 -	110	· ·		+ - +	-		+ -		-	-			+ -	-		-	<0.5		<0.5			<0.5 <					0.5 <0.5		
TP04 0.5-0.6	30/05/2019	658838	Soil	3	<0.4	270 -	37	6.5	_	270 -	85	1:		+ : +	: 		+ :		-		-		+ :	+ :		+ :	<0.5							1.21 <0.5			0.5 <0.5	-	-
TP04 0-0.1	30/05/2019	658838	Soil	<2	<0.4	15 -	5.2	5.4	<0.1	6.7 -	30	<20 <	20 <50	<50 ·	<50 ·	<50 <100	<100	<100	<50	<20	<20	<0.1 -	<0.1	<0.1	<0.1 <0.2	<0.3	<0.5					<0.5 <					0.5 <0.5	-	
TP05 0-0.1	30/05/2019	658838	Soil	5.6	<0.4	510 -	95	19	<0.1	440 -	190	-		-	-		-	-	-	-	-		-	-		-	<0.5		<0.5			<0.5 <				<0.5 <0	0.5 0.5	5 <0.5	
TP05 2-2.2	30/05/2019	658838	Soil	-	-		-	-	-		-	-		-	-		-	-	-	-	-		-	-		-	-		-		-	-	-		-	-			
TP06 0-0.1	30/05/2019	658838	Soil	3.1		550 -	87	7.3	<0.1	550 -	240					<50 <100			<50	<20	<20	<0.1 -	<0.1		<0.1 <0.2			<0.5 <0.5									0.5 <0.5		
QA01 QC01	30/05/2019 30/05/2019	658838 218764	Soil Soil	2.3		470 - 220 -	65 36	6.7	<0.1	400 - 160 -	110		20 <50 50 <10			<50 <100 <50 <100	<100 <100		<50 <50	<20 <25	<20	<0.1 -	<0.1		<0.1 <0.2		<0.5 <0.1	<0.5 <0.5 <0.1 <0.1				<0.5 <		1.21 <0.5 0.172 <0.1			0.5 <0.5		<0.2 <0.05
TP06 1.4-1.5	30/05/2019	658838	Soil	<2	<0.4	200 -	47	<5	-	510 -	100			- 100	-		- 100		-		-		- 1	- 40.5		-	<0.5							1.21 <0.5					
TP07 0-0.1	30/05/2019	658838	Soil	<2	<0.4		36	<5		130 -	70	<20 <	20 <50	<50	<50	<50 <100	<100	<100	<50	<20	<20	<0.1 -	<0.1	<0.1	<0.1 <0.2	<0.3						<0.5 <					0.5 <0.5		
TP08 0-0.1	30/05/2019	658838	Soil	6.5	<0.4	160 -	55	17	<0.1	180 -	130	-		-	-		-	-	-	-	-		-	-		-	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	5 <0.5	<0.5 <	:0.5 <	1.21 <0.5	<0.5	<0.5 <0	0.5 <0.5	.5 <0.5	
TP09 0.4-0.5	30/05/2019	658838	Soil	2.2	<0.4		41	14	<0.1	86 -	65	-			.		-	-	-	-	-		-	-		-	<0.5		<0.5		5 <0.5			1.21 <0.5		10.0	0.5 <0.5		
TP10 0-0.1	30/05/2019	658838	Soil	<2	_		85	12		100 -	120	-		-	-		-	-	-	-	-		-	-		-	<0.5		<0.5		5 <0.5		0.5 <				0.5 <0.5		-
TP10 1-1.1 TP11 0.3-0.4	30/05/2019	658838 658838	Soil	<2	<0.4	150 -	52	<5	<0.1	340 -	100	<20 <				<50 <100 <50 <100		<100	<50 <50	<20	<20 <20	<0.1 -	<0.1		<0.1 <0.2		<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	5 <0.5	<0.5 <	0.5 <	1.21 <0.5	<0.5	<0.5 <0	0.5 <0.5	.5 <0.5	+ - + -
TP11 0-0.1	30/05/2019	658838	Soil	<2	<0.4	170 -	90	6	<0.1	130 -	120	- 1		- 1	- 1		- 100	- 100	-	-			- 10.1	- 40.1		- 40.5	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	5 <0.5	<0.5	0.5 <	1.21 <0.5	<0.5	<0.5 <0	0.5 <0.5	5 <0.5	+
TP11 2.7-2.8	30/05/2019	658838	Soil			120 -	44	<5	<0.1	320 -	92	-		-	-		-	-	-	-	-		-	-		-	<0.5		<0.5	<0.5 <0.5	5 <0.5	<0.5 <	0.5 <	1.21 <0.5	<0.5	<0.5 <0	0.5 <0.5	.5 <0.5	
TP12 0.5-0.6	30/05/2019	658838	Soil	<2	<0.4	90 -	50	<5	<0.1	260 -	90	-		-	-		-	-	-	-	-		-	-		-	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	5 <0.5	<0.5 <	:0.5 <	1.21 <0.5	<0.5	<0.5 <0	0.5 <0.5	.5 <0.5	
TP12 0-0.1	30/05/2019	658838	Soil	<2	<0.4	160 -	71	14	<0.1	150 -	110	<20 <	20 <50	<50	<50	<50 <100	<100	<100	<50	<20	<20	<0.1 -	<0.1	<0.1	<0.1 <0.2	<0.3	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	5 <0.5	<0.5 <	:0.5 <	1.21 <0.5	<0.5	<0.5 <0	0.5 <0.5	.5 <0.5	1 - 1 -
AQ01 0-0.6	14/06/2019	660830 660830	Soil	1	-		+ -	1 -	+ - +	- -	+ -	1 -	- -	+ - +	-	- -	+-		-	-		- -	+ -	+		+ -	<u> </u>	- -	+ - +	- -	+ -	+ -	-	- -	+ -	-	+-	+-	+ - + -
AQ02 0.3-1.0 AQ03 0.1-0.95	14/06/2019	660830	Soil Soil	1			+ :	+ :	+:-		+ :	1:1		+:+	-		+ :	+:+			-:		+ :	+:-		+:	+ : -		+:+		+:	+ - +	-		+ : -			+	+ : + : -
AQ04 0-0.6	14/06/2019	660830	Soil	-	-		-	-	1 - 1	- -	-	1 - 1	- -	1 - 1	.	- -	-	1 - 1	-	-	-	- -	-	1 -		1 -	-	- -	1 - 1	- -	-	1 - 1	-		1 - 1	- 1	. —		1 - 1 -
AQ05 0-0.1	14/06/2019	660830	Soil	-	-		1 -	-	- 1	- -	-	-	- -	-		- -	-	- 1	-	-		- -	-	1 -		-	- 1	- -	-	- -	1 -	-	-	- -	- 1	-			
AQ05 2.4-3.0	14/06/2019	660830	Soil	-	-		-	-	- 1		-			-			-	-	-	-	-]		-	-		-	-		- 1		-	-	-		- 1	-			
AQ06 0.4-1.1	14/06/2019	660830	Soil	1 -	-		+ -	-	+ -	- -	-	1 - 1	- -	+ - +	-	- -	+ -	-	-	-		- -	+ -	1 -		1 -	-	- -	1 - 1	- -	+ -	-	-	- -	-		-	-	+ - + -
AQ07 0-0.2 AQ08 0.9-1.6	14/06/2019	660830 660830	Soil Soil	1	-		+ -	+ -	+-+		+ -	+ : +	- -	+ : +	: -	- -	+-	+ ; +	-		-:-		+ -	+-		+-	+	- -	+ - +	- -	+-	+:+	-		+		-	+-	+ : + : -
AQ08 0.9-1.6 AQ08 0-0.9	14/06/2019	660830	Soil				+ :	+ :	+:-		+ :	1:1		+ : +	-	- -	+ :	+:+			-:		+ :	+ :-		+ -	+:-		+ : +		+:	+ : +	-		+		.+:	+	+ - + -
AQ09 0.3-1.3	14/06/2019	660830	Soil		-		1 -	-	1 - 1	- -	1 -	1 - 1		1.1	-	- -	1 -	1.1	-	- 1	.	- -	1 -	1 -		-	T .	- -	1 - 1	- -	1 -	1 - 1	-		-		. —		 . .
AQ09 0-0.3	14/06/2019	660830	Soil	-	-		-	-	- 1		-	-		-			-	-	-	-	-	- -	-	-		-	-		-		-	-	-		-				
AQ09 1.5-2.1	14/06/2019	660830	Soil	-	-		-	-	-		-	-			. [-	- 1	-	-	-		-	-		-	-		-		-		- [-				
AQ10 0.4-1.0	14/06/2019	660830	Soil	1 -	-		-	-	1 - 1	- -	-	1 -	- -	1 - 1	·	- -	-	-	-	-	-	- -	-	1 -		1 -	-	- -	1 - 1		-	-	-	- -			-	-	+ - + -
AQ10 0-0.4 AQ11 0.6-1.0		660830 660830	Soil Soil	1	-		-	+ -	+-+		+ -	1:1		+:+	-	- -	-	+ ; +	-		-:		+ -	-		-	+	- -	+ - +	- -	+ -	+ : +	-	- -	+ -		-	+-	+ : + : -
AQ11 0.6-1.0 AQ11 0-0.6	14/06/2019	660830	Soil	1			+ :	+ :	+:-		+ :	-		+:+	.		+ :	+ : +	-		-:-		+ :	+ :-		+ :-	+:-		+ : +		+:	+ : +	-		+			+	+ : + :
AQ11 0-0.0 AQ12 0.1-1.1		660830	Soil				+ -	1 -	1 - 1		+ -	1 - 1	- -	1 - 1	.	- -	+ -		-	-	- 1	- -	+ -	1	 	1												1	1 - 1 -
AQ12 0-0.1	14/06/2019	660830	Soil	-	-			-	_	- -		1 - 1		1 - 1		- -			-	-											_		_	_	-		_	_	
AQ13 0.6-1.0	14/06/2019	660830	Soil	-	-		-	-	-		-	-		-			-	-	-	-				-		-					-	-	-		-				
AQ13 0-0.6	14/06/2019	660830	Soil		-		-	-	-	- -	-	<u> </u>		! • !	-		-	-	-	-	-	- -	-	-		-		- -		- -	-		-	- -	-				<u> </u>
AQ14 0-1.0	14/06/2019	660830 660830	Soil													- -																							
AQ14 1-1.5 AQ15 0.5-1.5	14/06/2019	660830 660830	Soil											-																									
AQ15 0-0.5		660830	Soil																									- 1 -	1 : 1	- 1 -	+ -	1 - 1	-	- 1		-		+	+ - + -
			'	-																									-										-

3

					Metals 8	& Metallo	oids					TPH	ls (NEPC	1999)					TRHs (NE	PC 2013)						BT	EXN										Pol	ycyclic A	romatic	Hydrocar	bons					
JBS&G	Arsenic (Total)	Cadmium (%g//gm	Chromium (Total)	Cobalt	Copper Copper	read gray gray gray gray gray gray gray gray	කි. Mercury (Inorganic)	Nickel	Titanium	zuz me/ke	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	My C10-C36 Fraction (Total)	% >C10-C16 Fraction	bb >C16-C34 Fraction	w/km >c34-C40 Fraction	n >C10-C40 Fraction (Total)	>C10-C16 less Naphthalene (F2)	m C6-C10 Fraction	Zec. 10 less BTEX (F1)	Benzene	in BTEX (Total)	Ethylbenzene Bal/8a	Toluene	Xylene (o)	Xylene (m & p)	Xylene (Total)	Naphthalene Bay/au	Acenaphthene Acenaphthene	Acenaphthylene	Anthracene	हुन अन्य Benz(a)anthracene	Benzo(a)pyrene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Carcinogenic PAHs as B(a)P TEQ	By/8m	Fluorene	Indeno(1,2,3-c,d)pyrene	Phenanthrene	PAHs (Total)	Mg/kg	Benzo(b,j+k)flouranthene
		0.4	1 IIIg/ kg	IIIg/kg	1 IIIg/K	g IIIg/	0.1		ug IIIg/kg	1 1	20	20	50	50	50	50				50	20	20	0.1		0.1	0.1					0.1		0.1			0.5		0.1	IIIg/kg		0.1				0.1	
CG (2019) - Sediment Quality DGVs	20	1.5	80	+	65	50		5 21	_	200	280#1			280#1		30	100	100	30	30	20	20	0.1	_	0.1	0.1	0.1	0.2	0.5	0.1	0.1	0.1	0.1	0.1	0.03	0.5	0.1	0.1		0.1	0.1	0.1	0.1	0.5	0.1	0.2
M 2013 EIL - Commercial Industrial (Specific)	160	1.5	310#2		320#3	-		730		620 ^{#5}	280	280	280	280	200								_							370															-	-
M 2013 ESL Commercial and Industrial, Fine Soil	100		310		320	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/30		620							2500	6600	16	170#7		215#7	95**		185 ^{#6}	135 ^{#6}			95**6	370	_				1.4 ^{#6}						$\overline{}$				-	-
W 2013 HSL Asbestos in Soil - Bonded ACM - Commercial/Industrial - HSL D				+		_		_	_				+	_			2500	6600	-	1/0	_	215	95	_	185	135		_	95		_				1.4										+	+
A 2013 HSL Asbestos in Soil - FA & AF - HSL																																											-		-	-
1 2013 Mgnt Limits - Commercial and Industrial, Fine																4000#1	° 5000	1000	0		800#11		_																-		-	-			-	-
1 2013 Soil HIL D	2000#17	900	0.500#13	3 4000	24000	0 4500) ^{#14} 730 ⁸	15 6000	2	400000			-			1000	3000	1000	0		800																		40#16				-	4000#17	-	+
1 2013 Soil HELD	3000	500	3000	4000	24000	1500	730	6000		400000										000000	9	040#20	4		999999	000000			999999	000000									40					4000		
4 2013 Soil HSL D for Vapour Intrusion - Clay 1 to <2m																				999999"		310 20	-			999999			999999																	
M 2013 Soil HSL D for Vapour Intrusion - Clay 1 to <2m																				999999"		999999#2				999999				999999																

Field_ID	Sampled_Date-Time	Lab_Report_Number	Matrix_Type																																												
JBS&G (2020)																																															
TP200_0.0-0.1	9/03/2020	707966	SOIL	9.3	<0.4	34	- 1	55	26	<0.1	25	- 6) <	20 <	20 170	87	257	<50	230	<100	230	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	-
TP201_0.9-1.0	9/03/2020	707966	SOIL	22	<0.4	6.7	- 1	40	26	<0.1	8.8	- 4	1 <	20 <	20 93	<50	93	<50	100	<100	100	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	Τ-
TP202_0.0-0.1	9/03/2020	707966	SOIL	7.9	<0.4	13	-	24	22	<0.1	10	- 3) <	20 <	20 90	<50	90	<50	<100	<100	<100	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	< 0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	-
TP203_0.5-0.6	9/03/2020	707966	SOIL	10	<0.4	5.5	- 1	41	20	<0.1	11	- 4	5 <	20 <	20 130	<50	130	<50	130	<100	130	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	T -
TP204_0.0-0.1	9/03/2020	707966	SOIL	4.5	<0.4	6.6	- 1	75	17	0.1	10	- 3	7 <	20 <	20 95	<50	95	<50	<100	<100	<100	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	Τ-
TP205_0.4-0.5	9/03/2020	707966	SOIL	9.3	<0.4	6.7	-	49	22	<0.1	8.8	- 3) <	20 <	20 61	<50	61	<50	<100	<100	<100	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	< 0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	-
TP206_0.0-0.1	9/03/2020	707966	SOIL	11	<0.4	55	- 1	47	26	<0.1	34	- 7	9 <	20 <	20 100	<50	100	<50	120	<100	120	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	-
TP207_0.0-0.1	9/03/2020	707966	SOIL	<2	<0.4	400	- 1	65	<5	<0.1	180	- 8	9 <	20 <	20 84	<50	84	<50	<100	<100	<100	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	-
TP208_0.9-1.0	9/03/2020	707966	SOIL	<2	<0.4	280	-	64	<5	<0.1	440	- 12	0 <	20 <	20 <50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	-
	9/03/2020	707966	SOIL	<2	<0.4	230	- 1	54	<5	<0.1	330	- 9	5 <	20 <	20 <50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	T -
TP210_0.4-0.5	9/03/2020	707966	SOIL	<2	<0.4	110	- 1	57	<5	<0.1	280	- 9	3 <	20 <	20 <50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	Τ-
TP211_0.0-0.1	9/03/2020	707966	SOIL	4.5	<0.4	170	-	95	11	<0.1	140	- 14	0 <	20 <	20 <50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<0.5 <	0.5 <0.	5 <0.5	< 0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	-

Env Stds Comments
#1:Adopted from TPHs total
#2:TV taken for Chromium (III), Clay Content of 1%
#3:TV Taken for pH 6
#4:TV taken for pH 6
#4:TV taken for pH 6
#4:TV taken for pH 6 and CEC 30
#6:ESLs are of low reliability.
#8:Commercial/industrial D includes premises such as shops, offices, factories and industrial sites.
#9:The screening level of 0.0015% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures (refer Section 4.10). This screening level is not applicable to free fibres.
#10. Management limits of BTEX and naphthalene are not available, hence should not be subtracted from the relevant fractions to obtain F1 and F2.
#11:Limits applied after consideration of relevant ESLs and HSLs
#11:Limits applied after consideration of relevant ESLs and HSLs
#11:Limits applied after consideration of relevant ESLs and HSLs
#13:TV adopted from Chromium (V)
#14:Assumptions of HSL are presented in Friebel and Nadebaum (2011a) and 2011d).
#13:TV adopted from Chromium (V)
#14:Assumptions of HSL are presented in Friebel and Nadebaum (2011a) and 2011b).
#15:Refer to Section 8.2 and Appendix jn Friebel and Nadebaum (2011a).
#16:Refer to Section 8.2 and Appendix jn Friebel and Nadebaum (2011a).
#17:TV maybe be multiplied by a factor to account for blodgeradation of vapour
#18:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific assessment should be untertaken
#19:To obtain F2 subtract monthhalene from >CIO-C16.
#20:To obtain F1 subtract the sum of BTEX from C6-C10.

										Orga	nochlorine	Pesticides													(Organoph	osphorus	Pesticides	s				Cart	barmate &	Other Pe	sticides	\	voc								Chlorin	nated Alka	nes					
JBS&G	4,4-DDE	Aldrin	Aldrin + Dieldrin (Sum of Total)	alpha-BHC	alpha-Chlordane	Deta-Brit. Chlordane	000	таа	Deldrin	DDT+DDE+DDD (Sum of Total)	delta-BHC	Endosulfan aipna Endosulfan beta	Endosulfan sulphate	Endrin	Endrin aldehyde	gamma-Chlordane	Endrin ketone	Heptachlor	Heptachlor Epoxide	Methoxychlor	Toxaphene	Azinphos methyl	Bromophos-ethyl	Chlorpyrifos	Chlorpyr ifos-methyl	Diazinon	Dimethoate	Ethion	Fenitrothion	Malathion	Parathion	Ronnel	а-ВНС	р-внс	д-внс	g-BHC (Lindane)	Total MAH*	I OCAI IVIAN	1,1,1,2-tetrachloroethane	1,1,1-trichloroethane	1,1,2-trichloroethane	1.1-dichloro ethane	1,2,3-trichloropropane	1,2-dibromo-3-chloropropane	1,2-dichloro ethane	1,2-dichloro propane	1,3-dichloropropane	2,2-dichloro propane	Bromochloromethane	Carbon tetrachloride	Chloromethane	Dic hloro difluor om ethane	Dichloromethane
	mg/kg		ng/kg m	g/kg m	g/kg mg	g/kg mg	/kg mg/l	kg mg/k	g mg/kg	mg/kg	mg/kg n	g/kg mg/	kg mg/kg	mg/kg	mg/kg	mg/kg r	mg/kg n	ng/kg n	ng/kg mg	g/kg mg/	kg mg/l	kg mg/kg	g mg/kg	mg/kg	mg/kg n	ng/kg mg	g/kg mg/	/kg mg/k	g mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/k	g mg/k	kg mg/	/kg M	G/KG m	ng/kg m	ng/kg m	ig/kg mg	g/kg mg	g/kg mg	/kg mg/	kg mg/	/kg mg/	kg mg/k	g mg/kg	mg/kg	mg/kg m	g/kg mg/	/kg mg/	/kg mg
	0.05	0.05	0.05 0	0.05	0.1 0.	.05 0.	1 0.05	5 0.05	0.05	0.05	0.05	.05 0.0	5 0.05	0.05	0.05	0.1	0.05	0.05	0.05 0.	05 0.1	1 1																	0.5	0.5	0.5	0.5 0	0.5 0	0.5 0	.5 1	0.5	5 0.5	5 0.5	1	0.5	0.5	0.5 0.5	5 0.5	1.5 0.
019) - Sediment Quality DGVs																																																					
13 EIL - Commercial Industrial (Specific)								640																																													
113 ESL Commercial and Industrial, Fine Soil																																																					
D13 HSL Asbestos in Soil - Bonded ACM - Commercial/Industrial - HSL D																																																					
13 HSL Asbestos in Soil - FA & AF - HSL																																																					
13 Mgnt Limits - Commercial and Industrial, Fine																																																					
13 Soil HIL D			45			53	30			3600				100				50		250	0 160)		2000																													
13 Soil HSL D for Vapour Intrusion - Clay 0 to <1m																																																					
13 Soil HSL D for Vapour Intrusion - Clay 1 to <2m																																																					
013 Soil HSL D for Vapour Intrusion - Clay 2 to <4m																																																					

NEPM 2013 Mgnt Limits - Commercial a	ind Industrial, Fine																													
NEPM 2013 Soil HIL D			45		530		3600			100	50	0	2500 160		2000															
NEPM 2013 Soil HSL D for Vapour Intrus																														
NEPM 2013 Soil HSL D for Vapour Intrus NEPM 2013 Soil HSL D for Vapour Intrus																														
HEI III 2013 3011 ISC B 101 Vapour III as	aon Ciay 2 to 44m																													
	Lab_Report_Number Matrix_Type																													
Coffey (2013)																														
BH01 0.0-0.2 20/02/2013	- Soil		1 - 1 -			- -		- -		- -	- - -								 	-		•	- - -							
BH02 0.0-0.2 19/02/2013 BH03 0.0-0.2 20/02/2013	- Soil		+ - + -	- -		+ - + -	+ - + -			- -		+ - + -	+ - -	<u> </u>	 • •	+ - +			 	-		<u> </u>	- - -					+ - -		
BH03 0.0-0.2 20/02/2013 BH04 0.0-0.1 20/02/2013	- Soil	<0.05 <0.0	5 <0.1				<0.05 <0.3				<0.05 <0.05 <0.		<0.2	 	<u> </u>	+ : +			- <0.05	<0.05	<0.05 <0.05	 		+ : + :	+ : + :	1 1 1	1 1 1	+ : + : +		+
BH05 0.0-0.1 20/02/2013 BH05 0.0-0.2 20/02/2013	- Soil					V0.03 V0.2	. 0.03 0.3					03 40.03 -	Q0.2 -	 	 	+:+	 		- (0.03	VU.U3	Q0.03 Q0.03	 	: : :	+ : + :	 	+ : + :	+ : + :	+ : + : +		+
BH06 0.16-0.26 18/02/2013	- Soil						1 : 1 :					1 : 1 :	1 : 1 :	1 : 1 :	1 1 1	+ : +			: : 	+ -		 			 	1 1 1	1 1 1	 		
BH06 1.0-1.1 19/02/2013	- Soil									- -						- 1			 	-		T . T								
BH07 0.08-0.13 18/02/2013	- Soil									- -						- 1	- -		 	-										
BH07 0.2-0.3 18/02/2013	- Soil	<0.05 <0.0	5 <0.1 -				<0.05 <0.3	- <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05 <0.	05 <0.05 -	<0.2 -			-			 - <0.05	<0.05	<0.05 <0.05	-								
BH07 0.4-0.5 18/02/2013	- Soil															-			 			-								
BH08 0.0-0.2 20/02/2013	- Soil	<0.05 <0.0					<0.05 <0.3				<0.05 <0.05 <0.		<0.2 -			-	- -		 - <0.05		<0.05 <0.05	·								
BH09 0.0-0.1 20/02/2013	- Soil	<0.05 <0.0	5 <0.1 -			<0.05 <0.2	<0.05 <0.3	- <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05 <0.	05 <0.05 -	<0.2 -	· ·			- -		 - <0.05	<0.05	<0.05 <0.05	·	- - -							
BH10 0.16-0.26 20/02/2013	- Soil						+ - + -				- - -	+ - + -	+ - + -	<u> </u>		+ - +			 	-		 					+ - + -	+ + + +		
BH11 0.19-0.29 20/02/2013 BH12 0.4-0.5 20/02/2013	- Soil	1:1:	+ : + :			+ - + -	+ : + :	+ - + -	 			+ : + :	+ : + :	1 : 1 :	 	+ - +			. 	+ -	1 1 1	 		+ - + -	+ - + -	+ - + -	+	+ : + : +		
BH12 0.4-0.5 20/02/2013 BH13 0.13-0.23 20/02/2013	- Soil	1:1:		. :			+ : + :		 			+ : + :	+ : + :	 	 	+ : +			. :	+:	 	 	- - -	+	+	+ : + :	 	+ : + : +	- - -	
BH14 0.19-0.29 18/02/2013	- Soil						1 - 1 -	1 - 1 -			. . .	1 - 1 -	1 - 1 -		1 . 1 .	1 - 1			 	-	1 - 1 -	T .	- - -	 . .	1 - 1 -	1 . 1 .	1 . 1 .	1 . 1 . 1	- - -	
BH15 0.15-0.25 18/02/2013	- Soil	1 - 1 -		. .			1 - 1 -			- -	- - -		1 - 1 -	1 - 1 -		1 - 1	- -	- -	 	-	1 - 1 -	1 . 1	- - -				1 - 1 -	1 - 1 - 1	- - -	
BH16 0.0-0.2 20/02/2013	- Soil		I - I -	- -						- -						- 1	- -		 	-		-								
BH17 0.5-0.6 19/02/2013	- Soil	<0.05 <0.0	5 <0.1 -			<0.05 <0.2	<0.05 <0.3	- <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05 <0.	05 <0.05 -	<0.2 -			-			 - <0.05	<0.05	<0.05 <0.05									
BH17 0.5-0.6 19/02/2013	- Soil	<0.05 <0.0	5 <0.1 -	- -		<0.05 <0.2	<0.05 <0.3	- <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05 <0.	05 <0.05 -	<0.2 -			-			 - <0.05	<0.05	<0.05 <0.05	· [
BH17 0.5-6.0 19/02/2013	- Soil	<0.05 <0.0					<0.05 <0.3				<0.05 <0.05 <0.		<0.2 -			-			 - <0.05		<0.05 <0.05	•								
BH18 0.0-0.2 20/02/2013	- Soil			- -													- -		 			·	- - -							
BH19 0.4-0.5 19/02/2013	- Soil	<0.05 <0.0	5 <0.1 -			<0.05 <0.2	<0.05 <0.3				<0.05 <0.05 <0.		<0.2 -	· ·		 • 	- -		 - <0.05	<0.05	<0.05 <0.05	├	- - -							
BH19 1.0-1.1 19/02/2013 BH20 0.0-0.2 20/02/2013	- Soil		+ - + -			+ + + -	+ - + -		 			+ - + -	+ - + -	<u> </u>	 				 	+ :		H .		+ - + -	+ - + -	+ - + -	+	+ - + - +		+
BH20 0.0-0.2 20/02/2013 BH21 0.0-0.2 19/02/2013	- Soil	<0.05 <0.0				<0.05 <0.2	<0.05 <0.3				<0.05 <0.05 <0.	05 <0.05	<0.2	 	 	+:+			- <0.05		<0.05 <0.05	 		+ : + :	 	+ : + :	+ : + :	+ : + : +		
BH21 1.0-1.1 19/02/2013	- Soil							- 40.03						1 : :	1 1 1	+ : +			- 40.03	- 40.03		 				1 1 1	1 1 1	1 1 1		
BH21 3.0-3.1 19/02/2013	- Soil	1	T - 1 -			1 . 1 .	1			- -						- 1			 	-		· ·								
BH21 3.9-4.0 19/02/2013	- Soil																		 	-										
BH22 0.0-0.1 19/02/2013	- Soil															-			 	-		-								
BH23 0.08-0.18 19/02/2013	- Soil									- -						-	- -		 	-		•	- - -							
BH23 0.5-0.6 19/02/2013	- Soil	<u> </u>		- -		1 - 1 -				- -	- - -			<u> </u>			- -		 	-		·	- - -							
BH24 0.08-0.18 19/02/2013	- Soil	1				+ - + -					- - -			• •		-			 			· -	- - -						- - -	
BH24 0.5-0.6 19/02/2013 BH24 1.1-1.2 19/02/2013	- Soil - Soil	1 1	+ - + -			+ - + -	+ - -	H - H -		- -	- - -		+ - -	· · ·		+ - +	- -		 	+ -		H .		+ - + -			+ - -		- - -	
BH24 1.1-1.2 19/02/2013 BH25 0.19-0.29 18/02/2013	- Soil	<0.05 <0.0					<0.05 <0.3		<0.05 <0.05	-0.05	<0.05 <0.05 <0.	05 <0.05	<0.2	 	1 1 1	+ : +			- <0.05		<0.05 <0.05	 		+	 	1 1 1	1 1 1	1 1 1		
BH26 0.18-0.28 18/02/2013	- Soil													1 : :	1 1 1	+ : +			- 40.03			 				1 1 1	1 1 1	1 1 1		
BH27 0.17-0.27 18/02/2013	- Soil	<0.05 <0.0					<0.05 <0.3				<0.05 <0.05 <0.		<0.2 -						 - <0.05		<0.05 <0.05	· ·								
BH27 0.4-0.5 18/02/2013	- Soil									- -						-	- -		 	-										
BH28 0.16-0.26 18/02/2013	- Soil															-			 	-		-								
BH29 0.19-0.29 18/02/2013	- Soil									- -	- - -					-			 	-		-								
BH30 0.19-0.29 18/02/2013	- Soil									- -						-			 	-		•								
BH31 0.0-0.2 20/02/2013	- Soil	1	1 - 1 -	- -			1 - 1 -	<u> </u>	- -	- -	- - -	1 - 1 -	+ - + -	· · ·	· · ·	+-+	- -			-	- -	H : H	- - -				<u> </u>	+ - + - +	- - -	
BH31 0.4-0.5 20/02/2013 BH32 0.08-0.18 20/02/2013	- Soil	+ · · ·	+ - + -	- -		+ - + -	+ - + -	+ - + -		- -	- - -	+ - + -	+ - + -	 	 	+ - +	- -		 · ·	+ -		 	- - -	+ - + -	 	+ - + -	H . H .	+ - + - +	- - -	
BH32 0.08-0.18 20/02/2013 BH33 0.0-0.2 20/02/2013	- Soil	1 : 1 :	+ : + :			+ : + :	+ : + :	 	 			+ : + :	+ : + :	 	 	+:+			: :	+ :	1 1 1	 		+ : + :	1 1 1 1	+ : + :	+ : + :	+ : + : +		
BH33 0.0-0.2 20/02/2013 BH34 0.09-0.19 19/02/2013	- Soil	1 1 1		.		+	+ - + -	 	+ + + + + + + + + + + + + + + + + + + +			+ : + :	+ : + :	 	+ + + + + +	+:+			. 	+:		 	- +	+	 	+ : + :	+ + + + + +	+ : + : +		.
BH34 1.0-1.1 19/02/2013	- Soil	1 - 1 -		. .		1 - 1 -	1 - 1 -	1 - 1 -				1 - 1 -	1 - 1 -	1 - 1 -	1 - 1 -	1 - 1	- -		 	-		1 . 1	- - -	1 - 1 -	1 - 1 -	1 - 1 -		1 - 1 - 1		
BH35 0.08-0.18 18/02/2013	- Soil	1 - 1 -				1 - 1 -	1 - 1 -	1 - 1 -		- -	- - -		1 - 1 -	1 - 1 -		1 - 1	- -		 	-	1 - 1 -	1 .	- - -			1 - 1 -		1 - 1 - 1	- - -	
BH35 0.4-0.5 18/02/2013	- Soil			- -						- -						-	- -		 	-										
BH36 0.0-0.2 20/02/2013	- Soil															-			 	-		-								
BH37 0.0-0.2 21/02/2013	- Soil	· ·		- -						- -					- T	1 - [-		· [
BH38 0.0-0.2 21/02/2013	- Soil	1	+ - -	- -		1 - 1 -	- -			- -			- -	1		+-+	- -		 	-		 	- - -				- -	1 - 1 - 1	- - -	
BH38 0.4-0.5 21/02/2013	- Soil	+	+ - -	- -		+ - + -	+ - + -	<u> </u>	- -	- -	- - -	+ - + -	+ - + -	· ·	· · ·	+ - +	- -		 	-		·	- - -	+ - + -	+ - + -	+ - -	· ·	1 - 1 - 1	- - -	
BH39 0.0-0.2 21/02/2013	- Soil	<u> </u>	+ - + -	- -		+ + + -	+ - -	H - H -	 	- -	- - -	+ - + -	+ - -	· · ·	H - H -	+ - +	- -	- -	 	+ -	 	⊢ · ⊢	- - -	+ - + -		+ - -	+ + + -	+ - + - +	- - -	- -
BH40 0.0-0.2 21/02/2013 DUP2 18/02/2013	- Soil - Soil	+ · · ·	+ - + -	- -		+ - + -	+ - + -	+ - + -		- -	- - -	+ - + -	+ - + -	 	H . H .	+ - +	- -		 · ·	+ -	 	 	- - -	+ - + -		+ - + -	H . H .	+ + + + +	- - -	
DUP2 18/02/2013 DUP3 19/02/2013	- Soil	<0.05 <0.0				<0.05	<0.05 <0.3	. <0.05	<0.05 <0.05		<0.05 <0.05 <0.	05 <0.05	<0.2	 	 	+:+			- <0.05	<0.05	<0.05 <0.05	 	: : :	+ : + :	1 1 1 1	+ : + :	+ : + :	+ : + : +		
DUP3A 19/02/2013	- Soil	<0.05 <0.0		.			<0.1 <0.3		<0.1 <0.1				<0.1 -	 	 	+:+			- <0.1		<0.1 <0.1	 	. . .	+		+ : + :	+ : + :	+ : + : +		
DUP5 19/02/2013	- Soil			. .				- 10.1						1 : 1 :		+ : +				- 40.1		 	- - -		 	+ - + -		1 1 1		
DUP5A 19/02/2013	- Soil	1 - 1 -	1 - 1 -			1 - 1 -	1 - 1 -	1 - 1 -			- - -		1 - 1 -	1 - 1 -		1.1		- -	 	-		1 . 1	- - -					1 - 1 - 1	- - -	
DUP7A 20/02/2013	- Soil	1	1 - 1 -			1 - 1 -	1 - 1 -			- -	- - -		1 - 1 -	1		1 - 1	- -	- -	 	-		1 . 1	- - -			1 - 1 -	1 - 1 -	1 - 1 - 1	- - -	
SED1 21/02/2013	- Sediment	1 - 1 -	1 - 1 -			1 - 1 -		1 - 1 -		- -	- - -		1 - 1 -	1 - 1 -		1 - 1	- -		 	-		1 .	- - -					1 - 1 - 1	- - -	
SED2 21/02/2013	- Sediment															-			 	-										
SED3 21/02/2013	- Sediment															-			 	-										

5

									Organ	ochlorine Pesticides									Organophos	sphorus Pestic	cides			Carbarn	nate & Other	Pesticides	VOC					Chlor	rinated Alkane	es			
JJE	S&G		-DDE	irin irin + Dieldrin (Sum of Total)	ha-BHC	ha-Chlordane ia-BHC	ordane D	T.	T+DDE+DDD (Sum of Total)	ta-BHC dosulfan alpha dosulfan beta	dosulfan sulphate	irin aldehyde mma-Chlordane	ırin ketone ptachlor	ptachlor Epoxide	dane thoxychlor	(aphene nphos methyl	mophos-ethyl	orpyrifos orpyrifos-methyl	zinon	nethoate	ion itrothion	lathion athion	nnel	皇	2	HC(Lindane)	al MAH*	,1,2-tetrachloroethane ,1-trichloroethane	,2,2-tetrachloroethane ,2-trichloroethane	dichloroethane	,3-trichloro propane -dibromo-3-chloro propane	-dichloroethane -dichloropropane	dichloropropane	-dichloropropane mochloromethane	bon tetrachloride oroethane	oromethane	hlorodifluoromethane
			mg/kg m	g/kg mg/kg r	mg/kg mg	g/kg mg/kg m	∃ B mg/kg mg/kg	mg/kg mg/kg	mg/kg r	mg/kg mg/kg mg/	kg mg/kg mg/	kg mg/kg mg/	/kg mg/kg mg/	kg mg/kg	± § mg/kg mg/kg	mg/kg mg/	/kg mg/kg	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	mg/kg mg/	kg mg/kg m	료 호 ng/kg mg/kg	mg/kg mg/k	g mg/kg	mg/kg	mg/kg m	g/kg mg/kg	MG/KG	mg/kg mg/kg	T T	/kg mg/kg	mg/kg mg/k	g mg/kg mg	g/kg mg/kg	mg/kg mg/kg	g mg/kg mg	kg mg/kg	mg/kg
(2019) - Sediment Qu	uality DGVs									0.05 0.05 0.0										7 0		3,3		- 0										1 0.5			
2013 EIL - Commerci	cial Industrial (Specific)							640																													
	ial and Industrial, Fine Soil in Soil - Bonded ACM - Comn	mercial/Industrial - HSL D																																			
1 2013 HSL Asbestos ir 1 2013 Ment Limits - C	in Soil - FA & AF - HSL Commercial and Industrial, F	Fine														_											-										
1 2013 Soil HIL D	Vapour Intrusion - Clay 0 to			45			530		3600		10		50		2500	160		2000																			
	Vapour Intrusion - Clay 1 to																																				
M 2013 Soil HSL D for V	Vapour Intrusion - Clay 2 to	<4m																																			
_ID Sampled	d_Date-Time Lab_Repor	rt_Number Matrix_Type			_																_				_		_									_	$\overline{}$
.5-0.6 8/02/20		- Soil	<0.1 <	0.1 <0.2	-		- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.		1 <0.1 <0.		1 <0.1	- <0.1							<0.1 <0.1		<0.1		0.1 <0.1				-		-					-
9-2.0 8/02/20 5-0.6 7/02/20	017	- Soil - Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1		1 <0.1 <0.			1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1		0.1 <0.1	+ :			-		-				+-	-
.9-2.0 7/02/20 .9-6.0 7/02/20		- Soil - Soil	-		-																			-	-		-			-		-			+	-	
5-0.6 8/02/20	017	- Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1		1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0.1	ļ.			-		-			1-1-		Ė
9-2.0 8/02/20 5-0.6 8/02/20	017	- Soil - Soil		0.1 <0.2	-		- <0.1	<0.1 <0.1	<0.1		1 <0.1 <0.		-	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1		0.1 <0.1	1			-		-					
9-2.0 8/02/20 5-0.6 8/02/20		- Soil - Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.:	1 <0.1	- <0.1		_				_	<0.1 <0.1		<0.1	<0.1		+ :					-			+++	+ -	-
.9-2.0 8/02/20		- Soil	-											-						-			-	-	-					-		-			1-1-	-	-
5-0.6 8/02/20 9-2.0 8/02/20	017	- Soil - Soil	-	0.1 <0.2	-		- <0.1	<0.1 <0.1	-	- <0.1 <0.		1 <0.1 <0.		1 <0.1	- <0.1							<0.1 <0.1		-	-			1 1				-				#	
.5-0.6 8/02/20 .9-2.0 8/02/20		- Soil - Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	- <0.1	<0.1	<0.1 <	0.1 <0.1	+÷	1 :				-			+	+ -	-
.5-0.6 8/02/20	017	- Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1		0.1 <0.1				-		-			1-1-		-
0.5-0.6 8/02/20	017	- Soil	<0.1 <	0.1 <0.2	-		- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1		<0.1	<0.1		+ :					-				+:	-
1.9-2.0 8/02/20 0.5-0.6 7/02/20		- Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1		$\overline{}$	<0.1 <0.1				<0.1 <0.1	- <0.1	<0.1	<0.1 <	0.1 <0.1	+ :-					-			+	+:-	-
2.5-2.6 7/02/20 7.4-7.5 7/02/20		- Soil - Soil	-						-					- 1	- -	- -			- -	-			- 1	-	-					-		-				-	-
0.5-0.6 8/02/20	017	- Soil	<0.1 <	0.1 <0.2	-		- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1							<0.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0.1	+:	1 1		-		-					Ė
1.9-2.0 8/02/20 0.5-0.6 8/02/20		- Soil - Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1			<0.1 <0.1				<0.1 <0.1	- <0.1	<0.1	_	0.1 <0.1	+÷					-			+	+ -	-
1.9-2.0 8/02/20 0.5-0.6 8/02/20		- Soil - Soil	-	0.1 <0.2	-			<0.1 <0.1	- 01		 1 <0.1 <0.			1 <0.1	<0.1					-			-	-	-	0.1 <0.1	1 :			-		-	44		1	-	-
1.9-2.0 8/02/20	017	- Soil	-						-					-						-			-	-	-		1					-				-	-
8 0.5-0.6 8/02/20 8 1.9-2.0 8/02/20		- Soil - Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.		1 <0.1	- <0.1							<0.1 <0.1		<0.1		0.1 <0.1	+ :-					-			+++	+:-	-
0.5-0.6 8/02/20 1.9-2.0 8/02/20		- Soil - Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1			<0.1 <0.1				<0.1 <0.1	. <0.1	<0.1		0.1 <0.1	1 :			-		-				1	
.5-0.6 8/02/20	017	- Soil	<0.1 <	0.1 <0.2	-		- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	-	\rightarrow	-	-		-	<0.1 <0.1	<0.1	<0.1	-	0.1 <0.1	1			-		-					
9-2.0 8/02/20 0.5-0.6 8/02/20		- Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	- <0.1	<0.1	<0.1	:0.1 <0.1	+÷					-			+	+ -	-
1.9-2.0 8/02/20 0.5-0.6 7/02/20		- Soil - Soil	-	0.1 <0.2	- -			<0.1 <0.1	-		 1 <0.1 <0.			1 <0.1	- <0.1					-		<0.1 <0.1	-	<0.1	-	:0.1 <0.1				-		-				-	-
1.9-2.0 7/02/20	017	- Soil	-		-				-					-						-			-	-	-							-					
0.5-0.6 8/02/20 1.9-2.0 8/02/20		- Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1							<0.1 <0.1		<0.1	<0.1	0.1 <0.1	+ :					-			+	+ -	-
0.5-0.6 8/02/20 1.9-2.0 8/02/20		- Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0.1	-			-		-				-	-
0.5-0.6 7/02/20	017	- Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1							<0.1 <0.1	<0.1	<0.1		0.1 <0.1	1			-		-			1.	1	-
1.9-2.0 7/02/20 0.5-0.6 7/02/20	017	- Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1			<0.1 <0.1				<0.1 <0.1	- <0.1	<0.1		0.1 <0.1	-			-		-				-	-
1.9-2.0 7/02/20 0.5-0.6 8/02/20		- Soil - Soil		0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	1 - <0.	1 <0.1	- <0.1							<0.1 <0.1		<0.1	<0.1	0.1 <0.1	+:								+-+-	+	-
1.9-2.0 8/02/20	017	- Soil	-						-					-						-			-	-	-		-			-		-			1		-
.5-0.6 8/02/20 .9-2.0 8/02/20	017	- Soil	-	0.1 <0.2					-	- <0.1 <0.				-						-		<0.1 <0.1	-	-	-	0.1 <0.1	-			-		-				+:	-
i-0.6 8/02/20 i-2.0 8/02/20		- Soil - Soil		0.1 <0.2						- <0.1 <0.												<0.1 <0.1				0.1 <0.1	+:								+	+÷	+
.5-0.6 7/02/20	017	- Soil	<0.1 <	0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0.1				-		-			1-1-		-
5.9-6.0 7/02/20 0.5-0.6 8/02/20	017	- Soil - Soil	<0.1 <				- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	. <0.1		<0.1 <	0.1 <0.1	+					-				#	
1.9-2.0 8/02/20 0.5-0.6 8/02/20	017	- Soil		0.1 <0.2	- :					- <0.1 <0.												<0.1 <0.1		<0.1		0.1 <0.1	+ :	 				-	- - 		+++	+ -	
1.9-2.0 8/02/20 0.2-0.4 8/02/20	017	- Soil	-						-					-						-			-		-		-			-			=		1:1:	-	
0-0.2 8/02/20	017	- Soil	<0.1 <	0.1 <0.2	-		- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1		<0.1 <	0.1 <0.1	1								###	<u> </u>	
0 0.2-0.3 9/02/20 0 0.5-0.6 9/02/20	017	- Soil		0.1 <0.2	- :		- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	· <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	- 0.1	<0.1	<0.1 <		+:					-			+-+-	+:-	
3 0.1-0.2 9/02/20 3 0.2-0.3 9/02/20	017	- Soil		0.1 <0.2			- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.:	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1		<0.1 <	0.1 <0.1									+		-
0.2-0.3 9/02/20	017	- Soil	<0.1 <	0.1 <0.2		- -	- <0.1	<0.1 <0.1	<0.1	- <0.1 <0.	1 <0.1 <0.	1 <0.1 <0.	.1 - <0.	1 <0.1	- <0.1	- <0.	0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0.1	1			-	- -	-			1		-
0.4-0.5 9/02/20 2/08/20		- Soil - Sediment		0.05 < 0.05	-	- <0.05				 <0.05 <0.05 <0.0				. 05 <0.05	 <0.05 <0.2					+ - +			+:+	-	-		+:	: :		-		+	+++		+-+-	+-	+++
2/08/20		- Sediment								<0.05 <0.05 <0.0										-			-	-	-					-		-					-

												Organochle	rine Pesticides	s							1			Organoni	nosphorus Pe	sticides			Carh	armate & Oth	er Pesticides	l v	oc						Chlorina	ted Alkanes	·			
\$-	JBS	s G	mg/k	kg mg/kg	Aldrin + Dieldrin (Sum of Total)	alpha-BHC	alpha-Chlordane	beta-BHC	Chlordane My/8 Chlordane	Jog log	g Mg/kg	DDT+DDE+DDD (Sum of Total) delta-BHC	Endosulfan alpha Endosulfan beta	Endosulfan sulphate	Endrin	Endrin aldehyde Endrin aldehyde Sylbu gamma-Chlordane	Endrin ketone Hentschlor	By/8m By/s	Lindane Lindane	Methoxychlor Stylbu Toxaphene	S Azinphos methyl	Bromophos-ethyl Sy/Bu Chlorpyrifos	Bay/Bau Bay/S	Diazinon	Dichloros Dimethoate	Ethion	kg mg/kg m	R/ks wa/k	а-ВНС	р-внс	de d	Total MAH*	1,1,1,2-tetrachloroethane	加加 1,1,1,1-tric hloro ethane 加加 1,1,2,2-tetrachloro ethane	//www.ay/z	May 1,1-dichloroethane	As 1,2,3-trichloropropane	为人 为人 加加,1,2-dichloroethane	1,2-dichloro propane	1,3-dichloropropane	2,2-dichloropropane Bromochloromethane	Car bon tetrachloride Say/Bu Chloroethane	Thoromethane Say Dichlorodifluor omethane	Bay/Bu Dichloromethane Bay/Bu Trichlorofluoromethane
EQL ANZG (2019) - Sec	diment Quality DGVs												0.05 0.0											0 0							0.0													5 0.5 0
NEPM 2013 EIL -	Commercial Industria	al (Specific)								640																																		
	Commercial and Indu: Asbestos in Soil - Bon	strial, Fine Soil ded ACM - Commercial/Industrial -	HSL D																													-	_											
	Asbestos in Soil - FA 8																																											
NEPM 2013 Mgm	t Limits - Commercial HIL D	and Industrial, Fine			45			5	530			3600			100		5	0		2500 160		20	100																					
NEPM 2013 Soil F	HSL D for Vapour Intr HSL D for Vapour Intr	usion - Clay 1 to <2m																																										
NEPM 2013 Soil F	Sampled Date-Tin	usion - Clay 2 to <4m ne Lab_Report_Number Mat	riv Tuno																																									
JBS&G (2019b)				5 0.05	0.05	0.05		2.05		25 000		205		25 0.05	0.05	2.05	0.05	25 225	0.05																					0.5	2.5			
FRAG01	30/05/2019 30/05/2019	658838 Soil 658838 Soil	-	5 <0.05	-	-	-	- 0.00		.up <0.05	- <0.05			.us <0.05 	- <0.05		<0.05 <0	.us <0.05	- 40.05					-			-						0.5 <0.5	- <0.5	2.0> د.ر	- 40.5	-		0.5 <0.5			<0.5 <0.5		0.5 <0.5 <0
HA01 HA02	30/05/2019 30/05/2019	658838 Soil 658838 Soil		5 <0.05	<0.05	<0.05	-	- <0.05 <	 0.1 <0.1	.05 <0.05	5 <0.05	<0.05 <0.01	 i <0.05 <0.	.05 <0.05	<0.05	<0.05	<0.05 <0	.05 <0.05	<0.05	 <0.2 <1	1		- -	-					+ :	+ - 1		-	 0.5 <0.5	<0.5 <0	 0.5 <0 °	<0.5	<0.5		 0.5 <0.5	<0.5	- <0.5	<0.5 <0.1		
HA03	30/05/2019	658838 Soil	<0.05	5 <0.05	<0.05		-						<0.05 <0.				<0.05 <0				1.	- -		-	- -	- -	1 - 1	- -	<u> </u>	-	- -			<0.5 <0					0.5 <0.5				5 <0.5 <0.	
HA04 SS01	30/05/2019 30/05/2019	658838 Soil 658838 Soil		5 <0.05	_	<0.05	-	<0.05	0.1 <0.0	.05 <0.05	5 <0.05	<0.05 <0.05	- · · · · · · · · · · · · · · · · · · ·	.05 <0.05	<0.05	<0.05 -	<0.05 <0	.05 <0.05	<0.05	<0.2 <1	1:			-								4	0.5 <0.5	<0.5 <0	0.5 <0.5	<0.5	<0.5	- <0	0.5 <0.5	<0.5				1.5 <0.5 <0
SS02 SS03	30/05/2019 30/05/2019	658838 Soil 658838 Soil	<0.05	5 <0.05	<0.05	<0.05	- <	<0.05 <	<0.1 <0.0	.05 <0.05	5 <0.05	<0.05 <0.09	<0.05 <0.	.05 <0.05	<0.05 <	<0.05 -	<0.05 <0	.05 <0.05	<0.05	<0.2 <1	-			-			-			-		<	0.5 <0.5	<0.5 <0	0.5 <0.5	<0.5	<0.5		0.5 <0.5				s <0.5 <0.	
SS04	30/05/2019	658838 Soil		-	-	-	-	-			-								-					-										-		+==				-				
SS05 SS06	30/05/2019	658838 Soil 659015 Soil	<0.05	5 <0.05	<0.05	<0.05	- <	<0.05 <	<0.1 <0.0	.05 <0.05	5 <0.05	<0.05 <0.05	<0.05 <0.	.05 <0.05	<0.05 <	<0.05 -	<0.05 <0	.05 <0.05	<0.05	<0.2 <1	+ : +			-			-		+ :-			-				+ -			+-	-				
SS07	3/06/2019	659015 Soil	-	-	-	-	-	-			-				-				-		1 - 1			-			-			-						1-1				-				
MW01 0-0.1 MW01 1.9-1.0	30/05/2019	658838 Soil 658838 Soil	<0.05	5 <0.05	<0.05	<0.05	- <	<0.05 <	<0.1 <0.0	.05 <0.05	5 <0.05	<0.05 <0.05	<0.05 <0.	.05 <0.05	<0.05 <	<0.05 -	<0.05 <0	.05 <0.05	<0.05	<0.2 <1	1:1			-			+ - +		1			+	5 <0.5	<0.5 <0	0.5 <0.5	<0.5	<0.5	- <0	0.5 <0.5	<0.5	- <0.5	<0.5 <0.5	5 <0.5 <0.	<0.5
MW01 6.9-7.0	30/05/2019	658838 Soil		-	-	-	-	-			-				-				-		-			-			-			-						1-				-				
MW02 0.9-1.0 MW02 0-0.1	30/05/2019	658838 Soil 658838 Soil	<0.5	5 <0.5	<0.5	<0.5	-	<0.5	<1 <0.	0.5 < 0.5	<0.5	<0.5 <0.5	<0.5 <0	0.5 < 0.5	<0.5	<0.5 -	<0.5 <0	0.5 <0.5	<0.5	<2 <10	1 : 1			-			-		+ :	-		+				+-	-			-				
MW03 0.9-1.0 QA02	30/05/2019 30/05/2019	658838 Soil 658838 Soil		5 <0.5 5 <0.05			-	<0.5	<1 <0.	0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0	0.5 <0.5	<0.5	<0.5 -				<2 <10 <0.2 <1	-	- -		-			-			-	- -			<1 <					1 <1			<1 <1 <0.5 <0.5	<1 <1	1 <1 <
QC02	30/05/2019	218764 Soil		1 <0.1									<0.05 <0. <0.1 <0					0.1 <0.1			1:1			-			-		-	-				<0.5 <0					0.5 <0.5				<1 <1	
MW03 7.9-8.0 TP01 0.3-0.4	30/05/2019	658838 Soil 658838 Soil		-	-	-	-	-					+ : :		+ : +				-		1:1			-			+ : -		<u> </u>			4	0.5 <0.5	<0.5 <0	0.5 <0.5	<0.5	<0.5		0.5 <0.5		- <0.5	<0.5 <0.5	5 <0.5 <0.	0.5 <0.5 <0
TP01 0-0.1	30/05/2019	658838 Soil	<0.05	5 <0.05	<0.05	<0.05	- <	<0.05 <	<0.1 <0.0	.05 <0.05	5 <0.05	<0.05 <0.09	<0.05 <0.	.05 <0.05	<0.05 <	<0.05 -	<0.05 <0	.05 <0.05	<0.05	<0.2 <1	-			-			-			-		<	0.5 <0.5	<0.5 <0	0.5 <0.5	<0.5		- <0	0.5 <0.5	<0.5	- <0.5	<0.5 <0.5	s <0.5 <0.	0.5 <0.5 <0
TP01 1.4-1.5 TP01 1-1.1	30/05/2019	658838 Soil 658838 Soil		-	-	-	-	-			-								-		+ : +			-					+ :-			·		<0.5 <0	_			_			_		5 <0.5 <0.	0.5 < 0.5 < 0
TP02 0-0.1	30/05/2019	658838 Soil	<0.05	5 <0.05	<0.05	<0.05	- <	<0.05 <	<0.1 <0.0	.05 <0.05	5 <0.05	<0.05 <0.05	<0.05 <0.	.05 <0.05	<0.05 <	<0.05 -	<0.05 <0	.05 <0.05	<0.05	<0.2 <1	1 - 1			-			-			-						-								
TP02 1-1.1 TP03 0-0.1	30/05/2019 30/05/2019	658838 Soil 658838 Soil		-	-	-	-	-			-				1:1				-		1:1			-					-	-		+				+ -			-	-				
TP04 0.5-0.6	30/05/2019	658838 Soil		-	-	-	-	-			-				-				-		-			-			-			-						1	-			-				
TP04 0-0.1 TP05 0-0.1	30/05/2019 30/05/2019	658838 Soil 658838 Soil	<0.05	5 <0.05	<0.05	-	- <	-		.05 <0.05	- 40.05		6 <0.05 <0.	.05 <0.05	- <0.05		<0.05 <0	. 05 <0.05	- 40.05		1:			-			-		-	-			0.5 <0.5	<0.5 <0		<0.5	<0.5	- <0	.5 <0.5	<0.5	- <0.5		5 <0.5 <0.	
TP05 2-2.2 TP06 0-0.1	30/05/2019 30/05/2019	658838 Soil 658838 Soil		5 <0.05			- <	<0.05 <	_	_	-		<0.05 <0. 6 <0.05 <0.				<0.05 <0	.05 <0.05		<0.2 <1	-			-			-			-			 0.5 <0.5	<0.5 <0			-		 0.5 <0.5				 5 <0.5 <0.	
QA01	30/05/2019	658838 Soil		5 <0.05			- <	<0.05 <					<0.05 <0. 6 <0.05 <0.				<0.05 <0			<0.2 <1	1:			-			-			-				<0.5 <0					0.5 <0.5		- <0.5		5 <0.5 <0. 5 <0.5 <0.	
QC01 TP06 1.4-1.5	30/05/2019 30/05/2019	218764 Soil 658838 Soil		1 <0.1	_	_		<0.1	- <0.	0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0		<0.1	<0.1 <0.1	- <	0.1 <0.1	<0.1	<0.1 -	1:1			-			+ : +		+ :	-		+	- <1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1 <1	<1 <1	<1 <1	1 - <
TP07 0-0.1	30/05/2019	658838 Soil	<0.05	5 <0.05	<0.05	<0.05	- <	<0.05 <	<0.1 <0.0	.05 <0.05	5 <0.05	<0.05 <0.05	<0.05 <0.	.05 <0.05	<0.05 <	<0.05 -	<0.05 <0	.05 <0.05	<0.05	<0.2 <1	1 - 1			-			-		· ·	-		4	0.5 <0.5	<0.5 <0	0.5 <0.5	. <0.5	<0.5	- <0	0.5 <0.5	<0.5	- <0.5	<0.5 <0.5	5 <0.5 <0.	1.5 <0.5 <0
TP08 0-0.1 TP09 0.4-0.5	30/05/2019 30/05/2019	658838 Soil 658838 Soil		-	-	-	-	-			-				-				-		1:1			-			-		-	-						+ -	\pm		- + -	-			1 1	
TP10 0-0.1 TP10 1-1.1	30/05/2019	658838 Soil 658838 Soil		5 <0.05	- 0.05	- 0.05	-	- 0.05			- 5 <0.05			 05 <0.05	- 0.05		<0.05 <0		-0.05					-			-		-	-			 0.5 <0.5	- 05 (- 0.5		 0.5 <0.5	- 0.5				
TP11 0.3-0.4	30/05/2019	658838 Soil	-		-	-	-	- 0.03			- 40.03				- 0.03		- CU.US (U		-					-			1	- -					0.5 <0.5	<0.5 <0	0.5 <0.5	5 <0.5	<0.5	- <0	0.5 <0.5	<0.5	- <0.5	<0.5 <0.5	5 <0.5 <0.	0.5 < 0.5 < 0
TP11 0-0.1 TP11 2.7-2.8	30/05/2019 30/05/2019	658838 Soil 658838 Soil		+ :	-	-	-	-					+ : + :		+ - +					- -	1:1			-		: :	-		+ :-	+ : -		+	: :			+:-	-+							
TP12 0.5-0.6	30/05/2019	658838 Soil	-		-	-	-	-			-				-				-		1			-			-			-						1:				-				
	30/05/2019 14/06/2019	658838 Soil 660830 Soil	<0.05	-	<0.05	-	- <	-		.05 <0.05	- 40.05		6 <0.05 <0.	.05 <0.05	- <0.05		<0.05 <0	. 05 <0.05	- <0.05								-						0.5 0.5	VU.5 V	J.5 \ \U.3	0.5	VU.5	- 10	0.5	NU.5	- \0.5	VU.5 VU.	5 <0.5 <0.	
AQ02 0.3-1.0 AQ03 0.1-0.95		660830 Soil 660830 Soil		-	-	-	-	-			-	- -				- -		- -	-	- -		- -		-					<u> </u>	-							-			-				
AQ04 0-0.6		660830 Soil		-	-	-	-	-			-								-					-			-							-		+==				-				
AQ05 0-0.1 AQ05 2.4-3.0		660830 Soil 660830 Soil	-	-	-	-	-	-			-				-				-			- -		-			-		+ :-				- -			-	-			-				
AQ06 0.4-1.1	14/06/2019	660830 Soil	-		-	-	-	-			-			- -	-				-		-			-			-			-						-	-			-				
AQ07 0-0.2 AQ08 0.9-1.6		660830 Soil 660830 Soil																											-	-		-												
AQ08 0-0.9	14/06/2019	660830 Soil	-	-	-	-	-	-			-				-		-		-		-			-			-			-				-		-	-			-				
AQ09 0.3-1.3 AQ09 0-0.3	14/06/2019	660830 Soil 660830 Soil		-	-	-	-	-			-				-				-		-			-			-			-			. .			-	-			-				
AQ09 1.5-2.1 AQ10 0.4-1.0		660830 Soil 660830 Soil		+ - 1							+ - 1		1 - 1	- -	+		1:1	. -	-		1		- -			- -	-		-	-	_			-		-	-			-				
AQ10 0-0.4	14/06/2019	660830 Soil			-	-	-	-		- -				- -	1			1					- -	-	- -		1-1	- -		-			- -		- -	\pm			<u> </u>	-				
AQ11 0.6-1.0 AQ11 0-0.6	14/06/2019	660830 Soil 660830 Soil		-		-	-	-			+ :		: :	- -	1:						1:1						-		-			\perp			- -	+:-			. :	-				
AQ12 0.1-1.1	14/06/2019	660830 Soil		-	-	-	-	-	- -	- -	-	- -		- -	-	- -		- -	- 1	- -	1.	-		-	- -			- -	<u> </u>			\perp		-	- -	#			-		- -			
AQ12 0-0.1 AQ13 0.6-1.0		660830 Soil 660830 Soil		-	-	-	-	-			1 - 1		+ - + -		1:1						1:+					 	-		+:-			_				+ :-			. :	-			+	
AQ13 0-0.6	14/06/2019	660830 Soil	-	-	-	-	-	-	- -	- -	-			- -	-	- -		- -	-	- -	1.	- -		-						-	- -	\perp	. .		- -	1		- -	-	-	- -			
	14/06/2019 14/06/2019	660830 Soil 660830 Soil				-	-				-				-				-					-			-							-		+	-			-				
	14/06/2019	660830 Soil				- 1	- 1	- 1			1 - 1		I . I .	. -			I . I												1 .											1			I . I .	

										Orga	nochlorin	Pesticide	s													Organoph	osphoru	s Pesticide	s				Carb	armate &	Other Pest	icides	VO	c							Chlor	rinated Al	kanes					
JBSaG	,4-DDE	Ndrin	Ndrin + Dieldrin (Sum of Total)	lipha-BHC	ipha-Chlordane	eta-BHC	QQQ	ОТ	Sieldrin	DT+DDE+DDD (Sum of Total)	lelta-BHC	indosulfan alpha	ndosulfan sulphate	indrin	ndrin aldehyde	amma-Chlordane.	indrin ketone	teptachlor	leptachlor Epoxide	Methoxychlor	oxaphene	kinphos methyl	sromophos-ethyl	hlorpyrifos	:horpyrifos-methyl	Diazinon	ornoros imethoate	thion	enitrothion	Malathion	arathion	tonnel	ЭНС	1-8HC	1-8HC	-BHC (Lindane)	otal MAH*	.,1,1,2-tetrachloroethane	.,1,1-trichloroethane	,1,2,2-tetrachloroethane	,1,2-trichloroethane	,1-dichloroethane	,2,3-trichloro propane	.2-dibromo-3-chloropropane	, 2-dichloro ethane 2-dichloro probane	,3-dichloropropane	,2-dichloropropane	sromochloromethane	arbon tetrachloride	hloroethane	:hloromet hane ik:hlorodifil.oromethane	or nioro ametrane ic hloro met hane
	mg/kg	mg/kg	mg/kg r	mg/kg m	ig/kg mg	g/kg mg	/kg mg/	/kg mg/k	g mg/k	g mg/kg	mg/kg r	ng/kg mg	/kg mg/	/kg mg/l	g mg/kg	mg/kg	mg/kg	mg/kg m	ng/kg mg	/kg mg/l	kg mg/k	kg mg/k	g mg/kg	mg/kg	mg/kg	mg/kg m	g/kg mg	g/kg mg/k	kg mg/k	g mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k	MG/I	KG mg/k	kg mg/k	kg mg/k	mg/kg	mg/kg	mg/kg	mg/kg n	ng/kg m	g/kg mg	/kg mg/	/kg mg/k	kg mg/kg	mg/kg r	mg/kg m	ng/kg m
	0.05	0.05	0.05	0.05	0.1 0.	.05 0	.1 0.0	0.05	0.05	0.05	0.05	0.05 0.	0.0	0.05	0.05	0.1	0.05	0.05	0.05 0	05 0.1	1																0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	0.5	0.5 0.	.5 1	0.5	0.5	0.5	0.5	0.5
019) - Sediment Quality DGVs	T																					$\overline{}$																\neg														
13 EIL - Commercial Industrial (Specific)								640	1																																											
013 ESL Commercial and Industrial, Fine Soil																																																				
013 HSL Asbestos in Soil - Bonded ACM - Commercial/Industrial - HSL D																																																				
013 HSL Asbestos in Soil - FA & AF - HSL																																																				
013 Mgnt Limits - Commercial and Industrial, Fine																																																				
13 Soil HIL D			45			53	30			3600				100)			50		250	0 160)		2000																												
013 Soil HSL D for Vapour Intrusion - Clay 0 to <1m																																																				
013 Soil HSL D for Vapour Intrusion - Clay 1 to <2m																																																				
013 Soil HSL D for Vapour Intrusion - Clay 2 to <4m																																																				

Field_ID	Sampled_Date-Time	Lab_Report_Number	Matrix_Type																																																				
JBS&G (2020)																																																							
TP200_0.0-0.1	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <	:0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.09	<0.2	<1	-	-	-		-	-	-	- 1	-	-	-	-	-	-	-		- 1	-	-		 	-	- 1	-	-	 - 1	-	-	
TP201_0.9-1.0	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.05	<0.2	<1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		 	-	-	-	-	 -	-	-	
TP202_0.0-0.1	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	:0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.09	<0.2	<1	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		 	-	-	-	-	 -	-	-	
TP203_0.5-0.6	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05 <	<0.05 <	:0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.09	<0.2	<1	-	-	-		-	-	-	- 1	-	-	-	-	-	-	-	-	- 1	-	-	- -	 	-	- 1	-	-	 - 1	-	-	
TP204_0.0-0.1	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05 <	<0.05 <	:0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.05	<0.2	<1	-	-	-		-	-	-	- 1	-	-	-	-	-	-	-	-	- 1	-	-		 	-	- 1	-	-	 T - T	-	-	
TP205_0.4-0.5	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05 <	<0.05 <	:0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.05	<0.2	<1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		 	-	-	-	-	 -	-	-	
TP206_0.0-0.1	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <	:0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.09	<0.2	<1	-	-	-		-	-	-	- 1	-	-	-	-	-	-	-	-	- 1	-	-	- -	 	-	- 1	-	-	 - 1	-	-	
TP207_0.0-0.1	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05 <	<0.05 <	:0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.09	<0.2	<1	-	-	-		-	-	-	- 1	-	-	-	-	-	-	-	-	- 1	-	-		 	-	- 1	-	-	 T - T	-	-	
TP208_0.9-1.0	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <	0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.05	<0.2	<1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		 	-	-	-	-	 -	-	-	
TP209_0.9-1.0	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05 <	<0.05 <	:0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.05	<0.2	<1	-	-	-		-	-	-	- 1	-	-	-	-	-	-	-	-	- 1	-	-		 	-	-	-	-	 -	-	-	
TP210_0.4-0.5	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05 <	<0.05 <	:0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.05	<0.2	<1	-	-	-		-	-	-	- 1	-	-	-	-	-	-	-	-	- 1	-	-		 	-	- 1	-	-	 T - I	-	-	
TP211_0.0-0.1	9/03/2020	707966	SOIL	<0.0	5 <0.	05 <0.0	05 <0.	05 -	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <	0.05 <0	.05 <0	.05 <0.0)5 -	<0.0	5 <0.0	0.0	5 <0.0	<0.2	<1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		 	-	-	-	-	 -	-	-	

Env Stds Comments

#1:Adopted from TPHs total
#2:TV taken for Chromium (III), Clay Content of 1%
#3:TV Taken for PH 6
#4:TV taken for pH 6
#4:TV taken for pH 6
#6:ESLs are of low reliability.
#7:ESLs are of moderate reliability.
#8:Commercial/industrial D includes premises such as shops, offices, factories and industs
#9:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/frial
#10:Management limits of BTEX and naphthalene are not available, hence should not be:
#11:Limits applied after consideration of relevant ESLs and HSLs
#12:Key limitations of HSL should be referred to prior to application in Friebel and Nadeb.
#13:TV adopted from Chromium (V)
#14:Assumptions of HSL are presented in Friebel and Nadebaum (2011a).
#15:Refer to Section 8.2 and Appendix In Friebel and Madebaum (2011a).
#16:Refer to Section 8.2 and Appendix In Friebel and Madebaum (2011a).
#17:TV maybe be multiplied by a factor to account for biodegradation of vapour
#18:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific asse
#19:To obtain F2 subtract naohthalene from >C10-C16.

						Chlor	inated	Alkenes						Solvent	s		Pol	ychlorina	ted Biph	enyls					N	onocyclic	Aromat	tic Hydroc	arbons					Miscella	neous H	lydrocari	bons				Chl	lorinate	ed Benze	nes			Tril	nalometh	anes	1	Misc Che
8.G	1,1-dichloroethene	1,1-dichloropropene	1,3-dichloropropene	2-chlorotoluene	3-chloropropene	4-chlorotoluene	cis-1,2-dichloroethene	cis-1,3-dichloropropene	Tetrachloroethene	trans-1,2-dichloroethene	trans-1,3-dichloropropene	Trichloroethene	Vinyl Chloride	2-Propanone (Acetone)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCBs (Total)	1,2,4-trimethyl benzene	1,3,5-trimethyl benzene	4-isopropyl toluene	Bromobenzene	Isopropylbenzene	n-butyl benzene	n-propyl benzene	Sec-but yi benzene Stvrene	Tert-butvl benzene	1.2-dibromoethane	2-Butanone (MEK)	4-Methyl-2-pentanone (MIBK)	Bromomethane	Cyclohexane	Dibromomethane	lodomethane	1,2,3-trichlorobenzene	1,2,4-trichlorobenzene	1,2-Dichlorobenzene	1.3-dichlorobenzene	1.4-dichlorobenzene	Chlorobenzene	Hexachlorobenzene	an what was a straight of the	Bromodichlorome than e	Dibromochloromethane	Tribromomethane		Hexachlorobutadiene
		mg/kg	ng/kg	mg/kg										mg/kg														mg/kg n																							mg/
	0.5	1		1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5	1	0.5	0.5	1	1	1 0).5	1 0	.5 0.	5 0.5	0.5	1	0.5	0.5	1	1	0.5	.5 (0.5 0).5 (0.5 0	.05	0.5	0.5 0	.5 0.		1
																							_																												
(Specific)																																																			
ial, Fine Soil																																																			
ed ACM - Commercial/Industrial - HSL D																																																			
AF - HSL																																																			
nd Industrial, Fine																																																			
																						7#18																								80					
on - Clay 0 to <1m																																																			
ion - Clay 1 to <2m																																																			
sion - Clay 2 to <4m																																																			

		mg/kg mg/kg mg/	g/kg mg/kg	mg/kg mg/kg	g mg/kg	mg/kg mg/kg n	mg/kg mg/	kg mg/kg mg/kg	mg/kg	mg/kg mg/k	g mg/kg	mg/kg mg/	kg mg/kg	mg/kg mg/l	kg mg/kg	mg/kg mg/kg 0.5 1	mg/kg	mg/kg mg/kg r	mg/kg mg/	/kg mg/kg mg/k	g mg/kg m	ng/kg mg/kg	mg/kg mg/k	g mg/kg	mg/kg r	ng/kg mg/kg	mg/kg mg/	/kg mg/kg	mg/kg mg/kg	g mg/kg	mg/kg mg/kg	g mg/kg	mg/kg
EQL		0.5 1	1	0.5 0.5	0.5	0.5 0.5	0.5 0.5	0.5 0.5	0.5	0.1 0.1	0.1	0.1 0.	1 0.1	0.1 0.1	0.5	0.5 1	0.5	0.5 1	1 1	0.5 1	0.5	0.5 0.5	0.5 1	0.5	0.5	1 1	0.5 0.	0.5 د	0.5 0.05	0.5	0.5 0.5	0.5	1
ANZG (2019) - Sediment Quality DGVs NEPM 2013 EIL - Commercial Industrial (Sp	ecific)				+										-													4					
NEPM 2013 ESL Commercial and Industrial																																	
NEPM 2013 HSL Asbestos in Soil - Bonded A	CM - Commercial/Industrial - HSL D																																
NEPM 2013 HSL Asbestos in Soil - FA & AF -	****														_													_					
NEPM 2013 Mgnt Limits - Commercial and NEPM 2013 Soil HIL D	Industrial, Fine													-af1:														4	90	\blacksquare		+	
NEPM 2013 Soil HSL D for Vapour Intrusion	- Clay 0 to <1m													/															80				
NEPM 2013 Soil HSL D for Vapour Intrusion	- Clay 1 to <2m																																
NEPM 2013 Soil HSL D for Vapour Intrusion	- Clay 2 to <4m																																
Field ID Sampled Date-Time	Lab_Report_Number Matrix_Type																																
Coffey (2013)	Lab_Report_Humber Wattix_Type																																
BH01 0.0-0.2 20/02/2013	- Soil				-	- -					-		-		·		-				-			-	-							-	-
BH02 0.0-0.2 19/02/2013	- Soil					- -	- -		<u> </u>	· ·	-		-		<u> </u>		-	- -			1 .	- -		-	·			-	1	1-1		+	-
BH03 0.0-0.2 20/02/2013 BH04 0.0-0.1 20/02/2013	- Soil - Soil							+ : + :	-		- 0.5		5 40.5	<0.5 <0.5			-				1:			-				+-	- <0.05	+		+	•
BH05 0.0-0.2 20/02/2013	- Soil				-												- 1				1 .			-	- 1					1		+-+	
BH06 0.16-0.26 18/02/2013	- Soil				-						-		-		-		-				-			-	-			-		-		-	-
BH06 1.0-1.1 19/02/2013	- Soil		- -			- -			· ·	· ·	-		-		<u> </u>		-	- -			·	- -		-	·			<u> </u>	1 - 1 -	1.		+	-
BH07 0.08-0.13 18/02/2013 BH07 0.2-0.3 18/02/2013	- Soil - Soil				+ : +			 	- :	<0.5 -	- 0.5		5 405				-			 	1:1			-				+-	- <0.05	+		+: $+$	-
BH07 0.4-0.5 18/02/2013	- Soil		- -		+ - +			+ - + -	<u> </u>				- 10.3	<0.5 <0.5	1		-			+ - + -	1:1	- -	 			- -		+=				+ - +	-
BH08 0.0-0.2 20/02/2013	- Soil				-					<0.5 -	<0.5	<0.5 <0	5 <0.5	<0.5 <0.5	5 -		-				-			-	- 1				- <0.05				-
BH09 0.0-0.1 20/02/2013	- Soil		- -		-	- -	- -			<0.5 -	<0.5	<0.5 <0	.5 <0.5	<0.5 <0.5	5 -	- -	-	- -		- -	-	- -		-	-	- -		-	- <0.05	+		+	-
BH10 0.16-0.26 20/02/2013 BH11 0.19-0.29 20/02/2013	- Soil - Soil		: :		+:+			+ - + -	- : -	1 : :	1:1		+:		+:					+ : + :	1:+		1 1	+ :	 			+-	+	+:-		+: $+$	-
BH12 0.4-0.5 20/02/2013	- Soil		- -		+ - +			1 - 1 -			1 - 1		+:		+:		-			+	1:1	- -		+ -	-			+-		1		+ : +	-
BH13 0.13-0.23 20/02/2013	- Soil				-				-		-		-				-				-			-	- 1			-				-	-
BH14 0.19-0.29 18/02/2013	- Soil	• • •	- -		1 - 1	- -	- -	1 - -	-	· ·	1 - 1		-		·	- -		- -	- -	- -	1 -	- -		-	· [- -		+-	1 - 1 -	┯		+	-
BH15 0.15-0.25 18/02/2013 BH16 0.0-0.2 20/02/2013	- Soil - Soil							+ - + -	-	1 : :			+ :		+ :		-				+ : +			-				+-	1 1	+-		+	-
BH17 0.5-0.6 19/02/2013	- Soil				1 - 1			1 1 1		<0.5 -	<0.5	<0.5 <0	5 <0.5	<0.5 <0.5	5 -		-			1 : 1 :	1:1			-				+	- <0.05	,		+++	-
BH17 0.5-0.6 19/02/2013	- Soil				-				-	<0.5 -	<0.5	<0.5 <0	.5 <0.5	<0.5 <0.5	5 -		-							-	-			-	- <0.05	-		-	-
BH17 0.5-6.0 19/02/2013	- Soil				-					<0.5 -				<0.5 <0.5			-				-			-	-			-	- <0.05	-		-	-
BH18 0.0-0.2 20/02/2013 BH19 0.4-0.5 19/02/2013	- Soil				+ : +			+ : + :	- :	<0.5				<0.5 <0.5		1 1 1	-			+ : + :	1:1			-				+-	- <0.05	+		+: $+$	-
BH19 1.0-1.1 19/02/2013	- Soil				+ : +			1 1 1	-		-		- 40.3		' :		-			1 1 1	1:1		1 1	1				+ -		1		+:+	-
BH20 0.0-0.2 20/02/2013	- Soil				-												-				-			-	-			-		-			-
BH21 0.0-0.2 19/02/2013	- Soil		- -		+ - +	- -			<u> </u>	<0.5 -				<0.5 <0.5	5 -		-		- -		1 - 1			-	-				- <0.05	1-1		+	-
BH21 1.0-1.1 19/02/2013 BH21 3.0-3.1 19/02/2013	- Soil - Soil				+ : +			+ : + :	- : -	1 :	-		+ :		+ :	 	-			+ : + :	+ : +		 	+ :					 	+:-		+: $+$	-
BH21 3.9-4.0 19/02/2013	- Soil										1 - 1		1		+ :		-			1 1 1	1:1			-	- 1			+		1		+++	-
BH22 0.0-0.1 19/02/2013	- Soil				-				-		-		-		-		-				-			-	-			-		-		-	-
BH23 0.08-0.18 19/02/2013	- Soil					- -			· ·				-		<u> </u>		-	- -			1 - 1			-	-			+-	· ·	1	- -	+	-
BH23 0.5-0.6 19/02/2013 BH24 0.08-0.18 19/02/2013	- Soil - Soil				1 : 1			+ : + :	-	1 1	1 :		+ :		+ :	1 1 1				+	1:1			-				+	1 -	+ -	- 	+: $+$	
BH24 0.5-0.6 19/02/2013	- Soil				- 1						-		-		1 -		-				1 - 1			-	-			-		1		1.	
BH24 1.1-1.2 19/02/2013	- Soil				-								-		·		-				·			-	-							1	-
BH25 0.19-0.29 18/02/2013 BH26 0.18-0.28 18/02/2013	- Soil - Soil				+ - +	- -			<u> </u>	<0.5 -	<0.5	<0.5 <0	.5 <0.5	<0.5 <0.5	5 -		-				+ - +	- -		-	·			+-	- <0.05	+		$+\cdot$	-
BH27 0.17-0.27 18/02/2013	- Soil				+ : +			+ - + -	-					<0.5 <0.5		1 1 1	-			+	1:1			+ -				+	- <0.05	,		+:+	-
BH27 0.4-0.5 18/02/2013	- Soil		- -		-	- -											-	- -			1 - 1	- -		-	- 1			1-		1 .		1.	-
BH28 0.16-0.26 18/02/2013	- Soil		- -		1 - 1						-		-				-				1 - 1	- -		-	· [4-		1:1		 	-
BH29 0.19-0.29 18/02/2013 BH30 0.19-0.29 18/02/2013	- Soil - Soil				+ : +			+ : + :	- :	1 : :	1:1		+ :		+:	1 : 1 : 1				+ : + :	1:+		1 1	+ :-	 			+-	+	+:-		+: $+$	-
BH31 0.0-0.2 20/02/2013	- Soil		- -		1 - 1	- -	- -	1 - 1 -	<u> </u>	 . .	1 - 1	- -	+ :		+ :		-	- -	- -	 . .	1 - 1	- -	 		- 1	- 1 -	- -	+-				+ - +	-
BH31 0.4-0.5 20/02/2013	- Soil				-				-		-		-				-				-			-	-								-
BH32 0.08-0.18 20/02/2013	- Soil		- -		+-+	- -	- -	+ - -	<u> </u>	· ·	+ -	- -	-		+ -	- -	-	- -	- -	+ - + -	+ - +	- -		+ -	•	- -		+-		+		+	-
BH33 0.0-0.2 20/02/2013 BH34 0.09-0.19 19/02/2013	- Soil - Soil				+ : +			+ : + :	- : -	1 1 1	+ - 1		+ :		+ :	+ + + + + +				+	1:1		1 1 1	+ -	 			+-	+ + + +	+:-		+: $+$	
BH34 1.0-1.1 19/02/2013	- Soil		- -	- <i>-</i>	1 - 1	- -	- -	1 - 1 -	<u> </u>	 . .	1 - 1		+ -		1		-	- -	- -	 	1:1	- -	 		- 1	- -	- 	+-				+ - +	-
BH35 0.08-0.18 18/02/2013	- Soil				-						-		-				-				1 - 1			-	-								-
BH35 0.4-0.5 18/02/2013 BH36 0.0-0.2 20/02/2013	- Soil	 	- -		1 - 1	- -	- -	1 - 1 -	· ·		1 -		+ -		+ -	- -	-	- -	- -	+ - -	1 - 1	- -		+ -	•	- -		+-		+		+ $+$ $+$	-
BH36 0.0-0.2 20/02/2013 BH37 0.0-0.2 21/02/2013	- Soil - Soil	 			+ : +			+ : + :	- :	1 : :	1 : 1		+ :		+:	+ : :	-:-			+ : + :	1:1		1 : 1 :	+ :-	 			+-	+	+:-		+:+	-
BH38 0.0-0.2 21/02/2013	- Soil				1 - 1			1 - 1 -		1	- 1		-		1.		-		- -	1.1.	1 - 1			-	- 1			+-		1		+-+	-
BH38 0.4-0.5 21/02/2013	- Soil				-				-		-		-				-				-			-	-			-				-	-
BH39 0.0-0.2 21/02/2013	- Soil		- -		1 - 1	- -	- -	1 - 1 -		· ·	1 - 1		-		1 .	- -	-	- -	- -	1 - 1 -	1 -	- -		1 -	· [- -		+-		\vdash		+	-
BH40 0.0-0.2 21/02/2013 DUP2 18/02/2013	- Soil - Soil				+:+			+ - + -	- : -	1	-		-		+:	+ : + : -				+ : + :	1:1		1 1 1	+:-	 			+-	1 -	+:-		+: $+$	-
DUP3 19/02/2013	- Soil		- -	- <u>-</u>	1 - 1	- -	- -	1 - 1 -	<u> </u>	<0.5 -				<0.5 <0.5	5 .		-	- -	- -	+ - + -	1:1	- -	 . .		- 1	- 1 -	- -	+-	- <0.05	1		+ - +	-
DUP3A 19/02/2013	- Soil				-					<0.1 -	<0.1	<0.1 <0					-				-			-	- 1				- <0.1				-
DUP5 19/02/2013	- Soil		- -		-						-		-		·	- -	-	- -		- -	-	- -		-	-	- -		-		+		+	-
DUP5A 19/02/2013 DUP7A 20/02/2013	- Soil - Soil				+ - +				-		1 -		+ -		+ :	+ + + + +				+ : + :	1:1		 	+ -	 			+-	+	+:-		+	-
SED1 21/02/2013	- Soli - Sediment		- -		+ - +						1 - 1		+:		+:		-			+	1:1	- -		+ -	-			+-		1			-
SED2 21/02/2013	0 11 .																													\rightarrow	$\overline{}$		
SED3 21/02/2013	- Sediment								<u> </u>				-		<u> </u>		-							-	-					+	<u> </u>	+	

Project Nam	e: Prospect Logistics	s Estate																																									
							Chlc	orinated Alke	enes				Solvents			Polychio	rinated Bip	henvis		_			Monor	cyclic Arom	natic Hydr	rocarhons				liscellaneous	Hydrocarh	hons			Chlor	rinated Be	enzenes		_	Tribale	methanes		Misc Chemicals
	100-	-					Cilic	Jilliated Aike	ines				Joivents	\vdash		rolycillo	I III ateu bip	licityis		+			I	Lyclic Aroll	latic riyul	local boils		+		iiscellaneous	Trydrocare	0113	\Box			Thated be		$\overline{}$	+	Timal C	Tietnanes	+	Wisc Chemicals
The same	JBS8	3.6																																									
											e l																			MBK													
				e l	2			hene	obeue	ethen	prope		tone)								uzeu	nzene						١,		none				zene	a e	ě	2	e e	thane		thane		ene
			ethen	prope	prope	ene bene	e e	oroet	oropre	chloro	chloro	de de	Ace		_	, ,	, ,				수 주	hyl be	e e	nzene	sene	nzene	enzen	ethan	(AEK	penta		thane	<u> </u>	roben	penze	penze	penze	ene	o me		orome	than 1	outadi
			l los	chloro	chloro	ropro	rotole	l di	Aichi hloro	1,2-di	1,3-di	chlorie	ano	r 1016	r 1221	r 1232	r 1248	r 1254	or 1260		rimet	rimet	penzo	pylbe	l pen	yl be	utyl b	. š	none	hyl-2-	exan	nome	ethan	richlo richlo	chloro	l lor	hloro	benze	ğ	form	l doch	e l	hlorot
			Į,	1,1-dic	1,3-dic	2-chlo	-chlo	is-1,2	is-1,3	trans	trans.	richlo Vinyl 0	Prog.	Aroclo	Aroclo	Aroclo	Aroclo	Aroclo	Aroclo	Ses	1,2,4-t	1,3,5-t	Bromo	sopro	-but,	n-prop	Styren Fert-b	1,2 di	2-Buta	4-Met	yclo	Dibror	ogo	1,2,3-1	1,2-Did	1,3 dk	1,4 di	Chloro	g g	Chloro	Dibror	ž l	Нехас
FOI				g mg/kg n							g mg/kg m		g mg/kg 0.5													mg/kg mg/kg																	mg/kg
	ediment Quality DGVs		0.5	1		1 0.3	3 0.3	0.5	0.5 0.	0.5	0.3	0.5 0.5	0.3	0.1	0.1	0.1	J.1 U.1	0.1	0.1	0.1	0.3	0.5	0.3	0.3	1	1 1	0.5	0.5	0.5	0.5 0	.5 1	0.5	0.5	1 1	0.5	0.3	0.3	0.5 0.0	J5 0.5	5 0.5	0.5	0.5	1
NEPM 2013 ESL	Commercial Industrial (S Commercial and Industria	al, Fine Soil																																									
	Asbestos in Soil - Bonded Asbestos in Soil - FA & AF	d ACM - Commercial/Industrial - HSL D F - HSL	_				_													-															_			\blacksquare		-			
	nt Limits - Commercial and																			-#18																			20				
NEPM 2013 Soil	HSL D for Vapour Intrusio																																										
	HSL D for Vapour Intrusio HSL D for Vapour Intrusio																																										
Field_ID	Sampled Date-Time	Lab_Report_Number Matrix_Type																																									
DLA (2017)																																			\neg								
BH1 0.5-0.6 BH1 1.9-2.0	8/02/2017 8/02/2017	- Soil	-	-			-	-		-	-		-	-	-	-		-		-	-		-	-	-				-			-	-			1	-	- <0	.1 -	-	-		-
BH4 0.5-0.6 BH4 1.9-2.0	7/02/2017 7/02/2017	- Soil	+ :				-			-			+ :						<0.1 <		-		+:	-	-			+ +	-			-	-		. 	+	-	- <0).1 -		+	\div	-
BH4 5.9-6.0	7/02/2017	- Soil	-	-	-		-	-		-	-			-	-	-		-	-	-	-		-	-	-				-	-		-	-		-	1	-		= =	-	-		-
BH6 0.5-0.6 BH6 1.9-2.0	8/02/2017 8/02/2017	- Soil - Soil	-	-	-			-		-	-			-	-	-		-	<0.1 <	-	-		-	-	-				-	-		-	-				-			-	-	\pm	-
BH7 0.5-0.6 BH7 1.9-2.0	8/02/2017 8/02/2017	- Soil	-	-			-	-		-	-		+ :						<0.1 <		-		+ :	+ -	-			+ :	-			+ -	-		. + :	+ -	-	- <0	J.1 -		-	\div	-
BH8 0.5-0.6 BH8 1.9-2.0	8/02/2017 8/02/2017	- Soil	-	-	-		-	-		-	-		-						<0.1 <		-		-	-	-				-	-		-	-				-	- <0).1 -	-	-		-
BH9 0.5-0.6	8/02/2017	- Soil	-	-	-		-	-		-	-		<u> </u>	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	:0.1	-		-	-	-				-	-		-			-		-	- <0	0.1 -	-			-
BH9 1.9-2.0 BH10 0.5-0.6	8/02/2017 8/02/2017	- Soil	-	-			-	-		-	-		- :	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <		-		-	-	-				-			-	-			-	-	- <0	ð.1 -	-	-	-	-
BH10 1.9-2.0 BH11 0.5-0.6	8/02/2017 8/02/2017	- Soil	-				-			-			+ :-				0.1 <0.1		<0.1	- 0.1	-		+:	-	-				-			-	-		. :	+	-	- <0	0.1	-	+	\div	-
BH11 1.9-2.0	8/02/2017	- Soil	-	-	-		-	-		-	-			-	-	-		-	-	-	-		-	-	-				-	-		-			-	1	-			-	-		-
BH12 0.5-0.6 BH12 1.9-2.0	8/02/2017 8/02/2017	- Soil - Soil	-		-						-		-	-	-	-		-		-	-			-	-					-		-	-					- <0		-		士	
BH13 0.5-0.6 BH13 2.5-2.6	7/02/2017 7/02/2017	- Soil	+:				-	+ - +		-			+ :	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	0.1	-		+:	+ -	-			+ :	-			-			. 	+	-	- <0	J.1 -		-	\div	-
BH13 7.4-7.5 BH14 0.5-0.6	7/02/2017 8/02/2017	- Soil	-				-	-		-	-		-	- 01	- 01	- 01 /		- 01	<0.1 <	- 0.1	-		-	-	-				-	-		-	-		1	1	-			-	1	-	-
BH14 1.9-2.0	8/02/2017	- Soil	-	-	-		-	-		-	-		<u> </u>	-	-	-		-	-	-	-		-	-	-							-			-					-			-
BH16 0.5-0.6 BH16 1.9-2.0	8/02/2017 8/02/2017	- Soil	-	-			-	-		-	-		- :				0.1 <0.1		<0.1 <		-		-	-	-				-			-	-			-	-	- <0	.1 -	-	-	-	-
BH17 0.5-0.6 BH17 1.9-2.0	8/02/2017 8/02/2017	- Soil	+ :				-			-			+ :				0.1 <0.1		<0.1 <		-		+:	-	-			+ +	-			-	-			+	-	- <0	J.1 -		+ -	\div	-
BH18 0.5-0.6 BH18 1.9-2.0	8/02/2017 8/02/2017	- Soil - Soil	-		-		-	-		-	-		-		<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	:0.1	-		1:	-	-				-	-		-	-		-	1-	-	- <0	J.1 -	-	1	-	-
BH19 0.5-0.6	8/02/2017	- Soil	-	-	-		-	-		-	-		<u> </u>		<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <		-		-	-	-				-	-		-					-	- <0	0.1 -	-			-
BH19 1.9-2.0 BH2 0.5-0.6	8/02/2017 8/02/2017	- Soil	-	-			-	-		-	-		-	<0.1	_	_	0.1 <0.1		<0.1 <	:0.1	-		+ :	-	-				-			-	-			+ -	-	- <0	ð.1 -	-	-		-
BH2 1.9-2.0 BH21 0.5-0.6	8/02/2017 8/02/2017	- Soil	+ :				-			-			+ :	<0.1	<0.1		0.1 <0.1	_	<0.1	- 0.1	-		+:	-	-			+ +	-	-	· -	+ -	-		. - -	+	-	- <0	0.1		+		-
BH21 1.9-2.0	8/02/2017 7/02/2017	- Soil - Soil	-	-	-		-	-		-	-							_	<0.1 <	-	-		-	-	-				-	-		-			-	1	-	- <0		-	1		-
BH22 0.5-0.6 BH22 1.9-2.0	7/02/2017	- Soil	<u> </u>				-			-	-			-	-	-		-	-	-	-		1	-	-				-	-		+ -	-		#							\pm	
BH24 0.5-0.6 BH24 1.9-2.0	8/02/2017 8/02/2017	- Soil	-	-			-	-		-	-		-				0.1 <0.1		<0.1 <	- 0.1	-		+ -	-	-				-			-	-			+-	-	- <0).1 -		-	<u>:</u>	-
BH25 0.5-0.6 BH25 1.9-2.0	8/02/2017 8/02/2017	- Soil	-	-			-	-		-	-		-	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	:0.1	-		-	-	-				-			-	-			-	-	- <0).1 -		-		-
BH26 0.5-0.6	7/02/2017	- Soil - Soil	1	1 - 1	-	- -	-	1-1	- -	-	1-1	- -	·	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	0.1	-	- -	1 -	-	-	- -		1	1 -	-	- -	1 -		- -	#=	1	-	- <0	J.1 -	-	#	丰	-
BH26 1.9-2.0 BH27 0.5-0.6	7/02/2017 7/02/2017	- Soil	Ŧ										+ :	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	:0.1	-		#	+								+			#	Ħ		- <0	-		$\pm \pm$	\pm	-
BH27 1.9-2.0 BH28 0.5-0.6	7/02/2017 8/02/2017	- Soil	+:	+ - +	- -		-	+ - +		+ -			+ :						<0.1 <		_		+:	+:	-			+ :	-		+ :	+:	:		. :	+	-	- <0	_	+ -	+ -		-
BH28 1.9-2.0 BH29 0.5-0.6	8/02/2017 8/02/2017	- Soil - Soil	-	-	-		-			-	-		-	-	-	-		-	<0.1 <	-	_		-	_	-				-	-		-	-		#	-		- <0	_	-	-		-
BH29 1.9-2.0	8/02/2017	- Soil	-	_	-		-	-	- -	-			·	-	-	-		-	-	-	-		-	-	-				_	-		-	-	- -	-	1 -	-			-	-	丰	-
BH3 0.5-0.6 BH3 1.9-2.0	8/02/2017 8/02/2017	- Soil - Soil	-	-			-	-		-			-	-	-	-		-	<0.1 <	-			1	-	-			+ -	-	-		-	-		<u> </u>	-		- <0		-	-		
BH30 0.5-0.6 BH30 5.9-6.0	7/02/2017 7/02/2017	- Soil	-	-			-			-			+ :						<0.1 <		-		-	_	-				-			-				-	-	- <0	0.1 -	-	-	\div	-
BH31 0.5-0.6	8/02/2017 8/02/2017	- Soil - Soil	-		-		-			-	1 - 1	- -	· ·	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	:0.1	-		-	-	-			1	-	-	- -	-		- -		1	=	- <0	_		-		-
BH31 1.9-2.0 BH32 0.5-0.6	8/02/2017	- Soil	#										+ :	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	:0.1	-		#	+								+			#	Ħ		- <0	0.1		$\pm \pm$	\pm	-
BH32 1.9-2.0 HA15 0.2-0.4	8/02/2017 8/02/2017	- Soil - Soil	-		- -		-	-		-	-		+ :						-		-		1:	1:	-			+ -	-			<u> </u>				$\pm \pm$	<u>-</u> -		: :	-	 - 	<u></u> +	-
HA15 0-0.2 HA20 0.2-0.3	8/02/2017 9/02/2017	- Soil - Soil	1:	-	-	-	-	-		-			-						<0.1 <				-	-				1	-	-		-			. —	1		- <0 - <0		-	1		-
HA20 0.5-0.6	9/02/2017	- Soil	1	-	-	- -	-	1-1	- -	-	1-1	- -	1	-	-	-		-	-	-	-	- -	1 -	1				1	1	-	- -	1		- -	1					1			-
HA23 0.1-0.2 HA23 0.2-0.3	9/02/2017	- Soil - Soil			-		-	-		+-	-			-	-	-		-	<0.1 <	-	-		+ -	-				+ -	-	-		1					-	- <0		-		-	-
HA5 0.2-0.3 HA5 0.4-0.5	9/02/2017 9/02/2017	- Soil	-	-	-		-	-		-	-		1 :						<0.1 <		-		-	-	-			+ -	-		- -	-				-	+	- <0	0.1 -	-	-		
SD2	2/08/2017	- Sediment - Sediment	-		-	- -	-	-		-	-	- -	· ·	-	-	-		-	-	-	-		-	-	-			. .	-		- -	-		- -		-	-	==	#	-	-		-
SD3	2/00/201/	- Seament			-	- -	-	1 -	- -		1 - 1	- -		1 -	- 1	-	- -	-	-	-	-	- -					- -				- -	-		- -							-		-

Project Nam	e: Prospect Logist	ucs Estate																																													
						ı	_	Chlor	rinated Alk	enes				Solv	ents	ı	Pol	lychlorina	ted Biphen	nyls		\perp		Mo	onocyclic A	romatic	Hydrocarbons	s	1	-	Mis	ellaneous	Hydrocar	bons			Chl	Jorinated	d Benzen	ies		干	Trihalo	lomethane	es	Misc Chemica	ıls
\$7·	JBS	8. G		1,1-dichloroethene	1,1-dichloropropene	1,3-dichloropropene	3-chloropropene	4-chlorotoluene	cis-1,2-dichloroethene	cis-1,3-dichloropropene	retrachiorethere trans-1,2-dichloroethene	trans-1,3-dichloropropene	Trichloroethene	Vinyl Chloride		Aroclor	Aroclor 1232	Aroclor	Aroclor	Aroclor	Aroclor 1260 PCBs (Total)	1,2,4-trimethyl benzene	1,3,5-trimethyl benzene	4-iso pro pyl to luene	Bromobenzene	n-buty benzene	n-propyl benzene	sec-butyl benzene	Tert-butyl benzene	1,2-dibromoethane	2-Butanone (MEK)	4-Meth yr-z-pentanone (MIBK) Bromomethane	Cyclohexane	Dibromomethane	lodomethane	1,2,3-trichlorobenzene	1,2-Dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Chlorobenzene	Hexachlorobenzene	Bromodichlor ome thane	Chloroform	Dibromochloromethane	Tribromomethane	Hexachlorobutadiene	
EQL				0.5		g/kg mg/k		0.5				кg mg/кg 5 0.5	mg/kg m				g/kg mg/k 0.1 0.1		0.1		ng/kg mg/ 0.1 0.1	_	g mg/kg 0.5	_	mg/kg mg 0.5 0.		1 1		g/kg mg/k 0.5 1	0.5	0.5			0.5		mg/kg mg		.5 0.5			/кg mg/кg .5 0.05			kg mg/kg 5 0.5		mg/kg 1	
NEPM 2013 EIL - NEPM 2013 ESL NEPM 2013 HSL NEPM 2013 HSL NEPM 2013 Mgr NEPM 2013 Soil NEPM 2013 Soil NEPM 2013 Soil	Asbestos in Soil - FA & nt Limits - Commercial	al (Specific) ustrial, Fine Soil uded ACM - Commercial/Ir & AF - HSL ul and Industrial, Fine rusion - Clay 0 to <1m rusion - Clay 1 to <2m	ndustrial - HSL D																		7 ²¹	8																			80						
Field_ID	Sampled_Date-Tim	me Lab_Report_Numb	er Matrix_Type																																												
JBS&G (2019b) EMB1	20/05/2010	CE0020	Call Call	10.5			-0.5	-0.5	-0.5	-0.5	25 0	5 05	-0.5	0.5	-	.05	0.1	-0.5	-0.5	-0.5	-0.5		-0.5		05 0	0.5			0.5	0.5	-0.5	-0.5		-0.5	-0.5				25		5 -0.05	5 05	100	5 -05	100		
FRAG01	30/05/2019 30/05/2019	658838 658838	Soil Soil	<0.5	- <	<1 -	<0.5	<0.5	-	- <	u.o <0. 	.s <0.5	<0.5	- (0.0	0.5	<0.5 <	- <0.5	- <0.5	-		<0.5 <0.	- <0.5	<0.5	1	<0.5 <0	-		- <	0.5 -	- 40.5	<0.5	- c.u		<0.5	<0.5		- <0	0.5 <0.	.s <0.	0> د.	. <0.05	- <0.5	<0.5	<0.5	- <0.5		_
HA01	30/05/2019 30/05/2019	658838 658838	Soil Soil	<0.5		· ·	<0.5	-0.5	- cn F	- 40.5		5 205	<0.5		0.5		01 -01	-	- cn F	- <0.5	<0.5 <0.	5 <0.5	<0.5		<0.5 <0	- 0.5		÷Τ.	0.5 -	-	<0.5			<0.5	<0.5			15		5 ~	5 000	5 00	-	5 <0.5		-	
HA02 HA03	30/05/2019	658838	Soil	<0.5	_	<1 -	<0.5	_		<0.5 <0	0.5 <0.					<0.5 <			<0.5						<0.5 <0		- -		0.5 -	<0.5		<0.5 <0 <0.5 <0		<0.5	<0.5			0.5 <0.			0.5 <0.05 0.5 <0.05				<0.5		
HA04 SS01	30/05/2019 30/05/2019	658838 658838	Soil Soil	<0.5	-	<1 -	<0.5	<0.5	<0.5	<0.5 <0	 0.5 <0.	5 <0.5	<0.5		0.5	- <0.5 <	0.1 <0.5		<0.5	- <0.5	<0.5 <0.	5 <0.5	<0.5	+ - +	<0.5 <0	0.5		-	0.5 -	<0.5	<0.5	- · <0.5 <0		<0.5	<0.5			 0.5 <0.				- 0.5		5 <0.5		- :	
SS02	30/05/2019	658838	Soil	<0.5	-	<1 -	<0.5					.5 <0.5				-					<0.5 <0.				<0.5 <0				0.5 -	<0.5		<0.5 <0		<0.5		-					1.5 <0.05			5 <0.5		- :	_
SS03	30/05/2019 30/05/2019	658838 658838	Soil Soil	1:	-		-	-		-		-		-	-	-		+ -		-		+:	-	1:1	- -	-		-		+ :	-			-	-		- -		-		+-	+÷	+-	+-	+	-	
SS04 SS05	30/05/2019	658838	Soil	-			-	-	-			-	1:	-		<0.5 <	0.1 <0.5	5 <0.5	<0.5	<0.5	<0.5 <0.	5 -	-	1 - 1				-		1 .	-			-	-						<0.05	5 -	+-	<u> </u>		- :	_
SS06 SS07	3/06/2019 3/06/2019	659015 659015	Soil Soil	1 .	-	- -	-	-		-	- -	-			-	-		-		-	- -	+-	-	-	- -	-	- -	-	- -	ļ.	-		-	-	-		- -	-	-	-	+-	÷	+-	+-	+	· ·	
MW01 0-0.1	30/05/2019	658838	Soil	<0.5	- <	<1 -	<0.5	<0.5	<0.5	<0.5 <0	0.5 <0.	.5 <0.5	<0.5	<0.5 <0	1.5	<0.5 <	0.1 <0.5	s <0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	-	<0.5 <0	0.5		- <	:0.5 -	<0.5	<0.5	<0.5 <0	1.5 -	<0.5	<0.5	-	- <0	0.5 <0.).5 <0	.5 <0	.5 <0.05	5 <0.5	5 <0.5	5 <0.5	5 <0.5	- :	
MW01 1.9-1.0 MW01 6.9-7.0	30/05/2019	658838 658838	Soil Soil	-	-		-	-	-	-	- -	-	-			-		-	-	-		·	-	-	- -	-		-			-			-	-	-	- -	-		-		<u> </u>	-	-	1-1		
MW02 0.9-1.0	30/05/2019	658838	Soil	-			-	-				-	-	-		-		-	-	-		+ :	-	-		-				1 :	-			-	-	-						+:	+:	+:	$\pm \pm 1$	- :	
MW02 0-0.1	30/05/2019	658838	Soil		-		-	-	-	-					_	<5 .	_	<5		_	<5 <5		-	-		-		-						-	-	-			-		<0.5		-	-	1:1		
MW03 0.9-1.0 QA02	30/05/2019 30/05/2019	658838 658838	Soil Soil	<0.5	_	<1 -	<0.5	<0.5			<1 <1 0.5 <0.		<0.5			<0.5	<1 <5 0.1 <0.5	_	_		<5 <5 <0.5 <0.				<0.5 <0	0.5			<1 -	<0.5	-	<1 <		<0.5	<0.5		-	0.5 <0.		1 <	1 <0.5		5 <0.5		<1 <0.5	-	
QC02	30/05/2019	218764	Soil	<1		<2 <1	-	<1	_	_	_	1 <1				<0.1 <	0.1 <0.1	l <0.1	<0.1	<0.1	<0.1 <0.				_	<1 <	1 <1		<1 <1	_		_	1 <1	_	-	<1 <	_	1 <			1 <0.1		_	_	<1	<1	_
MW03 7.9-8.0 TP01 0.3-0.4	30/05/2019 30/05/2019	658838 658838	Soil Soil	<0.5	- <	<1 -	<0.5	<0.5	- 40.5	- 4		.5 <0.5	<0.5	- <0.5	.5	-		+ :		-		<0.5	<0.5	+ : +	<0.5 <0	-		- <	0.5 -	- <0.5	<0.5			<0.5	<0.5		- <0	0.5 <0.	0.5 <0.		5 -	<0.5	<0.5	5 <0.5	<0.5	-	
TP01 0-0.1	30/05/2019	658838	Soil	<0.5	- <	<1 -	<0.5	<0.5	<0.5	<0.5 <0	0.5 <0.	.5 <0.5	<0.5	<0.5 <0).5	<0.5 <	0.1 <0.5	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	-	<0.5 <0	0.5		- <	0.5 -	<0.5	<0.5	<0.5 <0).5 -	<0.5	<0.5	-	- <0	0.5 <0.	J.5 <0	.5 <0	.5 <0.05	5 <0.5	<0.5	5 <0.5	<0.5		
TP01 1.4-1.5 TP01 1-1.1	30/05/2019 30/05/2019	658838 658838	Soil	<0.5	- <	<1 -	<0.5	<0.5	<0.5	<0.5 <0	0.5 <0.	.5 <0.5	<0.5	<0.5 <0	1.5	-		+ :		-		<0.5	<0.5	+ : +	<0.5 <0	0.5		- <	0.5 -	<0.5	<0.5	<0.5 <0	1.5 -	<0.5	<0.5		- <0	0.5 <0	0.5 <0.	.5 <0	.5 -	<0.5	· <0.5	5 <0.5	<0.5	-	
TP02 0-0.1	30/05/2019	658838	Soil	-	•		-	-	-	-		-	-	-	-	<0.5 <	0.1 <0.5	<0.5	<0.5	<0.5	<0.5 <0.	5 -	-	-	- -	-		-			-			-	-	-			-		<0.05	5 -	1	1.	10		
TP02 1-1.1 TP03 0-0.1	30/05/2019 30/05/2019	658838 658838	Soil Soil	1:			+ -	-		-		-		-	-	-		+ :		-		+÷	+ -	+ - +		-		-		+ :				+ -	-			.—:			+-	+÷	+:	+÷	+-	- :	
TP04 0.5-0.6	30/05/2019	658838	Soil	-	-		-	-	-	-		-	-			-		-		-			-	-		-		-		1 :	-			-	-	-					-	1:	1:	1:	1.		_
TP04 0-0.1 TP05 0-0.1	30/05/2019 30/05/2019	658838 658838	Soil	<0.5	- <	<1 -	<0.5	<0.5	<0.5	<0.5 <0	0.5 <0.	.5 <0.5	<0.5	<0.5 <0	.5	<0.5 <	0.1 <0.5	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	+ - +	<0.5 <0	-		- <	0.5 -	<0.5	<0.5	<0.5 <0		<0.5	<0.5		- <0	0.5 <0.	.5 <0.	.5 <0	. <0.05	5 <0.5	5 <0.5	<0.5	<0.5	- :	
TP05 2-2.2	30/05/2019	658838	Soil		-		-	-	-	-	- -	-	-								<0.5 <0.		-	-	- -	-		-			-			-	-	-	- -	-			<0.05		1		1-7		_
TP06 0-0.1 QA01	30/05/2019 30/05/2019	658838 658838	Soil	<0.5 <0.5	_	<1 -		<0.5		<0.5 <0			<0.5			<0.5 <					<0.5 <0. <0.5 <0.		<0.5		<0.5 <0				0.5 -	<0.5		<0.5 <0 <0.5 <0		<0.5		-					0.5 <0.05 0.5 <0.05			5 <0.5 5 <0.5		- :	
QC01	30/05/2019	218764	Soil	<1	<1 <	<2 <1		<1				1 <1				<0.1 <	0.1 <0.1	<0.1	<0.1		<0.1 <0.					4 4	1 <1		<1 <1	<1	-		1 <1		-	<1 <					1 <0.1				<1	<1	_
TP06 1.4-1.5 TP07 0-0.1	30/05/2019 30/05/2019	658838 658838	Soil Soil	<0.5	- <	<1 -	<0.5	<0.5	<0.5	<0.5 <0	0.5 <0.	.5 <0.5	<0.5	<0.5 <0	1.5	<0.5 <	0.1 <0.5	- 5 <0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	+ - +	<0.5 <0	0.5		- <	:0.5 -	<0.5	<0.5	<0.5 <0	1.5 -	<0.5	<0.5		- <0	0.5 <0.	0.5 <0	.5 <0	.5 <0.05	5 <0.5	- c0.5 خ	5 <0.5	<0.5	-	
TP08 0-0.1	30/05/2019	658838 658838	Soil	-	-		-	-	-	-		-	-	-		-		-	-	-		1	-	-		-		-		-	-			-	-	-		1	-	-	-	-	-	-	1	-	_
TP09 0.4-0.5 TP10 0-0.1	30/05/2019 30/05/2019	658838 658838	Soil Soil	1:			1:	-	-			1	-	<u>:</u>		-		#		-		<u> </u>	1	1:		-				-					-							<u> </u>	+-	-	 -	:	_
TP10 1-1.1 TP11 0.3-0.4	30/05/2019 30/05/2019	658838 658838	Soil	<0.5		<1 -							<0.5		_	<0.5	0.1 <0.5	<0.5	<0.5	<0.5	<0.5 <0.		<0.5		<0.5 <0		- -		0.5 -		<0.5				<0.5	-			0.5 <0. 0.5 <0.		.5 <0.05			5 <0.5 5 <0.5		-	_
TP11 0-0.1	30/05/2019	658838	Soil	-									<0.5		.5	-		+ :		-				-					0.5 -		-											- 10.3	- 40.5	- 40.5	- 40.3	- :	
TP11 2.7-2.8 TP12 0.5-0.6	30/05/2019 30/05/2019	658838 658838	Soil Soil										-																		-												+-	-	+-7	-	
TP12 0-0.1	30/05/2019	658838	Soil	<0.5	- <	<1 -	<0.5	<0.5	<0.5	<0.5 <0	0.5 <0.	.5 <0.5	<0.5).5	<0.5 <	0.1 <0.5	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	-	<0.5 <0	0.5		- <	0.5 -	<0.5	<0.5	<0.5 <0	1.5 -	<0.5	<0.5	-	- <0	0.5 <0.	0.5 <0.	.5 <0	.5 <0.05	5 <0.5	5 <0.5	5 <0.5	<0.5		_
AQ01 0-0.6 AQ02 0.3-1.0	14/06/2019 14/06/2019	660830 660830	Soil Soil	-						-			-	: -		- [-					-						_	-		-	-	_	-					-	+-	+-	-	+:-7	-	
AQ03 0.1-0.95	14/06/2019	660830	Soil	-	-		-	-	-	-	- -	-	-	.			- -	-	- 1	-	- -	-	-	-		-	- -	-		-	-			-	-	-	- -	- -	- -			丰	-	-	$\overline{}$		_
AQ04 0-0.6 AQ05 0-0.1	14/06/2019 14/06/2019	660830 660830	Soil Soil	+:-	-		+ :	-	1:1	-	- -	-	+	-		-															-					-	_	_	_	+	+-	+:	+÷	-	++-	- :	_
AQ05 2.4-3.0	14/06/2019	660830	Soil	-	-		-	-	-	-		-	-			-		-	-	-			-	-		-		-		-	-			-	-	-							1	1			_
AQ06 0.4-1.1 AQ07 0-0.2	14/06/2019	660830 660830	Soil Soil	+:+	-		+:	-	+:+			-		-	-	-		+ -	+:+			+:	+:	+:+	- -	-		-:-		+ :	-		+:	+ -	1	-	-	+	\pm	+	+-	+:	+:	+-	+:-/	- :	—
AQ08 0.9-1.6	14/06/2019	660830	Soil	1.	-	- -	-	-	-	-	- -	-	-	-		-	- -	-	-	-	- -	1.	-	-	-	-	- -	-	- -		-	-		-	-		. .				1-	1	1	1-	##		_
AQ08 0-0.9 AQ09 0.3-1.3	14/06/2019	660830 660830	Soil Soil	+:+	-		+:	-	+:+	-		-	+ : +	-	-	-		+ -	+:+			+:	+:	+:+	- :	-				+ :			+:	+ -	1		: :	+	\pm	+:	+-	+:	+:	+-	++	- :	—
AQ09 0-0.3	14/06/2019	660830	Soil	1.	-		-	-	-	-	- -	-	-	-		-	- -	-	-	-	- -	1.	-	-	-	-	- -	-			-	-		-	-		. .				1-	1	1	1-	##		_
AQ09 1.5-2.1 AQ10 0.4-1.0	14/06/2019	660830 660830	Soil Soil	+:+	-		+:	-	+:+	-		-	+ : +	-	-	-		+ -	+:+			+:	+:	+:+	- :	-				1 :		: :	+:	+ -	+ -	\vdash	: :	+	\pm	+:	+-	+:	+:	+:	+:-	- :	
AQ10 0-0.4	14/06/2019	660830	Soil																																							丰	1	1-	##		_
AQ11 0.6-1.0 AQ11 0-0.6	14/06/2019	660830 660830	Soil Soil		-		<u> </u>	-	-	-		-	-	-	-	-		-	-	-	- -	<u> </u>	+-		- -	-		-		<u> </u>	-	- -		-	-		- -	- -				+:	+-	+-	+:-	-	
AQ12 0.1-1.1	14/06/2019	660830	Soil		-			-	-	-		-	-	·	-	-		-	-	-		<u> </u>	-			-	- -	-			-			-	-	-	- -	- -		-			<u> </u>	#	I		_
AQ12 0-0.1 AQ13 0.6-1.0	14/06/2019	660830 660830	Soil Soil										-		-																												+÷	-	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	-	—
AQ13 0-0.6	14/06/2019	660830	Soil	-	-		-	-	-	-		-	-			-		-	-	-			-	-	-	-		-			-			-	-	-						-	_	1			_
AQ14 0-1.0 AQ14 1-1.5	14/06/2019 14/06/2019	660830 660830	Soil Soil										-	:																1	-		-	-	-	-							-	-		- :	
	7,00,2013	000030	30																																			——									

Project Number: 58238 Project Name: Prospect Logistics Estate

						Chlor	inated A	kenes					Sol	lvents		F	Polychlor	rinated B	Siphenyls	s					Monoc	yclic Aron	matic Hyd	lrocarbon	IS				Mis	cellaneo	ous Hydro	carbons	s				Chlorin	ated Ber	nzenes				Trihalom	thanes		Misc C
JBS&G	1,1-dichloroethene	1,1-dichloropropene	1,3 -dichloro propene	2-chlorotoluene	3-chloropropene	4-chlorotoluene	cis-1,2-dichlor oethen e	cis-1,3-dichloropropene	Tetrachloroethene	trans-1,2-dichloroethene	trans-1,3-dichloropropene	Trichloroethene		2-Propanone (Acetone)	Aroclor 1016	Arocior 1221	Arocior 1232 Arocior 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCBs (Total)	1,2,4-trimethyl benzene	1,3,5-trimethyl benzene	4-isopropyl toluene	Bromobenzene	Isopropylbenzene	n-butyl benzene	n-propyl benzene	sec-butyl benzene	Styrene	Tert-butyl benzene	1,2-dibromoethane	2-Butanone (MEK)	4-Methyl-2-pentanone (MIBK)	Bromomethane	Cyclohexane	Dibromomethane	lodomethane	1,2,3-trichlorobenzene	1,2,4-trichlorobenzene	1,2-Dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Chlorobenzene	Hexachlorobenzene	Bromodichloromethane	Chloroform	Dibromochloro methane	Tribromo me tnane	Qualitatina di Indonesia
	mg/kg	mg/kg	mg/k	g mg/k	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg mg/	kg m	ng/kg	mg/kg m	g/kg mg	g/kg mg	g/kg mg	/kg mg	g/kg mg	/kg mg/	/kg mg/	/kg mg/	kg mg/k	kg mg/k	g mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg							mg/kg	mg/kg r								mg/kg	mg/kg m	ng/kg	m
	0.5	1		1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5 0.	5	0.5	0.1	0.1 0	0.1 0	0.1 0.	.1 0.	0.1	1 0.1	1 0.5	5 0.5	5 1	0.5	0.5	1	1	1	0.5	1	0.5	0.5	0.5	0.5	1	0.5	0.5	1	1	0.5	0.5	0.5	0.5	0.05	0.5	0.5	0.5	0.5	
G (2019) - Sediment Quality DGVs																																																		
M 2013 EIL - Commercial Industrial (Specific)																																																		
M 2013 ESL Commercial and Industrial, Fine Soil																																																		
PM 2013 HSL Asbestos in Soil - Bonded ACM - Commercial/Industrial - HSL D																																																		
M 2013 HSL Asbestos in Soil - FA & AF - HSL																																																		
M 2013 Mgnt Limits - Commercial and Industrial, Fine																																																		
M 2013 Soil HIL D																					7*1	18																							80					
M 2013 Soil HSL D for Vapour Intrusion - Clay 0 to <1m																																																		
M 2013 Soil HSL D for Vapour Intrusion - Clay 1 to <2m																																																		
M 2013 Soil HSL D for Vapour Intrusion - Clay 2 to <4m																																																		

Field_ID	Sampled_Date-Time	Lab_Report_Num	ber Matrix_Type																																													
JBS&G (2020)								\Box	\top		\top				\neg								\top				\Box	\top			-	\neg		\top				\neg		\top				$\neg \neg$	\Box			
TP200_0.0-0.1	9/03/2020	707966	SOIL		-	-	-		-	-	-	-	-	- -	.	-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0.	5 <0.5	<0.5		-	-			-	-	-	-	- -	-	- 1	-	-	. .		-	-	-	- <	0.05		-	T - '	-
TP201_0.9-1.0	9/03/2020	707966	SOIL		-	-	-		-	-	-	-	-			-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0.	5 <0.5	<0.5		-	-			-	-	-	-		-	- 1	-	-			-	-	-	- <	0.05		-	T - '	-
TP202_0.0-0.1	9/03/2020	707966	SOIL	-	-	-	-	- -	-	-	-	-	-	- -		-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0.	5 <0.5	<0.5		-	-		- -	-	-	-	-		-	-	-	-	. .	- -	-	-	-	- <	0.05		-	- '	-
TP203_0.5-0.6	9/03/2020	707966	SOIL		-	-	-		-	-	-	-	-	- -	- -	-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0.	5 <0.5	<0.5		-	-		- -	-	-	-	-	- -	-	- 1	-	-	. .		-	-	-	- <	0.05		-	T - '	-
TP204_0.0-0.1	9/03/2020	707966	SOIL	-	-	-	-		-	-	-	-	-		.	-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0	5 <0.5	<0.5	-	-	-		-	-	-	-	-		-	-	-	-	. -	-	-	-	-	- <	0.05		-	- '	-
TP205_0.4-0.5	9/03/2020	707966	SOIL	-	-	-	-		-	-	-	-	-	- -		-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0.	5 <0.5	<0.5		-	-		- -	-	-	-	-		-	-	-	-	. .	- -	-	-	-	- <	0.05		-	- '	-
TP206_0.0-0.1	9/03/2020	707966	SOIL		-	-	-	- -	-	-	-	-	-	- -	.	-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0.	5 <0.5	<0.5		-	-		- -	-	-	-	-	- -	-	- 1	-	-	. .		-	-	-	- <	0.05		-	T - '	-
TP207_0.0-0.1	9/03/2020	707966	SOIL	-	-	-	-		-	-	-	-	-		.	-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0	5 <0.5	<0.5	-	-	-		-	-	-	-	-		-	-	-	-	. -	-	-	-	-	- <	0.05		-	- '	-
TP208_0.9-1.0	9/03/2020	707966	SOIL	-	-	-	-		-	-	-	-	-	- -		-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0.	5 <0.5	<0.5		-	-		- -	-	-	-	-		-	-	-	-	. .	- -	-	-	-	- <	0.05		-	- '	-
TP209_0.9-1.0		707966	SOIL		-	-	-	- -	-	-	-	-	-	- -	- -	-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0.	5 <0.5	<0.5		-	-		- -	-	-	-	-	- -	-	- 1	-	-	. .		-	-	-	- <	0.05		-	- 1	-
TP210_0.4-0.5	9/03/2020	707966	SOIL	-	-	-	-		-	-	-	-	-		.	-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0	5 <0.5	<0.5	-	-	-		-	-	-	-	-		-	-	-	-	. -	-	-	-	-	- <	0.05		-	- '	-
TP211_0.0-0.1	9/03/2020	707966	SOIL	-	-	-	-		-	-	-	-	-		.	-	<0.5	<0.1	<0.5 <	0.5 <0	.5 <0	5 <0.5	<0.5	-	-	-			-	-	-	-		-	-	-	-		-	-	-	-	- <	0.05		-	-	

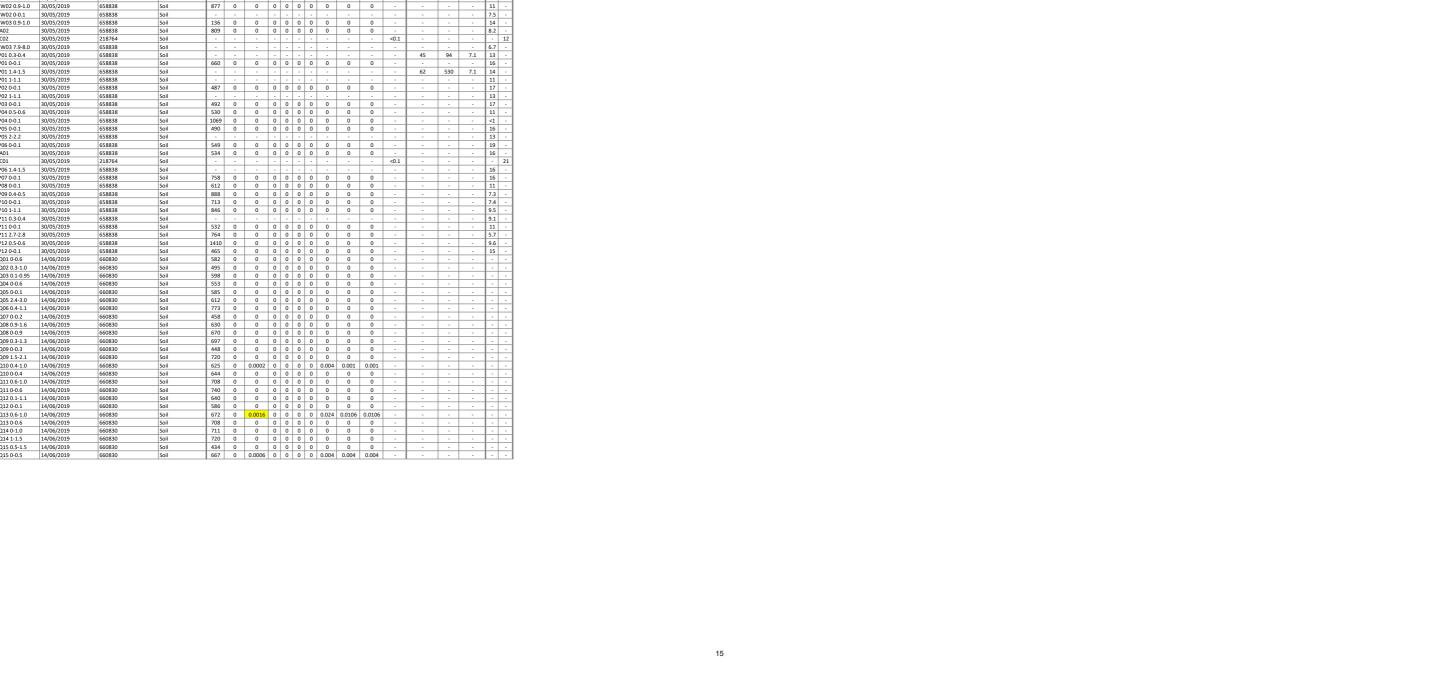
Env Stds Comments

#1:Adopted from TPHs total
#2:TV taken for Chromium (III), Clay Content of 1%
#3:TV Taken for PH 6
#4:TV taken for pH 6
#4:TV taken for pH 6
#6:ESLs are of low reliability.
#7:ESLs are of moderate reliability.
#8:Commercial/industrial D includes premises such as shops, offices, factories and industs
#9:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/frial
#10:Management limits of BTEX and naphthalene are not available, hence should not be:
#11:Limits applied after consideration of relevant ESLs and HSLs
#12:Key limitations of HSL should be referred to prior to application in Friebel and Nadeb.
#13:TV adopted from Chromium (V)
#14:Assumptions of HSL are presented in Friebel and Nadebaum (2011a).
#15:Refer to Section 8.2 and Appendix In Friebel and Madebaum (2011a).
#16:Refer to Section 8.2 and Appendix In Friebel and Madebaum (2011a).
#17:TV maybe be multiplied by a factor to account for biodegradation of vapour
#18:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific asse
#19:To obtain F2 subtract naohthalene from >C10-C16.

			730	estos						ion	ic Balanc	:e	- 01	her
Asbestos from ACM in Soil	Asbestos from FA & AF in Soil	Mass ACM	Mass Asbestos in ACM	Mass FA	Mass Asbestos in FA	Mass AF	Mass Asbestos in AF	Mass Asbestos in FA & AF	Total Asbestos#1	Cation Exchange Capacity	EC 1:5 soll:water	pH 1:5 soll:water	% Moisture 103oC	Moisture
%w/w	%w/w	g	g	g	g	g	g	g	g/kg	meq/100g	μS/cm	ph Units	%	%
									0.1	0.05	5	0.1	1	0.
			_											
0.05#8	-													
	0.001													
		%w/w %w/w	%w/w %w/w g	%w/w %w/w g g	%w/w %w/w g g g g	%w/w %w/w g g g g g	%w/w %w/w g g g g g	%w/w	%w/w	%w/w	%w/w	%w/w	%w/w	%w/w

				٩	S S	8 8	Σ			Σ	Σ	Σ	Σ	ĕ	5	2	- E	1 %	1
EQL				g	%w/w	%w/w	g	g	g	g	g	g	g	g/kg 0.1	meq/100g 0.05	μS/cm 5	ph Units 0.1		6 L
	diment Quality DGVs													0.1	0.03	-	0.1	t	
	Commercial Industrial (Sp	pecific)																	t
	Commercial and Industria																		
	Asbestos in Soil - Bonded		strial - HSL D		0.05#8														I
	Asbestos in Soil - FA & AF			_		0.001										_		_	4
	t Limits - Commercial and	d Industrial, Fine																-	4
NEPM 2013 Soil F	HSL D for Vapour Intrusio	n - Clay 0 to <1m																	
VEPM 2013 Soil F	HSL D for Vapour Intrusio	n = Clay 1 to <2m																	
NEPM 2013 Soil F	HSL D for Vapour Intrusio	n - Clay 2 to <4m																	
													*		•				_
Field_ID	Sampled_Date-Time	Lab_Report_Number	Matrix_Type															_	
Coffey (2013) BH01 0.0-0.2	20/02/2013		le "															Н	4
BH02 0.0-0.2	19/02/2013	-	Soil	+:	-	+-	-	-	-	-	-		-	-	-		-	H	\pm
BH03 0.0-0.2	20/02/2013		Soil	 	<u> </u>		-	-	-	-				-	<u> </u>	H :		+:	\pm
BH04 0.0-0.1	20/02/2013		Soil		-	-	-	-	-	-		-	-	-		-	-	T.	+
3H05 0.0-0.2	20/02/2013	-	Soil	-	-	-	-	-	-	-		-	-	-	-	-	-	1	- T
BH06 0.16-0.26	18/02/2013	-	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
3H06 1.0-1.1	19/02/2013	-	Soil	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	Ŀ	4
3H07 0.08-0.13	18/02/2013	-	Soil	<u> </u>	-	-	-	-	-	-		-	-	-	· ·	-	-	ŀ	-
BH07 0.2-0.3	18/02/2013	-	Soil	<u> </u>	-	-	<u> </u>	-	-	-	-	<u> </u>	-	-	<u> </u>	-	-	ŀ	\rightarrow
BH07 0.4-0.5 BH08 0.0-0.2	18/02/2013 20/02/2013	-	Soil	+ -	-	-	-	-	-	-	-	-	-	-	-	-	-	H	\rightarrow
BH08 0.0-0.2 BH09 0.0-0.1	20/02/2013	+ :	Soil	+:-	+	+	i i	1	1	i i	<u> </u>	H	<u> </u>	-	- : -	+	+	+:	\pm
BH10 0.16-0.26	20/02/2013		Soil	+ :	-	-	-	-	-	-	-	-	-	-	-	1	<u> </u>	+	+
BH11 0.19-0.29	20/02/2013	-	Soil	1 -	-	-	-	-	-	-	-	-	-	-		-	-	t.	
BH12 0.4-0.5	20/02/2013		Soil		-	-	-	-	-	-	-	-	-	-	-	-	-		
BH13 0.13-0.23	20/02/2013	-	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ŀ	+
BH14 0.19-0.29	18/02/2013	-	Soil	ا ٺ	-	-	-	-	-	-		-	-	-	· ·	-	-	ŀ	-
BH15 0.15-0.25 BH16 0.0-0.2	18/02/2013 20/02/2013	-	Soil	H	-	<u> </u>	-	-	-	-	-	-	-	-	<u> </u>	-	-	H	\rightarrow
BH17 0.5-0.6	19/02/2013	-	Soil	+:	-	<u> </u>	H-	-	-	·	-	<u> </u>	-	-	<u> </u>	+ -	<u> </u>	H:	+
BH17 0.5-0.6	19/02/2013	-	Soil	+:	-	-	1	-	1	-	-	-	-	-	<u> </u>	1		+:	\pm
BH17 0.5-6.0	19/02/2013		Soil	1 -	-	-	-	-	-	-		-	-	-		-	-	1.	\pm
BH18 0.0-0.2	20/02/2013	-	Soil		-	-	-	-	-	-	-	-	-	-	-	-	-	Ŀ	1
BH19 0.4-0.5	19/02/2013	-	Soil		-	-	-	-	-	-	-	-	-	-	-	-	-		1
BH19 1.0-1.1	19/02/2013	-	Soil		-	-	-	-	-	-	-	-	-	-	-	-	-	Ŀ	\rightarrow
BH20 0.0-0.2	20/02/2013	-	Soil	<u> </u>	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	ŀ	-
BH21 0.0-0.2 BH21 1.0-1.1	19/02/2013 19/02/2013	-	Soil	+ -	-	-	-	-	-	-	-	<u> </u>	-	-	<u> </u>	-	-	ŀ	+
BH21 1.0-1.1 BH21 3.0-3.1	19/02/2013	-	Soil	+÷	<u> </u>	<u> </u>	i :	·	i :	<u> </u>	-	<u> </u>	-	-	<u> </u>	+ :	<u> </u>	H:	+
BH21 3.9-4.0	19/02/2013		Soil	 	-		-	-	-	-				-	<u> </u>	—	-	+:	-
BH22 0.0-0.1	19/02/2013		Soil	1 -	-	-	-	-	-	-		-	-	-		-	-	١.	\pm
BH23 0.08-0.18	19/02/2013	-	Soil	1 -	-	-	-	-	-	-		-	-	-	-	-	-	1.	1
BH23 0.5-0.6	19/02/2013	-	Soil		-	-	-	-	-	-	-	-	-	-		-	-	Ŀ	
BH24 0.08-0.18	19/02/2013	-	Soil	<u> </u>	-	-	-	-	-	-		-	-	-	· ·	-	-	Ŀ	\rightarrow
BH24 0.5-0.6	19/02/2013	-	Soil	<u> </u>	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	ŀ	4
BH24 1.1-1.2 BH25 0.19-0.29	19/02/2013 18/02/2013	-	Soil	+ :	-	-	-	-	-	-	-	-	-	-	-	-	-	H	+
BH26 0.18-0.28	18/02/2013	-	Soil	+:	-	-	·	·	1	·	-	H:-	-	-	<u> </u>		-	H:	+
BH27 0.17-0.27	18/02/2013		Soil	+ -	-	-	-	-	-	-		-	-	-		T-	-	١.	\pm
3H27 0.4-0.5	18/02/2013	-	Soil	1 -	-	-	-	-	-	-	-	-	-	-		-	-	۲.	\rightarrow
BH28 0.16-0.26	18/02/2013	-	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1
BH29 0.19-0.29	18/02/2013	-	Soil	-	-	-	-	-	-	-	-	-	-	-		-	-	1	4
BH30 0.19-0.29	18/02/2013	-	Soil	<u> </u>	-	-	-	-	-	-	-	· ·	-	-	· ·	-	-	 	4
BH31 0.0-0.2	20/02/2013	-	Soil	H	-	<u> </u>	-	-	-	-	-	-	-	-	<u> </u>	-	 -	H:	+
BH31 0.4-0.5 BH32 0.08-0.18	20/02/2013	-	Soil	+ :	1	+ -	-	-	-	-	-	-	-	-	-	-	-	H	-
BH33 0.0-0.2	20/02/2013	-	Soil	+:	-	-	-	-	-	-	-	-	-	-	-	+ :	-	H	\rightarrow
3H34 0.09-0.19	19/02/2013		Soil	1 -	-	-	-	-	-	-	-	-	-	-		-	-	١.	-
BH34 1.0-1.1	19/02/2013	-	Soil	1 -	-	-	-	-	-	-	-	-	-	-	_ ·	-	-	1 -	1
3H35 0.08-0.18	18/02/2013	-	Soil		-	-	-	-	-	-	-	-	-	-		-	-	1	-
BH35 0.4-0.5	18/02/2013	-	Soil	-	-	-	•	-	-		-		-	-		-	-	1	4
BH36 0.0-0.2	20/02/2013	-	Soil	<u> </u>	-	-		-		-	-		-	-	<u> </u>	-	-	+	4
3H37 0.0-0.2 3H38 0.0-0.2	21/02/2013 21/02/2013	-	Soil	-	-	-		-	-	-	-	<u> </u>	-	-	<u> </u>	-	-	ŀ	+
BH38 0.0-0.2 BH38 0.4-0.5	21/02/2013	-	Soil	+ :	+-	+	-	-	1	-	-	-	<u> </u>	-	- : -	-	+-	H:	\pm
3H39 0.0-0.2	21/02/2013	-	Soil	+ :	-		1	-	1	-	-	-	-	-	<u> </u>	1	<u> </u>	+:	-
BH40 0.0-0.2	21/02/2013	-	Soil	1 -	-	-	-	-	-	-	-	-	-	-		-	-	t.	1
DUP2	18/02/2013	-	Soil	-	-	-	-	-	-	-	-	-	-	-		-	-	1.	-
DUP3	19/02/2013	-	Soil		-	-	-	-	-	-	-	-	-	-	-	-	-		1
DUP3A	19/02/2013	-	Soil	·	-	-		-	-		-		-	-		-	-	Ŀ	4
DUP5	19/02/2013	-	Soil	<u> </u>	-	<u> </u>	-	-	-	-	-	· ·	-	-	· ·	-	-	ŀ	4
DUP5A	19/02/2013	-	Soil	+·	-	-	-	-	-	-	-		-	-	<u> </u>	-	-	 	+
DUP7A	20/02/2013	-	Soil Sediment	+ :	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	H	-
SED1			Seamment				-	·	<u> </u>		<u> </u>	<u> </u>	+-	+					
SED1 SED2	21/02/2013		Sediment				l - l	-	-		-	-	-	-		-	-		

				Asb	estos						lon	ic Balanc	:e	Ot	her
Approx. Sample Mass	Asbestos from ACM in Soil	Asbestos from FA & AF in Soil	Mass ACM	Mass Asbestos in ACM	Mass FA	Mass Asbestos in FA	Mass AF	Mass Asbestos in AF	Mass Asbestos in FA & AF	Total Asbestos#1	Cation Exchange Capacity	EC 1:5 soil:water	pH 1:5 soll:water	% Moisture 103oC	Moisture
g	%w/w	%w/w	g	g	g	g	g	g	g	g/kg	meq/100g	μS/cm	ph Units	%	%
										0.1	0.05	5	0.1	1	0.1
	0.05#8														
	0.05#8	0.001 ¹⁹													
	0.05#8	0.001													
	0.05#8	0.001													
	0.05#8	0.001													

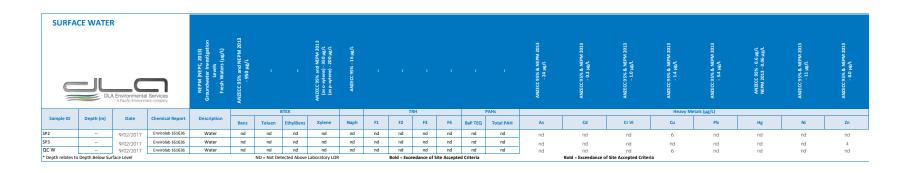

				4	AS .	- Ask	Σ	Σ̈		Σ	Σ	Σ	Σ	Ĕ	5	2	<u> </u>	8	Š
EQL				g	%w/w	%w/w	g	g	g	g	g	g	g	g/kg 0.1	meq/100g 0.05	μS/cm 5	ph Units 0.1	% 1	0.
	ediment Quality DGVs													0.1	0.05		0.1	Ť	1
	Commercial Industrial (Sp	pecific)																	
	Commercial and Industrial																		
	Asbestos in Soil - Bonded		trial - HSL D		0.05#8														
	Asbestos in Soil - FA & AF					0.001#9													L
	nt Limits - Commercial and	Industrial, Fine																H	\vdash
EPM 2013 Soil	HSL D for Vapour Intrusion	n - Clay 0 to <1m																	
	HSL D for Vapour Intrusion																		
IEPM 2013 Soil	HSL D for Vapour Intrusion	n - Clay 2 to <4m																	
															-				
ield_ID DLA (2017)	Sampled_Date-Time	Lab_Report_Number	Matrix_Type																
H1 0.5-0.6	8/02/2017		Soil	-	-	-	-	-	-	-	-	-	-	-		-	-	1	21
H1 1.9-2.0	8/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-		12
H4 0.5-0.6	7/02/2017	-	Soil		-	-	-	-	-	-	-	-	-	-	· .	-	-	Ŀ	8.6
H4 1.9-2.0	7/02/2017	-	Soil	·	-	-	-	-		-		-	-	-	<u> </u>	-	-	Ŀ	27
H4 5.9-6.0	7/02/2017	-	Soil	<u> </u>	-	-	-	-	-	-		-	-	-	· ·	-	-	ŀ	12
H6 0.5-0.6	8/02/2017	-	Soil	<u> </u>	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	ŀ	14
H6 1.9-2.0 H7 0.5-0.6	8/02/2017 8/02/2017	-	Soil	1	-	-	i i	-	÷	-	<u> </u>	-	-	-	<u> </u>	-	-	H	11
17 1.9-2.0	8/02/2017	 	Soil	-	+÷		Ė	-	Ė	-	<u> </u>	-		H:	- 	H:	<u> </u>	H	15
18 0.5-0.6	8/02/2017	-	Soil	Ė		1	Ė	-	-	-		-			<u> </u>	Ė	-	H	12
H8 1.9-2.0	8/02/2017	-	Soil		-	-	-	-	-	-	-	-	-	-		-	-	١.	8.5
H9 0.5-0.6	8/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	_ ·	-		Ŀ	14
H9 1.9-2.0	8/02/2017	-	Soil		-	-	-	-	-	-	-	-	-	-	-	-	-	·	13
H10 0.5-0.6	8/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-		20
H10 1.9-2.0	8/02/2017	-	Soil		-	-	-	-	-	-	-	-	-	-		-	-	ŀ	23
H11 0.5-0.6	8/02/2017	-	Soil	·	-	-	-	-		-	-	-	-	-	· ·	·	-	Ŀ	14
H11 1.9-2.0	8/02/2017	-	Soil	<u> </u>	-	-	-	-	-	-	-	-	-		<u> </u>	-	-	ŀ	23
H12 0.5-0.6 H12 1.9-2.0	8/02/2017 8/02/2017	-	Soil	-	-	1	-	-	-	-		-	-	-	-	-	-	H	5.8
H13 0.5-0.6	7/02/2017	-	Soil	<u> </u>	H :	-	<u> </u>	-	-	-	-	-	-	-	- : -	<u> </u>	-	H:	17
113 2.5-2.6	7/02/2017		Soil		-			-		-		-	-	-		-	-		17
13 7.4-7.5	7/02/2017	-	Soil		-	-	-	-	-	-		-	-	-		-	-	ŀ	6.7
114 0.5-0.6	8/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-		14
114 1.9-2.0	8/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-		-	-		16
116 0.5-0.6	8/02/2017	-	Soil	·	-	-	-	-	-	-		-	-	-		-	-	Ŀ	6.7
116 1.9-2.0	8/02/2017		Soil	·	-	-		-		-		-	-	-	· ·	-	-	Ŀ	6.7
117 0.5-0.6 117 1.9-2.0	8/02/2017	-	Soil	<u> </u>	-	-	-	-	•	-	· ·	-	-	-	<u> </u>	· ·	-	ŀ	30
117 1.9-2.0	8/02/2017 8/02/2017	-	Soil	1	-	-	-	-	-	-		-	-				-	H	6.1
H18 1.9-2.0	8/02/2017		Soil	-	-	-		-		-	-	-	-	-		<u> </u>		H	5.2
H19 0.5-0.6	8/02/2017		Soil		-	-	-	-	-	-		-	-	-		-	-	Ι.	17
H19 1.9-2.0	8/02/2017	-	Soil		-	-	-	-		-	-	-	-	-			-	·	22
H2 0.5-0.6	8/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-		23
H2 1.9-2.0	8/02/2017	-	Soil		-	-	-	-	-	-	-	-	-	-	· .	-	-	Ŀ	12
H21 0.5-0.6	8/02/2017	-	Soil	·	-	-	-	-		-	-	-	-	-	· ·		-	Ŀ	7.3
H21 1.9-2.0	8/02/2017	-	Soil	·	-	-	-	-		-		-	-	-	· ·	-	-	ŀ	8.1
H22 0.5-0.6 H22 1.9-2.0	7/02/2017 7/02/2017	-	Soil	-	<u> </u>	-	-	-	-	-	-	-	-	<u> </u>	<u> </u>	<u> </u>	-	H	15
H22 1.9-2.0 H24 0.5-0.6	8/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	- : -	-	-	H	17
H24 1.9-2.0	8/02/2017	-	Soil	<u> </u>		-	-	-		-	-	-	-				-	H	23
H25 0.5-0.6	8/02/2017	-	Soil	<u> </u>	-	-	-	-	-	-	-	-	-	-		<u> </u>	-	1	11
H25 1.9-2.0	8/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	· .	-	-		14
H26 0.5-0.6	7/02/2017	-	Soil		-	-	-	-	-	-	-	-	-	-		-	-	ŀ	7.6
H26 1.9-2.0	7/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-		-	-		18
H27 0.5-0.6	7/02/2017	-	Soil	-	-	-	-	-		-	-	-	-		· ·	-	-	Ŀ	15
H27 1.9-2.0	7/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	ŀ	24
H28 0.5-0.6 H28 1.9-2.0	8/02/2017 8/02/2017	-	Soil	H:	-	-	-	-	-	-	-	-	-		<u> </u>	-	-	H	13
H28 1.9-2.0 H29 0.5-0.6	8/02/2017	<u> </u>	Soil	-	-	-	1	-	-	1		-	-	-		-		H	18
H29 0.5-0.6 H29 1.9-2.0	8/02/2017	<u> </u>	Soil	+	T:		-	-	-	-	<u> </u>	-	-	H		H:		H	28
13 0.5-0.6	8/02/2017	-	Soil		-	-	-	-	-	-	-	-	-	-		-	-	١.	25
13 1.9-2.0	8/02/2017		Soil	-	-	-	-	-	-	-	-	-	-	-		-	-		28
130 0.5-0.6	7/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-		11
H30 5.9-6.0	7/02/2017		Soil	-	-	-	-	-	-	-	-	-	-	-		-	-		22
H31 0.5-0.6	8/02/2017	-	Soil	-	-	-	-	-	-	-	- 1	-	-				-		16
131 1.9-2.0	8/02/2017	-	Soil	·	-	-	-	-		-	· ·	-	-	-	<u> </u>	<u> </u>	-	ŀ	8.1
H32 0.5-0.6	8/02/2017	-	Soil	<u> </u>	-	-	-	-	-	-	-	-	-	-	<u> </u>	<u> </u>	-	<u> </u>	16
H32 1.9-2.0	8/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-		-	-	H	12
A15 0.2-0.4 A15 0-0.2	8/02/2017 8/02/2017	-	Soil	-	+	-	-	-	-	-		-	-	-	-	H	-	H	9.4
A20 0.2-0.3	9/02/2017	 	Soil	H	+÷		Ė	Ė	Ė	H	<u> </u>	-		H:	- 	H:	<u> </u>	H:	14
A20 0.2-0.5 A20 0.5-0.6	9/02/2017	-	Soil	-			<u> </u>	-	-	-		-	-	-	<u> </u>		-	H	14
A23 0.1-0.2	9/02/2017	-	Soil		-	-	-	-	-	-	-	-	-	-		-	-	١.	19
A23 0.2-0.3	9/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	_ ·	-		Ŀ	21
IA5 0.2-0.3	9/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-		-	-		12
IA5 0.4-0.5	9/02/2017	-	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-		8.9
D2	2/08/2017	-	Sediment	-	-	-	-	-	-	-	-	-	-	-	· ·		-	Ŀ	ļ.
SD3	2/08/2017		Sediment		-	-	-	-	- 1	-	- 1	-	-	- 1		-	-	١.	-

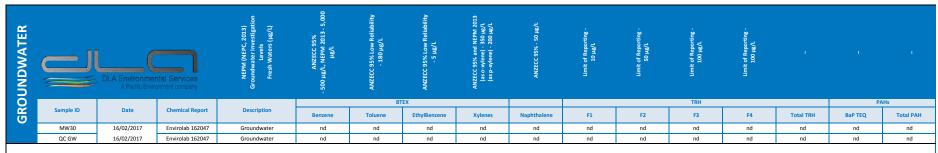
				Asb	estos						lon	ic Balanc	:e	Ot	her
Approx. Sample Mass	Asbestos from ACM in Soil	Asbestos from FA & AF in Soil	Mass ACM	Mass Asbestos in ACM	Mass FA	Mass Asbestos in FA	Mass AF	Mass Asbestos in AF	Mass Asbestos in FA & AF	Total Asbestos#1	Cation Exchange Capacity	EC 1:5 soll:water	pH 1:5 soll:water	% Moisture 103oC	Moisture
g	%w/w	%w/w	g	g	g	g	g	g	g	g/kg	meq/100g	μS/cm	ph Units	%	%
										0.1	0.05	5	0.1	1	0.1
	0.05#8														
		0.001 29													
		0.001													
		0.001													
		0.001													

				g g	₩/w	₩/w	g	g g	g g	g g	g g	g g	Z g	g/kg	meq/100g	μS/cm	ph Units	% %	<u>Σ</u> %
EQL				T T	,	-	Ť		Ŭ	Ŭ		Ŭ	ŭ	0.1	0.05	5	0.1	1	
	diment Quality DGVs																		
	Commercial Industrial (S																		
	Commercial and Industria																		
		ACM - Commercial/Indus	trial - HSL D		0.05#8														
	Asbestos in Soil - FA & AF					0.001													
	t Limits - Commercial and	d Industrial, Fine																	\vdash
NEPM 2013 Soil F		n. Clay 0 to <1m																	
	HSL D for Vapour Intrusio																		
	HSL D for Vapour Intrusio HSL D for Vapour Intrusio																		
NEPIVI 2013 3011 F	13L D for Vapour intrusio	II - Clay 2 to S4III																_	
Field_ID	Sampled_Date-Time	Lab_Report_Number	Matrix_Type																
JBS&G (2019b)																			
EMB1	30/05/2019	658838	Soil	561	0	0	0	0	0	0	0	0	0	-		-	-	9	-
RAG01	30/05/2019	658838	Soil	77	0	0	0	0	0	0	0	0	0	-	-	-	-	Ť	-
1A01	30/05/2019	658838	Soil	548	0	0	0	0	0	0	0	0	0	-	-	-	-	6.8	
1A02	30/05/2019	658838	Soil	747	0	0	0	0	0	0	0	0	0	-	-	-	-	9.4	-
1A03	30/05/2019	658838	Soil	615	0	0	0	0	0	0	0	0	0	-	-	-	-	13	-
IA04	30/05/2019	658838	Soil	845	0	0	0	0	0	0	0	0	0	-	-	-	-	9.4	-
S01	30/05/2019	658838	Soil	484	0	0	0	0	0	0	0	0	0	-	-	-	-	9.4	-
S02	30/05/2019	658838	Soil	490	0	0	0	0	0	0	0	0	0	-	-	-	-	12	ļ -
503	30/05/2019	658838	Soil	577	0	0	0	0	0	0	0	0	0	-	-	-	-	21	ļ -
S04	30/05/2019	658838	Soil	492	0	0	0	0	0	0	0	0	0	-	-	-	-	15	-
S05	30/05/2019	658838	Soil	560	0	0	0	0	0	0	0	0	0	-	-	-	-	9.5	-
S06	3/06/2019	659015	Soil	1146	0	0	0	0	0	0	0	0	0	-		-	-	H	<u> -</u>
S07	3/06/2019	659015	Soil	874	0	0	0	0	0	0	0	0	0	-		-	-	1.	<u> ·</u>
AW01 0-0.1	30/05/2019	658838	Soil	359	0	0	0	0	0	0	0	0	0	-		-	-	12	
MW01 1.9-1.0	30/05/2019	658838	Soil	825	0	0	0	0	0	0	0	0	0	-		-	-	9	ŀ
MW01 6.9-7.0	30/05/2019	658838	Soil	977	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	_	+
MW02 0.9-1.0 MW02 0-0.1	30/05/2019 30/05/2019	658838 658838	Soil	877	0	0	0	0	0	0	0	0	0	-	-:-	-	-	7.5	-
лw02 0-0.1 лw03 0.9-1.0	30/05/2019	658838	Soil	136	0	0	0	0	0	0	0	0	0	-	<u> </u>	-	-	14	1
DA02	30/05/2019	658838	Soil	809	0	0	0	0	0	0	0	0	0		<u> </u>	-		8.2	-
2C02	30/05/2019	218764	Soil	-	-	-	-	-	-	-	-	-	-	<0.1		-	-	-	12
MW03 7.9-8.0	30/05/2019	658838	Soil		-		-	-			-	-	-	-		-	-	6.7	-
P01 0.3-0.4	30/05/2019	658838	Soil		-	-	-	-	-		-	-	-	-	45	94	7.1	13	١.
P01 0-0.1	30/05/2019	658838	Soil	660	0	0	0	0	0	0	0	0	0	-	-	-	-	16	١.
P01 1.4-1.5	30/05/2019	658838	Soil		-	-	-	-	-	-	-	-	-	-	62	530	7.1	14	Τ.
P01 1-1.1	30/05/2019	658838	Soil		-	-	-	-	-	-	-	-	-	-	-	-	-	11	-
P02 0-0.1	30/05/2019	658838	Soil	487	0	0	0	0	0	0	0	0	0	-	-	-	-	17	-
P02 1-1.1	30/05/2019	658838	Soil		-	-	-	-	-	-	-	-	-	-	-	-	-	13	-
P03 0-0.1	30/05/2019	658838	Soil	492	0	0	0	0	0	0	0	0	0	-	-	-	-	17	-
P04 0.5-0.6	30/05/2019	658838	Soil	530	0	0	0	0	0	0	0	0	0	-	-	-	-	11	-
P04 0-0.1	30/05/2019	658838	Soil	1069	0	0	0	0	0	0	0	0	0	-	-	-	-	<1	-
P05 0-0.1	30/05/2019	658838	Soil	490	0	0	0	0	0	0	0	0	0	-	-	-	-	16	-
P05 2-2.2	30/05/2019	658838	Soil		-	-	-	-	-	-	-	-	-	-	-	-	-	13	-
TP06 0-0.1	30/05/2019	658838	Soil	549	0	0	0	0	0	0	0	0	0	-	-	-	-	19	-
QA01	30/05/2019	658838	Soil	534	0	0	0	0	0	0	0	0	0	-	-	-	-	16	-
QC01	30/05/2019	218764	Soil		-	-	<u> </u>	-	-	•	-	-	-	<0.1	-	-	-	Ŀ	21
P06 1.4-1.5	30/05/2019	658838	Soil	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16	
P07 0-0.1	30/05/2019	658838	Soil	758	0	0	0	0	0	0	0	0	0	-	<u> </u>	-		16	
P08 0-0.1	30/05/2019	658838	Soil	612	0	0	0	0	0	0	0	0	0	-	-	-	-	11	
P09 0.4-0.5	30/05/2019	658838	Soil	888	0	0	0	0	0	0	0	0	0	-		-	-	7.3	
P10 0-0.1 P10 1-1.1	30/05/2019 30/05/2019	658838 658838	Soil	713 846	0	0	0	0	0	0	0	0	0	-	<u> </u>	-	<u> </u>	7.4 9.5	
P10 1-1.1	30/05/2019	658838	Soil	040	-	0	-	U	-	-	0	U	- 0	-	<u> </u>	-		9.1	
P11 0.3-0.4 P11 0-0.1	30/05/2019	658838	Soil	532	0	0	0	0	0	0	0	0	0	-	H :	-		11	1
P11 2.7-2.8	30/05/2019	658838	Soil	764	0	0	0	0	0	0	0	0	0		<u> </u>	-		5.7	-
P12 0.5-0.6	30/05/2019	658838	Soil	1410	0	0	0	0	0	0	0	0	0	-	· .	-	-	9.6	-
P12 0-0.1	30/05/2019	658838	Soil	465	0	0	0	0	0	0	0	0	0	-	-	-	-	15	1
AQ01 0-0.6	14/06/2019	660830	Soil	582	0	0	0	0	0	0	0	0	0	-		-	-	T.	١.
AQ02 0.3-1.0	14/06/2019	660830	Soil	495	0	0	0	0	0	0	0	0	0	-	-	-	-	·	1
AQ03 0.1-0.95	14/06/2019	660830	Soil	598	0	0	0	0	0	0	0	0	0	-	-	-	-		-
Q04 0-0.6	14/06/2019	660830	Soil	553	0	0	0	0	0	0	0	0	0	-		-	-		-
AQ05 0-0.1	14/06/2019	660830	Soil	585	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-
Q05 2.4-3.0	14/06/2019	660830	Soil	612	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-
Q06 0.4-1.1	14/06/2019	660830	Soil	773	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-
Q07 0-0.2	14/06/2019	660830	Soil	458	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-
Q08 0.9-1.6	14/06/2019	660830	Soil	630	0	0	0	0	0	0	0	0	0	-	-	-	-	Ŀ	-
Q08 0-0.9	14/06/2019	660830	Soil	670	0	0	0	0	0	0	0	0	0	-	-	-	-	Ŀ	-
Q09 0.3-1.3	14/06/2019	660830	Soil	697	0	0	0	0	0	0	0	0	0	-		-	-	Ŀ	-
Q09 0-0.3	14/06/2019	660830	Soil	448	0	0	0	0	0	0	0	0	0	-	-	-	-	Ŀ	-
Q09 1.5-2.1	14/06/2019	660830	Soil	720	0	0	0	0	0	0	0	0	0	-	<u> </u>	-	-	Ŀ	ļ.
Q10 0.4-1.0	14/06/2019	660830	Soil	625	0	0.0002	0	0	0	0		0.001	0.001	-	-	-	-	ŀ	<u> · </u>
Q10 0-0.4	14/06/2019	660830	Soil	644	0	0	0	0	0	0	0	0	0	-		-	-	ŀ	<u> ·</u>
AQ11 0.6-1.0	14/06/2019	660830	Soil	708	0	0	0	0	0	0	0	0	0	-	-	-	-	ŀ	ļ.
Q11 0-0.6	14/06/2019	660830	Soil	740	0	0	0	0	0	0	0	0	0	-		-	-	H	<u> -</u>
Q12 0.1-1.1 Q12 0-0.1	14/06/2019	660830	Soil	640	0	0	0	0	0	0	0	0	0	-	-	-	-	H	+:
	14/06/2019	660830	Soil	586 672	0	0.0016	0	0	0	0	0.024	0 0106	0 0106	-		-	-	H	H:
Q13 0.6-1.0	14/06/2019	660830 660830	Soil	708	0	0.0016	0	0	0	0	0.024	0.0106	0.0106	-		-	-	H	1:
Q13 0-0.6 Q14 0-1.0	14/06/2019	660830	Soil	711	0	0	0	0	0	0	0	0	0	-	-:-	-	-	H	+:
AQ14 0-1.0 AQ14 1-1.5	14/06/2019	660830	Soil	720	0	0	0	0	0	0	0	0	0	-	- : -	-	-	1	+:
AQ15 0.5-1.5	14/06/2019	660830	Soil	434	0	0	0	0	0	0	0	0	0	-	<u> </u>	-	-	1	1
			1 - 2 **		0	0.0006	0	0		0		0.004	0.004	-		-		 	1

Table A: Soil Analytical Results

Project Number: 58238 Project Name: Prospect Logistics Estate

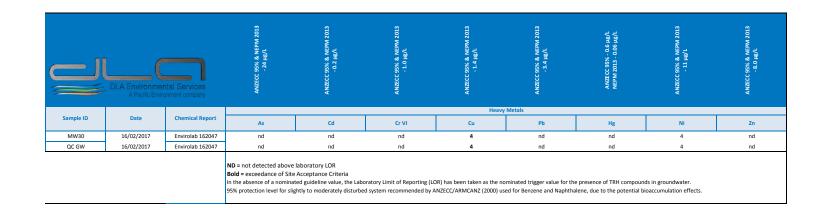



					Asb	estos	:			1		Ion	ic Balanc	e	0	ther
JBSaG	Approx. Sample Mass	Asbestos from ACM in Soil	Asbestos from FA & AF in Soil	Mass ACM	Mass Asbestos in ACM	Mass FA	Mass Asbestos in FA	Mass AF	Mass Asbestos in AF	Mass Asbestos in FA & AF	. Total Asbestos#1	Cation Exchange Capacity	EC 1:5 soil:water	pH 1:5 soll:water	% Moisture 103oC	Moisture
EOL	g	%w/w	%w/w	g	g	g	g	g	g	g	g/kg 0.1	meq/100g 0.05	μS/cm 5	ph Units 0.1	-	0.1
ANZG (2019) - Sediment Quality DGVs	-										0.1	0.05	5	0.1	1	0.1
NEPM 2013 EIL - Commercial Industrial (Specific)	+														Н	-
NEPM 2013 ESL Commercial and Industrial, Fine Soil	+															
NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Commercial/Industrial - HSL D	_	0.05#8														
NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Commercial/industrial - HSL D	_	0.05	0.001#9												\vdash	\vdash
NEPM 2013 Mgnt Limits - Commercial and Industrial, Fine	_		0.001		_										Н	-
NEPM 2013 Soil Hill D	_															
NEPM 2013 Soil HILL D for Vapour Intrusion - Clay 0 to <1m																
NEPM 2013 Soil HSL D for Vapour Intrusion - Clay 1 to <2m																
NEPM 2013 Soil HSL D for Vapour Intrusion - Clay 2 to <4m																

Field_ID	Sampled_Date-Time	Lab_Report_Number	Matrix_Type																
JBS&G (2020)																			
TP200_0.0-0.1	9/03/2020	707966	SOIL	272	0	0	0	0	0	0	0	0	0	-	19	31	5.6	12	-
TP201_0.9-1.0	9/03/2020	707966	SOIL	427	0	0	0	0	0	0	0	0	0	-	-	-	-	12	-
TP202_0.0-0.1	9/03/2020	707966	SOIL	352	0	0	0	0	0	0	0	0	0	-	-	-	-	14	-
TP203_0.5-0.6	9/03/2020	707966	SOIL	255	0	0	0	0	0	0	0	0	0	-	-	-	-	12	-
TP204_0.0-0.1	9/03/2020	707966	SOIL	381	0	0	0	0	0	0	0	0	0	-	2.9	16	5.2	14	-
TP205_0.4-0.5	9/03/2020	707966	SOIL	451	0	0	0	0	0	0	0	0	0	-	-	-	-	14	-
TP206_0.0-0.1	9/03/2020	707966	SOIL	451	0	0	0	0	0	0	0	0	0	-	-	-	-	17	-
TP207_0.0-0.1	9/03/2020	707966	SOIL	271	0	0	0	0	0	0	0	0	0	-	-	-	-	25	-
TP208_0.9-1.0	9/03/2020	707966	SOIL	410	0	0	0	0	0	0	0	0	0	-	-	-	-	21	-
TP209_0.9-1.0	9/03/2020	707966	SOIL	427	0	0	0	0	0	0	0	0	0	-	-	-	-	18	-
TP210_0.4-0.5	9/03/2020	707966	SOIL	520	0	0	0	0	0	0	0	0	0	-	-	-	-	15	-
TP211 0.0-0.1	9/03/2020	707966	SOIL	380	0	0	0	0	0	0	0	0	0	-		-	-	23	

Env Stds Comments
#12-Adopted from TPHs total
#2-TV taken for Chromium (III), Clay Content of 1%
#3-TV Taken for Chromium (III), Clay Content of 1%
#3-TV Taken for pH 6
#4-TV taken for pH 6
#5-TV taken for pH 6 and CEC 30
#6-ESLS are of low reliability.
#8-Commercial/industrial D includes premises such as shops, offices, factories and industs
#9-The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/frial
#10-Management limits of BTEX and naphthalene are not available, hence should not be:
#111-Limits applied after consideration of relevant ESLs and HSLs
#12-Key limitations of HSL should be referred to prior to application in Friebel and Nadebs
#13-TV adopted from Chromium (V)
#14-Assumptions of HSL are presented in Friebel and Nadebaum (2011a and 2011b).
#15-Refer to Section 8.2 and Appendix in Friebel and Nadebaum (2011a).
#17-TV maybe be multiplied by a factor to account for biodegradation of vapour
#18-HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific asse
#19-To obtain F2 subtract naohthalene from >C10-C16.

16

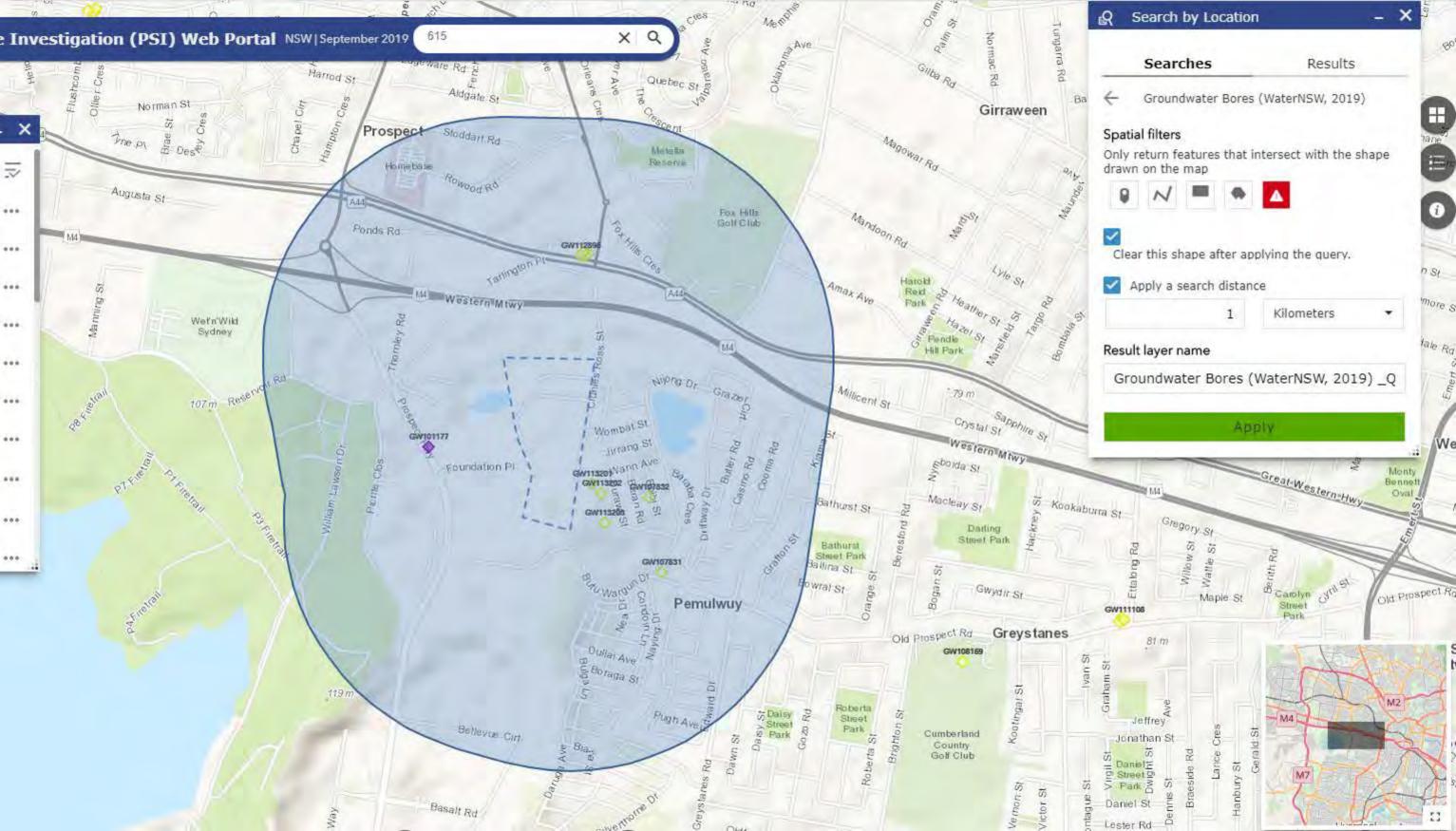


ND = not detected above laboratory LOR

Bold = exceedance of Site Acceptance Criteria
In the absence of a nominated guideline value, the Laboratory Limit of Reporting (LOR) has been taken as the nominated trigger value for the presence of TRH compounds in groundwater.

99% protection level for slightly to moderately disturbed system recommended by ANZECC/ARMCANZ (2000) used for Benzene and Naphlathene, due to the potential bioaccumulation effects.

Table LR2 Surface Water Analytical Results Phase 2 Environmental Audit Boral Prospect


Field ID	SW1	SW2	SW3
Sampled Date	21/02/2013	21/02/2013	21/02/2013

Chem Group	ChemName	Units	EQL	ANZECC 2000 Freshwater 95%			
BTEX	Benzene	μg/L	1	950	<1	<1	<1
	Ethylbenzene*	μg/L	1	80	<1	<1	<1
	Toluene*	μg/L	1	180	<1	<1	<1
	Xylene (m & p)*	μg/L	2	275	<2	<2	<2
	Xylene (o)	μg/L	1	350	<1	<1	<1
TPH	C6 - C9	μg/L	20		<20	<20	<20
	C10 - C14	μg/L	50		<50	<50	<50
	C15 - C28	μg/L	100		<100	<100	<100
	C29 - C36	μg/L	100		<100	<100	<100
	C10 - C36 (Sum of total)	μg/L	100		<100	<100	<100
PAH	Acenaphthene	µg/L	1		<1	<1	<1
	Acenaphthylene	µg/L	1		<1	<1	<1
	Anthracene*	µg/L	1	0.0004	<1	<1	<1
	Benzo(a)anthracene	µg/L	1		<1	<1	<1
	Benzo(a)pyrene*	µg/L	1	0.0002	<1	<1	<1
	Benzo(b)&(k)fluoranthene	μg/L	2		<2	<2	<2
	Benzo(g,h,i)perylene	μg/L	1		<1	<1	<1
	Chrysene	μg/L	1		<1	<1	<1
	Dibenz(a,h)anthracene	μg/L	1		<1	<1	<1
	Fluoranthene8	μg/L	1	0.0014	<1	<1	<1
	Fluorene	μg/L	1		<1	<1	<1
	Indeno(1,2,3-c,d)pyrene	μg/L	1		<1	<1	<1
	Naphthalene	μg/L	1	16	<1	<1	<1
	Phenanthrene*	μg/L	1	0.002	<1	<1	<1
	Pyrene	μg/L	1		<1	<1	<1
	Total PAHs	μg/L	2		<2	<2	<2
Metals	Arsenic	mg/L	0.005	0.013	< 0.005	0.023	< 0.005
	Cadmium	mg/L	0.0005	0.0002	< 0.0005	0.0009	< 0.0005
	Chromium	mg/L	0.005	0.001	< 0.005	0.16	< 0.005
	Cobalt*	mg/L	0.005	0.09	< 0.005	0.033	< 0.005
	Copper	mg/L	0.005	0.0014	< 0.005	0.31	< 0.005
	Lead	mg/L	0.005	0.0034	< 0.005	0.077	< 0.005
	Mercury	mg/L	0.0001	0.0006	< 0.0001	< 0.0001	< 0.0001
	Nickel	mg/L	0.005	0.011	< 0.005	0.15	< 0.005
	Titanium	mg/L	0.005		0.006	5.5	0.016
	Zinc	mg/L	0.005	0.008	< 0.005	2	< 0.005
	pH	units	0.1		6.9	9	7.5
	Electrical Conductivity	uS/cm	1		350	610	890

Exceedance NEPM 1999 HIL-F (Commerical / Industrial)
<1 Less than laboratory limit of reporting
* Low reliability trigger values adopted

Appendix C Groundwater Bore Search

NSW Office of Water Work Summary

GW112896

Licence: 10BL602282 Licence Status: ACTIVE

Authorised MONITORING BORE

Purpose(s):

Standing Water Level:

Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped

Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: Completion Date: 04/04/2007 Drilled Depth:

Contractor Name: Macquarie Drilling

Driller: Unkown Unknown

Assistant Driller:

Property: CALTEX OIL (AUST) PTY LTD

442 BLACKTÒWN ROAD

PROSPECT 2148 NSW

GWMA: Salinity: GW Zone: Yield:

Site Details

Site Chosen By:

County Parish Cadastre Form A: CUMBÉ CUMBE.41 25//739107

Licensed:

Region: 10 - Sydney South Coast CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Elevation: 0.00 m (A.H.D.) Latitude: 33°48'16.6"S Northing: 6257577.0 Easting: 308123.0 Elevation Unknown Longitude: 150°55'37.7"E

Source:

GS Map: -MGA Zone: 0 Coordinate Unknown

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

-					,					
ſ	Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
			'		(m)	(m)	Diameter	Diameter		
1							(mm)	(mm)		

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
1	' '						(m)		

Geologists Log

וט	ше	15	LC	g
Fre	m	TΛ	- [-	Γh

From	То	To Thickness Drillers Description		Geological Material	Comments
(m)	(m)	(m)	·		

23/07/2014: Nat Carling, 23-July-2014; Added status, drill method & depth, updated work type.

Remarks

*** End of GW112896 ***

NSW Office of Water Work Summary

GW112894

Licence: 10BL602282 Licence Status: ACTIVE

Authorised MONITORING BORE

Purpose(s):

Standing Water Level:

Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped

Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: Completion Date: 04/04/2007 Prilled Depth:

Contractor Name: Macquarie Drilling

Driller: Unkown Unknown

Assistant Driller:

Property: CALTEX OIL (AUST) PTY LTD

442 BLACKTÒWN ROAD

PROSPECT 2148 NSW

GWMA: Salinity: GW Zone: Yield:

Site Details

Site Chosen By:

County Parish Cadastre Form A: CUMBE CUMBE.41 25//739107

Licensed:

Region: 10 - Sydney South Coast CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Elevation: 0.00 m (A.H.D.) Northing: 6257595.0 Latitude: 33°48'16.0"S Elevation Unknown Easting: 308117.0 Longitude: 150°55'37.5"E

Source:

GS Map: - MGA Zone: 0 Coordinate Unknown

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

-					,					
ſ	Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
			'		(m)	(m)	Diameter	Diameter		
1							(mm)	(mm)		

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
1							(m)		

Geologists Log Drillers Log

From	To Thickness Drillers Description		Geological Material	Comments	
(m)	(m)	(m)		_	

Remarks	
23/07/2014: Nat Carling, 23-July-2014; Added status, drill method & depth, updated work type.	

*** End of GW112894 ***

NSW Office of Water Work Summary

GW107832

Licence: 10BL165697 Licence Status: ACTIVE

Authorised MONITORING BORE

Purpose(s):

Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status:

Construct.Method: Auger

Owner Type:

Commenced Date: Final Depth: 4.00 m
Completion Date: 03/11/2005 Prilled Depth: 4.00 m

Contractor Name:

Driller: Nealings Edwin Stapleton

Assistant Driller:

Property: STOCKLAND DEVELOPMENTS Standing Water Level:

P/L FORMER CSIRO SITE CLUNES ROSS ST PROSPECT

2148 NSW

GWMA: - Salinity: GW Zone: - Yield:

Site Details

Site Chosen By:

County Parish Cadastre
Form A: CUMBE CUMBE.41 108 1081614
Licensed: CUMBERLAND PROSPECT Whole Lot
108//1081614

Region: 10 - Sydney South Coast CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Elevation: 0.00 m (A.H.D.)

Northing: 6256578.0

Elevation Unknown

Northing: 6256578.0

Easting: 308411.0

Latitude: 33°48'49.2"S

Longitude: 150°55'48.1"E

Source:

GS Map: - MGA Zone: 0 Coordinate Unknown

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of

Gravel Pack, PC-Pressure Cemented; S-Sump; CE-Centralisers

0.0.00	stater add, to treesare comence, o camp, or contained								
Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	4.00	125			Auger
1		Annulus	Crushed	0.80	4.00				Graded, Q:3200.000m3
			Aggregate						
1	1	Casing	Pvc Class 18	-0.70	1.00	50			Seated on Bottom, Screwed
1	1	Opening	Screen	3.00	4.00	50		1	PVC Class 18, Screwed, A: 0.40mm

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)

Geologists Log Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	0.20	0.20	BROWN SOIL	Soil	
0.20	1.30	1.10	RED BROWN CLAY	Clay	
1.30	3.00	1.70	BROWN SHALE	Shale	
3.00	4.00	1.00	GREY SHALE	Shale	

Remarks

07/06/2011: Karla Abbs, 7-Jun-2011: Corrected invalid rock type in drillers log

*** End of GW107832 ***

NSW Office of Water Work Summary

GW113203

Licence: 10BL600583 Licence Status: ACTIVE

Authorised MONITORING BORE

Purpose(s):

Standing Water Level:

Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped

Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: Completion Date: 27/02/2007 Drilled Depth:

Contractor Name: Macquarie Drilling

Driller: Unkown Unknown

Assistant Driller:

Property: PREVIOUS CSIRO SITE

WESTERN PRECINCT LAKEWOOD PROSPECT 2148

NSW

GWMA: Salinity: GW Zone: Yield:

Site Details

Site Chosen By:

County Parish Cadastre
Form A: CUMBE CUMBE.41 669 1148337

Licensed:

Region: 10 - Sydney South Coast CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Elevation: 0.00 m (A.H.D.)

Northing: 6256467.0

Elevation Unknown

Northing: 6256467.0

Easting: 308225.0

Latitude: 33°48'52.7"S

Longitude: 150°55'40.8"E

Source:

GS Map: - MGA Zone: 0 Coordinate Unknown

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

ı	Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
ı					(m)	(m)	Diameter	Diameter		
1						' '	(mm)	(mm)		

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
1	1			1	l	l .	l(m)		

Geologists Log Drillers Log

(m) (m) (m)		
,		

Remarks

29/07/2014: Nat Carling, 29-July-2014; Added status, drill method & depth.

*** End of GW113203 ***

NSW Office of Water Work Summary

GW101177

Licence: 10BL158272 Licence Status: CANCELLED

Authorised TEST BORE

Purpose(s):

Intended Purpose(s): INDUSTRIAL

Work Type: Bore

Work Status: Supply Obtained

Construct.Method: Rotary Air

Owner Type: Private

Commenced Date: Final Depth: 150.00 m Drilled Depth: 150.00 m Completion Date: 14/01/1998

Contractor Name: INTERTEC DRILLING

SERVICES

Driller: Colin Leslie Barden

Assistant Driller:

Standing Water Level: 14.000 Property: N/A

GWMA: -Salinity:

Yield: 3.400 GW Zone: -

Site Details

Site Chosen By:

County Parish Cadastre Form A: CUMBÉ CUMBE.41 PART LOT5

DP235064 Licensed: CUMBERLAND **PROSPECT** Whole Lot //

Region: 10 - Sydney South Coast CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Elevation: 0.00 m (A.H.D.) Northing: 6256771.0 Latitude: 33°48'42.3"S Easting: 307482.0 Elevation Unknown Longitude: 150°55'12.2"E

Source:

GS Map: -MGA Zone: 0 Coordinate Unknown

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)		Outside Diameter		Interval	Details
				(''')	(111)	(mm)	(mm)		
1		Hole	Hole	0.00	17.50	200			Rotary Air
1		Hole	Hole	17.50	150.00	155			Rotary Air
1	1	Casing	Pvc Class 9	-0.50	65.50	140			Suspended in Clamps, Glued
1	1	Casing	Steel	-0.50	17.50	168	158		Driven into Hole, Welded
1	1	Opening	Slots - Vertical	20.00	30.00	140		1	PVC Class 9, SL: 100.0mm, A: 2.50mm
1	1	Opening	Slots - Vertical	54.00	60.00			1	SL: 100.0mm, A: 2.50mm

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
							(m)		

25.00	30.00	5.00	Unknown		0.60	30.00	490.00
56.00	60.00	4.00	Unknown		1.10	60.00	510.00
125.00	140.00	15.00	Unknown	14.00	1.70	144.00	520.00

Geologists Log Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	2.50	2.50	Overburden	Overburden	
2.50	15.00	12.50	Weathered sandstone	Sandstone	
15.00	25.00	10.00	L/G (light grained) shale	Shale	
25.00	30.00	5.00	Dark grey shale (water bearing)	Shale	
30.00	56.00	26.00	D/brown shale	Shale	
56.00	60.00	4.00	Dark grey shale (water bearing)	Shale	
60.00	112.00	52.00	sandstone medium grained light grey	Sandstone	
112.00	125.00	13.00	white sandstone	Sandstone	
125.00	140.00	15.00	sandstone and quartz (water bearing)	Sandstone	
140.00	150.00	10.00	dark grey sandstone	Sandstone	

Remarks

14/01/1998: Form A Remarks: Chlorine added on completion.

13/09/1999: PREVIOUS LIC. NO: 158272

22/01/2013: Nat Carling, 22-Jan-2013; Added rock type codes to driller's log & added missing information (based on existing data).

*** End of GW101177 ***

NSW Office of Water Work Summary

GW112895

Licence: 10BL602282 Licence Status: ACTIVE

Authorised MONITORING BORE

Purpose(s):

Standing Water Level:

Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped

Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: Completion Date: 04/04/2007 Drilled Depth:

Contractor Name: Macquarie Drilling

Driller: Unkown Unknown

Assistant Driller:

Property: CALTEX OIL (AUST) PTY LTD

442 BLACKTÒWN ROAD

PROSPECT 2148 NSW

GWMA: Salinity: GW Zone: Yield:

Site Details

Site Chosen By:

County Parish Cadastre Form A: CUMBÉ CUMBE.41 25//739107

Licensed:

Region: 10 - Sydney South Coast CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Elevation: 0.00 m (A.H.D.) Latitude: 33°48'16.5"S Northing: 6257579.0 Elevation Unknown Easting: 308103.0 Longitude: 150°55'36.9"E

Source:

GS Map: -MGA Zone: 0 Coordinate Unknown

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

-					,					
ſ	Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
			'		(m)	(m)	Diameter	Diameter		
1							(mm)	(mm)		

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
1							(m)		

Geologists Log **Drillers** Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)	·		

23/07/2014: Nat Carling, 23-July-2014; Added status, drill method & depth, updated work type.

Remarks

*** End of GW112895 ***

NSW Office of Water Work Summary

GW112893

Licence: 10BL602282 Licence Status: ACTIVE

Authorised MONITORING BORE

Purpose(s):

Standing Water Level:

Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped

Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: Completion Date: 02/04/2007 Prilled Depth:

Contractor Name: Macquarie Drilling

Driller: Unkown Unknown

Assistant Driller:

Property: CALTEX OIL (AUST) PTY LTD

442 BLACKTÒWN ROAD

PROSPECT 2148 NSW

GWMA: Salinity: GW Zone: Yield:

Site Details

Site Chosen By:

County Parish Cadastre Form A: CUMBE CUMBE.41 25//739107

Licensed:

Region: 10 - Sydney South Coast CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Elevation: 0.00 m (A.H.D.)

Northing: 6257588.0

Elevation Unknown

Northing: 6257588.0

Easting: 308137.0

Latitude: 33°48'16.2"S

Longitude: 150°55'38.3"E

Source:

GS Map: - MGA Zone: 0 Coordinate Unknown

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

-					,					
ſ	Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
		'	'		(m)	(m)	Diameter	Diameter		
1							(mm)	(mm)		

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
1	' '						(m)		

Geologists Log

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)	·		

23/07/2014: Nat Carling, 23-July-2014; Added status, drill method & depth, updated work type.	

Remarks

*** End of GW112893 ***

NSW Office of Water Work Summary

GW113201

Licence: 10BL600583 Licence Status: ACTIVE

Authorised MONITORING BORE

Purpose(s):

Standing Water Level:

Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped

Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: Completion Date: 27/02/2007 Drilled Depth:

Contractor Name: Macquarie Drilling

Driller: Unkown Unknown

Assistant Driller:

Property: PREVIOUS CSIRO SITE

WESTERN PRECINCT

LAKEWOOD PROSPECT 2148

NSW

GWMA: Salinity: GW Zone: Yield:

Site Details

Site Chosen By:

County Parish Cadastre
Form A: CUMBE CUMBE.41 669 1148337

Licensed:

Region: 10 - Sydney South Coast CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Elevation: 0.00 m (A.H.D.)

Northing: 6256628.0

Elevation Unknown

Northing: 6256628.0

Easting: 308171.0

Latitude: 33°48'47.4"S

Longitude: 150°55'38.8"E

Source:

GS Map: - MGA Zone: 0 Coordinate Unknown

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

	, .		montou, e eum	-,					
Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
		'		(m)	(m)	Diameter	Diameter		
					l	(mm)	(mm)		

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
1	1			1	l	l .	l(m)		

Geologists Log Drillers Log

(m) (m) (m)	1	
1111/ 1111/		

Remarks

29/07/2014: Nat Carling, 29-July-2014; Added status, drill method & depth.

*** End of GW113201 ***

NSW Office of Water Work Summary

GW113202

Licence: 10BL600583 Licence Status: ACTIVE

Authorised MONITORING BORE

Purpose(s):

Standing Water Level:

Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped

Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: Completion Date: 27/02/2007 Drilled Depth:

Contractor Name: Macquarie Drilling

Driller: Unkown Unknown

Assistant Driller:

Property: PREVIOUS CSIRO SITE

WESTERN PRECINCT LAKEWOOD PROSPECT 2148

NSW

Region: 10 - Sydney South Coast

GWMA: Salinity: GW Zone: Yield:

Site Details

Site Chosen By:

County Parish Cadastre
Form A: CUMBE CUMBE.41 669 1148337

Licensed:

CMA Map:

River Basin: - Unknown Grid Zone:

Area/District:

Elevation: 0.00 m (A.H.D.)

Northing: 6256592.0

Elevation Unknown

Northing: 6256592.0

Easting: 308209.0

Latitude: 33°48'48.6"S

Longitude: 150°55'40.3"E

Source:

GS Map: - MGA Zone: 0 Coordinate Unknown

Source:

Scale:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of

Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
1		'		(m)	(m)	Diameter	Diameter		
1				' '	l	(mm)	(mm)		

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
1	1			1	l	l .	l(m)		

Geologists Log Drillers Log

(m) (m) (m)		
,		

Remarks

29/07/2014: Nat Carling, 29-July-2014; Added status, drill method & depth.

*** End of GW113202 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

WaterNSW Work Summary

GW107831

Licence: Licence Status:

Authorised Purpose(s):

Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status:

Construct.Method: Auger

Owner Type:

Commenced Date:Final Depth: 7.40 mCompletion Date: 03/11/2005Drilled Depth: 7.40 m

Contractor Name: (None)

Driller: Nealings Edwin Stapleton

Assistant Driller:

Property: Standing Water Level (m):

GWMA: Salinity Description:
GW Zone: Yield (L/s):

Site Details

Site Chosen By:

CountyParishCadastreForm A: CUMBERLANDPROSPECT108 1081614

Licensed:

Region: 10 - Sydney South Coast CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

 Elevation:
 0.00 m (A.H.D.)
 Northing:
 6256269.000
 Latitude:
 33°48'59.2"S

 Elevation Source:
 Unknown
 Easting:
 308468.000
 Longitude:
 150°55'50.1"E

GS Map: - MGA Zone: 56 Coordinate Source: Unknown

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

	o i recente comence, e camp, e contranecio								
Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
l				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	7.40	125			Auger
1		Annulus	Crushed	3.30	7.40				Graded, Q:3100.000m3
			Aggregate						
1	1	Casing	Pvc Class 18	-0.70	4.40	50			Seated on Bottom, Screwed
1	1	Opening	Screen	4.40	7.40	50		0	PVC Class 18, Screwed, A: 0.04mm

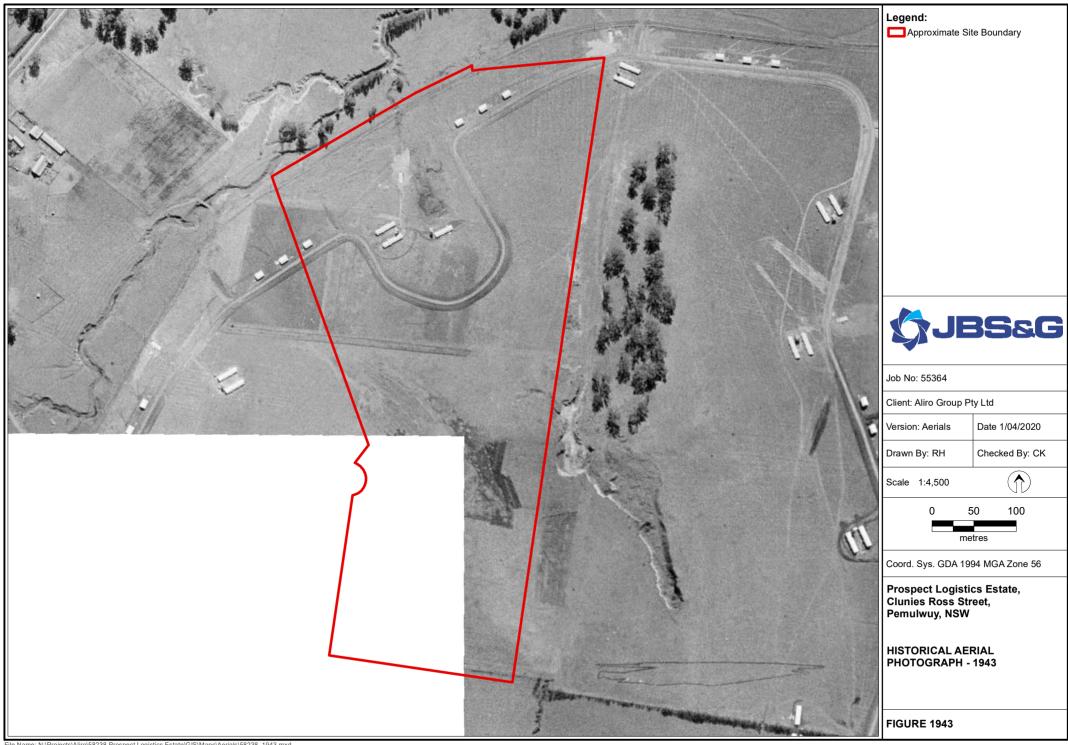
Drillers Log

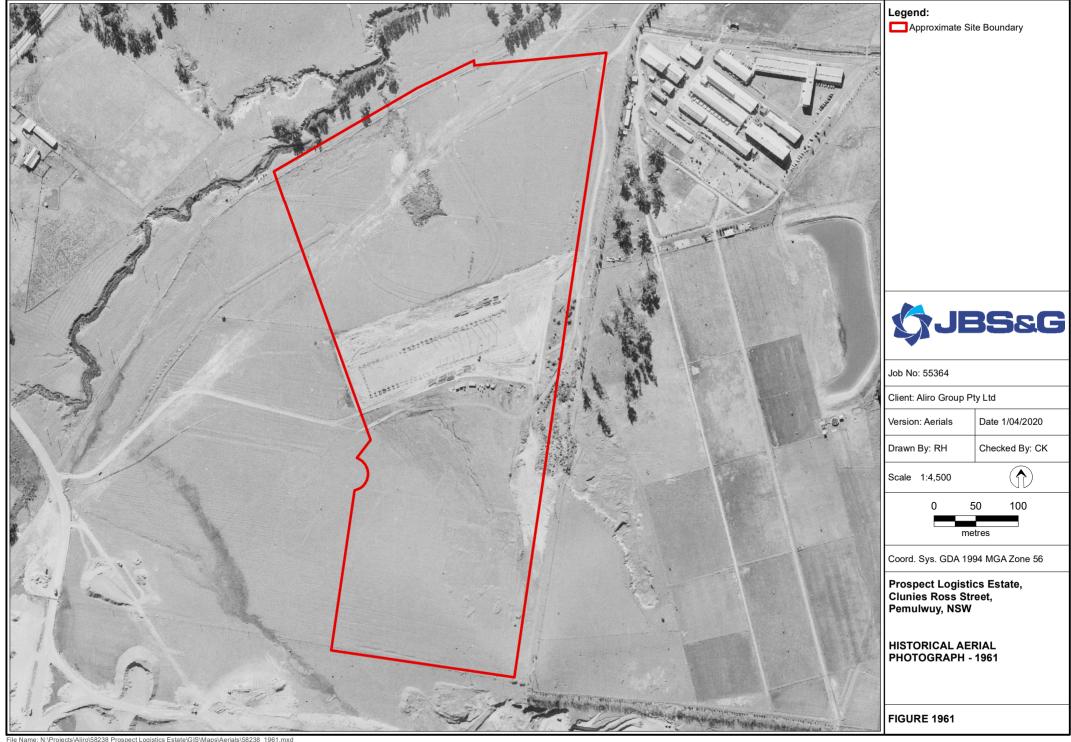
From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	1.60	1.60	FILL BROWN/CLAY	Fill	
1.60	2.90	1.30	CLAY GRAVEL BROWN	Clay	
2.90	4.70	1.80	CLAY BROWN	Clay	
4.70	6.00	1.30	BLACK WEATHERED SHALE	Shale	
6.00	7.40	1.40	HARD BROWN CLAY	Clay	

Remarks

07/06/2011: Karla Abbs, 7-Jun-2011: Corrected invalid rock type in drillers log

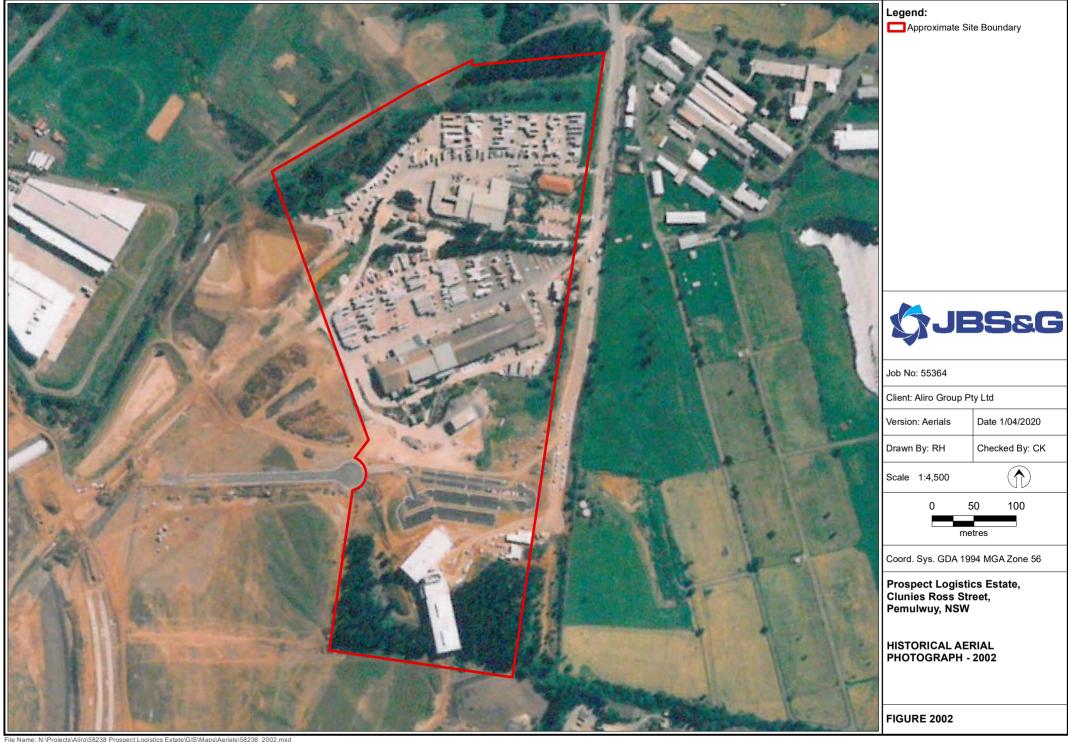
*** End of GW107831 ***


Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.



Appendix D Aerial Photographs

File Name: N:\Projects\Aliro\58238 Prospect Logistics Estate\GIS\Maps\Aerials\58238_1930.mxd Reference: Department of Finance & Innovation; 2020



Legend:

Approximate Site Boundary

Job No: 55364

Client: Aliro Group Pty Ltd

Version: Aerials

Date 1/04/2020

Drawn By: RH

Checked By: CK

Scale 1:4,277

Coord. Sys. GDA 1994 MGA Zone 56

585 Reservoir Road Prospect, NSW

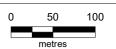
HISTORICAL AERIAL PHOTOGRAPH - 2016

FIGURE 2016

Legend:

Approximate Site Boundary

Job No: 55364


Client: Aliro Group Pty Ltd

Version: Aerials Date 1/04/2020

Drawn By: RH

Checked By: CK

Scale 1:4,500

Coord. Sys. GDA 1994 MGA Zone 56

585 Reservoir Road Prospect, NSW

HISTORICAL AERIAL PHOTOGRAPH - 2020

FIGURE 2020

Appendix E Land Title Records

ABN: 42 166 543 255 Ph: 02 9099 7400 Fax: 02 9232 7141 (Ph: 0412 199 304)

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

<u>LPI</u> Sydney

Address: - 44 Clunies Ross Street, Prospect (Pemulwuy)

Description: - Lot 10 D.P. 1022044, Lot 216 D.P. 1030744 & Lot 601 D.P. 1047403

As regards Lot 216 D.P. 1030744

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
10.06.1905 (1905 to 1935)	The Emu Gravel and Road Metal Company Limited Now The Emu and Prospect Gravel and Road Metal Company Limited	Vol 1612 Fol 198
16.11.1935 (1935 to 1988)	The N.S.W. Associated Blue Metal Quarries Limited Now The N.S.W. Associated Blue Metal Quarries Pty Limited	Vol 1612 Fol 198 Now Vol 9787 Fol 165
26.05.1988 (1988 to date)	# Boral Resources (NSW) Pty Limited	Vol 9787 Fol 165 Now 216/1030744

Denotes Current Registered Proprietor

Easements: -

• 29.08.1978 (Q 805096) Easement for Transmission Line (D) 18 wide

Leases: -

• 26.02.2013 to Austral Masonry (NSW) Pty Limited – expires 07.02.2018, also 34 months option to renew

As regards Lot 10 D.P. 1022044

As regards the part tinted orange on the attached cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
27.12.1923 (1923 to 1941)	The Emu Gravel and Road Metal Company Limited Now The Emu and Prospect Gravel and Road Metal Company Limited	Vol 3543 Fol 249 Now Vol 4818 Fol 80
21.05.1941 (1941 to 1948)	Theo James Hicks (Dairy Farmer) Norman Kenneth Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer)	Vol 4818 Fol 80 Now Vol 5245 Fol 201
10.06.1948 (1948 to 1958)	Theo James Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer)	Vol 5245 Fol 201 Now Vol 7375 Fol' 5 & 6
07.11.1958 (1958 to 1988)	The N.S.W. Associated Blue Metal Quarries Limited Now The N.S.W. Associated Blue Metal Quarries Pty Limited	Vol 7375 Fol' 5 & 6 Now Vol 9787 Fol 165
26.05.1988 (1988 to date)	# Boral Resources (NSW) Pty Limited	Vol 9787 Fol 165 Now 10/1022044

ABN: 42 166 543 255 Ph: 02 9099 7400 Fax: 02 9232 7141

(Ph: 0412 199 304)

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards the two parts tinted green on the attached cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
15.01.1925 (1925 to 1941)	Joseph Hicks (Farmer)	Vol 3686 Fol 43
17.11.1941 (1941 to 1948)	Theo James Hicks (Dairy Farmer) Norman Kenneth Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer) (Transmission Application not investigated)	Vol 3686 Fol 43 Now Vol 5280 Fol's 145, 146 & 147
10.06.1948 (1948 to 1958)	Theo James Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer)	Vol 5280 Fol's 145, 146 & 147 Now Vol 7375 Fol' 5 & 6
07.11.1958 (1958 to 1988)	The N.S.W. Associated Blue Metal Quarries Limited Now The N.S.W. Associated Blue Metal Quarries Pty Limited	Vol 7375 Fol' 5 & 6 Now Vol 9787 Fol 165
26.05.1988 (1988 to date)	# Boral Resources (NSW) Pty Limited	Vol 9787 Fol 165 Now 10/1022044

Denotes Current Registered Proprietor

As regards the part tinted pink on the attached cadastre

This part was formerly a road subsequently closed

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
26.09.1930 (1930 to 1941)	Joseph Hicks (Dairy Farmer)	Vol 4441 Fol 3
17.11.1941 (1941 to 1948)	Theo James Hicks (Dairy Farmer) Norman Kenneth Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer) (Transmission Application not investigated)	Vol 4441 Fol 3 Now Vol 5280 Fol's 145, 146 & 147
10.06.1948 (1948 to 1958)	Theo James Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer)	Vol 5280 Fol's 145, 146 & 147 Now Vol 7375 Fol' 5 & 6
07.11.1958 (1958 to 1988)	The N.S.W. Associated Blue Metal Quarries Limited Now The N.S.W. Associated Blue Metal Quarries Pty Limited	Vol 7375 Fol' 5 & 6 Now Vol 9787 Fol 165
26.05.1988 (1988 to date)	# Boral Resources (NSW) Pty Limited	Vol 9787 Fol 165 Now 10/1022044

Denotes Current Registered Proprietor

ABN: 42 166 543 255 Ph: 02 9099 7400 Fax: 02 9232 7141

(Ph: 0412 199 304)

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards the two parts tinted yellow on the attached cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.10.1909 (1909 to 1923)	The Emu and Prospect Gravel and Road Metal Company Limited	Vol 1959 Fol 92
06.06.1923 (1923 to 1941)	Joseph Hicks (Dairy Farmer)	Vol 1959 Fol 92 Now Vol 3508 Fol 232
17.11.1941 (1941 to 1948)	Theo James Hicks (Dairy Farmer) Norman Kenneth Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer) (Transmission Application not investigated)	Vol 3508 Fol 232 Now Vol 5280 Fol's 145, 146 & 147
10.06.1948 (1948 to 1958)	Theo James Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer)	Vol 5280 Fol's 145, 146 & 147 Now Vol 7375 Fol' 5 & 6
07.11.1958 (1958 to 1988)	The N.S.W. Associated Blue Metal Quarries Limited Now The N.S.W. Associated Blue Metal Quarries Pty Limited	Vol 7375 Fol' 5 & 6 Now Vol 9787 Fol 165
26.05.1988 (1988 to date)	# Boral Resources (NSW) Pty Limited	Vol 9787 Fol 165 Now 10/1022044

Denotes Current Registered Proprietor

Leases: -

• 06.06.1923 to Joseph Hicks (Agriculturist) – expired 24.09.1923

Easements as regards the whole of Lot 10 D.P. 1022044: -

- 08.12.1961 (J 90028 & D.P. 202757) Easement for Water Supply Works 10.06 metres wide
- 19.10.1971 (M 502589 & D.P. 550911) Easement for Transmission Line 20.115 & 30.48 metres wide partly released (Q 981596, 02.01.1979
- 29.08.1978 (Q 805096) Easement for Transmission Line (D) 18 wide

Leases as regards the whole of Lot 10 D.P. 1022044: -

- 06.06.1923 to Joseph Hicks (Agriculturist) expired 24.09.1923
- 07.03.2001 to Valewin Pty Limited expires 08.02.2051
 - o 10.04.2001 transferred to Asibond Pty Limited
 - o 10.04.2001 (Sub Lease) to Boral Masonry Limited expires 08.02.2021, also 2 x 5 year options
 - o 27.02.2013 (Sub Lease) to Austral Masonry (NSW) Pty Limited expires 07.02.2018, also 34 months option to renew

ABN: 42 166 543 255 Ph: 02 9099 7400 Fax: 02 9232 7141

(Ph: 0412 199 304)

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot 601 D.P. 1047403

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.10.1909 (1909 to 1923)	The Emu and Prospect Gravel and Road Metal Company Limited	Vol 1959 Fol 92
06.06.1923 (1923 to 1941)	Joseph Hicks (Dairy Farmer)	Vol 1959 Fol 92 Now Vol 3508 Fol 232
17.11.1941 (1941 to 1948)	Theo James Hicks (Dairy Farmer) Norman Kenneth Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer) (Transmission Application not investigated)	Vol 3508 Fol 232 Now Vol 5280 Fol's 145, 146 & 147
10.06.1948 (1948 to 1958)	Theo James Hicks (Dairy Farmer) Leslie Gordon Hicks (Dairy Farmer)	Vol 5280 Fol's 145, 146 & 147 Now Vol 7375 Fol' 5 & 6
07.11.1958 (1958 to 1988)	The N.S.W. Associated Blue Metal Quarries Limited Now The N.S.W. Associated Blue Metal Quarries Pty Limited	Vol 7375 Fol' 5 & 6 Now Vol 9787 Fol 165
26.05.1988 (1988 to date)	# Boral Resources (NSW) Pty Limited	Vol 9787 Fol 165 Now 601/1047403

Denotes Current Registered Proprietor

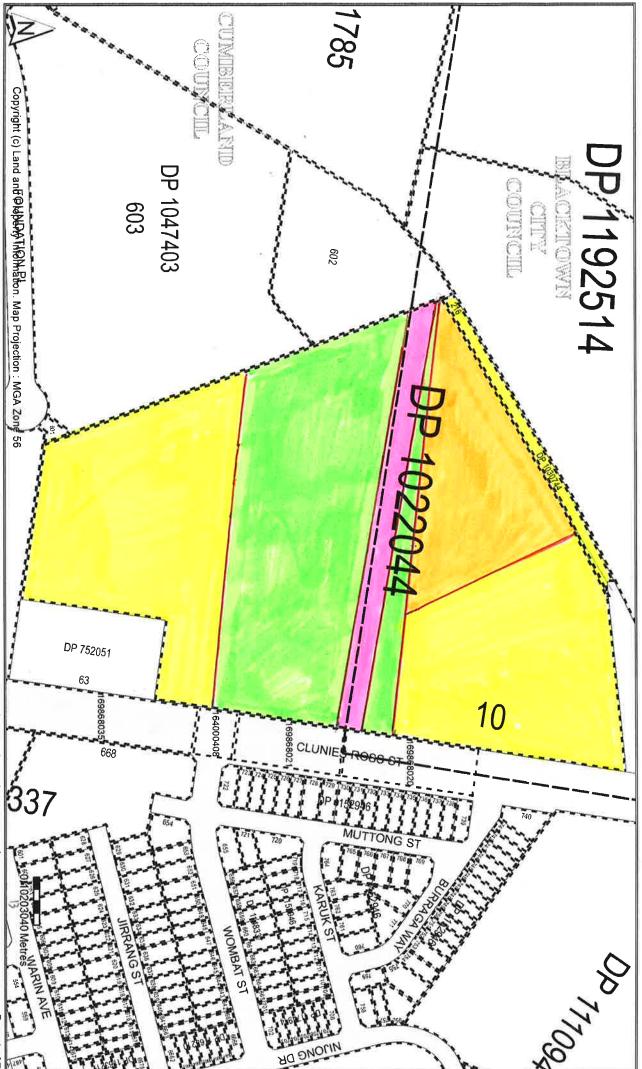
Easements: - NIL

Leases: -

• 26.02.2013 to Austral Masonry (NSW) Pty Limited – expires 07.02.2018, also 34 months option to renew

Yours Sincerely Mark Groll 21 December 2016

Locality: PEMULWUY

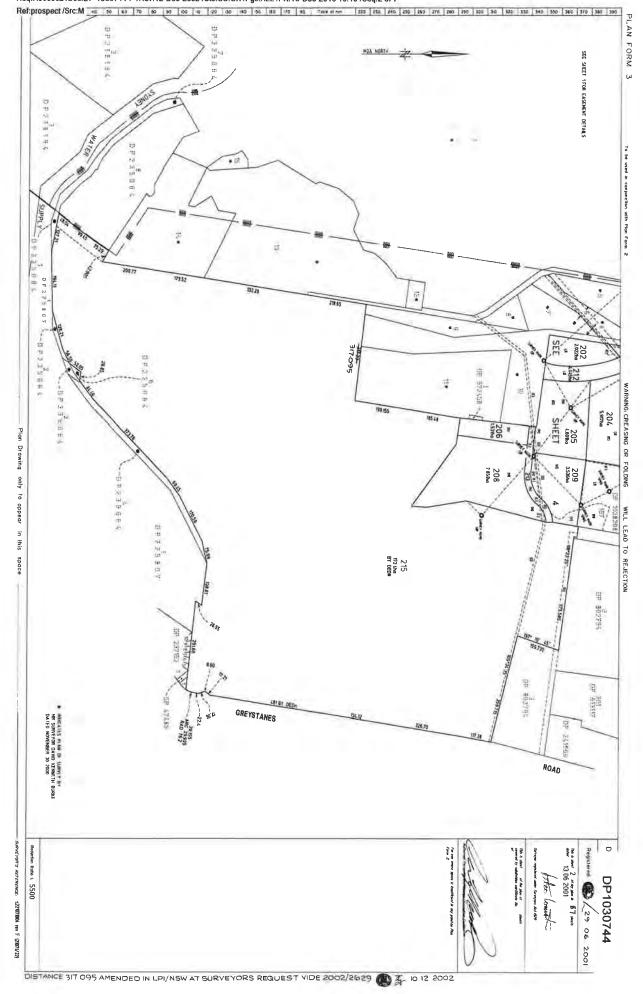

Cadastral Records Enquiry Report

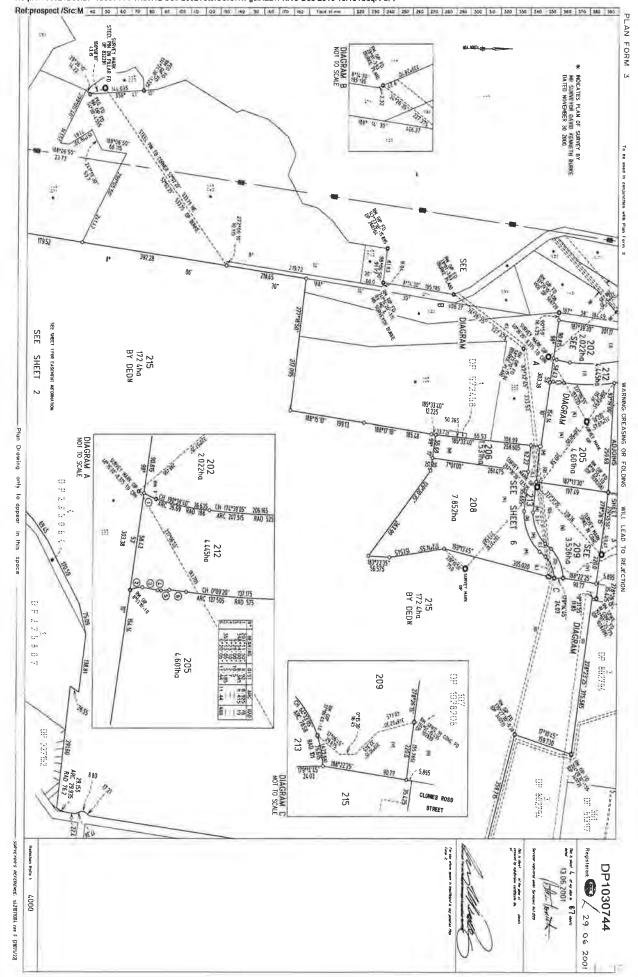
Identified Parcel: Lot 10 DP 1022044

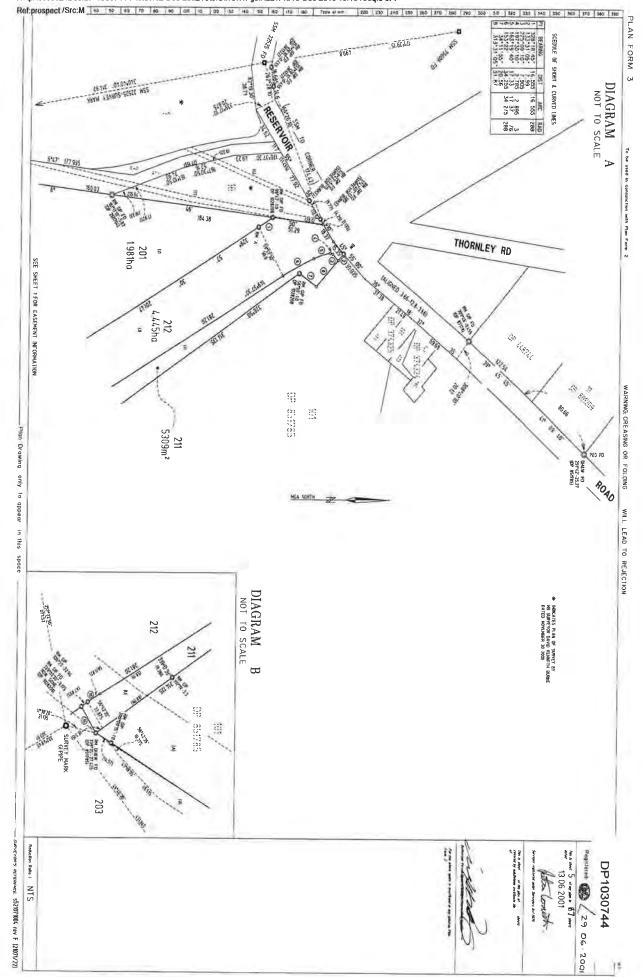
Ref: MARK

County: CUMBERLAND

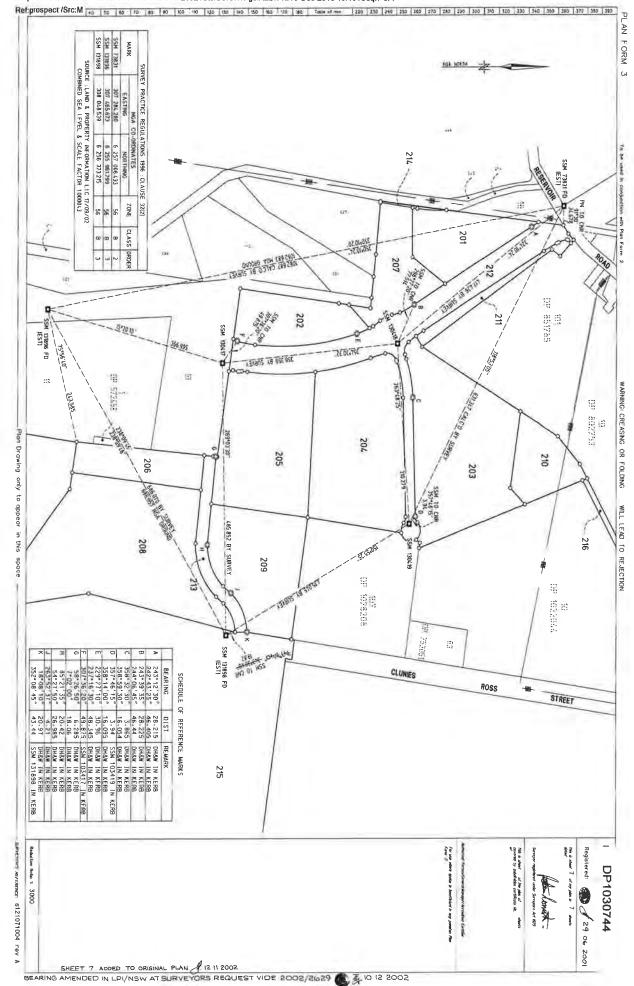
Requested Parcel: Lot 10 DP 1022044 LGA: CUMBERLAND Parish: PROSPECT

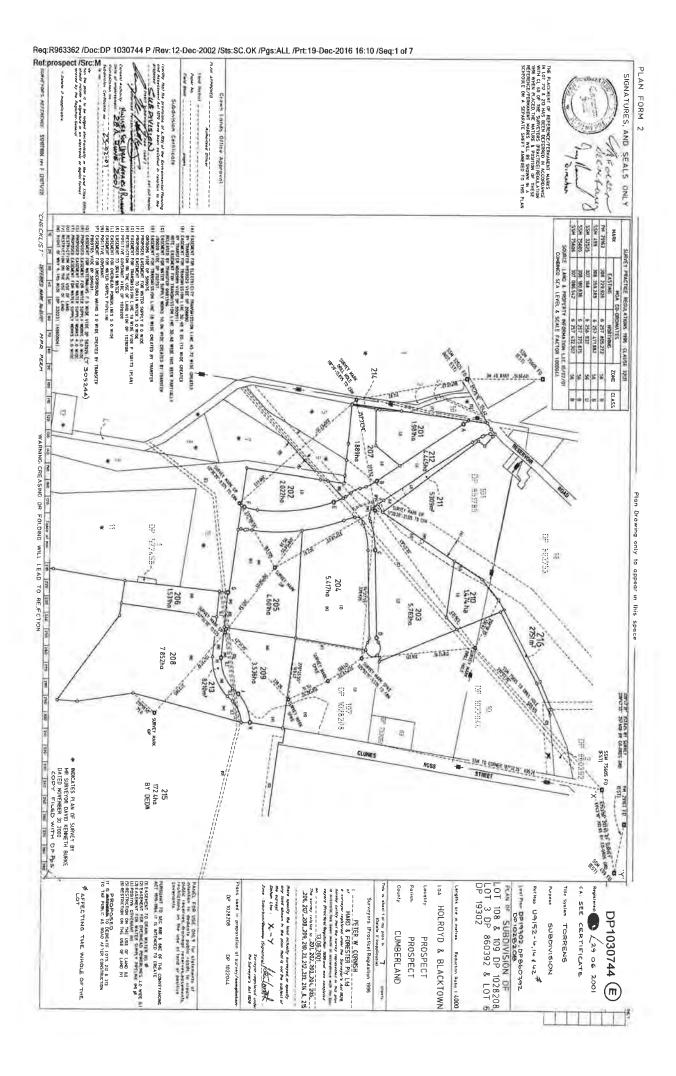


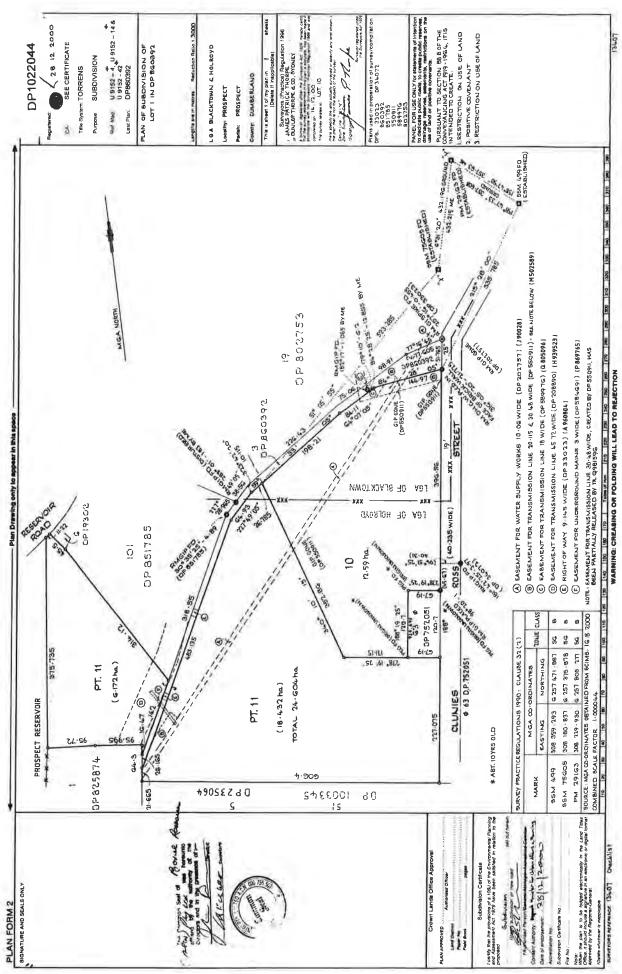

Copyright © Land and Property Information ABN: 84 104 377 806 Report Generated 10:47:48 AM, 21 December, 2016

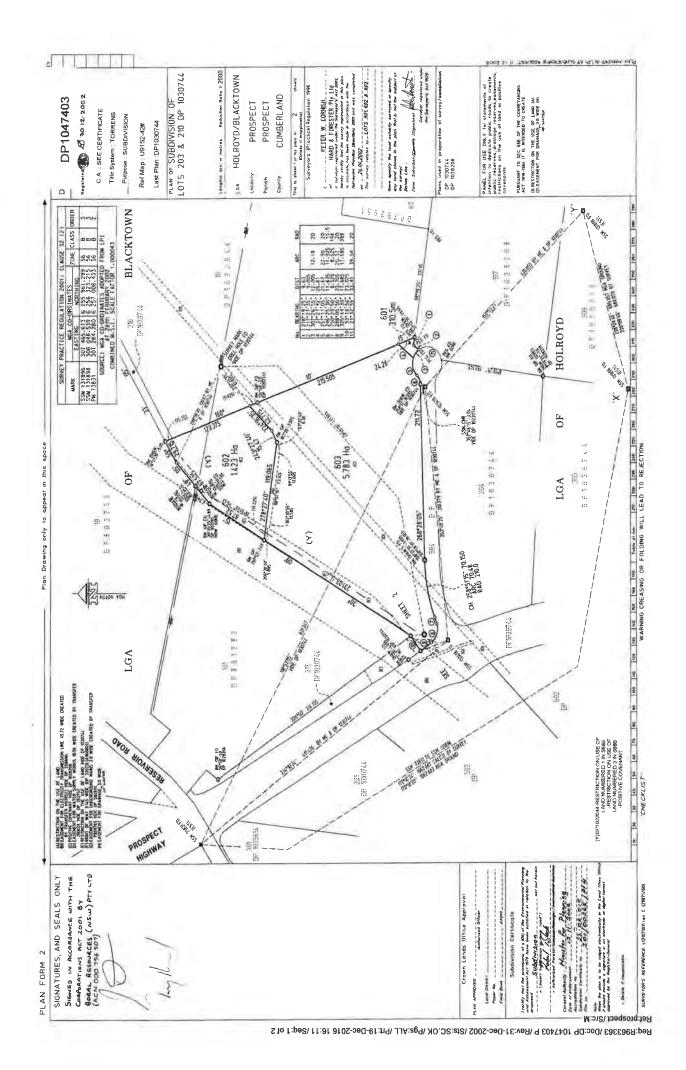

This information is provided as a searching aid only. While every endeavour is made to ensure the current cadastral pattern is accurately reflected, the Registrar General cannot guarantee the information provided. For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps.

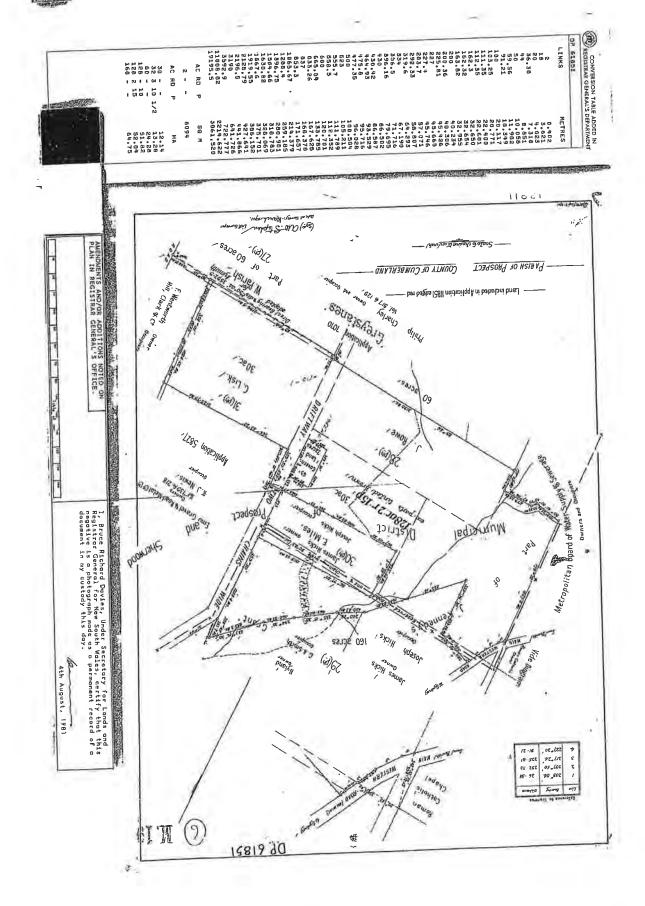

Page 1 of 7

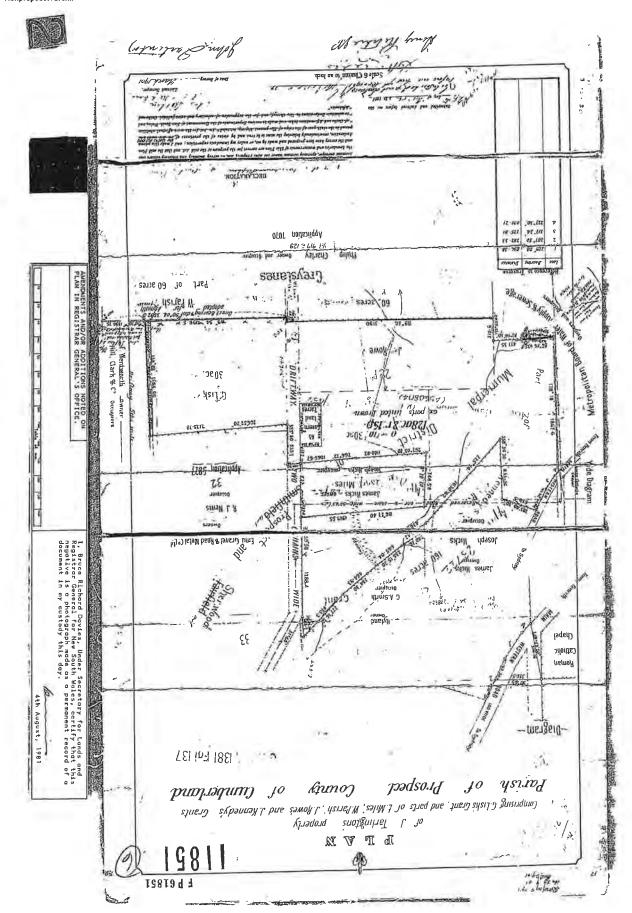

2001

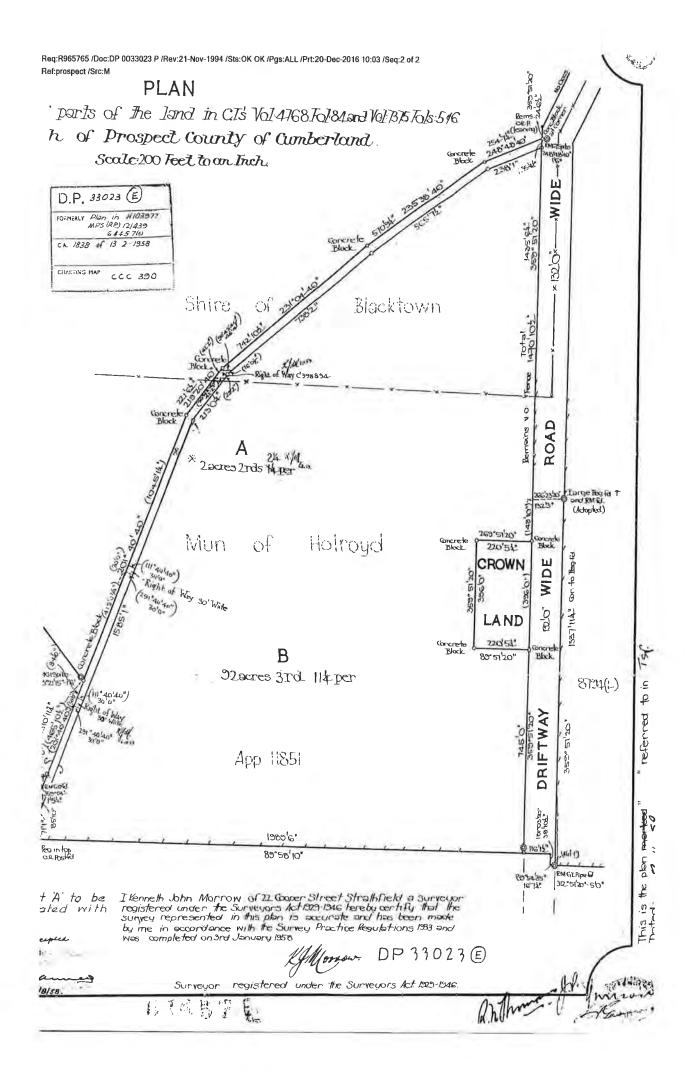




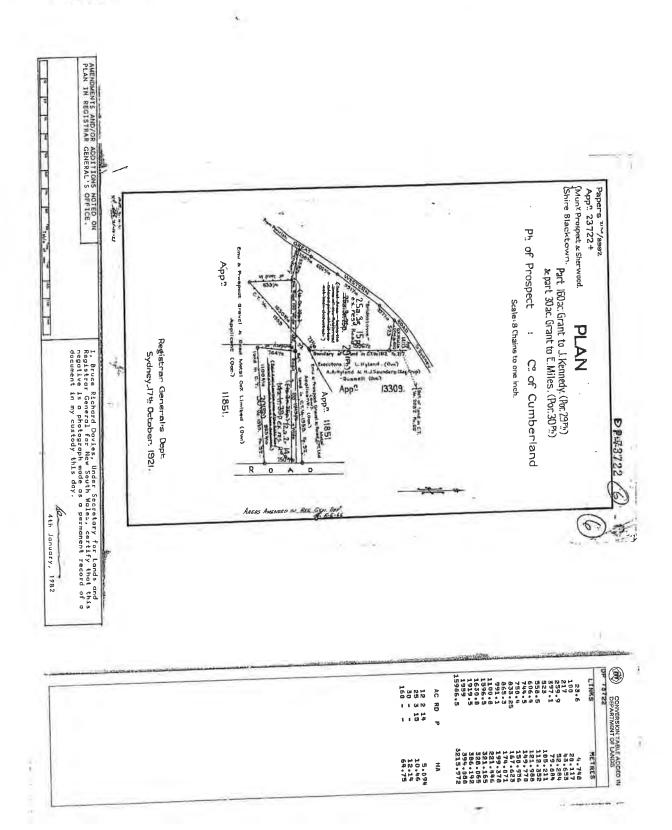








8



65

970

1st Edition issued 17-8-1964.

EM.

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule,

Witness

Registrar-General.

SEE AUTO FULIO

J569901.

-165

WARNING: THIS DOCUMENT MUST

80

C1

REMOVED FROM

LAND TITLES OFFICE

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lots A and B in Deposited Plan 33023 in the Municipality of Blacktown and Holroyd, Parish of Prospect and County of Cumberland being granted as set out in the schedule hereunder Excepting thereout the minerals reserved by the Crown Grants of 3 acres 2 roods 16 perches and 15 9/10 perches.

SCHEDULE OF GRANTS.

Number of Portion	Name of Grantee	Date of Grant	Grant F Volume	eference Folio
Pt. 28 Pt. 30 Pt. 29 Pt. 3ac. 2rd. 16pers. 159/10 pers.	John Rowe Edward Hiles John Kennedy	1-5-1797 1-5-1797 3-5-1797 26-9-1930 26-9-1930	1111	3 22

FIRST SCHEDULE (Continued overleaf)

SSOCIATED BLUE METAL QUARRIES

Registrar General.

SECOND SCHEDULE (Continued overleaf)

Reservations and conditions, if any, contained in the Crown Grant(s) above referred to

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED.

Right of way created by Transfer No. A96030, affecting the pieces of land shown as 30 feet wide has had black in the plan hereon.

Hortgage No. 6506739 of that part of the land above described formerly peoprised in certificate of title Volume 4768 Felia 84 to Blue Metal and Gravel Fty. Dimited. Entered 18-6-1937. discharged Kliffer. Hortgage No. 6511685 of that part of the land above described

formerly compressed in cortificate of title Volume 4,768 Folio 84-to Quarries Ptyl Limited. Entered 18 6-1937. discharged 16,7548

Coverant created by Transfer No. 3103977.

Easement for Electricity Transmission greated by Transfer affecting the piece of land shown as "170 feet wide" in the plan hereon

Easement for Water Supply Works created by Transfer J90028 affecting the piece of land shown as "33 feet wide" in the plan hereon.

atso Registrar General.

PLAN SHOWING LOCATION OF LAND

1569901 Lil

Scale, 300 feet to one inch.

All lengths shown bereon are in feet and inches

	FIRST SCHEDULE (continued)			*		
	REGISTERED PROPRIETOR	NATURE	INSTRUMENT I NUMBER	I DATE	ENTERED	Signature of Registrar-General
(NEW.) FIY, L.	LINITED BY TERMINED X545979. REGINERS 26-5-1988					3
	(*)					5 6
				<u>x</u>		
	SECOND SCHEDULE (continued)					
) DATE	PARTICULARS	ENTERED	Signature of Registrar-General		CANCELLATION	
1,502589 19.10-1971	Easment for Annomission live affecting that park of the land within bleadeliked about a for Foremission of the side and block a tide in Foremission.	29 - 22 - 1972	Jackston			
	Easement for Undergoond Mains, as more fully set out in the said, instrument, affecting that part of the land within described)			
	ergound Mains 3. Hide"	13 - 15- 1976.	Superior		1	
ı	Ensement to. Transmistion Line affecting the transmission to the agence. At the plan hercen At	A 161.8 67	ham		10.01	
Q361596	The essencest for Transmission Line created by M503589 is portially released as strong in plan		:			3
		-1-1979.	10	ř		•
				IT.		
				4		-

ENTERED CANCELLATION DATE NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED INSTRUMENT Signature of Registrar-General NATURE ENTERED SECOND SCHEDULE (continued) FIRST SCHEDULE (continued) PARTICULARS SEE AUTO FOLIO REGISTERED PROPRIETOR DATE INSTRUMENT FORM No. 177A NATURE

162

Historical **Title**

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH -----

> SEARCH DATE ------

19/12/2016 4:09PM

FOLIO: AUTO CONSOL 9787-165

Recorded Number Type of Instrument -----

C.T. Issue _____

14/5/1999 5823660 CONSOL HISTORY RECORD CREATED FOR AUTO CONSOL 9787-165

> PARCELS IN CONSOL ARE: A-B/33023.

19/12/2000

7297668 PARCELS EXCISED. CONSOL

BROKEN UP

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

FOLIO CANCELLED

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

19/12/2016 4:08PM

FOLIO: A/33023

First Title(s): OLD SYSTEM

VOL 4441 FOL 3

VOL 4441 FOL 22

Prior Title(s): VOL 9787 FOL 165

Recorded 29/7/1989	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED FOLIO NOT CREATED
13/5/1999	5819717	DEPARTMENTAL DEALING	FOLIO CREATED CT NOT ISSUED
	FIRST T	ITLES(S) AS AMENDED: VOL 4441 FOL 22, OLD SYSTEM.	
14/5/1999 14/5/1999	5823109 5823660	DEPARTMENTAL DEALING CONVERTED TO AUTO CONSOL 9787-165	CONSOL CREATED CT NOT ISSUED
19/12/2000	7297668	EXCISED FROM AUTO CONSOL 9787-165	
20/12/2000	7301343	TRANSFER Let 1 19 810392	EDITION-1

*** END OF SEARCH ***

DEPARTMENTAL DEALING

20/12/2000

7301553

Ref:pros	spect /Src:M	-2001 /Sts:NO.OK /Pgs:ALL /Prt:20-Dec-2016 11:35 /Seq:1 of 343N
ion.pro	97-01T	TRANSFER Real Property Act, 1900
		Office of State Revenue use only
		NEW SOUTH WALES DUTY 20-12-2000 0000497118-001 SECTION DIRECTORY
(A)	LAND TRANSFERRED	NO DUTY PAYABLE
	Show no more than 20 References to Title. If appropriate, specify the share transferred.	2/860392 being part volume 9787 folio 165 Now being part of Lots A and B in DP 33023
(B)	LODGED BY	L.T.O. Box Name, Address or DX and Telephone TRACEY WADS WORTH CI - BORAL OFFICES GREYSTANES RD GREYSTANES 2145 REFERENCE (max. 15 characters):
(C)	TRANSFEROR	BORAL RESOURCES (N.S.W.) PTY. LIMITED
(D)	acknowledges receipt of the considera	tion of\$1,00
	and as regards the land specified above	e transfers to the Transferee an estate in fee simple
(E)	subject to the following ENCUMBRAN	CES 1, 2 3
(F)	I 2T I	NISTER ADMINISTERING THE ENVIRONMENTAL PLANNING D ASSESSMENT ACT 1979
(G)	(Sheriff) TENA	NCY:
(H)	We certify this dealing correct for the	purposes of the Real Property Act, 1900. DATED
	Signed in my presence by the Transfer	or who is personally known to me.
	Signature of Witness	oseal s
	Name of Witness (BLOCK LE	
	Address of Witness	Signature of Transferor Deserted

Signed in my presence by the Transferee who is personally known to me.

Signature of Witness

M. T. BROWNFIELD

Name of Witness (BLOCK LETTERS)

FARRER PLACE SYDNE

SIGNED day me VINCENT FERNANDEZ RAMOS as delegate of the Minister activities the Environmental Flanning and Assessment Act, 1979, and in precipit parties that I have no notice of the percentage of the percentage.

Signature of Transferee

INSTRUCTIONS FOR FILLING OUT THIS FORM ARE AVAILABLE FROM THE LAND TITLES OFFICE

CHECKED BY (office use only)

AUSDOC Office Pty. Ltd.

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

19/12/2016 4:07PM

FOLIO: 3/860392

......

First Title(s): VOL 4441 FOL 22 OLD SYSTEM

Prior Title(s): A/33023

Recorded 28/8/1996	Number DP860392	Type of Instrument DEPOSITED PLAN	C.T. Issue LOT RECORDED FOLIO NOT CREATED
21/12/2000	7302830	DEPARTMENTAL DEALING	FOLIO CREATED EDITION 1
21/12/2000	7303616	DEPARTMENTAL DEALING	EDITION 2
2/7/2001	DP1030744	DEPOSITED PLAN	FOLIO CANCELLED

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

19/12/2016 4:01PM

FOLIO: 216/1030744

First Title(s): OLD SYSTEM
Prior Title(s): 3/860392

Recorded	Number	Type of Instrument	C.T. Issue
2/7/2001	DP1030744	DEPOSITED PLAN	FOLIO CREATED EDITION 1
2/7/2001	7733761	DEPARTMENTAL DEALING	EDITION 1 EDITION 2
3/7/2001	7734414	DEPARTMENTAL DEALING	
9/7/2001	7749448	DEPARTMENTAL DEALING	EDITION 3
26/2/2013	AH558412	LEASE	EDITION 4

Title Search

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 216/1030744

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 19/12/2016
 3:51 PM
 4
 26/2/2013

LAND

LOT 216 IN DEPOSITED PLAN 1030744

AT PROSPECT

LOCAL GOVERNMENT AREA BLACKTOWN

PARISH OF PROSPECT COUNTY OF CUMBERLAND

TITLE DIAGRAM DP1030744

FIRST SCHEDULE

BORAL RESOURCES (NSW) PTY LIMITED

SECOND SCHEDULE (3 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2 Q805096 EASEMENT FOR TRANSMISSION LINE (D) 18 WIDE

AFFECTING THE PART(S) OF THE LAND ABOVE DESCRIBED

SHOWN SO BURDENED IN THE TITLE DIAGRAM. (SEE DP589976)

3 AH558412 LEASE TO AUSTRAL MASONRY (NSW) PTY LIMITED EXPIRES: 7/2/2018. OPTION OF RENEWAL: 34 MONTHS.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

PRINTED ON 19/12/2016

Title

Historical Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

-----19/12/2016 4:08PM

FOLIO: B/33023

First Title(s): OLD SYSTEM

VOL 4441 FOL 3

VOL 4441 FOL 22

Prior Title(s): VOL 9787 FOL 165

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
13/5/1999	5819717	DEPARTMENTAL DEALING	FOLIO CREATED CT NOT ISSUED
14/5/1999	5823660	CONVERTED TO AUTO CONSOL 9787-165	CONSOL CREATED CT NOT ISSUED
19/12/2000	7297668	EXCISED FROM AUTO CONSOL 9787-165	
20/12/2000 20/12/2000	7301343 7301553	TRANSFER LA 2 M NOTAL DEPARTMENTAL DEALING	EDITION 1 FOLIO CANCELLED

Title

Historical Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

19/12/2016 4:07PM

FOLIO: 1/860392

First Title(s): VOL 4441 FOL 22 VOL 4441 FOL 3

OLD SYSTEM

Prior Title(s): B/33023

Recorded 28/8/1996	Number DP860392	Type of Instrument DEPOSITED PLAN	C.T. Issue LOT RECORDED FOLIO NOT CREATED
21/12/2000	7302830	DEPARTMENTAL DEALING	FOLIO CREATED
21/12/2000	7303616	DEPARTMENTAL DEALING	EDITION 1 EDITION 2
28/12/2000	DP1022044	DEPOSITED PLAN	FOLIO CANCELLED

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

19/12/2016 4:01PM

FOLIO: 10/1022044

First Title(s): VOL 4441 FOL 3 OLD SYSTEM

Prior Title(s): 1/860392

Recorded Number	Type of Instrument	C.T. Issue
28/12/2000 DP1022044	DEPOSITED PLAN	FOLIO CREATED EDITION 1
6/2/2001 7390193	CAVEAT	
7/3/2001 7453092	LEASE	
7/3/2001 7453093	VARIATION OF LEASE	EDITION 2
10/4/2001 7532645	SUB-LEASE	
10/4/2001 7532646	VARIATION OF LEASE	
10/4/2001 7532647	TRANSFER OF LEASE	EDITION 3
27/2/2013 AH558419	SUB-LEASE	
15/6/2016 AK509587	DEPARTMENTAL DEALING	

Title Search

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 10/1022044

SEARCH DATE	TIME	EDITION NO	DATE
19/12/2016	3:51 PM	3	10/4/2001

LAND

LOT 10 IN DEPOSITED PLAN 1022044

AT PROSPECT

LOCAL GOVERNMENT AREA CUMBERLAND

PARISH OF PROSPECT COUNTY OF CUMBERLAND

TITLE DIAGRAM DP1022044

FIRST SCHEDULE

BORAL RESOURCES (NSW) PTY LIMITED

SECOND SCHEDULE (10 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 H103977 COVENANT
- 3 LAND EXCLUDES MINERALS WITHIN THE GRANT OF 3 ACRES 2 ROODS 16 PERCHES (VOL. 4441 FOL. 3)
- J90028 EASEMENT FOR WATER SUPPLY WORKS 10.06 METRE(S)
 WIDE AFFECTING THE PART(S) OF THE LAND ABOVE DESCRIBED
 SHOWN SO BURDENED IN THE TITLE DIAGRAM. (SEE DP202757)
- 5 M502589 EASEMENT FOR TRANSMISSION LINE 20.115 & 30.48
 METRE(S) WIDE AFFECTING THE PART(S) OF THE LAND ABOVE
 DESCRIBED SHOWN SO BURDENED IN THE TITLE DIAGRAM. (SEE
 DP550911)
 - Q981596 PARTIALLY RELEASED AS SHOWN IN PLAN ANNEXED TO Q981596
- 6 Q805096 EASEMENT FOR TRANSMISSION LINE 18 METRE(S) WIDE
 AFFECTING THE PART(S) OF THE LAND ABOVE DESCRIBED
 SHOWN SO BURDENED IN THE TITLE DIAGRAM. (SEE DP589976)
- 7 DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (1) IN THE S.88B INSTRUMENT
- 8 DP1022044 POSITIVE COVENANT
- 9 DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (3) IN THE S.88B INSTRUMENT
- 10 7453092 LEASE TO VALEWIN PTY LIMITED EXPIRES: 8/2/2051.

7453093 VARIATION OF LEASE 7453092

7532645 LEASE OF LEASE 7453092 TO BORAL MASONRY LIMITED EXPIRES: 8/2/2021. OPTION OF RENEWAL: 5 YEARS TOGETHER WITH 1 FURTHER PERIOD OF 5 YEARS.

7532646 VARIATION OF LEASE 7532645

7532647 TRANSFER OF LEASE 7453092 LESSEE NOW ASIBOND PTY LIMITED

END OF PAGE 1 - CONTINUED OVER

PRINTED ON 19/12/2016

prospect

FOLIO: 10/1022044

PAGE 2

SECOND SCHEDULE (10 NOTIFICATIONS) (CONTINUED)

AH558419 LEASE OF LEASE 7532645 TO AUSTRAL MASONRY (NSW)
PTY LIMITED EXPIRES: 7/2/2018. OPTION OF RENEWAL:
34 MONTHS.

NOTATIONS

._____

NOTE: THE CERTIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES NOT INCLUDE SECURITY FEATURES INCLUDED ON COMPUTERISED CERTIFICATES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS RECOMMENDED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE IDENTITY OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND COMPRISED IN THIS FOLIO.

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

prospect

PRINTED ON 19/12/2016

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

19/12/2016 4:09PM

FOLIO: 11/1022044

First Title(s): VOL 4441 FOL 22 VOL 4441 FOL 3

OLD SYSTEM

Prior Title(s): 1/860392

Recorded	Number	Type of Instrument	C.T. Issue
28/12/2000	DP1022044	DEPOSITED PLAN	FOLIO CREATED EDITION 1
27/6/2001	DP1028208	DEPOSITED PLAN	FOLIO CANCELLED

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax, 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

19/12/2016 4:08PM

FOLIO: 108/1028208

First Title(s): VOL 4441 FOL 22 VOL 4441 FOL 3

OLD SYSTEM

Prior Title(s): 11/1022044

Recorded Number Type of Instrument C.T. Issue

27/6/2001 DP1028208 DEPOSITED PLAN FOLIO CREATED EDITION 1

2/7/2001 DP1030744 DEPOSITED PLAN FOLIO CANCELLED

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

19/12/2016 4:07PM

FOLIO: 203/1030744

First Title(s): OLD SYSTEM
Prior Title(s): 3/860392

108/1028208

Recorded	Number	Type of Instrument	C.T. Issue
2/7/2001	DP1030744	DEPOSITED PLAN	FOLIO CREATED EDITION 1
2/7/2001	77 33761	DEPARTMENTAL DEALING	EDITION 1 EDITION 2
9/7/2001	7749448	DEPARTMENTAL DEALING	EDITION 3
30/12/2002	DP1047403	DEPOSITED PLAN	FOLIO CANCELLED
10/2/2003	9363681	UNNECESSARY - DEPARTMENTAL	
10/2/2003	9363900	DEPARTMENTAL DEALING	FOLIO CANCELLED

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

19/12/2016 4:01PM

FOLIO: 601/1047403

First Title(s): OLD SYSTEM
Prior Title(s): 203/1030744

Recorded	Number	Type of Instrument	C.T. Issue
10/2/2003	9363753	DEPARTMENTAL DEALING	FOLIO CREATED EDITION 1
16/12/2003	9776096	REJECTED - TRANSFER RELEASING EASEMENT	
26/2/2013	AH558412	LEASE	EDITION 2
15/6/2016	AK509587	DEPARTMENTAL DEALING	

Title Search

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 601/1047403

SEARCH DATE	TIME	EDITION NO	DATE
19/12/2016	3:51 PM	2	26/2/2013

LAND

LOT 601 IN DEPOSITED PLAN 1047403

AT PROSPECT

LOCAL GOVERNMENT AREA CUMBERLAND

PARISH OF PROSPECT COUNTY OF CUMBERLAND

TITLE DIAGRAM DP1047403

FIRST SCHEDULE

BORAL RESOURCES (NSW) PTY LIMITED

SECOND SCHEDULE (7 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 H103977 COVENANT
- 3 DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (1) IN THE S.88B INSTRUMENT
- 4 DP1022044 POSITIVE COVENANT
- 5 DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (3) IN THE S.88B INSTRUMENT
- 6 DP1028208 POSITIVE COVENANT
- 7 AH558412 LEASE TO AUSTRAL MASONRY (NSW) PTY LIMITED EXPIRES: 7/2/2018. OPTION OF RENEWAL: 34 MONTHS.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

prospect

PRINTED ON 19/12/2016

MOBILE: FAX: EMAIL:

MOBILE: 0404 069 995
FAX: 02 - 8211 9179
EMAIL: search@elsearches.com.au
WEB: www.elsearches.com.au
ADDRESS: PO BOX 393 Kingsford NSW 2032

16 May 2008

GEOTECHNIQUE PTY LTD P O Box 880 PENRITH NSW 2751

Attention: Ms Frances Kuipers

RE: Lot 63 DP 752051

Clunies Ross Street, Pemulwuy

Your Ref. No: 11762/1

SUMMARY OF PROPRIETORS

Lot 63 DP 752051

Year	Proprietor	Source
1963 – To date	The Council of The Municipality of Holroyd	Current Certificate of Title
Prior to 1963	Crown Land	Vol. 8484 Fol. 244

Terms of Conditions & Limitations

- 1. The client is responsible for payment associated with the search.
- The client is authorised to use our report subject to settlement of our account. Until the account is settled, the report remains the property of Environmental Legal Searches. If the account is not settled within 30 days of the invoice date, then the authority to use the report may be revoked. Where authority to use the report is revoked, all references to the report should be deleted or rendered inactive until the account is settled.
- 3. Search was based on Lot 63 DP 752051 provided by Ms Frances Kuipers of Geotechnique Pty Ltd.

The attached cadastral plan and Crown Plan (929.690) MUST be checked against the survey plan for the property for correctness.

The details of the leases (if applicable) were solely based on the available records of the Department of Lands. The MOST RECENT record may not be available on the day of the searching.

Department of Lands Page 1 of 3

Department of Lands

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 63/752051

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 13/5/2008
 2:04 PM

VOL 8484 FOL 244 IS THE CURRENT CERTIFICATE OF TITLE

LAND

LOT 63 IN DEPOSITED PLAN 752051 LOCAL GOVERNMENT AREA HOLROYD PARISH OF PROSPECT COUNTY OF CUMBERLAND (FORMERLY KNOWN AS PORTION 63) TITLE DIAGRAM CROWN PLAN 929.690

FIRST SCHEDULE

THE COUNCIL OF THE MUNICIPALITY OF HOLROYD

SECOND SCHEDULE (2 NOTIFICATIONS)

- 1 LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND CONDITIONS IN FAVOUR OF THE CROWN SEE CROWN GRANT(S)
- 2 EXCEPTING LAND BELOW A DEPTH FROM THE SURFACE OF 15.24 METRES BY THE CROWN GRANT

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

3395842 GTN 11762

PRINTED ON 13/5/2008

* ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE.

Page 1 of 8 County: CUMBERLAND 25.507 This information is provided as a searching aid only. While every endeavour is made to ensure the current cadastral pattern is accurately reflected, the Registrar General cannot guarantee the information provided. For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps. Identified Parcel: Lot 63 DP 752051 DP 1125137 2065 POX Parish: PROSPECT CLUNIES ROSS ST 10 DF 20L DP 1022044 Requested Parcel: Lot 63 DP 752051 DP 1028208 DP 1078814 BUTU WARGUN DR (c) Cobyright NSW Department of Lands. Map Projection MGA Zone FOUNDATION PL DP 802753 901 LGA: HOLROYD DP 1047403 ŝ 9 DP 851785 Report Generated 8:54:02 AM, 16 May, 2008 COLLAC RECONCILIATION RD DP 1042806 Reliable from the ground up DP 1105383 Locality: PEMULWUY HOBAFEY RB DP 1122424 PICRITE CL

Cadastral Records Enquiry Report

Department of Lands

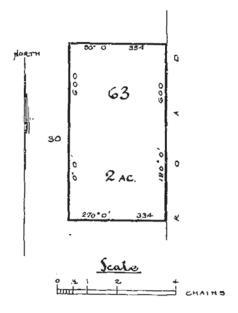
SEVEN SHILLINGS AND SIX PENCE STAMP DUTY SYDNEY, N.S.W.

REGISTER BOOK FOL 244 8484

representation video

٩.

GRANT OF LAND CANCELLED ON ISSUE OF NEW FOLIO 63 7520


EXILABETH the SECOND, by the Gruce of God of the United Kingdom, Australia and Ger other Rentms and Cerette, an Queen, Trad of the Communealth, Befender of the Jotth-To All to whom these Presents shall come; Greeting. rai allente s

Ill herear in accordance with the proviotons of the 66th Section of the Crown Lands Consolidation Lot, 1913 as smended

THE COUNCIL OF THE MUNICIPALITY OF HOLHOYD (hereinafter called the CHANTEZ) duly became the Furchaser of the piece or parcel

of Land hereinafter described limited to the surface thereof and to a depth of fifty feet below such surface for the sum of six hundred pounds being the price thereof as determined by the Local Land Board NOW YEST That for and in consideration of

the said sum for and on Our bohalf well and truly paid into the Treasury of Our State of New South Wales before these Presents

are issued and of all and singular the premises WE HAVE CRAFTED and for Us ur Hoirs and Successors DO HERKBY GRANT unto the GRANTEE and its Assigns subject to the Reservations Exceptions and Conditions hereinafter contained ALL THAT Piece or Parcel of Land in Our said State containing by Admenurament two scres be the same more or loss situated in the County of Cumberland Parish of Prospect Portion 63 as shown in plan catalogued No. C.929-690 in the Dopartment of Lands ----

LEA BLACKTOWN

Witness Our Trusty and Well-beloved SIR ERIC WINSLOW WOODWARD, Knight Commander of Our Most Distinguished Order of Saint Michael and Saint George, Knight Commander of Our Royal Victoris': Order, Companion of Our Most Honourable Order of the Bath, Commander of Our Most Excellent Order of the British Empire, Companion of Our Distinguished Service Order, Knight of the Most Venerable Order of St. John of Jerusalem, Lieutenant-General on the Retired List of Our Australian Military Forces, Governor of Our State of New South Wales and its Dependencies in the Commonwealth of Australia, at Sydney in Our said State, this state of day of In the Twelfth year of Our Reign Lail in the year of Our Lord one thousand nine hundred and sixty

Herrodwa Governor. Req:R332789 /Doc:CT 0B484-244 CT /Rev:12-Dec-2007 /Sts:NO.OK /Prt:14-May-2008 17:15 /Pgs:ALL /Seq:2 of 2 Ref:3401423 GTN 11762/1 /Src:X

RECORDED and ENROLLED in the Registrar General's Office, at Sydney, in New South

Wales, this

A day of A to the

.01

AV 7/6 64.8749

Registrar General.

COMPUTER FOLIO 40 FURTHER DEALINGS TO BE REGISTERED.

Department of Lands Page 1 of 2

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 13/5/2008 2:02PM

FOLIO: 63/752051

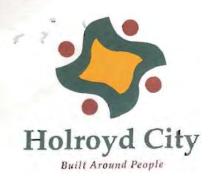
First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 8484 FOL 244

Recorded Number Type of Instrument C.T. Issue

1/3/1989 TITLE AUTOMATION PROJECT LOT RECORDED FOLIO NOT CREATED

19/6/1989 CONVERTED TO COMPUTER FOLIO FOLIO CREATED CT NOT ISSUED

8/12/1998 AMENDMENT: LOCAL GOVT AREA


*** END OF SEARCH ***

3395826 GTN 11762

PRINTED ON 13/5/2008

APPENDIX B

COUNCIL LETTER

Holroyd City Council

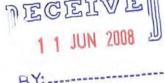
www.holroyd.nsw.gov.au The Gateway to Western Sydney

Corporate & Financial Services

Our Reference:

FOI-2008-25

Contact:


\$D08/6932 Bert Leonard 9840 9731

Telephone:

6 June 2008

Geotechnique Pty Ltd PO Box 880 PENRITH NSW 2751

Dear Ms Kuipers,

REQUEST FOR INFORMATION - FREEDOM OF INFORMATION ACT LOT 63 DP 752051 - CLUNIES ROSS STREET, PEMULWUY

I refer to your application received at Council's office on 15 May 2008 requesting:

"the following information/records and indicate the period of years relative to each record

- Development Application (DA) approval records
- Building Application (BA) approval records
- Council Notices
- Council Inspection Records
- Neighbourhood complaints
- Registered activities
- Sewer and Service plans
- Product spill
- Waste Disposal practice
- Chemical Storage and Usage
- Underground storage tank(s), interceptor pit(s), sumps and decommissioned underground storage tanks
- Any other information that may be useful."

Staff of Council's Environmental Health Units have advised as follows: -

"The site is a vacant block, which has been partly mowed with the presence of road base or similar being used by vehicles to access the site and partly left overgrown with weeds and grass. It is unknown whether waste material or fill material is located in the overgrown section of the site.

The Environmental Health Unit offers the following information in relation to the environmental health related points outlined in the above letter:

Council Notices:

As of 2 June 2008 there are no outstanding environmental health

related Notices on the abovementioned property.

Council Inspection Records:

A part from the inspection carried out as part of this process, the Environmental Health Unit has conducted I inspection regarding the parking of vehicles on the property. At the time of the inspection today, there were many vehicles parked on the site.

All Communication to be addressed to

General Manager, Holroyd City Council, 16 Memorial Avenue, (PO Box 42), Merrylands NSW 2160 DX 25408 Merrylands. Ph: 02 9840 9840. Fax: 02 9840 9734 TTY: 02 9840 9988

SS2/fvr: FOI/MAS letter foi geotechnique 060608 ede

Email: hcc@holroyd.nsw.gov.au ABN 20 661 226 966

REGISTRY Title Search

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 107/1028208

LAND

LOT 107 IN DEPOSITED PLAN 1028208

AT PROSPECT

LOCAL GOVERNMENT AREA CUMBERLAND
PARISH OF PROSPECT COUNTY OF CUMBERLAND
TITLE DIAGRAM DP1028208

FIRST SCHEDULE

PGL NO. 1 PTY LTD

(T AN689009)

SECOND SCHEDULE (8 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (1) IN THE S.88B INSTRUMENT AFFECTING THE PART(S) FORMERLY 11/1022044.
- 3 DP1022044 POSITIVE COVENANT AFFECTING THE PART(S) FORMERLY 11/1022044.
- 4 DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (3) IN THE S.88B INSTRUMENT AFFECTING THE PART(S) FORMERLY 11/1022044.
- 5 DP1028208 POSITIVE COVENANT REFERRED TO AND DESIGNATED (J) IN THE TITLE DIAGRAM.
- 6 DP1040282 RESTRICTION(S) ON THE USE OF LAND
- 7 DP1070244 EASEMENT FOR UNDERGROUND CABLES 1 METRE(S) WIDE (E)
 AFFECTING THE PART(S) SHOWN SO BURDENED IN DP1070244
- 8 DP1070244 EASEMENT FOR PADMOUNT SUBSTATION (P) AFFECTING THE PART(S) SHOWN SO BURDENED IN DP1070244

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

pemulwuy

PRINTED ON 28/5/2019

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304)

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

<u>LRS NSW</u> <u>Sydney</u>

Address: - Clunies Ross Street, Pemulwuy

Description: - Lot 107 D.P. 1028208

As regards the part shown edged with yellow tint on the attached cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
06.06.1923 (1923 to 1941)	Joseph Hicks (Dairy Farmer)	Vol 1959 Fol 92 Now Vol 3508 Fol 232
17.11.1941 (1941 to 1948)	Theo James Hicks (Farmer) Norman Kenneth Hicks (Farmer) Leslie Gordon Hicks (Farmer)	Vol 3508 Fol 232 Now Vol 5280 Fol's 145, 146 & 147
10.06.1948 (1948 to 1958)	Theo James Hicks (Dairy Farmer) Norman Kenneth Hicks (Dairy Farmer)	Vol 5280 Fol's 145, 146 & 147 Now Vol 7375 Fol's 5 & 6
07.11.1958 (1958 to 1988)	N.S.W. Associated Blue Metal Quarries Pty Limited	Vol 7375 Fol's 5 & 6 Now Vol 9787 Fol 165
26.05.1988 (1988 to 2001)	Boral Resources (N.S.W.) Pty Limited	Vol 9787 Fol 165 Now 107/1028208

As regards the part shown tinted pink on the attached cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
10.11.1898 (1898 to 1940)	Philip Charley (Esquire) (& His deceased estate)	Vol 917 Fol 129
14.02.1940 (1940 to 1988)	N.S.W. Associated Blue Metal Quarries Limited	Vol 917 Fol 129 Now 5/235064
26.05.1988 (1988 to 2001)	Boral Resources (N.S.W.) Pty Limited	5/235064 Now 107/1028208

Leases: -

- 24.02.1905 to Philip Henry Morton & Ewan Richards Frazer (Esquires) expired 21.01.1914
- 19.02.1925 to The Sydney and Suburban Blue Metal Quarries Limited, of part of the land in Volume 917 Folio 129 surrendered 13.02.1940
- 13.02.1940 to The Sydney and Suburban Blue Metal Quarries Limited, of part of the land in Volume 917 Folio 129 now expired

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304)

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Search continued as regards the whole of the subject land

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
06.07.2001 (2001 to 2004)	Trafalgar Nominees (Prospect) Pty Limited	107/1028208
11.10.2004 (2004 to 2009)	National Australia Bank Superannuation Fund Pty Limited	107/1028208
09.04.2009 (2009 to 2015)	Lend Lease Funds Management Limited	107/1028208
20.02.2015 (2015 to 2018)	LAOF IV Ocean Pty Ltd	107/1028208
10.09.2018 (2018 to date)	PGL No. 1 Pty Ltd	107/1028208

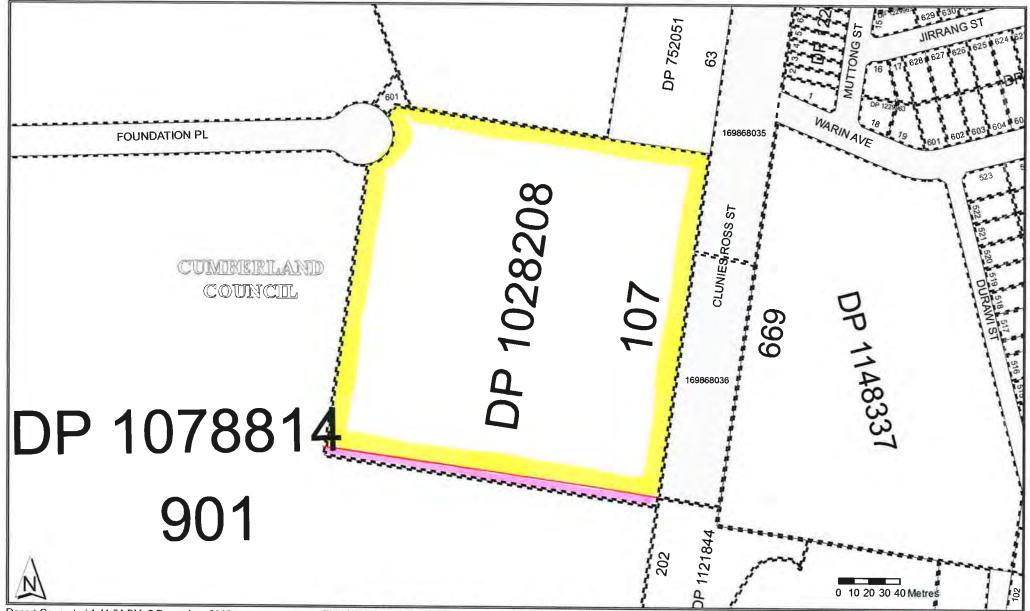
Denotes Current Registered Proprietor

Leases, excluding building premises, continued: - NIL

Easements: -

- 08.10.2004 (D.P. 1070244) Easement for Underground Cables 1 metre wide
- 08.10.2004 (D.P. 1070244) Easement for Padmount Substation

Yours Sincerely Mark Groll 28 May 2019



Cadastral Records Enquiry Report: Lot 107 DP 1028208

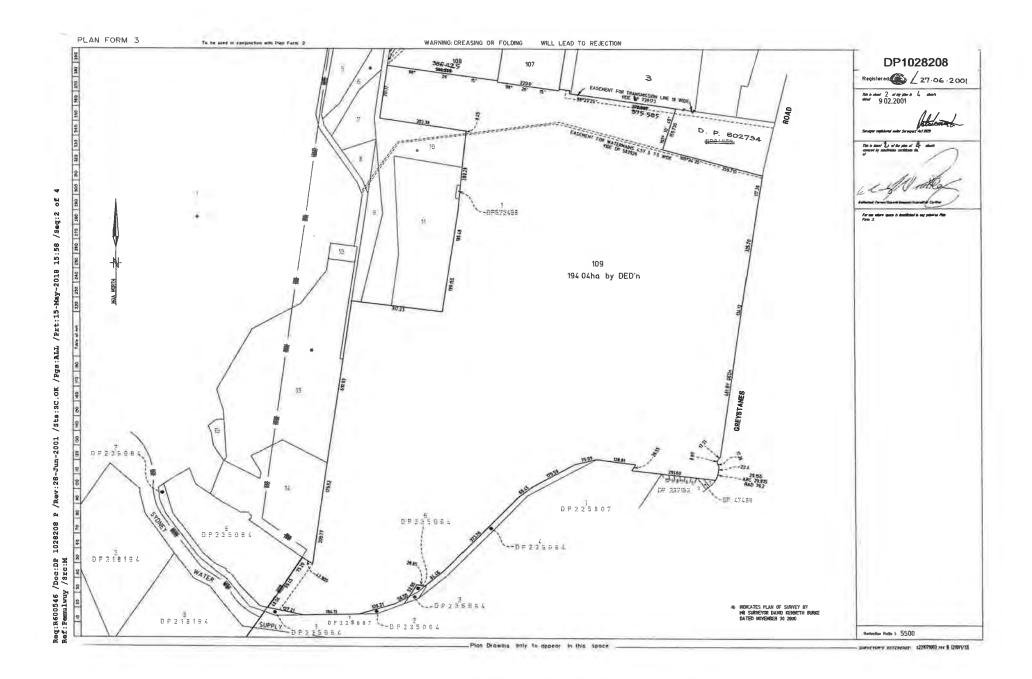
Ref : CMapIT

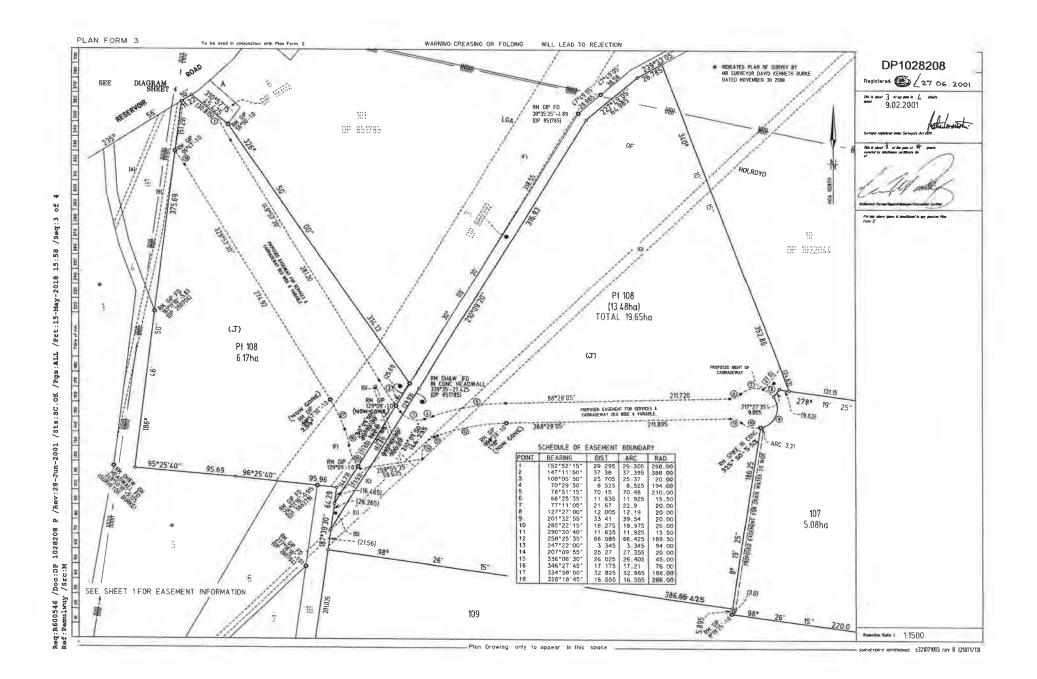
 Locality : PEMULWUY
 Parish : PROSPECT

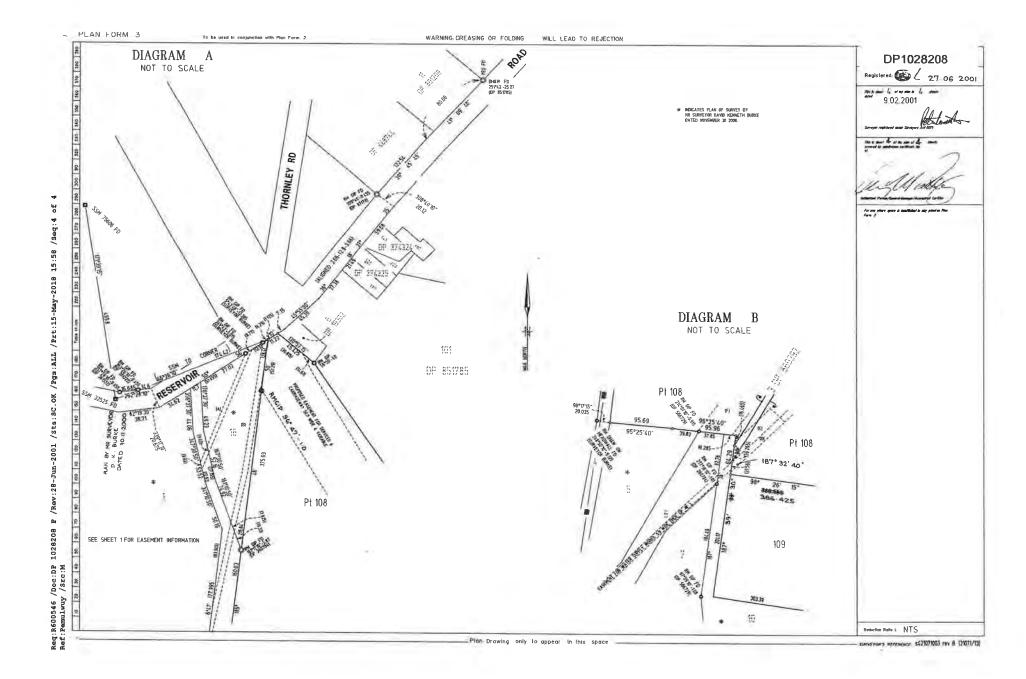
 LGA : CUMBERLAND
 County : CUMBERLAND

Report Generated 1:41:54 PM, 5 December, 2018 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only. Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Page 1 of 5

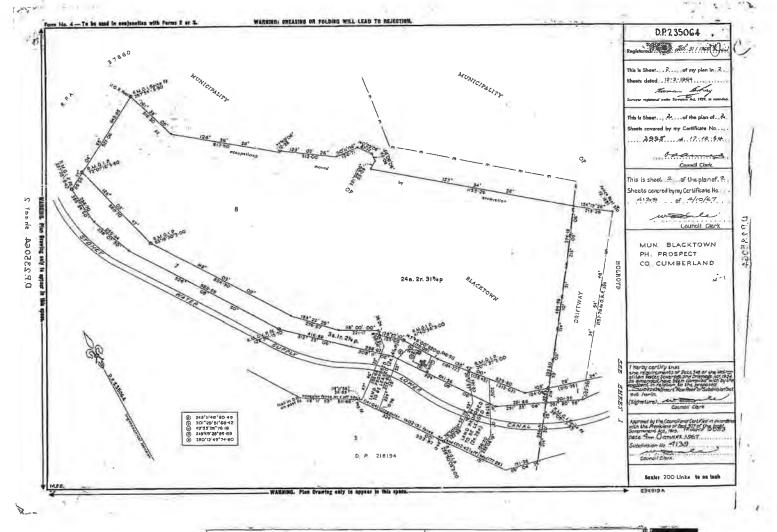

ğ


15:58


P4

PLAN FORM 2

Plan Drawing only to appear in this space SURVEY PRACTICE REGULATIONS 1910 CLAUSE 3222 SIGNATURES, AND SEALS ONLY 338"17"31" 357 675 BY SURVEY PM 29163 FD # MONCATES PLAN OF SURVEY BY MR SURVEYOR DAVID KENNETH BURKE DATED MOVEMBER 30 2000 138*L733* 357 608 BY CO-ORDS GRD HOA CO-ORDINATES - IESTI 70NF DP1028208 647300 2025 ET SURVET SOSTITUTO 2025 BY CO-0805 GROWS 308 229.926 6 257 805.772 SSM 75605 FD 27 06 2001 SSM 495 204 259.289 6 257 671.662 36 9 (EST) SSM 75405 309 W0.636 6 257 375.875 36 6 SSM 75408 207 046.547 6 257 532.302 36 S CA: SEE CERTIFICATE SOURCE : LAND & PROPERTY INFORMATION LIC 6/12/00 COMBINED SEA LEVEL & SCALE FACTOR I BODGEL Title System TORRENS PUTPOSO SUBDIVISION COHAW FD DP 802753 HH DH&W FD U9152-4, 14 & 42 251°42 -25 27 (DP 851785) VL 97 IDP 10220441 Lost Plan: DP 1022044 10 Alcritain PLAN OF SUBDIVISION OF LOT 5 BLACKTOWN 1022044 DP 235064 & LOT 11 DP 1022044 AND EASEMENT FOR SERVICES 77235 66318 前 AND CARRIAGEWAY 200 WIDE AND VARIABLE DIESILTOR Lengths are in metres Reduction Ratio : 3000 SEE DIAG SHEET 1355 30 LGA HOLROYD & BLACKTOWN LGA RM GIP FD 3073575"-189 OP 1022044 PROSPECT DP 851785 0E **PROSPECT** DP 860392 CUMBERLAND HOLROYD This is sheet to my plan in 4. (Delete if trapplicable) RM GIP FO MT4275-197 Surveyors (Practice) Regulation 1996 Pt 108 Ofto 34072) DF 302794 PETER WARREN CORNISH [13,48ha] HARD & FORESTER Pty LId "MADU & FUNESTIEK FLY LIQ o surveyer regulared under the Surveyer's Act 1829, hereby owifly that the survey represented in this plan-ts accurable, has been sade in accordance with It's regreat Bracklest Regulation 1886 and was completed TOTAL 19.65ha (J) Pt 108 (6.17ha) OHC HEADWALL 68-28-05 211.72 (67.19) any lund sharen in the plan that is not the subject of the survey) Dahan Line : X_Y 268*28 DS**
PROVISED FASCIONES I CARREST MAY NO WORLD VARIABLE. 211,805 25 SCHEDULE OF SHORT 207.97 the survey)
Dahan Line: X_Y
Zone: Suburban/Country (Signature) 2 & CURVED BOUNDARIES 107 BEARING DIST ARC 95.69 RAD Surveyor registered unc 95°25'40' 201°32'55" 33 41 39 54 20 0 5 08ha 95*25'40' 176.265) SHEET SEASON SEE 217°27'35" 9 005 Plans used in preparation of survey/comeda 55°56'10" 130°57'15" DP 33023 DP 860392 DLAG PROPOSED EASEMENT TO DRAIN WATER 3.0 WIDE ... 45 425 Crown Lands Dilice Approval 5 895 5 895 DP 34072 DP 802753 DP 1022044 -D138) DP 235064 188*19'25* \$86.555 386 425 278*26'15* ?78*26'15* 35 425 9*31'55* 11 85 PANEL FOR USE ONLY for statements of intention to dedicate public roads, to create public reserves, dramage reserves, easements, restrictions on the use of land or positive (3) 220.0 Subdivision Certificate 26 220 country must be prospered at a 20% of the Entry and descriptional Act 1275 hours been polyclosed a SEE RAG -SUBDIVISION SHEET 4 SUNGAL 1 Restriction on use at land (H) 2. Positive Covenant (J) 280.655 EASEMENT FOR WATER SUPPLY WORKS 4.0 WIDE INSPECTOR
(ASSEMBLY TOO WATER SIPPLY WORKS 5.0 WIDE INSCREDED)
(ASSEMBLY TOO WATER SIPPLY WORKS 5 Consent Authority MUNISTER FOR URBAN AFFAURL + 2016 of antercommon 27-/25-/21. PSANNENC. MOTO EXAMENT FOR TRANSPISSION LINE 30 48 WIDE MAS SEEN PARTIAL
MELACULE TO TRANSPER OSSILVATIONS 10.00 WIDE CREATED BY TRANSPER
10 LANGUARY FOR MEMBER SHOPEY WORKS 10.00 WIDE CREATED BY TRANSPER
10 LANGUARY FOR TRANSPISSION LINE 10 WIDE CREATED BY TRANSPER
10 LANGUARY FOR LICETHICITY TRANSPISSION LINE 49 72 WIDE CREATED
11 TRANSPER HOSSILVAT VICE DO 200890
11 ALLEVERY FOR LICETHICITY TRANSPISSION LINE 49 72 WIDE CREATED
12 TRANSPER HOSSILVATION WINE 30 WIDE CREATED BY TRANSPER
10 ALLEVERY FOR UNCERTAINTIES WINE 30 O WIDE CREATED BY TRANSPER
10 ALLEVERY FOR UNCERTAINTIES WINE 30 OWNER CREATED BY TRANSPER
10 ALLEVERY FOR UNCERTAINTIES OF LINES.
14 POST TYPE CONTAINT. 53 DP 34072 109 | M | 150 | 151 | 150 | SHIVE YOU'S REFERENCE: \$121071003 rev B [21017/13] "CHECKLIST" WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION



CONVERSION TABLE ADDED IN

0	P 238069	SH	1/2
Г	LINKS		METRES
L	0.98		0.016
1	2.27		0.402
1	3		
	5.78		0.760
4	5 7.55		1.006
ш			1.676
	27.14		5.460 6.437
- 11	8.9		
4	53.32		10.726
1	76-89		15.468
ш	92.83		
	103,43		20,119
	122.98		
	4 11 0		26.554
	143.41		28.850
ш	143.41 157.83 161.25 162.4 167		28.850 31.750 32.938
ш	162.4		32.670 33.595
ш	167		33,595 33,611
	167.08		
Я.	201.35		40.505 42.502
41	210.28		42.907
Ш	226.03		92.907 45.470
a.	230		46,269 48,039
	268.58		
ш	263.23		
	280,84		96.124 56.496
- 1	304.37		61.230 69.453 75.086
- 1	395,25 573,26		75,086
ш	374.18		
- 1	419.85		89.960 84.581
- 1	422.07		84.907 96.724 99.455
-1	494.38		96.729
	497.77		100,135
ш	\$94.38 \$97.77 533.26 583.5		100.135 107.275 117.362 127.209
- 1	632.35 637.31 649.35		127,209
11	637.31		128.206 130.528
	656.75		134.129
ш	690 794		138.806 159.727
ч	817.61		164.477
- 1	817.61 847.98		17n - 586
1	850 922		170.993 185.477
	943,16		189.734 194.105
	964.89		194,105
- 1	1000		201.168 228.597
	1153.26		
	1157.76		232,904 289.280
	1938 1976.42		297.DGB
	1977.25		297.175 301.752
	1583		
1	1624		326,697 159,709
	1857.97		359.709 373.764
	1867		
	1951 2039.96		392,479 409,469
	2841.25		571.569

DP 255564 SH	1/2 CONT
LINKS	METRE
3188	641.52
4935	992.76
4977.77	1001.36
8479.9B	1705.90
AC RD =	sa M
32 1/	2 822
- 1 15	1591
- 1 32 1/	
- 2 ª	2125
AC RD P	АН
3 P 38 1/	2 1.5

I, firuse Blahard Duvies, Regisires Cemprol for Men South Wales, carlify that is, result of the property and so a parameter record of a . deament in my custody this 4th day of July, 1977

Req:R677531 /Doc:DP 0235064 P /Rev:10-Jun-1992 /Sts:OK.OK /Pgs:ALL /Prt:04-Dec-2018 12:57 /Seq:3 of 3 Ref:permlway /Src:M

23506# SH	AUS DEPARTMENT	DP 235069 BH	2/2 CONTO
FEET INCHES	METRES	LINKS	METRES
4 6 3/4	1.891	1	
9 5/4	30.728	874.16	79.273
7 1/4	41.332	482.13	80.896
8 8/6	56.302	\$16,89 494.38	99.455
10 3/6	58.486	523.8	105,872
2 7 5/8	67.412 72.730	527.86	106.028
6 7/8	84,299	569.7	114.605
10 5/6	127,067.	612.5	123.215
6 3/4	195,548	641.56 643.65	129,462
KS	METRES	896.9	180-928
n.a		952.67	187.664
0.44	0.089	989.53	193.027
.96	0.101	1193.26 1157.75	231.999
3 3.8	0.604	AC RD P	80 A
4.56 5.3 7.55	0.917 1.066 1.519	- 2 4 1/1 - 2 28	2151 2782
92 36 7	1.895	AC RD P	НΔ
6	3.158	8 1 2 1/1 24 2 31 3/1	1.321
	7.413	24 2 31 3/	7 74773
3	8.230		
.08	9.069	1	
.42	10.668		
- 6	15.007		
6.19	15.327	F	
0.45 5,69	16.184		
.12	17.526		
88	18.674	-1	
.81	20.280	4	
.59 .96	24.740	1	
.99	23.454 24.740 24.742	1	
.49 .71	25.237 25,490		
174	26,957	1	
4.09	26.957 26.975		
85.6	27,278		
1.02	28.369	1	
6,7	31.523		
67.94	33.784		
7-28	35.668	3	
9.09	36.027 37.156	3	
84.72	37,160	1	
91.28	36.479		
91.87	38.598 40.505		
201.35 210.26	42.302	1	
12.92	42.732	1	
213,29	42,907	11	
13.63	92.976	1	
21.17 36.7	94.492 47.616	T .	
230.62	48.005	11	
238.8	44,039	790	-57
289.44	52.191 55.637		0.4%
276.57 281.86	56.701	Tr.	
306.11	61.982		
311.66	62.696		
12	62.764 63.569		
16.3	68.629		25
2.6	64.897	1	
.61 .66	67.916 68.128	1	

I, Bruce Richard Dovies, Registrar General for New South Wales, cortify that this negative is a photograph made as a parament record of a document in my custody this 6th day of July, 1977

92 9 0

65

02.5

1st Edition issued 17-8-1964.

EM.

J569901.

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Witness

Registrar-General.

SEE AUTO FOLIO

787-165

WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lots A and B in Deposited Plan 33023 in the Cunicipality of Blacktown and Holroyd, Parish of Prospect and County of Cumberland being granted as set out in the schedule hereunder. Excepting thereout the minerals reserved by the Crown Grants of 3 acres 2 roods 16 perches and 15 9/10 perches.

SCHEDULE OF GRANTS.

Number of Portion	Name of Grantes	Date of Grant	Grant Reference Volume Folio		
Pt. 28 Pt. 30 Pt. 29 Pt. 3ac. 2rd. 16pers. 159/10 pers.	John Rowe Edward Hiles John Kennedy	1-5-1797 1-5-1797 3 -5 -1797 26-9-1930 26 - 9-19 3 0	<u> 444</u>	3 22	

FIRST SCHEDULE (Continued overleaf)

ASSOCIATED BLUE METAL OUR PRIES INV.

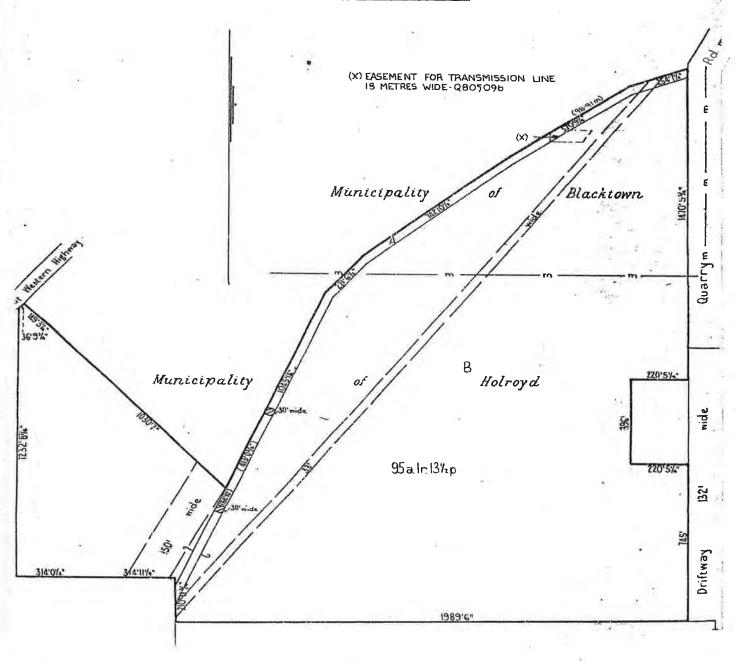
Registrar General.

SECOND SCHEDULE (Continued overleaf)

- Reservations and conditions, if any, contained in the Crown Grant(s) above referred to Right of way created by Transfer No. A960804 affecting the pieces of
- land shown as"30 feet wide" hatched black in the plan hereon.
- tand shown as 50 feet wide. Interned black in the plan detection.

 Hortgage Ma. C506739 of that part of the land above described formerly populated in certificate of title Volume 1768 Felio State to Blue Metal and Gravel Fty. Limited. Entered 18 6-1937. discharged Kilker.

 Mortgage No. 6511685 of that part of the land above described.


- formerly compressed in cortificate of title Volume 1,768 Folio 81 to Quarries Ptyl Limited. Entered 18 6 1937 discharged 1617648

- Covenant orested by Transfer No. H105977.
 Easement for Electricity Transmission created by Transfer No. H939523 affecting the piece of land shown as "150 feet wide" in the plan hereon. Easement for Water Supply Works created by Transfer J90028 affecting
- the piece of land shown as "33 feet wide" in the plan hereon.

Registrar General.

persons are cautioned against altering or adding to this certificate or any notification hereon

PLAN SHOWING LOCATION OF LAND

1569901

Scale, 300 feet to one inch.
All lengths shown bereon are in feet and inches

							FIRST	SCHEDULE (con	tinued)					
				REGIST	RED P	ROPRIETOR			1	NATURE	INSTRUMENT NUMBER	DATE	ENTERED	Signature of Registrar-General
40	PISSUALES	Insh.)	PTY.	LIMITES	ДY	TRANSFOR	X545979	. Reguleed	26-5-1938					
							•					-+1		
									1					

			SECOND SCHEDULE (continued)				C1 16 8. JI
NATURE	INSTRUMENT NUMBER	DATE	PARTICULARS	ENTERED	Signature of Registrar-General	CANCELLATION	P 8697651/G
Transfer	M502589	19-10-1971	Easement for Inansmission line affecting that pant of the land within deschibed shown as Proposed Easement for Inansmission				Q8050967.6 CT 10 (11/18
Transfer	P859765	_	Line 100 ft wide and 66 ft wide in	29 - 2 - 1972	Jandatam		Q98159672 X545975
			said instrument, affecting that part of the land hillin described shown as "Proposed Easement for Underground Mains 3. Hide" in D.O. 584641.	113 - 10- 19716	Januarian		overles.
Transler	&\$4507076	-	that part of the land within described shown so burdeness is the plan hereon	29 5-1978	6		1
Transger	ଫ୍ରକାବର		The easement for Transmission Line created by M502589 is portially released as shown in plan annexed to (0981596.	2-1-1979.	6		1.9787 601
							185

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED

	FIRST SCHEDULE (co	ntinued)			,,,,	
	REGISTERED PROPRIETOR		INSTRUMENT		1 PAINTERS	I Signifure of
		NATURE	NUMBER	DATE	ENTERED	Signature of Registrar-Gene
		1				
		1	1 1			
		1	1			
	ASMAPILES		1 0			
	CANCELLED		1 1			
			1		1 1	
	APE AUTO POLIA		1		1 1	
	SEE AUTO FOLIO					
			1			
C. Company		1				

			SECOND SCHEDULE	(continued)		
NATURE	INSTRUMENT	DATE	PARTICULARS	ENTERED	Signature of Registrar-General	CANCELLATION
			is .			
			•			

Historical Title

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

5/12/2018 1:51PM

FOLIO: AUTO CONSOL 9787-165

Recorded Number Type of Instrument ______

C.T. Issue

14/5/1999 5823660 CONSOL HISTORY RECORD CREATED

FOR AUTO CONSOL 9787-165

PARCELS IN CONSOL ARE:

A-B/33023.

19/12/2000 7297668

PARCELS EXCISED. CONSOL

BROKEN UP

*** END OF SEARCH ***

Historical Title

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

5/12/2018 1:51PM

FOLIO: B/33023

First Title(s): OLD SYSTEM

VOL 4441 FOL 3

VOL 4441 FOL 22

Prior Title(s): VOL 9787 FOL 165

Recorded 29/7/1989	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED FOLIO NOT CREATED
13/5/1999	5819717	DEPARTMENTAL DEALING	FOLIO CREATED CT NOT ISSUED
14/5/1999	5823660	CONVERTED TO AUTO CONSOL 9787-165	CONSOL CREATED CT NOT ISSUED
19/12/2000	7297668	EXCISED FROM AUTO CONSOL 9787-165	
20/12/2000 20/12/2000	7301343 7301553	TRANSFER DEPARTMENTAL DEALING	EDITION 1 FOLIO CANCELLED

*** END OF SEARCH ***

97-01T

Real Property Act, 1900

(A) LAND TRANSFERRED

Show no more than 20 References to Title.

If appropriate, specify the share transferred.

Office of State Revenue use only

NEW SOUTH WALES DUTY

20-12-2000

0000497118-001

PL 9769 0655

SECTION OTHE TERN-OPTETNOL

NO DUTY PAYABLE

2/860392 being part volume 9787 folio 165 Now being part of Lots A and B in DP 33023

(B)	LODGED	BY

L.T.O. Box Name, Address or DX and Telephone TRACEY WADSWORTH

> C/- BORAL OFFICES GREUSTANES RD

GREYSTANES 2145

REFERENCE (max. 15 characters):

(C)	TRANSFEROR		BORALRESOURCES(N.S.W.)PTYLIMITED
(D)	acknowledges re	eceipt of the co	ensideration of\$1.00
			ed above transfers to the Transferee an estate in fee simple
(E)	subject to the fol	lowing ENCU	MBRANCES 1 2 3
(F)	TRANSFEREE	T TS (s713 LGA)	MINISTER ADMINISTERING THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT 1979
(G)		TW (Sheriff)	TENANCY:

66

(Castal) TERMINOT:
We certify this dealing correct for the purposes of the Real Property Act, 1900. DATED Signature of the Purpose of the Real Property Act, 1900.
Signed in my presence by the Transferor who is personally known to me.
Signature of Witness
Name of Witness (BLOCK LETTERS)
Address of Witness Signature of Transferor Weslever Signature of Transfe
Signed in my presence by the Transferee who is personally known to me.
Signature of Witness Signature of Witness

M. 1. BROWNFIELD

Name of Witness (BLOCK LETTERS) I FARRER PLACE SYDNEY Address of Witness

SIGNED OF THE VINCENT PERNANDEZ RAWCO on disk astronometring the Environmental Planning and Assessment hereby certify that I have no notice of the revocation of stack de

Signature of Transferee

INSTRUCTIONS FOR FILLING OUT THIS FORM ARE AVAILABLE FROM THE LAND TITLES OFFICE

CHECKED BY (office use only)

AUSDOC Office Pty. Ltd.

Historical Title

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

5/12/2018 1:51PM

FOLIO: 1/860392

First Title(s): VOL 4441 FOL 22 VOL 4441 FOL 3

OLD SYSTEM

Prior Title(s): B/33023

Recorded 28/8/1996	Number DP860392	Type of Instrument DEPOSITED PLAN	C.T. Issue LOT RECORDED FOLIO NOT CREATED
21/12/2000	7302830	DEPARTMENTAL DEALING	FOLIO CREATED
21/12/2000	7303616	DEPARTMENTAL DEALING	EDITION 1 EDITION 2
28/12/2000	DP1022044	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

Historical Title

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

-----5/12/2018 1:51PM

FOLIO: 11/1022044

First Title(s): VOL 4441 FOL 22 VOL 4441 FOL 3

OLD SYSTEM

Prior Title(s): 1/860392

Recorded	Number	Type of Instrument	C.T. Issue
28/12/2000	DP1022044	DEPOSITED PLAN	FOLIO CREATED EDITION 1
27/6/2001	DP1028208	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

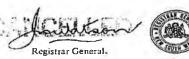
11841157

WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE

NEW SOUTH WALES

(Page 1) Vol.

Appln. Nos.7070, 7395 & 84, (as to part) 7395 & 8479


For Crown Grants see Schedule

Prior Title Vol. 7167 Fol. 206

Edition issued 26-5-1972

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

REE ATTO FOLE

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 5 in Deposited Plan 235064 at Greystanes in the Municipality of Holroyd Parish of Prospect and County of Cumberland being part of the land set out in the Schedule of Grants hereunder. EXCEPTING THEREOUT the minerals reserved by the Crown Grants of Portions 25 and 320.

SCHEDULE OF GRANTS

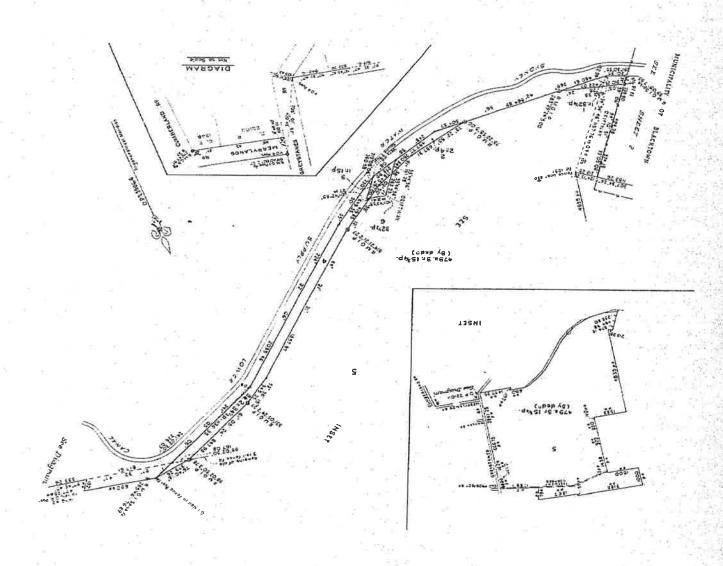
Number of Portion	Name of Grantee	Date of Grant	Grant Re Volume	ference Folio
Pt.27 Pt.46 Pt.60 Pt.59 Pt.58 Pt.28 57 Ft.61 56 Pt.26 Pt.32ac.2rd.Gt. Pt.1lac.lrd.Gt. 13ac.Gt.	William Parish Joseph Morley Edward Pugh Samuel Griffiths John Herbert John Rowe John Fenton William Cummings George Stanbury Charles Bishop	18 - 5 - 1792 18 - 5 - 1792 1 - 5 - 1797 1 - 8 - 1799 12 -11 - 1799 18 -12 - 1799 15 - 8 - 1803	135 135 135 1663 4103	92 93 94 196 25

FIRST SCHEDULE

THE N.S.W. ASSOCIATED BLUE METAL QUARRIES PTY. LIMITED

Registrar General.

SECOND SCHEDULE


1. Reservations and conditions, if any, contained in the Crown Grants above referred to.

Transfer No.C564686-affecting for Watch Supply ereated by the land above described sho the 2. Engement for ement C564686 in part

Cancelled T305245.

Registrar General.

PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

	_		FIRST SCHEDULE (continued)			1 20-			
			REGISTERED PROPRIETOR	-	T www.				
			, as many	NATUR	NATURE NUMBER		DATE ENTERED Signature of Registrar Gener		
-			The same of the sa		·	DATE	ENTERED	Registrar Genera	
					110115			4	
-			the second of the second of		*****				
			the second contract of the con						
		244	and the same of th				- 23-2		
-	A47		Her with a constraint of the series of the	1001-4-	-		-		
S	-								
			*		·			1	
			The second secon						
			Annual or makes the second of				-		
	electricis in		The life of the same of the sa		C-100				
						1			
	INCTRIMENT		SECOND SCHEDIII E (continued)						
URE	INSTRUMENT NUMBER	DATE	SECOND SCHEDULE (continued)	7					
	NUMBER	DATE	PARTICULARS	ENTERED	Signature of Registror General		CANCELL ATION		
	INSTRUMENT NUMBER	DATE	Easement for Transmission Line allesting that		Signature of Registror General		CANCELLATION		
ture ofer	NUMBER	DATE	Easement for Transmission Line allesting that		Signature of Registror General	allows and	CANCELLATION		
	NUMBER	DATE	Easement for Transmission Line affecting that part of the land within described it		Signature of Registror General		CANCELLATION		
4 1 7	NUMBER	DATE	Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line		Signature of Registror General		CANCELLATION		
4	NUMBER	DATE	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to the state of		Signature of Registror General		CANCELLATION		
Her	NUMBER P 73.81.73		Easement for Transmission Line affecting that part of the land within described shown as "Proposed Easement for Transmission Line 18 Wide" in the slaw annexed to transmission for				CANCELLATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to Transmission Line P738173.				CANCELL ATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to Transmission Line P738173.				CANCELLATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the 12 an annexed to Transmission Line 17.38173. I water affecting the part of the land within described 1996. Registered 6.1.1983.				CANCELLATION		
ofer	P73.8172	ent to dra	Farment for Transmission Line affecting that part of the land within described shown as "Proposed Farment for Transmission Line 18 Wide" in the plan annexed to Transmission Line P.7.38173. I water affecting the part of the land within described 1996. Registered 6.1.1983. The interests of the Council of the land				CANCELLATION		
ofer	P73.8172	ent to dra	Farticulars Easement for Transmission Line affecting that part of the land within described shown as "Proposed Easement for Transmission Line 18 Wide" in the plan annexed to transfer the P738173. I water affecting the part of the land within described 1926. Registered 6.1.1983. The interests of the Carnel of the Local Government Area in the read of the Local		Soulitan		CANCELLATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to transmission Line P738173. I water affecting the part of the land within described 1926. Registered 6.1.1963. The interests of the Carnel of the Lacel Government Area in the road declinated in D.P. 638473. Registered 31 2000	lb.b.19.76	Soulitan		CANCELLATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to Transmission Line 17.38173. I water affecting the part of the land within described 8926. Registered 6.1.1983. The interests of the Cancel of the Local Government Area in the road declicated in D.P. 638473. Registered 24 3 1986 Theinterests of the Council of the Local Council of the Local Inchinterests of the Local Inchinterests of the Council of the Local Inchinterests of the Loca	lb.b.19.76			CANCELLATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to Transmission Line 17.38173. I water affecting the part of the land within described 8926. Registered 6.1.1983. The interests of the Cancel of the Local Government Area in the road declicated in D.P. 638473. Registered 24 3 1986 Theinterests of the Council of the Local Council of the Local Inchinterests of the Local Inchinterests of the Council of the Local Inchinterests of the Loca	lb.b.19.76	Southern		CANCELLATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to transmission Line P738173. I water affecting the part of the land within described 1926. Registered 6.1.1963. The interests of the Carnel of the Lacel Government Area in the road declinated in D.P. 638473. Registered 31 2000	lb.b.19.76	Southern		CANCELLATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to Transmission Line 17.38173. I water affecting the part of the land within described 8926. Registered 6.1.1983. The interests of the Cancel of the Local Government Area in the road declicated in D.P. 638473. Registered 24 3 1986 Theinterests of the Council of the Local Council of the Local Inchinterests of the Local Inchinterests of the Council of the Local Inchinterests of the Loca	lb.b.19.76	Soulitan		CANCELLATION		
ufer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to Transmission Line 17.38173. I water affecting the part of the land within described 8926. Registered 6.1.1983. The interests of the Cancel of the Local Government Area in the road declicated in D.P. 638473. Registered 24 3 1986 Theinterests of the Council of the Local Council of the Local Inchinterests of the Local Inchinterests of the Council of the Local Inchinterests of the Loca	lb.b.19.76	Southern		CANCELLATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to Transmission Line 17.38173. I water affecting the part of the land within described 8926. Registered 6.1.1983. The interests of the Cancel of the Local Government Area in the road declicated in D.P. 638473. Registered 24 3 1986 Theinterests of the Council of the Local Council of the Local Inchinterests of the Local Inchinterests of the Council of the Local Inchinterests of the Loca	lb.b.19.76	Southern		CANCELLATION		
ofer	P73.8172	ent to dra	FARTICULARS Easement for Transmission Line affecting that part of the land within described shown as "Proposed Exement for Transmission Line 18 Wide" in the plan annexed to Transmission Line 17.38173. I water affecting the part of the land within described 8926. Registered 6.1.1983. The interests of the Cancel of the Local Government Area in the road declicated in D.P. 638473. Registered 24 3 1986 Theinterests of the Council of the Local Council of the Local Inchinterests of the Local Inchinterests of the Council of the Local Inchinterests of the Loca	lb.b.19.76	Southern		CANCELLATION		

157

			SECOND SCHEDULE (continued)			
Washing	INSTRUMENT		and the later an		T. 1000		
NATURE	ATURE NUMBER DATE		DATE PARTICULARS	ENTERED	Signature of Registrar General	CANCELLATION	
-							
		Sec. 1					
			The state of the s				
	-						
					-		
				1			
***************************************	-						
				11.00			
	7.		The state of the s				

	-						

Historical **Title**

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE -----

5/12/2018 1:51PM

FOLIO: 5/235064

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 11841 FOL 157

Recorded 5/6/1987	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED FOLIO NOT CREATED
18/1/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
27/1/1988		AMENDMENT: LOCAL GOVT AREA	
31/5/1988	X545979	TRANSFER	EDITION 1
27/5/1999	5857486	DEPARTMENTAL DEALING	
17/8/1999	DP1003345	DEPOSITED PLAN	
27/6/2001	DP1028208	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

Historical **Title**

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

5/12/2018 2:11PM

FOLIO: 107/1028208

First Title(s): OLD SYSTEM

Prior Title(s): 5/235064 11/1022044

Recorded	Number	Type of Instrument	C.T. Issue
27/6/2001	DP1028208	DEPOSITED PLAN	FOLIO CREATED EDITION 1
6/7/2001	7745431	TRANSFER	
6/7/2001	7745432	MORTGAGE	EDITION 2
1/5/2002	8505947	REQUEST	
9/5/2002	DP1040282	DEPOSITED PLAN	EDITION 3
12/3/2004	AA488829	DEPARTMENTAL DEALING TO UPLIFT CT	EDITION 4
24/3/2004	DP1049509	REJECTED - DEPOSITED PLAN	
8/10/2004	DP1070244	DEPOSITED PLAN	
11/10/2004	AA734831	LEASE	
11/10/2004	AA748437	DISCHARGE OF MORTGAGE	
11/10/2004	AA748438	TRANSFER	EDITION 5
22/9/2008	AE189023	REQUEST	
9/4/2009	AE605577	TRANSFER	EDITION 6
20/2/2015	AJ240912	TRANSFER	
20/2/2015	AJ240913	MORTGAGE	EDITION 7
29/5/2015	AJ480615	DEPARTMENTAL DEALING	
19/8/2015	AJ729751	TRANSFER OF MORTGAGE	
20/4/2016	AK352089	DISCHARGE OF MORTGAGE	
20/4/2016	AK352090	MORTGAGE	EDITION 8
15/6/2016	AK509587	DEPARTMENTAL DEALING	
17/8/2018	AN592562	CAVEAT	
10/9/2018	AN689007	WITHDRAWAL OF CAVEAT	

END OF PAGE 1 - CONTINUED OVER

pemulwuy

PRINTED ON 5/12/2018

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

5/12/2018 2:11PM

FOLIO: 107/1028208

PAGE 2

Recorded	Number	Type of Instrument	C.T. Issue
10/9/2018	AN689008	DISCHARGE OF MORTGAGE	
10/9/2018	AN689009	TRANSFER	EDITION 9
20/9/2018	AN723101	DEPARTMENTAL DEALING	EDITION 10
28/9/2018	AN748606	REQUEST	EDITION 11

*** END OF SEARCH ***

pemulwuy

PRINTED ON 5/12/2018

Licence: LAW/0526/98	Office of State	TRANSFEI New South Wales Real Property Act 1904 e Revenue use only	
(A) LAND TRANSFERRED If appropriate, specify the share or part transferred.	Folio Identi	fier 107/1028208	
(B) LODGED BY	LTO Box 599D	Name, Address or DX and MINTER ELLISON 88 Phillip Street, SYDNE Telephone (02) 9921 8888 Reference (optional):	ey 8 LSW
 (C) TRANSFEROR (D) acknowledges receipt of the of in fee simple. (E) Encumbrances (if applicable) (F) TRANSFEREE 	consideration of \$		e land specified above transfers to the transferee at 3.
(G) TS (s713 LGA) TW (Sheriff)	TRAFALGA	AR NOMINEES (PROSE	PECT) PTY LIMITED ACN 095 017 191
(H) We certify this dealing correct Signed in my presence by the Signature of Witness C. LIV	transferor who is	personally known to me. BO	ORAL RESOURCES (NSW) PTY LTD BN 51 000 756 507) by his/her/its attorney pursuant wer of Attorney Book 4.34

Req:R693236 /Doc:DL 7745431 /Rev:11-Jul-2001 /Sts:NO.OK /	/Pgs:ALL /Prt:01-Jun-2018 08:27 /Seq:2 of 2
Ref:pemulwuy /Src:M)N SEAL TRAFALGAR NOMINEES)	- A - I
(PROSPECT) PTY (IMITED (A.C.N. 095 017 191) is	/ /
affixed in accordance with its Articles of Association;	N
Since The Second	li _ \ ~
Signature of authorised person	6:
Signature of authorise person	Signature of authorised person
MARK ASHTON DAVIDSON	1 3 NOREIS
Print Name of authorised person	Print Name of authorised person
Discourse Caller	Canada 1
DIRECTOR	3 CC LC LTHY
Office held	Office held

Form:

01T

Licence: 04-03-349

Licensee: Mallesons Stephen Jaques

New South Wales Real Property Act 1900

PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises t required by this form for the establishment and maintenance of the Real Property AA748438G

Seas

the Register is made available to any for search upon payment of a fee, if any. Office of State-Revenue use only STAMP DUTY Sa NOW Rectury NEW SOUTH WALES DUTY 04-06-2004 0001996738-001 SECTION 18(2) 5 ************* DUTY lial **TORRENS TITLE** If appropriate, specify the part transferred Folio identifier 107/1028208 Name, Address or DX and Telephone (B) **LODGED BY** Delivery CODES Box Mallesons Stephen Jaques DX 113 Sydney T +61 2 9296 Τ 2000 41J Reference (optional): 02-5111-7876 (Sheriff) - D TRAFALGAR NOMINEES (PROSPECT) PTY LIMITED ACN 095 017 191 (C) TRANSFEROR CONSIDERATION (D) The transferor acknowledges receipt of the consideration of \$ 42,300,000 and as regards the land specified above transfers to the transferee an estate in fee simple. (E) **ESTATE** (F) SHARE TRANSFERRED (G) Encumbrances (if applicable): 1. 2. 3. NATIONAL AUSTRALIA BANK SUPERANNUATION FUND PTY LIMITED ACN 065 048 928 (H) TRANSFEREE (I) **TENANCY:** 23/ **(J)** DATE 06 2004 dd mm уууу (PROS Certified correct for the purposes of the Real Property Act 1900. TRANSFEROR EXECUTED by TRAFALGAR NOMINEES (PROSPECT) PTY Seul A.C.N. 095 017 19 LIMITED in accordance with section 127(1) of the Corporations Act 2001 (Cwith) by authority of its directors: Signature of company secretary* *delete whiche er is not applicable P J NORRIS Signature of director Name of director/company secretary* (block MARK ASHTON DAVIDSON letters) TRANSFEREE THE COMMON SEAL of NATIONAL AUSTRALIA BANK SUPERANNUATION FUND PTY LIMITED is duly affixed by authority A CA 888 914 925 of its directors in the presence of: Signature of authorised person 500 rector OWN MARKE

DENNIS PHILLIPS

SECRETARY

Page 1 of _1_ number additional pages sequentially

Name of authorised person (block

ンじん

Office held

ALL HANDWRITING MUST BE IN BLOCK CAPITALS

Signature of authorised person

Office held

Form:

OIT

Licence: 04-03-349

Licensee: Mailesons Stephen Jaques

RANSFER

New South Wales Real Property Act 1900

AE605577R

Moun

PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises ti required by this form for the establishment and maintenance of the Real Property: the Register is made available to any for search upon payment of a fee, if any STAMP DUTY Office of State Revenue use only NEW SOUTH WALES DUTY 09-04-2009 0005370874-001 SECTION 18(2) DUTY \$ ###########10.(1) TORRENS TITLE If appropriate, specify the part transferred 107/1028208 (B) Name, Address or DX and Telephone LODGED BY Delivery CODES Box Mallesons Stephen Jaques DX 113 Sydney T +61 2 9296 T 2000 LLPN: 123008U 41J Reference (optional): Natalee Foister 02-5501-3566 (Sheriff) (C) **TRANSFEROR** National Australia Bank Superannuation Fund Pty Limited (ABN 99 065 048 928) CONSIDERATION (D) The transferor acknowledges receipt of the consideration of \$ 43,180,000 and as regards (E) **ESTATE** the land specified above transfers to the transferee an estate in fee simple. SHARE **TRANSFERRED** (G) Encumbrances (if applicable): 1. 2 3. **TRANSFEREE** (H) Lend Lease Funds Management Limited (ACN 000 335 473) (1) TENANCY: 104 2009 **(J)** DATE

Certified correct for the purposes of the Real Property Act 1900.

SEE ANNEXURE "A" FOR EXECUTION BY THE TRANSFEROR

SEE ANNEXURE "A" FOR EXECUTION BY THE TRANSFEREE

Page 1 of 2 number additional pages sequentially

ALL HANDWRITING MUST BE IN BLOCK CAPITALS

9856949_1

Annexure A to Transfer

Parties:

NATIONAL AUSTRALIA BANK SUPERANNUATION FUND PTY LIMITED (ABN 99 065 048 928) to LEND LEASE FUNDS MANAGEMENT PTY LIMITED (ACN 000 335 473)

Dated: 8 April 2009

I certify that FELICIM SAVAGE n, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this document in my presence as attorney for NATIONAL AUSTRALIA BANK SUPERANNUATION FUND PTY LIMITED (ABN 99 065 048 928) under Power of Attorney registered book 4565 No.188

Signature of witness

Name of witness: MARCHAET LOE DEBENHAM

Address of witness: L.lo. GOVERNOR ! HILLIE TOWER

I FARREN PLACE SYDNEY MIW 2000

Signature of Attorney: June

Attorney's name

Signing on behalf of:

MATIONAL AUSTRALIA BANK SUPERAMMUATION FUND By executing this document the attorney states that the attorney has received no notice of revocation of the power of attorney and that the attorney is a partner of Mallesons Stephen Jaques

I certify that JENNIFER SUSAN KENCH, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this document in my presence as attorney for LEND LEASE FUNDS MANAGEMENT LIMITED (ACN 000 335 473) under Power of Attorney registered book 4564 No. 721

Signature of witness 4

Name of witness:

Address of witness:

L61 Covernor Phillip loves 1 Faces Place S NSW 2000

Signature of Attorney

Attorney's name

Jennifer Susan Kench

Signing on behalf

Lend Lease Funds Management Limited By executing this document the attorney states that the attorney has received no notice of revocation of the power of attorney and that she is a partner of Mallesons Stephen Jaques

	required by this for	Wood Malleson ection 31B of th m for the estable e available to a	Real e Real Property Act 190 lishment and maintenan ny person for search up	ANSFER ew South Wales Property Act 1900 (RP Act) authorises the Face of the Real Property Act on payment of a fee, if any.	AJ240	912L
	STAMP DUTY	Office of St	ate Revenue use only		NEW SOUTH WALES DU' 28-01-2015 SECTION 18(2) DUTY \$	TY 0007939110-00 ************10
(A)	TORRENS TITLE		e, specify the part trans fier 107/1028208	ferred		
(B)	LODGED BY	Document Collection Box	-King & Wood Min MINTER EI	LISON 1234385	y T +61 2 9296 2000 S	T TK TW
(C)	TRANSFEROR	Lend Lease	Funds Management L	imited (ACN 000 335 473)	
(D) (E) (F)	CONSIDERATION ESTATE SHARE	The transfero	r acknowledges receip ified above transfers to	ot of the consideration of \$ to the transferee an estate in	25,080,000.00 n fee simple.	and as regard
(G)	TRANSFERRED	Encumbrance	s (if applicable):	1. 2.	3.	n1
		7				
(H)	TRANSFEREE	TENANCY:	ocean Pty Ltd (ACN 60			
. ,	DATE	TENANCY: 19/12 dd mm	Pty Ltd (ACN 60	01 747 442)		
. ,	DATE Certified correct for a certify I am a transferor sign [See note* below).	TENANCY: 18 / 12 dd mm or the purposes of the dealing low].	Pty Ltd (ACN 60	t 1900. [Attesting witness - Certified correct for Act 1900 by the tran	the purposes of the Real l	
(1)	DATE Certified correct for a certify 1 am a transferor sign	TENANCY: 18 / 12 dd mm or the purposes of the dealing low]. vitness:	1 2014 yyyy of the Real Property Acress and that the	t 1900. [Attesting witness - Certified correct for Act 1900 by the tran	the purposes of the Real lasferor.	
(1)	DATE Certified correct for I certify I am a transferor sign [See note* bell Signature of which will be something to the signature of will be signature of will be something to the signature of will be signature. I certify I am a transferee signature of will be signature.	TENANCY: /// /2 dd mm or the purposes of the dealing low]. vitness: ess: tness: an eligible witness:	1 2014 yyyy of the Real Property Acress and that the	t 1900. [Attesting witness - Certified correct for Act 1900 by the tran Signature of transfer	the purposes of the Real lasferor. For: See Annexure A Page the purposes of the Real	
(1)	DATE Certified correct for I certify I am a transferor sign [See note* bell Signature of which will be so with the solution of the solution o	TENANCY: /// /2 dd mm or the purposes of the dealing low]. vitness: ess: tness: an eligible witnesd this dealing low].	yyyy of the Real Property Act ness and that the g in my presence.	Certified correct for Act 1900 by the transfer Certified correct for Act 1900 by the transfer Certified correct for Property Act 1900 by	the purposes of the Real lasferor. For: See Annexure A Page the purposes of the Real	:2
(1)	DATE Certified correct for a large real form of with a ddress of will be certify I am a transferee sign [See note* belong the signature of with a ddress of will be certify I am a transferee sign [See note* belong the signature of with a ddress	TENANCY: /P / /2 dd mm or the purposes of the dealing low]. vitness: ess: tness: an eligible witness: an eligible witness: ess: tness: an eligible witness: vitness: // truess: //	Deean Pty Ltd (ACN 60) 1 20/4 yyyy of the Real Property Access and that the gin my presence. The sess and that the gin my presence.	Certified correct for Act 1900 by the transfer Certified correct for Act 1900 by the transfer Certified correct for Property Act 1900 by Signature of transfer	the purposes of the Real listeror. For: See Annexure A Page the purposes of the Real lister the purposes of the Real lister the transferee.	:2
(1)	DATE Certified correct for I certify I am a transferor sign [See note* bell Signature of with Address of with I certify I am a transferee sign [See note* bell Signature of with Address of with Address of with Address of with Address of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature of with I certified I am a transferee sign [See note* bell Signature I am I certified I am I certi	TENANCY: /P//2 dd mm or the purposes of the dealing low]. vitness: ess: tness: an eligible witned this dealing low]. vitness: ess: tness: tness: ess: tness: ess: tness: fall file for the dealing low]. vitness: ess: fall file for the dealing low]. ess: fall file for the end of the end	Decard Pty Ltd (ACN 60) 1 20/4 yyyy of the Real Property Act ness and that the gin my presence. Here in my presence. Borack I Rovervok Philuf R Race, Stoney	Certified correct for Act 1900 by the transfer Signature of transfer Property Act 1900 by Signature of transfer Signature of transfer Act 1900 by Signature of transfer Signatur	the purposes of the Real listeror. For: See Annexure A Page the purposes of the Real lister the purposes of the Real lister the transferee.	:2

Req:R685441 /Doc:DL AJ240912 /Rev:26-Feb-2015 /Sts:SC.OK /Pgs:ALL /Prt:05-Dec-2018 14:15 /Seq:2 of 2 Ref:pemulwuy /Src:M

Annexure A to TRANSFER

Transferor execution

I certify that I am an eligible witness and that the transferor's attorney signed this dealing in my presence.

[See note* below].

Signature of witness:

Name of witness: Savah Jame Wenett Address of witness: 1602/108 albert Street Management Limited Power of attorney-Box Brisbane ald 4000

Certified correct for the purposes of the Real Property Act 1900 by the transferor's attorney who signed this dealing pursuant to the power of attorney specified.

Attorney's name: William Ody Brithe Herbert Smith Freshill's Signing on behalf of Signing on behalf of: Lend Lease Funds

Power of attorney-Book: 4 679

-No.:

PARTNER

Transferee execution

Certified correct for the purposes of the Real Property Act 1900 and executed on behalf of the company named below by the authorised person(s) whose signature(s) appear(s) below pursuant to the authority specified.

Company: LAOF IV Ocean Pty Ltd

Authority: section 127 of the Corporations Act

Signature of authorised person:

NATTHEW ROBERT BAILEY.
Name of authorised person:

Office held: Dick wal

Signature of authorised person:

Name of authorised person:

Office held: accor BIMON STUART DOVER HOWARD

HEREBERS SHITH TREEMUS

*s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identity documentation

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 107/1028208

SEARCH DATE TIME EDITION NO DATE --------------5/12/2018 2:18 PM 11 28/9/2018

LAND

LOT 107 IN DEPOSITED PLAN 1028208

AT PROSPECT LOCAL GOVERNMENT AREA CUMBERLAND PARISH OF PROSPECT COUNTY OF CUMBERLAND TITLE DIAGRAM DP1028208

FIRST SCHEDULE -----

PGL NO. 1 PTY LTD

(T AN689009)

SECOND SCHEDULE (8 NOTIFICATIONS)

- RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) 1
- DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (1) IN THE S.88B INSTRUMENT AFFECTING THE PART(S) FORMERLY 11/1022044.
- DP1022044 POSITIVE COVENANT AFFECTING THE PART(S) FORMERLY 3 11/1022044.
- DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (3) IN THE S.88B INSTRUMENT AFFECTING THE PART(S) FORMERLY 11/1022044.
- DP1028208 POSITIVE COVENANT REFERRED TO AND DESIGNATED (J) IN THE TITLE DIAGRAM.
- 6 DP1040282 RESTRICTION(S) ON THE USE OF LAND
- DP1070244 EASEMENT FOR UNDERGROUND CABLES 1 METRE(S) WIDE (E) AFFECTING THE PART(S) SHOWN SO BURDENED IN DP1070244
- DP1070244 EASEMENT FOR PADMOUNT SUBSTATION (P) AFFECTING THE PART(S) SHOWN SO BURDENED IN DP1070244

NOTATIONS ------

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

pemulwuy

PRINTED ON 5/12/2018

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 968(2) of the Real Property Act 1900.

REGISTRY Title Search

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 107/1028208

LAND

LOT 107 IN DEPOSITED PLAN 1028208

AT PROSPECT

LOCAL GOVERNMENT AREA CUMBERLAND
PARISH OF PROSPECT COUNTY OF CUMBERLAND
TITLE DIAGRAM DP1028208

FIRST SCHEDULE

PGL NO. 1 PTY LTD

(T AN689009)

SECOND SCHEDULE (8 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (1) IN THE S.88B INSTRUMENT AFFECTING THE PART(S) FORMERLY 11/1022044.
- 3 DP1022044 POSITIVE COVENANT AFFECTING THE PART(S) FORMERLY 11/1022044.
- 4 DP1022044 RESTRICTION(S) ON THE USE OF LAND REFERRED TO AND NUMBERED (3) IN THE S.88B INSTRUMENT AFFECTING THE PART(S) FORMERLY 11/1022044.
- 5 DP1028208 POSITIVE COVENANT REFERRED TO AND DESIGNATED (J) IN THE TITLE DIAGRAM.
- 6 DP1040282 RESTRICTION(S) ON THE USE OF LAND
- 7 DP1070244 EASEMENT FOR UNDERGROUND CABLES 1 METRE(S) WIDE (E)
 AFFECTING THE PART(S) SHOWN SO BURDENED IN DP1070244
- 8 DP1070244 EASEMENT FOR PADMOUNT SUBSTATION (P) AFFECTING THE PART(S) SHOWN SO BURDENED IN DP1070244

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

pemulwuy

PRINTED ON 28/5/2019

Appendix F EPA Searches

POEO ACT 1997

Number	Name	Location	Туре	Status	Issued date
		CLUNIES ROSS STREET, PROSPECT, NSW			
4664	AUSTRAL MASONRY (NSW) PTY LTD	2148	POEO licence	Issued	09-Jun-00
		CLUNIES ROSS STREET, PROSPECT, NSW			
1534725	AUSTRAL MASONRY (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	15-Oct-15
		CLUNIES ROSS STREET, PROSPECT, NSW			
1534773	AUSTRAL MASONRY (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	15-Oct-15
		CLUNIES ROSS STREET, PROSPECT, NSW			
1006588	BORAL MASONRY LTD	2148	s.58 Licence Variation	Issued	21-May-01
		CLUNIES ROSS STREET, PROSPECT, NSW			
11769	BORAL RECYCLING PTY LIMITED	2148	POEO licence	Surrendered	12-Nov-02
		CLUNIES ROSS STREET, PROSPECT, NSW			
11887	BORAL RECYCLING PTY LIMITED	2148	POEO licence	Surrendered	17-Apr-03
		CLUNIES ROSS STREET, PROSPECT, NSW			
1030591	BORAL RECYCLING PTY LIMITED	2148	s.58 Licence Variation	Issued	04-Sep-03
		CLUNIES ROSS STREET, PROSPECT, NSW			
1036924	BORAL RECYCLING PTY LIMITED	2148	s.58 Licence Variation	Issued	20-May-04
		CLUNIES ROSS STREET, PROSPECT, NSW			
1041594	BORAL RECYCLING PTY LIMITED	2148	s.80 Surrender of a Licence	Issued	19-Oct-04
		CLUNIES ROSS STREET, PROSPECT, NSW			
1503688	BORAL RECYCLING PTY LIMITED	2148	s.80 Surrender of a Licence	Issued	23-May-12
		RECONCILIATION ROAD, PROSPECT, NSW			
2200	BORAL RESOURCES (NSW) PTY LTD	2148	POEO licence	Surrendered	17-Aug-00
		RECONCILIATION ROAD, PROSPECT, NSW			
1009739	BORAL RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	08-Aug-02
		RECONCILIATION ROAD, PROSPECT, NSW			
1023587	BORAL RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	23-Dec-02
		RECONCILIATION ROAD, PROSPECT, NSW			
1027809	BORAL RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	06-Jun-03
		RECONCILIATION ROAD, PROSPECT, NSW			
1033234	BORAL RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	15-Dec-03

POEO ACT 1997

		RECONCILIATION ROAD, PROSPECT, NSW			
1037533 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	11-Jun-04
		RECONCILIATION ROAD, PROSPECT, NSW			
1054009 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	19-Dec-05
		RECONCILIATION ROAD, PROSPECT, NSW			
1063345 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	26-Jul-06
		RECONCILIATION ROAD, PROSPECT, NSW			
1093640 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	11-Feb-09
		RECONCILIATION ROAD, PROSPECT, NSW			
1104859 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	11-Aug-09
		RECONCILIATION ROAD, PROSPECT, NSW			
1117930 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	25-Aug-10
		RECONCILIATION ROAD, PROSPECT, NSW			
1119700 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	08-Oct-10
		RECONCILIATION ROAD, PROSPECT, NSW			
3085769152 BORAL F	RESOURCES (NSW) PTY LTD	2148	Penalty Notice	Issued	18-Mar-13
		RECONCILIATION ROAD, PROSPECT, NSW			
1515038 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	02-Jul-13
		RECONCILIATION ROAD, PROSPECT, NSW			
1525063 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.58 Licence Variation	Issued	15-May-15
		RECONCILIATION ROAD, PROSPECT, NSW			
1534965 BORAL F	RESOURCES (NSW) PTY LTD	2148	s.80 Surrender of a Licence	Issued	03-Dec-15
		Between Reservoir Road, Prospect and St			
		Martins Crescent, Blacktown, PROSPECT,			
21295 ROADS A	AND MARITIME SERVICES	NSW 2148	POEO licence	Issued	12-Sep-19
		CLUNIES ROSS STREET, PROSPECT, NSW			
6250 SCHERIN	IG-PLOUGH PTY LIMITED	2148	POEO licence	Surrendered	09-Feb-00
		CLUNIES ROSS STREET , PROSPECT, NSW			
1021804 SCHERIN	IG-PLOUGH PTY LIMITED	2148	s.80 Surrender of a Licence	Issued	30-Oct-02
SYDNEY	WEED & PEST MANAGEMENT PTY				
6630 LTD		-, PROSPECT, NSW 2148	POEO licence	Surrendered	09-Nov-00

POEO ACT 1997

	SYDNEY WEED & PEST MANAGEMENT PTY				
1009599	LTD	-, PROSPECT, NSW 2148	s.58 Licence Variation	Issued	06-Aug-01
	SYDNEY WEED & PEST MANAGEMENT PTY				
1074553	LTD	-, PROSPECT, NSW 2148	s.58 Licence Variation	Issued	29-Jun-07
	SYDNEY WEED & PEST MANAGEMENT PTY				
1507582	LTD	-, PROSPECT, NSW 2148	s.80 Surrender of a Licence	Issued	01-Aug-12

POEO Act

Home Environment protection licences POEO Public Register Search for licences, applications and notices

Search results

Your search for: General Search with the following criteria

Suburb - Pemulwuy

returned 0 result

Search Again

Your search for: General Search with the following criteria

Suburb - Greystanes

returned 6 results

Export to excel		1 of 1 Pages			Search Again	
<u>Number</u>	<u>Name</u>	<u>Location</u>	<u>Type</u>	<u>Status</u>	Issued date	
<u>1586833</u>	AMIN BOUMELHEM	42 BIRRIWA STREET, GREYSTANES, NSW 2145	s.91 Clean Up Notice	Issued	06 Mar 2020	
<u>8</u>	BITUPAVE LTD	GREYSTANES ROAD, GREYSTANES, NSW 2145	POEO licence	Surrendered	d02 Mar 2000	
1017478	BITUPAVE LTD	GREYSTANES ROAD, GREYSTANES, NSW 2145	s.80 Surrender of a Licence	Issued	16 Aug 2002	
<u>4537</u>	CUMBERLAND COUNCIL	2A HYLAND ROAD, GREYSTANES, NSW 2145	POEO licence	Issued	21 Jan 2002	
1093738	HOLROYD CITY COUNCIL	2A HYLAND ROAD, GREYSTANES, NSW 2145	s.58 Licence Variation	Issued	18 Nov 2008	
<u>1561060</u>	HOLROYD CITY COUNCIL	2A HYLAND ROAD, GREYSTANES, NSW 2145	s.58 Licence Variation	Issued	23 Apr 2018	

03 April 2020

Search results

Your search for: Suburb: PROSPECT

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- . Contamination at the site may be being managed under the planning process.

More information about particular sites may be available from:

- . The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under <u>section 149 of the</u> Environmental Planning and Assessment Act.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register.POEO public register

3 April 2020

Search Again Refine Search

Search TIP

To search for a specific site, search by LGA (local government area) and carefully review all sites listed.

.. more search tips

Home Contaminated land Record of notices

Search results

Your search for: Suburb: GREYSTANES

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

 Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.

 The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).

Contamination at the site may be being managed under the planning process.

More information about particular sites may be available from:

- The <u>POEO public register</u>
- The appropriate planning authority: for example, on a planning certificate issued by the local council under <u>section 149 of the Environmental Planning and Assessment Act</u>.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register. POEO public register.

Search Again Refine Search

Search TIP

To search for a specific site, search by LGA (local government area) and carefully review all sites listed.

.. more search tips

Home Contaminated land Record of notices

Search results

Your search for: Suburb: PEMULWUY

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- Contamination at the site may be being managed under the planning process.

More information about particular sites may be available from:

- . The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under <u>section 149 of the Environmental Planning and Assessment Act</u>.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register.

Search Again Refine Search

Search TIP

To search for a specific site, search by LGA (local government area) and carefully review all sites

.. more search tips

Suburb	SiteName	Address	ContaminationActivityType	ManagementClass	Latitude	Longitude
PORT MACQUARIE	Shell Coles Express Port Macquarie Service Station	121 Gordon STREET	Service Station	Regulation under CLM Act not required	-31.4343131	152.9046869
PORT MACQUARIE	Caltex Service Station	92 Hastings River DRIVE	Service Station	Regulation under CLM Act not required	-31.42934052	152.8830188
PORT MACQUARIE	Caltex Service Station	12-14 Bolwarra ROAD	Service Station	Regulation under CLM Act not required	-31.45015286	152.8854769
PORT MACQUARIE	Car park	28 Hayward STREET	Other Industry	Regulation under CLM Act not required	-31.43385131	152.9072399
PORTLAND	Ivanhoe Colliery	Pipers Flat ROAD	Other Industry	Regulation under CLM Act not required	-33.36595748	150.0099577
PORTLAND	Mt Piper Power Station	350 Boulder ROAD	Other Petroleum	Regulation under CLM Act not required	-33.35581541	150.0350801
PRAIRIEWOOD	7-Eleven (former Caltex) Service Station	485-487 Smithfield ROAD	Service Station	Regulation under CLM Act not required	-33.87102509	150.9031383
PROSPECT	7-Eleven (former Mobil) Service Station Prospect	354 Flushcombe ROAD	Service Station	Regulation under CLM Act not required	-33.79541624	150.9049417
PROSPECT	Pincott's Cottage, Gate C1	Off Reservoir ROAD	Unclassified	Regulation under CLM Act not required	-33.81589773	150.9144343
PROSPECT	Gatehouse, 544 Reservoir Road	544 Reservoir ROAD	Unclassified	Regulation under CLM Act not required	-33.81049244	150.9157439
PROSPECT	Cottage 3, William Lawson Drive	William Lawson DRIVE	Unclassified	Regulation under CLM Act not required	-33.81490331	150.9149885
PUNCHBOWL	Former BP Service Station	1375 Canterbury Road, corner Victoria ROAD	Service Station	Regulation under CLM Act not required	-33.93170424	151.0537302
PUNCHBOWL	Punchbowl Laundry	42-44 Belmore ROAD	Chemical Industry	Contamination currently regulated under CLM Act	-33.93582701	151.0562638
PUNCHBOWL	Caltex Service Station Punchbowl	1285-1289 Canterbury ROAD	Service Station	Regulation under CLM Act not required	-33.93146308	151.0596348
PUTNEY	Putney Marina	20 Waterview STREET	Other Industry	Regulation under CLM Act not required	-33.82608091	151.1003966

List current as at 16th March 2020 Page 90 of 123

NSW EPA PFAS Investigation Areas

Albion Park Fire and Rescue NSW	Airport Road, Albion Park, 2527	PFAS investigation site
Alexandria Fire and Rescue NSW	189 Wyndham Street Alexandria	PFAS investigation site
Argenton Mines Rescue Services	533 Lake Road, Argenton NSW 2284	PFAS investigation site
Armidale Fire and Rescue NSW	10 Mann Street, Armidale, 2350	PFAS investigation site
Bankstown Airport	3 Avro St, Bankstown NSW 2200	PFAS investigation site
Bathurst airport	P J Moodie Memorial Dr, Raglan NSW 2795	PFAS investigation site
Blamey Barracks Kapooka	Kapooka Dr, Kapooka NSW 2661	PFAS investigation site
Botany Bay area		PFAS investigation site
Botany Industrial Park	Dent Street, Botany, 2019	PFAS investigation site
Camden Airport	Aerodrome Rd, Cobbitty NSW 2570	PFAS investigation site
Currambene Creek		PFAS investigation site
Deniliquin Fire and Rescue NSW		PFAS investigation site
Fuchs	2 Holland St, Wickham NSW 2293	PFAS investigation site
Gold Coast Airport	Eastern Avenue, Coolangatta, QLD 4225	PFAS investigation site
Greenacre Fire and Rescue	1 and 1A Amarina Avenue, Greenacre	PFAS investigation site
Hawkesbury River		PFAS investigation site
Heatherbrae: Total Fire Solutions	15 Giggins Rd, Heatherbrae NSW 2324	PFAS investigation site
HMAS Albatross	Nowra Hill, 2540	PFAS investigation site
Holsworthy Barracks	Macarthur Drive, Holsworthy, 2173	PFAS investigation site
Vervis Bay range facility	Jervis Bay Territory, 2540	PFAS investigation site
Kemps Creek NSW Rural Fire Service	245 Devonshire Rd, Kemps Creek NSW 2178	PFAS investigation site
Kurnell: Caltex	2 Solander St, Kurnell, 2231	PFAS investigation site
Lake Macquarie		PFAS investigation site
Lake Toolooma	Heathcote National Park	PFAS investigation site
Lithgow: Mines Rescue	3 Proto Ave, Lithgow NSW 2790	PFAS investigation site
Londonderry TestSafe & Fire and Rescue NSW	667 The Northern Road, Londonderry, 2753	PFAS investigation site
Lord Howe Island		PFAS investigation site
Mulwala - Thales	Bayly St, Mulwala NSW 2647	PFAS investigation site
Munmorah and Colongra Power Stations	Station Road, Colongra NSW 2262	PFAS investigation site
Orange Airport	136 Aerodrome Road, Orange NSW 2800	PFAS investigation site
Quirindi Airport	Quirindi NSW 2343	PFAS investigation site
Richmond RAAF Base	Middleton Avenue, Richmond, 2753	PFAS investigation site
Rutherford, Truegain	62 Kyle St, Rutherford NSW 2320	PFAS investigation site
Salt Ash weapons range	Salt Ash NSW	PFAS investigation site
Shoalhaven River		PFAS investigation site
Singleton Heights: Mines Rescue Services	6 Lachland Avenue, Singleton Heights NSW 2330	PFAS investigation site
Singleton Military Area		PFAS investigation site
Singleton NSW Rural Fire Service		PFAS investigation site
South Nowra NSW Rural Fire Service	92 Albatross Road, South Nowra	PFAS investigation site
Springwood, St Columba's Catholic College	168 Hawkesbury Rd, Springwood, 2777	PFAS investigation site

NSW EPA PFAS Investigation Areas

Swanson Industries	2 Georgetown Road, Broadmeadow, 2292	PFAS investigation site
Tamworth Regional Airport	Shand Cir, Tamworth, 2340	PFAS investigation site
Tarro, Our Lady of Lourdes Primary School	Anderson Drive Tarro, NSW 2322	PFAS investigation site
Wagga Wagga RAAF Base	Sturt Highway, Wagga Wagga, 2650	PFAS investigation site
Wellington Fire and Rescue NSW	67 Falls Road, Wellington, 2820	PFAS investigation site
Westleigh NSW Rural Fire Service	12 Warrigal Drive, Westleigh	PFAS investigation site
Williamtown RAAF Base	49 Medowie Road, Williamtown, 2314	PFAS investigation site

Licence - 4664

Licence Details	
Number:	4664
Anniversary Date:	01-April

Licensee

AUSTRAL MASONRY (NSW) PTY LTD

PO BOX 502

BEENLEIGH QLD 4207

Premises

AUSTRAL MASONRY (NSW) PTY LTD

CLUNIES ROSS STREET

PROSPECT NSW 2148

Scheduled Activity

Concrete Works

Fee Based Activity	<u>Scale</u>
Concrete works	> 50000 m3 produced

Region				
Metropolitan - Sydney Industry				
Level 13, 10 Valentine Ave				
PARRAMATTA NSW 2150				
Phone: (02) 9995 5000				
Fax: (02) 9995 6900				
PO Box 668 PARRAMATTA				
NSW 2124				

INFO	ORMATION ABOUT THIS LICENCE	3
Dic	ctionary	3
Re	esponsibilities of licensee	3
Vai	ariation of licence conditions	3
Du	uration of licence	3
Lic	cence review	3
Fee	ees and annual return to be sent to the EPA	3
Tra	ansfer of licence	4
Pul	ublic register and access to monitoring data	4
1	ADMINISTRATIVE CONDITIONS	5
A1	1 What the licence authorises and regulates	5
A2	Premises or plant to which this licence applies	5
АЗ	3 Information supplied to the EPA	5
2	LIMIT CONDITIONS	 5
L1	Pollution of waters	5
3	OPERATING CONDITIONS	6
01	1 Activities must be carried out in a competent manner	6
02	2 Maintenance of plant and equipment	6
О3	3 Dust	6
4	MONITORING AND RECORDING CONDITIONS	6
M1	1 Monitoring records	6
M2	2 Recording of pollution complaints	6
МЗ	3 Telephone complaints line	7
5	REPORTING CONDITIONS	 . 7
R1	1 Annual return documents	 7
R2	2 Notification of environmental harm	8
R3	3 Written report	8
6	GENERAL CONDITIONS	9
G1	1 Copy of licence kept at the premises or plant	9
DIC	TIONARY	10
Ge	eneral Dictionary	10

Licence - 4664

Information about this licence

Dictionary

A definition of terms used in the licence can be found in the dictionary at the end of this licence.

Responsibilities of licensee

Separate to the requirements of this licence, general obligations of licensees are set out in the Protection of the Environment Operations Act 1997 ("the Act") and the Regulations made under the Act. These include obligations to:

- ensure persons associated with you comply with this licence, as set out in section 64 of the Act;
- control the pollution of waters and the pollution of air (see for example sections 120 132 of the Act);
- report incidents causing or threatening material environmental harm to the environment, as set out in Part 5.7 of the Act.

Variation of licence conditions

The licence holder can apply to vary the conditions of this licence. An application form for this purpose is available from the EPA.

The EPA may also vary the conditions of the licence at any time by written notice without an application being made.

Where a licence has been granted in relation to development which was assessed under the Environmental Planning and Assessment Act 1979 in accordance with the procedures applying to integrated development, the EPA may not impose conditions which are inconsistent with the development consent conditions until the licence is first reviewed under Part 3.6 of the Act.

Duration of licence

This licence will remain in force until the licence is surrendered by the licence holder or until it is suspended or revoked by the EPA or the Minister. A licence may only be surrendered with the written approval of the EPA.

Licence review

The Act requires that the EPA review your licence at least every 5 years after the issue of the licence, as set out in Part 3.6 and Schedule 5 of the Act. You will receive advance notice of the licence review.

Fees and annual return to be sent to the EPA

For each licence fee period you must pay:

- an administrative fee; and
- a load-based fee (if applicable).

Licence - 4664

The EPA publication "A Guide to Licensing" contains information about how to calculate your licence fees. The licence requires that an Annual Return, comprising a Statement of Compliance and a summary of any monitoring required by the licence (including the recording of complaints), be submitted to the EPA. The Annual Return must be submitted within 60 days after the end of each reporting period. See condition R1 regarding the Annual Return reporting requirements.

Usually the licence fee period is the same as the reporting period.

Transfer of licence

The licence holder can apply to transfer the licence to another person. An application form for this purpose is available from the EPA.

Public register and access to monitoring data

Part 9.5 of the Act requires the EPA to keep a public register of details and decisions of the EPA in relation to, for example:

- licence applications;
- licence conditions and variations;
- statements of compliance;
- load based licensing information; and
- load reduction agreements.

Under s320 of the Act application can be made to the EPA for access to monitoring data which has been submitted to the EPA by licensees.

This licence is issued to:

AUSTRAL MASONRY (NSW) PTY LTD
PO BOX 502
BEENLEIGH QLD 4207

subject to the conditions which follow.

Licence - 4664

1 Administrative Conditions

A1 What the licence authorises and regulates

A1.1 This licence authorises the carrying out of the scheduled activities listed below at the premises specified in A2. The activities are listed according to their scheduled activity classification, fee-based activity classification and the scale of the operation.

Unless otherwise further restricted by a condition of this licence, the scale at which the activity is carried out must not exceed the maximum scale specified in this condition.

Scheduled Activity	Fee Based Activity	Scale
Concrete Works	Concrete works	> 50000 m3 produced

A2 Premises or plant to which this licence applies

A2.1 The licence applies to the following premises:

Premises Details
AUSTRAL MASONRY (NSW) PTY LTD
CLUNIES ROSS STREET
PROSPECT
NSW 2148
PART LOT 10 DP 1022044

A3 Information supplied to the EPA

A3.1 Works and activities must be carried out in accordance with the proposal contained in the licence application, except as expressly provided by a condition of this licence.

In this condition the reference to "the licence application" includes a reference to:

- a) the applications for any licences (including former pollution control approvals) which this licence replaces under the Protection of the Environment Operations (Savings and Transitional) Regulation 1998; and
- b) the licence information form provided by the licensee to the EPA to assist the EPA in connection with the issuing of this licence.

2 Limit Conditions

L1 Pollution of waters

L1.1 Except as may be expressly provided in any other condition of this licence, the licensee must comply with section 120 of the Protection of the Environment Operations Act 1997.

Licence - 4664

3 Operating Conditions

O1 Activities must be carried out in a competent manner

O1.1 Licensed activities must be carried out in a competent manner.

This includes:

- a) the processing, handling, movement and storage of materials and substances used to carry out the activity; and
- b) the treatment, storage, processing, reprocessing, transport and disposal of waste generated by the activity.

O2 Maintenance of plant and equipment

- O2.1 All plant and equipment installed at the premises or used in connection with the licensed activity:
 - a) must be maintained in a proper and efficient condition; and
 - b) must be operated in a proper and efficient manner.

O3 Dust

O3.1 The premises must be maintained in a condition which minimises or prevents the emission of dust from the premises.

4 Monitoring and Recording Conditions

M1 Monitoring records

- M1.1 The results of any monitoring required to be conducted by this licence or a load calculation protocol must be recorded and retained as set out in this condition.
- M1.2 All records required to be kept by this licence must be:
 - a) in a legible form, or in a form that can readily be reduced to a legible form;
 - b) kept for at least 4 years after the monitoring or event to which they relate took place; and
 - c) produced in a legible form to any authorised officer of the EPA who asks to see them.
- M1.3 The following records must be kept in respect of any samples required to be collected for the purposes of this licence:
 - a) the date(s) on which the sample was taken;
 - b) the time(s) at which the sample was collected;
 - c) the point at which the sample was taken; and
 - d) the name of the person who collected the sample.

M2 Recording of pollution complaints

Licence - 4664

- M2.1 The licensee must keep a legible record of all complaints made to the licensee or any employee or agent of the licensee in relation to pollution arising from any activity to which this licence applies.
- M2.2 The record must include details of the following:
 - a) the date and time of the complaint;
 - b) the method by which the complaint was made;
 - c) any personal details of the complainant which were provided by the complainant or, if no such details were provided, a note to that effect;
 - d) the nature of the complaint;
 - e) the action taken by the licensee in relation to the complaint, including any follow-up contact with the complainant; and
 - f) if no action was taken by the licensee, the reasons why no action was taken.
- M2.3 The record of a complaint must be kept for at least 4 years after the complaint was made.
- M2.4 The record must be produced to any authorised officer of the EPA who asks to see them.

M3 Telephone complaints line

- M3.1 The licensee must operate during its operating hours a telephone complaints line for the purpose of receiving any complaints from members of the public in relation to activities conducted at the premises or by the vehicle or mobile plant, unless otherwise specified in the licence.
- M3.2 The licensee must notify the public of the complaints line telephone number and the fact that it is a complaints line so that the impacted community knows how to make a complaint.
- M3.3 The preceding two conditions do not apply until 3 months after: the date of the issue of this licence.

5 Reporting Conditions

R1 Annual return documents

- R1.1 The licensee must complete and supply to the EPA an Annual Return in the approved form comprising:
 - a) a Statement of Compliance; and
 - b) a Monitoring and Complaints Summary.
 - At the end of each reporting period, the EPA will provide to the licensee a copy of the form that must be completed and returned to the EPA.
- R1.2 An Annual Return must be prepared in respect of each reporting period, except as provided below.
- R1.3 Where this licence is transferred from the licensee to a new licensee:
 - a) the transferring licensee must prepare an Annual Return for the period commencing on the first day of the reporting period and ending on the date the application for the transfer of the licence to the new licensee is granted; and
 - b) the new licensee must prepare an Annual Return for the period commencing on the date the application for the transfer of the licence is granted and ending on the last day of the reporting period.

Licence - 4664

- R1.4 Where this licence is surrendered by the licensee or revoked by the EPA or Minister, the licensee must prepare an Annual Return in respect of the period commencing on the first day of the reporting period and ending on:
 - a) in relation to the surrender of a licence the date when notice in writing of approval of the surrender is given; or
 - b) in relation to the revocation of the licence the date from which notice revoking the licence operates.
- R1.5 The Annual Return for the reporting period must be supplied to the EPA by registered post not later than 60 days after the end of each reporting period or in the case of a transferring licence not later than 60 days after the date the transfer was granted (the 'due date').
- R1.6 The licensee must retain a copy of the Annual Return supplied to the EPA for a period of at least 4 years after the Annual Return was due to be supplied to the EPA.
- R1.7 Within the Annual Return, the Statement of Compliance must be certified and the Monitoring and Complaints Summary must be signed by:
 - a) the licence holder; or
 - b) by a person approved in writing by the EPA to sign on behalf of the licence holder.
- Note: The term "reporting period" is defined in the dictionary at the end of this licence. Do not complete the Annual Return until after the end of the reporting period.
- Note: An application to transfer a licence must be made in the approved form for this purpose.

R2 Notification of environmental harm

- R2.1 Notifications must be made by telephoning the Environment Line service on 131 555.
- R2.2 The licensee must provide written details of the notification to the EPA within 7 days of the date on which the incident occurred.
- Note: The licensee or its employees must notify all relevant authorities of incidents causing or threatening material harm to the environment immediately after the person becomes aware of the incident in accordance with the requirements of Part 5.7 of the Act.

R3 Written report

- R3.1 Where an authorised officer of the EPA suspects on reasonable grounds that:
 - a) where this licence applies to premises, an event has occurred at the premises; or
 - b) where this licence applies to vehicles or mobile plant, an event has occurred in connection with the carrying out of the activities authorised by this licence,
 - and the event has caused, is causing or is likely to cause material harm to the environment (whether the harm occurs on or off premises to which the licence applies), the authorised officer may request a written report of the event.
- R3.2 The licensee must make all reasonable inquiries in relation to the event and supply the report to the EPA within such time as may be specified in the request.

Licence - 4664

- R3.3 The request may require a report which includes any or all of the following information:
 - a) the cause, time and duration of the event;
 - b) the type, volume and concentration of every pollutant discharged as a result of the event;
 - c) the name, address and business hours telephone number of employees or agents of the licensee, or a specified class of them, who witnessed the event;
 - d) the name, address and business hours telephone number of every other person (of whom the licensee is aware) who witnessed the event, unless the licensee has been unable to obtain that information after making reasonable effort;
 - e) action taken by the licensee in relation to the event, including any follow-up contact with any complainants;
 - f) details of any measure taken or proposed to be taken to prevent or mitigate against a recurrence of such an event; and
 - g) any other relevant matters.
- R3.4 The EPA may make a written request for further details in relation to any of the above matters if it is not satisfied with the report provided by the licensee. The licensee must provide such further details to the EPA within the time specified in the request.

6 General Conditions

- G1 Copy of licence kept at the premises or plant
- G1.1 A copy of this licence must be kept at the premises to which the licence applies.
- G1.2 The licence must be produced to any authorised officer of the EPA who asks to see it.
- G1.3 The licence must be available for inspection by any employee or agent of the licensee working at the premises.

Environment Protection Authority - NSW Licence version date: 15-Oct-2015

Licence - 4664

Dictionary

General Dictionary

3DGM [in relation
to a concentration
limit1

Means the three day geometric mean, which is calculated by multiplying the results of the analysis of three samples collected on consecutive days and then taking the cubed root of that amount. Where one or more of the samples is zero or below the detection limit for the analysis, then 1 or the detection limit respectively should be used in place of those samples

Act Means the Protection of the Environment Operations Act 1997

activityMeans a scheduled or non-scheduled activity within the meaning of the Protection of the Environment

Operations Act 1997

actual load Has the same meaning as in the Protection of the Environment Operations (General) Regulation 2009

Together with a number, means an ambient air monitoring method of that number prescribed by the

Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales.

AMG Australian Map Grid

anniversary date The anniversary date is the anniversary each year of the date of issue of the licence. In the case of a

licence continued in force by the Protection of the Environment Operations Act 1997, the date of issue of the licence is the first anniversary of the date of issue or last renewal of the licence following the

commencement of the Act.

annual return Is defined in R1.1

Approved Methods Publication

Has the same meaning as in the Protection of the Environment Operations (General) Regulation 2009

assessable pollutants

AM

Has the same meaning as in the Protection of the Environment Operations (General) Regulation 2009

BOD Means biochemical oxygen demand

CEM Together with a number, means a continuous emission monitoring method of that number prescribed by

the Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales.

COD Means chemical oxygen demand

composite sample Unless otherwise specifically approved in writing by the EPA, a sample consisting of 24 individual samples

collected at hourly intervals and each having an equivalent volume.

cond. Means conductivity

environment Has the same meaning as in the Protection of the Environment Operations Act 1997

environment protection legislation Has the same meaning as in the Protection of the Environment Administration Act 1991

EPA Means Environment Protection Authority of New South Wales.

fee-based activity classification

Means the numbered short descriptions in Schedule 1 of the Protection of the Environment Operations (General) Regulation 2009.

general solid waste (non-putrescible)

Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act 1997

Licence - 4664

flow weighted composite sample

Means a sample whose composites are sized in proportion to the flow at each composites time of collection

general solid waste (putrescible)

Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environmen t Operations Act

199

grab sample Means a s

Means a single sample taken at a point at a single time

hazardous waste

Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act

1997

licensee

Means the licence holder described at the front of this licence

load calculation protocol

Has the same meaning as in the Protection of the Environment Operations (General) Regulation 2009

local authority

Has the same meaning as in the Protection of the Environment Operations Act 1997

material harm

Has the same meaning as in section 147 Protection of the Environment Operations Act 1997

MBAS

Means methylene blue active substances

Minister

Means the Minister administering the Protection of the Environment Operations Act 1997

mobile plant

Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act

1997

motor vehicle

Has the same meaning as in the Protection of the Environment Operations Act 1997

O&G

Means oil and grease

percentile [in relation to a concentration limit of a sample] Means that percentage [eg.50%] of the number of samples taken that must meet the concentration limit specified in the licence for that pollutant over a specified period of time. In this licence, the specified period of time is the Reporting Period unless otherwise stated in this licence.

plant

premises

Includes all plant within the meaning of the Protection of the Environment Operations Act 1997 as well as motor vehicles.

pollution of waters [or water pollution]

Has the same meaning as in the Protection of the Environment Operations Act 1997

Means the premises described in condition A2.1

public authority

Has the same meaning as in the Protection of the Environment Operations Act 1997

regional office

Means the relevant EPA office referred to in the Contacting the EPA document accompanying this licence

reporting period

For the purposes of this licence, the reporting period means the period of 12 months after the issue of the licence, and each subsequent period of 12 months. In the case of a licence continued in force by the Protection of the Environment Operations Act 1997, the date of issue of the licence is the first anniversary of the date of issue or last renewal of the licence following the commencement of the Act.

restricted solid

waste

Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act 1997

scheduled activity

Means an activity listed in Schedule 1 of the Protection of the Environment Operations Act 1997

special waste

Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act 1997

TM

Together with a number, means a test method of that number prescribed by the Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales.

Licence - 4664

TSP Means total suspended particles

TSS Means total suspended solids

Type 1 substance

Means the elements antimony, arsenic, cadmium, lead or mercury or any compound containing one or more of these elements.

more of those elements

Type 2 substance Means the elements beryllium, chromium, cobalt, manganese, nickel, selenium, tin or vanadium or any

compound containing one or more of those elements

utilisation area Means any area shown as a utilisation area on a map submitted with the application for this licence

waste Has the same meaning as in the Protection of the Environment Operations Act 1997

waste type Means liquid, restricted solid waste, general solid waste (putrescible), general solid waste (non-

putrescible), special waste or hazardous waste

Mr Tim Gilbert

Environment Protection Authority

(By Delegation)

Date of this edition: 09-June-2000

End Notes

- 1 Licence varied by notice 1006588, issued on 21-May-2001, which came into effect on 15-Jun-2001.
- 2 Condition A1.3 Not applicable varied by notice issued on <issue date> which came into effect on <effective date>
- 3 Licence transferred through application 1512412 approved on 04-Mar-2013, which came into effect on 04-Mar-2013
- 4 Licence varied by notice 1534725 issued on 15-Oct-2015
- 5 Licence varied by notice 1534773 issued on 15-Oct-2015

Appendix G Heritage Records

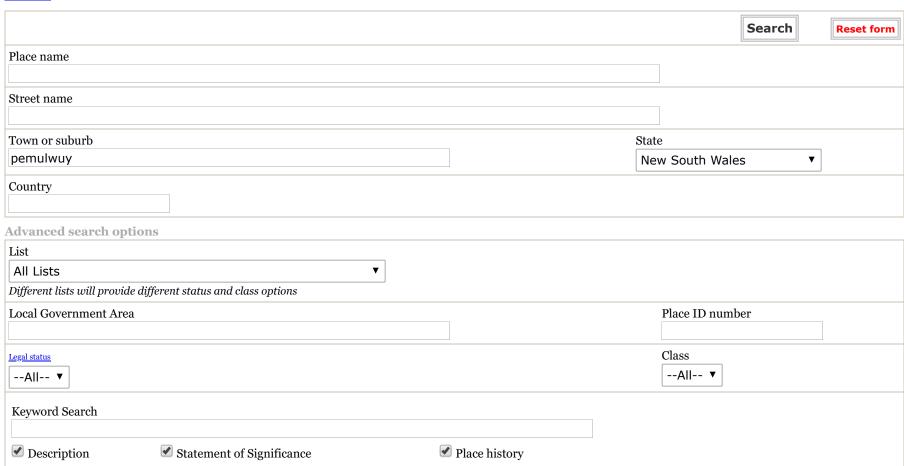
Search Results

5 results found.

CSIRO Division of Animal Production Clunies Ross St	Prospect, NSW, Australia	(Registered) Register of the National Estate (Non-statutory archive)
CSIRO Division of Animal Production Clunies Ross St	Prospect, NSW, Australia	(<u>Ineligible place</u>) Commonwealth Heritage List
Prospect Reservoir Area	Prospect, NSW, Australia	(Indicative Place) Register of the National Estate (Non-statutory archive)
Site of Veteran Hall Reservoir Rd	Prospect, NSW, Australia	(Registered) Register of the National Estate (Non-statutory archive)
St Bartholomews Anglican Church (former), Prospect Hwy	Prospect, NSW, Australia	(Registered) Register of the National Estate (Non-statutory archive)

Report Produced: Tue Mar 19 10:00:45 2019

Accessibility | Disclaimer | Privacy | © Commonwealth of Australia



Search Results

No results found.

Enter at least one search criterion.

Search Hints

<u>Latitude/Longitude</u>			
	N		
	Latitude 1		
Longitude 1	S	Longitude 2	
w E	Latitude 2	E	E
	S		
	\mathbf{s}		
Wholly within regionWholly or partially within	in region		
Longitude coordinates should Latitude coordinates should b			
Map Ref No			
1:100,000 eg 2357 1:250,000 eg SF-50-01			

Search Hints

- Not all fields need to be filled in. The fewer you fill in the more results you will get.
- If you cannot find a place, check spelling and try alternative names. Reduce the number of words that you include and use fewer fields.
- The Local Government field used on its own will provide a comprehensive list of places in an area.

Report Produced: Tue Mar 19 09:57:40 2019

Accessibility Disclaimer Privacy © Commonwealth of Australia

Place Details

Send Feedback

CSIRO Division of Animal Production, Clunies Ross St. Prospect, NSW, Australia

Photographs	None
List	Commonwealth Heritage List
Class	Historic
Legal Status	<u>Ineligible place</u>
Place ID	105481
Place File No	1/14/015/0006

Summary Statement of Significance Not Available

Official Values Not Available

Description

HISTORY

It has been written that Governor Phillip explored Prospect Hill in April 1788, however there is doubt as to the accuracy of this. It is known that Watkin Tench, an officer of the Marines on the First Fleet, led a party from Parramatta to the summit of Prospect Hill, then across to the Nepean River on 26 June 1789. The hill became known as Prospect Hill as it was an important fixed guiding point for other early explorers.

First European settlement of the area occurred in 1791 on the eastern and southern slopes of Prospect Hill. Within the CSIRO site are four (some only in part) 1791 land grants. These grants were to emancipated convicts from the First Fleet: John Nichols, a gardener (Portion 33, 30 acres); William Butler, a seaman and his wife (Portion 32, 50 acres); George Lisk, a watchmaker (Portion 31, 50 acres) and William Parish, a seaman with his wife and child (Portion 27, 60 acres). These first grants comprise the core of the CSIRO site.

Driftways had been left between grants throughout the County of Cumberland as stock routes. A number of such routes were left between the early grants at Prospect Hill. A driftway 5 chains wide ran throught the middle of what is now the CSIRO site, along the eastern boundaries of the Lisk, Butler and Nichols grants. In 1872 this land was purchased by Walter Lamb, the then owner of land at Prospect Hill. Another driftway ran along the western boundary of the CSIRO site.

The area generally is believed to be the site of significant Aboriginal skirmishes in the early years of the Colony and the property the location of subsequent reconciliation meetings in 1805 involving Rev. Samuel Marsden and Prospect Aboriginal groups.

In 1819 a large area of 550 acres (part in the subject site) was granted to D'Arcy Wentworth. Wentworth was a surgeon and father of William Wentworth explorer and political activist. The land remained in the family during the 19th century.

Most of the land had been cleared for agricultural practices by the 1820s. By the 1870s most of the early farm dwellings had been removed and the land was devoted to livestock. By 1883 a quarry is noted at the south west corner of Butler's grant. By 1901 a blue metal quarry was in operation on the subject site and a private rail line connected it with Toongabbie. Quarrying firms had acquired ownership of the subject site by the early twentieth century. Near the end of WWII the US established a

Military Camp at an unknown location on or near the site.

CSIRO

In 1920 the Commonwealth Institute of Science and Industry was established, in 1926 new legislation established the Council for Scientific and Industrial Research. The CSIRO we know today was reconstituted in 1949. It undertook research into almost every field of primary, secondary and tertiary industry.

By 1943, H.B Carter, a wool biologist with CSIRO McMaster laboratory was promoting the need for the acquisition of a rural laboratory complex and field station, as the rented laboratory in Sydney had limitations for wool research. In 1944 the first specific proposal for a comprehensive program on sheep and wool production, including the concept of a central biological laboratory for physiological and genetic work on sheep was developed. H.B Carter searched for a site and chose the Prospect property because of its suitable location, close to Sydney and residential areas.

Through the Wool Use Promotion Act 1945 and the Wool Industry Fund Act 1946 the Commonwealth made provision for additional funds to be devoted to the expansion of sheep and wool research, particularly to improve the productivity and fertility of the animals.

The Commonwealth acquired 48 hectares of land at Prospect Hill for CSIRO under the Lands Acquisition Act 1906 on 5 September 1946. Partly used as a model was a similar complex "Babraham" in Cambridge, England.

Originally the site was acquired as the primary field station for the Sheep Biology Laboratory of the then Division of Animal Health & Production with early research focussed on wool biology, reproductive physiology and ruminant digestion and physiology, the aim being to improve the efficiency of wool production.

Fencing was erected for small .7 hectare paddocks and larger paddocks were left on the margins. Construction of the buildings commenced in 1952 with the erection of the Fleece Analysis Building (Blg 9) followed by the Animal House (Blg 7). In 1953, the Feed Store (Blg 8) and Workshop (Blg 10) were constructed. Rough roadways were constructed through the site, bituminised near the buildings and entries, unsurfaced through the paddocks. Entry was from the east via the Great Western Highway.

In 1959, the Prospect site was renamed the Ian Clunies Ross Animal Research Laboratory after the first Chairman of CSIRO (1949-1959). Clunies Ross (1899-1959) oversaw the growth of the CSIRO into a world renowned scientific research organisation. He was knighted for his work in 1954. Clunies Ross was Chairman until his death in 1959 and the change of name of the Prospect site followed his death. At this time the Ian Clunies Ross Animal Research Laboratory became the headquarters of the Division of Animal Physiology. Research from the Division enjoyed international repute, particularly for its achievements in improving lamb survival and developing feeding and reproductive strategies for sheep and cattle.

Research into sheep biology at Prospect was integrated with research on pastures at the Pastoral Research Laboratory, Armidale, to develop new pasture management systems for wool production enterprises.

The Administration/Laboratory Building (Blg 1) was designed by Stephenson & Turner in the Post War International Style, and completed in 1959. In 1937 D.K. Turner joined Arthur Stephenson as partner, and the architectural firm Stephenson and Turner was formed. They were renowned institutional and commercial architects and were key practitioners of the Post War International Style, designing the former IBM Centre, Sydney (1964) and the General Motors Holden Complex, Melbourne (1956) as well as the CSIRO Building 1.

The application of the post war international style to laboratory buildings appears relatively rare. Similarly designed buildings included the Weston Electronics Building (former Boots Pure Drug Company) building, Eastern Valley Way, Roseville East, Sydney by Stafford, Moor and Farrington and J. Torzillo Architects (1954) and Anzac Hall, College Street, Sydney, both now demolished.

Building 1 was opened by the Governor-General Lord Casey in early 1960.

It is a one and two storey building in a T shape. This building is the largest on the site, and when constructed was the first building on the original entry road, accessed from the Great Western Highway. It was orientated to the north and located on the southern side of the main entry road. The ground floor is laboratories located off both sides of a central corridor. Sympathetic additions occurred in 1994 and 1995.

Building 1 is associated with a number of significant scientific outcomes subsequently implemented by industry including: 1982 the commercialisation of Fecundin (Registered) (a vaccine to increase lambing percentage; 1983 the pioneering of the development of "protected" proteins, marketed as Norpro to improve body weight gain, wool growth and milk production; 1990 developed anti-LHRH vaccine, Vaxstrate, for immunocastration of livestock and for fertility control. Fecudin, Norpro and Vaxtrate were developed in the laboratories of Building 1.

The building complex continued to expand after its establishment, more buildings were constructed higher up the slope towards Prospect Hill and to the east of Building

A further 14.97 hectares of land was purchased by the Australian Wool Corporation in 1963 bringing the total holding to 62.95 hectares.

In 1975, the Divisions of Animal Physiology and Animal Genetics were amalgamated to become the Division of Animal Production. This created a very large Division with laboratories in Townsville, Rockhampton, Perth, Armidale, North Ryde and Prospect. Research on the Prospect site has focussed on sheep, cattle, kangaroos, goats and rabbits. Research on animal production has also been undertaken at Armidale and in Western Australia.

The Genetic Building (Blg 35) was completed in 1982 resulting in a substantial shift of research focus towards molecular biology and its application to the animal industries. It is a large two storey red brick laboratory building with mansard roof. The Building is currently vacant but contains laboratory equipment including stainless steel benches, laboratory basins, taps, gas outlets, fume cupboards and ventilation. Building 35 is associated with the genetic engineering of livestock. The first genetically engineered sheep - containing extra growth hormone genes was born at the site in 1986. This development led CSIRO to be internationally recognised for genetic engineering expertise.

Also in 1982, the Division of Animal Production was split into two sections with the Queensland laboratories joining parts of Division of Animal Health (as it was then known) to become the Division of Tropical Animal Production.

A stock dam was constructed, presumably in the 1950s, this was increased in the 1990s for flood control, following a flood in the 1980s.

In 1931 Sir Frederick D. McMaster a NSW grazier donated 20 000 pounds to the Council for Scientific and Industrial Research, with which they built the McMaster Laboratory within the grounds of Sydney University in the Veterinary Precinct. In 1989 the University sought to take over the CSIRO's occupation of the McMaster Laboratory and planning commenced to relocate laboratory operations to the Prospect site. The McMaster Laboratory (Blg 42) was designed by Collard Clarke & Jackson and constructed in 1994 to accommodate the relocation. The building has interesting design features including a curved corrugated iron roof, steel frame with off white metal panel walling, sun shading over northern windows and turnbuckle tension rods expressing its structural system, all signature design features of 1990s Australian architecture. Most ongoing scientific research is being undertaken in the McMaster Laboratory.

In 1990, 6 hectares of the property were resumed for the construction of the M4 Motorway.

In 2000, the CSIRO's Agribusiness Industries Sector was focussed on research to improve the global competitiveness and sustainability of Australia's livestock production and rural based manufacturing industries. The research also influenced food production systems and consumption choices to promote the good health of Australians. The Agribusiness Industries Sector is made up of six divisions comprising Animal Health, Animal Production, Plant Industry, Food Science Australia, Textile and Fibre Technology and Tropical Agriculture. Parts of the Division of Animal Production (DAP) have been located at the Prospect site over the time of CSIRO's occupation. The Division of Animal Health moved to the site in 1994 with the relocation of the McMaster Laboratory from Sydney University.

In 2000 the Prospect facility was used for the following disciplines and research areas: Animal Breeding; Animal Health and Welfare; Immunology; Mathematical Modelling; Microbiology; Molecular Genetics Parasitology; Ruminant Nutrition & Research - Aqua Centre; Animal Health & Welfare; Biotechnology; Livestock Systems Modelling; Pig Industry Research; Sheep Meat Industry Research and Wool Industry Research.

In May 2000, CSIRO announced a rationalisation and revitalisation of its national livestock research operations centred on a major new commitment to biotechnology at the Institute of Molecular Bioscience in Brisbane. Other rural and regional laboratories at Armidale, Rockhampton, and Geelong would be integrated as part of a new CSIRO Division dealing with livestock related research. The CSIRO propose to release the site for sale and the work currently located at Prospect will be progressively moved to other centres, with the McMaster Laboratory being transferred to Armidale.

The site has been used by CSIRO continuously since 1946 for research into animal behaviour under experimental conditions. The Prospect facility has targeted its research efforts into national priorities focussed on the pastoral industry. Aside from the significant work detailed above undertaken relating to livestock production, recent work by CSIRO at Prospect in transgenics, genomics, other DNA technologies and integrated parasite control is important for the future of these industries as well as significant to science.

In 2001 there are forty buildings on the site. A full list of buildings and their construction dates is included in the description. The Administration/ Laboratory Building (Blg 1), Genetics Building (Blg 37t) and the McMaster Laboratory (Blg 42) together represent the development and changing design of laboratories over a forty year period. Inherent in the CSIRO ownership and use of these buildings is a degree of scientific and technical interest. They were built as state of the art research laboratories for CSIRO who were at the forefront of Australian Scientific Research. These buildings represent the nature of the use of the site by CSIRO for Animal Research.

DESCRIPTION

The site is approximately 57 hectares and is bounded by the M4 Motorway to the north, Clunies Ross Street and Boral Brickworks to the west, residential development to the east and a quarry to the south (land to the south is to be converted for employment and residential use).

The place has largely been cleared except for remnants of Sydney River Flat Forest and Cumberland Plain Woodland scattered across the place, notably on the eastern side of the property. No detailed flora surveys have been carried out at the site, however 58 fauna species occur in the vicinity of the place, including 43 birds, seven mammals, four reptiles and three frogs.

Prospect Hill is a key element of the site, its apex defining the south-western corner of the property. It is Sydney's largest body of igneous rock, rising to 117 metres above sea level. A portion of the hill is located within land owned by Boral Brickworks. On the slope of the hill, north of the hilltop, is an abandoned quarry dating to the latter part of the 19th century. Prospect Hill provides views of the Cumberland Plain from Sydney City in the east to the Blue Mountains in the west. From Prospect Hill remnant boundaries associated with the Lisk, Butler and Nichols grants which coincide with the CSIRO western boundary and part of the CSIRO southern boundary which coincides with the dividing boundary between the List and Parish grants can be seen. Prospect Hill is formed of a large igenous body that may be of geoheritage significance, however no information was available at the time of assessment. Part of the curtilage of Prospect Hill is located on the adjoining Boral site. Whilst the heritage significance of Prospect Hill relates to all of the Hill, this assessment only relates to that section in Commonwealth ownership.

The northwest corner of the site is occupied by a mixed group of forty CSIRO buildings and sheds dating from 1952 through to the present. The buildings were positioned here to be accessible from the original site entry from the Great Western Highway. They occupy approximately seven hectares in total. Building 1 is orientated to the north and located on the southern side of the main entry road. The other buildings are positioned behind Building 1.

A complete list of buildings, their completion dates, construction type and building number follow: Blg 9 Fleece Analysis Building (1952) one storey of concrete and brick construction; Blg 7 Animal House (1952) two storey of brick construction; Blg 8 Feed Store (1953) two storey, brick veneer; Blg 10 Workshop (1953) one storey of brick construction; Blg 6 Climate Control Building (1954) two storey brick construction; Blg 13 Flammable Liquids Store (1954) one storey brick; Blg 14 Small Animal Colony (1954) one storey brick; Blg 11 Amenities Building (1955) one store brick; Blg 15 Flea House (1955) one storey timber/FC; Blg 4 Animal House (1956) one storey brick veneer; Blg 28 Store (1958) one storey brick; Blg 1 Administration Library (1959) two storey brick; Blg 5 Isotope Laboratory (1961) one storey brick; Blg 17 Farm Machinery (1961) one storey timber/corrugated iron; Blg 20 Shearing Shed (1961) one storey timber/corrugated iron; Blg 12 Process Bay (1968) single storey timber/corrugated iron; Blg 24 Sheep Barn (1970) one storey corrugated GI; Blg 27 Dairy (1970) single storey corrugated GI; Blg 29 Covered Sheep Yards (1970) one storey timber; Blg 33 Feed Store (1973) one storey timber/AC; Blg 30 Cattle Complex (1975) one storey corrugated GI; Blg 32 Carcase Incinerator (1976) one storey brick veneer; Blg 34 Quarantine Yards (1978) one storey steel; Blg 36 Gene Transfer Facility (1979) one storey corrugated iron/GI; Blg 37 Sub Station (1979) one storey brick;

Blg 38 Photoperiod facility (1980) one storey concrete/brick; Blg 35 Genetics Building (1982) two storey brick veneer; Blg 39 Process bay Store (1986) one storey corrugated/GI; Blg 40 Caretakers Residence (1988) one storey brick veneer; Blg 41 Post Mortem Facility (1990) one storey brick/steel; Blg 39a Storage Shed (1992) one storey gal steel; Blg 1a Library (1994) one storey brick; Blg 42 McMaster Laboratory (1994) two storey steel/FC Sheet; Blg 43 Animal House (1994) two storey steel; Blg 1b Theatre (1995) two storey brick; Blg 41a Extension (1995) one storey brick; Blg 45 Farm Shed (1995) one storey galvanised steel construction.

The Administration/Laboratory Building (Blg 1), Genetic Building (Blg 35), and the McMaster Laboratory (Blg 42) are of interest.

The Administration/Laboratory Building (Blg 1) (also known as the Clunies Ross Building) is of particular significance designed by Stephenson & Turner in the Post War International Style, and completed in 1959. It is a one and two storey building in a T shape. The main entry to the building is at the junction of the T. the central two storey portion contains the entrance, reception, stair case and general accommodation for scientists and executives. The entry foyer is of interest, the floor of terrazzo with brass dividing strips. There is also an impressive open tread timber stairway. The ceiling of the corridor is made of perforated metal panels.

A single storey wing stretches for a hundred metres, parallel to a driveway, orientated to the north. It contains a central corridor with laboratories either side. The wing has a skillion metal tray roof. The length of the wing is emphasised on the south facade by a continuous metal clad fascia, which bears the CSIRO name, logo and motto. In contrast, the walling below the fascia, and on the south facade has a repetitive modular form which follows the structural grid. Concrete columns, rendered and painted white, are the most prominent element. Between each pair of columns there is a panel of light coloured face brickwork with aluminium framed window walling above.

The two storey wing of the building is the vertical bar of the T. It has a long butterfly roof of unequal pitch. This wing is similar to the other wing in its face brick construction, the size of the structural grid, and the glazing design of the windows. The walls are generally flat planes. The laboratories have high level plaster ceilings. Window eaves protect the laboratories from the northern sun. At the ground floor level the corridor connects to a cafeteria. The walls are window walls between concrete blade columns, faced in exposed aggregate. There is a roof terrace above the cafeteria.

A number of the laboratories are now used by the NSW Police Forensic Section for sample examination and photographic processing, others have been converted to offices. The remaining laboratories have timber benching and shelving. Sympathetic additions occurred in 1994 and 1995. This building is the largest on the site, and when constructed was the first building on the original entry road, accessed from the Great Western Highway.

The Genetic Building (Blg 35) 1982 designed by the Department of Housing and Construction, is a large red brick laboratory building, with two attached wings, each with a rectangular plan. One wing is two storeys, the other is single storey. Both wings have gabled mansard roofs, clad in metal tray sheeting. The Building is currently vacant but contains laboratory equipment including stainless steel benches, laboratory basins, taps, gas outlets, fume cupboards and ventilation. The internal partitions are full height brick work.

Also of note is the McMaster Laboratory (Blg 42), designed by Collard Clarke & Jackson and constructed in 1994 to accommodated the relocation of the McMaster Laboratory from Sydney University. It is the second largest building on the site. It has a steel frame and is clad with fibre cement sheeting, with a recessed edge profile. It is two storeys and the floor plan is rectangular. The main roof consisits of two segmental curves, each clad with steel sheeting in a custom orb profile. There is a large skylight in the main roof over the full height entry foyer. The longer north and south facades have aluminium framed strip windows. Some windows have curved hoods, clad with custom orb sheeting as sun shading. The roof to the porte cochere is of similar construction. Turnbuckle tension rods express its structural system. The building is fully occupied.

Amenity Planting from the 1960s and early 1970s is laid out around the building group. A notable group and row planting of Lemonscented Gums are located behind the Administration Building (1) and in a row along the internal road to the east. A sparse avenue of Scoparia Gums line the earlier entry road from the east. A few mature New England Peppermints are set around the Administration Building particularly the rear courtyard. Three Pencil Cypress Pines, an Olive and a remnant Narrow Leaf Ironbark are also located in the courtyard. Historical archaeological remains could survive in this area, however there is no surviving above ground evidence for the location of former structures. At the present western entrance is a mature Hills Fig.

In a south east courtyard are two semi mature Peppercorns. Near the south east courtyard is a row of Red Ash. Other amenity plantings include a Chinese Elm, Chinese

Ash and Claret Ash, Lombardy Poplar c. 17 metres, Jacarandas, Silky Oak, Black Wattle, Callistemon and banks of shrubs.

The route of an early tramway from the Prospect Hill quarries, now a bitumen road, was recorded in the north west portion of the site.

Most of the site is cleared for pasture grasses, Kikuyu is the principal improved pasture grass. Two rows of fenced paddocks form a grid running north-west parallel to the contours. The remainder of the site is divided into a number of much larger paddocks.

A small shallow creek runs almost the length of the site, north to south, eventually joining the Parramatta River. A stock dam (retention basin) of 3 hectares lies in a central location on the creek line. Remnant stands of native vegetation are located along the creek.

Cultural windbreak and screen planting occurs along the southern boundaries, screening the site from the Boral quarry site to the south and residential properties to the east and Greystanes Road. A row of Radiata Pines front Greystanes Road. On the southern boundary is screen planting composed of Swamp Sheoaks and screen plantings of Silky Oaks and Eucalyptus and some wattles. More recent screening is located on the northern embankment fronting the M4 Motorway. There is no surviving evidence on the site of cultural planting prior to the 1960s.

The site has been in continuous agricultural use since 1791. Except for the boundaries of these earlier grants coinciding with the CSIRO boundaries in certain areas, there is no other above ground evidence of the earlier settlement of the land. The long term pastoral use of the site has ensured the site retains archaeological potential.

The current site is 57 hectares after 6 hectares of the property were resumed for the construction of the M4 Motorway in 1990.

It should be noted that the heritage significance of Prospect Hill relates to all of the Hill, although this assessment only relates to that in Commonwealth ownership.

The Register of the National Estate listing includes: Prospect Hill and 1791 grant boundaries.

History Not Available

Condition and Integrity

In 2000 the buildings were all in good condition, although not all utilised.

Most of the buildings have had alterations since their construction.

The section of Prospect Hill in CSIRO ownership is in fair condition; the original surface form has been largely retained except for the impact of the retention dam, the expressway and its embankment and a small abandoned 19th century quarry on the western boundary.

The landscape is in fair condition. There are some invading species, including willows along the creek line.

Location

About 6ha, off Clunies Ross Street, Prospect, comprising the following: 1. that part of the south west corner of the CSIRO site to the west of the 74 metre ASL contour. 2. The western fenceline boundary that extends from the south west corner (approximate AMG point:07965625) to the northern most corner of the site (approximate AMG point: 08165718). 3. the original southern fenceline boundary extending easterly from the same south west corner of the site for approximately 300 metres. 4. the entry road and 10 metre on either side of the centreline extending easterly from its intersection with Clunies Ross Street (approximate AMG point o8085708) for approximately 300 metres.

Bibliography

Apperly, R. Irving, R. & Reynolds, P. "A Pictorial Guide to Identifying Australian Architecture", Angus and Robertson, NSW, 1989.

Bligh Voller Nield. "Conservation Assessment Review for CSIRO Site at Prospect, NSW", Draft December 2000.

Bligh Voller Nield. "Conservation Assessment Review for CSIRO Site at Prospect, NSW, April 2001.

Bligh Voller Nield. "Conservation Assessment Review for CSIRO Site at Prospect, NSW, June 2001.

Environmental Resources and Information Network, 2000, Species Data for New South Wales (derived from State and Commonwealth datasets), Unpublished data held by ERIN.

Flynn, M. "Holroyd History and the Silent Boundary Project" August 1997.

Jo McDonald Cultural Heritage Management Pty Ltd, "Archaeological Test Excavation of Pad 1, CSIRO Clunies Ross Research Laboratory, Prospect", NSW September 1997.

Karskcris, G. "Holroyd: A Social History of Western Sydney". New South Wales University Press, 1991.

NSW National Parks and Wildlife Service, 2000, Native Vegetation Maps of the Cumberland Plain, Western Sydney, Interpretation Guidelines, NSW Government.

Taylor, G. "Sydneyside Scenery". Angus and Robertson, 1970.

Perumal Murphy Wu Pty Ltd in association with William Ashton, Terry Kass and Edward Higginbotham & Associates Pty Ltd. "Conservation Analysis: CSIRO Division of Animal Production Prospect", for CSIRO, NSW, July 2000.

Web sites:

Ian Clunies Ross Memorial Foundation - hhtp://www.cluniesross.org.au

CSIRO - hhtp://www.csiro.au

Report Produced Tue Mar 19 10:01:09 2019

(cc) BY Accessibility | Disclaimer | Privacy | © Commonwealth of Australia

Place Details

Send Feedback

CSIRO Division of Animal Production, Clunies Ross St, Prospect, NSW, Australia

Photographs	None	
List	Register of the National Estate (Non-statutory archive)	
Class	Historic	
Legal Status	Registered (20/05/2003)	
Place ID	102272	
Place File No	1/14/015/0006	
Statement of Significar	nce	

Within the CSIRO Division of Animal Production site, the significant elements are Prospect Hill and the 1791 grant boundaries.

Prospect Hill is of historical, geological, topographical, archaeological and aesthetic significance. Prospect Hill is a rare geological and landmark topographic feature, being a dolerite outcrop rising to a height of 117 metres above sea level, and lying centrally within the Cumberland Plain.

It is a key element in the landscape and provides important views of the Cumberland Plain, from Sydney City in the east to the Blue Mountains in the west (Criteria B.1, B.2 & E1).

It is of historical significance having first been explored in the early years of settlement and used as a reference point by other explorers from 1788.

The property is significant to the Darug Aboriginal community as the location for the 1805 reconciliation meeting between Reverend Samuel Marsden and Prospect Aboriginal groups and through its associations with Pemulwuy, and early leader of Aboriginal resistance in the area.

It was the location of a number of the earliest farms and land grants in NSW, which were established in 1791. Boundaries from the 1791 land grants to Nichols, Butler, Lisk, Parish are located within the site. Remnant boundaries associated with the Lisk, Butler and Nichols grants align with the CSIRO western boundary, part of the CSIRO southern boundary aligns with the dividing boundary between the 1791 Lisk and Parish grants, and the CSIRO entry road roughly aligns with the dividing boundary between the Nichols and Butler grants. These provide a record of surveying principles in the early colonial period (Criteria A.4, B.2, & G.1).

Due to its ongoing pastoral and rural use the site has the potential to provide archaeological evidence of early farming practice and settlement even though the site has experienced some disturbance (Criterion C.2).

The site is of historical significance for its use by the CSIRO Division of Animal Production. The work of CSIRO at Prospect is associated with scientific agricultural research programs which have had a significant role in the agricultural development of Australia in the post war period, particularly in relation to the sheep and wool industry. CSIRO acquired the site in 1946 and have used it continuously for animal and agricultural research.

The site is significant for its association with Ian Clunies Ross. In 1959 the site was named in honour of Clunies Ross who made a major contribution to the development of CSIRO into a world renowned scientific research organisation, serving as its Chairman (1949-1959). The site has a special association with CSIRO scientists who have carried out work of importance to Australia's scientific research (Criterion H.1).

Australian Historic Themes: 3.5 Developing primary production; 4.6 Remembering significant phases in the development of settlements, towns and cities; 8.10.5 Advancing knowledge in science and technology.

Official Values Not Available

Description

The site is approximately 57 hectares and is bounded by the M4 Motorway to the north, Clunies Ross Street and Boral Brickworks to the west, residential development to the east and a quarry to the south (land to the south is to be converted for employment and residential use).

The place has largely been cleared except for remnants of Sydney River Flat Forest and Cumberland Plain Woodland scattered across the place, notably on the eastern side of the property. No detailed flora surveys have been carried out at the site, however 58 fauna species occur in the vicinity of the place, including 43 birds, seven mammals, four reptiles and three frogs.

Prospect Hill is a key element of the site, its apex defining the south-western corner of the property. It is Sydney's largest body of igneous rock, rising to 117 metres above sea level. A portion of the hill is located within land owned by Boral Brickworks. On the slope of the hill, north of the hilltop, is an abandoned quarry dating to the latter part of the 19th century. Prospect Hill provides views of the Cumberland Plain from Sydney City in the east to the Blue Mountains in the west. From Prospect Hill remnant boundaries associated with the Lisk, Butler and Nichols grants, which coincide with the CSIRO western boundary and part of the CSIRO southern boundary, which coincides with the dividing boundary between the List and Parish grants can be seen. Prospect Hill is formed of a large igneous body that may be of geo-heritage significance, however no information was available at the time of assessment. Part of the curtilage of Prospect Hill is located on the adjoining Boral site. Whilst the heritage significance of Prospect Hill relates to all of the Hill, this assessment only relates to that section in Commonwealth ownership.

The northwest corner of the site is occupied by a mixed group of forty CSIRO buildings and sheds dating from 1952 through to the present. The buildings were positioned here to be accessible from the original site entry from the Great Western Highway. They occupy approximately seven hectares in total. Building 1 is orientated to the north and located on the southern side of the main entry road. The other buildings are positioned behind Building 1.

A complete list of buildings, their completion dates, construction type and building number follow:

Blg 9 Fleece Analysis Building (1952) one storey of concrete and brick construction;

Blg 7 Animal House (1952) two storey of brick construction;

Blg 8 Feed Store (1953) two storey, brick veneer;

Blg 10 Workshop (1953) one storey of brick construction;

Blg 6 Climate Control Building (1954) two storey brick construction;

Blg 13 Flammable Liquids Store (1954) one storey brick;

Blg 14 Small Animal Colony (1954) one storey brick;

Blg 11 Amenities Building (1955) one store brick;

Blg 15 Flea House (1955) one storey timber/FC;

Blg 4 Animal House (1956) one storey brick veneer;

Blg 28 Store (1958) one storey brick;

Blg 1 Administration Library (1959) two storey brick;

Blg 5 Isotope Laboratory (1961) one storey brick;

Blg 17 Farm Machinery (1961) one storey timber/corrugated iron:

Blg 20 Shearing Shed (1961) one storey timber/corrugated iron;

Blg 12 Process Bay (1968) single storey timber/corrugated iron;

Blg 24 Sheep Barn (1970) one storey corrugated GI;

Blg 27 Dairy (1970) single storey corrugated GI;

Blg 29 Covered Sheep Yards (1970) one storey timber;

Blg 33 Feed Store (1973) one storey timber/AC;

Blg 30 Cattle Complex (1975) one storey corrugated GI;

Blg 32 Carcase Incinerator (1976) one storey brick veneer;

Blg 34 Quarantine Yards (1978) one storey steel;

Blg 36 Gene Transfer Facility (1979) one storey corrugated iron/GI;

Blg 37 Sub Station (1979) one storey brick;

Blg 38 Photoperiod facility (1980) one storey concrete/brick;

Blg 35 Genetics Building (1982) two storey brick veneer;

Blg 39 Process bay Store (1986) one storey corrugated/GI;

Blg 40 Caretakers Residence (1988) one storey brick veneer;

Blg 41 Post Mortem Facility (1990) one storey brick/steel;

Blg 39a Storage Shed (1992) one storey gal steel;

Blg 1a Library (1994) one storey brick;

Blg 42 McMaster Laboratory (1994) two storey steel/FC Sheet;

Blg 43 Animal House (1994) two storey steel;

Blg 1b Theatre (1995) two storey brick;

Blg 41a Extension (1995) one storey brick;

Blg 45 Farm Shed (1995) one storey galvanised steel construction.

The Administration/Laboratory Building (Blg 1), Genetic Building (Blg 35), and the McMaster Laboratory (Blg 42) are of interest.

The Administration/Laboratory Building (Blg 1) (also known as the Clunies Ross Building) is of particular significance, designed by Stephenson & Turner in the Post War International Style, and completed in 1959. It is a one and two storey building in a T shape. The main entry to the building is at the junction of the T. The central two storey portion contains the entrance, reception, stair case and general accommodation for scientists and executives. The entry fover is of interest, the floor of terrazzo with brass dividing strips. There is also an impressive open tread timber stairway. The ceiling of the corridor is made of perforated metal panels.

A single storey wing stretches for a hundred metres, parallel to a driveway, orientated to the north. It contains a central corridor with laboratories either side. The wing has a skillion metal tray roof. The length of the wing is emphasised on the south facade by a continuous metal clad fascia, which bears the CSIRO name, logo and motto. In contrast, the walling below the fascia, and on the south facade has a repetitive modular form, which follows the structural grid. Concrete columns, rendered and painted white, are the most prominent element. Between each pair of columns there is a panel of light coloured face brickwork with aluminium framed window walling above.

The two storey wing of the building is the vertical bar of the T. It has a long butterfly roof of unequal pitch. This wing is similar to the other wing in its face brick construction, the size of the structural grid, and the glazing design of the windows. The walls are generally flat planes. The laboratories have high level plaster ceilings. Window eaves protect the laboratories from the northern sun. At the ground floor level the corridor connects to a cafeteria. The walls are window walls between concrete blade columns, faced in exposed aggregate. There is a roof terrace above the cafeteria.

A number of the laboratories are now used by the NSW Police Forensic Section for sample examination and photographic processing, others have been converted to offices. The remaining laboratories have timber benching and shelving. Sympathetic additions occurred in 1994 and 1995. This building is the largest on the site, and when constructed was the first building on the original entry road, accessed from the Great Western Highway.

The Genetic Building (Blg 35), 1982 designed by the Department of Housing and Construction, is a large red brick laboratory building, with two attached wings, each with a rectangular plan. One wing is two storeys, the other is single storey. Both wings have gabled mansard roofs, clad in metal tray sheeting. The Building is currently vacant but contains laboratory equipment including stainless steel benches, laboratory basins, taps, gas outlets, fume cupboards and ventilation. The internal partitions are full height brick work.

Also of note is the McMaster Laboratory (Blg 42), designed by Collard Clarke & Jackson and constructed in 1994 to accommodate the relocation of the McMaster Laboratory from Sydney University. It is the second largest building on the site. It has a steel frame and is clad with fibre cement sheeting, with a recessed edge profile. It is two storeys and the floor plan is rectangular. The main roof consists of two segmental curves, each clad with steel sheeting in a custom orb profile. There is a large skylight in the main roof over the full height entry foyer. The longer north and south facades have aluminium framed strip windows. Some windows have curved hoods, clad with custom orb sheeting as sun shading. The roof to the porte cochere is of similar construction. Turnbuckle tension rods express its structural system. The building is fully occupied.

Amenity Planting from the 1960s and early 1970s is laid out around the building group. A notable group and row planting of Lemon scented Gums are located behind the Administration Building (1) and in a row along the internal road to the east. A sparse avenue of Scoparia Gums line the earlier entry road from the east. A few mature New England Peppermints are set around the Administration Building, particularly the rear courtyard. Three Pencil Cypress Pines, an Olive and a remnant Narrow Leaf Ironbark are also located in the courtyard. Historical archaeological remains could survive in this area, however there is no surviving above ground evidence for the location of former structures. At the present western entrance is a mature Hills Fig.

In a south east courtyard are two semi mature Peppercorns. Near the south east courtyard is a row of Red Ash. Other amenity plantings include a Chinese Elm, Chinese Ash and Claret Ash, Lombardy Poplar c. 17 metres, Jacarandas, Silky Oak, Black Wattle, Callistemon and banks of shrubs.

The route of an early tramway from the Prospect Hill quarries, now a bitumen road, was recorded in the north west portion of the site.

Most of the site is cleared for pasture grasses, Kikuyu is the principal improved pasture grass. Two rows of fenced paddocks form a grid running north-west parallel to the contours. The remainder of the site is divided into a number of much larger paddocks.

A small shallow creek runs almost the length of the site, north to south, eventually joining the Parramatta River. A stock dam (retention basin) of 3 hectares lies in a central location on the creek line. Remnant stands of native vegetation are located along the creek.

Cultural windbreak and screen planting occurs along the southern boundaries, screening the site from the Boral quarry site to the south and residential properties to the east and Greystanes Road. A row of Radiata Pines front Greystanes Road. On the southern boundary is screen planting composed of Swamp Sheoaks and screen plantings of Silky Oaks and Eucalyptus and some wattles. More recent screening is located on the northern embankment fronting the M4 Motorway. There is no surviving evidence on the site of cultural planting prior to the 1960s.

The site has been in continuous agricultural use since 1791. Except for the boundaries of these earlier grants coinciding with the CSIRO boundaries in certain areas, there is no other above ground evidence of the earlier settlement of the land. The long term pastoral use of the site has ensured the site retains archaeological potential.

The current site is 57 hectares after 6 hectares of the property were resumed for the construction of the M4 Motorway in 1990.

It should be noted that the heritage significance of Prospect Hill relates to all of the Hill, although this assessment only relates to that in Commonwealth ownership.

The Register of the National Estate listing includes: Prospect Hill and 1791 grant boundaries.

History

It has been written that Governor Phillip explored Prospect Hill in April 1788, however there is doubt as to the accuracy of this. It is known that Watkin Tench, an officer of the Marines on the First Fleet, led a party from Parramatta to the summit of Prospect Hill, then across to the Nepean River on 26 June 1789. The hill became known as Prospect Hill as it was an important fixed guiding point for other early explorers.

First European settlement of the area occurred in 1791 on the eastern and southern slopes of Prospect Hill. Within the CSIRO site are four (some only in part) 1791 land grants. These grants were to emancipated convicts from the First Fleet: John Nichols, a gardener (Portion 33, 30 acres); William Butler, a seaman and his wife (Portion 32, 50 acres); George Lisk, a watchmaker (Portion 31, 50 acres) and William Parish, a seaman with his wife and child (Portion 27, 60 acres). These first grants comprise the core of the CSIRO site.

Driftways had been left between grants throughout the County of Cumberland as stock routes. A number of such routes were left between the early grants at Prospect Hill. A driftway 5 chains wide ran through the middle of what is now the CSIRO site, along the eastern boundaries of the Lisk, Butler and Nichols grants. In 1872, this land was purchased by Walter Lamb, the then owner of land at Prospect Hill. Another driftway ran along the western boundary of the CSIRO site.

The area generally is believed to be the site of significant Aboriginal skirmishes in the early years of the Colony and the property the location of subsequent reconciliation meetings in 1805 involving Rev. Samuel Marsden and Prospect Aboriginal groups.

In 1819 a large area of 550 acres (part in the subject site) was granted to D'Arcy Wentworth. Wentworth was a surgeon and father of William Wentworth explorer and political activist. The land remained in the family during the 19th century.

Most of the land had been cleared for agricultural practices by the 1820s. By the 1870s, most of the early farm dwellings had been removed and the land was devoted to livestock. By 1883, a quarry is noted at the south west corner of Butler's grant. By 1901, a blue metal quarry was in operation on the subject site and a private rail line connected it with Toongabbie. Quarrying firms had acquired ownership of the subject site by the early twentieth century. Near the end of WWII the US established a Military Camp at an unknown location on or near the site.

CSIRO

In 1920 the Commonwealth Institute of Science and Industry was established, in 1926 new legislation established the Council for Scientific and Industrial Research. The

CSIRO we know today was reconstituted in 1949. It undertook research into almost every field of primary, secondary and tertiary industry.

By 1943, H.B Carter, a wool biologist with CSIRO McMaster laboratory was promoting the need for the acquisition of a rural laboratory complex and field station, as the rented laboratory in Sydney had limitations for wool research. In 1944, the first specific proposal for a comprehensive program on sheep and wool production, including the concept of a central biological laboratory for physiological and genetic work on sheep was developed. H.B Carter searched for a site and chose the Prospect property because of its suitable location, close to Sydney and residential areas.

Through the Wool Use Promotion Act 1945 and the Wool Industry Fund Act 1946, the Commonwealth made provision for additional funds to be devoted to the expansion of sheep and wool research, particularly to improve the productivity and fertility of the animals.

The Commonwealth acquired 48 hectares of land at Prospect Hill for CSIRO under the Lands Acquisition Act 1906 on 5 September 1946. Partly used as a model was a similar complex "Babraham" in Cambridge, England.

Originally, the site was acquired as the primary field station for the Sheep Biology Laboratory of the then Division of Animal Health & Production with early research focused on wool biology, reproductive physiology and ruminant digestion and physiology, the aim being to improve the efficiency of wool production.

Fencing was erected for small, 7 hectare paddocks and larger paddocks were left on the margins. Construction of the buildings commenced in 1952 with the erection of the Fleece Analysis Building (Blg 9), followed by the Animal House (Blg 7). In 1953, the Feed Store (Blg 8) and Workshop (Blg 10) were constructed. Rough roadways were constructed through the site, bituminised near the buildings and entries, unsurfaced through the paddocks. Entry was from the east via the Great Western Highway.

In 1959, the Prospect site was renamed the Ian Clunies Ross Animal Research Laboratory after the first Chairman of CSIRO (1949-1959). Clunies Ross (1899-1959) oversaw the growth of the CSIRO into a world renowned scientific research organisation. He was knighted for his work in 1954. Clunies Ross was Chairman until his death in 1959 and the change of name of the Prospect site followed his death. At this time, the Ian Clunies Ross Animal Research Laboratory became the headquarters of the Division of Animal Physiology. Research from the Division enjoyed international repute, particularly for its achievements in improving lamb survival and developing feeding and reproductive strategies for sheep and cattle.

Research into sheep biology at Prospect was integrated with research on pastures at the Pastoral Research Laboratory, Armidale, to develop new pasture management systems for wool production enterprises.

The Administration/Laboratory Building (Blg 1) was designed by Stephenson & Turner in the Post War International Style, and completed in 1959. In 1937, D.K. Turner joined Arthur Stephenson as partner, and the architectural firm Stephenson and Turner was formed. They were renowned institutional and commercial architects and were key practitioners of the Post War International Style, designing the former IBM Centre, Sydney (1964) and the General Motors Holden Complex, Melbourne (1956) as well as the CSIRO Building 1.

The application of the post war international style to laboratory buildings appears relatively rare. Similarly designed buildings included the Weston Electronics Building (former Boots Pure Drug Company) building, Eastern Valley Way, Roseville East, Sydney by Stafford, Moor and Farrington and J. Torzillo Architects (1954) and Anzac Hall, College Street, Sydney, both now demolished.

Building 1 was opened by the Governor-General Lord Casey in early 1960. It is a one and two storey building in a T shape. This building is the largest on the site, and when constructed was the first building on the original entry road, accessed from the Great Western Highway. It was orientated to the north and located on the southern side of the main entry road. The ground floor is laboratories located off both sides of a central corridor. Sympathetic additions occurred in 1994 and 1995.

Building 1 is associated with a number of significant scientific outcomes subsequently implemented by industry including: 1982 the commercialisation of Fecundin (Registered) (a vaccine to increase lambing percentage); 1983 the pioneering of the development of "protected" proteins, marketed as Norpro to improve body weight gain, wool growth and milk production; 1990 developed anti-LHRH vaccine, Vaxstrate, for immunocastration of livestock and for fertility control. Fecudin, Norpro and Vaxtrate were developed in the laboratories of Building 1.

The building complex continued to expand after its establishment, more buildings were constructed higher up the slope towards Prospect Hill and to the east of Building

A further 14.97 hectares of land was purchased by the Australian Wool Corporation in 1963 bringing the total holding to 62.95 hectares.

In 1975, the Divisions of Animal Physiology and Animal Genetics were amalgamated to become the Division of Animal Production. This created a very large Division with laboratories in Townsville, Rockhampton, Perth, Armidale, North Ryde and Prospect. Research on the Prospect site has focused on sheep, cattle, kangaroos, goats and rabbits. Research on animal production has also been undertaken at Armidale and in Western Australia.

The Genetic Building (Blg 35) was completed in 1982 resulting in a substantial shift of research focus towards molecular biology and its application to the animal industries. It is a large two storey red brick laboratory building with mansard roof. The Building is currently vacant but contains laboratory equipment including stainless steel benches, laboratory basins, taps, gas outlets, fume cupboards and ventilation. Building 35 is associated with the genetic engineering of livestock. The first genetically engineered sheep - containing extra growth hormone genes was born at the site in 1986. This development led CSIRO to be internationally recognised for genetic engineering expertise.

Also in 1982, the Division of Animal Production was split into two sections with the Queensland laboratories joining parts of Division of Animal Health (as it was then known) to become the Division of Tropical Animal Production.

A stock dam was constructed, presumably in the 1950s, this was increased in the 1990s for flood control, following a flood in the 1980s.

In 1931, Sir Frederick D. McMaster, a NSW grazier donated 20 000 pounds to the Council for Scientific and Industrial Research, with which they built the McMaster Laboratory within the grounds of Sydney University in the Veterinary Precinct. In 1989, the University sought to take over the CSIRO's occupation of the McMaster Laboratory and planning commenced to relocate laboratory operations to the Prospect site. The McMaster Laboratory (Blg 42) was designed by Collard Clarke & Jackson and constructed in 1994 to accommodate the relocation. The building has interesting design features including a curved corrugated iron roof, steel frame with off white metal panel walling, sun shading over northern windows and turnbuckle tension rods expressing its structural system, all signature design features of 1990s Australian architecture. Most ongoing scientific research is being undertaken in the McMaster Laboratory.

In 1990, 6 hectares of the property were resumed for the construction of the M4 Motorway.

In 2000, the CSIRO's Agribusiness Industries Sector was focused on research to improve the global competitiveness and sustainability of Australia's livestock production and rural based manufacturing industries. The research also influenced food production systems and consumption choices to promote the good health of Australians. The Agribusiness Industries Sector is made up of six divisions, comprising Animal Health, Animal Production, Plant Industry, Food Science Australia, Textile and Fibre Technology and Tropical Agriculture. Parts of the Division of Animal Production (DAP) have been located at the Prospect site over the time of CSIRO's occupation. The Division of Animal Health moved to the site in 1994 with the relocation of the McMaster Laboratory from Sydney University.

In 2000, the Prospect facility was used for the following disciplines and research areas: Animal Breeding; Animal Health and Welfare; Immunology; Mathematical Modelling; Microbiology; Molecular Genetics Parasitology; Ruminant Nutrition & Research - Aqua Centre; Animal Health & Welfare; Biotechnology; Livestock Systems Modelling; Pig Industry Research; Sheep Meat Industry Research and Wool Industry Research.

In May 2000, CSIRO announced a rationalisation and revitalisation of its national livestock research operations centred on a major new commitment to biotechnology at the Institute of Molecular Bioscience in Brisbane. Other rural and regional laboratories at Armidale, Rockhampton, and Geelong would be integrated as part of a new CSIRO Division dealing with livestock related research. The CSIRO propose to release the site for sale and the work currently located at Prospect will be progressively moved to other centres, with the McMaster Laboratory being transferred to Armidale.

The site has been used by CSIRO continuously since 1946 for research into animal behaviour under experimental conditions. The Prospect facility has targeted its research efforts into national priorities focused on the pastoral industry. Aside from the significant work detailed above undertaken relating to livestock production, recent work by CSIRO at Prospect in transgenics, genomics, other DNA technologies and integrated parasite control is important for the future of these industries as well as significant to science.

In 2001, there are forty buildings on the site. A full list of buildings and their construction dates is included in the description. The Administration/ Laboratory Building (Blg 1), Genetics Building (Blg 37t) and the McMaster Laboratory (Blg 42) together represent the development and changing design of laboratories over a forty year period. Inherent in the CSIRO ownership and use of these buildings is a degree of scientific and technical interest. They were built as state of the art research laboratories for CSIRO, who were at the forefront of Australian Scientific Research. These buildings represent the nature of the use of the site by CSIRO for Animal Research.

Condition and Integrity

In 2000 the buildings were all in good condition, although not all utilised. Most of the buildings have had alterations since their construction.

The section of Prospect Hill in CSIRO ownership is in fair condition; the original surface form has been largely retained except for the impact of the retention dam, the expressway and its embankment and a small abandoned 19th century quarry on the western boundary.

The landscape is in fair condition. There are some invading species, including willows along the creek line.

Location

About 6ha, off Clunies Ross Street, Prospect, comprising the following: 1. that part of the south west corner of the CSIRO site to the west of the 74 metre ASL contour. 2. The western fenceline boundary that extends from the south west corner (approximate AMG point:07965625) to the northern most corner of the site (approximate AMG point: 08165718). 3. the original southern fenceline boundary extending easterly from the same south west corner of the site for approximately 300 metres. 4. the entry road and 10 metre on either side of the centreline extending easterly from its intersection with Clunies Ross Street (approximate AMG point o8o85708) for approximately 300 metres.

Bibliography

Apperly, R. Irving, R. & Reynolds, P. "A Pictorial Guide to Identifying Australian Architecture", Angus and Robertson, NSW, 1989.

Bligh Voller Nield. "Conservation Assessment Review for CSIRO Site at Prospect, NSW", Draft December 2000.

Bligh Voller Nield. "Conservation Assessment Review for CSIRO Site at Prospect, NSW, April 2001.

Bligh Voller Nield. "Conservation Assessment Review for CSIRO Site at Prospect, NSW, June 2001.

Environmental Resources and Information Network, 2000, Species Data for New South Wales (derived from State and Commonwealth datasets), Unpublished data held by ERIN.

Flynn, M. "Holroyd History and the Silent Boundary Project" August 1997.

Jo McDonald Cultural Heritage Management Pty Ltd, "Archaeological Test Excavation of Pad 1, CSIRO Clunies Ross Research Laboratory, Prospect", NSW September 1997.

Karskcris, G. "Holroyd: A Social History of Western Sydney". New South Wales University Press, 1991.

NSW National Parks and Wildlife Service, 2000, Native Vegetation Maps of the Cumberland Plain, Western Sydney, Interpretation Guidelines, NSW Government.

Taylor, G. "Sydneyside Scenery". Angus and Robertson, 1970.

Perumal Murphy Wu Pty Ltd in association with William Ashton, Terry Kass and Edward Higginbotham & Associates Pty Ltd. "Conservation Analysis: CSIRO Division of Animal Production Prospect", for CSIRO, NSW, July 2000.

Web sites:

Ian Clunies Ross Memorial Foundation - hhtp://www.cluniesross.org.au

CSIRO - hhtp://www.csiro.au

Report Produced Tue Mar 19 10:03:22 2019

(cc) BY Accessibility | Disclaimer | Privacy | © Commonwealth of Australia

Home > Topics > Heritage places and items > Search for heritage

Search for NSW heritage

Return to search page where you can refine/broaden your search.

Statutory listed items

Information and items listed in the State Heritage Inventory come from a number of sources. This means that there may be several entries for the same heritage item in the database. For clarity, the search results have been divided into three sections.

- **Section 1** contains Aboriginal Places declared by the **Minister for the Environment** under the National Parks and Wildlife Act. This information is provided by the Heritage Division.
- **Section 2** contains heritage items listed by the **Heritage Council of NSW** under the NSW Heritage Act. This includes listing on the State Heritage Register, an Interim Heritage Order or protected under section 136 of the NSW Heritage Act. This information is provided by the Heritage Division.
- **Section 3** contains items listed by **local councils** on Local Environmental Plans under the Environmental Planning and Assessment Act, 1979 and **State government agencies** under s.170 of the Heritage Act. This information is provided by local councils and State government agencies.

Section 1. Aboriginal Places listed under the National Parks and Wildlife Act.

Your search did not return any matching results.

Section 2. Items listed under the NSW Heritage Act.

Your search returned 9 records.

Item name	Address	Suburb	LGA	SHR
Former Great Western Road, Prospect	Reservoir Road	Prospect	Blackto	01911

			wn	
Prospect Hill	Clunies Ross Street	Prospect	Holroyd	01662
Prospect Post Office (former)	23 Tarlington Place	Prospect	Blackto wn	01385
Prospect Reservoir and surrounding area	Reservoir Road	Prospect	Blackto wn	01370
Prospect Reservoir Valve House	East Of Reservoir	Prospect	Fairfield	01371
Royal Cricketers Arms Inn	385 Reservoir Road	Prospect	Blackto wn	00660
St. Bartholomew's Anglican Church (former) & Cemetery	Ponds Road	Prospect	Blackto wn	00037
<u>Upper Canal System (Pheasants Nest Weir to Prospect Reservoir)</u>		Prospect	Blackto wn	01373
<u>Veteran Hall - House Remains</u>	Great Western Highway	Prospect	Blackto wn	01351

Section 3. Items listed by Local Government and State Agencies.

Your search returned 22 records.

Item name	Address	Suburb	LGA	Information source
<u>Bridestowe</u>	568 Reservoir Road	Prospect	Blackt own	LGOV
Electricity Substation	426 - 428 Blacktown Road	Prospect	Blackt own	LGOV

0,20.0		esaisii isi iteri iisiitage iteri =iiiiisii		9-
Electricity Substation	432 Blacktown Road	Prospect	Blackt own	LGOV
Former Great Western Highway Alignment	Tarlington Place to Boiler Close	Prospect / Blacktown	Blackt own	LGOV
Former Prospect Post Office	23 Tarlington Place	Prospect	Blackt own	LGOV
House and Original School Building	441 Blacktown Road	Prospect	Blackt own	LGOV
Milestone - Ponds Road and Bartholomews Place	Great Western Highway	Prospect	Blackt own	SGOV
<u>Milestones</u>	Great Western Highway	Prospect, Huntingwood, Minchinbury, Mount Druitt	Blackt own	LGOV
Prospect Hill Reservoir (Elevated) (WS 0095)	Prospect Reservoir, off Reservoir Road	Prospect	Blackt own	SGOV
Prospect Post Office (Former)	23 Tarlington Place	Prospect	Blackt own	SGOV
<u>Prospect Reservoir</u> (<u>operational land</u>)	Reservoir Road	Prospect	Fairfie Id	SGOV
Prospect Reservoir (operational land)	Reservoir Road	Prospect	Blackt own	SGOV
Prospect Reservoir and surrounding area	1 Picrite Close	Prospect	Holroy d	LGOV
Prospect Reservoir Group	Reservoir Road	Prospect	Blackt own	LGOV
Prospect-Thornleigh Pumping Station (WPS 138)	Reservoir Road	Prospect	Blackt	SGOV

Royal Cricketers Arms Inn	385 Reservoir Road	Prospect	Blackt own	LGOV
Royal Cricketers Arms Inn	385 Reservoir Road	Prospect	Blackt own	SGOV
Site of Veteran Hall	Reservoir Road	Prospect	Blackt own	LGOV
St Bartholomews Church & Cemetery	Ponds Road	Prospect	Blackt own	LGOV
<u>Upper Nepean Scheme</u>	From Pheasants Nest To Prospect Reservoir	Prospect	Multip le LGAs	SGOV
Veteran Hall Archaeological Site	Reservoir Road	Prospect	Blackt own	SGOV
Veteran Hall remains & site	Reservoir Road (1km south of)	Prospect	Blackt own	GAZ

There was a total of 31 records matching your search criteria.

Key:

LGA = Local Government Area

GAZ= NSW Government Gazette (statutory listings prior to 1997), HGA = Heritage Grant Application, HS = Heritage Study, LGOV = Local Government, SGOV = State Government Agency.

Note: While the Heritage Division seeks to keep the Inventory up to date, it is reliant on State agencies and local councils to provide their data. Always check with the relevant State agency or local council for the most up-to-date information.

Home > Topics > Heritage places and items > Search for heritage

Search for NSW heritage

Return to search page where you can refine/broaden your search.

Statutory listed items

Information and items listed in the State Heritage Inventory come from a number of sources. This means that there may be several entries for the same heritage item in the database. For clarity, the search results have been divided into three sections.

- **Section 1** contains Aboriginal Places declared by the **Minister for the Environment** under the National Parks and Wildlife Act. This information is provided by the Heritage Division.
- **Section 2** contains heritage items listed by the **Heritage Council of NSW** under the NSW Heritage Act. This includes listing on the State Heritage Register, an Interim Heritage Order or protected under section 136 of the NSW Heritage Act. This information is provided by the Heritage Division.
- **Section 3** contains items listed by **local councils** on Local Environmental Plans under the Environmental Planning and Assessment Act, 1979 and **State government agencies** under s.170 of the Heritage Act. This information is provided by local councils and State government agencies.

Section 1. Aboriginal Places listed under the National Parks and Wildlife Act.

Your search did not return any matching results.

Section 2. Items listed under the NSW Heritage Act.

Your search returned 1 record.

Item name	Address	Suburb	LGA	SHR	
Prospect Reservoir and surrounding area	Reservoir Road	Prospect	Blacktown	01370	

Section 3. Items listed by Local Government and State Agencies.

Your search returned 6 records.

Item name	Address	Suburb	LGA	Information source
Aboriginal Flaked Stone Artefacts	Clunies Ross Street	Pemulw uy	Holr oyd	LGOV
Aboriginal Scarred Tree	Shown by a yellow outline and identified as AH3	Pemulw uy	Holr oyd	LGOV
Aboriginal scarred tree and Aboriginal flaked stone artefacts	Shown by a yellow outline and identified as AH1	Pemulw uy	Holr oyd	LGOV
Boothtown Aquaduct Aquaduct Valve House No 1 & 2	Albert Street	Guildfor d West	Holr oyd	LGOV
Main Gate - Boral	Greystanes Road	Pemulw uy	Holr oyd	LGOV
Prospect Hill	Clunies Ross Street	Pemulw uy	Holr oyd	LGOV

There was a total of 7 records matching your search criteria.

Key:

LGA = Local Government Area

GAZ= NSW Government Gazette (statutory listings prior to 1997), HGA = Heritage Grant Application, HS = Heritage Study, LGOV = Local Government, SGOV = State Government Agency.

Note: While the Heritage Division seeks to keep the Inventory up to date, it is reliant on State agencies and local councils to provide their data. Always check with the relevant State agency or local council for the most up-to-date information.

Home > Topics > Heritage places and items > Search for heritage

Search for NSW heritage

Return to search page where you can refine/broaden your search.

Statutory listed items

Information and items listed in the State Heritage Inventory come from a number of sources. This means that there may be several entries for the same heritage item in the database. For clarity, the search results have been divided into three sections.

- Section 1 contains Aboriginal Places declared by the **Minister for the Environment** under the National Parks and Wildlife Act. This information is provided by the Heritage Division.
- Section 2 contains heritage items listed by the **Heritage Council of NSW** under the NSW Heritage Act. This includes listing on the State Heritage Register, an Interim Heritage Order or protected under section 136 of the NSW Heritage Act. This information is provided by the Heritage Division.
- Section 3 contains items listed by local councils on Local Environmental Plans under the Environmental Planning and Assessment Act, 1979 and State government agencies under s.170 of the Heritage Act. This information is provided by local councils and State government agencies.

Section 1. Aboriginal Places listed under the National Parks and Wildlife Act.

Your search did not return any matching results.

Section 2. Items listed under the NSW Heritage Act.

Your search returned 1 record.

Item name	Address	Suburb	LGA	SHR
Prospect Hill	Clunies Ross Street	Prospect	Holroyd	01662

Section 3. Items listed by Local Government and State Agencies.

Your search returned 2 records.

Item name	Address	Suburb	LGA	Information source
Aboriginal Flaked Stone Artefacts	Clunies Ross Street	Pemulwuy	Holroyd	LGOV
Prospect Hill	Clunies Ross Street	Pemulwuy	Holroyd	LGOV

There was a total of 3 records matching your search criteria.

Key:

LGA = Local Government Area

GAZ= NSW Government Gazette (statutory listings prior to 1997), HGA = Heritage Grant Application, HS = Heritage Study, LGOV = Local Government, SGOV = State Government Agency.

Note: While the Heritage Division seeks to keep the Inventory up to date, it is reliant on State agencies and local councils to provide their data. Always check with the relevant State agency or local council for the most up-to-date information.

Home > Topics > Heritage places and items > Search for heritage

Prospect Hill

Item details

Name of item: Prospect Hill

Other name/s: Bellevue (Hill); Mar-Rong Reserve

Type of item: Landscape

Group/Collection: Landscape - Cultural

Category: Historic Landscape

Location: Lat: -33.8126561749 Long: 150.9300527660

Primary address: Clunies Ross Street, Prospect, NSW 2148

Parish: Prospect

County: Cumberland

Local govt. area: Holroyd

Local Aboriginal Land Council:

Deerubbin

Property description

Lot/Volume Code	Lot/Volume Number	Section Number	Plan/Folio Code	Plan/Folio Number
PART LOT	5		DP	235064
LOT	В		DP	33023
LOT	3		DP	802794

All addresses

	1				
Street Address	Suburb/town	LGA	Parish	County	Туре
Clunies Ross Street	Prospect	Holroyd	Prospect	Cumberland	Primary Address
Great Western Highway	Prospect	Holroyd	Prospect	Cumberland	Alternate Address
Butu-Wargun Drive	Greystanes	Holroyd	Prospect	Cumberland	Alternate Address
Reconciliation Road	Prospect	Holroyd	Prospect	Cumberland	Alternate Address

Owner/s

Organisation Name	Owner Category	Date Ownership Updated	

Boral Limited	Private	
CSIRO	Private	
Cumberland Council	Local Government	

Statement of significance:

The Prospect Hill area has state significance due to its unique combination of significant landscape feature, potential archaeological site, and association with important historical phases. As a dolerite outcrop rising to a height of 117 metres above sea level, Prospect Hill is a rare geological and significant topographic feature providing expansive views across the Cumberland Plain (Ashton, 2000).

The site is significant as a major reference point for early explorers from 1788, and as the site of a number of the earliest farms in New South Wales, which were established in 1791 (Higginbotham, 2000). Prospect Hill is also associated with Aboriginal frontier warfare during the early days of the colony, and as the site of one of the first Aboriginal/ European reconciliation meetings held in 1805 involving Samuel Marsden and Prospect Aboriginal groups (Flynn 1997).

Through its ongoing pastoral and rural use, the site has the potential to provide archaeological evidence of early farming practice and settlement (Higginbotham 2000). The landscape of Prospect Hill is likely to be one of the only remaining areas of rural land within the local and regional area that has retained its long-term pastoral use since the earliest days of the colony.

Date significance updated: 19 Feb 01

Note: The State Heritage Inventory provides information about heritage items listed by local and State government agencies. The State Heritage Inventory is continually being updated by local and State agencies as new information becomes available. Read the OEH copyright and disclaimer.

Description

Physical description:

Prospect Hill is Sydney's largest body of igneous rock and rises to a height of 117metres above sea level. The hill is located between the south-west corner of CSIRO Division of Animal Production site and the south-east corner of the Boral Resources (NSW) site at Greystanes. The CSIRO portion of Prospect Hill is generally cleared for pasture grasses, with remnant stands of native vegetation along a creek line that runs from north to south along the site. The portion of Prospect Hill located within the Boral site has remnant stands of trees and has been partially used as part of the Boral Brickworks operation.

The first settlement of the area occurred in 1791 on the eastern and southern slopes of Prospect Hill, however no buildings dating from the 18th or 19th centuries remain above ground (Higginbotham 2000). A number of the original boundaries of the Prospect land grants of 1791can be identified when looking east across the CSIRO site from Prospect Hill (Ashton 2000). On the slope of Prospect Hill, north of the hilltop, is an abandoned quarry dating to the later part of the 19th century (Ashton 2000).

Physical condition and/or Archaeological potential: The southern portion of Prospect Hill, located within the Boral Brickworks site has been extensively quarried; however the CSIRO site has largely retained its original surface form. Archaeological potential high within the CSIRO site.

Date condition updated:19 Feb 01

Modifications and dates:

Various modifications, extensions and refurbishment of buildings within CSIRO research complex over time.

Current use:

Public park and reserve (SHR item). Grazing, brick quarry, industry, housing (adjacent lands).

Former use:

Rural, guarry, research facility, industry, pastoral and agricultural farms,

History

Historical notes:

Aboriginal & European settler history:

The area of Prospect Reservoir is an area of known Aboriginal occupation, with favourable camping locations along the Eastern Creek and Prospect Creek catchments, and in elevated landscapes to the south. There is also evidence to suggest that the occupation of these lands continued after European contact, through discovery of intermingled glass and stone flakes in archaeological surveys of the place. The area was settled by Europeans by 1789.

Prospect Hill, Sydney's largest body of igneous rock, lies centrally in the Cumberland Plain and dominates the landscape of the area (Ashton, 2000). Very early after first settlement, on 26 April 1788, an exploration party heading west led by Governor Phillip, climbed Prospect Hill. An account by Phillip states that the exploration party saw from Prospect Hill, 'for the first time since we landed Carmathen Hills (Blue Mountains) as likewise the hills to the southward'. Phillip's 'Bellevue' (Prospect Hill) acquired considerable significance for the new settlers. Prospect Hill provided a point from which distances could be meaningfully calculated, and became a major reference point for other early explorers (Karskens 1991). When Watkin Tench made another official journey to the west in 1789, he began his journey with reference to Prospect Hill, which commanded a view of the great chain of mountains to the west. A runaway convict, George Bruce, used Prospect Hill as a hideaway from soldiers in the mid-1790s.

During the initial struggling years of European settlement in NSW, Governor Phillip began to settle time-expired convicts on the land as farmers, after the success of James Ruse at Rose Hill (Higginbotham 2000). On 18 July 1791 Phillip placed a number of men on the eastern and southern slopes of Prospect Hill, as the soils weathered from the basalt cap were richer than the sandstone derived soils of the Cumberland Plain. The grants, mostly 30 acres, encircled Prospect Hill (Ashton 2000). The settlers included William Butler, James Castle, Samuel Griffiths, John Herbert, George Lisk, Joseph Morley, John Nicols, William Parish and Edward Pugh (Higginbotham 2000).

The arrival of the first settlers prompted the first organised Aboriginal resistance to the spread of settlement, with the commencement of a violent frontier conflict in which Pemulwuy and his Bidjigal clan played a central role (Flynn 1997). On 1 May 1801 Governor King took drastic action, issuing a public order requiring that Aboriginal people around Parramatta, Prospect Hill and Georges River should be 'driven back from the settlers' habitations by firing at them'. Kings edicts appear to have encouraged a shoot-on-sight attitude whenever any Aboriginal men, women or children appeared (Flynn 1997).

With the death of Pemulwuy, the main resistance leader, in 1802, Aboriginal resistance gradually diminished near Parramatta, although outer areas were still subject to armed hostilities. Prompted by suggestions to the Reverend Marsden by local Prospect Aboriginal groups that a conference should take place 'with a view of opening the way to reconciliation', Marsden promptly organised a meeting near Prospect Hill. (ibid 1997). At the meeting, held on 3 May 1805, local Aboriginal representatives discussed with Marsden ways of ending the restrictions and indiscriminate reprisals inflicted on them by soldiers and settlers in response to atrocities committed by other Aboriginal clans (ibid 1997). The

meeting was significant because a group of Aboriginal women and a young free settler at Prospect named John Kennedy acted as intermediaries. The conference led to the end of the conflict for the Aboriginal clans around Parramatta and Prospect (Karskens 1991). This conference at Prospect on Friday 3 May 1805 is a landmark in Aboriginal/European relations. Macquarie's 'Native Feasts' held at Parramatta from 1814 followed the precedent set in 1805. The Sydney Gazette report of the meeting is notable for the absence of the sneering tone that characterised its earlier coverage of Aboriginal matters (ibid 1997).

From its commencement in 1791 with the early settlement of the area, agricultural use of the land continued at Prospect Hill. Much of the land appears to have been cleared by the 1820s and pastoral use of the land was well established by then. When Governor Macquarie paid a visit to the area in 1810, he was favourably impressed by the comfortable conditions that had been created (Pollon & Healy, 1988, 210).

Nelson Lawson, third son of explorer William Lawson (1774-1850), married Honoria Mary Dickinson and before 1837 built "Greystanes House" as their future family home on the western side of Prospect Hill. Lawson had received the land from his father, who had been granted 500 acres here by the illegal government that followed the overthrow of Governor Bligh in 1808.

Governor Macquarie confirmed the grant, where William Lawson had built a house, which he called "Veteran Hall", because he had a commission in the NSW Veterans Company. The house was demolished in 1928 and the site is now partly covered by the waters of Prospect Reservoir. Greystanes was approached by a long drive lined with an avenue of English trees - elms (Ulmus procera), hawthorns (Crataegus sp.), holly (Ilex aquifolium), and woodbine (Clematis sp.) mingling with jacarandas (J.mimosifolia). It had a wide, semicircular front verandah supported by 4 pillars. The foundations were of stone ,the roof of slate, and the doors and architraves of heavy red cedar. It was richly furnished with articles of the best quality available and was the scene of many glittering soirees attended by the elite of the colony. Honoria Lawson died in 1845, Nelson remarried a year later, but died in 1849, and the property reverted to his father. Greystanes house was demolished in the 1940s (Pollon, 1988, 116, amended Read, S.,2006 - the house can't have been 'on the crest' of Prospect Hill as Pollon states, if its site was covered by the Reservoir).

By the 1870s, with the collapse of the production of cereal grains across the Cumberland Plain, the Prospect Hill area appears to have largely been devoted to livestock. The dwellings of the earliest settlers largely appear to have been removed by this stage. By the time that any mapping was undertaken in this vicinity, most of these structures had disappeared, making their locations difficult to pinpoint (Higginbotham 2000).

The land was farmed from 1806-1888 when the Prospect Reservoir was built. In 1867, the Governor of NSW appointed a Commission to recommend a scheme for Sydney's water supply, and by 1869 it was recommended that construction commence on the Upper Nepean Scheme. This consisted of two diversion weirs, located at Pheasant's Nest and Broughton's Pass, in the Upper Nepean River catchment, with water feeding into a series of tunnels, canals and aqueducts known as the Upper Canal. It was intended that water be fed by gravity from the catchment into a reservoir at Prospect. This scheme was to be Sydney's fourth water supply system, following the Tank Stream, Busby's Bore and the Botany (Lachlan) Swamps.

Designed and constructed by the Public Works Department of NSW, Prospect Reservoir was built during the 1880s and completed in 1888. Credit for the Upper Nepean Scheme is largely given to Edward Orpen Moriarty, the Engineer in Chief of the Habours and Rivers Branch of the Public Works Department from 1858-88 (B Cubed Sustainability, 2005, 7).

Quarrying of the basalt plug at Prospect Hill was well underway by the mid-nineteenth century (Higginbotham 2000). By the early twentieth century, Prospect Hill land had been acquired by quarrying firms anxious to expand their land holdings near this valuable source of raw material. The bulk of the present CSIRO site was acquired by the Commonwealth in

1946, and a further 15 hectares was acquired in 1963. In the early 1950s the site became operational and sheep were pastured for research purposes. In 2000, the CSIRO site has an area of 57.15 hectares and is the primary research centre of the Division of Animal Production, with some 40 buildings and sheds having been constructed over the last 40 years (Perumal Murphy Wu, 2000).

In 1998 Boral reviewed its holdings with a view to future redevelopment as its quarry neared the end of its life. SEPP59 was gazetted in 1999 applying to a number of Western Sydney holdings including Greystanes Estate, Nelsons Ridge, rezoning land on the hill's west for employment and on the hill's eastern side for housing and regional open space and providing precinct planning controls. Boral developed two precinct plans. Holroyd City Council adopted the residential precinct plan in 2002. The then Minister for Urban Affairs & Planning took over planning powers for the employment area in November 2000 and approved the Employment Precinct Plan in June 2001, approving subdivision and associated works in the northern employment lands later in June 2001. Since, parts of the employment land have been sold and further subdivideed and sold.

In 2002 Delfin Lend Lease entered a joint venture with Boral to develop the residential lands. This part of the estate is now known as Nelson's Ridge (after Nelson Lawson who owned the Greystanes Estate and commissioned Greystanes House in 1837). Nelson's Ridge is being developed by Lend Lease in two stages with the first comprising the northern employment and northern residential lands and the second comprising the southern equivalents.

The former CSIRO site to the north of Nelson's Ridge was vacated in 1/2002 and sold to Stockland in March 2002. SEPP 59 also rezoned it for residential and employment uses. This site has its own precinct plan, now adopted into the Holroyd City Council's Development Control Plan: Part P Pemulwuy Residential Lands. It will eventually be integrated with the Nelson's Ridge development through Driftway Drive as well as cycleways and pedestian links being established between the two (Whelans InSites, 2010, 5).

Prospect Hill was entered on the NSW State Heritage Register in October 2003. A conservation management plan prepared for the hill in 2006 has guided its staged development as a public parkland since. Staged subdivision of Boral lands into both housing areas and public parklands has proceeded in the past decade, c2006-2018.

In December 2018 Cumberland Council unveiled plans for future upgrades to Prospect Hill (Mar-Rong Reserve) as it seeks to prioritise upgrades and asset management (including visitor services provision, facililties for visitors and residents into the future)(Taylor, 2018, abridged).

Historic themes

Australian theme (abbrev)	New South Wales theme	Local theme
1. Environment- Tracing the evolution of a continent's special environments	Environment - naturally evolved-Activities associated with the physical surroundings that support human life and influence or shape human cultures.	Other open space-

,	.010	1 Tooped Tim TVOV Environment	richage
	1. Environment- Tracing the evolution of a continent's special environments	Environment - naturally evolved-Activities associated with the physical surroundings that support human life and influence or shape human cultures.	Parks-
	1. Environment- Tracing the evolution of a continent's special environments	Environment - naturally evolved-Activities associated with the physical surroundings that support human life and influence or shape human cultures.	Changing the environment-
	2. Peopling- Peopling the continent	Aboriginal cultures and interactions with other cultures-Activities associated with maintaining, developing, experiencing and remembering Aboriginal cultural identities and practices, past and present.	All nations - reconciliation events-
	2. Peopling- Peopling the continent	Aboriginal cultures and interactions with other cultures-Activities associated with maintaining, developing, experiencing and remembering Aboriginal cultural identities and practices, past and present.	Daruk nation - sites of first contact or early interaction with colonisers-
	2. Peopling- Peopling the continent	Aboriginal cultures and interactions with other cultures-Activities associated with maintaining, developing, experiencing and remembering Aboriginal cultural identities and practices, past and present.	All nations - place of first contact between Aboriginal and European peoples-
	2. Peopling- Peopling the continent	Aboriginal cultures and interactions with other cultures-Activities associated with maintaining, developing, experiencing and remembering Aboriginal cultural identities and practices, past and present.	Daruk Nation - massacre and battle sites-
	2. Peopling- Peopling the continent	Aboriginal cultures and interactions with other cultures-Activities associated with maintaining, developing, experiencing and remembering Aboriginal cultural identities and practices, past and present.	All nations - places of battle or other early interactions between Aboriginal and non- Aboriginal peoples-
	2. Peopling- Peopling the continent	Aboriginal cultures and interactions with other cultures-Activities associated with maintaining, developing, experiencing and remembering Aboriginal cultural identities and practices, past and present.	All nations - sites evidencing occupation-
	2. Peopling- Peopling the continent	Aboriginal cultures and interactions with other cultures-Activities associated with maintaining, developing, experiencing and remembering Aboriginal cultural identities and practices, past and present.	Aboriginal post-contact-May include sites of contact with Europeans, conflict, resistance, interaction and

019	Prospect fill NSVV Environment of	x i leillage
		urban life.
2. Peopling- Peopling the continent	Convict-Activities relating to incarceration, transport, reform, accommodation and working during the convict period in NSW (1788-1850) - does not include activities associated with the conviction of persons in NSW that are unrelated to the imperial 'convict system': use the theme of Law & Order for such activities	Creating a gentleman's estate-
2. Peopling- Peopling the continent	Convict-Activities relating to incarceration, transport, reform, accommodation and working during the convict period in NSW (1788-1850) - does not include activities associated with the conviction of persons in NSW that are unrelated to the imperial 'convict system': use the theme of Law & Order for such activities	Farming by emancipated convicts on land grants-
3. Economy- Developing local, regional and national economies	Agriculture-Activities relating to the cultivation and rearing of plant and animal species, usually for commercial purposes, can include aquaculture	Orchards-
3. Economy- Developing local, regional and national economies	Agriculture-Activities relating to the cultivation and rearing of plant and animal species, usually for commercial purposes, can include aquaculture	Private farming-
3. Economy- Developing local, regional and national economies	Agriculture-Activities relating to the cultivation and rearing of plant and animal species, usually for commercial purposes, can include aquaculture	Ancillary structures fencing-
3. Economy- Developing local, regional and national economies	Agriculture-Activities relating to the cultivation and rearing of plant and animal species, usually for commercial purposes, can include aquaculture	Cropping-
3. Economy- Developing local, regional and national economies	Agriculture-Activities relating to the cultivation and rearing of plant and animal species, usually for commercial purposes, can include aquaculture	Attempting to transplant European farming practices to Australian environments-
3. Economy- Developing local,	Agriculture-Activities relating to the cultivation and rearing of plant and animal species, usually for commercial purposes, can include	Clearing land for farming-

<i>1</i> /2(119	Prospect Hill Novy Environment &	к пептаде
	regional and national economies	aquaculture	
	3. Economy- Developing local, regional and national economies	Environment - cultural landscape-Activities associated with the interactions between humans, human societies and the shaping of their physical surroundings	Landscapes of mining-
	3. Economy- Developing local, regional and national economies	Environment - cultural landscape-Activities associated with the interactions between humans, human societies and the shaping of their physical surroundings	Landscapes of cultural and natural interaction-
	3. Economy- Developing local, regional and national economies	Environment - cultural landscape-Activities associated with the interactions between humans, human societies and the shaping of their physical surroundings	Landscapes and countryside of rural charm-
	3. Economy- Developing local, regional and national economies	Environment - cultural landscape-Activities associated with the interactions between humans, human societies and the shaping of their physical surroundings	Landscapes of institutions - productive and ornamental-
	3. Economy- Developing local, regional and national economies	Environment - cultural landscape-Activities associated with the interactions between humans, human societies and the shaping of their physical surroundings	Landscapes of industrial production-
	3. Economy- Developing local, regional and national economies	Environment - cultural landscape-Activities associated with the interactions between humans, human societies and the shaping of their physical surroundings	Landscapes and parklands of distinctive styles-
	3. Economy- Developing local, regional and national economies	Environment - cultural landscape-Activities associated with the interactions between humans, human societies and the shaping of their physical surroundings	Landscapes of food production-

3. Economy- Developing local, regional and national economies	Exploration-Activities associated with making places previously unknown to a cultural group known to them.	(none)-
3. Economy- Developing local, regional and national economies	Industry-Activities associated with the manufacture, production and distribution of goods	Mining-
3. Economy- Developing local, regional and national economies	Pastoralism-Activities associated with the breeding, raising, processing and distribution of livestock for human use	Modifying landscapes to increase productivity-
3. Economy- Developing local, regional and national economies	Pastoralism-Activities associated with the breeding, raising, processing and distribution of livestock for human use	Beef cattle breeding and raising-
3. Economy- Developing local, regional and national economies	Pastoralism-Activities associated with the breeding, raising, processing and distribution of livestock for human use	Sheep farming for lamb and mutton-
3. Economy- Developing local, regional and national economies	Pastoralism-Activities associated with the breeding, raising, processing and distribution of livestock for human use	Agisting and fattening stock for slaughter-
3. Economy- Developing local, regional and national economies	Science-Activities associated with systematic observations, experiments and processes for the explanation of observable phenomena	(none)-
4. Settlement- Building settlements,	Land tenure-Activities and processes for identifying forms of ownership and occupancy of land and water, both Aboriginal and non-Aboriginal	(none)-

512	towns and cities	Trospect IIII Trosv Environment					
	7. Governing- Governing	Government and Administration-Activities associated with the governance of local areas, regions, the State and the nation, and the administration of public programs - includes both principled and corrupt activities.	Colonial government-				
	7. Governing- Governing	rning- governance of local areas, regions, the State and the nation, and the					
	7. Governing- Governing	Government and Administration-Activities associated with the governance of local areas, regions, the State and the nation, and the administration of public programs - includes both principled and corrupt activities.	Federal Government-				
	7. Governing- Governing	Governing- governance of local areas, regions, the State and the nation, and the					
	7. Governing- Governing	verning- governance of local areas, regions, the State and the nation, and the					
	9. Phases of Life- Marking the phases of life	Phases of Life- individuals, families and communal groups Marking the					
	9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with Rev. Samuel Marsden, archbishop of colony-				
	9. Persons-Activities of, and associations with, identifiable Phases of Life- Marking the phases of life		Associations with Lt. William Lawson, explorer, Commandant of Govt.Stores, grazier-				
	9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with Governor (Captn.) Phillip Gidley King RN, 1800-1806-				

72010	Troopest IIII INCW Environment	rionage
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with Governor (later Maj- Gen.) Lachlan Macquarie, 1810-1821-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with LtCol. George Johnston, soldier, farmer, rebel leader-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with Captain-Lieutenant Watkin Tench, Marine Naval officer-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with William Butler, settler farmer-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with George Bruce, convict-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with James Castle, settler farmer-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with Samuel Griffiths, settler farmer-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with John Herbert, settler farmer-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with George Lisk, settler farmer-
9. Phases of Life- Marking the	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with Joseph Morley, settler farmer-

2019	1 Tospect Tilli NOW Environmen	n or i romage
phases of life		
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with John Nicols, settler farmer-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with William Parish, settler farmer-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with Edward Pugh, settler farmer-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with John Kennedy, settler farmer, reconciliation agent-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with Nelson Lawson, grazier-
9. Phases of Life- Marking the phases of life	Persons-Activities of, and associations with, identifiable individuals, families and communal groups	Associations with Honoria Lawson, gentlewoman, farmer-

Assessment of significance

SHR Criteria a)

[Historical significance]

Prospect Hill is historically significant as the site of a number of the earliest farms in New South Wales, with a number of time-expired convicts settled on the land in 1791 by Governor Phillip (Higginbotham 2000). As a significant landmark on the Cumberland Plain, Prospect Hill provided an important reference point for early explorers from 1788, and played a role in the earliest exploration of the east coast of Australia (Ashton 2000). Prospect Hill is also associated with an important phase of Aboriginal/European contact; firstly through Pemulwuy's guerilla warfare in the area between 1797 and 1802, and in 1805 as the site of a reconciliation meeting involving Samuel Marsden (Flynn 1997).

Prospect Hill has historical associations arising from the use of the site over time; including the Aboriginal frontier leader Pemulwuy, Samuel Marsden and those earliest former convicts who settled at Prospect Hill including William Butler, Samuel Griffiths and William Parish.

SHR Criteria c)

[Aesthetic significance]

Prospect Hill has aesthetic significance as Sydney's largest body of igneous rock, which rises to a height of 117 metres and provides expansive views across the Cumberland Plain. The large dolerite formation of Prospect Hill is a rare geological and landmark topographic

feature, lying centrally within the Cumberland Plain. (Ashton 2000). Through the long-term use of the site for pastoral use, the landscape retains an essentially rural character, which is becoming rare in the locality.

SHR Criteria d)

[Social significance]

Through its continued use for research purposes over the last 40 years, the CSIRO complex, which is located at the foot of Prospect Hill, has significance for those employees who have worked at the research facility, and in particular for those scientists who have carried out work which is of importance to Australia';s cultural history (Perumal Murphy Wu 2000).

SHR Criteria e)

[Research potential]

Through its continual pastoral/rural use since 1791, Prospect Hill has the potential to provide archaeological evidence of early historical settlement or agricultural techniques used (Higginbotham 2000).

SHR Criteria f)

[Rarity]

Prospect Hill is unique as a significant landmark site, and through its ability to demonstrate historical links with early European exploration and settlement as well as Aboriginal conflict and reconciliation, with the landscape retaining its continual pastoral use since the early days of the colony.

Integrity/Intactn ess:

Long-term pastoral use on much of Prospect Hill has ensured the site retains its historical links and archaeological potential. However, Prospect Hill is under immediate threat from development, which has the potential to impact upon the significance of the site. This includes the rezoning of the site as part of SEPP 59 and development for residential/employment purposes, the continual quarrying of the southern portion of the hill; and new development proposals including a proposed flagpole to be erected on Prospect Hill commemorating Federation.

Assessment criteria:

Items are assessed against the State Heritage Register (SHR) Criteria to determine the level of significance. Refer to the Listings below for the level of statutory protection.

Procedures / Exemptions

Section of act	Description	Title	Comments	Action date
57(2)	Exemption to allow work	Heritage Act - Site Specific Exemptio ns	HERITAGE ACT, 1977	Mar 5 2004
			ORDER UNDER SECTION 57(2)	
			Prospect Hill	
			SHR No. 1662	
			I, the Minister Assisting the Minister for Infrastructure and Planning (Planning Administration), on the recommendation of the Heritage Council of New South Wales, in pursuance of section 57(2) of the Heritage Act, 1977, do, by this my order, grant an exemption from section 57(1) of the said Act in respect of the engaging in or carrying out of any activities described in Schedule C by the owner, mortgagee or lessee of the land described in Schedule B on the item described in Schedule A.	
			Diane Beamer	

			Minister Assisting the Minister for	
			Infrastructure and Planning (Planning Administration)	
			Sydney, 16th Day of February 2004	
			SCHEDULE A The item known as the Prospect Hill, situated on the land described in	
			Schedule B.	
			SCHEDULE B	
			All those pieces or parcels of land shown edged heavy black on the plan catalogued HC 1907 in the office of the Heritage Council of New South Wales.	
			SCHEDULE C	
			The staged removal of pine trees planted on Prospect Hill and replacement of removed vegetation with appropriate native flora, representative of the Cumberland Plain is permitted.	
			NSW Government Gazette No. 51, Page 1097, 5 March 2004	
21(1) (b)	Conservatio n Plan submitted for comment	CMP by Conybear e Morrison Pty Ltd for Holroyd City Council, dated Novembe r 2005	Conservation Management Plan endorsed by Heritage Council 12 May 2006 for a period of five years, expires 5 May 2011	May 12 2006
57(2)	Exemption to allow work	Standard Exemptio ns	SCHEDULE OF STANDARD EXEMPTIONS	Sep 5 2008
			HERITAGE ACT 1977	
			Notice of Order Under Section 57 (2) of the Heritage Act 1977	
			I, the Minister for Planning, pursuant to subsection 57(2) of the Heritage Act 1977, on the recommendation of the Heritage Council of New South Wales, do by this Order:	
			1. revoke the Schedule of Exemptions to subsection 57(1) of the Heritage Act made under subsection 57(2) and published in the Government Gazette on 22 February 2008; and	
			2. grant standard exemptions from subsection 57(1) of the Heritage Act 1977, described in the Schedule attached.	

	FRANK SARTOR	
	Minister for Planning	
	Sydney, 11 July 2008	
	To view the schedule click on the Standard Exemptions for Works Requiring Heritage Council Approval link below.	
	Nequiling Hentage Council Approval IIIIK Delow.	

Standard exemptions for works requiring Heritage Council approval

Listings

Heritage Listing	Listing Title	Listing Number	Gazette Date	Gazette Number	Gazette Page
Heritage Act - State Heritage Register		01662	17 Oct 03	165/2003	10112- 1011
Local Environmental Plan	Prospect Hill				

References, internet links & images

Туре	Author	Year	Title	Internet Links
Writt		2003	It's over the Hill (Parramatta Advertiser 3/12/03)	
Writt en	Ashton, W.	2000	Landscape Heritage Assessment- CSIRO Division of Animal Production	
Writt en	Conybeare Morrison	2005	Prospect Hill Conservation Management Plan	
Writt en	Environmental Resources Management Australia	2002	Greystanes Estate - Residential Lands Precinct Plan	
Writt en	Flynn, M.	1997	Holroyd History and the Silent Boundary Project	
Writt en	Government Architect's Office	2008	Prospect Hill - Heritage Landscape Study & Plan - Final Report	

Prospect Hill | NSW Environment & Heritage

_0.0			r respect im restr Entrient a rientage	
Writt en	Graham Brooks & Associates	2007	Heritage Impact Statement - State Heritage Register Precinct within the Lakewood Residential Estate, Pemulwuy	
Writt en	Higginbotham, Edward	2000	Historical and Archaeological Assessment of CSIRO site	
Writt en	Jo McDonald Cultural Heritage Management	Greystanes Estate Greystanes Estate Holroyd - A social history of Western Sydney end Lease 2015 Statement of Heritage Impact - Marrong Reserve South, Greystanes Estate, Pemulwuy (Nelsons Ridge Residential Lands)		
Writt en	Karskens, Grace			
Writt en	Lend Lease			
Writt en	Perumal Murphy Wu			
Writt en	Pollen, Francis	1996	Greystanes - in 'The Book of Sydney Suburbs'	
Writt en	Sturt Noble Associates and Lend Lease, Issue for Public Exhibition, 17 November 2015	2015	Draft Plan of Management – Marrong Reserve, Pemulwuy	
Writt en	Taylor, Matt	2018	'Prospect Hill growth and preservation plan unveiled by Cumberland Council'	
Writt en	Whelans InSites	2010	Statement of Environmental Effects - Mar-Rong Reserve, Pemulwuy - Construction of Landscaping and Public Domain Works, Greystanes Esttate, Nelsons Ridge	

Note: internet links may be to web pages, documents or images.

(Click on thumbnail for full size image and image details)

Data source

The information for this entry comes from the following source:

Name: Heritage Office

Database number:

5051526

File number: EF14/4745; 09/02310; H00/00504

Return to previous page

Every effort has been made to ensure that information contained in the State Heritage Inventory is correct. If you find any errors or omissions please send your comments to the **Database Manager**.

All information and pictures on this page are the copyright of the Heritage Division or respective copyright owners.

Home > Topics > Heritage places and items > Search for heritage

Aboriginal Flaked Stone Artefacts

Item details

Name of item: Aboriginal Flaked Stone Artefacts

Type of item: Archaeological-Terrestrial

Group/Collection: Aboriginal

Category: Stone arrangement

Primary address: Clunies Ross Street, Pemulwuy, NSW 2145

Local govt. area: Holroyd

All addresses

Street Address	Suburb/town	LGA	Parish	County	Туре	
Clunies Ross Street	Pemulwuy	Holroyd			Primary Address	

Listings

Heritage Listing	Listing Title	Listing Number	Gazette Date	Gazette Number	Gazette Page
Local Environmental Plan	Holroyd LEP 2013	i88	05 Aug 13		

References, internet links & images

None

Note: internet links may be to web pages, documents or images.

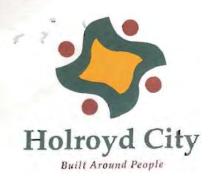
Data source

The information for this entry comes from the following source:

Name: Local Government

Database 1770168

number:


Return to previous page

Every effort has been made to ensure that information contained in the State Heritage Inventory is correct. If you find any errors or omissions please send your comments to the **Database Manager**.

All information and pictures on this page are the copyright of the Heritage Division or respective copyright owners.

Appendix H Council Records

Holroyd City Council

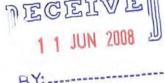
www.holroyd.nsw.gov.au The Gateway to Western Sydney

Corporate & Financial Services

Our Reference:

FOI-2008-25

Contact:


\$D08/6932 Bert Leonard 9840 9731

Telephone:

6 June 2008

Geotechnique Pty Ltd PO Box 880 PENRITH NSW 2751

Dear Ms Kuipers,

REQUEST FOR INFORMATION - FREEDOM OF INFORMATION ACT LOT 63 DP 752051 - CLUNIES ROSS STREET, PEMULWUY

I refer to your application received at Council's office on 15 May 2008 requesting:

"the following information/records and indicate the period of years relative to each record

- Development Application (DA) approval records
- Building Application (BA) approval records
- Council Notices
- Council Inspection Records
- Neighbourhood complaints
- Registered activities
- Sewer and Service plans
- Product spill
- Waste Disposal practice
- Chemical Storage and Usage
- Underground storage tank(s), interceptor pit(s), sumps and decommissioned underground storage tanks
- Any other information that may be useful."

Staff of Council's Environmental Health Units have advised as follows: -

"The site is a vacant block, which has been partly mowed with the presence of road base or similar being used by vehicles to access the site and partly left overgrown with weeds and grass. It is unknown whether waste material or fill material is located in the overgrown section of the site.

The Environmental Health Unit offers the following information in relation to the environmental health related points outlined in the above letter:

Council Notices:

As of 2 June 2008 there are no outstanding environmental health

related Notices on the abovementioned property.

Council Inspection Records:

A part from the inspection carried out as part of this process, the Environmental Health Unit has conducted I inspection regarding the parking of vehicles on the property. At the time of the inspection today, there were many vehicles parked on the site.

All Communication to be addressed to

General Manager, Holroyd City Council, 16 Memorial Avenue, (PO Box 42), Merrylands NSW 2160 DX 25408 Merrylands. Ph: 02 9840 9840. Fax: 02 9840 9734 TTY: 02 9840 9988

SS2/fvr: FOI/MAS letter foi geotechnique 060608 ede

Email: hcc@holroyd.nsw.gov.au ABN 20 661 226 966

Neighbourhood Complaints: There has been 1 complaint alleging the property was being used by employees of a neighbouring business to park their vehicles during business hours.

A review of Council's property file records shows a letter was sent to Boral Bricks, dated 20 December 1995 stating: "There is also extensive use of Council's land, immediately to the south, for access and dumping of waste and fill". It is unclear as to the exact location of where the fill and waste material was located. The author of the letter has since left Council employment.

Product Spill: There is no record of a spill at this site.

Waste Disposal Practice: Given the site is vacant, there has been no waste generated from activities conducted on the site.

Chemical Storage & Use: Given the site is vacant, there has been no chemical storage or use at the site.

Underground Storage Tanks: There is no record of an underground storage tank, interceptor pit or sump at the site."

In relation to the statement "Dumping of Waste and Fill" I have enclosed a plan of the area for your perusal.

Yours faithfully,

Bert Leonard F.O.I. MANAGER

/Encls.

173 Access Quarry Koad. 100 1 8% Mark Byon 652 196 18 A wof

John Price C/Cumberland Council 16 Memorial Avenue **MERRYLANDS NSW 2160**

Certificate No:

6270/2018 08/11/2018

Date: Applicant Reference: -

Receipt Number:

PLANNING CERTIFICATE

Issued under Section 10.7 (2) (5) of the Environmental Planning and Assessment Act 1979

PROPERTY DETAILS

Property:

615A Great Western Highway GREYSTANES NSW 2145

Legal Description:

Lot: 63 DP: 752051

Parcel No:

31620

Owner(s) Name (as recorded by Council):

Cumberland Council

PO Box 42

MERRYLANDS NSW 2160

In accordance with the requirements of Section 10.7 (2) of the Environmental Planning and Assessment Act, 1979 (as amended), the following prescribed matters relate to the land at the date of this certificate.

Note: The information contained in Planning Certificates issued for a lot within Strata-Titled development relates to the land the development is situated on.

> 16 Memorial Avenue, PO Box 42, Merrylands NSW 2160 T02 8757 9000 F 02 9840 9734 E council@cumberland.nsw.gov.au W cumberland.nsw.gov.au ABN 22 798 563 329

> > Welcome Belong Succeed

INFORMATION PROVIDED PURSUANT TO SECTION 10.7(2) OF THE ACT

As at the date of this Certificate the subject land is land to which an Environmental Planning Instrument applies. Details are set out as follows:-

1. RELEVANT PLANNING INSTRUMENTS AND DCPS APPLYING TO THE LAND

State Environmental Planning Policies (SEPPs):

State Environmental Planning Policy No. 19 - Bushland in Urban Areas

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 33 - Hazardous & Offensive Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 - Advertising & Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

State Environmental Planning Policy (Affordable Rental Housing) 2009

STATE ENVIRONMENTAL PLANNING POLICY (WESTERN SYDNEY EMPLOYMENT AREA) 2009 - 21/08/2009

Deemed Statement Environmental Planning Policies

Sydney Regional Environmental Plan No. 9 – Extractive Industry (No. 2 – 1995) SYDNEY REGIONAL ENVIRONMENTAL PLAN (SYDNEY HARBOUR CATCHMENT) 2005 – 28/09/2005

Proposed State Environmental Planning Policies (SEPPs)

No proposed SEPPs apply to the land.

Local Environmental Plans

Not applicable - refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Proposed Local Environmental Plans

Not applicable - refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Development Control Plans

Holroyd Development Control Plan 2013

2. Zoning and land uses under relevant LEPs:

Not Applicable - Refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling house on the land and, if so, the minimum land dimensions so fixed Refer State Environmental Planning Policy (Western Sydney Employment Area) - 2009

Whether the land includes or comprises critical habitat Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether the land is in a conservation area (however described)
Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether an item of environmental heritage (however described) is situated on the land Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

3. Complying Development under SEPP (Exempt and Complying Development Codes) 2008

General Housing Code

The extent to which complying development may or may not be carried out on this land under the General Housing Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land

Rural Housing Code

The extent to which complying development may or may not be carried out on this land under the Rural Housing Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land

Commercial and Industrial (New Buildings and Additions) Code

The extent to which complying development may or may not be carried out on this land under the Commercial and Industrial (New Buildings and Additions) Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Housing Alterations Code

The extent to which complying development may or may not be carried out on this land under the Housing Alterations Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

General Development Code

The extent to which complying development may or may not be carried out on this land under the General Development Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Commercial and Industrial Alterations Code

The extent to which complying development may or may not be carried out on this land under the Commercial and Industrial Alterations Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Subdivisions Code

The extent to which complying development may or may not be carried out on this land under the Subdivisions Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Demolition Code

The extent to which complying development may or may not be carried out on this land under the Demolition Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Fire Safety Code

The extent to which complying development may or may not be carried out on this land under the Fire Safety Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

4. Coastal Protection

Whether or not the land is affected by the operation of Section 38 or 39 of the *Coastal Protection Act 1979* but only to the extent that the Council has been so notified by the Department of Services Technology & Administration:

NO

5. Mine Subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of Section 15 of the *Mine Subsidence Compensation Act 1961:*

NO

NO

NO

6. Road widening & road realignment

Whether or not the land is affected by any road widening or road realignment under:

Division 2 of Part 3 of the Roads Act 1992 Any Environmental Planning Instrument

Any resolution of Council NO

7. Council and other Public Authority policies on hazard risk restrictions

Whether or not the land is affected by a policy adopted by the Council or adopted by any other public authority and notified to the Council, which restricts the development of the land because of the likelihood of:

Bush fire:

NO

Tidal Inundation:

NO

Subsidence:

NO

Acid Sulfate Soils:

NO

Any other risk (other than flooding):

Council has adopted a policy on contaminated land. This policy is implemented when zoning or land use changes are proposed on lands which have previously been used for certain purposes. Consideration of Council's adopted policy and the application of provisions under relevant State Legislation is warranted. Further information in relation to the land is certained in a 40.7 (5)

relation to the land is contained in s10.7 (5).

7A. Flood related development controls

Whether or not development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls:

NO

Whether or not development on the land or part of the land for any other purposes is subject to flood related development controls:

NO

8. Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in item 1 makes provision in relation to the acquisition of the land by a public authority as referred to in section 3.15 of the *Environmental Planning & Assessment Act 1979*:

NO

9. Contributions Plans applying to the land

No Section 7.11 Plans apply to this land.

9A. Biodiversity certified land

NOT APPLICABLE

10. Biobanking Agreements

NOT APPLICABLE

11. Bush fire prone land

The land is NOT bush fire prone land as defined in the *Environmental Planning & Assessment Act 1979.*

12. Property Vegetation Plans

NOT APPLICABLE

13. Orders Under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the *Trees (Disputes Between No Neighbours) Act 2006* to carry out work in relation to a tree on the land (but only if the Council has been notified of the order):

14. Directions under Part 3A

NOT APPLICABLE

15. Site Compatibility Certificates and conditions for seniors housing

There is no current Site Compatibility Certificate (of which Council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land.

There are no terms of a kind referred to in clause 18 (2) of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.

16. Site Compatibility Certificates for infrastructure

There is no valid Site Compatibility Certificate (of which Council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17. Site Compatibility Certificates and conditions for affordable rental housing

There is no current Site Compatibility Certificate (Affordable Rental Housing), of which the Council is aware, in respect of proposed development on the land.

There are no terms of a kind referred to in clause 17 (1) or 38 (1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.

18. Matters arising under Section 59(2) of the Contaminated Land Management Act 1997 No matters apply to the land to which the certificate relates.

19. Site Verification Certificates

Whether there is a current site verification certificate, of which the council is NO aware, in respect of the land:

20. Loose-fill asbestos insulation

If the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register that is required to be maintained under that Division, a statement to that effect.

Council is not aware of the land being affected.

21. Affected building notices and building product rectification orders

- (1) A statement of whether there is any affected building notice of which the council is aware that is in force in respect of the land.
- (2) A statement of:
 - (a) whether there is any building product rectification order of which the council is aware that is in force in respect of the land and has not been fully complied with, and
 - (b) whether any notice of intention to make a building product rectification order of which the council is aware has been given in respect of the land and is outstanding.
- (3) In this clause:

Affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017 .

Building product rectification order has the same meaning as in the Building Products(Safety) Act 2017

Council is not aware of the land being affected.

ANNEXURE TO APPLICATION Certificate No: 6270/2018
Section 10.7(5) Planning Certificate
Environmental Planning & Assessment Act 1979

Tree Management

Whether or not the land is affected by any Tree NO Management provisions requiring consent for the removal or lopping of trees upon the land:

County or Designated Road

Whether or not the land has frontage to a County or NO designated road:

Interim Heritage Order

Whether or not the land is affected by an Interim Heritage NO Order under the provisions of the *Heritage Act 1997*:

Acid Sulfate Soils

Is the land affected by an Acid Sulfate Soils classification NO under *Holroyd Local Environmental Plan 2013?* If yes, what is the classification of the land?

Contamination

Council's records indicate that Lot 63 in DP 752051 has been used for the dumping of waste and fill as well as for the purposes of car parking. Access to information is in accordance with the Government Information (Public Access) Act 2009. Further information regarding the access for information can be found at www.cumberland.nsw.gov.au The Department of Land and Water Conservation's draft Salinity Hazard Map for Western Sydney (Nov 2000) indicated that there are areas of extensive salinity hazard on the lot

Any other matters?

General Information

When information pursuant to section 10.7(5) is requested the Council is under no obligation to provide that information. Council draws your attention to section 10.7(6) which states that a council shall not incur any liability in respect of any advice provided in good faith pursuant to sub-section (5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this certificate.

und 6 (oga.

HAMISH MCNULTY GENERAL MANAGER

Per: Monica Cologna

Manager - Strategic Planning - Planning

Chris Kauffman Ivl 1/50 Margaret St Sydney NSW 2000 Certificate No: 1064/2019
Date: 27/05/2019
Applicant Reference: 56425
Receipt Number: 2114649

PLANNING CERTIFICATE

Issued under Section 10.7 (2) (5) of the Environmental Planning and Assessment Act 1979

PROPERTY DETAILS

Property: Clunies Ross Street PEMULWUY NSW 2145

Legal Description: Lot: 107 DP: 1028208

Parcel No: 38013

Owner(s) Name (as recorded by Council):

PGL No. 1 Pty Ltd

C/- LaSalle Investment Management

Level 21 200 George Street

SYDNEY NSW 2000

In accordance with the requirements of Section 10.7 (2) of the Environmental Planning and Assessment Act, 1979 (as amended), the following prescribed matters relate to the land at the date of this certificate.

Note: The information contained in Planning Certificates issued for a lot within Strata-Titled development relates to the land the development is situated on.

T 02 8757 9000 F 02 9840 9734 E council@cumberland.nsw.gov.au W cumberland.nsw.gov.au

ABN 22 798 563 329

INFORMATION PROVIDED PURSUANT TO SECTION 10.7(2) OF THE ACT

As at the date of this Certificate the subject land is land to which an Environmental Planning Instrument applies. Details are set out as follows:-

1. RELEVANT PLANNING INSTRUMENTS AND DCPS APPLYING TO THE LAND

State Environmental Planning Policies (SEPPs):

State Environmental Planning Policy No. 19 - Bushland in Urban Areas

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 33 - Hazardous & Offensive Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 - Advertising & Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

State Environmental Planning Policy (Affordable Rental Housing) 2009

STATE ENVIRONMENTAL PLANNING POLICY (WESTERN SYDNEY EMPLOYMENT AREA) 2009 - 21/08/2009

Deemed Statement Environmental Planning Policies

Sydney Regional Environmental Plan No. 9 – Extractive Industry (No. 2 – 1995) SYDNEY REGIONAL ENVIRONMENTAL PLAN (SYDNEY HARBOUR CATCHMENT) 2005 - 28/09/2005

Proposed State Environmental Planning Policies (SEPPs)

No proposed SEPPs apply to the land.

Local Environmental Plans

Not applicable - refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Proposed Local Environmental Plans

Not applicable - refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Development Control Plans

Holroyd Development Control Plan 2013

2. Zoning and land uses under relevant LEPs:

Not Applicable - Refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling house on the land and, if so, the minimum land dimensions so fixed Refer State Environmental Planning Policy (Western Sydney Employment Area) - 2009

Whether the land includes or comprises critical habitat Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether the land is in a conservation area (however described)
Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether an item of environmental heritage (however described) is situated on the land Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

3. Complying Development under SEPP (Exempt and Complying Development Codes) 2008

General Housing Code

The extent to which complying development may or may not be carried out on this land under the General Housing Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may not be carried out on any part of the land because the land is land that comprises an item that is listed on the State Heritage Register under Heritage Act 1977 or on which such an item is located.

Rural Housing Code

The extent to which complying development may or may not be carried out on this land under the Rural Housing Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may not be carried out on any part of the land because the land is land that comprises an item that is listed on the State Heritage Register under Heritage Act 1977 or on which such an item is located.

Commercial and Industrial (New Buildings and Additions) Code

The extent to which complying development may or may not be carried out on this land under the Commercial and Industrial (New Buildings and Additions) Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may not be carried out on any part of the land because the land is land that comprises an item that is listed on the State Heritage Register under Heritage Act 1977 or on which such an item is located.

Housing Alterations Code

The extent to which complying development may or may not be carried out on this land under the Housing Alterations Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may not be carried out on any part of the land because the land is land that comprises an item that is listed on the State Heritage Register under Heritage Act 1977 or on which such an item is located.

General Development Code

The extent to which complying development may or may not be carried out on this land under the General Development Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may not be carried out on any part of the land because the land is land that comprises an item that is listed on the State Heritage Register under Heritage Act 1977 or on which such an item is located.

Commercial and Industrial Alterations Code

The extent to which complying development may or may not be carried out on this land under the Commercial and Industrial Alterations Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may not be carried out on any part of the land because the land is land that comprises an item that is listed on the State Heritage Register under Heritage Act 1977 or on which such an item is located.

Subdivisions Code

The extent to which complying development may or may not be carried out on this land under the Subdivisions Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may not be carried out on any part of the land because the land is land that comprises an item that is listed on the State Heritage Register under Heritage Act 1977 or on which such an item is located.

Demolition Code

The extent to which complying development may or may not be carried out on this land under the Demolition Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may not be carried out on any part of the land because the land is land that comprises an item that is listed on the State Heritage Register under Heritage Act 1977 or on which such an item is located.

Fire Safety Code

The extent to which complying development may or may not be carried out on this land under the Fire Safety Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may not be carried out on any part of the land because the land is land that comprises an item that is listed on the State Heritage Register under Heritage Act 1977 or on which such an item is located.

4. Coastal Protection

Whether or not the land is affected by the operation of Section 38 or 39 of the *Coastal Protection Act 1979* but only to the extent that the Council has been so notified by the Department of Services Technology & Administration:

NO

5. Mine Subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of Section 15 of the *Mine Subsidence Compensation Act 1961:*

NO

6. Road widening & road realignment

Whether or not the land is affected by any road widening or road realignment under:

Division 2 of Part 3 of the Roads Act 1992 NO
Any Environmental Planning Instrument NO

Any resolution of Council NO

7. Council and other Public Authority policies on hazard risk restrictions

Whether or not the land is affected by a policy adopted by the Council or adopted by any other public authority and notified to the Council, which restricts the development of the land because of the likelihood of:

Bush fire: NO
Tidal Inundation: NO
Subsidence: NO
Acid Sulfate Soils: NO

Any other risk (other than flooding): Council has adopted a policy on contaminated land. This

policy is implemented when zoning or land use changes are proposed on lands which have previously been used for certain purposes. Consideration of Council's adopted policy and the application of provisions under relevant State Legislation is warranted. Further information in

relation to the land is contained in s10.7 (5).

7A. Flood related development controls

Whether or not development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls:

NO

Whether or not development on the land or part of the land for any other NO purposes is subject to flood related development controls:

8. Land reserved for acquisition

Whether or not any environmental planning instrument or proposed NO environmental planning instrument referred to in item 1 makes provision in relation to the acquisition of the land by a public authority as referred to in section 3.15 of the *Environmental Planning & Assessment Act 1979:*

Certificate No. 1064/2019

9. Contributions Plans applying to the land

No Section 7.11 Plans apply to this land.

9A. Biodiversity certified land

NOT APPLICABLE

10. Biobanking Agreements

NOT APPLICABLE

11. Bush fire prone land

The land is NOT bush fire prone land as defined in the *Environmental Planning & Assessment Act 1979*.

12. Property Vegetation Plans

NOT APPLICABLE

13. Orders Under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the *Trees (Disputes Between No Neighbours) Act 2006* to carry out work in relation to a tree on the land (but only if the Council has been notified of the order):

14. Directions under Part 3A

NOT APPLICABLE

15. Site Compatibility Certificates and conditions for seniors housing

There is no current Site Compatibility Certificate (of which Council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land.

There are no terms of a kind referred to in clause 18 (2) of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.

16. Site Compatibility Certificates for infrastructure

There is no valid Site Compatibility Certificate (of which Council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17. Site Compatibility Certificates and conditions for affordable rental housing

There is no current Site Compatibility Certificate (Affordable Rental Housing), of which the Council is aware, in respect of proposed development on the land.

There are no terms of a kind referred to in clause 17 (1) or 38 (1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.

18. Matters arising under Section 59(2) of the Contaminated Land Management Act 1997 No matters apply to the land to which the certificate relates.

Certificate No. 1064/2019

19. Site Verification Certificates

Whether there is a current site verification certificate, of which the council is NO aware, in respect of the land:

20. Loose-fill asbestos insulation

If the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register that is required to be maintained under that Division, a statement to that effect.

Council is not aware of the land being affected.

21. Affected building notices and building product rectification orders

- (1) A statement of whether there is any affected building notice of which the council is aware that is in force in respect of the land.
- (2) A statement of:
 - (a) whether there is any building product rectification order of which the council is aware that is in force in respect of the land and has not been fully complied with, and
 - (b) whether any notice of intention to make a building product rectification order of which the council is aware has been given in respect of the land and is outstanding.
- (3) In this clause:

Affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017.

Building product rectification order has the same meaning as in the Building Products(Safety) Act 2017

Council is not aware of the land being affected.

ANNEXURE TO APPLICATION Certificate No: 1064/2019 Section 10.7(5) Planning Certificate

Environmental Planning & Assessment Act 1979

Tree Management

Whether or not the land is affected by any Tree NO Management provisions requiring consent for the removal or lopping of trees upon the land:

County or Designated Road

Whether or not the land has frontage to a County or NO designated road:

Interim Heritage Order

Whether or not the land is affected by an Interim Heritage NO Order under the provisions of the Heritage Act 1997:

Acid Sulfate Soils

Is the land affected by an Acid Sulfate Soils classification NO under Holroyd Local Environmental Plan 2013? If yes, what is the classification of the land?

Certificate No. 1064/2019 Page 7 of 8

Contamination

Council's records indicate that the subject site has been used for Mining and Extractive Industries. These activities are listed in Table 1 of the Planning Guidelines for SEPP 55 - Remediation of Land as an activity that may cause contamination. Access to information is in accordance with the Government Information (Public Access) Act 2009. Further information regarding the access for information can be found at www.cumberland.nsw.gov.au

Any other matters?

NO

General Information

When information pursuant to section 10.7(5) is requested the Council is under no obligation to provide that information. Council draws your attention to section 10.7(6) which states that a council shall not incur any liability in respect of any advice provided in good faith pursuant to sub-section (5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this certificate.

HAMISH McNULTY GENERAL MANAGER

Per: Monica Cologna

Manager - Strategic Planning - Planning

una6lage.

Applicant Details

Your reference

DLA-DL4018

INFO TRACK DX 578 SYDNEY

Certificate Details

Certificate no.

PL2016/21479

Fee: \$133.00

Date issued

22 December 2016

Urgency fee: N/A

Receipt no.

D000568513

Property information

Property ID

337658

Land ID

337658

Legal description

LOT 216 DP 1030744

Address

CLUNIES ROSS STREET PROSPECT NSW 2148

County

CUMBERLAND

Parish PROSPECT

PLANNING CERTIFICATE (149 Part 2)

Blacktown City Council prepared this Planning Certificate under Section 149 of the *Environmental Planning and Assessment Act 1979*. The form and content of the Certificate is consistent with Schedule 4 of the *Environmental Planning and Assessment Regulation 2000*.

Disclaimer

Blacktown City Council gives notice and points out to all users of the information supplied herein, that the information herein has been compiled by Council from sources outside of Council's control. While the information herein is provided with all due care and in good faith, it is provided on the basis that Council will not accept any responsibility for and will not be liable for its contents or for any consequence arising from its use, and every user of such information is advised to make all necessary enquiries from the appropriate organisations, institutions and the like.

Blacktown City Council also gives notice to all users of the information supplied herein, wherever any particular enquiry herein remains unanswered or has not been elaborated upon, such silence should not be interpreted as meaning or inferring either a negative or a positive response as the case may be.

Section 149(2)

The following information is provided under Section 149(2) of the *Environmental Planning and Assessment Act 1979*. The information relates to the subject land at the date of this Certificate.

Names of relevant planning instruments and development control plans

1.1 Environmental Planning Instrument

As at the date of this certificate the abovementioned land is not affected by Blacktown Local Environmental Plan 2015.

The land is affected by the State Environmental Planning Policy (Western Sydney Employment Area) 2009.

1.2 Proposed Local Environmental Plans

Not applicable.

1.3 Other Applicable State Environmental Planning Policies

Attachment 1 contains a list of State Environmental Planning Policies that may apply to the carrying out of development on the subject land.

1.4 Proposed State Environmental Planning Policies

Council is not aware of any proposed State Environmental Planning Policy that is or has been the subject of community consultation or on public exhibition under the Act, applying to the subject land.

1.5 Development control plans

Blacktown Development Control Plan 2015 applies to the subject land.

2. Zoning and land use under relevant environmental planning instruments

The following information will assist in determining how the subject land may be developed. It is recommended that you read this section in conjunction with a full copy of any relevant environmental planning instrument as there may be additional provisions that affect how the land may be developed.

2.1 Zoning

Under State Environmental Planning Policy (Western Sydney Employment Area) 2009, the land is zoned:

IN1 General Industrial

For information about the types of development that may or may not be carried out on the land, please refer to a full copy of the Environmental Planning Instrument identified above.

2.2 Minimum land dimensions for the erection of a dwelling house

Not applicable

2.3 Critical habitat

The land does not include or comprise a critical habitat.

Note: Critical habitat registers are kept by the National Parks and Wildlife Service under the *Threatened Species Conservation Act 1995* and the Department of Fisheries under the *Fisheries Management Act 1994*.

2.4 Conservation areas

The land is not within a conservation area.

2.5 Environmental Heritage

The land does not contain an item of environmental heritage under the protection of State Environmental Planning Policy (Western Sydney Employment Area) 2009

3. Complying development

Complying development may or may not be carried out on the subject land under an Environmental Planning Policy. Council does not have sufficient information to determine the extent to which specific complying development may or may not be carried out.

4. Coastal protection

The subject land is not affected by the operation of Sections 38 or 39 of the *Coastal Protection Act*, 1979.

5. Mine subsidence

The subject land has not been proclaimed to be a mine subsidence district within the meaning of Section 15 of the *Mine Subsidence Compensation Act 1961*.

6. Road widening and road realignment

The subject land is not affected by road widening or road realignment

7. Council and other public authority policies on hazard risk restrictions

7.1 Contaminated Lands Policy and Asbestos Policy

Council has adopted a Contaminated Lands Policy and an Asbestos Policy which may restrict development on the subject land.

The Land Contamination Policy applies when zoning or land use changes are proposed on land which has previously been used for certain purposes or has the potential to be affected by such purposes undertaken on nearby lands. The Asbestos Policy applies where land contains, or is likely to have contained in the past, buildings or structures that were erected prior to the banning of asbestos. Both policies should be considered in the context of relevant State legislation and guidelines.

Council's records may not be sufficient to determine all previous uses on the land, or determine activities that may have taken place on this land.

7.2 Other policies on hazard risk restrictions

Council has not adopted any other policies to restrict the development of the subject land by reason of the likelihood of landslip, bushfire, tidal inundation, subsidence or the occurrence of acid sulphate soils.

Note: Although Council has not adopted a specific policy to restrict development bushfire prone land, it is bound by state-wide bushfire legislation that may restrict development on the subject land. Additional information relating to bushfire prone land is provided at point 11 below.

7a. Flood related development controls information

Council has adopted a Floodplain Management Policy which may restrict the development of the land subject to this Certificate, including development for the purposes of dwelling houses, dual occupancies, multi-dwelling housing, residential flat buildings and any other purpose that requires the placement or erection of any structure on the land. The Flood Risk Precinct Maps prepared under the policy are based on the results of Engineering Flood Studies commissioned by Government Authorities and Council. These maps indicate that the land subject to this Certificate lies partly or wholly within the Medium Flood Risk Precinct. The term Medium Flood Risk Precinct is defined as land below the 100-year flood level that is not within a High Flood Risk Precinct. This is land that is not subject to a high hydraulic hazard or where there are no significant evacuation difficulties. Further details are provided in the NSW Government's Floodplain Development Manual and are available from Council. Council does not warrant that the information provided or made available to you is complete. Council strongly recommends that, in all cases, you seek independent professional advice to supplement your enquiries.

Council has adopted a Floodplain Management Policy which may restrict the development of the land subject to this Certificate, including development for the purposes of dwelling houses, dual occupancies, multi-dwelling housing, residential flat buildings and any other purpose that requires the placement or erection of any structure on the land. The Flood Risk Precinct Maps prepared under the policy are based on the results of Engineering Flood Studies commissioned by Government Authorities and Council. These maps indicate that the land subject to this Certificate lies partly or wholly within the High Flood Risk Precinct. The term High Flood Risk Precinct is defined as the area of land below the 100-year flood event that is either subject to a high hydraulic hazard or where there are significant evacuation difficulties. Further details are provided in the NSW Government's Floodplain Development Manual and are available from Council. Council does not warrant that the information provided or made available to you is complete. Council strongly recommends that, in all cases, you seek independent professional advice to supplement your enquiries.

8. Land reserved for acquisition

State Environmental Planning Policy (Western Sydney Employment Area) 2009 makes provision for land included on the Land Reservation Acquisition Map to be acquired by a public authority.

9. Contributions plans

Council currently levies contributions under Section 94 of the *Environmental Planning & Assessment Act 1979* for facilities and services. The further development of the subject land may incur such contributions.

9a. Biodiversity certified land

The land is not biodiversity certified land as defined by Part 7AA of the *Threatened Species Conservation Act 1995*.

10. Biobanking agreements

The land is not subject to any biobanking agreement under Part 7A of the *Threatened Species Conservation Act 1995*.

11. Bushfire prone land

The Rural Fires and Environmental Assessment Legislation Amendment Act 2002, which came into force on 1 August 2002, introduced development provisions for bush fire prone land as shown on a Bush Fire Prone Land Map. "Bush fire prone land" is land that has been designated by the Commissioner of the NSW Rural Fire Service as being bush fire prone due to characteristics of vegetation and topography. The land the subject of this certificate has been identified on Council's Bush Fire Prone Land Map as being:

Clear of any bush fire prone land

On land that is bush fire prone, certain development may require further consideration under Section 79BA or Section 91 of the *Environmental Planning & Assessment Act 1979* and under Section 100B of the *Rural Fires Act 1997*.

12. Property vegetation plans

The subject land is not affected by a property vegetation plan under the *Native Vegetation Act 2003*. The Blacktown local government area is excluded from the operation of the *Native Vegetation Act 2003* (refer Schedule 1 Part 3 of that Act).

13. Orders under Trees (Disputes Between Neighbours) Act 2006

No. Council has not been notified of any order made under the *Trees (Disputes Between Neighbours) Act 2006* in relation to the subject land.

14. Directions under Part 3A

Land to which this Certificate applies is not subject to the above.

15. Site compatibility certificates and conditions for seniors housing

Land to which this Certificate applies is not subject to the above.

16. Site compatibility certificates for infrastructure

Land to which this Certificate applies is not subject to the above.

17. Site compatibility certificates and conditions for affordable rental housing

Land to which this Certificate applies is not subject to the above.

18. Paper subdivision information

Not applicable

19. Site verification certificates

Council is not aware of any site verification certificate applying to the subject land.

Under the Contaminated Land Management Act 1997 and Contaminated Land Management Amendment Act 2008

- (a) The land to which this certificate relates has not been declared to be significantly contaminated land at the date when the certificate was issued
- (b) The land to which the certificate relates is not subject to a management order at the date when the certificate was issued
- (c) The land to which this certificate relates is not the subject of an approved voluntary management proposal at the date when the certificate was issued
- (d) The land to which this certificate relates is not subject to an ongoing maintenance

order as at the date when the certificate was issued

(e) The land to which this certificate relates is not the subject of a site audit statement provided to the Council.

Section 149(5)

The following information is provided under Section 149(5) of the *Environmental Planning & Assessment Act 1979*. As per section 149(6) of the Act, Council shall not incur any liability in respect of any advice provided in good faith under section 149(5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this Certificate.

Planning Instruments and Covenants

The provisions of any covenant, agreement or instrument applying to this land that restrict or prohibit certain development may be inconsistent with the provisions of an environmental planning instrument. In such cases, the provisions of any such covenant, agreement or instrument may be overridden.

Loose-filled Asbestos Insulation

Some residential homes located in the Blacktown Local Government Area may potentially contain loose-fill asbestos insulation, for example in the roof space. NSW Fair Trading maintains a Register of homes that are affected by loose-fill asbestos insulation.

You should make your own enquiries as to the age of the buildings on the land to which this certificate relates and, if it contains a building constructed prior to 1980, the council strongly recommends that any potential purchaser obtain advice from a licensed asbestos assessor to determine whether loose-fill asbestos is present in any building on the land and, if so, the health risks (if any) this may pose for the building's occupants.

Contact NSW Fair Trading for further information

Biodiversity and Threatened Species Conservation

The land is affected by a tree preservation control under Clause 5.9 of the Blacktown Local Environmental Plan 2015. A person shall not ringbark, cut down, lop, top, remove, injure or wilfully destroy any tree, or cause any tree to be ringbarked, cut down, topped, lopped, injured or wilfully destroyed, except with the consent of the Council.

The provisions of any covenant, agreement or instrument applying to this land purporting to restrict or prohibit certain development may be inconsistent with the provisions of a Regional Environmental Plan, State Environmental Planning Policy or Blacktown Local Environmental Plan 2015, in which case the provisions of any such covenant, agreement or instrument may be overridden.

The *Threatened Species Conservation Act 1995* provides for the conservation of threatened species, populations and ecological communities of animals and plants.

The *Threatened Species Conservation Act 1995* amended the *Environmental Planning and Assessment Act 1979* to require, amongst other things, that:

- (a) A critical habitat (as defined in the *Threatened Species Conservation Act 1995*) be identified in environmental planning instruments, and
- (b) Consent authorities and determining authorities must, when considering proposed development or an activity, assess whether it is likely to significantly affect threatened species, populations and ecological communities, or their habitats, and, if a significant effect is likely, to require the preparation of a species impact statement in accordance with the requirements of the *Threatened Species Conservation Act 1995*, and
- (c) Consent authorities and determining authorities must, when considering proposed development or an activity, have regard to the relevant recovery plans and threat abatement plans.

The Environment Protection and Biodiversity Conservation Act 1999 provides protection for items of national significance. Items of national environmental significance include nationally threatened animal and plant species and ecological communities.

The Act requires a separate Commonwealth approval to be obtained where an action is likely to have significant impacts on items of national environmental significance.

For further information on this matter, please contact the Australian Government's Department of the Environment.

Attachment 1 - State Environmental Planning Policies

In addition to the principal environmental planning instrument identified in section 2.1 of this Certificate, the following State Environmental Planning Policies may also affect development on the subject land.

SEPP (Affordable Rental Housing) 2009

Establishes a consistent planning regime for the provision of affordable rental housing. The policy provides incentives for new affordable rental housing, facilitates the retention of existing affordable rentals, and expands the role of not-for-profit providers. It also aims to support local centres by providing housing for workers close to places of work, and facilitate development of housing for the homeless and other disadvantaged people.

SEPP Building Sustainability Index (BASIX) 2004

This SEPP operates in conjunction with *Environmental Planning and Assessment Amendment* (Building Sustainability Index: BASIX) Regulation 2004 to ensure the effective introduction of BASIX in NSW. The SEPP ensures consistency in the implementation of BASIX throughout the State by overriding competing provisions in other environmental planning instruments and development control plans, and specifying that SEPP 1 does not apply in relation to any development standard arising under BASIX. The draft SEPP was exhibited together with draft Environmental Planning and Assessment Amendment (Building Sustainability Index: BASIX) Regulation 2004.

SEPP (Exempt and Complying Development Codes) 2008

This policy provides exempt and complying development codes that have State-wide application, identifying, in the General Exempt Development Code, types of development that are of minimal environmental impact that may be carried out without the need for development consent and, in the General Housing Code, types of complying development that may be carried out in accordance with a complying development certificate as defined in the *Environmental Planning and Assessment Act 1979*.

SEPP (Sydney Region Growth Centres) 2006

This policy provides for the coordinated release of land for residential, employment and other urban development in Sydney's North West and South West Growth Centres, in conjunction with the precinct planning provisions contained in the *Environmental Planning and Assessment Regulation 2000*.

SEPP (Housing for Seniors and People with a Disability) 2004

This policy encourages the development of high quality accommodation for the state's ageing population and for people who have disabilities, whilst ensuring development is in keeping with the local neighbourhood. Note the name of this policy was changed from *State Environmental Planning Policy (Seniors Living) 2004* to *State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004*, effective 12.10.07.

SEPP (Infrastructure) 2007

The aim of this policy is to facilitate the orderly and economic use and development of rural lands for rural and related purposes. This SEPP Provides a consistent planning regime for infrastructure and the provision of services across NSW, along with providing for consultation with relevant public authorities during the assessment process. The SEPP supports greater flexibility in the location of infrastructure and service facilities along with improved regulatory certainty and efficiency.

SEPP (Miscellaneous Consent Provisions) 2007

This SEPP contains provisions for temporary structures, subdivision, the demolition of a building or work, certain change of use and fire alarm link communication works.

SEPP (State Significant Precincts) 2005

The purpose of this Policy is to facilitate the development, redevelopment or protection of important urban, coastal and regional sites of economic, environmental or social significance to the State so as to facilitate the orderly use, development or conservation of those State significant precincts for the benefit of the State. It also aims to facilitate service delivery outcomes for a range of public services and to provide for the development of major sites for a public purpose or redevelopment of major sites no longer appropriate or suitable for public purposes.

SEPP (Mining, Petroleum, Production and Extractive Industries) 2007

This Policy aims to provide for the proper management and development of mineral, petroleum and extractive material resources for the social and economic welfare of the State. The Policy establishes appropriate planning controls to encourage ecologically sustainable development.

SEPP No. 1 - Development Standards

Makes development standards more flexible. It allows councils to approve a development proposal that does not comply with a set standard where this can be shown to be unreasonable or unnecessary.

SEPP No. 19 - Bushland in Urban Areas

Protects and preserves bushland within certain urban areas, as part of the natural heritage or for recreational, educational and scientific purposes. The policy is designed to protect bushland in public open space zones and reservations, and to ensure that bush preservation is given a high priority when local environmental plans for urban development are prepared.

SEPP No. 21 - Caravan Parks

Ensures that where caravan parks or camping grounds are permitted under an environmental planning instrument, movable dwellings, as defined in the *Local Government Act 1993*, are also permitted. The specific kinds of movable dwellings allowed under the Local Government Act in caravan parks and camping grounds are subject to the provisions of the Caravan Parks Regulation. The policy ensures that development consent is required for new caravan parks and camping grounds and for additional long-term sites in existing caravan parks. It also enables, with the council's consent, long-term sites in caravan parks to be subdivided by leases of up to 20 years.

SEPP No. 30 - Intensive Agriculture

Requires development consent for cattle feedlots having a capacity of 50 or more cattle or piggeries having a capacity of 200 or more pigs. The policy sets out information and public notification requirements to ensure there are effective planning control over this export-driven rural industry. The policy does not alter if, and where, such development is permitted, or the functions of the consent authority.

SEPP No. 32 - Urban Consolidation

States the Government's intention to ensure that urban consolidation objectives are met in all urban areas throughout the State. The policy focuses on the redevelopment of urban land

that is no longer required for the purpose it is currently zoned or used, and encourages local councils to pursue their own urban consolidation strategies to help implement the aims and objectives of the policy. Councils will continue to be responsible for the majority of rezonings. The policy sets out guidelines for the Minister to follow when considering whether to initiate a regional environmental plan (REP) to make particular sites available for consolidated urban redevelopment. Where a site is rezoned by an REP, the Minister will be the consent authority.

SEPP No. 33 - Hazardous and Offensive Development

Provides new definitions for 'hazardous industry', 'hazardous storage establishment', 'offensive industry' and 'offensive storage establishment'. The definitions apply to all planning instruments, existing and future. The new definitions enable decisions to approve or refuse a development to be based on the merit of proposal. The consent authority must careful consider the specifics the case, the location and the way in which the proposed activity is to be carried out. The policy also requires specified matters to be considered for proposals that are 'potentially hazardous' or 'potentially offensive' as defined in the policy. For example, any application to carry out a potentially hazardous or potentially offensive development is to be advertised for public comment, and applications to carry out potentially hazardous development must be supported by a preliminary hazard analysis (PHA). The policy does not change the role of councils as consent authorities, land zoning, or the designated development provisions of the Environmental Planning and Assessment Act 1979.

SEPP No. 55 - Remediation of Land

Introduces state-wide planning controls for the remediation of contaminated land. The policy states that land must not be developed if it is unsuitable for a proposed use because it is contaminated. If the land is unsuitable, remediation must take place before the land is developed. The policy makes remediation permissible across the State, defines when consent is required, requires all remediation to comply with standards, ensures land is investigated if contamination is suspected, and requires councils to be notified of all remediation proposals. To assist councils and developers, the Department, in conjunction with the Environment Protection Authority, has prepared Managing Land Contamination: Planning Guidelines.

SEPP No. 62 - Sustainable Aquaculture

Encourages the sustainable expansion of the industry in NSW. The policy implements the regional strategies already developed by creating a simple approach to identity and categorise aquaculture development on the basis of its potential environmental impact. The SEPP also identifies aquaculture development as a designated development only where there are potential environmental risks.

SEPP No. 64 - Advertising and Signage

Aims to ensure that outdoor advertising is compatible with the desired amenity and visual character of an area, provides effective communication in suitable locations and is of high quality design and finish. The SEPP was amended in August 2007 to permit and regulate outdoor advertising in transport corridors (e.g. freeways, tollways and rail corridors). The amended SEPP also aims to ensure that public benefits may be derived from advertising along and adjacent to transport corridors. Transport Corridor Outdoor Advertising and Signage Guidelines (DOP July 2007) provides information on design criteria, road safety and public benefit requirements for SEPP 64 development applications.

SEPP No. 65 - Design Quality of Residential Apartment Development

Raises the design quality of residential flat development across the state through the application of a series of design principles. Provides for the establishment of Design Review Panels to provide independent expert advice to councils on the merit of residential flat development. The accompanying regulation requires the involvement of a qualified designer throughout the design, approval and construction stages.

SREP No. 30 - St Marys

Sydney Regional Environmental Plan 30 - St Marys (SREP 30) provides a statutory framework to plan and develop 1538 hectares of land known as the Australian Defence Industries (ADI) site at St Marys. The plan zones the land for particular types of development: urban, regional park, regional open space, drainage, road/road widening, and employment.

SEPP (Western Sydney Employment Area) 2009

This State Environmental Planning Policy promotes economic development and the creation of employment in the Western Sydney Employment Area by providing for development, including major warehousing, distribution, freight transport, industrial, high technology and research facilities. The policy provides for coordinated planning, development and rezoning of land for employment or environmental conservation purposes. This State Environmental Planning Policy promotes economic development and the creation of employment in the Western Sydney Employment Area by providing for development, including major warehousing, distribution, freight transport, industrial, high technology and research facilities. The policy provides for coordinated planning, development and rezoning of land for employment or environmental conservation purposes.

SEPP (Western Sydney Parklands) 2009

The aim of the policy is to put in place planning controls that will enable the Western Sydney Parklands Trust to develop the Western Parklands into multi-use urban parkland for the region of western Sydney.

SEPP (Western Sydney Recreation Area)

This policy enables development to be carried out for recreational, sporting and cultural purposes within the Western Sydney Recreation Area, including the development of a recreation area of state significance.

General Manager

Per:

End of Certificate

www.cumberland.nsw.gov.au

16 Memorial Avenue (PO Box 42) MERRYLANDS NSW 2160 T 02 9840 9840 | F 02 9840 9734

DX 25408 MERRYLANDS TTY 02 9840 9988

ABN 22 798 563 329

PLANNING CERTIFICATE UNDER SECTION 149(2) & (5) ENVIRONMENTAL PLANNING AND ASSESSMENT ACT 1979

Certificate No: 3288/2016
Date: 20/12/2016
Applicant Reference: DLA -DL4018
Receipt Number: 1661054

Applicant		Owner (as recorded by Council)
infotrack gpo box 4029 sydney 2000 2000		Boral Resources (NSW) Pty Limited PO Box 42 WENTWORTHVILLE NSW 2145
Property Details		
Property:	Foundation Place PEMULV	/UY NSW 2145
Description:	Lot: 601 DP: 1047403	
Parcel No:	39542	

INFORMATION PROVIDED PURSUANT TO SECTION 149(2) OF THE ACT

As at the date of this Certificate the abovementioned land is land to which an Environmental Planning Instrument applies. Details are set out as follows:-

1. RELEVANT PLANNING INSTRUMENTS AND DCPS APPLYING TO THE LAND

State Environmental Planning Policies (SEPPs)

State Environmental Planning Policy No. 19 - Bushland in Urban Areas

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 33 - Hazardous & Offensive Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 - Advertising & Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

State Environmental Planning Policy (Affordable Rental Housing) 2009 STATE ENVIRONMENTAL PLANNING POLICY (WESTERN SYDNEY EMPLOYMENT AREA) 2009 - 21/08/2009

Deemed Statement Environmental Planning Policies

Sydney Regional Environmental Plan No. 9 – Extractive Industry (No. 2 – 1995) SYDNEY REGIONAL ENVIRONMENTAL PLAN (SYDNEY HARBOUR CATCHMENT) 2005 - 28/09/2005

Proposed State Environmental Planning Policies (SEPPs)

No proposed SEPPs apply to the land.

Local Environmental Plans

Not applicable - refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Proposed Local Environmental Plans

Not applicable - refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Development Control Plans

Holroyd Development Control Plan 2013

2. Zoning and land uses under relevant LEPs:

Not Applicable - Refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling house on the land and, if so, the minimum land dimensions so fixed

Refer State Environmental Planning Policy (Western Sydney Employment Area) - 2009

Whether the land includes or comprises critical habitat

Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether the land is in a conservation area (however described)

Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether an item of environmental heritage (however described) is situated on the land

Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

Certificate No. 3288/2016 Page 2 of 9

3. Complying Development under SEPP (Exempt and Complying Development Codes) 2008

General Housing Code

The extent to which complying development may or may not be carried out on this land under the General Housing Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land

Rural Housing Code

The extent to which complying development may or may not be carried out on this land under the Rural Housing Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land

Commercial and Industrial (New Buildings and Additions) Code

The extent to which complying development may or may not be carried out on this land under the Commercial and Industrial (New Buildings and Additions) Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Housing Alterations Code

The extent to which complying development may or may not be carried out on this land under the Housing Alterations Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

General Development Code

The extent to which complying development may or may not be carried out on this land under the General Development Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Certificate No. 3288/2016 Page 3 of 9

Commercial and Industrial Alterations Code

The extent to which complying development may or may not be carried out on this land under the Commercial and Industrial Alterations Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Subdivisions Code

The extent to which complying development may or may not be carried out on this land under the Subdivisions Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Demolition Code

The extent to which complying development may or may not be carried out on this land under the Demolition Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Fire Safety Code

The extent to which complying development may or may not be carried out on this land under the Fire Safety Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

4. Coastal Protection

Whether or not the land is affected by the operation of	NO
Section 38 or 39 of the Coastal Protection Act 1979 but	
only to the extent that the Council has been so notified by	
the Department of Services Technology & Administration:	

5. Mine Subsidence

Whether or not the land is proclaimed to be a mine	NO
subsidence district within the meaning of Section 15 of the	
Mine Subsidence Compensation Act 1961:	

6. Road widening & road realignment

Whether or not the land is affected by any road widening or road realignment under:

Division 2 of Part 3 of the Roads Act 1992	NO

A	ny Environmental Planning Instrument	NO
A	ny resolution of Council	NO

7. Council and other Public Authority policies on hazard risk restrictions

Whether or not the land is affected by a policy adopted by the Council or adopted by any other public authority and notified to the Council, which restricts the development of the land because of the likelihood of:

Bush fire:	NO
Tidal Inundation:	NO
Subsidence:	NO
Acid Sulfate Soils:	NO
Any other risk (other than flooding):	Council has adopted a policy on contaminated land. This policy is implemented when zoning or land use changes are proposed on lands which have previously been used for certain purposes. Consideration of Council's adopted policy and the application of provisions under relevant State Legislation is warranted. Further information in relation to the land is contained in s149 (5).

7A. Flood related development controls

Whether or not development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls:	NO
Whether or not development on the land or part of the land for any other purposes is subject to flood related development controls:	NO

8. Land reserved for acquisition

Whether or not any environmental planning instrument or proposed	NO
environmental planning instrument referred to in item 1 makes provision	
in relation to the acquisition of the land by a public authority as referred	
to in section 27 of the Environmental Planning & Assessment Act 1979:	

9. Contributions Plans applying to the land

11,75	
No Section 94 Plans apply to this land.	

9A. Biodiversity certified land

NOT APPLICABLE

10. Biobanking Agreements

NOT APPLICABLE

11. Bush fire prone land

The land is NOT bush fire prone land as defined in the *Environmental Planning* & Assessment Act 1979.

12. Property Vegetation Plans

NOT APPLICABLE

13. Orders Under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between	NO
Neighbours) Act 2006 to carry out work in relation to a tree on the land	
(but only if the Council has been notified of the order):	

14. Directions under Part 3A

NOT APPLICABLE

15. Site Compatibility Certificates and conditions for seniors housing

There is no current Site Compatibility Certificate (of which Council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land.

There are no terms of a kind referred to in clause 18 (2) of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.

16. Site Compatibility Certificates for infrastructure

There is no valid Site Compatibility Certificate (of which Council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17. Site Compatibility Certificates and conditions for affordable rental housing

There is no current Site Compatibility Certificate (Affordable Rental Housing), of which the Council is aware, in respect of proposed development on the land.

There are no terms of a kind referred to in clause 17 (1) or 38 (1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.

Certificate No. 3288/2016

18. Matters arising under Section 59(2) of the Contaminated Land Management Act 1997

No matters apply to the land to which the certificate relates.

19. Site Verification Certificates

Whether there is a current site verification certificate, of which the council	NO
is aware, in respect of the land:	

Malcolm Ryan Interim General Manager Cumberland Council

per _____

Environmental Planning & Assessment Act 1979 **Tree Management** Whether or not the land is affected by any Tree Management provisions requiring consent for the removal or lopping of trees upon the land: **County or Designated Road** NO Whether or not the land has frontage to a County or designated road: **Interim Heritage Order** NO Whether or not the land is affected by an Interim Heritage Order under the provisions of the Heritage Act 1997: **Acid Sulfate Soils** Is the land affected by an Acid Sulfate Soils NO classification under Holroyd Local Environmental Plan 2013? If yes, what is the classification of the land?

3288/2015

ANNEXURE TO APPLICATION Certificate No:

Section 149(5) Planning Certificate

Contamination

Council's records indicate that the subject site has been used for Mining and Extractive Industries. These activities are listed in the attached Table 1 of the Planning Guidelines for SEPP 55 - Remediation of Land as an activity that may cause contamination. Access to information as per section 6.3 of Council's Contaminated Land Policy adopted by Council 3 July 2001.

Any other matters?

SALINITY

The Department of Land and Water Conservation's draft Salinity Hazard map for Western Sydney (Nov 2000) indicates that the land is subject to salinity.

Page 8 of 9

General Information

Certificate No. 3288/2016

When information pursuant to section 149(5) is requested the Council is under no obligation to provide that information. Council draws your attention to section 149(6) which states that a council shall not incur any liability in respect of any advice provided in good faith pursuant to subsection (5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this certificate.

Malcolm Ryan Interim General Manager Cumberland Council

per ____

www.cumberland.nsw.gov.au

16 Memorial Avenue (PO Box 42) MERRYLANDS NSW 2160 T 02 9840 9840 | F 02 9840 9734

DX 25408 MERRYLANDS TTY 02 9840 9988

ABN 22 798 563 329

PLANNING CERTIFICATE UNDER SECTION 149(2) & (5) ENVIRONMENTAL PLANNING AND ASSESSMENT ACT 1979

Certificate No: 3287/2016

Date: 20/12/2016

Applicant Reference: DLA -DL4018

Receipt Number: 1661053

Applicant	Owner (as recorded by Council)
INFOTRACK	Boral Resources (NSW) Pty Ltd
GPO BOX 4029	C/- Shane Burke
SYDNEY	PO Box 42
2000 2000	WENTWORTHVILLE NSW 2145

This property is located partly in the local government area of Cumberland and partly in the adjoining local government area. The information contained in this certificate relates only to the part of the property that is located within the local government area of Cumberland. If you require information about the part of the lot that is within the adjoining local government area you will need to obtain a certificate from the Council for that area.

Property Details	
Property:	Clunies Ross Street PEMULWUY NSW 2145
Description:	PLt: 10 DP: 1022044
Parcel No:	37929

INFORMATION PROVIDED PURSUANT TO SECTION 149(2) OF THE ACT

As at the date of this Certificate the abovementioned land is land to which an Environmental Planning Instrument applies. Details are set out as follows:-

1. RELEVANT PLANNING INSTRUMENTS AND DCPS APPLYING TO THE LAND

State Environmental Planning Policies (SEPPs)

State Environmental Planning Policy No. 19 - Bushland in Urban Areas

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 33 - Hazardous & Offensive Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 - Advertising & Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat

Development

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

State Environmental Planning Policy (Affordable Rental Housing) 2009

STATE ENVIRONMENTAL PLANNING POLICY (WESTERN SYDNEY EMPLOYMENT AREA) 2009 - 21/08/2009

Deemed Statement Environmental Planning Policies

Sydney Regional Environmental Plan No. 9 – Extractive Industry (No. 2 – 1995) SYDNEY REGIONAL ENVIRONMENTAL PLAN (SYDNEY HARBOUR CATCHMENT) 2005 - 28/09/2005

Proposed State Environmental Planning Policies (SEPPs)

Draft Coastal Management SEPP 2016 (part of lot).

Local Environmental Plans

Not applicable - refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Proposed Local Environmental Plans

Not applicable - refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Development Control Plans

Holroyd Development Control Plan 2013

2. Zoning and land uses under relevant LEPs:

Not Applicable - Refer to State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling house on the land and, if so, the minimum land dimensions so fixed

Refer State Environmental Planning Policy (Western Sydney Employment Area) - 2009

Whether the land includes or comprises critical habitat

Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether the land is in a conservation area (however described)

Certificate No. 3287/2016 Page 2 of 9

Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

Whether an item of environmental heritage (however described) is situated on the land

Refer State Environmental Planning Policy (Western Sydney Employment Area) 2009

3. Complying Development under SEPP (Exempt and Complying Development Codes) 2008

General Housing Code

The extent to which complying development may or may not be carried out on this land under the General Housing Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land

Rural Housing Code

The extent to which complying development may or may not be carried out on this land under the Rural Housing Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land

Commercial and Industrial (New Buildings and Additions) Code

The extent to which complying development may or may not be carried out on this land under the Commercial and Industrial (New Buildings and Additions) Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Housing Alterations Code

The extent to which complying development may or may not be carried out on this land under the Housing Alterations Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

General Development Code

The extent to which complying development may or may not be carried out on this land under the General Development Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Certificate No. 3287/2016 Page 3 of 9

Commercial and Industrial Alterations Code

The extent to which complying development may or may not be carried out on this land under the Commercial and Industrial Alterations Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Subdivisions Code

The extent to which complying development may or may not be carried out on this land under the Subdivisions Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Demolition Code

The extent to which complying development may or may not be carried out on this land under the Demolition Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

Fire Safety Code

The extent to which complying development may or may not be carried out on this land under the Fire Safety Code because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP:

Complying development may be carried out on the full extent of the land.

4. Coastal Protection

Whether or not the land is affected by the operation of	NO
Section 38 or 39 of the Coastal Protection Act 1979 but	
only to the extent that the Council has been so notified by	
the Department of Services Technology & Administration:	

5. Mine Subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of Section 15 of the	
Mine Subsidence Compensation Act 1961:	

6. Road widening & road realignment

Whether or not the land is affected by any road widening or road realignment under:

Division 2 of Part 3 of the Roads Act 1992	NO

Any Environmental Planning Instrument	NO
Any resolution of Council	NO

7. Council and other Public Authority policies on hazard risk restrictions

Whether or not the land is affected by a policy adopted by the Council or adopted by any other public authority and notified to the Council, which restricts the development of the land because of the likelihood of:

Bush fire:	NO
Tidal Inundation:	NO
Subsidence:	NO
Acid Sulfate Soils:	NO
Any other risk (other than flooding):	Council has adopted a policy on contaminated land. This policy is implemented when zoning or land use changes are proposed on lands which have previously been used for certain purposes. Consideration of Council's adopted policy and the application of provisions under relevant State Legislation is warranted. Further information in relation to the land is contained in s149 (5).

7A. Flood related development controls

<u> </u>	
Whether or not development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls:	YES
Whether or not development on the land or part of the land for any other purposes is subject to flood related development controls:	YES

8. Land reserved for acquisition

Whether or not any environmental planning instrument or proposed	NO
environmental planning instrument referred to in item 1 makes provision	
in relation to the acquisition of the land by a public authority as referred	
to in section 27 of the Environmental Planning & Assessment Act 1979:	

9. Contributions Plans applying to the land

11,75	
No Section 94 Plans apply to this land.	

9A. Biodiversity certified land

NOT APPLICABLE

10. Biobanking Agreements

NOT APPLICABLE

11. Bush fire prone land

The land is NOT bush fire prone land as defined in the *Environmental Planning* & Assessment Act 1979.

12. Property Vegetation Plans

NOT APPLICABLE

13. Orders Under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between	NO
Neighbours) Act 2006 to carry out work in relation to a tree on the land	
(but only if the Council has been notified of the order):	

14. Directions under Part 3A

NOT APPLICABLE

15. Site Compatibility Certificates and conditions for seniors housing

There is no current Site Compatibility Certificate (of which Council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land.

There are no terms of a kind referred to in clause 18 (2) of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.

16. Site Compatibility Certificates for infrastructure

There is no valid Site Compatibility Certificate (of which Council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17. Site Compatibility Certificates and conditions for affordable rental housing

There is no current Site Compatibility Certificate (Affordable Rental Housing), of which the Council is aware, in respect of proposed development on the land.

There are no terms of a kind referred to in clause 17 (1) or 38 (1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.

Certificate No. 3287/2016

18. Matters arising under Section 59(2) of the Contaminated Land Management Act 1997

No matters apply to the land to which the certificate relates.

19. Site Verification Certificates

Whether there is a current site verification certificate, of which the council	NO
is aware, in respect of the land:	

Malcolm Ryan Interim General Manager Cumberland Council

per _____

ANNEXURE TO APPLICATION Certificate No: 3287/2015 Section 149(5) Planning Certificate Environmental Planning & Assessment Act 1979

Tree Management

Whether or not the land is affected by any Tree	NO
Management provisions requiring consent for the	
removal or lopping of trees upon the land:	

County or Designated Road

Whether or not the land has frontage to a County or	NO
designated road:	

Interim Heritage Order

Whether or not the land is affected by an Interim	NO
Heritage Order under the provisions of the Heritage	
Act 1997:	

Acid Sulfate Soils

I	ls	the	land	affected	by	an	Acid	Sulfate	Soils
(cla	ssific	ation ι	under <i>Holr</i>	oyd	Loca	l Envii	ronmenta	l Plan
4	classification under <i>Holroyd Local Environmental Pla</i> 2013? If yes, what is the classification of the land?								d?

Contamination

Council's records indicate that the subject site has been used for Mining and Extractive Industries. These activities are listed in the attached Table 1 of the Planning Guidelines for SEPP 55 - Remediation of Land as an activity that may cause contamination. Access to information as per section 6.3 of Council's Contaminated Land Policy adopted by Council 3 July 2001.

Any other matters?

SALINITY

The Department of Land and Water Conservation's draft Salinity Hazard map for Western Sydney (Nov 2000) indicates that the land is subject to salinity.

STORMWATER FLOODING

Council's records suggest that the subject land may be liable to overland stormwater overflow based on information from a study in the area. On written request, Council will supply the designated stormwater overflow levels for the area, which should be used with an appropriate survey plan to better interpret the stormwater overflow affectation of the land.

General Information

Certificate No. 3287/2016 Page 8 of 9

When information pursuant to section 149(5) is requested the Council is under no obligation to provide that information. Council draws your attention to section 149(6) which states that a council shall not incur any liability in respect of any advice provided in good faith pursuant to subsection (5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this certificate.

Malcolm Ryan Interim General Manager Cumberland Council

per

TABLE 1

12 WHAT INFORMATION IS NEEDED TO MAKE A DECISION

Table 1 Some Activities that may Cause Contamination

- acid/alkali plant formulation
- agricultural/horticultural activities
- airports
- asbestos production disposal
- chemicals manufacture and formulation
- defence works
- drum re-conditioning works
- dry cleaning establishments
- electrical manufactures (transformers)
- electroplating and heat treatment premises
- engine works
- explosives industry
- gas works
- iron and steel works
- landfill sites
- metal treatment
- mining and extractive industries
- oil production and storage
- paint formulation and manufacture
- pesticide manufacture and formulation
- power stations
- railway yards
- scrap yards
- service stations
- sheep and cattle dips
- smelting and refining
- tanning and associated trades
- waste storage and treatment
- wood preservation

Source: ANZCC & NHMRC 1995 The Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites. For information on chemicals commonly associated with these activities see Appendix A.

Note: It is not sufficient to rely solely on the contents of this Table to determine whether a site is likely to be contaminated or not. The table is a guide only. A conclusive status can only be determined after a review of the site history and, if necessary, sampling and analysis.

Appendix I Boral Letter

Meeting Held at 10.00 on November 9, 1989 to Discuss Flood Retarding Basin by Boral Brick.

Present: Stephen Lees - Water Resources Commission
N Benning - " " " "

Dougal Black - Willing & Partners (Consultant to WRC)
Wal Krivoruchko- Blacktown Council
David Thomas - Boral Quarries

- SL Explained urgency for meeting due to tender document having been sent out and no permission to enter yet given.
- DT Apologised for absence of E Grogan and D kellaher.
- DT Advised that because of closs of pine trees area between stream and Boral Bricks now open for industrial development and we have several Boral Companies that could relocate to that area. Therefore WRC proposal with embankment and flood water intruding 100m from boundary would seriously affect

Had brief discussion with DB but had been advised that relocation further upstream to west not practicable.

- DB Further investigation showed dam could only go downstream but this was restricted by Western Freeway and Quarry road. Where it is, is an ideal location for catchment maximization.
- DT Explained that any proposed for development would require our land to be raised (possibly using fill ex MWS & DB).

However based on the usual development conditions of about 30m set back from the boundary what would be WRC's reaction to having the toe of a 1:2 batter to the fill 30m from the boundary. This would seem to reduce the stored flood volume by some 10,000m⁵ total flood volume some 80,000 m⁵ to offset this 'lost' volume Boral would be prepared to accept 10,000m³ of fill if the W.R.C decided to increase the amount of excavation proposed to the mouth of the stream.

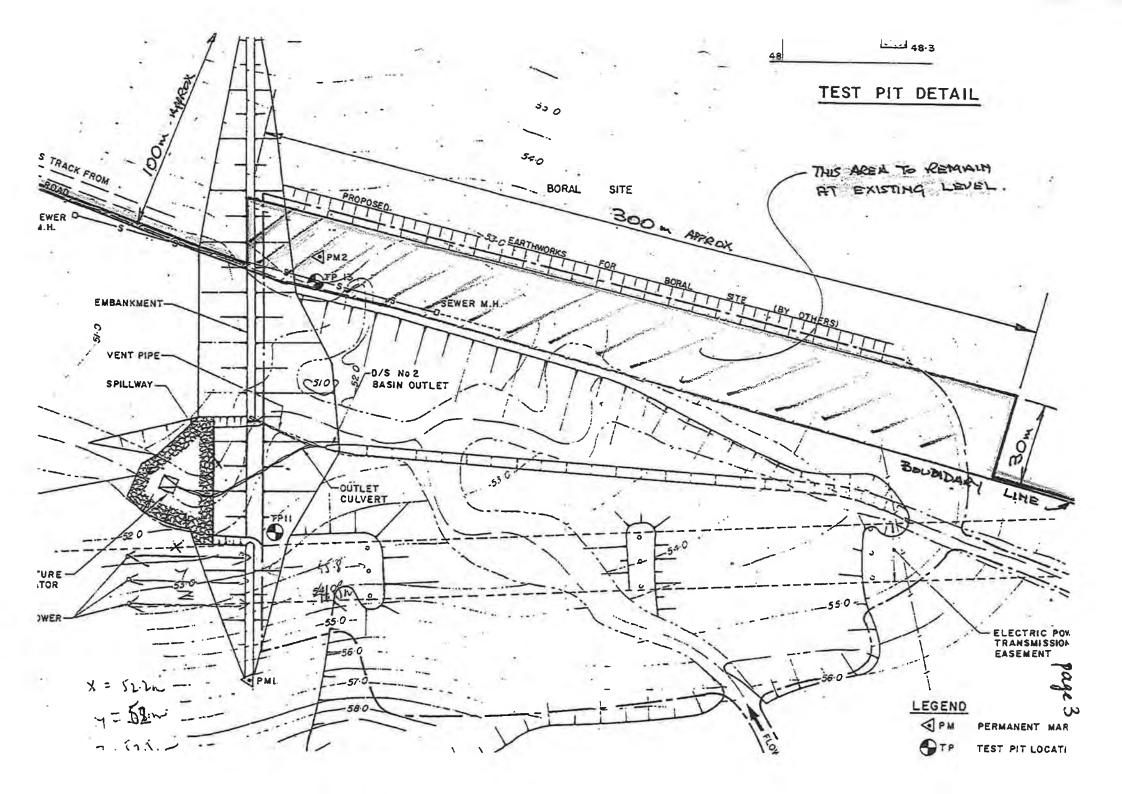
A general discussion followed covering the reason for the chosen site, the required storage volume, the amount of cut and fill required, costs of excavation and haul to dump compared to increased excavation and minimum haul to dump on Boral land.

- WRC Indicated that they would be happy to accept the Boral proposal as it kept the basin in the ideal place and they retained the required volume.
- WK indicated that he saw no problem from the cost/construction point of view as it would only require a change in cut/haul volumes which was covered in the tender documents.

DB Was instructed by WRC to prepare details of changes to basin to allow for the above proposal and to confirm Boral's estimates of volume.

DT Restated that the proposal was for Boral to fill the area from 30m south of the boundary to above the 55.2m flood levels. this area to be from the embankment itself and westward for some 300m. To the east and west of this area we would, if necessary, have the toe of the fill starting at the boundary. the fill would have a batter of 1:2 and would be planted with shrubs and trees to form a visual screen. Boral would also accept fill from the basin at least equal to the 'lost' volume. This fill to be used to raise the site area.

WRC/WK Indicated this was satisfactory.


WK To write to Boral asking for formal approval of this proposal and permission to enter the indicated that site work was expected to start the first week in February, 1990 and that we might expect the first fill to be delivered in late March.

DT Would discuss proposal with E Grogan ready for Blacktown Councils letter and make arrangements for a designated fill dump area.

To E Grogan

c.c. D Kellaher F Reid

vie

File 158/88/1-2 Date 23/1/92...

The Town Clerk
Blacktown City Council
Civic Centre
BLACKTOWN 2148

Dear Sir

I. DAVID THOMAS.....hereby give permission for Council employees or contractors employeed by Council to enter the property of Boral Resources Pty Ltd., Lots A and B in D.P. 33023, for the purpose of carrying out works associated with the construction of a retarding basin.

It is understood that the proposed works will be such as indicated on design plans, prepared by Consulting Engineers Willing & Partners, Plan No. 6191B sheets 1-8 and that this work will be done at no cost to Borel Resources Pty. Ltd..

(Signed) STOWN

Fax - 831-1961 Karl Settimke

Appendix J SafeWork NSW Dangerous Goods Search

Locked Bag 2906, Lisarow NSW 2252 Customer Experience 13 10 50 ABN 81 913 830 179 | www.safework.nsw.gov.au

Our Ref: D17/050469 Your Ref: Amy Dorrington

Attention: Amy Dorrington DLA Environmental Pty Ltd Unit 3 38 Leighton PI Hornsby NSW 2077

Dear Ms Dorrington,

RE SITE: 44 Clunies Ross St Prospect NSW

I refer to your site search request received by SafeWork NSW on 22 December 2016 requesting information on Storage of Hazardous Chemicals for the above site.

Enclosed are copies of the documents that SafeWork NSW holds on record numbers 35/033891 relating to the storage of Hazardous Chemicals at the above-mentioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email licensing@safework.nsw.gov.au

Yours sincerely,

Customer Service Officer Customer Experience - Operations SafeWork NSW Work Health and Safety Act 2011 (WHS Act) – Work Health and Safety Regulation 2011 (WHS Regulation)

WorkCover

Site search for Schedule 11 hazardous chemicals on premises

applicable)	OCCUPIER'S NAME/PREVIOUS OCCUPIER'S NAME (and trading name
Current AUSTRAL MASONRY	
Previous	
ECTION 6: LODGEMENT FE	ES
Refer to the WorkCover current fees s	schedule or call 13 10 50.
NOTE Complimentation or interest and interes	
Pay by cheque. Enclose a chequ	
Pay by money order. Enclose a n	noney order made payable to WorkCover
Pay by credit card. Please charge A payment processing fee of 0.4	e \$ 293 . 28 to my: MasterCard X Visa 4% applies to credit card payments (MasterCard and Visa).
Cord number	Card expiry date (MM/YYYY)
4564 8092 04	94 2613
Cardholder name (please print name	as displayed on credit card)
Cardholder signature	Date (9P/MM(YYYY) 22 (12 (16
and the same of th	
SECTION 7: NAME OF APPL	ICANT
Name AMY DORRINGTO	N
Applicant's signature	Date (DD/MM/YYY) 22/12/2016

Catalogue No. WC01274 WorkCover Publications Holline 1300 799 003 WorkCover NSW, 92–100 Donnison Street, Gosford, NSW 2250 Locked Bag 2906, Lisarow, NSW 2252 | Customer Service Centre 13 10 50 Website worksydman (1997-28)

ISBN 978 1 74341 515 3 @ Copyright WorkCover NSW 0515

APPLICATION TYPE (select only one box)
New site \$100 fee applies.
Further notification To be supplied every 12 months - \$100 fee applies.
New occupier of an existing dangerous goods notifiable site (where the notification has expired) \$100 fee applies.
Please provide the following for a further notification or, if you are a new occupier of an existing dangerous goods notifiable site.
Acknowledgement number for the site (if known) Style (DD/MM/YYYY)
Street number/street name (include Lot or DP number if applicable)
Street name. CLUNIES ROSS ST
Suburb PROSPECT NSW 2148
2. SITE OCCUPIER'S DETAILS (person in control of the site)
Required for a new site or a new occupier of an existing dangerous goods notifiable site (where the notification period has expired). It is only required for a further notification where details have changed.
2.1 Individual occupier
Title Family/Surname
Given name
Other names
Date of birth (DD/MM/YYYY)
Daytime contact number Mobile number Fax number
Email
Please go to section 2.4
2.2 Corporation occupier
Legal name
AUSTRAL MASONRY (NSW) PTY LTD
Registered business (trading name)
AUSTRAL MASONRY (NSW) PTY LTD
ABN 45-141-647-092
Please go to section 2.3

I a to the same of

E DETAILS (must be completed for both new notifications and further notifications) nsufficient please provide details on a separate sheet of paper. cility Type of storage facility ABOVE GROUND Maximum storage capacity or division Unit (L or kg or number) 1 7500 JN number Class or division Typical quantity Unit (L or kg or number) 1075 Packing group 2 . 1 5000 Proper shipping name PETROLEUM GASES QUIFI L Product or common name LPG Class or division Typical quantity Unit (L or kg or number) Packing group roper shipping name roduct or common name N number Class or division Typical quantity Unit (L or kg or number) Packing group oper shipping name oduct or common name Inumber Class or division Typical quantity Unit (L or kg or number) Packing group per shipping name duct or common name

a facility.
Type of storage facility
ABOVE GROUND TANK
Maximum storage capacity Unit (Lorkg or number)
UN number Class or division Typical quantity
1075 2 1 Packing group
Proper shipping name
PETROLEUM GASES, LIQUIFIED
Product or common name
UN number Class or division Typical quantity
ON number Class or division Typical quantity Unit (L or kg or number) Packing group
Proper shipping name
Product or common name
UN number Class or division Typical quantity Unit (L or kg or number) Packing group
Proper shipping name
Product as
Product or common name
N number Class or division Typical quantity
Unit (L or kg or number) Packing group
roper shipping name
oduct or common name

age facility		טע
The state of the s	pe of storage facility	
Class or division Ma.	ximum storage capacity Unit II or les	
	736 Unit (L cr kg or number)	
UN number Class of	division Typical quantity	
1001 1.	500	Unit (L or kg or number) Packing group
Proper shipping name		
DISSOLVE	ED ACETYLENE	
Product or carry		
Product or common name		
ALETYLEN	1 5	
UN number Class or d	livision Typical quantity	
1072 2-2		Unit (L or kg or number) Packing group
Proper shipping name		
OXYGENC	OMPRESSED	
Product or common name OXYGENC		
	OMPRESSED	
UN number Class or divi	sion Typical quantity	
1956 2.2	200	Unit (L or kg or number) Packing group
Proper shipping name		LI III III III III III III III III III
ARGONSH	I ELD UNIVERSAL	
Production	VIVERSAL	
Product or common name ARGOSHIEL		
ARGOSHIEL	DUNIVERSAL	
UN number Class or division	on Typical quantity	
1006 2.2	200	nit (L or kg or number) Packing group
Proper shipping name	L. L	- Gawing group
ARGON COM	PRESSED	
Product or common name ARRON WEL		
ARGON WEL	DING	

CONTACT FOR NOTIFICATION INQUIRIES	
Title Mr Miss / Ms / Mrs / Other (please specify) Family name	CARR
Given name JIMMY Other names	
Business phone 0401 892 667 Business fax number	02 9240 2300
Business email address james. carr @ boral.com.	au
Provious Licence Number or Advantal descript Number 26 Land	
Previous Licence Number or Acknowledgement Number (if known) 35/ © 33 891	
33 0 3 2 8 3 1	
Previous Occupier (if known)	
NIA	
Site on which dangerous goods are to be kept	
Number Street	
CLUNIES ROSS STREET	
Suburb/Town/Locality	devi-ee
PROSPECT	Postcode
17007 601	2148
Nearest cross Street	
GREAT WESTERN HIGHWAY	
Lot and DP if no street number	
N/A	
Is the site staffed? If yes state number of employees 90 Site staffing: Hours per day 24 Days per week 5 Site Emergency Contact Phone number Name	\$ 100.00 Date: 19.02.10 Rec No. 595440
(0)401 892 663 JIMMY CARR	
Nature of site (eg petrol station, warehouse etc)	
CONCRETE MANUFACTURING PLANT	
Nature of primary business activity	
5 (1915) 10 10 11 11 11 11 11 11 11 11 11 11 11	A. () === (
The strict of th	CILICY.
ABN Number (if any) Website details (if any)	
1300 223 718 NNW. boral. com.	au
What is the ANSZIC code most applicable to your business? (see guide for list of	codes and further information)
Code Description	
263 CONCRETE MANUFACTURING	(BLOCK)
Attach a site sketch(s) of the premises. Refer to the Guide GDG01 for information ketch.	
Attach a legible photocopy page from a local Street Directory or other map show	vise the Invalid, of the susaine Barrie
he location of the premises with an X.	ving the locality of the premises. Mark

List the dangerous goods that will be stored and/or processed on these premises (refer to Guide GDG01). Copy this page and attach additional sheets if there is insufficient space.

Depot No	Type of storage location or process	Class	Maximum Storage Capacity (L, kg)
1	ABOUT, GROWN TANK	2.1	7500 L

UN Number	Proper Shipping Name	Class	PG (I, H, III)	Product or Common Name	HazChem Code	Typical Qty	Unit eg L, kg	
SFOI UN	PETROLCUM	2.1		LPGAS	2NE	5000	L.	/
7.	GASSS.					1		
*	LIQUIFISO.							
	12.0.16.10.21							

Depot No Type of storage location or process		Class	Maximum Storage Capacity (L, kg)	
2	ABOVE GROUND TANK	2.1	4500 L	/

UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or Common Name	HazChem Code	Typical Qty	Unit eg L, kg
ZFOI UN	PETROLEUM,	2.1		LPGAS	245	3000	June 1
	CASES,	1					
	KIQUIFIED.						

Depot No	Type of storage location or process	Class	Maximum Storage Capacity (L, kg)	
3	CYLINDER STORE	2.1	576.6 L	

	Proper Shipping Name	Class	PG (I, II, III)	Product or Common Name	HazChem Code	Typical Qty	Unit eg L, kg
1001 UN	DISSOLVED	2.1		ACETYLENE	256	500	L /
	ACETYLENE						
				3.00			
	40						

Depot No	Type of storage location or process	Class	Maximum Storage Capacity (L, kg)	
3 /	Chinoms stake	2.2	576 -	/

	Proper Shipping Name	Class	PG (I, II, III)	Product or Common Name	HazChem Code	Typical Qty	Unit eg L, kg
2F01 NW	QXY6-670	2.2		exisen compassion.	25	500	4
	compressió			1 000,000			

Depot No	Type of storage location or process	Class	Maximum Storage Capacity (L, kg)
3	CYLINDER STURE	2-2	290.4

	Proper Shipping Name	Class	PG (I, II, III)	Product or Common Name	HazChem Code	Typical Qty	Unit eg L, kg	1
MN 1829	ARGOSHIELD 51	2.2		ARGOSHISTO	27	200	L /	
7	(FORMSRLY			UNIVORSAL.				
	ARGOSHIELD							
	UNIVERSAL).	4						

List the dangerous goods that will be stored and/or processed on these premises (refer to Guide GDG01). Copy this page and attach additional sheets if there is insufficient space.

Depot No	Type of storage location or process	Class	Maximum Storage Capacity (L, kg)	/
3	CYLINDUR STORE	2-2	290.4	/

UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or Common Name	HazChem Code	Typical Qty	Unit eg L, kg
UN 1006	ARGON	2.2	-	ARGON WELDING	2.7	200	L-1
	COMPRESSED						4 8

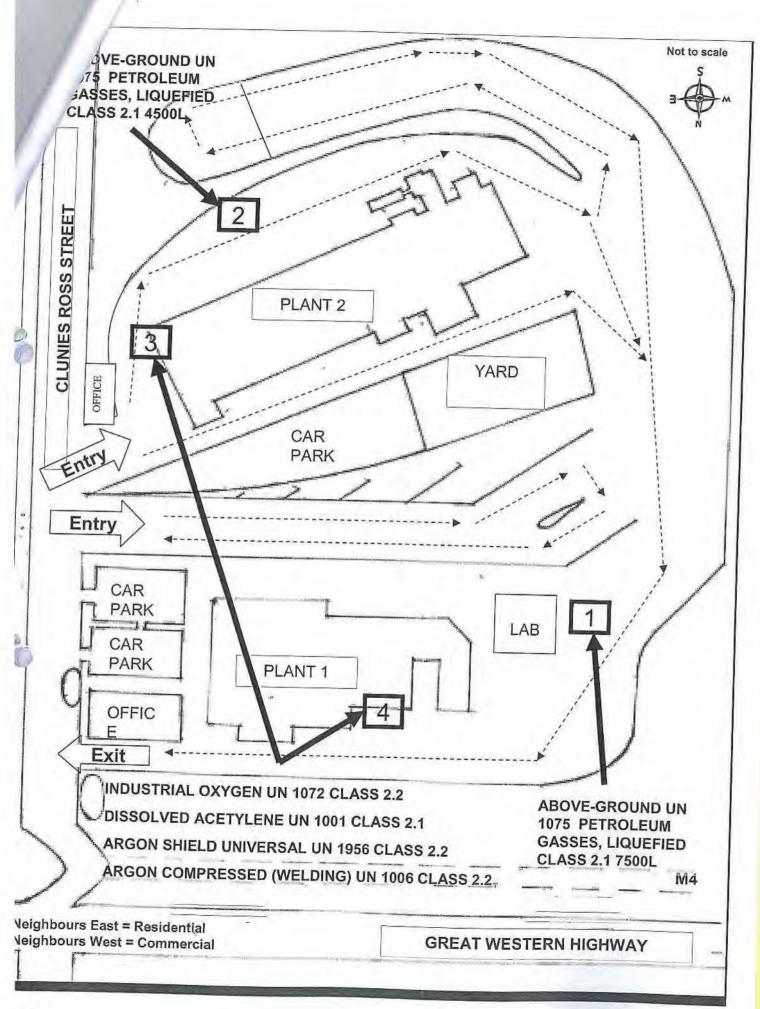
Depot No	Type of storage location or process	Class	Maximum Storage Capacity (L, kg)	
4	CYLINDER STORS	2.2	576L	

UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or Common Name	HazChem Code	Typical Qty	Unit eg L, kg
2F01 MW	OXYGEN	2.2		OXYO-EN COMPRESSED	25	500	4
	COMPRESSED						

Depot No	Type of storage location or process	Class	Maximum Storage Capacity (L, kg)	
4	CYLINDER STORE	201	576.6 L	

UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or Common Name	HazChem Code	Typical Qty	Unit eg L, kg
1001 WN	DISSOLVED	2.1	_	ACET-/LENS	2SE	500	
	ACETYLENE		1	*			
				4			

Depot No	Type of storage location or process	Class	Maximum Storage Capacity (L, kg)
45	CYLINDER STORE		


UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or Common Name	HazChem Code	Typical Qty	Unit eg L, kg
UN 1956	ARGOSHIELD 51	2.2		ARGOSHIELD	27	200	
	(FORMSRLY			UNIVER SAL			
	ARGOSHIELD						
	UNIVERSAL).						

Maximum Storage Capacity (L, kg)	Class	Type of storage location or process	Depot No
290.4	2.2	CYLINDER STORS	11.5
290.4	2.2	CYLINDER STORS	

UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or Common Name_	HazChem- Code	Typical Qty	Unit eg L, kg
UN TOOL	ARCON	2.2		ARCON WELDING	27	200	L
	COMPRESSAD						

1						-				-07	± 17		
									576 L	576.6 L	290.4 L	290.4 L	
18	SsoAle	salunic					ENTRY (Industrial Oxygen UN 1072 Class 2.2	Dissolved Acetylene UN 1001 Class 2.1	Argon Shield Universal UN 1956 Class 2.2	Argon Compressed (Welding) UN 1006 Class 2.2	
					S.sso _d s	Clunie						IS ss	Charles L. T.
		樂		提出	11/24								THE STATE OF
		語の意		単語						V.			
							7 200						A SERVICE OF
576 L	576.6 L	290.4 L	290.4L					Above-Ground UN 1075 Petroleum Gasses,			Above-Ground UN 1075 Petroleum Gasses, Liquefied		

, No. 35/033891

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/033891 to 11/05/2006. I confirm that all the licence details shown below are correct (amend if necessary).

(Signature)

for: BORAL MASONRY LTD

(Please print name)

(Date signed)

THIS **SIGNED** DECLARATION SHOULD BE **RETURNED TO**:

WorkCover New South Wales

Dangerous Goods Licensing Section

LOCKED BAG 2906 LISAROW NSW 2252 Enquiries:ph (02) 43215500 fax (02) 92875500

Details of licence on 24 March 2005

Licence Number 35/033891

Expiry Date 11/05/2005

Licensee

BORAL MASONRY LTD

ACN 000 223 718

Postal Address: P O BOX 6 SEVEN HILLS NSW 2147

Licensee Contact NEAL VANSLEVE Ph. 9840 2333 Fax. 9840 2344

Premises Licensed to Keep Dangerous Goods

Nature of Site MANUFACTURING N.E.C.

BORAL MASONRY LTD CLUNIES ROSS ST PROSPECT 2148

020/1120/1000/01/1/100/120

Major Supplier of Dangerous Goods UNKNOWN OR OTHER

Emergency Contact for this Site NEAL-VANSLEVE Ph. 9840 2333

Site staffing 24HRS 7DAYS

Robert Thompson.

Details of Depots

Depot No. Depot Type

Goods Stored in Depot

Qty

1	ABOVE-GROUND TANK	Class 2.1	7500 L
	UN 1075 PETROLEUM GASES,	LIQUEFIED	7500 L
2	ABOVE-GROUND TANK	Class 2.1	7500 L
	LIN 1075 PETROLEUM GASES	LIQUEFIED	7500 I

e No. 35/033891

REMINDER NOTICE ** APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/033891 to 2004/2005 . I confirm that all the licence details shown below are correct (amend if necessary).

(Signature)

for: BORAL MASONRY LTD

(Please print name)

SAM DIGIUSEPPE 7-8-03

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales

Dangerous Goods Licensing Section

Locked Bag 2906

LISAROW NSW 2252 Enquiries:

ph (02) 4321 5500

fax (02) 9287 5500

Details of licence on 25 July 2003

Licence Number 35/033891 Expiry Date 12/05/2003

No. of Depots 2

BORAL MASONRY LTD ACN 000 223 718 Licensee

Postal Address: BOX 6 P-O. SEVEN HILLS NSW 2147

Fax. 9840 2344 Licensee Contact SAM-GIESEPPE Ph. 9840 2333

Premises Licensed to Keep Dangerous Goods **BORAL MASONRY LTD**

CLUNIES ROSS ST PROSPECT 2148

Nature of Site MANUFACTURING N.E.C.

Major Supplier of Dangerous Goods UNKNOWN OR OTHER

Emergency Contact for this Site ROBERT LENSTRA Ph. 9840 2333

Site staffing 24HRS 7DAYS

SAM DIGIUSEPPE ST.

Details of Depots

Depot No. Depot Type Goods Stored in Depot

Qty

ABOVE-GROUND TANK 1.

Class 2.1 UN 1075 PETROLEUM GASES, LIQUEFIED 7500 L 7500 L

2

ABOVE-GROUND TANK

Class 2.1

7500 L

7500 L

UN 1075 PETROLEUM GASES, LIQUEFIED

Store Room

SERVICE CENTRE

2 4 MAY 2000

South Wales, 400 Kent Street, Sydney 2000. Tel: 9370 5000 Fax: 9370 5999 ALL MAIL TO GHC, EOX 5064 31 DNEY 2001

e No. 35/033891

OD DENEWAL

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/033891 to 12/05/2001. I confirm that all the licence details shown below are correct (amend if necessary).

(Signature)

for: BORAL MASONRY LTD

(Please print name)

17/02/19/2

(Date signed)

Enquiries: ph (02) 9370 5187

fax (02) 9370 6104

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales Dangerous Goods Licensing Section

GPO BOX 5364 SYDNEY 2001

Details of licence on 31 March 2000

Licence Number 35/033891

Expiry Date 12/05/2000

Licensee

BORAL MASONRY LTD

ACN 000 223 718

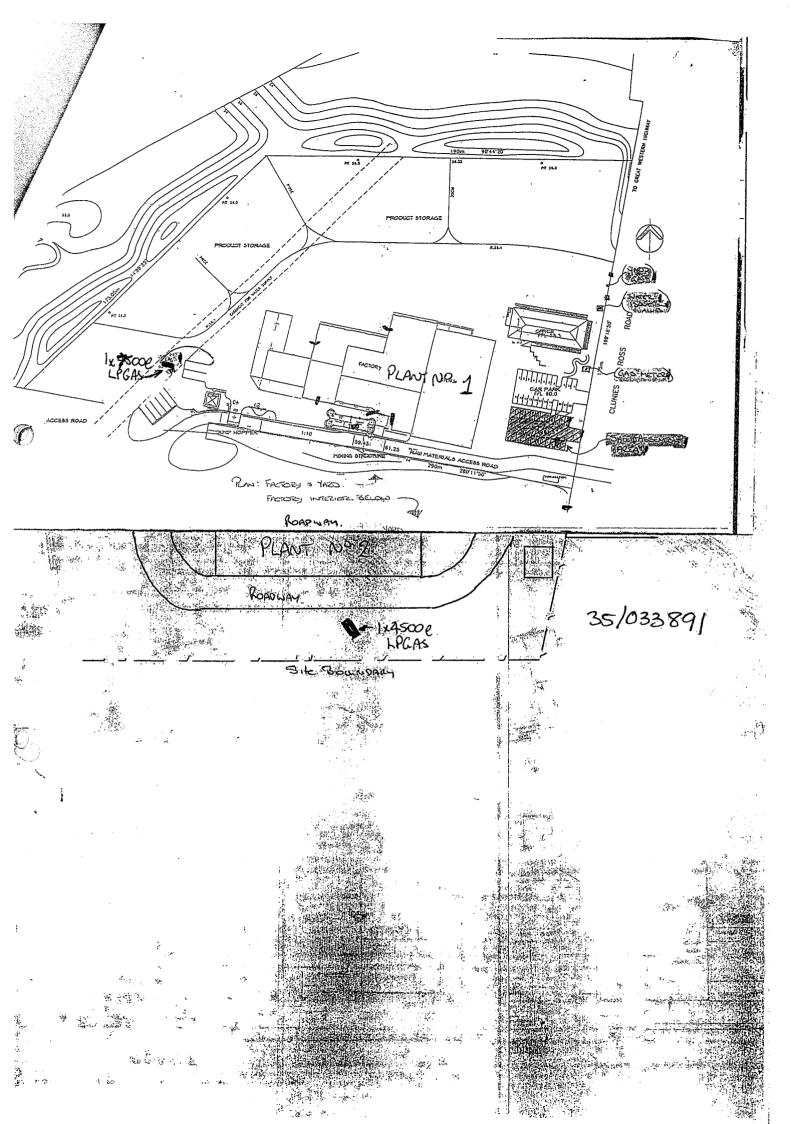
Postal Address: BOX 6 P O SEVEN HILLS NSW 2147

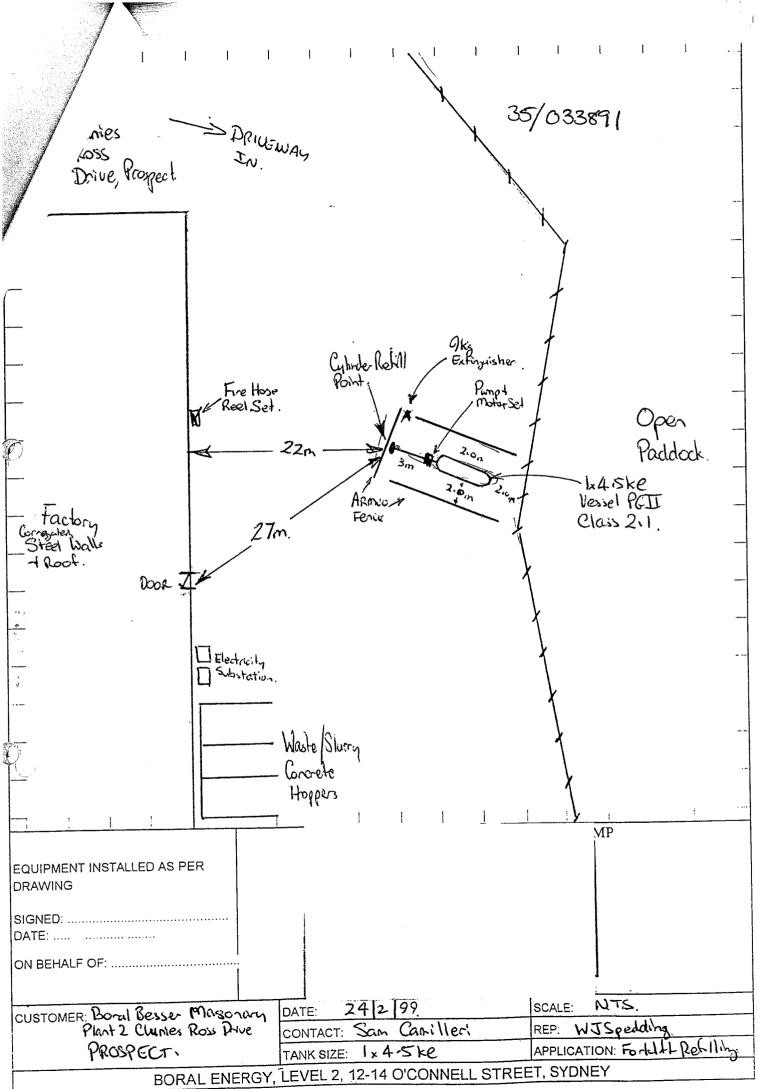
Licensee Contact M-GAUCI Ph. 9840 2333 Fax. 9840 2344

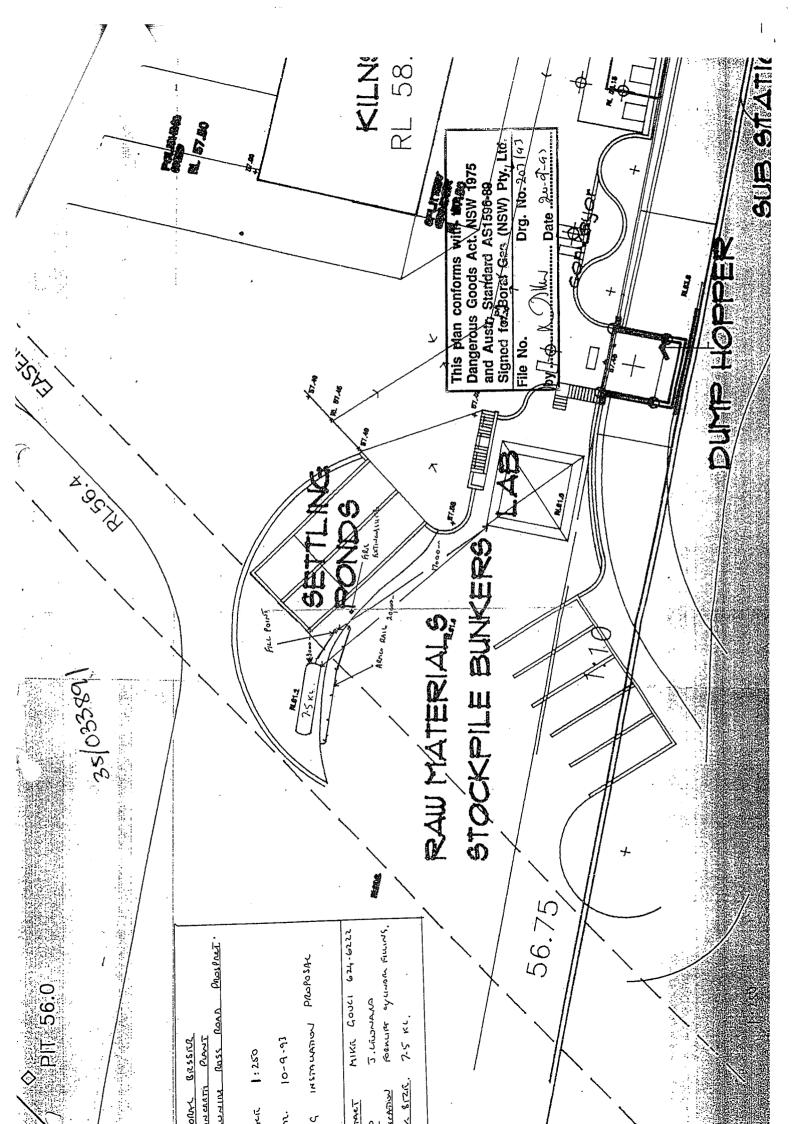
Premises Licensed to Keep Dangerous Goods

BORAL MASONRY LTD

CLUNIES ROSS ST PROSPECT 2148

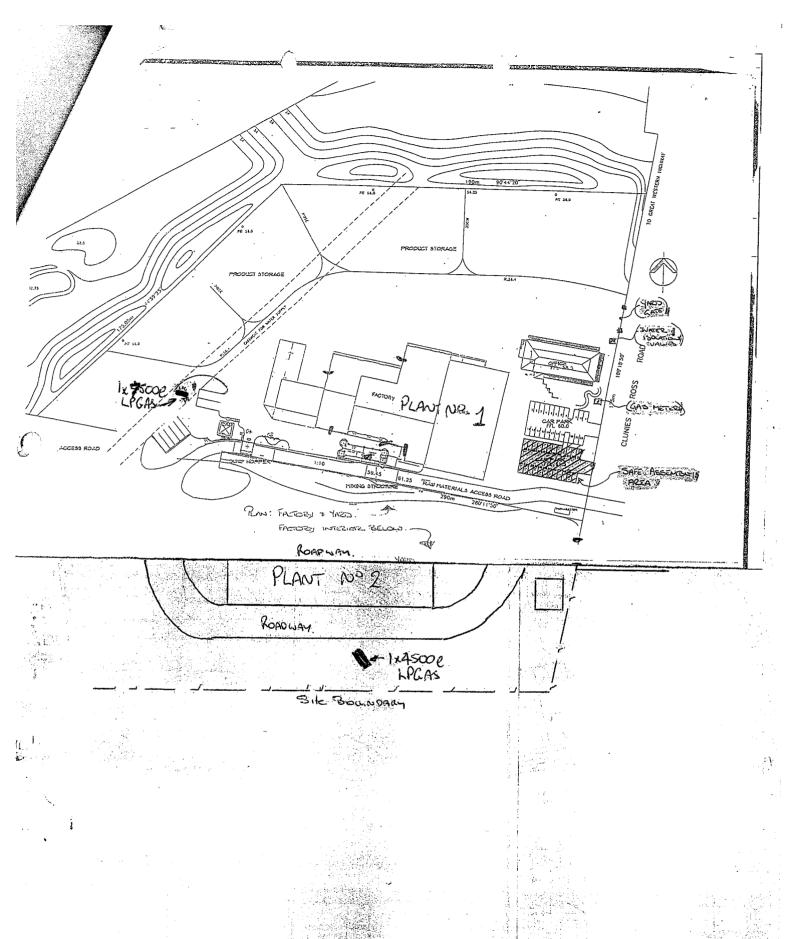

Nature of Site MANUFACTURING N.E.C.


Major Supplier of Dangerous Goods BORAL DRIGIN GNERGY


Emergency Contact for this Site ROBERT LENSTRA Ph. 9840 2333

Site staffing 24HRS 7DAYS

Details of Depots Qtv Goods Stored in Depot Depot No. Depot Type 7500 L Class 2.1 ABOVE-GROUND TANK 1 7500 L UN 1075 PETROLEUM GASES, LIQUEFIED 7500 L Class 2.1 ABOVE-GROUND TANK 2 7500 L UN 1075 PETROLEUM GASES, LIQUEFIED



lication for ence to Keep angerous Goods

The second second	MERCANICAL PROPERTY.			nonowal of s	expired licence
plication for venew		endment	transfer	renewaror	хриос поло
up dove 12/5/2000	5			(O. idense Not	
PART A - Applican	nt and site in	formatio	n See page 2	ACN	35.
Name of applicant	10			000 223	718
BORAL MASON!			Suburb	THE RESERVE THE PARTY OF THE PA	Postcode
Postal address of applic	zant		Seve	N HILLS	2147
P O BOX 6 Trading name or site oc	ccupier's name				
BORAL MASON				The second secon	
4 Contact for licence inqu	uiries	Name			
Phone	Fax		The second second		
02,9840 2333				L. L. S. F. E. C. S. C.	
5 Previous licence number	er (if known) 35/	0338	> 71	I RE	
6 Previous occupier (if kn	nown)		+	12	1 1990
7 Site to be licensed No	Street			REW ST	OUTH WALES
,	CLUMICS T	Ross '	ST	D. Janda	TALES .
Suburb / Town				Postcode	
PROSPECT				2148	The state of the s
	Manufaction	n of m	isonry produ	ds 294	9
8 Main business of site	and the same of th				
8 Main business of site				-7	
8 Main business of site9 Site staffing: Hours pe		Da	ays per week	7	
(3)	r day 24	Da Name		7	
9 Site staffing: Hours per10 Site emergency contact	r day 24-	Name	е	7 STIZA	<u></u>
9 Site staffing: Hours per 10 Site emergency contact Phone O2, 9840 3	r day 24_ ot 333	Name	e OBERT LEN	7 STIZA	a land
9 Site staffing: Hours per 10 Site emergency contact Phone Oz. 9840 3	r day 24- ct 333 gerous goods	Name R BORAL	BERT LEN	Notes.	lic Marsha
9 Site staffing: Hours per 10 Site emergency contact Phone	r day 24- ct 333 gerous goods endments to depo Name of Accredite	Name R BORAL ots – see paged Consultar	e OBERT LEN ENERCY ge 4 of Guidance I		lic 145/9°
9 Site staffing: Hours per 10 Site emergency contact Phone Oz. (840 3) 11 Major supplier of dang 12 If a new site or for am	r day 24- ct 333 gerous goods endments to depo Name of Accredite	Name R BORAL ots – see paged Consultar	e OBERT LEN ENERCY ge 4 of Guidance I	Notes.	lic 145/90
9 Site staffing: Hours per 10 Site emergency contact Phone Oz. (840 3) 11 Major supplier of danger 12 If a new site or for am Plan stamped by:	gerous goods endments to depo Name of Accredite	Name R BORAL its - see paged Consultar dynd	e OBERT LEN OBERGY ge 4 of Guidance I nt 2	Notes. Date stamped 4 3 99	
9 Site staffing: Hours per 10 Site emergency contact Phone Oz. (840 3) 11 Major supplier of dang 12 If a new site or for am	gerous goods endments to depo Name of Accredite Phane this application (inc.)	BORAL ots - see paged Consultar dynot cluding any a pt on the pre	e OBERT LEN OBERT LEN GENERAY ge 4 of Guidance I nt 2 accompanying con emises.	Notes. Date stamped 4 3 99	rect and cover all
9 Site staffing: Hours per 10 Site emergency contact Phone OZ. 9840 11 Major supplier of dang 12 If a new site or for am Plan stamped by:	gerous goods endments to depo Name of Accredite PAHLLLY pthul this application (incangerous goods ke)	BORAL ats - see paged Consultar durat cluding any a pt on the pre	e OBERT LEN OBERT LEN GENERAY ge 4 of Guidance I nt 2 accompanying con emises.	Notes. Date stamped 4 3 79 20/9 95 nputer disk) are cor	

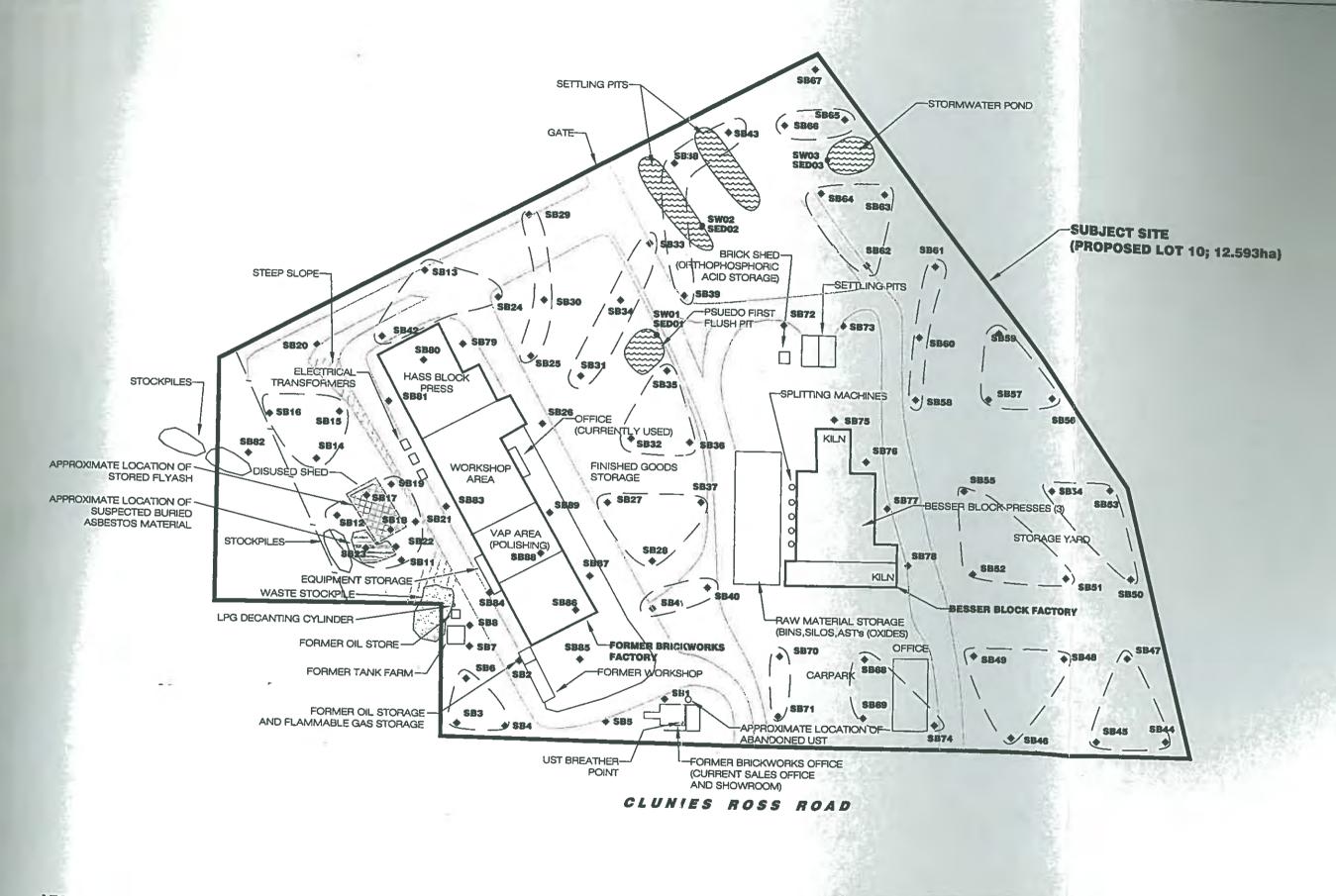
Please send your application, marked CONFIDENTIAL, to: Dangerous Goods Licensing, WorkCover NSW, Level 3, GPO Box 5364, SYDNEY NSW 2001

pot? See page 5 of the Guidance Notes.

- Dangerous Goods Storage Complete one section per depot.

more depots than the space provided, photocopy sufficient sheets first.

apot	ve more depots than the s	ae 5)	Depot Class	Maximum storage capacity
umber	FORKLIPT REFILLING	TANK	211	12,000 estre
UN	Proper Shipping Name	Pi Class (I, II	G Produ	uct or Typical Unit, e.g on name quantity L, kg, m
Number	higue Ped Petroleum	2.1 7	I LP Cas	7500 l
1015	Liquie Red Petroleun	2.1 3	I LP Gas	\$ 4500 e
(0 1)	Gas		Depot	Maximum
Depot	Type of depot (see p	age 5)	Class	storage capacity
1000	Ale took		21	7500 C


	T of danot (SPA D)	age 5)	Class	310149	capacity	4-1-
Number	Type of depot (see pa		21	7.	200	7.7.5
UN Number	Proper Shipping Name	PG Class (I, II, III)	Produ common	ct or name	Typical Ur quantity L,	nit, e , kg,
WIT	UP6				7500	

Depot	Type of depot (see p	age 5)	Depot Class	Maximum storage capacity	/
Number 82	A/G tank	PG	2 I	et or Typica quanti	
UN Number	Proper Shipping Name	Class (I, II, III	common .	name quant	
1032	46	72.1			

Depot Number	Type of depot (see p	age 5)	Depot Class	Maxi storage	mum capacity	
UN Number	Proper Shipping Name	PG Class (I, II, III)	Produc common	ct or name	Typical quantity	Unit, e.g L, kg, r

Appendix K Woodward-Clyde (2000) Figure

LEGEND

SB SOIL BORING LOCATIONS

COMPOSITED SOIL SAMPLES

BORAL RESOURCES (NSW) PTY LTD SITE PLAN BORAL BESSER MASONARY CLUNIES ROSS ROAD, **GREYSTANES** DESIGNED: BAD APPROVED: PROJECT: 21987-038 DRAWN: JT DATE: CAD FILE: SYDOO! metres CHECKED: STATUS: FINAL REVISION: A

This drawing is majoral to COPINIONE. It remains the property of UNS Assiste My LM

Appendix L Detailed QA/QC Assessment

Detailed QA/QC Assessment

QA/QC Results

The QA/QC result for soil samples collected are summarised in **Table L** and discussed below. Detailed QA/QC results are included following the discussion of DQI exceedances below.

Table L QA/QC Results Summary

Data Quality Indicator	Results	DQO met?
Precision		
Blind duplicates (intra laboratory)	N/A ¹	N/A ¹
Blind duplicates (inter laboratory)	N/A ¹	N/A ¹
Laboratory duplicates	<50% RPD	Partial ¹
	Intra laboratory samples were analysed at a rate of 9 in 12	
	soil samples and 2 of 1 water sample.	
Accuracy		
Laboratory control samples (LCS)	70-130% recovery	Yes
	Laboratory control samples were completed at a suitable density with respect to laboratory batch size and sample	
	analyses.	
Surrogate spikes	54-69%	Partial ¹
	Surrogate spikes were completed for all organic sample	
	analyses.	
Matrix spikes	30-150% recovery	Partial ¹
	Matrix spikes were completed at a suitable density with	
	respect to laboratory batch size and sample analyses.	
Representativeness		
Samples extracted and analysed within holding times	All primary and duplicate samples were extracted within appropriate holding times.	Yes
Sampling appropriate for media and	Samples were collected using appropriate methodology with	Yes
analytes	regard to the sample media and analytes (volatile, semi-	res
,	volatile and low volatility organics and inorganics).	
Trip spike/trip blank	N/A¹	N/A ¹
Rinsate blank	<lor< td=""><td>Yes</td></lor<>	Yes
	One completed per sampling event and associated	
	laboratory batch.	
Standard operating procedures used for	Standard operating procedures used as listed in Section 7	Yes
sample collection and handling Comparability	adopted for all sampling events and samples collected.	
Standard analytical methods used for all	Standard analytical methods used as listed in Appendix N	Yes
analyses	Standard analytical methods used as listed in Appendix N	163
Consistent field conditions, field staff	Sampling was conducted by the same field staff member in	Yes
and laboratories	the investigation. Standard operating procedures were	
	implemented throughout the works. Field conditions	
	remained consistent with those anticipated in development	
Limits of reporting appropriate and	of the SAQP throughout the works. Limits of reporting were consistent and appropriate.	Yes
consistent	Limits of reporting were consistent and appropriate.	res
Completeness		
Soil description and COCs completed	All field documentation and COCs were completed	Yes
and appropriate	appropriately.	
Appropriate documentation	All field documentation was appropriately completed.	Yes
Satisfactory frequency and result for QC	The QC results are considered adequate for the purposes of	Yes
samples	the investigation.	
Data from critical samples	Samples were analysed at locations designed to address the	Yes
	requirements of the investigation such that a suitable data	

Data Quality Indicator	Results	DQO met?
	set could be established. All critical samples were analysed for appropriate COPC and the QA/QC assessment confirmed the reliability of this data.	
Sensitivity		
Analytical methods and limits of recovery appropriate for media and adopted site assessment criteria	Analytical methods and limits of recovery were considered appropriate for media and adopted site validation criteria for all soil analytes.	Yes

Notes: 1. See discussion below for notes

Discussion of QA/QC Results

Precision

Blind Duplicates

No blind duplicates were prepared as part of the investigation outlined herein, however noting that the COPC were generally reported below the LOR and/or slightly above and noting that the reported results were generally consistent with those reported by previous investigations, this omission is not considered to affect the precision of the results.

Laboratory Duplicates

The rate of laboratory duplicate analysis is within the JBS&G acceptance criteria of 1 in 20 samples. RPDs were generally within the JBS&G DQI of <50 % RPD with the exception of the following:

- Lab duplicate S20-Ma22896-DUP, parent sample TP202 0.0-0.1 with an RPD of 52% for nickel and 57% for zinc;
- Lab duplicate NCP_Ma24797_707966-DUP, parent sample unknown with an RPD of 75% for TRH C15-C28:

Slightly elevated RPDs can be expected due to the heterogeneity of the materials analysed and composition (organic material (sources of TRH) and local bedrock (nickel and zinc) and are therefore not considered to affect the reliability of the data set.

Accuracy

Laboratory Control Samples

A total of 8 LCS were conducted which met the DQIs for soil sampling (1 in 20).

All LCS were reported as having recoveries within the JBS&G acceptable range of 70-130%.

Surrogate Spikes

Surrogate spikes were conducted in conjunction with organic contaminant analysis of all samples. Some of the surrogate spikes reported recoveries were not within the JBS&G acceptable range of 70-130%,(30-150%) yet the surrogate spike recoveries outside of the target range are not considered to affect the analytical data set as concentrations in validation samples were close to or below the laboratory's LOR and/or within the laboratories NATA accredited limits (50-150%).

Matrix Spikes

All matrix spikes reported recoveries were within the JBS&G acceptable range of 70 % – 130 %.

Representativeness

Sampling appropriate for media and analytes

All sampling works completed during the investigation were conducted in accordance with JBS&G standard operating procedures as outlined in the SAQP. Sample locations were undertaken for the

purposes of visual inspection and/or olfactory assessment of soil/rock conditions and the collection of samples was considered appropriate for identified COPC.

All samples were collected wearing a new pair of disposable nitrile gloves. Where possible, disturbance of the sample was minimised during placement within the laboratory supplied sample container and during shipment to reduce the potential for loss of VOCs within the samples.

Holding Times

Copies of Sample Receipt Notes (SRNs) are included in relevant sections of the report (**Appendix N**) and sample extraction/analysis dates were reported in each laboratory report. All soil analyses were undertaken within appropriate holding times for the respective analytes.

Trip Spike and Trip Blank

No trip spikes or blanks were prepared or analysed as part of the additional investigation outlined here. Samples were received by the laboratory in a chilled condition and were immediately transferred to chilled containers in the field. All measures were taken to eliminate the potential loss of volatile contaminates by appropriately experienced field personnel.

Rinsate Blank

Rinsate samples were prepared during the sampling event and subsequently submitted with the sample lab batch for analysis for key COPC. All subsequent contaminant concentrations were below the laboratory LOR with the exception of nickel, reported at 0.002 mg/L, marginally above the LOR (0.001 mg/L). Noting the total contaminant mass reported in soil samples collected as part of the investigation, and in the absence of elevated nickel concentrations exceeding the adopted site criteria, the low level reported nickel result in the rinsate is considered not to effect the representativeness of the data set.

Decontamination Comparability

All non-single use field equipment was decontaminated as per the procedure identified in **Section 7.2**.

Experienced JBS&G personnel undertook all sampling in accordance with standard JBS&G sampling methods as nominated in the validation SAQP.

The laboratory LORs are consistent and are considered appropriate.

Comparability

Eurofins, the primary laboratory were NATA accredited for all analytical methods used. The laboratories used similar analytical methods and the analytical data was considered to be comparable between the laboratory duplicate analyses.

Furthermore, the samples collected for assessment/validation purposes are considered comparable as all samples were collected by experienced JBS&G personnel in accordance with standard JBS&G sampling methods.

Completeness

Documentation

All laboratory documentation is complete and correct. Chain of custody documentation is provided with laboratory reports in **Appendix N.**

Frequency for QC Samples

The frequency of analysis of all QC samples was considered appropriate and valid.

Assessment of QA/QC

The field sampling and handling procedures produced QA/QC results which indicate that the collected soil analytical data are of an acceptable quality and suitable for use in site the characterisation/validation assessment.

The NATA certified laboratory results sheets indicate that the project laboratory was generally achieving levels of performance within its recommended control limits during the period when the samples for this project were analysed.

On the basis of the results of the field and laboratory QA/QC program, the soil data is of an acceptable quality in order to achieve the objectives of the current assessment.

Appendix M Soil Borelogs

Project Number: 58238

Client: ISPT/Aliro Management

Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Silt - dark brown, heterogeneous, moist, low plasticity, firm with inclusions of roots	TP200 0.0-0.1	No odours, staining or ACM noted.
	_	0.15		Fill	Shale - dark grey, heterogeneous, dry, medium density, cobble sized with inclusions of silt	TP200 0.2-0.3	No odours, staining or ACM noted.
	0.5	0.40		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, dry with inclusions of rootlets and weathered dolerite fragments		_
	-					TP200 0.5-0.7	No odours, staining or ACM noted.
	-						
	1 <u>.0</u>						
	_						
	_	1.20			Testpit TP200 terminated at 1.2m		
	1 <u>.5</u>						
	_						
	_						
	2 <u>.0</u>						
	_						

Project Number: 58238 Client: ISPT/Aliro Management

Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 1.7 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
l est Pit				Fill	Shale - dark grey, heterogeneous, damp, loose, coarse gravel to cobble sized with inclusions of fine silt	TP201 0.0-0.1	No odours, staining or ACM noted.
	-						
	0.5					TP201 0.4-0.5	No odours, staining or ACM noted.
	-						
	-					TP201 0.9-1.0	No odours, staining or ACM noted.
	1.0						
	+	1.20		Fill	Silt - dark brown, heterogeneous, damp to moist, low plasticity, firm with inclusions of		_
					roots	TP201 1.2-1.3	No odours, staining or ACM noted.
	1.5	1.40		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, dry with inclusions of rootlets and weathered dolorite fragments	TP201 1.4-1.5	No odours, staining or ACM noted.
	-						
		1.70	6X()		Testpit TP201 terminated at 1.7m		
	-						
	2.0						

Project Number: 58238

Client: ISPT/Aliro Management

Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 0.9 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Shale - dark grey, heterogeneous, moist, loose, coarse gravel to cobble sized with inclusions of fine silt	TP202 0.0-0.1	No odours, staining or ACM noted.
	0.5	0.30	A BOND BANDARA BANDARA	CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, dark brown, heterogeneous, stiff, dry with inclusions of rootlets and weathered dolorite fragments	TP202 0.4-0.5	No odours, staining or ACM noted.
	1.0	0.90			Testpit TP202 terminated at 0.9m		

Project Number: 58238 Client: ISPT/Aliro Management

Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
IL ISBI	-			Fill	Shale - dark grey, heterogeneous, damp, loose, coarse gravel to cobble sized with inclusions of fine silt	TP203 0.0-0.1	No odours, staining or ACM noted
	_						
	0.5					TP203 0.5-0.6	No odours, staining or ACM noted
	_						
	1.0						
	_					TP203 1.0-1.1	No odours, staining or ACM noted.
	_						
	1.5	1.50		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, dry with inclusions of rootlets and weathered dolerite fragments		
	_					TP203 1.6-1.7	No odours, staining or ACM noted
	2.0						
1	_	2.00			Testpit TP203 terminated at 2m		
	_						

Project Number: 58238 Client: ISPT/Aliro Management

Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
lest Pit	-			Fill	Shale - dark grey, heterogeneous, dry, medium density, cobble sized with inclusions of silt	TP204 0.0-0.1	No odours, staining or ACM noted.
	_						
	0.5					TP204 0.5-0.6	No odours, staining or ACM noted.
	+	0.70		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, dry with inclusions of rootlets and weathered dolerite fragments		
	1.0					TP204 0.9-1.0	No odours, staining or ACM noted.
	-	1.20			Testpit TP204 terminated at 1.2m		
	_						
	1.5						
	-						
	2.0						

Project Number: 58238 Client: ISPT/Aliro Managment

Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 1.3 **Reference Level:** Ground Surface

Method	Depth (mbgs)	Contact (mbgs) Graphic Log	Lithological	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_		Fill	Shale - dark grey, heterogeneous, dry, medium density, cobble sized with inclusions of silt	TP205 0.0-0.1	No odours, staining or ACM noted.
	0.5				TP205 0.4-0.5	No odours, staining or ACM noted.
	1.0	.80	CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, dry with inclusions of rootlets and weathered dolerite fragments	TP205 0.9-1.0	No odours, staining or ACM noted.
	1.5	.30		Testpit TP205 terminated at 1.3m		

Project Number: 58238

Client: ISPT/Aliro Management

Project Name: Prospect Logistics Estate **Site Address:** Clunies Ross St

Date: 09-Mar-20 Eastings (GDA 94): Logged By: RL Northings (GDA 94): Contractor: Ken Coles Zone/Area/Permit#: -

Total Hole Depth (mbgs): 0.9 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Shale - dark grey, heterogeneous, dry, medium density, cobble sized with inclusions of silt	TP206 0.0-0.1	No odours, staining or ACM noted.
	0.5	0.30		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, dry with inclusions of rootlets and weathered dolerite fragments	TP206 0.4-0.5	No odours, staining or ACM noted.
	1.0	0.90			Testpit TP206 terminated at 0.9m		
	1.5						
	_						
	2.0						

Project Number: 58238 Client: ISPT/Aliro Management

Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 0.9 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Silty CLAY - brown, heterogeneous, dry, low plasticity, firm, with inclusions of wood and grey shale gravels	TP207 0.0-0.1	No odours, staining or ACM noted.
		0.40		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, dry with inclusions of rootlets and weathered dolerite fragments	TP207 0.3-0.4	No odours, staining or ACM noted.
	0 <u>.5</u>					TP207 0.5-0.6	No odours, staining or ACM noted.
	1.0	0.90			Testpit TP207 terminated at 0.9m		

Project Number: 58238

Client: ISPT/Aliro Management
Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 1.9 **Reference Level:** Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
l est Pit				Fill	Silt - brown, heterogeneous, damp, non plastic, firm with inclusions of rootlets	TP208 0.0-0.1	No odours, staining or ACM noted.
	_ _ _ 0 <u>.5</u>	0.10		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, dry with inclusions of roots and weathered dolerite fragments	TP208 0.4-0.5	No odours, staining or ACM noted.
	_						
	1.0					TP208 0.9-1.0	No odours, staining or ACM noted
	_	1.30		CL	CLAY - dark brown, heterogeneous, damp, low plasticity, stiff		
	1.5					TP208 1.4-1.5	No odours, staining or ACM noted
	-						
	2.0	1.90			Testpit TP208 terminated at 1.9m		
	_						

Project Number: 58238

Client: ISPT/Aliro Management
Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Silt - brown, heterogeneous, damp, non plastic, firm with inclusions of roots	TP209 0.0-0.1	No odours, staining or ACM noted.
	0.5	0.15	GOLDEN GOLDEN	CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, low to medium plasticity, dry with inclusions of roots, shale gravels and weathered dolerite fragments	TP209 0.4-0.5	No odours, staining or ACM noted.
	_ _ _ 1 <u>.0</u>					TP209 0.9-1.0	No odours, staining or ACM noted.
	-	1.40	18 64 8 64 8 64 64 64 64 64 64 64 64 64 64 64 64 64	Cl	CLAV dark brown betarogeneous dama launtestisity stiff		
	1.5	1.40		CL	CLAY - dark brown, heterogeneous, damp, low plasticity, stiff	TP209 1.4-1.5	No odours, staining or ACM noted.
	-	2.00			Testpit TP209 terminated at 2m		

Project Number: 58238 Client: ISPT/Aliro Management

Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date: 09-Mar-20 Eastings (GDA 94): Logged By: RL Northings (GDA 94): Contractor: Ken Coles Zone/Area/Permit#: Total Hole Denth (mbgs): 1.5

Total Hole Depth (mbgs): 1.5 **Reference Level:** Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
ו בפו בוו				Fill	Silt - brown, heterogeneous, damp, non plastic, firm with inclusions of roots	TP210 0.0-0.1	No odours, staining or ACM noted
	0.5	0.10		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, brown, heterogeneous, stiff, low to medium plasticity, dry with inclusions of roots, shale gravels and weathered dolerite fragments	TP210 0.4-0.5	No odours, staining or ACM noted
	_						
	1.0					TP210 0.9-1.0	No odours, staining or ACM noted
	-	1.30		CL	CLAY - dark brown, heterogeneous, damp, low plasticity, stiff		
	1.5	1.50			Testpit TP210 terminated at 1.5m	TP210 1.4-1.5	No odours, staining or ACM noted
	_	1.50			Tooga 2.0 commaded at 1.0m		
	2.0						
	_						

Project Number: 58238 Client: ISPT/Aliro Management

Project Name: Prospect Logistics Estate

Site Address: Clunies Ross St

Date:09-Mar-20Eastings (GDA 94): -Logged By:RLNorthings (GDA 94): -Contractor:Ken ColesZone/Area/Permit#: -

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
lest Pit	-			Fill	Silt - brown, heterogeneous, damp, non plastic, firm with inclusions of roots	TP211 0.0-0.1	No odours, staining or ACM noted.
	0.5	0.30		CL-GC	Silty CLAY - silty clay, brown, heterogeneous, stiff, non plastic, damp with inclusions of roots and weathered dolerite fragments from 0.6 m bgs	TP211 0.3-0.4	No odours, staining or ACM noted.
	- - -					TP211 0.7-0.8	No odours, staining or ACM noted.
	1.0	1.00	1861		Testpit TP211 terminated at 1m		
	1.5						
	_						
	2 <u>.0</u>						
	_						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
lest Pit				Fill	Reworked Topsoil Silty CLAY, dark brown, dry, heterogeneous, with inclusions of roots and rootlets and whole brick at the surface.	AQ01 0-0.1 PID = 0.4 ppm	AQ (0.0-0.1) 10L No ACM. No odours or staining.
<u> </u>		0.10		CL-ML	Silty CLAY, dark brown, mottled, pedal, moist, heterogeneous, firm, low to moderate plasticity.	AQ01 0.1-0.6 PID = 0.4 ppm	No odours, staining or ACI
	1.0	0.60		CL-ML	Silty CLAY, light brown-tan, moist, heterogeneous, well consolodated (firm) with inclusions of highly weathered dolorite.	AQ01 0.6-1.3 PID = 1.2 ppm	No odours, staining or ACI
	1.5	1.50			Test Pit AQ01 terminated at 1.5m		
	_ _ _ _ 2.5						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded with inclusions of whole brick at the surface.	AQ02 0.0-0.2 PID = 1.6 ppm	AQ (0-0.1) 10L No ACM. N odours or staining.
	0.5	0.20		CL-ML	Silty CLAY, red-brown, moist, heterogeneous, soft, medium plasticity.		AQ 10L (0.2-1.2) No ACM. No odours or staining.
	1 <u>.0</u>	0.80		CL-ML	Silty CLAY, As above grades to light brown, moist, homogenous, firm at depth	AQ02 0.6-1.1 PID = 1.2 ppm	No ACM. No odours or staining.
	-	1.20			Test Pit AQ02 terminated at 1.2m		
	1 <u>.5</u> _						
	2.0						
	_						
	2.5						
	-						
	3.0						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.7 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Pit	Dime	ensio	n (m3): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Reworked Topsoil Silty CLAY, dark brown, dry, heterogeneous, with inclusions of roots and rootlets, shale and whole brick at the surface.	AQ03 0.0-0.1 PID = 0.9 ppm	AQ (0-0.1)10L No ACM. No odours or staining.
Te	0.5	0.10		CL-ML	Silty CLAY, dark brown, mottled, pedal, moist, heterogeneous, firm, low to moderate plasticity.	AQ03 0.1-0.6 PID = 1.1 ppm	AQ (0.1-0.7) 10L No ACM. No odours or staining.
	1 <u>.0</u>	0.70		CL-ML	Silty CLAY, light brown-tan, moist, heterogeneous, well consolodated (firm) with inclusions of highly weathered dolorite.	AQ03 0.7-1.7 PID = 1 ppm	AQ (0.7-1.7) 10L No ACM. No odours or staining.
	2.0	1.70			Test Pit AQ03 terminated at 1.7m		
TEST THE SECOND CONTRACTOR OF A CONTRACTOR OF	2.5 — — — — 3.0						
	3.0						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 3 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

"	Dillic	6113101	n (m3)	. 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.	AQ04 0.0-0.2 PID = 3.2 ppm	AQ (0-0.2) 10L No ACM. No odours or staining.
	0.5	0.20		Fill	Reworked Silty CLAY, dark brown/black, dry, heterogeneous, medium plasticity, stiff with inclusions of crushed shale and small gravels.	AQ04 0.2-0.6 PID = 2.1 ppm	AQ (0.2-0.6) 10L No ACM. No odours or staining.
	1.0	0.60		Fill	Reworked Silty CLAY, red-brown, damp, heterogeneous, low plasticity, stiff with inclusions of crushed shale and small gravels.	AQ04 0.6-1.3 PID = 1.2 ppm	AQ (0.6-1.3) 10L No ACM. No odours or staining.
	-	1.30		Fill CL-ML	FILL Silty GRAVEL, medium sized (100 - 200 mm) basalt gravels, rounded - sub angular. Silty CLAY, light brown-tan, moist, heterogeneous, well consolodated (firm) with inclusions of highly weathered dolorite.		No ACM. No odours or staining.
	1 <u>.5</u> _ _					AQ04 1.4-2.4	AQ (1.4-2.4) 10L No ACM.
	2 <u>.0</u>					PID = 8.9 ppm	AQ (1.4-2.4) 10L No ACM. No odours or staining.
	2 <u>.5</u>						
	3.0	3.00			Test Pit AQ04 terminated at 3m		

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.5 **Reference Level:** Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, brown, moist, heterogeneous, firm, low plasticity with inclusions of brick plastic, metal, glass and ACM.	AQ05 0.0-0.2 PID = 0.1 ppm	No Surficial ACM AQ (0-0.2) 10L ACM = 0.0110 %w/w. No odours or staining.
	_	0.20		Fill	Fill Gravelly CLAY, grey, dry, non-plastic, hard, heterogeneous with inclusions of very small well graded lithic gravels.	AQ05 0.2-0.4 PID = 2.3 ppm	AQ (0.2-0.4) 10L No ACM. No odours or staining.
	0.5	0.40		Fill	Fill Silty CLAY, brown, moist, heterogeneous, firm, low plasticity with inclusions of mino plastic, metal, glass and ACM.	AQ05 0.4-0.5 PID = 1.2 ppm	AQ (0.4-0.5) 10L ACM = 0.0055 %w/w. No odours or staining.
	-	0.50		Fill	Reworked Silty CLAY, light brown-tan, moist, heterogeneous, with inclusions of highly weathered dolorite	AQ05 0.5-0.9 PID = 1 ppm	AQ (0.5-0.9) 10L No ACM. No odours or staining.
	1 <u>.0</u>	0.90		Fill	Reworked Silty CLAY, brown, damp, heterogeneous with inclusions of igneouos (basalt) rock fragments, and shale.	AQ05 0.9-1.0 PID = 0.9 ppm	AQ (0.9-1.0) 10L No ACM. No odours or staining.
	1.5 2.0 - 2.5	1.00		CL-ML	Silty CLAY, red-brown grading to light brown-tan, moist, heterogeneous, well consolodated (firm) with inclusions of highly weathered dolorite.	AQ05 1.0-2.0 PID = 0.5 ppm	AQ (1.0-2.0) 10L No ACM No odours or staining.
	3.0	2.50	,,,,,,		Test Pit AQ05 terminated at 2.5m		

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.1 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-	0.20		Fill CL-ML	Reworked Topsoil Silty CLAY, dark brown, dry, heterogeneous, with inclusions of roots and rootlets and whole brick at the surface. Silty CLAY, dark brown grading to red brown, mottled, pedal, moist, heterogeneous, firm, low to moderate plasticity.	AQ06 0-0.2 PID = 0.7 ppm	AQ (0-0.2)10L No ACM. N odours or staining.
	- 0.5 -				firm, low to moderate plasticity.	AQ06 0.2-0.6 PID = 0.3 ppm	AQ (0.2-1.1) 10L No ACM No odours or staining.
	- - 1 <u>.0</u>					AQ06 0.6-1.1 PID = 1.3 ppm	No odours, staining or AC
	- - 1 <u>.5</u>	1.10			Test Pit AQ06 terminated at 1.1m		
	- 2.0 -						
	3 <u>.0</u>						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.4 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

"	ווווע	2115101	1 (1113)): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- -			Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded with inclusions of whole brick at the surface.	AQ07 0.0-0.4 PID = 2.5 ppm	AQ (0-0.4) 10L No ACM. No odours or staining.
	0.5	0.40		CL-ML	Silty CLAY, dark brown, mottled, pedal, moist, heterogeneous, firm, low to moderate plasticity.	AQ07 0.4-0.7 PID = 1.2 ppm	AQ (0.4-0.7) 10L No ACM. No odours or staining.
	- -	0.70		CL-ML	Silty CLAY, light brown-tan, moist, heterogeneous, well consolodated (firm) with inclusions of highly weathered dolorite.		
	1 <u>.0</u> _					AQ07 0.7-1.4 PID = 0.4 ppm	No odours, staining or ACM
	1.5	1.40			Test Pit AQ07 terminated at 1.4m		
	- - -						
	2.0						
	_ _ _ 2 <u>.5</u>						
	-						
	3.0						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

PIL	ווווט	ensioi	n (ms): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Reworked Topsoil Silty CLAY, brown, dry, heterogeneous, with inclusions of roots and rootlets and whole brick at the surface.	AQ08 0.0-0.1 PID = 0.2 ppm	ACM observed at surface, no odours or staining.
Te	0.5	0.10		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.	AQ08 0.1-0.5 PID = 1.1 ppm	AQ (0.1-0.5) 10L No ACM. No odours or staining.
	- - - 1.0	0.50		CL-ML	Silty CLAY, red-brown grading to light brown-tan, moist, heterogeneous, well consolodated (firm) with inclusions of highly weathered dolorite.	AQ08 0.5-1.0 PID = 1.5 ppm	AQ (0.5-1.2) 10L No ACM. No odours or staining.
	_					AQ08 1.0-1.2 PID = 0.4 ppm	No odours, staining or ACM
		1.20			Test Pit AQ08 terminated at 1.2m		
	1.5						
	2.0						
	_						
	_						
	_						
	_						
	2 <u>.5</u>						
	_						
	_						
	-						
	_						
	3.0						
	_						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 3 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Щ,							
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- - -			Fill	Fill Silty CLAY, brown, moist, heterogeneous, soft, with a high percentage of anthropogenic building waste, brick, concrete, scrap metal, plastic sheeting		No Surficial ACM. No odours staining.
	0.5					AQ09 0-1.0 PID = 0.2 ppm	AQ (0-1.0) 10L No ACM. No odours or staining.
	1 <u>.0</u>					AQ09 1.0-1.5 PID = 0.1 ppm	AQ (1.0-1.5) 10L No ACM. No odours or staining.
	_ _ _ _ _ 2.0	1.50		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ09 1.5-2.4 PID = 3.4 ppm	AQ (1.5-2.4) 10L No ACM. No odours or staining.
	- - -						
	2 <u>.5</u>						
	3.0	3.00	1882		Test Pit AQ09 terminated at 3m		

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

	Dimension (ma): 400			Lievation (iii).			
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Silty CLAY, brown, damp, heterogeneous, loose with inclusions of shale and trace road base gravels.	AQ10 0-0.1 PID = 1.2 ppm	ACM observed at surface, no odours or staining.
	_ _ _					AQ10 0.1-0.5 PID = 1.5 ppm	AQ (0.1-0.5) 10L No ACM. No odours or staining.
	0.5	0.50		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, damp, heterogeneous, poorly graded.	AQ10 0.5-0.7 PID = 1.3 ppm	AQ (0.5-0.7) 10L No ACM. No odours or staining.
	1.0	0.70		Fill	Reworked Silty CLAY, light brown-tan, moist, heterogeneous, with inclusions of highly weathered dolomite and very minor shale.	AQ10 0.7-1.6 PID = 1.2 ppm	AQ (0.7-1.6) 10L No ACM. No odours or staining.
		1.60		CL-ML	Silty CLAY, red-brown grading, moist, heterogeneous, medium plasticity, well consolodated (firm) with inclusions of highly weathered dolorite toward the base	AQ10 1.6-2.0 PID = 5.2 ppm	No odours, staining or ACM
	_	2.00			Test Pit AQ10 terminated at 2m		
	2 <u>.5</u>						
	3.0						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.4 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

• ••	Pit Dimension (m3): 450				Elevation (m):					
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations			
Test Pit	_			Fill	Fill silty GRAVEL, grey crushed concrete, granular, dry, heterogeneous.	AQ11 0-0.2 PID = 2.3 ppm	AQ (0-0.2) 10L No ACM. No odours or staining.			
	_	0.20		Fill	Reworked Silty CLAY, red-brown, damp, heterogeneous, low plasticity, stiff with inclusions of crushed shale and small gravel.					
	0 <u>.5</u>					AQ11 0.2-0.7 PID = 1.3 ppm	AQ (0.2-0.7) 10L No ACM. No odours or staining.			
	_	0.70		CL-ML	Silty CLAY, red-brown, moist, heterogeneous, soft, medium plasticity.					
	1 <u>.0</u> –					AQ11 0.7-1.4 PID = 0.9 ppm	AQ (0.7-1.4) 10L No ACM. No odours or staining.			
	1 <u>.5</u>	1.40			Test Pit AQ11 terminated at 1.4m					
	_									
	2 <u>.0</u>									
	_									
	2 <u>.5</u>									
	3.0									
	_									

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

	Pit Dimension (m3): 450			1: 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Reworked Silty CLAY, dark brown, dry, heterogeneous, stiff with inclusions of shale, roots and rootlets and whole brick at the surface.	AQ12 0-0.6 PID = 2.6 ppm	No Surficial ACM. No odours, staining. AQ (0-0.6) 10L No ACM. No odours or staining.
	0 <u>.5</u>	0.60		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) with inclusions of highly weathered dolorite.		
	1 <u>.0</u>					AQ12 0.6-1.1 PID = 2.1 ppm	AQ (0.6-1.1) 10L No ACM. No odours or staining.
	1.5	1.50			Test Pit AQ12 terminated at 1.5m	AQ12 1.1-1.5 PID = 3.5 ppm	No ACM. No odours, staining.
	_	1.30			Test II Ag 12 tellillillace at 1.5iii		
	<u>2.0</u>						
	3.0						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): .7 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

FIL	Dillie	5113101	1 (1113)): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Reworked Topsoil Silty CLAY, dark brown, dry, heterogeneous, with inclusions of roots and rootlets, shale, ceramic and whole brick at the surface.	AQ13 0-0.1 PID = 4.1 ppm	ACM observed at surface, no odours or staining.
Ţ	_					AQ13 0.1-0.3 PID = 1.6 ppm	AQ (0.1-0.3) 10L No ACM. No odours or staining.
		0.30		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		AQ (0.3-0.7) 10L No ACM. No odours or staining.
	0.5					AQ13 0.3-0.7 PID = 1.3 ppm	
		0.70	1		Test Pit AQ13 terminated at 0.7 m		
	1.0						
	_						
	-						
	4.5						
	1.5						
	_						
	_						
	2.0						
	-						
	-						
	-						
	2 <u>.5</u>						
	_						
	-						
	-						
	3.0						
	-						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

			(): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ14 0.0-0.1 PID = 1 ppm	ACM observed at surface, no odours or staining.
_	_					AQ14 0.1-0.4 PID = 1.8 ppm	AQ (0.1-0.4) 10L ACM = 0.0515 %w/w. No odours or staining.
	0.5	0.40		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.		
	_	0.60		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
	- 1 <u>.0</u>					AQ14 0.6-1.1 PID = 0.3 ppm	AQ (06-0.1.1) 10L No ACM. No odours or staining.
	-						
	1.5						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 3 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Fill Sily CLAY, potentially reworked natural red-brown grading to light brown-tan, most. 1.20 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.50 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.60 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading to light brown-tan, most. heterogeneous 1.70 CL-ML Sily CLAY, potentially reworked natural, red-brown grading		Lievation (III).						
ACI S 0.1-0.5 O.5 O.5 CLAML Sity CLAY, potentially reworked natural red-brown, molet, heterogeneous, early, moletum,	Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Tests	Additional Observations
ACI S 0.1-0.5 O.5 O.5 CLAML Sity CLAY, potentially reworked natural red-brown, molet, heterogeneous, early, moletum,	Test Pit				Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ15 0-0.1 PID = 3.4 ppm	ACM observed at surface, no odours or staining.
0.50 CL-ML Sity CLAY, potentially reworked natural red-brown, moist, heterogeneous, soft, medium plasticity. ACIS 0.5-1.2 PID = 0.3 ppm ACM. No odours of staining or ACM. No odours, staining or ACM. Sity CLAY, potentially reworked natural, red-brown grading to light brown-tan, moist. 1.0 CL-ML Sity CLAY, potentially reworked natural, red-brown grading to light brown-tan, moist. ACIS 1.2-1.6 PID = 1.3 ppm ACIS 1.2-1.6 PI		-						AQ (0.1-0.5) 10L ACM = 0.0497 %w/w. No odours or staining.
1.0 1.20 CL-ML Silty CLAY, potentially reworked natural, red-brown grading to light brown-tan, moist, heterogeneous AQ15 12-1.6 PID = 1.3 ppm 1.60 CL-ML Silty CLAY, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite. AQ15 25-3.0 PID = 4.1 ppm No odours, staining or ACM		- -	0.50		CL-ML	Silty CLAY, potentially reworked natural red-brown, moist, heterogeneous, soft, medium plasticity.	10/50540	AO (0.5-1.2) 101 No ACM
helerogeneous AQ15 1.2-1.6 PID = 1.3 ppm 1.5 CL-ML Sity CLAY, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite. 2.0 AQ15 2.5-3.0 PID = 4.1 ppm No odours, staining or ACM		1 <u>.0</u>					AQ15 0.5-1.2 PID = 0.3 ppm	No odours or staining.
2.0 2.0 2.5 AQ15.2.5-3.0 PID = 4.1 ppm No odours, staining or ACM		1.5	1.20		CL-ML	Silty CLAY, potentially reworked natural, red-brown grading to light brown-tan, moist, heterogeneous	AQ15 1.2-1.6 PID = 1.3 ppm	No odours, staining or ACM
AQ15 2.5-3.0 PID = 4.1 ppm No odours, staining or ACM		- - -	1.60		CL-ML	Silty CLAY, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
AQ15 2.5-3.0 PID = 4.1 ppm No odours, staining or ACM		2.0						
PID = 4.1 ppm		2.5						-
		3.0					AQ15 2.5-3.0 PID = 4.1 ppm	No odours, staining or ACM
		3.0	3.00			Test Pit AQ15 terminated at 3m	_	

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

	Pit Dimension (m3): 450			. 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- -			Fill	Fill Silty CLAY, brown, dry, heterogeneous, low plasticity with inclusions of shale, asphalt, and road base gravel.		No Surficial ACM. No odours, staining. AQ (0-0.6) 10L No ACM. No odours or staining.
	0.5	0.60		Fill	Reworked Silty CLAY, dark brown/black, dry, heterogeneous, medium plasticity, stiff		
	-				Reworked Silty CLAY, dark brown/black, dry, heterogeneous, medium plasticity, stiff with inclusions of crushed shale.	AQ16 0.6-0.8 PID = 3.5 ppm	AQ (0.6-0.8) 10L No ACM. No odours or staining.
	<u> </u>	0.80		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ16 0.8-1.0 PID = 4.3 ppm	AQ (0.8-1.0) 10L No ACM. No odours or staining.
	-					AQ16 1.0-1.5 PID = 5.1 ppm	No odours, staining or ACM
	1.5 - -	1.50			Test Pit AQ16 terminated at 1.5m		
	- 2.0 -						
	- 2.5						
	_ _ _ 3.0						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

FIL	Pit Dimension (m3): 450			1. 450	Elevation (m):				
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations		
Test Pit	-			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.		ACM observed at surface, no odours or staining. QC04/A collected.		
	0 <u>.5</u>					AQ17 0.1-0.6 PID = 2.4 ppm	AQ (0.1-0.6) 10L ACM = 0.0202 %w/w. No odours or staining.		
	- -			CL-ML	Silty CLAY, potentially reworked natural, red-brown grading to light brown-tan, moist, heterogeneous				
	1 <u>.0</u> _								
	_ _ 1 <u>.5</u>								
	-	1.80			Test Pit AQ17 terminated at 1.8m	AQ17 1.5-1.8 PID = 1.4 ppm	No odours, staining or ACM		
	2.0 —	1.00			restricted in tellimated at 1.011				
	- 2 <u>.5</u> -								
	_ 3 <u>.0</u>								

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 3 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, igneous road base gravel, shale and ACM.	AQ18 0-0.1 PID = 2.8 ppm	ACM observed at surface, odours or staining.
	_ _ _ 0 <u>.5</u>					AQ18 0.1-0.6 PID = 2.6 ppm	AQ (0.1-0.6) 10L ACM = 0.0110 %w/w. No odours or staining.
	1.0	0.60		CL-ML	Silty CLAY, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolerite.	AQ18 1-1.1 PID = 0.2 ppm	No odours or staining or ACM
						AQ18 2-2.1 PID = 3.2 ppm	No odours or staining or ACM
						AQ18 2.4-2.5 PID = 8.5 ppm	No odours or staining or ACM
+	3.0	3.00	1881		Test Pit AQ18 terminated at 3m		

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.9 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

"	-		(1113)): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- -			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ19 0-0.1 PID = 1 ppm	ACM observed at surface, no odours or staining.
	0.5					AQ19 0.1-0.9 PID = 2 ppm	AQ (0.1-0.9) 10L ACM = 0.0497 %w/w. No odours or staining.
	1.0	0.90		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
	- 1 <u>.5</u> - -					AQ19 0.9-1.9 PID = 3.8 ppm	AQ (0,9-1.9) 10L No ACM. No odours or staining.
	2.0	1.90	1888		Test Pit AQ19 terminated at 1.9m		
	_						
	_						
	2 <u>.5</u>						
	3.0						

Project Number: 56047 Client: Cumberland Council

Project Name: Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.1 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

```	Dillie	5113101	11 (1113)	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- -			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ20 0-0.1 PID = 4.4 ppm	ACM observed at surface, no odours or staining.
	0.5 —					AQ20 0.1-1.1 PID = 7.2 ppm	AQ 1(0.1-1.1) 0L ACM = 0.0423 %w/w. No odours or staining.
	1.0	1.10 1.15		Fill CL-ML	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.		
	- - 1 <u>.5</u>	1.15		CL-WL	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ20 1.1-2.1 PID = 6.1 ppm	AQ (1.1-2.1) 10L No ACM. No odours or staining.
	_ _ 2 <u>.0</u>						
	- - -	2.10			Test Pit AQ20 terminated at 2.1m		
	2.5 _ _						
	3 <u>.0</u>						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of scrap metal, concrete, plastic sheeting and brick.		No Surficial ACM. No odou staining.
	0.5					AQ21 0-0.7 PID = 3.1 ppm	AQ (0-0.7) 10L No ACM. Nodours or staining.
	<del>-</del>	0.70		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		No odours, staining or AC
	1 <u>.0</u>					AQ21 0.7-1.2 PID = 3.2 ppm	
	- - 1.5						
	_	1.50			Test Pit AQ21 terminated at 1.5m		
	2.0						
	_ _ _						
	2 <u>.5</u>						
	- -						
	3.0						



# **AQ21-A**

Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.4 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

	Dillie	ensio	1 (1113)	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of scrap metal, concrete, plastic sheeting and brick.	AQ21-A 0-0.1 PID = 5.1 ppm	No Surficial ACM. No odours or staining.
	- 0.5					AQ21-A 0.1-0.6 PID = 2.1 ppm	AQ (0-0.6) 10L No ACM. No odours or staining.
	- -	0.60		Fill	Fill Silty CLAY, brown, as above with less anthropogenic material and inclusions of crushed shale	AQ21-A 0.6-1.1 PID = 3.2 ppm	AQ (0.6-1.1)10L No ACM. No odours or staining.
	1 <u>.0</u>	1.10		CL-ML	Silty CLAY, dark brown grading to red brown, mottled, pedal, moist, heterogeneous, firm, low to moderate plasticity.	PID = 3.2 ррпп	
	-	1.40			Test Pit AQ21-A terminated at 1.4m	AQ21-A 1.1-1.4 PID = 1.5 ppm	No odours, staining or ACM
	1 <u>.5</u> _						
	_ _ 2.0						
	- -						
	_ 2 <u>.5</u> _						
	- - -						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.4 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

			(	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ22 0-0.1 PID = 2.4 ppm	ACM observed at surface, no odours or staining.
Ţ	- 0.5					AQ22 0.1-0.5 PID = 2.5 ppm	AQ (0.1-0.5) 10L No ACM. No odours or staining.
	-	0.50		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.	AQ22 0.5-0.8 PID = 2.8 ppm	AQ (0.5-0.8) 10L No ACM. No odours or staining.
	1.0	0.80		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ22 0.8-1.4 PID = 3.1 ppm	No odours, staining or ACM
	1.5	1.40			Test Pit AQ22 terminated at 1.4m		
	_ _ 2.0						
	- - -						
	2 <u>.5</u>						
	3.0						
	_						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ23 0.0-0.1 PID = 1.8 ppm	ACM observed at surface, odours or staining.
	0.5	0.70		OL MI		AQ23 0.1-0.7 PID = 3.8 ppm	AQ (0.1-0.7) 10L No ACM No odours or staining.
	1 <u>.0</u>	0.70		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ23 0.7-1.2 PID = 4.1 ppm	No odours, staining or AC
	1.5 - - - 2.0	1.50			Test Pit AQ23 terminated at 1.5m		
	2.5						
	_ _ _ 3 <u>.0</u>						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.1 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

ΓIL	Dillie	5113101	11 (1113	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ24 0.0-0.1 PID = 0.5 ppm	ACM observed at surface, no odours or staining.
<b>+</b>	_ _ _ 0.5						
	0.5					AQ24 0.1-1.1	AQ (0.1-1.1) 10L ACM = 0.0883 %w/w.
	_					PID = 0.5 ppm	No odours or staining.
	-						
	1 <u>.0</u>						
	_						
	-						AO (1.1.1.5) 101 ACM -
	-					AQ24 1.1-1.5 PID = 1.3 ppm	AQ (1.1-1.5) 10L ACM = 0.0092 %w/w. No odours or staining.
	1.5	1.50		CL-ML	Silty CLAY potentially reworked natural light brown-tan moist heterogeneous well		
	- -				Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
	-					AQ24 1.5-2.1 PID = 1.4 ppm	No odours, staining or ACM
	2.0						
		2.10			Test Pit AQ24 terminated at 2.1m		
	-						
	2 <u>.5</u>						
	-						
	_						
	3.0						
	-						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.9 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

"	Dillie	5115101	n (m3)	. 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ25 0-0.1 PID = 1.2 ppm	ACM observed at surface, no odours or staining.
	- -						
	0.5					AQ25 0.1-1.1 PID = 0.5 ppm	AQ (0.1-1.1) 10L No ACM. No odours or staining.
	-					115 – 6.3 руш	No occurs or staining.
	1.0						
	- - -					AQ25 1.1-1.4 PID = 1.1 ppm	AQ (1.1-1.4) 10L No ACM. No odours or staining.
	1 <u>.5</u>	1.40		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ25 1.4-1.9 PID = 1.1 ppm	No odours, staining or ACM
	_						
	2.0	1.90			Test Pit AQ25 terminated at 1.9m		
	_						
	2.5 –						
	- - -						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

			()	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, grey, dry, heterogeneous, loose, with inclusions of plastic, ceramic, and crushed concrete.	AQ26 0.0-0.2 PID = 1.1 ppm	AQ (0-0.2) 10L No ACM. No odours or staining.
	-	0.20		Fill	Reworked Silty CLAY, light brown-tan, moist, heterogeneous, moderate plasticity, and minor inclusions of glass and brick.		
	0.5					AQ26 0.2-0.9 PID = 0.5 ppm	AQ (0.2-0.9) 10L No ACM. No odours or staining.
	- -						
	1.0	0.90		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.		No ACM. No odours or staining.
	-	1.30		CL-ML	Sith CLAV potentially reworked natural light brown tan maint, betarageneous, well		stalling.
	- 1 <u>.5</u> -			SE IIIE	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ26 1.3-1.8 PID = 1.4 ppm	AQ (1.3-1.8) 10L No ACM. No odours or staining.
	_	1.80			Test Pit AQ26 terminated at 1.8m		
	2.0						
	-						
	_						
	2.5						
	_						
	-						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.7 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

		C113101	(1113)	: 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ27 0.0-0.1 PID = 1.2 ppm	ACM observed at surface, no odours or staining.
	0 <u>.5</u>					AQ27 0.1-0.7 PID = 0.5 ppm	AQ (0.1-0.7) 10L ACM = 0.0663 %w/w. No odours or staining.
	_ _ 1 <u>.0</u>	0.70		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.	AQ27 0.7-1.1 PID = 1.3 ppm	AQ (0.7-1.1) 10L No ACM. No odours or staining.
		1.10		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ27 1.1-1.7 PID = 1.5 ppm	No odours, staining or ACM
	_	1.70			Test Pit AQ27 terminated at 1.7m		-
	2 <u>.0</u>						
	2.5 —						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

					T		1
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ28 0.0-0.1 PID = 0.3 ppm	ACM observed at surface, nodours or staining.
	0 <u>.5</u>					AQ28 0.1-1.1 PID = 0.5 ppm	AQ 10L ACM = 0.0257% w/v No odours or staining.
	1 <u>.0</u>					AQ28 1.2-1.6 PID = 1 ppm	No odours, staining or ACM
	_	1.10		Fill CL-ML	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.  Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ28 1.1-1.2 PID = 1.2 ppm	AQ (1.1-1.2) 10L No ACM. No odours or staining.
	1 <u>.5</u>						No ACM. No odours or staining.
	-	1.60			Test Pit AQ28 terminated at 1.6m		
	<u>-</u>						
	_						
	_ 2 <u>.5</u>						
	_						
	3.0						
	_						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 3 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Remarks  Fill Fill Silly CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, occurs, including and ACM.  Fill Fill Silly CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, occurs, including and ACM.  ACM observed at su odours or staining.  ACM observed at su odours or staining.  ACM 0.1-1.1) 10.1 ACM 0.1-1.1 ppp ACM 0.1-1.1 pp ACM	PIT DI	ıme	nsior	1 (M3)	: 450	Elevation (m):		
Fill Fill Stly CLAY, brown, dy-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.    AC29 0.1-1.1   PID = 0.2 ppm   ACM observed at su odours or staining.	Method Denth (mbgs)	Deptin (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Tests	Additional Observations
AQ29 1.1-1.7 PID = 1.8 ppm  AQ29 1.1-1.7 PID = 1.8 ppm  AQ (1.1-1.7) 10L AC 0.000000 www. No odours or stainin  AQ29 1.1-1.7 PID = 1.8 ppm  AQ (1.1-1.7) 10L AC 0.000000 www. No odours or stainin  AQ29 1.7-2.0 PID = 3.2 ppm  AQ (1.7-2.0) 10L No No odours or stainin  AQ29 1.7-2.0 PID = 3.2 ppm  AQ (1.7-2.0) 10L No No odours or stainin						Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ29 0-0.1 PID = 0.2 ppm	ACM observed at surface, no odours or staining.
1.70 CL-ML Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.  AQ20 1.7-2.0 PID = 3.2 ppm  AQ (1.7-2.0) 10L No odours or stainin	O_						AQ29 0.1-1.1 PID = 0.4 ppm	AQ (0.1-1.1) 10L ACM = 0.0166% w/w. No odours or staining.
AQ29 1.7-2.0 PID = 3.2 ppm  AQ (1.7-2.0) 10L No No odours or stainin	1	1.5						AQ (1.1-1.7) 10L ACM = 0.0202% w/w. No odours or staining.
No ACM. No odours staining.  Test Pit AQ29 terminated at 3m	1	-	1.70		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ29 1.7-2.0 PID = 3.2 ppm	AQ (1.7-2.0) 10L No ACM. No odours or staining.
No ACM. No odours staining.  Test Pit AQ29 terminated at 3m  Test Pit AQ29 terminated at 3m	2 2	2.5						
5   3.00   Test Pit AQ29 terminated at 3m	3							No ACM. No odours or staining.
		-	3.00			lest Pit AQ29 terminated at 3m		



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.1 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

				7. 400	Lievation (III).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of road base gravels, shale, minor scrap metal, timber, slag and ACM.	AQ30 0-0.1 PID = 0.2 ppm	ACM observed at surface, no odours or staining.
	0.5					AQ30 0.1-1.1 PID = 1.3 ppm	AQ (0.1-1.1) 10L No ACM. No odours or staining.
	1.5					AQ30 1.1-2.1 PID = 1.6 ppm	AQ (1.1-2.1) 10L ACM = 0.0147% w/w. No odours or staining.
	_ _ _ 2.5	2.10		CL-ML	Silty CLAY, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		No ACM, no odours or staining.
	3.0	2.50			Test Pit AQ30 terminated at 2.5m		



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Pit	Dime	ensio	n (m3)	: 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of road base gravels, shale, minor scrap metal, timber, slag and ACM.	AQ31 0-0.1 PID = 0.3 ppm	ACM observed at surface, no odours or staining.
Te T	0.5	0.10		Fill	Reworked Silty CLAY, light brown-tan, moist, heterogeneous, moderate plasticity, and minor inclusions of shale and weathered dolorite.	AQ31 0.1-1.0 PID = 1.4 ppm	AQ (0.1-1.0) 10L No ACM. No odours or staining.
	1.0						
	_ _ _	1.00		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.	AQ31 1.0-1.4 PID = 1.2 ppm	AQ (1.0-1.4) 10L No ACM. No odours or staining.
	1 <u>.5</u>	1.40		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ31 1.4-1.8 PID = 0.5 ppm	No odours, staining or ACM
		1.80	M		Test Pit AQ31 terminated at 1.8m		
	2 <u>.0</u>						
!	-						
	<u>2.5</u>						
	3.0						
$oxedsymbol{oxed}$							



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

				j. 400	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of road base gravels, shale, minor scrap metal, timber, slag and ACM.	AQ32 0-0.1 PID = 1.1 ppm	ACM observed at surface, no odours or staining.
	0.5					AQ32 0.1-0.7 PID = 1.1 ppm	AQ (0.1-0.7) 10L ACM = 0.1546% w/w. No odours or staining.
	- 1 <u>.0</u>	0.70		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.	AQ32 0.7-1.2 PID = 1.1 ppm	AQ (0.7-1.2) 10L No ACM. No odours or staining.
	1.5	1.20		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
						AQ32 1.2-2.5 PID = 0.5 ppm	No odours, staining or ACM
	2.5	0.50			Total Divide Control of the Control		-
	3.0	2.50			Test Pit AQ32 terminated at 2.5m		



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of road base gravels, shale, minor scrap metal, timber, slag and ACM.	AQ33 0-0.1 PID = 1.4 ppm	ACM observed at surface, odours or staining.
	0.5					AQ33 .1-1.0 PID = 1.2 ppm	AQ (0.1-1.0) 10L ACM = 0.0165% w/w. No odours or staining.
	1.0 - - 1.5	1.00		Fill CL-ML	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.  Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ33 1.0-1.05 PID = 0.5 ppm	AQ (1.0-1.05) 10L No ACN No odours or staining.
	2.0					AQ33 1.5-2 PID = 1.3 ppm	No odours, staining or AC
	_ _ _ _ 2 <u>.5</u>	2.00			Test Pit AQ33 terminated at 2m		
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

ļ,	. Dilli	GIISIO	11 (1113)	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of road base gravels, shale, minor scrap metal, timber, slag and ACM.		No Surfical ACM. No odours or staining.
	0.5					AQ34 0-1.0 PID = 1.5 ppm	AQ (0-1.0) 10L ACM = 0.0865% w/w No odours or staining.
	1.0					AQ34 1-1.5 PID = 0.3 ppm	AQ 1(1.0-1.5) 0L ACM = 0.0055 %w/w. No odours or staining.
	1 <u>.5</u>	1.50		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ34 1.5-1.8 PID = 0.5 ppm	AQ (1.5-1.8) 10L No ACM. No odours or staining.
	2.0	1.80			Test Pit AQ34 terminated at 1.8m		
	2 <u>.5</u>						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.1 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

			. ,	, 400	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of road base gravels minor shale, minor scrap metal, timber, slag and ACM.	AQ35 0-0.1 PID = 1.2 ppm	ACM observed at surface, no odours or staining.
Ţ	0.5	0.10		Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of road base gravels, glass, plastic and ACM.	AQ35 .1-1.0 PID = 1.4 ppm	AQ (0.1-1.0) 10L No ACM. ACM observed in fill. No odours or staining.
	- - 1 <u>.0</u>						AQ (1-1 4) 101 No ACM
	- -	1.40		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ35 1-1.4 PID = 1.2 ppm	AQ (1-1.4) 10L No ACM. ACM observed in fill. No odours or staining.
	1 <u>.5</u>				Consolidated (iiiii) toward the base with industries of highly weathered doonte.	AQ35 1.4-2.1 PID = 0.5 ppm	AQ 10L No ACM. No odours or staining.
	2.0						
	_	2.10			Test Pit AQ35 terminated at 2.1m		
	2 <u>.5</u>						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

				: 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, shale, scrap metal and ACM.	AQ36 0-0.1 PID = 1.1 ppm	ACM observed at surface, no odours or staining.
	-	0.15		Fill	Reworked Silty CLAY, light brown-tan, moist, heterogeneous, moderate plasticity, and minor inclusions of shale.	AQ36 0.15-0.35 PID = 1.1 ppm	AQ (0.15-0.3) 10L No ACM. No odours or staining.
	0 <u>.5</u>	0.35		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.	AQ36 .35-1.45 PID = 1.1 ppm	AQ (0.35-1.45) 10L No ACM. No odours or staining.
	1 <u>.5</u>	1.45		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ36 1.45-1.8 PID = 0.5 ppm	No odours, staining or ACM
		1.80	2021		Test Pit AQ36 terminated at 1.8m		
	2 <u>.0</u>						
	_ 2.5 _						
	3.0						
	-						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, shale, scrap metal and ACM.	AQ37 0-0.1 PID = 1.4 ppm	ACM observed at surface, n odours or staining.
	-					AQ37 0.1-0.5 PID = 1.2 ppm	AQ (0.1-0.5) 10L No ACM. ACM visually identified in fill. No odours or staining.
	0.5	0.50		Fill	Reworked Silty CLAY, light brown-tan, moist, heterogeneous, moderate plasticity, and		
	-				minor inclusions of shale.	AQ37 0.5-0.8 PID = 0.5 ppm	AQ (0.5-0.8) 10L No ACM. No odours or staining.
		0.80		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.		
	1.0					AQ37 0.8-1.1 PID = 1.3 ppm	AQ (0.8-1.1) 10L No ACM. No odours or staining.
		1.10		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
						AQ37 1.1-1.6 PID = 1.5 ppm	No odours, staining or ACM
	1.5						
	_						
	4						
	-	1.80			Test Pit AQ37 terminated at 1.6m		
	-						
	2.0						
	2.5						
	-						
	-						
	-						
	_						
	3.0						
	-						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 3 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit M	O	O	9	Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, shale, high percentage of scrap metal/brick and ACM.	AQ38 0.0-0.1 PID = 0.3 ppm	ACM observed at surface, no odours or staining.
	- 0.5 - - -					AQ38 0.1-1.1 PID = 0.5 ppm	AQ (0.1-1.1) 10L ACM = 0.0589 %w/w. No odours or staining.
	1.5	1.10		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ38 1.1-2.1 PID = 1.2 ppm	AQ (1.1-2.1) 10L No ACM. No odours or staining.
							No ACM. No odours or staining.
	3.0	3.00			Test Pit AQ38 terminated at 3m		



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Pit	Dime	ensio	n (m3)	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, shale, scrap metal/brick and ACM.	AQ39 0-0.1 PID = 1 ppm	No Surficial ACM. No odours or staining.
	0 <u>.5</u>					AQ39 0-1.1 PID = 0.6 ppm	AQ (0-1.1) 10L ACM = 0.0257 %w/w. No odours or staining.
	1.0	1.10		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
	1 <u>.5</u>				consolidated (IIIII) toward the base with inclusions of flightly weathered dolonte.	AQ39 1.1-1.8 PID = 0.4 ppm	AQ (1.1-1.8) 10L No ACM. No odours or staining.
	2.0	2.00			Test Pit AQ39 terminated at 2m		
	- -	2.00			TOST IL AGOS IGITIII RECU EL ZIII		
	2 <u>.5</u>						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

"	<b>D</b>	5113101	11 (1113)	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_ _ _			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, mettallurgic slag and ACM. Inclusions of brick toward base.	AQ40 0-0.1 PID = 1.8 ppm	ACM observed at surface, no odours or staining.
	0.5					AQ40 0.1-1.1 PID = 1.4 ppm	AQ (0.1-1.1) 10L ACM = 0.0055 %w/w. No odours or staining.
	1 <u>.0</u>	1.10		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
	_ _ _ 1 <u>.5</u>					AQ40 1.1-1.6 PID = 1.2 ppm	No odours, staining or ACM
	-	1.60			Test Pit AQ40 terminated at 1.6m		
	<u>2.0</u> _ _						
	2 <u>.5</u> –						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/12/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Pit	Dime	Dimension (m3): 450		: 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- -			Fill	Fill Silty CLAY, brown, moist, heterogeneous, soft, with a high percentage of anthropogenic building waste, brick, concrete, scrap metal, plastic sheeting, timber and minor ACM		No ACM. No odours or staining.
	0.5 —					AQ41 0-0.9 PID = 3.2 ppm	AQ (0-0.9) 10L ACM = 0.0128 %w/w. No odours or staining.
	- 1 <u>.0</u>	0.90		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
							No ACM. No odours or staining.
	1 <u>.5</u>	1.30			Test Pit AQ41 terminated at 1.3m		
	- -						
	2 <u>.0</u> _						
	2 <u>.5</u>						
	- - -						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:3/11/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.9 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

PIT	DIM	ensio	n (m3)	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, slag and ACM.	AQ42 0-0.1 PID = 3.7 ppm	ACM observed at surface, no odours or staining.
	-					AQ42 0-0.5 PID = 1.1 ppm	AQ (0-0.5) 10L No ACM. No odours or staining.
	0.5	0.50		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.		AQ (0.5-0.6) 10L No ACM.
	-	0.60		Fill	Reworked Silty CLAY, brown grading to reddish brown, moist, heterogeneous, moderate plasticity, and minor inclusions of shale.		No odours or staining.
	1 <u>.0</u>					AQ42 0.6-1.50 PID = 1.1 ppm	AQ (0.6-1.5) 10L No ACM. No odours or staining.
	- 1 <u>.5</u>						
	-	1.50		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ42 1.5-1.9 PID = 0.6 ppm	AQ (1.5-1.9) 10L No ACM. No odours or staining.
	2.0	1.90			Test Pit AQ42 terminated at 1.9m		
	2.0						
	_	-					
	_	_					
	2 <u>.5</u>						
	3.0						
	-						
	_						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

**Total Hole Depth (mbgs):** 1.3 **Reference Level:** Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Pit	Dime	ensio	n (m3)	: 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill Silty CLAY, brown, moist, heterogeneous, soft, with a high percentage of anthropogenic building waste, brick, concrete, scrap metal, plastic sheeting and trace ACM	AQ43 0-0.6 PID = 1.4 ppm	No Surficial ACM. No odours or staining.  AQ (0-0.6) 10L ACM = 0.0052 %w/w. No odours or staining.
	0 <u>.5</u>						
	1.0	1.00		CL-ML	Silty CLAY, potentially reworked natural, dark brown, moist, heterogeneous, with inclusions of highly weathered dolorite.		No ACM. No odours or staining.
	-	1.30			Test Pit AQ43 terminated at 1.3m		or staining.
	- 1 <u>.5</u>						
	_						
	_ 2 <u>.0</u>						
	_ _						
	_ _ 2 <u>.5</u>						
	<u>-</u>						
	_ _						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

"	<b>D</b>	GIISIOI	11 (1115)	<b>)</b> : 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill Silty CLAY, brown, moist, heterogeneous, soft, with a high percentage of anthropogenic building waste, brick, concrete, scrap metal, plastic sheeting and minor ACM	AQ44 0-0.1 PID = 0.4 ppm	ACM observed at surface, no odours or staining.
	- 0 <u>.5</u>					AQ44 0.1-0.6 PID = 0.5 ppm	AQ (0.1-0.6) 10L No ACM. No odours or staining.
	-	0.60		CL-ML	Silty CLAY, potentially reworked natural, dark brown, moist, heterogeneous, with inclusions of highly weathered dolorite.	AQ44 0.6-0.9 PID = 1.3 ppm	No odours, staining or ACM
	1 <u>.0</u> _	0.90		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
	1 <u>.5</u>					AQ44 0.9-2 PID = 2.3 ppm	No odours, staining or ACM
	2.0	2.00			Test Pit AQ44 terminated at 2m		
	-						
	2 <u>.5</u>						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

				j. 400	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal, mettallurgic slag and ACM.	AQ45 0-0.1 PID = 0.3 ppm	ACM observed at surface, no odours or staining.
T	0.5					AQ45 0.1-1.1 PID = 0.5 ppm	AQ (0.1-1.1) 10L ACM = 0.0312% w/w. No odours or staining.
	1 <u>.0</u>						
	_					AQ45 1.1-1.4 PID = 1.2 ppm	AQ (1.1-1.4) 10L ACM = 0.0128% w/w. No odours or staining.
	1.5	1.40		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.	AQ45 1.4-1.5 PID = 1.7 ppm	AQ (1.4-1.5) 10L No ACM. No odours or staining.
	- - - 2.0	1.50		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.	AQ45 1.5-2 PID = 0.8 ppm	AQ (1.5-2.0) 10L No ACM. No odours or staining.
	_	2.00	W		Test Pit AQ45 terminated at 2m		
	2.5 —						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.9 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

"	יוווע	ensio	11 (1113)	): 450	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of glass, ceramic, igneous road base gravel, scrap metal and ACM.	AQ46 0-0.1 PID = 0.4 ppm	ACM observed at surface, no odours or staining.
Ĭ	_					AQ46 0.13 PID = 1.3 ppm	AQ (0.1-0.3) 10L ACM = 0.0092% w/w. No odours or staining.
		0.30		Fill	Reworked Silty CLAY, light brown-tan, moist, heterogeneous, moderate plasticity, and trace inclusions of glass and metal.		
	0 <u>.5</u>					AQ46 0.3-0.8 PID = 3.3 ppm	AQ (0.3-0.6) 10L No ACM. No odours or staining.
	_	0.80		Fill	Fill Silty GRAVEL, grey, unconsolidated crushed SHALE, dry, heterogeneous, poorly graded.		
	1 <u>.0</u>				gradeu.	AQ46 0.8-1.2 PID = 0.2 ppm	AQ (0.8-1.2) 10L No ACM. No odours or staining.
	-	1.20		CL-ML	Silty CLAY, potentially reworked natural, light brown-tan, moist, heterogeneous, well consolodated (firm) toward the base with inclusions of highly weathered dolorite.		
	1 <u>.5</u>					AQ46 1.2-1.9 PID = 1.3 ppm	AQ (1.2-1.9) 10L No ACM. No odours or staining.
	2.0	1.90			Test Pit AQ46 terminated at 1.9m		
	_						
	2 <u>.5</u>						
	-						
	3.0						



Project Number: 56047 Client: Cumberland Council

**Project Name:** Pemulwuy Detailed Site Investigation **Site Address:** 615A Great Western Highway, Pemulwuy

Date:13/03/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.2 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

				j. 400	Lievation (III).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill Silty GRAVEL, grey, unconsolidated road base gravels, dry, heterogeneous, well graded.	AQ47 0-0.1 PID = 1.6 ppm	AQ (0-0.1) 10L No ACM. No odours or staining.
F	- 0.5 - -	0.10		F:	Fill Silty CLAY, brown, dry-damp, heterogeneous, loose, with inclusions of road base gravels, shale, minor scrap metal, timber, slag and ACM.	AQ47 .1-1.1 PID = 2.1 ppm	AQ (0.1-1.1) 10L No ACM. No odours or staining.
	1 <u>.0</u>					AQ47 1.1-1.7 PID = 2.5 ppm	AQ (1.1-1.7) 10L No ACM. No odours or staining.
	2.0	2.10		CL-ML	Silty CLAY, potentially reworked natural, dark brown, moist, heterogeneous, with inclusions of highly weathered dolorite.  DOLERITE, firm competent weathered dolerite, tan-brown-black.	AQ47 1.7-2.2 PID = 4.5 ppm	AQ (1.7-2.2) 10L No ACM. No odours or staining.
			<u>}}</u>	5022.11.2	Test Pit AQ47 terminated at 2.2m		
	- 2 <u>.5</u> -	2.20			130CL KART TOTHINGES GL Z.ZIII		
	3.0						



### MW01/BH01

Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Water Level Initial (mbgs):Logged By:CKNorthings (GDA 94):Surface Finish:Roadbox

Contractor: Numac Drilling Zone/Area/Permit#: Casing / Screen Type: Class 18 PVC - 50mm

Total Hole Depth (mbgs): 8Reference Level: Ground SurfaceCasing Bottom Depth (mbgs): 5Bore Diameter (mm): 200Elevation (m): Screen Bottom Depth (mbgs): 8

Method	Water (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Solid Flight Auger		NOWOWOWOW WOWOWOWOW	- - -	0.10		Fill CL-GC	Fill - brown silty Clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, road base gravel, crushed brick, concrete and minor scrap metal.  Gravelly CLAY - potentially reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry, low plasticity.		No odours, staining or ACM
								MW01/BH01 0.9-1.0 PID = 0.3 ppm	No odours, staining or ACM
			2 - - - 3		ALONA DELLA			'MW01/8H0119-20 PID = 0.1 ppm  MW01/8H0129-3.0	No odours, staining or ACM
		KONCONCO						MW01/BH01 2.9-3.0 PID = 0 ppm  MW01/BH01 3.9-4.0 PID = 0.2 ppm	No odours, staining or ACM  No odours, staining or ACM
			_ _ _ _ 5					MW01/8H014,9-5.0 PID = 1.2 ppm	No odours, staining or ACM
			_ _ _ _ _ 6					MW01/8H01 5.9-6.0 PID = 0.3 ppm	No odours, staining or ACM
			- - - 7	6.50		CL-GC	As above, damp, potentially highly weathered dolorite bedrock.	MW01/8H01 6.9-7.0 PID = 0.6 ppm	No odours, staining or ACM
			- - - 8	7.50		DOLERITE	DOLERITE - weathered, granular, damp.		
٦		H-1	0	8.00	, ,		Borehole MW01/BH01 terminated at 8m	MW01/BH01 7.9-8.0 PID = 0.9 ppm	No odours, staining or ACM



### MW02/BH02

Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Water Level Initial (mbgs):Logged By:CKNorthings (GDA 94):Surface Finish:Roadbox

Contractor: Numac Drilling Zone/Area/Permit#: Casing / Screen Type: Class 18 PVC - 50mm

Total Hole Depth (mbgs): 8 Reference Level: Ground Surface Casing Bottom Depth (mbgs): 5
Bore Diameter (mm): 200 Elevation (m): Screen Bottom Depth (mbgs): 8

Method	Water (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Solid Flight Auger		CANCAN	-			Fill	Fill - brown silty Clay, gravelly clay, heterogeneous, dry, granular with inclusions of coarse gravel, clay clasts, concrete, road base gravel and roots/rootlets	MW02/BH02 0-0.1 PID = 1.3 ppm	No odours, staining or ACM
Solid		CANCA	-	0.50		Fill CL-GC	Fill - road base gravel, grey, dry, heterogeneous, poorly sorted crushed igneous gravel, crushed concrete and associated fines.  Gravelly CLAY - potentially reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry with inclusions of weathered dolorite		
		SALCALOR.	1				brown, heterogeneous, stiff, dry with inclusions of weathered dolorite fragments.	MW02/BH02 0.9-1.0 PID = 2.3 ppm	No odours, staining or ACM
		A CAUCAU	-	1.50		DOLERITE	DOLERITE - highly weathered, granular, dry.		
		ALCALCAL!	2		         			MW02/BH02 1.9-2.0 PID = 1.5 ppm	No odours, staining or ACM
			_ _ 3					MW02/BH02 2.9-3.0 PID = 0.1 ppm	No odours, staining or ACM
	VONCON.	CONCOR	-		) ) ) } }				
			4					MW02/BH02 3 9-4.0 PID = 0.2 ppm	No odours, staining or ACM
			-						
			5		\$\$1 }} }}			MW02/BH02 4.9-5.0 PID = 0.1 ppm	No odours, staining or ACM
			-		         				
	l t. ·l		6					MW02/BH02 5.9-6.0 PID = 0 ppm	No odours, staining or ACM
			_ _ _					MW02/RH02 6 9-7 0	
			<u>7</u> -					MW02/BH02 6.9-7,0 PID = 0.2 ppm	No odours, staining or ACM
			_ _ 8					MW02/BH02 7.9-8.0 PID = 1.2 ppm	No odours, staining or ACM
				8.00			Borehole MW02/BH02 terminated at 8m	110 12 ppm	1



### MW03/BH03

Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Water Level Initial (mbgs):Logged By:CKNorthings (GDA 94):Surface Finish:Roadbox

Contractor: Numac Drilling Zone/Area/Permit#: Casing / Screen Type: Class 18 PVC - 50mm

Total Hole Depth (mbgs): 8Reference Level: Ground SurfaceCasing Bottom Depth (mbgs): 5Bore Diameter (mm): 200Elevation (m): Screen Bottom Depth (mbgs): 8

Method	Water (mbgs)	Well Details	(eBalli) Indaa	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Solid Filght Auger				0.10		Fill CL-GC	Fill - brown silty Clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of road base gravel and mulch/organic material including leaf litter.  Gravelly CLAY - potentially reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry with inclusions of weathered dolorite fragments.	MW03/BH03 0-0.1 PID = 0.3 ppm	No odours, staining or ACM
	NEWSWSWSW		1	1.50		DOLERITE	DOLERITE - highly weathered, granular, dry.	MW03/BH03 0.9-1.0 PID = 1.3 ppm	No odours, staining or ACM
			2					MW03/BH03 1.9-2.0 PID = 2.3 ppm	No odours, staining or ACM
			3					MW03/BH03 2.9-3.0 PID = 1.5 ppm	No odours, staining or ACM
			4					MW03/BH03 3.9-4.0 PID = 0.1 ppm	No odours, staining or ACM
			5					MW03/BH03 4,9-5.0 PID = 1.2 ppm	No odours, staining or ACM
			6		//////////////////////////////////////			MW03/BH03 5.9-6.0 PID = 0.3 ppm	No odours, staining or ACM
	[1]		7					MW03/BH03 6 9-7.0 PID = 0.5 ppm	No odours, staining or ACM
			8	8.00			Borehole MW03/BH03 terminated at 8m	MW03/BH03 7.9-8.0 PID = 0 ppm	No odours, staining or ACM



### **HA01**

Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Pit Dimension (m3): 150 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger				Fill	FillI - brown gravelly clay, heterogeneous with inclusions of organic matter, mulch, roots/rootlets and leaf litter.		
Hand	-	0.10		Fill	Fill - brown gravelly clay, heterogeneous, dry, poorly sorted, loose with inclusions of glass, terracotta and porcelin fragments.	HA01 0.1-0.2 PID = 0.1 ppm	No odours, staining or AC
		0.30		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry with inclusions of weathered dolorite fragments.		
	0.5	0.40	477		Test Pit HA01 terminated at 0.3m		
	-						
	1.0						
	-						
	1 <u>.5</u>						
	-						
	2.0						
	-						
	2.5						
	-						



### **HA02**

Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Pit Dimension (m3): 150 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Auger				Fill	FillI - brown gravelly clay, heterogeneous with inclusions of organic matter, mulch, roots/rootlets and leaf litter.		
Hand Auger	- - -	0.10		Fill	Fill - brown gravelly clay, heterogeneous, dry, poorly sorted, loose with inclusions of glass, terracotta and porcelin fragments.	HA02 0.1-0.2 PID = 2.3 ppm	No odours or staining. ACI observed
	0.5	0.45		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry with inclusions of weathered dolorite fragments.  Test Pit HA02 terminated at 0.5m		
	1.5	0.50			Test Pit HA02 terminated at 0.5m		
	2.5 -						



#### **HA03**

Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface



#### **HA04**

Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger				Fill	FillI - brown gravelly clay, heterogeneous with inclusions of organic matter, mulch, roots/rootlets and leaf litter.		
Hand	-	0.10		Fill	Fill - brown gravelly clay, heterogeneous, dry, poorly sorted, loose with inclusions of glass, terracotta and porcelin fragments, metal scrap and ACM	HA04 0.1-0.2 PID = 1.4 ppm	No odours or staining. AC observed
	0.5	0.50		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry with inclusions of weathered dolorite fragments.		
	1.0	0.60	288		Test Pit HA04 terminated at 0.5m		
	2.0						
	_ 2.5 _ _						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Pit Dimension (m3): 150 Elevation (m):

PIT	DIM	ensioi	n (m3)	): 150	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger				Fill	Fill - Gravelly Clay, brown, dry, heterogeneous, loose with inclusions of roots/rootlets and minor igenous road base gravel.	SS01 PID = 0 ppm	No odours, staining or ACM
Hand		0.10	~~~		Test Pit SS01 terminated at 0.1m		
	-						
	-						
	-						
	0 <u>.5</u>						
	_						
	-						
	-						
	_						
	1.0						
	_						
	_						
	_						
	_						
	1 <u>.5</u>						
	_						
	2.0						
	_						
	-						
	_						
	2.5						
	-						
	-						
	-						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Pit Dimension (m3): 150 Elevation (m):

Lithiogical Description  Test Pile SS022 summated at 0 1 in  1.5.  2.0  2.0  2.0  2.0  2.0  2.0  2.0
0.10   Test Pit \$502 ferminated at 0.1m
05 - - - - - - - - - - - - - - - - - - -
2.5



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Pit Dimension (m3): 150 Elevation (m):

				j. 100	Lievation (III).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Auger				Fill	Fill - Gravelly Clay, brown, dry, heterogeneous, loose with inclusions of roots/rootlets and minor igenous road base gravel.	SS03 PID = 0 ppm	No odours, staining or ACM
Hand Auger		0.10			Test Pit SS03 terminated at 0.1m		
	_						
	-						
	_						
	0 <u>.5</u>						
	_						
	-						
	1.0						
	-						
	-						
	-						
	-						
	1.5						
	2.0						
	<u> </u>						
	_						
	-						
	-						
	-						
	2.5						
	_						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Pit Dimension (m3): 150 Elevation (m):

				j. 100	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Auger				Fill	Fill - Gravelly Clay, brown, dry, heterogeneous, loose with inclusions of roots/rootlets and minor igenous road base gravel.	SS04 PID = 0.2 ppm	No odours, staining or ACM
Hand Auger		0.10			Test Pit SS04 terminated at 0.1m	- 11	-
-	-						
	-						
	_						
	0 <u>.5</u>						
	_						
	-						
	1.0						
	-						
	-						
	_						
	_						
	1.5						
	-						
	2.0						
	-						
	-						
	-						
	2.5						
	-						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Pit Dimension (m3): 150 Elevation (m):

		J		): 150	Elevation (m):	Т	
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Auger				Fill	Fill - Gravelly Clay, brown, dry, heterogeneous, loose with inclusions of roots/rootlets and minor igenous road base gravel.	SS05 PID = 0.3 ppm	No odours, staining or ACM
Hand Auger	1.5 			Fill	Fill - Gravelly Clay, brown, dry, heterogeneous, loose with inclusions of roots/rootlets and minor igenous road base gravel.  Test Pit SS05 terminated at 0.1m	SS05 PID = 0.3 ppm	No odours, staining or ACM
	_						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:3/06/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Pit Dimension (m3): 150 Elevation (m):

PIL	DIM	ensioi	n (m3)	): 150	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hanc Auger				Fill	Fill - Silty Gravel, basecourse comprising crushed recycled aggregate containing terracotta, brick, concrete, scrap metal and igneous road base.	SS06 PID = 1.2 ppm	No odours, staining or ACM
Hand		0.10	~~~		Test Pit SS06 terminated at 0.1m		
	1						
	0.5						
	-						
	-						
	-						
	-						
	1.0						
	-						
	-						
	-						
	-						
	1.5						
	_						
	2.0						
	2.5						
	2.0						
	7						
	+						
	+						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:3/06/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:N/AZone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Pit Dimension (m3): 150 Elevation (m):

				j. 100	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger				Fill	Fill - Silty Gravel, basecourse comprising crushed recycled aggregate containing terracotta, brick, concrete, scrap metal and igneous road base.	SS07 PID = 0.9 ppm	No odours, staining or ACM
Hand 4		0.10			Test Pit SS07 terminated at 0.1m		_
	-						
	-						
	_						
	0 <u>.5</u>						
	_						
	1.0						
	<u></u>						
	-						
	-						
	-						
	1.5						
	-						
	_						
	_						
	2.0						
	2.5						
	-						
	-						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

Depth (mbgs)	(shall) inde	Contact (mbgs)	9	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
	_			Fill	Fill - grey brown heteroenous gravelly clay. Dry with inclusions of road base gravel, grey lithic shale fragments, minor plastic (surface) and crushed concrete.	TP01 0-0.1 PID = 1.8 ppm	No odours, staining or ACN
0 <u>.</u>						TP01 0.3-0.4 PID = 0.1 ppm	No odours, staining or ACI
1 <u>.</u>	 .0  					TP01 1-1.1 PID = 1.3 ppm	No odours, staining or AC
1.		1.40		CL-ML	Silty CLAY - orange brown, heterogeneous, dry, firm, low plasticity.	TP01 1.4-1.5 PID = 0.5 ppm	No odours, staining or AC
2_	0	1.50			Test Pit TP01 terminated at 1.5m		



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.5 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill - dark brown silty, gravelly clay, heterogeneous, moist, medium-high plasticity with inclusions of grey lithic shale fragments, organic material including roots/rootlets and mulch.	TP02 0-0.1 PID = 1.2 ppm	No odours, staining or ACI
	0 <u>.5</u>	0.90		CL-ML	Silty CLAY - orange brown, heterogeneous, dry, firm, low plasticity.	TP02 0.5-0.6 PID = 1.9 ppm	No odours, staining or ACI
	1.0	0.30		CLINE	City CEAT - Stange Brown, necessgeneous, dry, limit, tow plasticity.	TP02 1-1.1 PID = 0.3 ppm	No odours, staining or AC
	<u>2.0</u>					TP02 2-2.1 PID = 0.1 ppm	No odours, staining or AC
	2.5	2.50			Test Pit TP02 terminated at 2.5m	TP02 2.4-2.5 PID = 0 ppm	No odours, staining or AC



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

**Total Hole Depth (mbgs):** 2.1 **Reference Level:** Ground Surface

PIT	Dime	ensior	1 (m3	): 500	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Fill - dark brown silty, gravelly clay, heterogeneous, moist, medium-high plasticity with inclusions of grey lithic shale fragments, organic material including roots/rootlets	TP03 0-0.1 PID = 0.2 ppm	No odours, staining or ACM
	-	0.20		CL-ML	Silty CLAY - orange brown, heterogeneous, dry, firm, low plasticity. Granular toward the base with inclusions of weathered dolorite.		
	0.5					TP03 0.5-0.6 PID = 1.2 ppm	No odours, staining or ACI
	1.0					TP03 1-1.1 PID = 0.3 ppm	No odours, staining or ACI
	_ 1 <u>.5</u>						
	_ _ _						
	2.0	2.10			Test Pit TP03 terminated at 2.1m	TP03 2-2.1 PID = 0.6 ppm	No odours, staining or ACI
	-						
	2.5						
	_						
	-						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.1 Reference Level: Ground Surface

DOUBLIN	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
1 2 2 2				Fill	Fill - Sandy GRAVEL, Stockpiled material at the surface, well sorted, poorly graded gravel comprising angular to sub angular igneous and quartz gravel.	TP04 0-0.1 PID = 0.9 ppm	No odours, staining or ACI
-	-	0.10		Fill	Fill - dark brown silty clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, organic material including roots/rootlets		
	0.5	0.30		CL-ML	Silty CLAY - orange brown, heterogeneous, dry, firm, low plasticity. Granular toward the base with inclusions of weathered dolorite.		
	0.5					TP04 0.5-0.6 PID = 1.3 ppm	No odours, staining or AC
	-						
	1.0	1.00				TP04 1-1.1 PID = 2.3 ppm	No odours, staining or AC
			388		Test Pit TP04 terminated at 1.1m	PID = 2.3 ppm	
	_						
	1 <u>.5</u>						
	_						
	_						
	2.0						
	_						
	2.5						
	-						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.5 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit		×	Fill	Fill - dark brown silty clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, organic material including roots/rootlets	TP05 0-0.1 PID = 1 ppm	No odours, staining or ACM
Sel les	0.5 - 1.0 - 1.5		CL-ML	Sity CLAY - orange brown, heterogeneous, dry, firm, low plasticity. Granular toward the base with inclusions of weathered dolorite.	TP05 1-1.1 PID = 0.5 ppm	No odours, staining or ACM
	2.0				TP05 2-2.1	No odours, staining or ACM
	_				TP05 2-2.1 PID = 2.3 ppm	
	2.5	2.50		Test Pit TP05 terminated at 2.5m	TP05 2.4-2.5 PID = 1.2 ppm	No odours, staining or ACN
	_	2.00		Test Fr. 17 03 tellilliated at 2.3111		



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
lest Pit				Fill	Fill - dark brown silty clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, organic material including roots/rootlets	TP06 0-0.1 PID = 0.3 ppm	No odours, staining or ACM
Φ.	0.5	0.10		CL-ML	Sitty CLAY - orange brown, heterogeneous, dry, firm, low plasticity. Granular toward the base with inclusions of weathered dolorite.	TP06 1-1.1 PID = 0.4 ppm	No odours, staining or ACI
	1.5	1.50			Test Pit TP06 terminated at 1.5m	TP06 1.4-1.5 PID = 0 ppm	No odours, staining or ACN
	_ _ _ 2 <u>.0</u>						
	-						
	2.5						
	_						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-	0.30		Fill	Fill - dark brown silty clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, organic material including roots/rootlets  Test Pit TP07 terminated at 0.3m	TP07 0-0.1 PID = 0 ppm	No odours, staining or ACN
	0.5	0.00					
	- - 1 <u>.0</u>						
	-						
	_ 1.5 _						
	2.0						
	-						
	_ 2.5 _						
	_ _ _						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.2 Reference Level: Ground Surface

Pit Dimension (m3): 500 Elevation (m):

PIT	Dime	ensioi	n (m3	): 500	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Fill - dark brown silty clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, organic material including roots/rootlets	TP08 0-0.1 PID = 0.1 ppm	No odours, staining or ACM
_							
		0.20			Test Pit TP08 terminated at 0.2m		
	0.5						
	1.0						
	_						
	_						
	_						
	1 <u>.5</u>						
	_						
	_						
	_						
	_						
	2.0						
	_						
	-						
	_						
	-						
	2.5						
	-						
	-						
	_						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill - brown silty Clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, road base gravel and roots/rootlets	TP09 0-0.1 PID = 1.2 ppm	No odours, staining or ACI
	_	0.30		Fill	Fill - road base gravel, grey, dry, heterogeneous, poorly sorted crushed igneous gravel, crushed concrete and associated fines.	TP09 0.4-0.5 PID = 0.3 ppm	No odours, staining or AC
	0.5	0.50		Fill	Fill - reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry with inclusions of competent dolorite fragments and minor lithic shale fragments.	110 С.С ррні	
	1.0					TP09 0.9-1.0 PID = 0.5 ppm	No odours, staining or AC
	2.0						
	2 <u>.5</u> _						



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- -			Fill	Fill - brown silty Clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, road base gravel and roots/rootlets	TP10 0-0.1 PID = 0.3 ppm	No odours, staining or ACI
	0.5	0.40		Fill	Fill - road base gravel, grey, dry, heterogeneous, poorly sorted crushed igneous gravel, crushed concrete and associated fines.	TP10 0.4-0.5 PID = 0.1 ppm	No odours, staining or AC
	- - 1.0	0.55		CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry with inclusions of weathered dolorite fragments.	TP10 1-1.1 PID = 0 ppm	No odours, staining or AC
	2.0	1.20			Test Pit TP10 terminated at 1.2m		



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.8 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
lest Pit	-			Fill	Fill - brown silty Clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, road base gravel and roots/rootlets	TP11 0-0.1 PID = 0.2 ppm	No odours, staining or ACM
		0.30		Fill	Fill - road base gravel, grey, dry, heterogeneous, poorly sorted crushed igneous gravel, crushed concrete and associated fines.	TP11 0.3-0.4 PID = 1.2 ppm	No odours, staining or ACM
	0.5	0.40	HAOHAOHAOHAOHAOHAOHAOHAOHAOHAOHAO	CL-GC	Gravelly CLAY - potentially reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry with inclusions of weathered dolorite fragments.	TP11 1-1.1 PID = 0.3 ppm	No odours, staining or ACI
	2.0					TP11 2-2.1 PID = 0.6 ppm TP11 2.7-2.8 PID = 0.9 ppm	No odours, staining or AC



Project Number: 56425 Client: Aliro Management

Project Name: Boral House, Clunies Ross St, Pemulwuy

Site Address: Clunies Ross Street, Pemulwuy

Date:30/05/2019Eastings (GDA 94):Logged By:CKNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs) Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-	0.10	Fill Fill CL-GC	Fill - brown silty Clay, gravelly clay, heterogeneous, dry, low plasticity with inclusions of grey lithic shale fragments, road base gravel and roots/rootlets  Fill - road base gravel, grey, dry, heterogeneous, poorly sorted crushed igneous gravel, crushed concrete and associated fines.  Gravelly CLAY - potentially reworked natural gravelly clay, orange brown, heterogeneous, stiff, dry with inclusions of weathered dolorite fragments.	TP12 0-0.1 PID = 0.1 ppm	No odours, staining or ACN
	0 <u>.5</u>				TP12 0.5-0.6 PID = 0.1 ppm	No odours, staining or ACI
	1 <u>.0</u>				TP12 1-1.1 PID = 0.1 ppm	No odours, staining or AC
	1.5	1.50		Test Pit TP12 terminated at 1.5m	TP12 1.4-1.5 PID = 0.1 ppm	No odours, staining or ACI
	_ _ _ _ 2.5					
	-					



Sheet

1 of 1 ENAURHOD04463AA

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD Client:

Office Job No.: Date started:

20.2.2013

Principal:

Date completed:

20.2.2013

PD

EW

Project:

**DUE DILIGENCE ESA** 

Logged by:

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW Checked by:

drill	drill model and mounting: Hand Auger			Auger		Easting: slope:			e: -90° R.L. Surface:								
_	e dian					10				Northing	bearing:					datum:	
dr	illing	_	for	ma	tion			mate		ubstance			-				
method	ر ک penetration		support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity o	aterial r particle characterist and minor componen	tics, nts.	moisture condition	consistency/ density index	100 pocket 200 y penetro-	a	ıs
НА					E + 3.9ppm		0.1 __ 0.2 __ 0.3 __ 0.4 __ 0.5			FILL: Gravelly SAND: me fine gravel		with	D			No odour or staining, picrite, mineral and rock fragments	-
							0.6_			Borehole BH1 terminated	at 0.5m						-
AS D R R D D D D D D D D D D D D D D D D	showr	n by	roll wa cal hai dia bla V t	ger d ler/triceshbo ole to nd au tube ink bi oit bit ix	re ol ıger	M C pe 1	pport mud casing netration 2 3 4 ter 10/1/9	n resista anging to refusal 8 water I e shown	evel		ction test (SPT)		ription unified o			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	e



Sheet

1 of 1 ENAURHOD04463AA

AUSTRAL MASONRY (NSW) PTY LTD Client:

**Environmental Log - Environmental** 

Office Job No.: Date started:

20.2.2013

Principal:

20.2.2013 Date completed:

Project: **DUE DILIGENCE ESA**  Logged by:

PD

		NIES RC	OSS STRE	ET, PROSPECT NS			necke	d by:	EW
	· ·	Hand Auger		Easting:	slope: -90°				L. Surface:
hole diamet	er: 1 nformation	30	material s	Northing	bearing:			da	atum:
method 1 2 3	notes samples, tests, etc	depth RL metres	aphic log assification /mbol	materi soil type: plasticity or par colour, secondary and r	ticle characteristics,	moisture	consistency/ density index	100 pocket 200 pocket 300 pocket 400 meter	
DT		0.1_	747474747474	CONCRETE					
HA	E+ 3.8ppm	0.2_		FILL: Sandy GRAVEL: fine to sub-angular, dark grey to grey grained sand	medium, angular to r, fine to medium	D			No odour or staining, picrite fragments
		0.3		Borehole BH10 terminated at	0.3m				
method AS AD RR W CT HA DT B	auger screwing* auger drilling* roller/tricone washbore cable tool hand auger diatube blank bit V bit	water ▼ 10/1/9	N nil no resistance ranging to refusal 8 water level to shown	notes, samples, tests  U ₅₀ undisturbed sample 50  U ₅₀ undisturbed sample 60  D disturbed sample  N standard penetration te  N* SPT - sample recovere  Nc SPT with solid cone  V vane shear (kPa)  P pressuremeter  Bs bulk sample	Omm diameter Soil des based of system D d d M m W w	n unified cla			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose



Sheet

1 of 1 ENAURHOD04463AA

20.2.2013

**EW** 

Client: AUSTRAL MASONRY (NSW) PTY LTD

**Environmental Log - Environmental** 

Office Job No.:

Date started:

Date completed:

20.2.2013

Principal: Project:

DUE DILIGENCE ESA

Logged by: **PD** 

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

Checked by:

		EET, PROSPECT NSW		Checked by:	EVV
drill model and mounting:	Hand Auger	Easting:	slope: -90°	R.L.	Surface:
hole diameter:	130	Northing	bearing:	datu	m:
drilling information	material s		ı	<del> </del>	
pout particular properties and provided with the provided states and provided states and provided states and provided states are provided as a provided state and provided states are provided as a provided state and provided states are provided states provided st	Harpen Branchic log graphic log classification symbol		ele characteristics,	consistency/ density index 100 x pocket 200 x peretro- 300 d penetro- 400 meter	structure and additional observations
E+ 3.4ppm (DUP8)	0.1_0.2_	FILL: Sandy GRAVEL: fine to medium grained sand	nedium, grey, fine to D		No odour or staining, picrite fragments
method AS auger screwing* AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T TC bit	0.4_  0.4_  0.5  support M mud N nil C casing penetration 1 2 3 4  no resistance ranging to refusal water  10/1/98 water level on date shown	notes, samples, tests U ₅₀ undisturbed sample 50m U ₈₃ undisturbed sample 63m D disturbed sample N standard penetration tes N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample	classification sy soil description based on unified system	classification	consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense



Sheet

1 of 1 **ENAURHOD04463AA** 

AUSTRAL MASONRY (NSW) PTY LTD Client:

**Environmental Log - Environmental** 

Office Job No.: Date started:

20.2.2013

Principal: Project:

Date completed:

20.2.2013

PD

**DUE DILIGENCE ESA** Logged by:

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

**EW** Checked by:

drill r	node	land	d moi	unting:	Hand	Auger			Easting: slope	: -90°		JIICOK		.L. Surface:
	diam			· ·	130	· 9			Northing bearing					atum:
				ation			mate	erial su	ubstance	-9-				
method	5 penetration	Support	water	notes samples, tests, etc		depth metres	graphic log	classification symbol	material soil type: plasticity or particle characte colour, secondary and minor compo	eristics, nents.	moisture condition	consistency/ density index	100 pocket 200 d penetro-	
HA				E+ 4.1ppm		0.1_			FILL: Gravelly Sandy CLAY: low plasticity, brown, fine to medium gravel	dark	D			No odour or staining, some concrete, picrite and brick fragments
				E + 4.0ppm		0.4_			Borehole BH12 terminated at 0.5m					
						0.7_								
mett AS AD RR W CT HA DT B V T *bit s e.g.	nod	t v d d k v by si	auger oller/t vashb cable f and a diatub blank l / bit	tool auger e	M C pee 1	ater 10/1/9	n resista ranging to refusal 8 water e shown	level	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₈₃ undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	soil des based o system  moistur D d M m W w Wp p	cation syricription on unified of the representation of the repres	classifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 **ENAURHOD04463AA** 

Client: AUSTRAL MASONRY (NSW) PTY LTD

Office Job No.:

Date started:

20.2.2013

Principal: Project: Date completed:

20.2.2013

т тпограг.

DUE DILIGENCE ESA

Logged by:

PD

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

**Environmental Log - Environmental** 

Checked by: **EW**R.L. Surface:

drill mode	el and	mou		Hand A	Auger			Easting: slope:	-90°		SHOOKE		.L. Surface:
hole diam			Ū	130	J			Northing bearing					atum:
drilling						mate	erial su	ubstance	3.			u	
method 5	upport		notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characte colour, secondary and minor compor	ristics, ents.	moisture condition	consistency/ density index	100 pocket 200 dy penetro- 300 go penetro-	
<u> </u>	Ť					44		CONCRETE		+			
			E+ 3.9ppm		0.1_ 0.2_ 0.3_ 0.4_ 0.6_			FILL: Gravelly Sandy CLAY: low plasticity, brown to brown, fine gravel.  Borehole BH13 terminated at 0.5m	dark	D			No odour or staining, rock and clay fragments
method AS AD RR W CT HA DT B V T *bit shown e.g.	a v c h d b V T n by su	uger of bller/tri ashbot able to and an iatube lank b bit C bit	ire ool uger	M C per 1:	ter 10/1/9	no resista ranging to refusal 8 water I e shown	level	notes, samples, tests  U ₅₀ undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	soil des based d system  moistur D d M n W w Wp p	cation syr scription on unified of re lry noist vet lastic limit	classificat		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 ENAURHOD04463AA

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD Client:

Office Job No.: 18.2.2013 Date started:

Principal:

18.2.2013 Date completed:

**DUE DILIGENCE ESA** Project:

PD Logged by:

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

EW Checked by:

ſ	drill n	nodel	and	mou	nting: I	land	Auger			Easting:	slope:	-90°			R	.L. Surface:
ŀ		diame				50				Northing	bearing:				d	atum:
ŀ	dril	ling	info	rma	tion		1	mate		ubstance						
	method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	ma soil type: plasticity or colour, secondary a	nterial particle characteris nd minor componer	tics, nts.	moisture condition	consistency/ density index	200 a pocket 300 a penetro-	
	HA DT	123			E + 0.4ppm		0.1 __ 0.2 __ 0.3 __ 0.4 __			CONCRETE  FILL: Gravelly Sandy CLA brown and dark grey, fine  Borehole BH14 terminate	ιΥ: low plasticity, da gravel.		D		11 20 20 20 20 20 20 20 20 20 20 20 20 20	No odour or staining, some brick fragments
Form GEO 5.12 Issue 3 Rev.0	meth AS AD RR W CT HA DT B V T *bit s e.g.	ood hown h	au ro wa ca ha di bla V TO by suf	uger d Iller/tri ashbo able to and au atube ank bi bit C bit	re ool uger	M C per 1:	ter 10/1/9	no resista ranging to refusal 8 water I e shown	level		overed ne	soil desibased or system  moisture D dr M m W we Wp ple	e y oist	classificat		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 ENAURHOD04463AA

AUSTRAL MASONRY (NSW) PTY LTD Client:

**Environmental Log - Environmental** 

Office Job No.: Date started:

18.2.2013

Principal:

18.2.2013 Date completed:

Project: **DUE DILIGENCE ESA**  Logged by:

PD

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW EW Checked by:

drill	mod	del a	model and mounting: Hand Au e diameter: 110			Auger			Easting:	slope:	-90	0		R	L. Surface:		
						10				Northing	bearing	:			da	itum:	
dr	_	_	nfo	rma	tion	1		mate		ubstance							
method	1 2		support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity colour, secondary	material or particle characteris or and minor compone	stics, nts.	moisture condition	consistency/ density index	100 y pocket 300 a penetro-		
НА					E+		0.1_	747474		FILL: Gravelly Sandy C	LAY: low plasticity, da	ark	D			No odour or staining, ro fragments	ck and brick
					C.3ppm (DUP1, DUP1A)		0.2_			brown and moded oral	ge, me graver					iraginents	-
					О.Тррііі		0.5			Borehole BH15 termina	ted at 0.5m						-
AS AD RR W CT HA DT B V T	show	vn b	ro wa ca ha di bl V	iger diller/tri ashbo ible to and au atube ank bi bit bit bit	re ool uger	M C pe 1	nter 10/1/9	n resista anging to refusal 8 water l e shown	level	U ₆₃ undisturbed san D disturbed samp	ration test (SPT) ecovered cone (a)	soil de based d system  moistu D C M r W W		classificat		consistency/density in VS very sof S soft F firm St stiff VSt very stiff H hard Fb friable VL very loo L loose MD medium D dense VD very der	se



Sheet

1 of 1

AUSTRAL MASONRY (NSW) PTY LTD Client:

**Environmental Log - Environmental** 

Office Job No.: Date started:

ENAURHOD04463AA

Principal: Project:

Date completed:

20.2.2013 20.2.2013

**DUE DILIGENCE ESA** 

PD Logged by:

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW EW Checked by:

_							Auger			Easting:	slope:	-90°		леске	,		. Surface:
	diar			noui	ū	110 110	Augei			Northing	bearing:	-90				dati	
	illing			rma		110		mate	erial s	ubstance	beating.					uall	ин.
method	2 penetration		support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	materia soil type: plasticity or parti colour, secondary and m	cle characteristics	<b>5</b> ,	moisture condition	consistency/ density index	100 y pocket	a a	structure and additional observations
<b>Р</b> Н					E + 1.7ppm		0.1_ 0.2  0.4_			FILL: Gravelly Clayey SAND: fi brown, fine to medium, sub-ang	gular gravel		D				No odour or staining, picrite fragments  Hard surface (concrete?) encountered, hand auger refusal
AS AD RR W CT HA DT B V	auger screwing* auger drilling* roller/tricone washbore cable tool hand auger diatube blank bit V bit TC bit shown by suffix					M C pe 1	mud casing netration 2 3 4 r r	n resista anging to efusal 3 water I e shown	level	notes, samples, tests  U ₅₀ undisturbed sample 50n  U ₆₃ undisturbed sample 63n  D disturbed sample  N standard penetration test  N* SPT - sample recovered  Nc SPT with solid cone  V vane shear (kPa)  P pressuremeter  Bs bulk sample  E environmental sample  R refusal	nm diameter nm diameter b sist (SPT) nm E	coil desc coased on system moisture O dry M mo W we	ription unified o	nbols an			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



AUSTRAL MASONRY (NSW) PTY LTD

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

Borehole No. **BH17** 

Sheet

Date started:

Checked by:

1 of 1

19.2.2013

EW

**Environmental Log - Environmental** ENAURHOD04463AA Office Job No.:

19.2.2013 Principal: Date completed:

**DUE DILIGENCE ESA** PD Project: Logged by:

Geoprobe 7822DT Track drill model and mounting: Easting: slope: R.L. Surface: hole diameter: 130 bearing: Northing datum drilling information material substance pocket penetro-meter classification symbol consistency/ density index notes material structure and penetra samples moisture condition additional observations graphic method support tests, etc kPa soil type: plasticity or particle characteristics, depth metre RI 8888 colour, secondary and minor components. 123 BRICK 0.1 É No odour or staining, some picrite FILL: Sandy GRAVEL: fine, brown and grey, fine to medium grained sand 0.2 3.3ppm and ironstone fragments 0.3 0.4 0.5 F + 0.6 5.2ppm (DUP3, DUP3A) 0.7 8.0 0.9 1.0 4.8ppm FILL: GRAVEL: fine to medium, angular, grey D No odour or staining, some shale 1 1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 4.3ppm 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 F + 3.1 4.2ppm 3.2 3.3 3.4 3.5 3.6 37 E + 3.8 3.9 Borehole BH17 terminated at 3.9m 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 notes, samples, tests classification symbols and consistency/density index auger screwing* N nil undisturbed sample 50mm diameter VS M mud U₅₀ soil description very soft AD auger drilling* undisturbed sample 63mm diameter based on unified classification casing soft  $U_{63}$ RR W CT disturbed sample roller/tricone D penetration washbore Ν standard penetration test (SPT) St stiff no resistance SPT - sample recovered N* VSt very stiff cable tool moisture ranging to НА hand auger Nc SPT with solid cone hard dry DT diatube vane shear (kPa) moist Fb friable B V blank bit pressuremeter W wet VI very loose V bit Bs bulk sample Wp plastic limit loose on date shown

TC bit

ADT

*bit shown by suffix

Е

water inflow

water outflow

environmental sample

refusal

liquid limit

MD

VD

medium dense

very dense



Sheet

Date started:

1 of 1

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD Client:

Office Job No.:

ENAURHOD04463AA 20.2.2013

Principal:

20.2.2013 Date completed: PD

**DUE DILIGENCE ESA** Project:

Logged by:

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW EW Checked by:

_										Enting:		000		песке	_		Curface
ı				mou	ū		Auger			Easting:	slope:	-90°					. Surface:
_	e dia rillin			rma	ition	110		mate	erial e	Northing <b>Ibstance</b>	bearing:					datı	um:
method	1000	S perietration 3	support		notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	materi soil type: plasticity or pai colour, secondary and i	ticle characteristic	CS, S.	moisture condition	consistency/ density index	100 pocket	'a	structure and additional observations
HA					E+ 3.6ppm		0.1_			FILL: Gravelly SILT: dark gre gravel  Borehole BH18 terminated at	y and brown, fine		D			n 4	No odour or staining, with some rock fragments
AS AD RR W CT HA DT B V	shov		a w c h d b V T y su	uger of aller/trashbot able to and a atube ank bit C bit	ool uger e	M C	ter 10/1/98	n resista anging to efusal 3 water l e shown	level	notes, samples, tests  U ₅₀ undisturbed sample 5: U ₆₃ undisturbed sample 6: D disturbed sample N standard penetration t N* SPT - sample recover Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	Omm diameter 3mm diameter eest (SPT)		ription unified c				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 **ENAURHOD04463AA** 

Client: AUSTRAL MASONRY (NSW) PTY LTD

Office Job No.:

Date started:

19.2.2013

Principal:

Date completed:

19.2.2013

Project: **DUE DILIGENCE ESA** 

Logged by: Checked by: PD EW

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

**Environmental Log - Environmental** 

D.I. Cumfo oo

drill	mode	el an	d mou	ınting: (	Geopr	obe 78	22DT	Track	Easting:	slope:	-90°			R.I	L. Surface:
_	e dian				130				Northing	bearing	g:			da	tum:
dri		_	orma	tion			mate	erial su	ubstance						
method	v penetration	=	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticit colour, seconda	material y or particle character ry and minor compone	stics, ents.	moisture condition	consistency/ density index	100 pocket 200 pocket 300 popenetro- 400 meter	
PT				E + 0.0ppm		0.1_	} } }		TOPSOIL: Sandy SILT	Γ: dark brown		D			No odour or staining, some dry grass
						0.2_			FILL: Gravelly CLAY: dark brown, fine grave	iow plasticity, dark gre l	y and	D			No odour or staining, some picrite and wood fragments –
				E + 0.0ppm	_	0.4_			FILL: SANDSTONE: r	nedium grained, crear	<u>_</u>	D			No odour or staining
						0.6_ 0.7_ 0.8_ 0.9_			FILL: CLAY: low to me brown	edium plasticity, dark ç	grey and	D			No odour or staining, pieces of plastic –
				E + 0.0ppm		1.0_ 1.1_ 1.2_									
						1.3_ 1.4_ 1.5			Borehole BH19 termin	ated at 1.5m					_
						1.6_ 1.7_ 1.8			23.51.50 21110 Collina	aced at 1.0m					-
						1.9_									_
AS AD RR W CT HA DT B V T	shown	n by s	auger of coller/to washbot cable to cab	ore ool uger e	M C pe 1	iter 10/1/9	n resista anging to refusal 8 water l e shown	level	U ₆₃ undisturbed s D disturbed sam	etration test (SPT) recovered I cone Pa)	soil des based of system  moisture D dr M m W w Wp pl	n unified o	classifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 **ENAURHOD04463AA** 

AUSTRAL MASONRY (NSW) PTY LTD Client:

Office Job No.: Date started:

20.2.2013

Principal:

Date completed:

20.2.2013

**DUE DILIGENCE ESA** Project:

Logged by: Checked by: PD

**EW** 

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

**Environmental Log - Environmental** 

drill	mode	lan	d ma	ounting:	ŀ	land.	Auger			Easting: slope:	-90°		ricono			. Surface:
1	diam					110	. iagoi			Northing bearing						
				nation		. 10		mate	erial si	ubstance	9.				dati	uni.
method	2 penetration	tioda	water	no sam	otes aples, s, etc	RL	depth metres	thic log	classification symbol	material soil type: plasticity or particle characte	ristics, ents.	moisture condition	consistency/ density index	100 pocket	а	structure and additional observations
HA				E	E+ ppm		0.1_			FILL: Sandy GRAVEL: fine, dark grey, with  Borehole BH2 terminated at 0.2m		D			7	No odour or staining, rock and some quartz fragments
AS A AR W CT A T A B V T A B V T	thod	by s	auge roller, wash cable hand diatul blank V bit TC bi	bit		M C pe 1	nter 10/1/9	n resista ranging to refusal 8 water l e shown	level	notes, samples, tests  U ₅₀ undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	soil des based o system  moistur D d M m W w Wp pi	n unified o				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

Office Job No.:

Date completed:

1 of 1 ENAURHOD04463AA

20.2.2013

AUSTRAL MASONRY (NSW) PTY LTD Client:

**Environmental Log - Environmental** 

Date started:

20.2.2013

Principal:

**DUE DILIGENCE ESA** Logged by:

Project:

PD Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW EW Checked by:

drill	model	and	moui	nting: I	Hand .	Auger			Easting:	slope:	-90°				R.L	. Surface:
_	e diame				110				Northing	bearing:					datı	um:
method	illing 2 benetration	upport	water	notes samples, tests, etc	RL	depth metres	ohic log	classification symbol	soil type: plasticity or particolour, secondary and m	cle characteristic	CS, S.	moisture condition	consistency/ density index	100 y pocket	а	structure and additional observations
HA				E + 3.8ppm (DUP7, DUP7A)		0.1_			FILL: Gravelly CLAY: low plasti to medium gravel	city, dark brown	, fine	D				No odour or staining, sandstone and picrite fragments
						0.2			Borehole BH20 terminated at 0	ī.2m						
						0.4_										_
AS AD RR W CT HA DT B V T	shown t	au ro wa ca ha dia bla V	iger d ller/tricashbo able to and au atube ank bi bit C bit	re ool uger	M C pe 1	iter 10/1/9	n resista ranging to refusal 8 water e shown	level	notes, samples, tests  U ₅₀ undisturbed sample 50r U ₆₃ undisturbed sample 63r D disturbed sample N standard penetration ter N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	mm diameter st (SPT)		ription unified o				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



19.2.2013

Sheet 1 of 1

Date started:

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD ENAURHOD04463AA Office Job No.:

Principal: 19.2.2013 Date completed:

Project: **DUE DILIGENCE ESA** PD Logged by:

CLUNIES ROSS STREET, PROSPECT NSW

Bor	eho	le L	ocati	on: <b>CLU</b>	NIE:	S RC	SS S	STRE	ET, PROSPECT	T NSW		C	Checke	ed by:	EW	
drill ı	mod	el ar	ıd mou	nting:	Geopro	obe 78	22DT	Track	Easting:	slope:	-90°			R.L	Surface:	
	dian				130				Northing	bearing:				dat	um:	
dri		_	forma	tion			mate	erial s	ubstance							
method	1 penetration		support water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity	material  or particle characteris y and minor componer	tics,	moisture condition	consistency/ density index	100 pocket 200 d penetro- 300 meter		tructure and onal observations
PT				E + 0.0ppm		0.1_ 0.2_ 0.3			FILL: Sandy GRAVEL: and red-brown	fine to medium, dark o	grey	D			No odour or fragments	staining, some rock
SS				E + 0.0ppm		0.3_ 0.4_ 0. <u>5</u> 0.6_ 0.7			FILL: Sandy Gravelly C cream green-grey and	CLAY: low plasticity, bro orange, fine gravel	own,	D			No odour or and mineral	staining, some picrite fragments
				E+		0.7_ 0.8_ 0.9_ 1.0_ 1.1										-
				0.0ppm		1.1_ 1.2_ 1.3_ 1.4_ 1.5			FILL: CLAY: medium to (possible reworked nat			D	F		No odour or	staining
						1.6_ 1.7_ 1.8_ 1.9_										
				E + 0.0ppm		2.0 2.1 2.2 2.3										
						2.4_ 2.5_ 2.6_ 2.7_ 2.8_										
				E + \ 0.0ppm		2.9_ 3.0_ 3.1_ 3.2_										
						3.3_ 3.4_ 3.5_ 3.6_			Becoming low plasticity	,						
				E+		3.7_ 3.8_ 3.9_ 4.0										
				0.0ppm		4.1_ 4.2_ 4.3_ 4.4_			Borehole BH21 termina	ated at 4m						
						4.5 4.6 4.7 4.8										
						4.9_ 5.0										
meti AS AD RR W CT HA DT B	hod		auger s auger or roller/tr washbo cable to hand a diatube blank to V bit	icone ore ool uger	M C per	mud casing netration 2 3 4 ter 10/1/98		level	U ₆₃ undisturbed sam	tration test (SPT) recovered cone Pa)	W we	cription or unified of	classifica		consisten VS S F St VSt H Fb VL L	cy/density index very soft soft firm stiff very stiff hard friable very loose loose
T *bit s e.g.	show	n by s	TC bit suffix ADT			water i			E environmental R refusal	sample	W _L liq	uid limit			MD D VD	medium dense dense very dense



Sheet

1 of 1

**Environmental Log - Environmental** ENAURHOD04463AA Office Job No.: AUSTRAL MASONRY (NSW) PTY LTD

19.2.2013 Date started:

Client: Principal:

19.2.2013 Date completed:

Project: **DUE DILIGENCE ESA** 

PD Logged by:

Borehole Location: CLUNIES ROSS STREET PROSPECT NSW Checked by: FW

Bor	rehol	le Lo	ocatio	on: <i>CLU</i>	NIE	S RC	)SS	STRE	ET, PROSPECT	NSW			Checke	d by:	EW	
drill	mode	el an	d mou	ınting: l	land	Auger			Easting:	slope:	-90°			F	R.L. Surface:	
	dian				10				Northing	bearing	j:			c	atum:	
dri		_	orma	ition			mate	erial su	ubstance							
method	5 penetration	1 5	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity o colour, secondary	and minor compone	ents.	moisture condition	consistency/ density index	200 y pocket 300 ad penetro-	400	structure and tional observations
НА				E + 0.8ppm		0.1			FILL: Gravelly CLAY: lov brown, fine gravel		y,	D			No odour fragments	
						0.2_	A A X X		Borehole BH22 terminate	ed at 0.1m					Hand aug encounter	er refusal - hard surface ed -
						0.3_										
						0.4_										
AS AD RR W CT HA DT B V	chod	i i i i i by s	auger of coller/tr washbot cable to cab	ore ool uger e	M C pe	ter 10/1/98	n resista anging to efusal 3 water I e shown	level		ation test (SPT) covered one i)		ription unified o			consist VS S F St VSt H Fb VL L MD D VD	ency/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense



Sheet

1 of 1 **ENAURHOD04463AA** 

Client: AUSTRAL MASONRY (NSW) PTY LTD

water outflow

ADT

**Environmental Log - Environmental** 

Office Job No.:

Date started:

19.2.2013

Principal:

Date completed:

eted: **19.2.2013** 

Project: **DUE DILIGENCE ESA** 

Logged by:

y: **PD** 

VD

very dense

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW Checked by: EW Geoprobe 7822DT Track drill model and mounting: Easting: slope: R.L. Surface: hole diameter: 130 bearing: Northing datum drilling information material substance pocket penetro-meter consistency/ density index classification symbol penetration notes material structure and samples moisture condition additional observations graphic method support tests, etc water kPa soil type: plasticity or particle characteristics, depth metre RI 9889 colour, secondary and minor components. 123 占 0.1 FILL: Sandy GRAVEL: fine to medium, grey and No odour or staining, picrite Ы E + 0.6ppm brown, fine to medium grained sand 0.2 0.3 0.4 0.5 becoming clayey and brown in colour D No odour or staining 0.5ppm (DUP5, 0.6 DUP5A) 0.7 8.0 0.9 1.0 E + 0.1ppm 1.1 1.2 1.3 1.4 1.5 1.6 Borehole BH23 terminated at 1.58m 1.7 1.8 1.9 2.0 notes, samples, tests classification symbols and consistency/density index auger screwing* undisturbed sample 50mm diameter VS M mud U₅₀ soil description very soft AD auger drilling* undisturbed sample 63mm diameter based on unified classification casing soft  $U_{63}$ RR W CT disturbed sample roller/tricone D penetration standard penetration test (SPT) washbore Ν St stiff no resistance SPT - sample recovered VSt cable tool N* very stiff moisture ranging to НА hand auger Nc SPT with solid cone hard dry DT diatube vane shear (kPa) moist Fb friable B V pressuremeter blank bit W wet VI very loose V bit Bs bulk sample Wp plastic limit loose on date shown TC bit Е environmental sample liquid limit MD medium dense water inflow *bit shown by suffix refusal



Sheet

1 of 1

AUSTRAL MASONRY (NSW) PTY LTD Client:

**Environmental Log - Environmental** 

Office Job No.: Date started:

ENAURHOD04463AA 19.2.2013

Principal:

Date completed:

19.2.2013

**DUE DILIGENCE ESA** Logged by:

Project: PD Borehole Location: CLUNIES ROSS STREET PROSPECT NSW Checked by: FW

Bor	reho	le L	_ocati	on: <i>CLU</i>	NIE.	S RC	oss s	STRE	ET, PROSPECT	NSW		C	Checke	ed by:	EW
drill	mode	el aı	nd moi	ınting: (	Geopr	obe 78	22DT	Track	Easting:	slope:	-90°			R.L	. Surface:
	e dian				130				Northing	bearing	j:			dat	um:
dr	_		form	ation			mate	erial su	ıbstance						
method	1 penetration		support	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity colour, secondar	material or particle characteri y and minor compone	stics, ents.	moisture condition	consistency/ density index	100 x pocket 200 x penetro- 300 w meter	structure and additional observations
DT							4 4		BRICK						
PT	-			E + 0.0ppm		0.1_			FILL: Sandy GRAVEL: medium grained sand	fine to medium, grey	, fine to	D			No odour or staining, some picrite - fragments
						0.3_ 0.4_ 0. <u>5_</u>			FILL: Gravelly CLAY, h	igh plasticity, brown a	and grey,	D			No odour or staining, some picrite and ironstone fragments
				E + 0.0ppm		0.6_									-
						0.8_ 0.9_ 1. <u>0_</u>									
				E + 0.1ppm	_	1.1 __ 1.2 __ 1.3 __			Becoming low plasticity			D			No odour or staining
						1.4_ 1. <u>5_</u>									Brick fragments observed
						1.6 __	Y		Borehole BH24 termina	ited at 1.58m					_
						1.8_									
						2.0									-
AS AD RR W CT HA DT B V T	showr	n by	auger roller/t washb cable t hand a diatub blank l V bit TC bit	ore ool luger e	M C per	ter 10/1/9 on date water i	no resista ranging to refusal 8 water l e shown	level	U ₆₃ undisturbed sa D disturbed samp	tration test (SPT) ecovered cone Pa)		cription unified of			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 **ENAURHOD04463AA** 

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD

water outflow

ADT

Office Job No.:

Date started:

18.2.2013

Principal:

Date completed:

18.2.2013

PD

VD

very dense

Project: **DUE DILIGENCE ESA** 

Logged by:

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW Checked by: EW drill model and mounting: Hand Auger Easting: slope: R.L. Surface: hole diameter: 150 Northing bearing: datum drilling information material substance pocket penetro-meter consistency/ density index classification symbol penetration notes material structure and samples moisture condition additional observations graphic method support tests, etc water soil type: plasticity or particle characteristics, depth RI colour, secondary and minor components. 93004 123 占 00 Δ Δ Δ Δ 100 Δ. Δ 4 0.1 Δ 4 Δ 4 Δ 4 Δ Δ 4 . FILL: Sandy Clayey GRAVEL: fine to medium, dark No odour or staining, some picrite ₹ 0.2 grey, fine to medium grained sand and brick fragments 0.3ppm 0.3 Borehole BH25 terminated at 0.3m 0.4 0.5 notes, samples, tests classification symbols and consistency/density index auger screwing* M mud undisturbed sample 50mm diameter soil description VS U₅₀ very soft AD auger drilling* undisturbed sample 63mm diameter based on unified classification casing soft  $U_{63}$ RR W CT HA roller/tricone D disturbed sample penetration standard penetration test (SPT) washbore Ν St stiff no resistance SPT - sample recovered VSt cable tool N* very stiff moisture ranging to hand auger Nc SPT with solid cone hard dry DT diatube vane shear (kPa) moist Fb friable B V pressuremeter blank bit W wet VI very loose V bit Bs bulk sample Wp plastic limit loose on date shown TC bit Е environmental sample liquid limit MD medium dense water inflow *bit shown by suffix refusal



Sheet

1 of 1 **ENAURHOD04463AA** 

18.2.2013

PD

VD

very dense

AUSTRAL MASONRY (NSW) PTY LTD

water outflow

ADT

**Environmental Log - Environmental** 

Date started:

Office Job No.:

18.2.2013

Principal:

**DUE DILIGENCE ESA** Project:

Logged by:

Date completed:

Checked by: EW

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW drill model and mounting: Hand Auger Easting: slope: R.L. Surface: hole diameter: 130 Northing bearing: datum drilling information material substance pocket penetro-meter consistency/ density index classification symbol penetration notes material structure and samples moisture condition additional observations graphic method support tests, etc water kPa soil type: plasticity or particle characteristics, depth RI colour, secondary and minor components. 93004 123 占 Δ 1 Δ Δ Δ Δ 100 Δ. Δ 4 0.1 Δ 4 Δ 4 Δ 4 Ż Δ Δ FILL: Sandy Clayey GRAVEL: fine to medium, dark D No odour or staining, picrite ¥ grey, fine to medium grained sand fragments 0.2 0.3ppm 0.3 Borehole BH26 terminated at 0.3m 0.4 0.5 notes, samples, tests classification symbols and consistency/density index auger screwing* M mud undisturbed sample 50mm diameter VS U₅₀ soil description very soft AD auger drilling* undisturbed sample 63mm diameter based on unified classification casing soft  $U_{63}$ RR W CT HA roller/tricone D disturbed sample penetration standard penetration test (SPT) washbore Ν St stiff no resistance SPT - sample recovered VSt cable tool N* very stiff moisture ranging to hand auger Nc SPT with solid cone dry hard DT diatube vane shear (kPa) moist Fb friable B V pressuremeter blank bit W wet VI very loose V bit Bs bulk sample Wp plastic limit loose on date shown TC bit Е environmental sample liquid limit MD medium dense water inflow *bit shown by suffix refusal



Sheet

1 of 1 **ENAURHOD04463AA** 

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD

water outflow

ADT

Office Job No.: Date started:

Principal:

18.2.2013 Date completed:

18.2.2013

**DUE DILIGENCE ESA** Project:

Logged by:

PD

VD

very dense

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW EW Checked by: Geoprobe 7822DT Track drill model and mounting: Easting: slope: R.L. Surface: hole diameter: 150 bearing: Northing datum drilling information material substance pocket penetro-meter classification symbol consistency/ density index notes material structure and penetra samples moisture condition additional observations graphic method support tests, etc water soil type: plasticity or particle characteristics, depth metre RI colour, secondary and minor components. 8888 123 占 Δ 1 0.1 1 Ż 0.2 **FILL**: Gravelly CLAY: low plasticity, dark brown and dark grey, fine gravel ¥ F + D Black staining, very slight oily odour, rock fragments 0.4ppm (DUP2) 0.3 0.4 No odour or staining 0.5ppm 0.5 0.6 FILL: CLAY: medium plasticity, grey PT No odour or staining 0.7 8.0 0.9 1.0 E + 0.0ppm 1.1 1.2 FILL: Gravelly CLAY: low plasticity, dark brown to No odour or staining brown, fine gravel 1.3 1.4 1.5 1.6 1.7 Borehole BH27 terminated at 1.67m 1.8 1.9 2.0 notes, samples, tests classification symbols and consistency/density index auger screwing* undisturbed sample 50mm diameter VS M mud U₅₀ soil description very soft AD auger drilling* undisturbed sample 63mm diameter based on unified classification casing soft  $U_{63}$ RR W CT disturbed sample roller/tricone D penetration washbore Ν standard penetration test (SPT) St stiff no resistance SPT - sample recovered N* VSt very stiff cable tool moisture ranging to НА hand auger Nc SPT with solid cone hard dry DT diatube vane shear (kPa) moist friable B V pressuremeter blank bit W wet VI very loose V bit Bs bulk sample Wp plastic limit loose on date shown TC bit Ε environmental sample liquid limit MD medium dense water inflow *bit shown by suffix refusal



Sheet

1 of 1 ENAURHOD04463AA

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD Client:

Office Job No.: Date started:

18.2.2013

Principal:

Date completed:

18.2.2013

Project: **DUE DILIGENCE ESA** PD Logged by: Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW EW Checked by:

drill model and mounting: Hand A									Easting: slope	: -90°		riconc	P	L. Surface:
	diam			ū	30	lugei			Northing bearing					atum:
_	lling				00		mate	erial s	ubstance	9.			uc	itum.
method	2 penetration	upport		notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characte colour, secondary and minor compor	ristics, nents.	moisture condition	consistency/ density index	200 A pocket 300 G penetro-	
DT						0.1_	000000000000000000000000000000000000000		CONCRETE					-
НА				E + 0.7ppm		0.2_			FILL: Sandy Clayey GRAVEL: fine to medi grey, fine to medium grained sand	ım, dark	D			No odour or staining, picrite fragments
						0.3_			Borehole BH28 terminated at 0.26m					
						0.4_								
meti AS AD RR W CT HA DT B V T *bits e.g.	hod	r v c h c k \ \ t by su	oller/tr vashbo able to and a liatube blank b / bit C bit	ore ool uger	M C per	ter 10/1/98	n resista anging to efusal 3 water I e shown	level	notes, samples, tests  U ₅₀ undisturbed sample 50mm diameter D ₆₃ undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R		ription unified o			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 ENAURHOD04463AA

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD Client:

Office Job No.: Date started:

18.2.2013

Principal:

Date completed:

18.2.2013

Logged by:

PD

Project: **DUE DILIGENCE ESA** Borehole Location: CLUNIES ROSS STREET PROSPECT NSW Checked by: FW

Bore	ehol	e L	ocati	on: <i>CLU</i>	NIE	S RC	SS S	STRE	ET, PROSPECT	NSW			Checke	d by:	EW
drill r	mode	el an	d mou	ınting: l	Hand .	Auger			Easting:	slope:	-90°			R	R.L. Surface:
	diam				130				Northing	bearing	g:			d	atum:
dri			orma	ition			mate	erial si	ıbstance						
	Denetration	1 5	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity colour, secondary	naterial or particle characteri and minor compone		moisture condition	consistency/ density index	200 A pocket 300 D penetro-	
DT							<u> </u>		CONCRETE						
						0.1_	4747474								
¥						0.2_			FILL: CLAY: medium pla	asticity, dark brown (	possible	D			No odour or staining
_				E + 0.5ppm		0.3_			reworked natural materi	al)					
					_	0.4_									
				E + 0.8ppm		0.5			Borehole BH29 terminal	ted at 0.5m					
						0.6_									
						0.7_									
						0.8_									
						0.9_									
meth AS AD RR W CT HA DT B V T *bit s	hod	ı by s	auger roller/ti washb cable thand a diatube blank b V bit TC bit	ore ool uger e	M C pe 1	ter 10/1/98	n resista anging to efusal 3 water l e shown	level	U ₆₃ undisturbed sar D disturbed samp	ration test (SPT) ecovered one a)		ription unified o			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 **ENAURHOD04463AA** 

20.2.2013

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD

Office Job No.:

Date started:

Date completed:

20.2.2013

Principal:

Logged by: **PD** 

Project: DUE DILIGENCE ESA

Borehole Location: CLUNIES ROSS STREET PROSPECT NSW

Checked by: **EW** 

							SS S	STRE	ET, PROSPECT I		==×	(	Checke			EW
drill mod			noun			Auger			Easting:	slope:	-90°					surface:
nole diar drillin			mat		110		mot	rial c	Northing	bearing	j:				datum	1:
		iiOf	ınat				mate		ıbstance		1		J	۲		
method 1 5 penetration		support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity or colour, secondary a	nd minor compone	ents.	moisture condition	consistency/ density index	100 pocket 200 J penetro-	a	structure and additional observations
ATI				E + 14.5ppm		0.1_			FILL: Gravelly Silty CLAY to medium gravel	: low plasticity, brov	wn, fine	D				lo odour or staining, rock agments
						0.4_			Borehole BH3 terminated	at 0.3m						
nethod SS AD RR V CT AA OT S V bit show	vn by	rolle was cab har dia bla V b	ger dr er/tric shbor ole too nd au tube nk bit it bit x	re ol ger	M C per 1:	pport mud casing netration 2 3 4 ter 10/1/9	n resista anging to refusal 8 water I e shown	evel		overed ne	W we Wp pla	cription unified of				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 **ENAURHOD04463AA** 

Client: AUSTRAL MASONRY (NSW) PTY LTD

**Environmental Log - Environmental** 

Date started: 1

18.2.2013

Principal:

Date completed: **18.2.2013** 

Office Job No.:

Project: **DUE DILIGENCE ESA** 

Logged by: **PD** 

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW Checked by: EW

drill model and mounting: Hand Auger Easting: slope: R.L. Surface: hole diameter: 130 Northing bearing: datum drilling information material substance pocket penetro-meter consistency/ density index classification symbol penetration notes material structure and samples moisture condition additional observations graphic I method support tests, etc water soil type: plasticity or particle characteristics, depth RI colour, secondary and minor components. 93004 123 占 00 Δ Δ Δ Δ 100 Δ. Δ 4 0.1 Δ 4 Δ 4 Δ 4 Δ Δ 4 . FILL: Gravelly CLAY: low plasticity, dark brown to ¥ 0.2 No odour or staining, some brick brown and dark grey, fine gravel F+ 0.4ppm 0.3 Borehole BH30 terminated at 0.3m 0.4 0.5 notes, samples, tests classification symbols and consistency/density index auger screwing* M mud undisturbed sample 50mm diameter VS U₅₀ soil description very soft AD auger drilling* undisturbed sample 63mm diameter based on unified classification casing soft  $U_{63}$ RR W CT HA roller/tricone D disturbed sample penetration standard penetration test (SPT) washbore Ν St stiff no resistance SPT - sample recovered VSt cable tool N* very stiff moisture ranging to hand auger Nc SPT with solid cone hard dry DT diatube vane shear (kPa) moist Fb friable B V pressuremeter blank bit W wet VI very loose V bit Bs bulk sample Wp plastic limit loose on date shown TC bit Е environmental sample liquid limit MD medium dense water inflow *bit shown by suffix refusal VD water outflow very dense ADT



Sheet

Office Job No.:

1 of 1 ENAURHOD04463AA

AUSTRAL MASONRY (NSW) PTY LTD Client:

**Environmental Log - Environmental** 

Date started:

20.2.2013

20.2.2013

Principal:

PD Logged by:

Project: **DUE DILIGENCE ESA**  Date completed:

Bor	orehole Location: <b>CLUNIES</b>					S RC	SS S	STRE	ET, PROSPECT NSW	<b>V</b>			Checke			EW
						Auger			Easting:	slope:	-90°			ı	R.L. S	urface:
	diam				110				Northing	bearing:				(	datum	ı:
dri	lling	info	orma	tion	I		mate		ubstance							
method	2 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or partic colour, secondary and mi	cle characteristi		moisture condition	consistency/ density index	200 A pocket 300 A penetro-	а	structure and additional observations
HA HA	123	33 8	M I	E+ 3.8ppm	RL	0.1_ 0.2_ 0.4_ 0.5_	Б	<u> </u>	colour, secondary and mi  FILL: Silty CLAY: low plasticity,  Borehole BH31 terminated at 0	dark brown	is.		dd dd	100		lo odour or staining
						0.8_										
meth AS AD RR W CT HA DT B V T *bit s e.g.	hod	r v c t t v	oller/tri vashbo able to and a liatube blank b / bit C bit	ore ool uger	M C per 1	ter 10/1/98	n resista anging to refusal 8 water I e shown	evel	notes, samples, tests  U ₅₀ undisturbed sample 50m D disturbed sample 63m D disturbed sample N standard penetration tes N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R	nm diameter st (SPT)	W we	cription a unified of				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Client:

Borehole No. **BH32** 

20.2.2013

1 of 1 Sheet

Date started:

**Environmental Log - Environmental** ENAURHOD04463AA Office Job No.: AUSTRAL MASONRY (NSW) PTY LTD

20.2.2013 Principal: Date completed:

Project: **DUE DILIGENCE ESA** PD Logged by:

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW EW Checked by:

_	drill model and mounting: Hand A								J 11 \ L					Checke			EVV
l				mou	ū		Auger			Easting:	slope:	-90°				R.L. Surl	face:
	e dia			rm-	tion	110		pac 4	wiel -	Northing	bearing	:			(	datum:	
ur	_	_	IIIO	rma	uon			mate		ubstance					1		
method		s penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity colour, secondary	material or particle characteris y and minor compone		moisture condition	consistency/ density index	200 A pocket 300 A penetro-	1	structure and additional observations
AH					E + 10.4ppm		0.1_ 0.2 0.3_			FILL: Sandy GRAVEL: brown  Borehole BH32 termina		and	D			No and	odour or staining, some rock brick fragments
AS AD RR W CT HA DT B V	sho		at ro ca ha di bl V To ry sur	liger diller/tri ashbo able to and au atube ank bi bit	re ool uger	M C pe	ter 10/1/9	n resista anging to efusal 3 water l e shown	level	U ₆₃ undisturbed san D disturbed samp	ration test (SPT) ecovered cone Pa)	W we	cription n unified of e y oist			\ S	firm St stiff //St very stiff H hard - b friable //L very loose L loose //D medium dense



Sheet

Date started:

1 of 1 ENAURHOD04463AA

20.2.2013

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD

Office Job No.: ENA

Principal:

Date completed: **20.2.2013** 

Project: **DUE DILIGENCE ESA** 

Logged by: **PD** 

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

Checked by: **EW** 

drill	Il model and mounting: Hand Au le diameter: 110			Auger			Easting:	slope:	-90°				R.L. Surface:		
_					10				Northing	bearing:					datum:
dr	illing	info	rma	tion	I		mate		ıbstance			1			
method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and mino	characteristics	5,	moisture condition	consistency/ density index	100 pocket 200 y penetro-	Pa
VH	123			E + 5.9ppm		0.1_			FILL: Gravelly CLAY: medium pla to brown, fine to medium gravel			D		1 3	No odour or staining, rock fragments
						0.6_			Borehole BH33 terminated at 0.5	m					
GEO 5.12 Issue 3 Rev.0  A M A M A M A M A M A M A M A M A M A	shown	a w c h d b V T by su	uger d oller/tri ashbo able to and au atube ank b bit C bit	re ool uger	M C pe 1	pport mud casing netration 2 3 4 ter 10/1/9	n resista anging to refusal 8 water l e shown	level	notes, samples, tests  U ₅₀ undisturbed sample 50mm  D disturbed sample 63mm  N service standard penetration test ( N* SPT - sample recovered  NC SPT with solid cone  V vane shear (kPa)  P pressuremeter  Bs bulk sample  E environmental sample  R refusal	diameter diameter b		ription unified c			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD Client:

Office Job No.: Date started:

ENAURHOD04463AA 19.2.2013

Principal:

19.2.2013 Date completed: PD

Project: **DUE DILIGENCE ESA** 

Logged by: Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW EW Checked by:

				EI, PROSPECT NSW		Checked by:	EW
	•	Geoprobe 7822	2DT Track	Easting: slope		R.I	L. Surface:
hole diamete		130		Northing bearing	ng:	da	tum:
	nformation		material su	Ibstance		T 1 .	
method 7 c penetration	notes samples, tests, etc	depth RL metres	graphic log classification symbol	material soil type: plasticity or particle characte colour, secondary and minor compo		consistency/density index  100 pocket 200 pocket 300 pometro-	
TO		1 1 1:7	Δ Δ Δ Δ	CONCRETE			
F	E + 0.0ppm		D . D	FILL: Sandy GRAVEL: fine to medium, grebrown, fine to medium grained sand	y to dark D		No odour or staining
	E+ 0.0ppm E+ 0.0ppm (DUP4)	0.2_ 0.3_ 0.4_ 0.5_ 0.6_ 0.7_ 0.8_ 0.9_ 1.0_ 1.1_ 1.2_		FILL: Gravelly CLAY: medium plasticity, da and dark grey, fine, angular gravel	rk brown D		No odour or staining, picrite fragments
method AS AS AN AS	auger screwing* auger drilling* roller/tricone washbore cable tool hand auger diatube blank bit V bit TC bit	ran refi water	N nil o resistance nging to fusal water level shown	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	classification sy soil description based on unified system  moisture D dry M moist W wet Wp plastic lim W _L liquid limit	classification	consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense



Sheet

1 of 1 ENAURHOD04463AA

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD

Office Job No.:

Date started:

18.2.2013

Principal:

Data

Date completed: **18.2.2013** 

Project: **DUE DILIGENCE ESA** 

Logged by:

PD FW

Bore	eho	le	Loc	atio	on: <b>CLU</b>	NIE	S RC	oss s	STRE	ET, PROSPECT NSW	<u>'</u>			Checke	ed by:	: <b>EW</b>
drill r	node	el a	nd i	nou	nting: I	Hand A	Auger			Easting:	slope:	-90°			ı	R.L. Surface:
hole						150				Northing	bearing:				(	datum:
dri		_	itoi	ma	tion			mate		ıbstance		Т	I			
method	υ penetration		support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particl colour, secondary and mir	e characteristics or components.	S,	moisture condition	consistency/ density index	200 A penetro-	a
DT								000		BRICK						
HA					E + 0.4ppm	_	0.1_			FILL: Sandy GRAVEL: fine, dark fine grained sand	grey and browr	n,	D			No odour or staining, some rock fragments
							0.2_									
						-	0.4_									
					E + 0.4ppm		0.5			Borehole BH35 terminated at 0.3	ōm					
							0.6_									
							0.7_									
							0.8_									
							0.9_									
meth AS AD RR W CT HA DT B V T *bit s e.g.		n by	rol wa ca ha dia bla V I	ger d ler/tri shbo ble to nd au tube ink bi bit bit	ol uger	M C per 1:	iter 10/1/9	no resista ranging to refusal 8 water I e shown	evel	notes, samples, tests  U ₅₀ undisturbed sample 50m U ₆₃ undisturbed sample 63m D disturbed sample N standard penetration test N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	m diameter s s diameter b s s (SPT) n n n n n n n n n n n n n n n n n n n	M mo N we Np pla	ription unified o	classificat		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 **ENAURHOD04463AA** 

AUSTRAL MASONRY (NSW) PTY LTD Client:

Hand Auger

Office Job No.: Date started:

20.2.2013

Principal:

drill model and mounting:

Date completed:

20.2.2013

**DUE DILIGENCE ESA** Project:

Logged by:

slope:

PD

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

Easting:

**Environmental Log - Environmental** 

**EW** Checked by: R.L. Surface:

1				· ·		Auger			Easting: slope:	-90°					Surface:
	diam				110		1		Northing bearin	g:				dat	um:
dri	lling	info	orma	ition		1	mate		ubstance	1	-				
method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle character colour, secondary and minor compon	istics,	condition	consistency/ density index	100 Pocket		structure and additional observations
¥	П								FILL: Gravelly CLAY: low plasticity, dark bro	own, fine	D		П	П	No odour or staining, clay and rock
				E+ 1.5ppm		0.1_			gravel						fragments
						0.3_									
				E + 1.7ppm		0.4_			Borehole BH36 terminated at 0.5m						
						0.6_									
						0.7_									
						0.8_									
mati	hod					1.0			Laster complex tests	glassificati	on sure	hole e	4		consistancy/dansity-inday
Meti AS AD RR W CT HA DT B V T *bit s	<b>hod</b> shown	a ro c h d b V T by su	oller/ti vashb able to and a liatube lank to bit C bit	ool uger e	M C pee 1 wa	iter 10/1/9	n resista ranging to refusal 8 water I e shown	evel	notes, samples, tests  U ₅₀ undisturbed sample 50mm diameter  U ₆₃ undisturbed sample 63mm diameter  D disturbed sample  N standard penetration test (SPT)  N* SPT - sample recovered  Nc SPT with solid cone  V vane shear (kPa)  P pressuremeter  Bs bulk sample  E environmental sample  R refusal	classificatic soil descrip based on ur system  moisture D dry M moist W wet Wp plasti W_L liquid	nified cl				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



21.2.2013

Sheet 1 of 1

Date started:

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD ENAURHOD04463AA Office Job No.:

Principal: 21.2.2013 Date completed:

Project: **DUE DILIGENCE ESA** PD Logged by:

CLUNIES ROSS STREET, PROSPECT NSW

Bor	Borehole Location: CLUNIES  drill model and mounting: Hand Au						SS S	STRE	ET, PROSPECT	NSW			Checke	d by:	EW	
drill ı	mode	el ar	ıd mo	unting:	Hand <i>i</i>	Auger			Easting:	slope:	-90°			R.	L. Surface:	
	diam				110				Northing	bearing:				da	tum:	
dri			form	ation	1		mate		ubstance							
method	penetration		support	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity	material or particle characteris y and minor componer	tics,	moisture condition	consistency/ density index	200 y pocket 300 a penetro- 400 meter		tructure and onal observations
НА		3		E+ 3.7ppm		0.1_			FILL: CLAY: medium p reworked natural mater	lasticity, dark brown (p		D		1004	No odour or	staining
				E+ 5.6ppm		0.4_			Patches of yellow brow	·		D			No odour or	staining
						0.6_										
						0.7_										
						0.9_										
meth AS AD RR W CT HA DT B V T *bit s	hod	ı by:	auger roller/ washi cable hand diatub blank V bit TC bit	tool auger e bit	M C per 1	pport mud casing netration 2 3 4 ter 10/1/98	n resistal anging to efusal 3 water I e shown	evel	U ₆₃ undisturbed sa D disturbed samp	tration test (SPT) ecovered cone Pa)	W we	cription a unified of	classificat		consisten VS S F St VSt H Fb VL L MD D VD	cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense



Sheet Office Job No.:

**ENAURHOD04463AA** 

very dense

1 of 1

AUSTRAL MASONRY (NSW) PTY LTD

water outflow

ADT

**Environmental Log - Environmental** 

21.2.2013 Date started:

Principal:

21.2.2013 Date completed: PD

**DUE DILIGENCE ESA** Project:

Logged by:

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW Checked by: EW drill model and mounting: Hand Auger Easting: slope: R.L. Surface: hole diameter: 110 Northing bearing: datum: drilling information material substance pocket penetro-meter consistency/ density index classification symbol penetration material structure and samples moisture condition additional observations graphic I support method tests, etc water soil type: plasticity or particle characteristics, depth metre RL 200 400 400 400 colour, secondary and minor components. 123 FILL: CLAY: medium plasticity, dark brown (possible No odour or staining reworked natural material) 0.1 3.7ppm 0.2 0.3 0.4 E + 4.7ppm 0.5 Borehole BH38 terminated at 0.5m 0.6 0.7 8.0 0.9 support notes, samples, tests classification symbols and consistency/density index auger screwing* M mud undisturbed sample 50mm diameter soil description VS very soft AD RR W CT HA auger drilling* undisturbed sample 63mm diameter based on unified classification casing soft  $U_{63}$ roller/tricone D disturbed sample penetration standard penetration test (SPT) washbore Ν St stiff no resistance SPT - sample recovered VSt cable tool N* very stiff moisture ranging to hand auger Nc SPT with solid cone dry hard DT B V diatube vane shear (kPa) moist friable pressuremeter blank bit W wet VI very loose V bit Bs bulk sample Wp plastic limit loose on date shown TC bit Е environmental sample liquid limit MD medium dense water inflow *bit shown by suffix refusal VD



Sheet

1 of 1 ENAURHOD04463AA

21.2.2013

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD Client:

**DUE DILIGENCE ESA** 

Office Job No.: Date started:

Date completed:

21.2.2013

Principal:

PD Logged by:

Project: Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

Checked by:

EW

_	Borehole Location: CLUNIES  drill model and mounting: Hand A							/33 3	OIKE		<del> </del>		hecke		EW	
				mou	ū		Auger			Easting:	slope: -90°				Surface:	
			eter:	rma		110		mc4-	rial a	Northing Ibstance	bearing:			dat	um:	
۲	ariii	_	IIIIC	rma	uon			mate		IDSTANCE				1	T	
method	1	No penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and mine	or components.	moisture condition	consistency/ density index	100 pocket 200 d penetro- 300 w meter		tructure and onal observations
H					E + 0.2ppm (DUP9, DUP9A)		0.1_			FILL: CLAY: medium plasticity, direworked natural material)	ark brown (possible	D			No odour or	staining
							0.6_ 0.7_ 0.8_ 1.0			Borehole BH39 terminated at 0.5					aggistan	
GEO 5.12 Issue 3 Rev.0	S D R / T A T	auger screwing* auger drilling* roller/tricone washbore cable tool hand auger diatube blank bit V bit TC bit shown by suffix				mud casing netration 2 3 4 r r r r r r r r r r r r r r r r r r	n resistal anging to refusal 8 water I e shown	evel	notes, samples, tests  U ₅₀ undisturbed sample 50mm  D disturbed sample 63mm  D disturbed sample  N standard penetration test ( N* SPT - sample recovered  NC SPT with solid cone  V vane shear (kPa)  P pressuremeter  Bs bulk sample  E environmental sample  R refusal	soil description of diameter soil description of diameter system  SPT)  moisture D dr M m W w W w Wp pl	e y oist			consistend VS S F St VSt H Fb VL L MD D VD	very soft very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense	



Sheet
Office Job No.:

1 of 1 **ENAURHOD04463AA** 

Client: AUSTRAL MASONRY (NSW) PTY LTD

Date started:

20.2.2013

Principal:

Date completed: 20.2.2013

Project: **DUE DILIGENCE ESA** 

Logged by: **PD** 

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

**Environmental Log - Environmental** 

Checked by: **EW** 

drill	model	and	mou	nting: I	Hand .	Auger			Easting: slope:	-90°		JIIOOK		R.L. Surface:
1	diame			•	110	J			Northing bearing					latum:
	illing		rma				mate	erial su	ubstance					
method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characte colour, secondary and minor compon	ristics, ents.	moisture condition	consistency/ density index	100 pocket 200 pocket 300 pocket	
НА				E + 3.0ppm		0.1_			FILL: Gravelly SAND: Fine grained, brown, medium gravel.  becoming finer grained, dark brown	fine to	D			No odour or staining, rock fragments and cream, grey, orang mineral fragments
				E + 3.4ppm		0.4_			Borehole BH4 terminated at 0.5m					
						0.7_								
AS AD RR W CT HA DT B V	hod shown b	ai ro w ca ha di bl V To y su	uger d aller/tri ashbo able to and a atube ank b bit C bit	ire ool uger	M C pe 1	nter 10/1/9	no resista ranging to refusal 8 water l e shown	level	notes, samples, tests  U ₅₀ undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R	soil des based o system  moistur D d M m W w Wp pi	n unified o	classifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet Office Job No.: 1 of 1 **ENAURHOD04463AA** 

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD

Date started:

21.2.2013

Principal:

Date completed:

mpleted: **21.2.2013** 

Project: **DUE DILIGENCE ESA** 

Logged by:

PD

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

Checked by: EW

					NIE.	SRC	555	SIRE	ET, PROSPECT NSW		(	Checke	ed by:	EW
drill r	mode	el an	d moi	ınting: I	Hand /	Auger	_		Easting:	slope: -	90°		R.	L. Surface:
hole					110				Northing	bearing:			da	tum:
dri			orma	tion	ı		mate		ubstance					
method	penetration	- 13	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle ch colour, secondary and minor c	aracteristics, omponents.	moisture condition	consistency/ density index	100 pocket 200 a penetro- 300 meter	
НА		3		E+ 1.1ppm		0.1_			FILL: CLAY: medium plasticity, dark reworked natural material)  becoming grey-orange mottled	•	1		- 2	No odour or staining
						0.6_			Borehole BH40 terminated at 0.5m					
meth AS AD RR W CT HA DT B V T *bit s e.g.	nod	ı by s	auger of coller/to washbot cable to cab	ore ool uger e	M C pei 1.2	ter 10/1/98	n resistar anging to efusal 3 water I e shown	evel	notes, samples, tests  U ₅₀ undisturbed sample 50mm dia  U ₆₃ undisturbed sample 63mm dia  D disturbed sample  N standard penetration test (SP'  N* SPT - sample recovered  Nc SPT with solid cone  V vane shear (kPa)  P pressuremeter  Bs bulk sample  E environmental sample  R refusal	meter soil base syste	sification syn description ed on unified dem sture dry moist wet plastic limit liquid limit	classificat		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



Sheet

1 of 1 **ENAURHOD04463AA** 

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD

Office Job No.:

Date started:

20.2.2013

Principal:

Date completed: 20.2.2013

Project: **DUE DILIGENCE ESA** 

Logged by: **PD** 

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

Checked by: **EW** 

drill	model	and	mou	nting: I	Hand .	Auger			Easting:	slope:	-90°			İ	R.L.	Surface:
_	e diame				110				Northing	bearing:				(	datu	ım:
dr	illing	info	rma	tion			mate		ıbstance							
method	7 S penetration 8	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle of colour, secondary and minor of	haracteristics components	S, .	moisture condition	density index	100 pocket 200 pocket 300 pocket	a	structure and additional observations
НА				E + 1.8ppm		0.1_			FILL: Gravelly Silty CLAY: Low plas and grey, fine gravel	iicity, dark br		D				No odour or staining, picrite fragments
AS AD RR W CT HA DT B V T	thod	ai w ca ha di bi V Ti by su	uger d aller/tri ashbo able to and a atube ank b bit C bit	ire ool uger	M C pe 1	iter 10/1/9	n resista ranging to refusal 8 water l e shown	level	notes, samples, tests Uso undisturbed sample 50mm di Uso undisturbed sample 63mm di D disturbed sample N standard penetration test (SF N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	ameter sameter b		ption Inified clas				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



18.2.2013

1 of 5 Sheet

Date started:

**Environmental Log - Environmental** ENAURHOD04463AA Office Job No.: AUSTRAL MASONRY (NSW) PTY LTD

19.2.2013 Principal: Date completed:

Project: **DUE DILIGENCE ESA** PD Logged by:

Boreho	ole	Loc	atio	n: <b>CLU</b>	NIE.	S RC	SS S	STRE	ET, PROSPECT N	ISW		C	Checke	ed by:	E	W	
drill mod	del a	ınd r	nour	iting: H	land /	Auger			Easting:	slope:	-90°			F	R.L. Surfac	e:	
hole dia					10				Northing	bearing	:			d	latum:		
drillin		nfor	mat	ion	I		mate		bstance								
Ĕ 12	s penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity or colour, secondary ar			moisture condition	consistency/ density index	100 pocket 200 pocket 300 popoenetro-		structu additional ob	
SS DT				E+ 1.2ppm		0.1_			FILL: Sandy GRAVEL: Fin grey  Becoming slightly clayey	e to medium, grey	to dark	D			No odd ironsto	our or stainir one and brick	ng, some picrite t fragments
method AS AD RR W CT HA DT B V T *bit show e.g.		roll wa cat hai dia bla V b	ger di er/tric shboi ole to nd au tube nk bit bit bit	re ol ger	M C per 1.2 wa	ter 10/1/9	n resista anging to efusal 3 water I e shown	evel	notes, samples, tests  U ₅₀ undisturbed sample D disturbed sample N standard penetratic N* SPT - sample reco Nc SPT with solid con V vane shear (kPa) P pressuremeter Bs bulk sample E environmental san R refusal	e 63mm diameter on test (SPT) vered e	soil des based of system  moistur D dr M m W w Wp pl	e y oist	classificat		Con VS S F St VSt H Fb VL L MD D VD	so firr stif ve ha fria ve loc me de	ry soft ft n ff ry stiff



Sheet

2 of 5 **ENAURHOD04463AA** 

19.2.2013

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD

Office Job No.:

Date started:

Date completed:

18.2.2013

Principal:

, ,

Logged by: **PD** 

Project: **DUE DILIGENCE ESA** 

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW

Checked by: EW

drill model and mounting:	land Auger		Easting:	slope:	-90°		R.L	Surface:
	10		Northing	bearing:			dat	um:
drilling information		material su	ubstance					
poultant notes samples, tests, etc tests, etc	depth RL metres	graphic log classification symbol	ma soil type: plasticity or colour, secondary a	terial particle characteris nd minor componer	tics,	moisture condition consistency/	100 pocket 200 d penetro-300 penetro-400 meter	structure and additional observations
88	0.6_		FILL: GRAVEL: Fine to m sub-angular, dark brown		orown	D		No odour or staining, backfill natural crushed sandstone (?)
method AS auger screwing* AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T TC bit *bit shown by suffix e.g. ADT	water 10/1/98	or esistance anging to efusal 3 water level e shown	notes, samples, tests  U ₅₀ undisturbed samp  D disturbed sample  N standard penetrati  N* SPT - sample reco  Nc SPT with solid con  V vane shear (kPa)  P pressuremeter  Bs bulk sample  E environmental sam  R refusal	le 63mm diameter ion test (SPT) overed ie	soil desc based on system  moisture D dry M mo W we Wp pla	unified classif		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense



3 of 5 Sheet

ENAURHOD04463AA Office Job No.:

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD

Date started: 18.2.2013

Principal:

19.2.2013 Date completed:

Project: **DUE DILIGENCE ESA** 

PD Logged by: Borehole Location: CLUNIES ROSS STREET. PROSPECT NSW EW Checked by:

							<i>1</i> 33 3	SIKE	ET, PROSPECT NS	SVV		C	hecke	d by	:	EW	
drill mo			mour			Auger			Easting:	slope:	-90°				R.L. S	urface:	
hole dia					10				Northing	bearing:	:				datum	:	
drilli		nto	rma	tion			mate		ubstance		Т	T	1				
₩ ₁	v penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	mater soil type: plasticity or pa colour, secondary and	rticle characteris minor componer		moisture condition	consistency/ density index	200 A penetro-	a	str addition	ucture and al observations
SS				E+ 0.8ppm		1.1_ 1.3_ 1.4_			FILL: SANDSTONE, highly v (continued)	-	brown	D				consistance	/density index
AS AD RR W CT HA DT B V T	method  AS auger screwing* AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T TC bit  T TC bit  AS auger screwing* M mud N nil U ₅₀ undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter U ₆₃ undisturbed sample 63mm diameter U ₆₃ undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter V vane shear (kPa) B bulk sample E environmental sample F R refusal					iption unified c				consistency VS S F St VSt H Fb VL L MD D VD	very soft soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense						



Sheet

4 of 5 ENAURHOD04463AA

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD Client:

Office Job No.: Date started:

Principal:

Date completed:

18.2.2013 19.2.2013

**DUE DILIGENCE ESA** Project: PD Logged by: Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW EW Checked by:

drill	l mod	lel a	and	mou	nting:	Hand .	Auger			Easting:	slope:	-90°				R.L	. Surface:
	e dia					110				Northing	bearing:					dat	um:
dr	_		nto	rma	tion	1		mate		ubstance		1	Ī				
method	1 2		support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particl colour, secondary and mir	le characteristi nor componen	ics, ts.	moisture condition	consistency/ density index	100 pocket	a a	structure and additional observations
SS					E+ 1.3ppm		1.6_			FILL: SANDSTONE, highly wear (continued)	ihered, dark bi	rown	D				
AS AD RR W CT HA DT B V T	show	/n by	ro wa ca ha dia bla V	iger of ller/tri ashbo ible to and ar atube ank b bit C bit fix	ool uger	M C pe	ater 10/1/9	n resista ranging to refusal 8 water e shown	level	notes, samples, tests       U ₅₀ undisturbed sample 50m       U ₆₃ undisturbed sample 63m       D     disturbed sample       N     standard penetration test       N*     SPT - sample recovered       Nc     SPT with solid cone       V     vane shear (kPa)       P     pressuremeter       Bs     bulk sample       E     environmental sample       R     refusal	m diameter based on unified classification system					consistency/density index VS VS Very soft S S Soft F F firm St St Stiff VSt Very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	



Sheet Office Job No.: 5 of 5 **ENAURHOD04463AA** 

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD

water outflow

ADT

Date started:

18.2.2013

Principal:

19.2.2013 Date completed:

VD

very dense

**DUE DILIGENCE ESA** Project:

Logged by:

PD

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW Checked by: EW drill model and mounting: Hand Auger Easting: slope: R.L. Surface: hole diameter: 110 Northing bearing: datum: drilling information material substance pocket penetro-meter consistency/ density index classification symbol penetration material structure and samples, moisture condition additional observations graphic I support method tests, etc water soil type: plasticity or particle characteristics, depth metre RL 200 400 400 400 colour, secondary and minor components. 123 FILL: SANDSTONE, highly weathered, dark brown 2.1 2.2 2.3 2.4 BrotelsosanBiblesterstisnated at 2.5m classification symbols and consistency/density index auger screwing* M mud undisturbed sample 50mm diameter soil description VS U₅₀ very soft AD RR W CT HA auger drilling* undisturbed sample 63mm diameter based on unified classification casing soft  $U_{63}$ roller/tricone D disturbed sample penetration standard penetration test (SPT) washbore N St stiff no resistance SPT - sample recovered VSt cable tool N* very stiff moisture ranging to hand auger Nc SPT with solid cone dry hard DT diatube vane shear (kPa) moist friable B V pressuremeter blank bit W wet VI very loose V bit Bs bulk sample Wp plastic limit loose on date shown TC bit Е environmental sample liquid limit MD medium dense water inflow *bit shown by suffix refusal



Sheet

1 of 1 ENAURHOD04463AA

Environmental Log - Environmental

Client: AUSTRAL MASONRY (NSW) PTY LTD

Office Job No.: Date started: 18.2.2013

Principal:

18.2.2013 Date completed:

Project: **DUE DILIGENCE ESA** 

PD Logged by: Borehole Location: CLUNIES ROSS STREET. PROSPECT NSW EW Checked by:

								/33 3	SIKE	ET, PROSPECT	NSW		(	Checke	d by:		EW
drill r	mod	el a	and	moui	nting: H	land /	Auger			Easting:	slope:	-90°			ı	R.L. Su	rface:
hole						10				Northing	bearing	:			(	datum:	
dri		_	nto	rma	tion			mate		ubstance							
method	5 penetration		support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity colour, secondary	material or particle characteris and minor componer	itics, nts.	moisture condition	consistency/ density index	200 A pocket	a	structure and additional observations
DT								000		CONCRETE							
НА					E + 0.1ppm		0.1_	7		FILL: SAND: medium g	rained, pale cream-gr	еу	D			No	odour or staining
							0.2			FILL: Sandy GRAVEL: medium grained sand	fine to medium, grey,		D				odour or staining, brick gments
					E + 0.1ppm												
							0.3_										
							0.4_										
					E + 0.3ppm												
							0.5			Borehole BH7 terminate	ed at 0.5m						_
							0.6_										
							0.7_										
							0.8_										
							0.9_										
AS AD RR W CT HA DT B V T	supper su			mud casing netration 2 3 4 reter 10/1/99 on date	no resista anging to efusal 3 water I e shown	level	U ₆₃ undisturbed san D disturbed samp	ration test (SPT) ecovered cone la)	soil desibased or system  moisture D dr M m W we Wp ple	cription n unified of e y oist	mbols an			Consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense			



Sheet

1 of 1 **ENAURHOD04463AA** 

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD

water outflow

ADT

Office Job No.: Date started:

20.2.2013

Principal:

20.2.2013 Date completed:

PD

VD

very dense

**DUE DILIGENCE ESA** Project:

Logged by:

Checked by: EW

Borehole Location: CLUNIES ROSS STREET, PROSPECT NSW drill model and mounting: Hand Auger Easting: slope: R.L. Surface: hole diameter: 110 Northing bearing: datum: drilling information material substance pocket penetro-meter consistency/ density index classification symbol penetration material structure and samples moisture condition additional observations graphic I support method tests, etc water kPa soil type: plasticity or particle characteristics, depth metre RL 9889 colour, secondary and minor components. 123 FILL: Sandy GRAVEL, fine to medium, brown, fine No odour or staining, some picrite and brick fragments to medium grained sand. 0.1 E + 0.2 0.3 Borehole BH8 terminated at 0.3m 0.4 0.5 notes, samples, tests classification symbols and consistency/density index auger screwing* M mud undisturbed sample 50mm diameter soil description VS U₅₀ very soft AD RR W CT HA auger drilling* undisturbed sample 63mm diameter based on unified classification casing soft  $U_{63}$ roller/tricone D disturbed sample penetration standard penetration test (SPT) washbore Ν St stiff no resistance SPT - sample recovered VSt cable tool N* very stiff moisture ranging to hand auger Nc SPT with solid cone dry hard DT B V diatube vane shear (kPa) moist friable pressuremeter blank bit W wet VI very loose V bit Bs bulk sample Wp plastic limit loose on date shown TC bit Е environmental sample liquid limit MD medium dense water inflow *bit shown by suffix refusal



Sheet Office Job No.: 1 of 1 ENAURHOD04463AA

**Environmental Log - Environmental** AUSTRAL MASONRY (NSW) PTY LTD Client:

**DUE DILIGENCE ESA** 

Date started:

Date completed:

20.2.2013

Principal:

PD Logged by:

Project: Borehole Location: CLUNIES ROSS STREET. PROSPECT NSW

Checked by:

**EW** 

20.2.2013

_								,33 (	)	EI, PROSPECT N				Checke		EW	
				moui	ū		Auger			Easting:	slope:	-90°				L. Surface:	
	le di Irilli			rmo	tion	10	1	mc4-	rial a	Northing	bearing:				da	itum:	
H			HIFO	ıııa	uon			rnate		ıbstance				.,			
method	1	ည penetration သ	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	mate soil type: plasticity or p colour, secondary and	particle characteristic d minor components	S.	moisture condition	consistency/ density index	100 pocket 200 pocket 300 pocket 400 meter	}	ructure and nal observations
HA					E + 3.7ppm (DUP6)		0.1_			FILL: Gravelly SAND: medibrown  FILL: Sandy Gravelly CLAY	∕: low plasticity, dark		D			and mineral f	staining, some picrite,
							0.2_			brown and grey and brown,	fine gravel					white mineral	and brick fragments
							0.3_										_
					E + 5.9ppm		0.5			Borehole BH9 terminated a	it 0.5m						
							0.6_										-
							0.7_										-
							0.9_										-
GEO 5.12 Issue 3 Rev.0	Ο R Γ A Γ		ai ro w ca ha di bl V To y su	uger d iller/tricashbo able to and au atube ank bi bit	re ool uger	M C pe	ter 10/1/98	n resista anging to efusal 3 water I e shown		notes, samples, tests  U ₅₀ undisturbed sample  U ₆₃ disturbed sample  N standard penetratio  N* SPT - sample recov  Nc SPT with solid cone  V vane shear (kPa)  P pressuremeter  Bs bulk sample  E environmental sam  R refusal	e 63mm diameter In test (SPT) Vered		ription unified o			consistence VS S F St VSt H Fb VL L MD D VD	y/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense



Client:						Boral	лов туре:	וצע			
Projec	t No:					DL4032	Address:	44 Clu	nies R	oss Str	eet, Prospect
Date:						8/02/2017		AD/JD			
Contra	ctor:					Rockwell Drilling		Drill R	ig		
Hole S							Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						PAVERS - concrete					
	-	1				FILL - dark brown sandy clay with fine gravels					
	0.5	] [								9.	
	_	┇								).5-0	
										вн1_0.5-0.6	
		] [								В	
		┛╏	$\perp \!\!\! \perp$								
	1.0	┧╽									
		<b>』</b> ┃									
		<b>↓</b> ↓									
		4	+								
		┩┞	+			GIAV					
	1.5	┦┞		-		CLAY - orange, sandy with fine gravels					
		┨┞		_						2.0	
	_			-						ВН1_1.9-2.0	
	2.0	┪╏	+								
	2.0	┪╂				Develople terminated at 2 0m and hackfilled with are	Island				
	_	11				Borehole terminated at 2.0m and backfilled with ar	isiligs.				
		11	+								
	_	11									
	-	11									
	-	1									
		1									
		] [									
		] [					<u> </u>				
		] ]	$\perp \!\!\! \perp$								
	_	] ]	$\perp \!\!\! \perp$		<u> </u>						
	_	]	$\perp \!\!\! \perp$								
	_	] ]	$\perp \!\!\! \perp$								
		4	$+\!\!+\!\!\!-$								
		4	+								
	_	4	+								
		Ш									
											Sheet 1 of 1



Client:							Boral	Job Type:	DSI			
Projec	t No:						DL4032	Address:	44 Clu	nies R	oss Str	eet, Prospect
Date:							8/02/2017	Logged By:	AD/JD			
Contra							Rockwell Drilling	Method:	Drill R	ig		
Hole S	ize							Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well	Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
							CONCRETE					
			Щ									
							FILL - black aggregate					
			Щ	4			CLAY - orange, sandy with fine gravels					
	_		Щ	_								
	0.5	4	Щ.	4							9.0-	
		1	$\vdash$	+			-				BH2_0.5-0.6	
		1		+							3H2_	
	-	1	$\vdash$	+			1					
	1.0		$\vdash$	+								
	1.0	1	$\vdash$	+			-					
	_	1 1	$\vdash$	-								
		1		+								
		1	$\vdash$	+								
	1.5	•	$\vdash$	+								
	1.5	1	$\vdash$	-							0	
		1									9-2.	
	-	1		$\top$							вн2_1.9-2.0	
											ВН	
	2.0											
		1					Borehole terminated at 2.0m and backfilled with ar	isings.				
				L								
	-		Ш	4					1			
		1	Щ	4					1			
			Щ	4								
	_	1	Щ.	_								
		1	$\vdash$	+					1			
	-	1	-	-								
	_	1	$\vdash$	+		-						
		1	$\vdash$	+					1			
		1	$\vdash$	+					1			
		1	$\vdash$	+								
		1	$\vdash$	+								
	•	1	$\vdash$	+								
							<u> </u>		1			Sheet 1 of 1



Client						Boral	Job Type:	DSI			
Projec						DL4032	Address:	44 Clu	ınies Ro	oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JC			
Contra	actor:					Rockwell Drilling	Method:	Drill R	ig		
Hole S							Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
	_	П				CONCRETE					
	1.0					FILL - grey/black aggregate CLAY - mottled with gravel fragments				BH3_0.5-0.6	
	2.0									внз_1.9-2.0	
	_					Borehole terminated at 2.0m and backfilled with ar	isings.				
		Ш						1			Sheet 1 of 1



Client: Boral Job Type: DSI												
Projec					DL4032	Address: 44 Clunies Ross Street, Prospect						
Date:						8/02/2017	Logged By:	AD/JD				
Contra	actor:					Rockwell Drilling	Method:	Drill Rig				
Hole S					noakwen symme	Co-ordinates:	J	-6				
				Ī	ر		oo oramatesi					
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments	
	-			_		PAVERS - concrete						
				-		FILL - dark brown coarse sand with concrete fragme	ents					
	0.5					CLAY - dark grey, stiff				вн4_0.5-0.6		
				-						BH4		
	1.0											
	_			_								
	1.5			-								
	_			- -						0		
	2.0			-						вн4_1.9-2.0		
				- -						B		
	_					SAND - dark brown with fine to medium sandstone	gravel					
	_									0		
										вн4_5.9-6.0		
	6.0					Borehole terminated at 6.0m and backfilled with ar	isings.					
	<u> </u>											
				1							Sheet 1 of 1	



Client: Boral Job Type: DSI Project No: DL4032 Address: 44 Clunies Ross Street, Prospect  Date: 8/02/2017 Logged By: AD/JD  Contractor: Rockwell Drilling Method: Drill Rig  Hole Size Co-ordinates:    Date: Boral Job Type: DSI   Address: 44 Clunies Ross Street, Prospect	
Date: 8/02/2017 Logged By: AD/JD  Contractor: Rockwell Drilling Method: Drill Rig  Hole Size Co-ordinates:    Double of the property of the pr	
Contractor: Rockwell Drilling Method: Drill Rig  Hole Size Co-ordinates:    Details	
Hole Size Co-ordinates:    Depth (m)	
Method  Monitoring well Depth to Water Monitoring well Details Moisture Moisture Sampling OWATTER  ORGANIC MATTER	
ORGANIC MATTER	
ORGANIC MATTER	5
FILL - brown silty clay with large rock fragments	
FILL - brown silty clay with large rock tragments  0.70  97  Hole terminated at 0.5m and backfilled with arisings.	
1.0	
1.5	
<del> </del>	
<del>                                   </del>	
2.0	
<del> </del>	
<del>                                     </del>	
<del>                                     </del>	
<del>                                     </del>	
Sheet 1 of 1	1



ol: ·	Climb David													
Client: Boral Job Type:									DSI					
	Project No: DL4032 Address:									44 Clunies Ross Street, Prospect				
Date: 8/02/2017 Logged By:									AD/JD Drill Rig					
Contractor: Rockwell Drilling Method: Hole Size Co-ordinates:									ig					
Hole S	ize			1	ī	T	Co-ordinates:	1						
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments			
						PAVERS - concrete								
	1.0					CLAY - brown, silty with minor gravel fragments				BH6_0.5-0.6				
	2.0			-						BH6_1.9-2.0				
						Borehole terminated at 2.0m and backfilled with ar	isings.							
	Sheet 1 of 1													



Client: Boral Job Type:									DSI					
Project No: DL4032 Address:									44 Clunies Ross Street, Prospect					
Date:										AD/JD				
Contractor: Rockwell Drilling Method:									Drill Rig					
Hole Size Co-ordinates:														
Method	Depth (m)	Depth to Water	Monitoring well	Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments		
							CONCRETE							
	<u>-</u>						FILL - brown/orange, silty with gravels							
	_	1	$\top$	—										
	1.0						CLAY - red/orange with gravels				BH7_0.5-0.6	BH7_0.5-0.6/QC105/QC106		
	1.5													
	2.0										BH7_1.9-2.0			
	2.0	1		H			Borehole terminated at 2.0m and backfilled with ar	sings.						
	_	-	_	Н										
		-	+	H										
		-	_	$\dashv$										
	-	1	-	H										
	_	1	$\dashv$	H										
		1		$\Box$										
	_	1	$\neg \vdash$	H										
	_	1	$\neg \vdash$	Ħ										
				$\coprod$										
				$oxed{oxed}$										
				Ц										
				Ц										
	_	11		Ц										
	Sheet 1 of 1													



CI:	ent: Boral Job Type: DSI											
Client:												
Projec	t No:					DL4032	Address:			oss Str	eet, Prospect	
Date:						8/02/2017	Logged By:	AD/JD				
Contra Hole S						Rockwell Drilling	Method: Co-ordinates:	Drill R	ııg			
noie 3	ize		1	1		Т	Co-ordinates:	1				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments	
						PAVERS - brick						
	1.0					SAND - brown/orange, silty wih minor fine gravels				BH8_0.5-0.6		
	2.0									ВН8_1.9-2.0		
				<u> </u>		Borehole terminated at 2.0m and backfilled with ar	isings.	<u> </u>				
			Ш									
				<u> </u>				<u> </u>				
		Ш										
	Sheet 1 of 1											



Client	T T								Type: DSI			
Projec						DL4032	Address:		nies Ro	oss Str	eet, Prospect	
Date:						8/02/2017	Logged By:	AD/JD				
Contra	actor:					Rockwell Drilling	Method:	Drill R				
Hole S						5	Co-ordinates:		<u> </u>			
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments	
				-		FILL - brown silty sand with fine gravels  FILL - white/brown sand with fine gravels						
	1.0					SAND - brown/orange, silty				.0 ВН9_0.5-0.6		
	2.0					Borehole terminated at 2.0m and backfilled with a	isings.			BH9_1.9-2.0		
	_										Sheet 1 of 1	



Client:						Porol	Job Type:	DSI			
Projec						Boral DL4032	Address:	44 Clunies Ross Street, Prospect			
Date:	t NO.					8/02/2017	Logged By:	AD/JD		USS 3t1	eet, Prospect
Contra	actor:					Rockwell Drilling	Method:	Drill R			
Hole S						ROCKWEII DITIIIIIIg	Co-ordinates:	אווווע	ilg.		
Hole 3	126	П			_	<u> </u>	co-ordinates.	1			
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						FILL - grey gravelly sand					
						FILL - red silty sand					
						FILL - dark brown gravelly sand					
	0.5									9.0	
										вн10_0.5-0.6	
										10_0	
										BH	
	1.0					CLAY - orange/brown					
	1.5										
										2.0	
										1.9-7	
										вн10_1.9-2.0	
										ВН	
	2.0										
						Borehole terminated at 2.0m and backfilled with ar	sings.				
		]	$\perp \!\!\! \perp$								
		11	$\perp \! \! \perp$								
		1	$\perp \perp$								
		.	$\perp \perp$								
		1	$\perp \perp$								
	-		$\dashv$					ļ			
			+					1			
		1	+					1			
	_		+					1			
			+					1			
			+					1			
		1	-								
	-	1	$\dashv$					1			
$\vdash$						l		1			Charlet 1 : C4
											Sheet 1 of 1



Client:						Poral	Job Type:	DSI			
Projec						Boral DL4032	Address:		inios Pi	ncc Str	eet, Prospect
Date:	t NO.					8/02/2017	Logged By:	AD/JD		033 311	eet, Frospect
Contra	actor:					Rockwell Drilling	Method:	Drill R			
Hole S						Nockwell Dillillig	Co-ordinates:	DIIIIIN	ilg.		
Hole 3	120	П					co-ordinates.	1	ı		
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						FILL - black/brown gravel					
	0.5					FILL - red sandy gravel  SHALE - black				9.5-0.6	
										BH11_0.5-0.6	
	1.0										
	-										
	1.5					CLAY - dark brown				BH11_1.9-2.0	
	2.0	<b>l</b> I									
		1 1				Borehole terminated at 2.0m and backfilled with ar	isings.				
		1 1									
		1						1			
		1						1			
			$\perp \perp$								
											Sheet 1 of 1



Client	,					Poral	Job Type:	DSI			
Projec						Boral DL4032	Address:		nios P	ncc Str	eet, Prospect
Date:	t NO.					8/02/2017	Logged By:	AD/JD		J33 JUI	eet, Frospect
Contra	actor:					Rockwell Drilling	Method:	Drill R			
Hole S						Nockwell Dillillig	Co-ordinates:	וווווו	ig		
Hole 3	120	П					co-ordinates.	1			
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						FILL - grey silt with fine gravels					
	0.5					FILL - brown/yellow mottled silty clay				9.0-	
				-		SHALE - black				BH12_0.5-0.6	
	1.0										
	1.5									0	
				-						BH12_1.9-2.0	
	2.0					Borehole terminated at 2.0m and backfilled with ar	isings				
		1									
			$\Box$								
	_										
	_										
	_										
		1						1			
		Н				l		1			Sheet 1 of 1



Client					Boral	Job Type: DSI					
Projec	t No:					DL4032	Address:	44 Clu	ınies R	oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD	)		
Contra	actor:					Rockwell Drilling	Method:	Drill R	ig		
Hole S	iize					-	Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						PAVERS - concrete					
	,					FILL - brown clayey sand					
	-	1 1									
	_	1 1	-								
		1 1									
-		1									
	0.5									-0.6	
										0.5	
	_									вн13_0.5-0.6	
										BH	
		1									
	1.0	1				CLAY - grey/green					
		1 1		_							
	-	1									
		1 1		_							
		1 1	-								
	1.5										
		1									
	-	1 1									
	2.0	1 1									
		1 1									
		1 1				CLAY - yellow/grey mottled, sandy				9	
-		1 1				yenow, grey mothed, sundy				5-2.	
		H	++					<u> </u>		вн13_2.5-2.6	BH13_2.5-2.6/QC101
ļ	3.0	Į Į	$\Box$		<u> </u>			1		113	
		Į Į	$\Box$			SILT - grey/orange with fine rounded gravels				B	
	_	IJ									
	6.0	1				SHALE					
	_	1 1								2	
	_	1 1			<u> </u>					4-7.	
	_	H	++		$\vdash$			$\vdash$	-	BH13_7.4-7.5	
	<del>-</del>	ŀ	++		<u> </u>			-		H13	
		l	++		<u> </u>			1		В	
	7.5	Į Į	$\Box$					<u> </u>	<u> </u>		
		IJ				Borehole terminated at 7.5m and backfilled with ar	sings.				
	_										
				-							Sheet 1 of 1



	Client: Boral Job Type:										
								DSI			
Projec	t No:					DL4032	Address:			oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD			
Contra						Rockwell Drilling	Method:	Drill R	ig		
Hole S	ize			_			Co-ordinates:		_		_
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						GRASS					
	1.0					CLAY - brown, silty				9-2.0 BH14_0.5-0.6	
	2.0					Borehole terminated at 2.0m and backfilled with a	risings.			BH14_1.9-2.0	
	<u>-</u>										
											Sheet 1 of 1



Client:			Boral Job Type:				Job Type:	DSI			
Project No	):	DL4032 Address:				Address:	44 Clu	ınies Ro	oss Str	reet, Prospect	
Date:						8/02/2017	Logged By:	AD/JC	)		
Contracto	r:					Rockwell Drilling	Method:	Drill R			
Hole Size						· ·	Co-ordinates:				
Method Depth (m)	Denth to Water	Septime Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
		Ť				FILL - brown silty sand with medium gravels and f	ragments of glass,			2	
		-				brick, tile	0 ,			.0-0	
		H	++-	-		1				HA15_0-0.2	
				-		1				НА	
					l					4	
0	.5	H	+			Hole terminated at 0.4m and backfilled with arisi	nac			2-0.	
	-	H	+			Hole terminated at 0.4m and backfined with ansi	163.			5_0.	
		-	+							HA15_0.2-0.4	
	_	-	+							_	
	_	H	+								
1	_	-	+								
	.0_	H	+								
	_	H	+								
		H									
	_	H	++-								
1	.5	-	+								
	.5	H	+								
	_	H	++-								
	_	-	+								
		H	++-								
	.0	$\vdash$	+								
			+								
			+								
	_	-	+								
	_	-	+								
	_		+								
	_	-	+								
	$\dashv$	H	+	1							
	$\dashv$	H	+	1						1	
	$\dashv$	H	+	1							
	-	H	+								
	_	H	++								
	$\dashv$	H	+	$\vdash$							
	-	H	+	1							
	-	H	+								
	$\dashv$	H	+	$\vdash$							
	-	H	++-	1							
	-	H	+	1	<b> </b>						
	-	H	+	1	<b> </b>						
	-	H	+								
					<u> </u>	<u> </u>			<u> </u>		Sheet 1 of 1



Client												
Projec	t No:					DL4032	Address:			oss Str	eet, Prospect	
Date:						8/02/2017	Logged By:	AD/JD				
Contr						Rockwell Drilling	Method:	Drill R	ig			
Hole S	Size						Co-ordinates:					
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description  GRASS		Moisture	Density / Stiffness	Sampling	Comments	
	_	H						-				
	0.5					FILL - brown silty clay with fine gravels						
						CLAY - dark brown, silty with medium gravels				BH16_0.5-0.6		
	1.0					CLAY - light brown, silty with medium gravels						
	1.5			= - - -						0.		
				-						BH16_1.9-2.0		
	2.0					Borehole terminated at 2.0m and backfilled with an	isings.					
											Sheet 1 of 1	



Client:							Boral	Job Type:	DSI			
Project N	No:						DL4032	Address:	44 Clu	ınies R	oss Str	eet, Prospect
Date:							8/02/2017	Logged By:	AD/J[	)		
Contract	or:						Rockwell Drilling	Method:	Drill F			
Hole Size							ÿ	Co-ordinates:		Ü		
		Depth to Water	Monitoring well Details	Graphic Log	11SCS Classification	_	Material Description		Moisture	Density / Stiffness	Sampling	Comments
							PAVERS - concrete					
							FILL - red sand					
							CLAY - dark brown/orange					
	0.5	l									9	
	-	-	_								BH17_0.5-0.6	
		H	+		_						-0_	
		L	+								H17	
			$\perp$								В	
	1.0											
	1.5											
											0::	
	-		$\top$								.9-2	
	_		$\neg \neg$								7_1	
	_	l									BH17_1.9-2.0	
- 1	2.0	H	+									
		H	+			1	Borehole terminated at 2.0m and backfilled with ar	icings				
	_	H	+		1	-	borenoie terminated at 2.0111 and backfilled with a	isitigs.	-			
		H			-	+						
		H				-						
		-	+	-		_						
		H	+	-	-	_			-			
	_		-									
		L	+		-							
			$\perp$									
		L										
			$\perp$									
			$\perp$									
					T			·				
	-											
			$\neg \neg$		T					1		
	-				T	1				Ì		
			+		+							
				-								Sheet 1 of 1



Client:						Boral	Job Type:	DSI			
Projec	t No:					DL4032	Address:			oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD			
Contra						Rockwell Drilling	Method:	Drill R	ig		
Hole S	ize						Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
	_	1				BITUMEN					
	0.5					FILL - brown silty clay with minor gravels				BH18_0.5-0.6	
										18_	
						CLAY - brown, silty with large shale fragments				BHS	
	1.0										
	1.5										
	1.5									BH18_1.9-2.0	
										BH18_	
	2.0	-					•.•				
						Borehole terminated at 2.0m and backfilled with ar	isings.	-			
			$\perp$								
			-								
		1									
	-	1									
	_	1									
	_	11	++								
				<u> </u>				1			Sheet 1 of 1



Client:								DSI			
Projec	t No:					DL4032	Address:	44 Clu	nies Ro	oss Str	eet, Prospect
Date:						8/02/2017		AD/JD			
Contra	ctor:					Rockwell Drilling	Method:	Drill R	ig		
Hole S	ize						Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
		] [				BITUMEN					
						CONCRETE					
						FILL - brown sandy clay with minor fine gravels					
	·										
	0.5	1 [								9.6	
										вн19_0.5-0.6	
										)_61	
	_	1								BH	
		1									
	1.0	1				CLAY - red/orange with minor fine gravels					
		1		-							
		1									
		1									
		1									
	1.5	1									
		1								5.0	
		1								1.9-2	
										ВН19_1.9-2.0	
										ВН	
	2.0										
						Borehole terminated at 2.0m and backfilled with ar	sings.				
	_	] [									
		╛╽									
		┛╏									
		┧┟	_								
		<b>↓</b> ↓	$\perp \!\!\! \perp$								
		4									
	_	┨┞	-								
		┫┞									
		┨┞	+								
		┨╏									
		┨┞	+								
	_	┨┞	+								
	_	┫╏	+								
		┨┞	+								
	_	┨┞	+		-						
	_	┨┞	+								
	_	┨┞	+	1	-						
				<u> </u>	<u> </u>						Sheet 1 of 1



Client:						Boral	Job Type:	DSI			
Projec	t No:					DL4032	Address:	44 Clu	ınies R	oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JE	)		
Contra	ctor:					Rockwell Drilling	Method:	Drill R			
Hole S						<u> </u>	Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						FILL - brown silty clay with minor gravel, brick, til	e fragments			0.3	
										HA20_0.5-0.6 HA20_0.2-0.3	
	0.5	<b>↓</b> ŀ	$\rightarrow$							0.5	
	_	┪╽	+			Hole terminated at 0.6m and backfilled with arisi	ngs.			HA20_	
	1.0	1									
		1 [									
	_		+								
		1									
	1.5	1									
		1									
		1									
	_	1	$\neg \neg$								
		1									
	2.0	1	$\dashv \dashv$								
		1	$\dashv \dashv$								
	_	1	$\dashv \dashv$								
		1	$\dashv \dashv$								
		1	$\dashv \dashv$								
		1	+								
	_	1 }	+	+	1			+			
	_	1	+		1						
	_	1 }	+		1						
		1									
		1	+								
	_	1	+								
		1	_								
		1	$\dashv \dashv$								
		1	$\dashv \dashv$								
		1	+		1			+			
		1	$\dashv \vdash$		t						
		1	-		t						
	_	1	$\dashv \dashv$	1	t			+	1		
		1	$\dashv \dashv$	1	t			+	1		
		Ш			1	<u> </u>			1		Sheet 1 of 1



Client:						Boral	Job Type:	DSI			
Projec	t No:					DL4032	Address:			oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD			
Contra						Rockwell Drilling	Method:	Drill R	ig		
Hole S	ize						Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description  PAVERS - concrete		Moisture	Density / Stiffness	Sampling	Comments
	_	1 1	+								
	_	$\  \cdot \ $				FILL - red sand SAND - brown, silty with large shale fragments					
	0.5	1								9.0	
										ВН21_0.5-0.6	
										BH2	
	1.0										
	1.5									2.0	
		] [								ВН21_1.9-2.0	
										BH2	
	2.0					Borehole terminated at 2.0m and backfilled with ar	isings.				
		]									
		╽╽									
	_	╽╽	+								
	_	<b> </b>	+								
		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓									
		Ш									
											Sheet 1 of 1



Client												
Projec	t No:						DL4032	Address:			oss Str	eet, Prospect
Date:							8/02/2017	Logged By:	AD/JD			
Contra							Rockwell Drilling	Method:	Drill R	ig		
Hole S	iize							Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well		Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
		4					FILL - dark brown coarse sand with fine concrete fra	agments				
	0.5										9.5-0.6	
	1.0	-					CLAY - dark brown/grey				вн22_0.5-0.6	
	1.0	1										
	1.5										0	
											ВН22_1.9-2.0	
	2.0						Borehole terminated at 2.0m and backfilled with ar	isings.				
		-										
	_	1										
	_											Sheet 1 of 1



Client	:					Boral	Job Type:	DSI			
Projec	t No:					DL4032	Address:	44 Clu	inies Ro	oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD	)		
Contra	actor:					Rockwell Drilling	Method:	Drill R	ig		
Hole S	iize						Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						TOPSOIL - brown silty clay				2	
	0.5					CLAY - brown/orange  Hole terminated at 0.3m and backfilled with arising	S.			0.3 вн23_0.1-0.2	
										вн23_0.2-0.3	
	1.0									BH	
	1.0										
	-										
	1.5										
	_										
	2.0										
	_										
		Ш									Sheet 1 of 1



Client						Boral	Job Type:	DSI			
Projec	t No:					DL4032	Address:			oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD			
Contra						Rockwell Drilling	Method:	Drill R	ig		
Hole S	iize						Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						PAVERS - concrete					
	- - -					FILL - brown silty sand  CLAY - brown with grey mottling					
	0.5	1	$\dashv$	_							
	-									BH24_0.5-0.6	
	_		$\perp \perp$			CLAY - dark brown with gravel fragments					
	1.0			-							
	1.5										
	_			-						ВН24_1.9-2.0	
		.	$\perp$							ВЬ	
	2.0					Borehole terminated at 2.0m and backfilled with ar	isings.				
	_	1	+								
			$\pm$								
			+								
	_		+								
						l					Sheet 1 of 1



Client							Boral	Job Type:	DSI			
Projec	t No:						DL4032	Address:	44 Clu	inies Ro	oss Str	eet, Prospect
Date:							8/02/2017	Logged By:	AD/JD			
Contra							Rockwell Drilling	Method:	Drill R	ig		
Hole S	ize							Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details		Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
							PAVERS - concrete					
	0.5						CLAY - brown, sandy with fine/moderate gravels  CLAY - yellow/grey mottled				9.0	
		l l	$\dashv \dashv$								0.5-	
	-	H	$\dashv \vdash$	-							BH25_0.5-0.6	
	-		$\dashv \dashv$								ВН	
	1.0	1	$\dashv \dashv$									
	_	1	$\neg$									
	-	1	$\neg \neg$									
		1	$\neg \neg$									
		1	$\neg \neg$									
	1.5	1	$\neg \neg$									
		1	$\neg \neg$								0	
			$\neg \Box$								.9-2	
											BH25_1.9-2.0	
	-										BH	
	2.0											
							Borehole terminated at 2.0m and backfilled with ar	isings.				
		IJ		$\perp$					1			
		IJ	$\perp \!\!\! \perp$						1			
			$\perp \!\!\! \perp$	_					1			
		Į Į	$\dashv$	_					1			
			$\perp$	_								
			$\dashv$	_					1			
		l l	$\dashv$	_					1			
		ŀ	$\dashv$	-					1			
		l	$\dashv$	-					1-			
		H	$\dashv$	+					1			
		ŀ	$\dashv$	-					1			
		H	$\dashv$	+					1			
		ŀ	+	+					1			
									1			Sheet 1 of 1



Client												
Projec	t No:						DL4032	Address:			oss Str	eet, Prospect
Date:							8/02/2017	Logged By:	AD/JD	)		
Contra							Rockwell Drilling	Method:	Drill R	ig		
Hole S	iize							Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well	Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
				4			FILL - grass overlying dark brown sandy gravel, with	n roots and red				
	0.5						brick fragments				9''	
				+							вн26_0.5-0.6	BH26_0.5-0.6/QC102/QC103
	1.0											
	1.5						SAND - dark brown, coarse with occassional fine, ro	unded sandstone			0.	
											вн26_1.9-2.0	
	2.0						Borehole terminated at 2.0m and backfilled with ar	isings.				
				+								
												Sheet 1 of 1



Client	:					Boral	Job Type:	DSI			
Projec	t No:					DL4032	Address:	44 Clu	inies Ro	oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD	)		
Contra	actor:					Rockwell Drilling	Method:	Drill R	ig		
Hole S	Size					<u>-</u>	Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						FILL -grass overlying dark brown sandy gravel with I	brick and concrete				
	1.0					fragments				BH27_0.5-0.6	
	1.5									2.0	
			+			CLAY - dark brown/grey, slightly sandy				вн27_1.9-2.0	
	2.0									ш	
						Borehole terminated at 2.0m and backfilled with ar	isings.				
		╽╽	++								
	_		+								
		╽┟	+					1			
$\vdash$				<u> </u>							Sheet 1 of 1



Client						Boral	Job Type:	DSI			
Projec	t No:					DL4032	Address:			oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD			
Contra						Rockwell Drilling	Method:	Drill R	ig		
Hole S	iize						Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						PAVERS - concrete					
	0.5					FILL - brown silty clay with minor gravels  CLAY - brown				вн28_0.5-0.6	BH28_0.5-0.6/QC104
	1.0	.		_		CLAY - grey/yellow mottled				ш	
	1.5									ВН28_1.9-2.0	
	2.0			-						BH28	
						Borehole terminated at 2.0m and backfilled with ar	isings.				
	_										
	_										
	_										
	- - -										
		Ш									Sheet 1 of 1



Client						Boral	Job Type:	DSI			
Projec	t No:					DL4032	Address:			oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD			
Contra						Rockwell Drilling	Method:	Drill R	ig		
Hole S	iize						Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						PAVERS - concrete					
	0.5					FILL - brown/orange silty sand					
	1.0			-		CLAY - dark brown/black				вн29_0.5-0.6	
	1.5										
	1.5			-						вн29_1.9-2.0	
	2.0					Borehole terminated at 2.0m and backfilled with ar	isings.				
	_										
											Sheet 1 of 1



# Location BH30/MW30

Client:	i					Boral	Job Type:	DSI			
Projec						DL4032	Address:		ınies R	oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD			
Contra	actor:					Rockwell Drilling	Method:	Drill R			
Hole S						nookwen 21mm ₆	Co-ordinates:	2	6		
		П			۲		oo oramatesi				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
		Ħ				FILL - brown fine gravelly sand with brick fragments					
	0.5		C A S							внзо_0.5-0.6	
	-	1	ı			CLAY - grey/green, sandy				B	
	_		N								
	1.0		G								
	-	1									
		1									
		1									
		1									
	1.5	1									
		1									
		1									
						CLAY - light yellow/grey, sandy with fine gravels					
	2.0										
		П	S								
		Ш	С								
	_	l l	R			au = 1		<u> </u>			
	2.5	Ιl	E			SILT - brown					
	_	H	E					-			
	-	l	N								
		l									
		۱l									
	_	l l								0.	
	-									внзо_5.9-6.0	
										0_5	
	_									BH3	
	6.0							1			
		<b> </b>				Borehole terminated at 6.0m and monitoring well i	nstalled.				
		֡֡֞֞֞֞֞֞֞֞֞֞֞֜֞֜֞֞֜֞֜֞֡֓֓֓֓֡֡֡֡֡֡֡֡֡֡֡֡									
	Sheet 1 of 1										



Client							Boral	Job Type:	DSI			
Projec	t No:						DL4032	Address:	44 Clu	ınies Ro	oss Str	eet, Prospect
Date:							8/02/2017	Logged By:	AD/JD			
Contra							Rockwell Drilling	Method:	Drill R	ig		
Hole S	ize							Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well	Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
	_						FILL - brown/grey silty sand with minor gravels					
	_											
	0.5						CLAY - yellow/brown with shale fragments				9.5-0.6	
											вн31_0.5-0.6	
	1.0											
	1.5										9-2.0	
											вн31_1.9-2.0	
	2.0						Borehole terminated at 2.0m and backfilled with ar	isings.				
				+								
												Sheet 1 of 1



Client						Boral	Job Type:	DSI			
Projec	t No:					DL4032	Address:	44 Clu	ınies Ro	oss Str	eet, Prospect
Date:						8/02/2017	Logged By:	AD/JD	)		
Contra	actor:					Rockwell Drilling	Method:	Drill R	ig		
Hole S	ize						Co-ordinates:				
Method	Depth (m)	Depth to Water	Monitoring well Details	Graphic Log	USCS Classification	Material Description		Moisture	Density / Stiffness	Sampling	Comments
						FILL - brown silty sand with gravels					
	0.5	- - - - -				FILL - red/orange sand with minor gravels				ВН32_0.5-0.6	
						CHAIF		-		32_(	
	_		++			SHALE - grey				BH	
	1.0										
	1.5		+			CLAY - brown				0	
										вн32_1.9-2.0	
										ВНЗ	
	2.0		+								
						Borehole terminated at 2.0m and backfilled with a	isings.				
			+								
			+								
	_		+								
			$\pm$								
			$+\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$								
			$\pm$								
	_		+								
	-	╽┟	++								
											Sheet 1 of 1



# Appendix N Detailed Laboratory Certificates

# **CHAIN OF CUSTODY**



PROJECT NO.: 58238						10	BOR	ATORY	RATO	H NO		-	_		_			_	_	
PROJECT NAME: Prospect I	OSI							ERS:			••	_	_	_		_				
DATE NEEDED BY: STAT								L: NEPI				_	_				_			
PHONE: Sydney: 02 8245 030	00   Perth: (	08 9488 01	100   Brisbane: 07 3	3112 2688							_	_	_						_	
SEND REPORT & INVOICE TO: (1	) adminnsw@	Dibsg.com.a	au; (2)Ckauffn	1871@jbsg.com.au;	(3)	1	III		@	SR.COI	m.au			-		_				
COMMENTS / SECURE HARADDING / STOR	HAGE ON DISPUSA	AL.			T				T			T	П	T	T			TYPE C	)F	
Anchisis to	5 -	10016	2/		1		CER	4.4							1			ASSEST		1 10 00
, 3					- 1		7								1 1					10 1966
						X	0		1					1				TION		10 1 100
SAMPLE ID	MATRIX	DATE	TIME TY	PE & PRESERVATIVE	ρΗ	28	五											IDENTIFICATION	NEPM/WA	
1/200-0.0-0.1	Sal	9/3/20	J,	В		70	X			1	+		$\forall$	+	+	+	+	+	7	NOTES:
0.2-0.3			V	(;				11		1		+		+	+	+		++	+	
0.5-0.7			J						+	+	+	+	1	+	++	+	-	+	+	
1201-0.0-0.1			4	1+8				11		+	+	+	1	+	+	+	-	+	+	
0.4-0.5				1				11	+				-	+	1	+	+	++	+	
0.9-1.0				1	1	X		1	+	++	_	+	1	-	+	+	+	1	0	
1.2-1.3				1,	1	,	-	+	+	+	+	+	-	+	++	-	+	+ 1	-	
1.4-1.5	12-14-17			<b>Y</b>			1	++	+	+	+	+	-	-	-	-	-	+	+	
P101-0.0-0.1 0.4-0.5			14	R	1	X	$\dashv$	1	+	++	+	+	-	-	+	+	-	++	+	
0.4-0.5			./			7	$\forall$	++	+	+	+	-		+	1	-	-	+ -	1	
17203-0.0-0.1				10	1		_	++	-	+	+	-	-	+	+	+	-	+	+	
0.5-0.6				1	1	<		++	+	++	+		+	+	++	++	+	1	+	
1.0-1.1		7/4-11	1/	/	1	1	1	++	+	1	_	-	-	+	++	+	+	++3	4	
1.6-1.7			1			1		++	+		-	-		+	++	++	-	++	+	
1204-0.0-0.1				1+R	\ \ \		<b>X</b>	++	1	1	-	-	-	+	+	-	+	-	+	
0.5-0.6				4					+	1	-	+	-	+	+	+	-	++	+	
0.9-1.0				J		1			1		-		-	+	+	+	+	++	+	
TP 205_ 0.0-0.1			V	+B		1			1		+			+	+	++	-	++	+	
0.4-0.5	V	V	V	/	>	<		11							+	++	-		0	
RELINQUISHED BY: NAME: / DATE:				OF SHIPMENT:			0	REC	EIVED	BY:	10				-	FOR	RECENT	NG LAE		ONÍV
NAME: CA DATE:	16.1:0	CONSI	GNMENT NOTE NO.			NA	ME:	upo	n	BY: 16	103		COO	LER SE	AL-Y	es N	0	Intact	t	Broken
01170300 +	10.7.	TRANS	SPORT CO.			DA1 OF:	TE: ∦	7		10	49	PM	COO	1 ED TT	A AD	deg C	10	2.20	C	
NAME: DATE:		CONSI	GNMENT NOTE NO.			NAI	ME:	1		DAT	E:	-	COO	LER SE	AL - Y	deg C es N	0	Intar	t	Broken
OF:		TRANS	SPORT CO			OF:														
Container & Preservative Codes: P = Plas MSO FormsO13 - Chain of Custody - Ge	stic; J = Soil Jar; E	= Glass Bottle	; N = Nitric Acid Prsvd.; C =	Sodium Hydroxide Prsvd; VC = Hy	ydrochloric /	Acid	Prsvd	/ial: VS = 9	ulfurie	Acid Dres	wil Viale	C as Cont	COO!	LER TE	MP	deg C	P - PA-		_	
MSO Forms013 - Chain of Custody - Ge	neric							,		ינון עוער	- w + res,	Jul	I WITE AL	INJ PIST	u, z = Z	mc PTSVE;	E = FOT	A PISVO;	ST = 5	iterile Bottle; O = Other

# CHAIN OF CUSTODY



PROJECT NO.: 58238						LARODATO	DVCAT	011.110		•			
PROJECT NAME: Prospect D	SI					LABORATO			_				
DATE NEEDED BY: S TAT						QC LEVEL: N			_				
PHONE: Sydney: 02 8245 030	0   Perth: 0	8 9488 01	00   Brisba	ne: 07 3112 2688									
SEND REPORT & INVOICE TO: (1)	adminnsw@	bibsg.com.a	u; (2)	kauliman @jbsg.com.a	u: (3)	rlill	0	ihse com au	1			-	
, , , , , , , , , , , , , , , , , , , ,	-04 ON DISPUSE	Mes		1			T	Jose Collinat		TITT	Ty	PE OF	
Anchot	1-	0 1000	01/20	·/						11111	AS	BESTOS	
Dr. Ant	100	2 1 1/4				4						ACT 313	
-								111		11111	l los		
SAMPLEID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pH.	3					DENTIFICATION	NEPM/WA	
TP205-0.9-1.0	Soil	9/3/20					-		_			Z	NOTES:
P206-0.0-0.1		11/		J+B	-	×	+		-			-	
0.4-0.5				./		$r_{\perp}$	-		-	++++		×	
TP207-0.0-0.1				J+B		X	++	-	-				1
0.3-0.4				Ł.			-			+		10	
0.5-0.6					-		-	+	-				
TP208_0.0-0.1				J+B	-		$\rightarrow$		_				
0.4-0.5				777.)	-		-						
0.9-1.0				-									
1.4-1.5				./	-	×	-					p	
TP209-0.0-0.1				7.12									
0.4-0.5				J+B									
0.9-1.0				-1	-								
1.4-1.5	-			·		X						10	
TP210-0.0-0.1			-	1									
0.4-0.5				J+B									
0.9-1.0				1		×						y	
1.4-1.5				U									
1.4-1.3	V	1/		1									
RELINQUISHED BY:		1											
NAME: DATE:		CONS	IGNMENT NO	METHOD OF SHIPMENT:			RECEIVE				FOR RECEIVING	LAB U	SE ONLY:
07 1700 0	63.00	13,10				NAME: DATE:	navi	- 161	0.3	COOLER SEAL - YE	s No In	tact	Broken
OF: JBS&G NAME: DATE:			SPORT CO.			OF:	P	(0)		COOLER TEMP	deg C		
UAIE;		CONS	IGNMENT NO	TE NO.		NAME:	1	DATE:		COOLER SEAL - YE	s No Ir	tact	Broken
OF:		TRAN:	SPORT CO			OF:							
Container & Preservative Codes: P = Plas IMSO FormsO13 - Chain of Custody - Ger	tlc; J = Soil Jar; I	B = Glass Bottle	; N = Nitric Acid	i Prsvd.; C = Sodium Hydroxide Prsvd; VC	= Hydrochloi	ic Acid Prsvd Vial;	VS = Sulfur	ic Acid Prsvd Vi	ial; S ≈ S	COOLER TEMP Sulfuric Acid Prsvd; Z = Zi	deg C nc Prsvd; E = EDTA Pr	svd: ST	= Sterile Bottle: O = Other

# **CHAIN OF CUSTODY**



PROJECT NO.: 58238						11/	NAOD.	ATORY	BATO	LNO				_		<u> </u>		
PROJECT NAME: Prospect I						5/	MPI	FRC.	CK/R	T NO.		_		_			_	
DATE NEEDED BY: S TAT	1								M (20:						_	_	_	
PHONE: Sydney: 02 8245 030	0   Perth: 0	08 9488 01	00   Bris	bane: 07 3112 2688										_		_	_	
SEND REPORT & INVOICE TO: (1	adminnsw@	Dibsg.com.a	u; (2)	ckauffman @jbsg.com.a	u; (3)		Iill		@i	osg.com	n.au				_		-	
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	AL:											TT	TI	TT	TYPE		
Andrial	6	77 15	10							11.3						ANA	STOS LYSIS	
morgin	1	C FILE				Y			1 1	1 1		11/1	1.1	1.1		Z		
						2	N				11.1			11		CATIO	4	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	13	320									IDENTIFICATION	NEPM/WA	NOTES
TP211_0.0-0.1	Soul	9/3/20	2	J+B		又						_	+			-	80	NOTES:
0.3-0.4		1"/		J									++	++	++	-	1	
0.7-0.3	W	1		1								++	11	++	++	-		
K/N201	water	V		2, V 1, A 1 x M		Г	×			1			++	++	++	-		
										+		+	+++	++	+	+	H	
								+		1		+	-	++	++	+	$\vdash$	
										++		++	++	++	-	-	-	
								+		++	-	-	++-	++	++	4		
								-	-	++		-	++	++	+ 1	-		
					1	-		-	-	+ +		-	++	1	-	-		
					-	-	-	-	-	+-	-		-	-		1		
					-	-	-	-	-	-		-	1			-		
					-	-	-		-	+ +		-			1			
					-	_		-		1		-						
		1				_				1	5451							
RELINQUISHED BY													Tolle					
NAME: A DATE:	1.71)	CONS	IGNMENT I	METHOD OF SHIPMENT:		NI A	AME()	R	ECEIVED		110			FC	R RECEIV	/ING L	AB U	SE ONLY:
الم	,.5.70					DA	ATE:	upe	m	1	6/03	COO	LER SEAL	– Yes	. No	. Inta	act	Broken
OF: JBS&G  NAME: DATE:			SPORT CO.	MOTE NA		V	- 4	upo			1	coo	LER TEMP	de	g C			
DATE;		CONS	IGNMENT I	NOTE NO.		N/ OI	AME:	1		DA	TE:	COO	LER SEAL	Yes	. No	. Int	act	Broken
OF:		TRAN	SPORT CO			1						COO	LER TEMP	نمام ا				
IMSO FormsO13 - Chain of Custody - G	stic; J = Soll Jar; eneric	B = Glass Bottle	; N = Nitrie /	Acid Prsvd.; C = Sadium Hydroxide Prsvd; VC	= Hydrachlor	ic Aci	d Prsvd	Vial; VS	= Sulfurl	Acid Pe	svd Vial; S =	Sulfuric Ac	id Prsvd; Z	= Zinc Pr	vd; E = EC	TA Prs	rd; ST	= Sterile Bottle; O = Other



Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Murarrie QLD 4172 Phone: +61 3 8564 5000 NATA # 1261 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web : www.eurofins.com.au

### Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Chris Kauffman PROSPECT DSI Project name:

Project ID: 58238 COC number: Not provided

Turn around time: 5 Day

Date/Time received: Mar 16, 2020 1:49 PM

Eurofins reference: 707966

### Sample information

- $\mathbf{V}$ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\mathbf{V}$ Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 12.8 degrees Celsius.
- $\mathbf{V}$ All samples have been received as described on the above COC.
- $\square$ COC has been completed correctly.
- $\square$ Attempt to chill was evident.
- $\mathbf{V}$ Appropriately preserved sample containers have been used.
- $\mathbf{V}$ All samples were received in good condition.
- $\mathbf{V}$ Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Appropriate sample containers have been used.
- $\mathbf{V}$ Sample containers for volatile analysis received with zero headspace.
- $\boxtimes$ Split sample sent to requested external lab.
- $\boxtimes$ Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

NO BAG FOR TP208 0.4-0.5.

### Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Chris Kauffman - ckauffman@jbsg.com.au.



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Priority:** 

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #:

| > | I | D | < | O | L

707966 02 8245 0300

Phone: Fax:

Received: Mar 16, 2020 1:49 PM Due: Mar 23, 2020

Chris Kauffman **Contact Name:** 

**Eurofins Analytical Services Manager: Ursula Long** 

5 Day

**New Zealand** 

Auckland

IANZ # 1327

		Sa	mple Detail			Asbestos - WA guidelines	ЮГД	оН (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	IBS&G Suite 2
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271						Х	
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794								
Pert	h Laboratory - N	IATA Site # 237	<b>'36</b>								
Exte	rnal Laboratory	,			_						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP200_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22894	Х		Х	Х	Х	Х
2	TP201_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22895	Х			Х		Х
3	TP202_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22896	Х			Х		Х
4	TP203_0.5-0.6	Mar 09, 2020		Soil	S20-Ma22897	Х			Х		Х
5	TP204_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22898	Х		Х	Х	Х	Х
6	TP205_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22899	Х			Х		Х
7	TP206_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22900	Х			Х		Х
8	TP207_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22901	Х			Х		Х
9	TP208_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22902	Х			Х		Х
10	TP209_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22903	Х			Х		Х



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #: Phone:

707966 02 8245 0300

Fax:

Received: Mar 16, 2020 1:49 PM

Due: Mar 23, 2020 **Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

**New Zealand** 

35 O'Rorke Road

Penrose, Auckland 1061

Phone: +64 9 526 45 51

Auckland

IANZ # 1327

			mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
	oourne Laborato	<b>-</b>		271						Х	
	ney Laboratory					Х	Х	Х	Х	X	Х
	bane Laboratory										
	h Laboratory - N		<b>/36</b>	l							
11	TP210_0.4-0.5	· · · · · · · · · · · · · · · · · · ·		Soil	S20-Ma22904	Х			Х		Х
12	TP211_0.0-0.1			Soil	S20-Ma22905	Х			Х		Х
13	RIN201	Mar 09, 2020		Water	S20-Ma22906						Х
14	TP200_0.2-0.3			Soil	S20-Ma22907		Х				
15	TP200_0.5-0.7			Soil	S20-Ma22953		Х				
16	TP201_0.0-0.1	· ·		Soil	S20-Ma22954		Х				
17	TP201_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22955		Х				
18	TP201_1.2-1.3	Mar 09, 2020		Soil	S20-Ma22956		Х				
19	TP201_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22957		Х				
20	TP202_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22958		Х				
21	TP203_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22959		Х				
22	TP203_1.0-1.1	Mar 09, 2020		Soil	S20-Ma22960		Х				
23	TP203_1.6-1.7	Mar 09, 2020		Soil	S20-Ma22961		Х				



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

1/21 Smallwood Place

Phone: +61 7 3902 4600

NATA # 1261 Site # 20794

Murarrie QLD 4172

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

**New Zealand** 

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #:

707966 02 8245 0300

Phone: Fax:

Received: Mar 16, 2020 1:49 PM

Due: Mar 23, 2020 **Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

			mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71						Х	
	ney Laboratory					Х	Х	Х	Х	Х	Х
	bane Laboratory	<b>'</b>									
	h Laboratory - N		36								
24	TP204_0.5-0.6			Soil	S20-Ma22962		Х				
25	TP204_0.9-1.0			Soil	S20-Ma22963		Х				
26	TP205_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22964		Х				
27	TP205_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22965		Х				
28	TP206_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22966		Х				
29	TP207_0.3-0.4	Mar 09, 2020		Soil	S20-Ma22967		Х				
30	TP207_0.5-0.6	Mar 09, 2020		Soil	S20-Ma22968		Х				
31	TP208_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22969		Х				
32	TP208_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22970		Х				
33	TP208_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22971		Х				
34	TP209_0.0 0.1	Mar 09, 2020		Soil	S20-Ma22972		Х				
35	TP209_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22973		Х				



ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #: Phone:

707966 02 8245 0300

Fax:

Received: Mar 16, 2020 1:49 PM

Due: Mar 23, 2020

**Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

**New Zealand** 

Auckland

IANZ # 1327

	Sa	mple Detail			Asbestos - WA guidelines	HOLD	оН (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
Melk	ourne Laboratory - NATA Site	# 1254 & 14271							Х	
Sydı	ney Laboratory - NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Bris	bane Laboratory - NATA Site #	20794								
Pert	h Laboratory - NATA Site # 237	36								
36	TP209_1.4-1.5 Mar 09, 2020	So	il	S20-Ma22974		Х				
37	TP210_0.0-0.1 Mar 09, 2020	So	il	S20-Ma22975		Х				
38	TP210_0.9-1.0 Mar 09, 2020	So	il	S20-Ma22976		Х				
39	TP210_1.4-1.5 Mar 09, 2020	So	il	S20-Ma22977		Х				
40	TP211_0.3-0.4 Mar 09, 2020	So	il	S20-Ma22978		Х				
41	TP211_0.7-0.8 Mar 09, 2020	So	il	S20-Ma22979		Х				
Test	Counts				12	28	2	12	2	13



### Certificate of Analysis

# **Environment Testing**

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000 IAC-MRA



NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Chris Kauffman
Report 707966-AID
Project Name PROSPECT DSI

Project ID 58238

**Received Date** Mar 16, 2020 **Date Reported** Mar 23, 2020

### Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.



Date Reported: Mar 23, 2020

# **Environment Testing**





Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 10

**Project Name** PROSPECT DSI

**Project ID** 58238

**Date Sampled** Mar 09, 2020 Report 707966-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
TP200_0.0-0.1	20-Ma22894	Mar 09, 2020	Approximate Sample 272g Sample consisted of: Brown coarse-grained soil, shale and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.
TP201_0.9-1.0	20-Ma22895	Mar 09, 2020	Approximate Sample 427g Sample consisted of: Brown coarse-grained soil, shale and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.
TP202_0.0-0.1	20-Ma22896	Mar 09, 2020	Approximate Sample 352g Sample consisted of: Brown coarse-grained soil, shale and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.
TP203_0.5-0.6	20-Ma22897	Mar 09, 2020	Approximate Sample 255g Sample consisted of: Brown coarse-grained soil, shale and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.
TP204_0.0-0.1	20-Ma22898	Mar 09, 2020	Approximate Sample 381g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.
TP205_0.4-0.5	20-Ma22899	Mar 09, 2020	Approximate Sample 451g Sample consisted of: Brown coarse-grained soil, shale and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.
TP206_0.0-0.1	20-Ma22900	Mar 09, 2020	Approximate Sample 451g Sample consisted of: Brown coarse-grained soil, shale and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.
TP207_0.0-0.1	20-Ma22901	Mar 09, 2020	Approximate Sample 271g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 707966-AID



Date Reported: Mar 23, 2020

## **Environment Testing**





**Accreditation Number 1261** Site Number 18217

**NATA Accredited** 

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
TP208_0.9-1.0	20-Ma22902	Mar 09, 2020	Approximate Sample 410g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.
TP209_0.9-1.0	20-Ma22903	Mar 09, 2020	Approximate Sample 427g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP210_0.4-0.5	20-Ma22904	Mar 09, 2020		No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No trace asbestos detected.
TP211_0.0-0.1	20-Ma22905	Mar 09, 2020	Approximate Sample 380g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Page 3 of 10



#### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyMar 16, 2020Indefinite



ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

**New Zealand** 

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Svdnev

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #: Phone:

707966 02 8245 0300

Fax:

Received: Mar 16, 2020 1:49 PM

Due: Mar 23, 2020 **Priority:** 5 Day

Chris Kauffman **Contact Name:** 

**Eurofins Analytical Services Manager: Ursula Long** 

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271						Х	
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
	bane Laboratory										
Pert	h Laboratory - N	IATA Site # 237	36								
Exte	rnal Laboratory			1							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP200_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22894	Х		Х	Х	Х	Х
2	TP201_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22895	Х			Х		Х
3	TP202_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22896	Х			Х		Х
4	TP203_0.5-0.6	Mar 09, 2020		Soil	S20-Ma22897	Х			Х		Х
5	5 TP204_0.0-0.1 Mar 09, 2020 Soil S20-Ma22898								Х	Х	Х
6	6 TP205_0.4-0.5 Mar 09, 2020 Soil S20-Ma22899								Х		Х
7	TP206_0.0-0.1	S20-Ma22900	Х			Х		Х			
8	TP207_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22901	Х			Х		Х
9	TP208_0.9-1.0	S20-Ma22902	Х			Х		Х			
10	TP209_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22903	Х			Х		Х

Page 5 of 10



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

| > | I | 💆 | < | 0 | 🖕

Report #: Phone:

707966 02 8245 0300

Fax:

Received: Mar 16, 2020 1:49 PM

New Zealand

35 O'Rorke Road

Auckland

IANZ # 1327

Due: Mar 23, 2020 **Priority:** 5 Day

Chris Kauffman **Contact Name:** 

**Eurofins Analytical Services Manager: Ursula Long** 

		Sa	mple Detail			sbestos - WA guidelines	ЮГД	·H (1:5 Aqueous extract at 25°C as rec.)	Noisture Set	ation Exchange Capacity	BS&G Suite 2
Melk	oourne Laborato	ory - NATA Site	# 1254 & 142	71						Х	
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794								
Pert	h Laboratory - N	ATA Site # 237	36								
11	TP210_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22904	Х			Х		Х
12	TP211_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22905	Х			Х		Х
13	RIN201	Mar 09, 2020		Water	S20-Ma22906						Х
14	TP200_0.2-0.3	Mar 09, 2020		Soil	S20-Ma22907		Х				
15	TP200_0.5-0.7	Mar 09, 2020		Soil	S20-Ma22953		Х				
16	TP201_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22954		Х				
17	TP201_0.4-0.5			Soil	S20-Ma22955		Х				
18	TP201_1.2-1.3	Mar 09, 2020		Soil	S20-Ma22956		Х				
19	TP201_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22957		Х				
20	TP202_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22958		Х				
21	TP203_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22959		Х				
22	TP203_1.0-1.1	Mar 09, 2020		Soil	S20-Ma22960		Х				
23	TP203_1.6-1.7	Mar 09, 2020		Soil	S20-Ma22961		Х				

Page 6 of 10



web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

1/21 Smallwood Place

Phone: +61 7 3902 4600

NATA # 1261 Site # 20794

Murarrie QLD 4172

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Rolleston, Christchurch 7675 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

**Company Name:** 

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

A 보 무 M C H

Report #: 707966

Phone: 02 8245 0300

Sydney

Fax:

Received: Mar 16, 2020 1:49 PM

**New Zealand** 

Due: Mar 23, 2020 **Priority:** 5 Day

Chris Kauffman **Contact Name:** 

**Eurofins Analytical Services Manager: Ursula Long** 

		Sa	mple Detail				sbestos - WA guidelines	OLD	H (1:5 Aqueous extract at 25°C as rec.)	oisture Set	ation Exchange Capacity	3S&G Suite 2
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71							Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794									
Pert	h Laboratory - N	IATA Site # 237	36									
24	TP204_0.5-0.6	Mar 09, 2020		Soil	S20-M	la22962		Х				
25	TP204_0.9-1.0	Mar 09, 2020		Soil	S20-M	la22963		Х				
26	TP205_0.0-0.1	Mar 09, 2020		Soil	S20-M	la22964		Х				
27	TP205_0.9-1.0	Mar 09, 2020		Soil	S20-M	la22965		Х				
28	TP206_0.4-0.5	Mar 09, 2020		Soil	S20-M	la22966		Х				
29	TP207_0.3-0.4	Mar 09, 2020		Soil	S20-M	la22967		Х				
30	TP207_0.5-0.6	Mar 09, 2020		Soil	S20-M	la22968		Х				
31	TP208_0.0-0.1	Mar 09, 2020		Soil	S20-M	la22969		Х				
32	TP208_0.4-0.5	Mar 09, 2020		Soil	S20-M	la22970		Х				
33	TP208_1.4-1.5	Mar 09, 2020		Soil	S20-M	la22971		Х				
34	TP209_0.0 0.1	Mar 09, 2020		Soil	S20-M	la22972		Х				
35	TP209_0.4-0.5	Mar 09, 2020		Soil	S20-M	la22973		Х				

Page 7 of 10



ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

**Company Name:** 

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #:

707966 02 8245 0300

Phone: Fax:

Received: Mar 16, 2020 1:49 PM

Due: Mar 23, 2020 **Priority:** 

5 Day Chris Kauffman **Contact Name:** 

**Eurofins Analytical Services Manager: Ursula Long** 

**New Zealand** 

		Sai	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
Melb	ourne Laborato	ry - NATA Site	# 1254 & 142	71						Х	
Sydr	ney Laboratory -	NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Bris	pane Laboratory	/ - NATA Site #	20794								
Pert	Laboratory - N	ATA Site # 237	36								
36	TP209_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22974		Х				
37	TP210_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22975		Х				
38	TP210_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22976		Х				
39	TP210_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22977		Х				
40	TP211_0.3-0.4	Mar 09, 2020		Soil	S20-Ma22978		Х				
41	TP211_0.7-0.8	Mar 09, 2020		Soil	S20-Ma22979		Х				
Test	Counts					12	28	2	12	2	13

Page 8 of 10



#### **Internal Quality Control Review and Glossary**

#### General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

% w/w: weight for weight basis grams per kilogram Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL L/min

Terms

ΑF

Sample is dried by heating prior to analysis Drv

LOR Limit of Reporting COC Chain of Custody SRA Sample Receipt Advice

International Standards Organisation ISO

AS Australian Standards

Date Reported: Mar 23, 2020

Reference document for the NEPM, Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated WA DOH

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve. Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable" FA Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 9 of 10



#### Comments

S20-Ma22894, S20-Ma22895, S20-Ma22896, S20-Ma22897, S20-Ma22898, S20-Ma22899, S20-Ma22900, S20-Ma22901, S20-Ma22902, S20-Ma22903, S20-Ma22905: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

#### Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

#### **Qualifier Codes/Comments**

Code Description N/A Not applicable

#### **Asbestos Counter/Identifier:**

Laxman Dias Senior Analyst-Asbestos (NSW)

#### Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Chris Kauffman

Report 707966-S

Project name PROSPECT DSI

Project ID 58238

Received Date Mar 16, 2020

Client Sample ID			TP200_0.0-0.1	TP201_0.9-1.0	TP202_0.0-0.1	TP203_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ma22894	S20-Ma22895	S20-Ma22896	S20-Ma22897
Date Sampled			Mar 09, 2020	Mar 09, 2020	Mar 09, 2020	Mar 09, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	·				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	170	93	90	130
TRH C29-C36	50	mg/kg	87	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	257	93	90	130
ВТЕХ	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	86	91	103	98
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	230	100	< 100	130
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	230	100	< 100	130
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5



Client Sample ID			TP200_0.0-0.1	TP201_0.9-1.0	TP202 0.0-0.1	TP203_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ma22894	S20-Ma22895	S20-Ma22896	S20-Ma22897
·					1	
Date Sampled			Mar 09, 2020	Mar 09, 2020	Mar 09, 2020	Mar 09, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	76	81	66	90
p-Terphenyl-d14 (surr.)	1	%	80	91	75	90
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
а-ВНС	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	117	96	110	103
Tetrachloro-m-xylene (surr.)	1	%	126	113	107	111
Polychlorinated Biphenyls		T				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Arctor 1000	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Arcclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	117	96	110	103
Tetrachloro-m-xylene (surr.)	1	%	126	113	107	111



Client Sample ID Sample Matrix			TP200_0.0-0.1 Soil	TP201_0.9-1.0 Soil	TP202_0.0-0.1 Soil	TP203_0.5-0.6 Soil
Eurofins Sample No.			S20-Ma22894	S20-Ma22895	S20-Ma22896	S20-Ma22897
Date Sampled			Mar 09, 2020	Mar 09, 2020	Mar 09, 2020	Mar 09, 2020
Test/Reference	LOR	Unit				
Conductivity (4:5 aguacus system at 25°C on roo.)	10	uS/cm	31	_	_	
Conductivity (1:5 aqueous extract at 25°C as rec.) pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		-	-	-
% Moisture	1	%	12	12	14	12
Heavy Metals						
Arsenic	2	mg/kg	9.3	22	7.9	10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	34	6.7	13	5.5
Copper	5	mg/kg	55	40	24	41
Lead	5	mg/kg	26	26	22	20
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	25	8.8	10	11
Zinc	5	mg/kg	60	41	30	45
Cation Exchange Capacity	·	·				
Cation Exchange Capacity	0.05	meq/100g	19	-	-	-

Client Sample ID			TP204_0.0-0.1	TP205_0.4-0.5	TP206_0.0-0.1	TP207_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ma22898	S20-Ma22899	S20-Ma22900	S20-Ma22901
Date Sampled			Mar 09, 2020	Mar 09, 2020	Mar 09, 2020	Mar 09, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	95	61	100	84
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	95	61	100	84
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	110	102	83	92
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	120	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	120	< 100



Client Sample ID			TP204_0.0-0.1	TP205_0.4-0.5	TP206_0.0-0.1	TP207_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ma22898	S20-Ma22899	S20-Ma22900	S20-Ma22901
Date Sampled			Mar 09, 2020	Mar 09, 2020	Mar 09, 2020	Mar 09, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Tatal BALI*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1 1	%	86	104	73	100
p-Terphenyl-d14 (surr.)	1	%	INT	144	79	71
Organochlorine Pesticides	0.4		.0.1	.0.1	.0.1	.0.4
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD 4.4'-DDE	0.05	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
4.4'-DDT	0.05	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	101	102	99	129
Tetrachloro-m-xylene (surr.)	1	%	109	107	104	121



Client Sample ID			TP204_0.0-0.1	TP205_0.4-0.5	TP206_0.0-0.1	TP207_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ma22898	S20-Ma22899	S20-Ma22900	S20-Ma22901
Date Sampled			Mar 09, 2020	Mar 09, 2020	Mar 09, 2020	Mar 09, 2020
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	•	•				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	101	102	99	129
Tetrachloro-m-xylene (surr.)	1	%	109	107	104	121
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	16	-	-	_
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.2	-	-	-
% Moisture	1	%	14	14	17	25
Heavy Metals						
Arsenic	2	mg/kg	4.5	9.3	11	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	6.6	6.7	55	400
Copper	5	mg/kg	75	49	47	65
Lead	5	mg/kg	17	22	26	< 5
Mercury	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	10	8.8	34	180
Zinc	5	mg/kg	37	30	79	89
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	2.9	-	-	-

Client Sample ID Sample Matrix			TP208_0.9-1.0 Soil	TP209_0.9-1.0 Soil	TP210_0.4-0.5 Soil	TP211_0.0-0.1 Soil
Eurofins Sample No.			S20-Ma22902	S20-Ma22903	S20-Ma22904	S20-Ma22905
Date Sampled			Mar 09, 2020	Mar 09, 2020	Mar 09, 2020	Mar 09, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	92	92	98	102



Client Sample ID			TP208_0.9-1.0	TP209_0.9-1.0	TP210_0.4-0.5	TP211_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ma22902	S20-Ma22903	S20-Ma22904	S20-Ma22905
•			1			1
Date Sampled			Mar 09, 2020	Mar 09, 2020	Mar 09, 2020	Mar 09, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM F		1				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons		<del></del>				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5
Chrysene Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5
Fluoranthene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	92	103	89	88
p-Terphenyl-d14 (surr.)	1	%	73	87	131	106
Organochlorine Pesticides		70	70	0,	101	100
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05



Client Sample ID			TP208_0.9-1.0	TP209_0.9-1.0	TP210_0.4-0.5	TP211_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ma22902	S20-Ma22903	S20-Ma22904	S20-Ma22905
Date Sampled			Mar 09, 2020	Mar 09, 2020	Mar 09, 2020	Mar 09, 2020
Test/Reference	LOR	Unit				
Organochlorine Pesticides		•				
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	120	110	107	131
Tetrachloro-m-xylene (surr.)	1	%	117	114	96	136
Polychlorinated Biphenyls	<u>.</u>					
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	120	110	107	131
Tetrachloro-m-xylene (surr.)	1	%	117	114	96	136
% Moisture	1	%	21	18	15	23
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	4.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	280	230	110	170
Copper	5	mg/kg	64	54	57	95
Lead	5	mg/kg	< 5	< 5	< 5	11
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	440	330	280	140
Zinc	5	mg/kg	120	95	93	140



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	<b>Holding Time</b>
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Mar 19, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Mar 19, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 19, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 19, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Mar 19, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Mar 19, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Mar 19, 2020	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Mar 19, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Mar 18, 2020	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Mar 18, 2020	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Mar 19, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
% Moisture	Sydney	Mar 16, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327

IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.: Report #:

> = = = (

707966 02 8245 0300

Sydney

Phone: Fax:

Received: Mar 16, 2020 1:49 PM Due: Mar 23, 2020

**Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

**New Zealand** 

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271						Х		
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	
Bris	bane Laborator	y - NATA Site#	20794									
Pert	h Laboratory - N	NATA Site # 237	36									
Exte	rnal Laboratory	1		1								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	TP200_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22894	Х		Х	Х	Х	Х	
2	TP201_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22895	Х			Х		Х	
3	TP202_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22896	Х			Х		Х	
4	TP203_0.5-0.6	Mar 09, 2020		Soil	S20-Ma22897	Х			Х		Х	
5	TP204_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22898	Х		Х	Х	Х	Х	
6	TP205_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22899	Х			Х		Х	
7	TP206_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22900	Х			Х		Х	
8	TP207_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22901	Х			Х		Х	
9	TP208_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22902	Х			Х		Х	
10	TP209_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22903	Х			Х		Х	

Page 9 of 20



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

Rolleston, Christchurch 7675 Phone: 0800 856 450

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #: Phone:

707966 02 8245 0300

Fax:

Received: Mar 16, 2020 1:49 PM Due: Mar 23, 2020

**Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71						Х	
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
	bane Laboratory										
Pert	h Laboratory - N	IATA Site # 237	<b>736</b>	Г	_						
11	TP210_0.4-0.5			Soil	S20-Ma22904	Х			Х		Х
12	TP211_0.0-0.1			Soil	S20-Ma22905	Х			Х		Х
13	RIN201	Mar 09, 2020		Water	S20-Ma22906						Х
14	TP200_0.2-0.3	Mar 09, 2020		Soil	S20-Ma22907		Х				
15	TP200_0.5-0.7	Mar 09, 2020		Soil	S20-Ma22953		Х				
16	TP201_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22954		Х				
17	TP201_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22955		Х				
18	TP201_1.2-1.3	Mar 09, 2020		Soil	S20-Ma22956		Х				
19	TP201_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22957		Х				
20	TP202_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22958		Х				
21	TP203_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22959		Х				
22	TP203_1.0-1.1	Mar 09, 2020		Soil	S20-Ma22960		Х				
23	TP203_1.6-1.7	Mar 09, 2020		Soil	S20-Ma22961		Х				



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #: Phone:

707966 02 8245 0300

Fax:

Received: Mar 16, 2020 1:49 PM

Due: Mar 23, 2020 **Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271						Х	
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794								
Pert	h Laboratory - N		36								
24	TP204_0.5-0.6			Soil	S20-Ma22962		Х				
25	TP204_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22963		Х				
26	TP205_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22964		Х				
27	TP205_0.9-1.0			Soil	S20-Ma22965		Х				
28	TP206_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22966		Х				
29	TP207_0.3-0.4	Mar 09, 2020		Soil	S20-Ma22967		Х				
30	TP207_0.5-0.6	Mar 09, 2020		Soil	S20-Ma22968		Х				
31	TP208_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22969		Х				
32	TP208_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22970		Х				
33	TP208_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22971		Х				
34	TP209_0.0 0.1	Mar 09, 2020		Soil	S20-Ma22972		Х				
35	TP209_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22973		Х				



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #:

707966 02 8245 0300

Phone: Fax:

Received: Mar 16, 2020 1:49 PM Due: Mar 23, 2020

**Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
	ourne Laborato	· ·		71						Х	
Sydr	ney Laboratory -	NATA Site # 1	8217			Х	Х	Х	Х	Χ	Х
Brisl	bane Laboratory	/ - NATA Site #	20794								
Perti	h Laboratory - N	ATA Site # 237	36								
36	TP209_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22974		Х				
37	TP210_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22975		Х				
38	TP210_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22976		Х				
39	TP210_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22977		Х				
40	TP211_0.3-0.4	Mar 09, 2020		Soil	S20-Ma22978		Х				
41	TP211_0.7-0.8	Mar 09, 2020		Soil	S20-Ma22979		Х				
Test	Counts					12	28	2	12	2	13



#### **Internal Quality Control Review and Glossary**

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **Terms**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

**Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
i				
mg/kg	< 20	20	Pass	
mg/kg	< 20	20	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.2	0.2	Pass	
	< 0.1		Pass	
	< 0.3	0.3	Pass	
1 3 3				
<b>i</b>				
	< 0.5	0.5	Pass	
	< 20			
	1			
IIIg/Kg	V 100	100	1 455	
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
	1			
			_	
	1			
mg/kg	< 0.5	0.5	Pass	
	Т		Ι	
	.01	0.1	Door	
mg/kg mg/kg				
	< 0.05	0.05	Pass	I
	mg/kg	mg/kg         < 20	mg/kg         < 20	mg/kg         < 20



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	, <del>g</del> g			1 3.60	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.1	Pass	
Aroclor-1242					
	mg/kg	< 0.5	0.5	Pass	
Arcelor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank	<u> </u>		T 1		
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank		10	-		
Cation Exchange Capacity					
Cation Exchange Capacity	meg/100g	< 0.05	0.05	Pass	
LCS - % Recovery	[IIIeq/100g]	< 0.03	0.03	1 033	
Total Recovery  Total Recoverable Hydrocarbons - 1999 NEPM Fractions	_				
	%	90	70.420	Door	
TRH C6-C9		80	70-130	Pass	
TRH C10-C14	%	114	70-130	Pass	
LCS - % Recovery	1				
BTEX				_	
Benzene	%	93	70-130	Pass	
Toluene	%	94	70-130	Pass	
Ethylbenzene	%	98	70-130	Pass	
m&p-Xylenes	%	97	70-130	Pass	
o-Xylene	%	98	70-130	Pass	
Xylenes - Total	%	97	70-130	Pass	
LCS - % Recovery			,		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	s				
Naphthalene	%	110	70-130	Pass	
TRH C6-C10	%	81	70-130	Pass	
TRH >C10-C16	%	105	70-130	Pass	
1KH >C10-C16	/0				



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthene	%	115	70-130	Pass	
Acenaphthylene	%	101	70-130	Pass	
Anthracene	%	92	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	103	70-130	Pass	
Benzo(b&j)fluoranthene	%	99	70-130	Pass	
Benzo(g.h.i)perylene	%	100	70-130	Pass	
Benzo(k)fluoranthene	%	101	70-130	Pass	
Chrysene	%	94	70-130	Pass	
Dibenz(a.h)anthracene	%	130	70-130	Pass	
Fluoranthene	%	95	70-130	Pass	
Fluorene	%	99	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	106	70-130	Pass	
Naphthalene	%	122	70-130	Pass	
Phenanthrene	%	101	70-130	Pass	
Pyrene	%	117	70-130	Pass	
LCS - % Recovery	,,,	117	10 100	1 400	
Organochlorine Pesticides					
Chlordanes - Total	%	96	70-130	Pass	
4.4'-DDD	%	104	70-130	Pass	
4.4'-DDE	%	97	70-130	Pass	
4.4'-DDT	%	96	70-130	Pass	
a-BHC	%	89	70-130	Pass	
Aldrin	%	95	70-130	Pass	
b-BHC	%	92	70-130	Pass	
d-BHC	%	97	70-130	Pass	
Dieldrin	%	97	70-130	Pass	
Endosulfan I	%	98	70-130	Pass	
Endosulfan II	%	100	70-130	Pass	
Endosulfan sulphate	%	102	70-130	Pass	
Endrin aldehyde	%	78	70-130	Pass	
Endrin ketone	%	86	70-130	Pass	
g-BHC (Lindane)	%	94	70-130	Pass	
Heptachlor	%	98	70-130	Pass	
Heptachlor epoxide	%	104	70-130	Pass	
Hexachlorobenzene	%	92	70-130	Pass	
Methoxychlor	%	123	70-130	Pass	
Toxaphene	%	98	70-130	Pass	
LCS - % Recovery	,,,		70 100	1 400	
Polychlorinated Biphenyls					
Aroclor-1260	%	94	70-130	Pass	
LCS - % Recovery	,,	<u> </u>	10.00		
Heavy Metals					
Arsenic	%	107	70-130	Pass	
Cadmium	%	107	70-130	Pass	
Chromium	%	105	70-130	Pass	
Copper	%	105	70-130	Pass	
Lead	%	107	70-130	Pass	
Mercury	%	109	70-130	Pass	
Nickel	%	105	70-130	Pass	
	/0	102	70-130	. 400	



Test	Lab Sample ID	QA Source	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		Jource				Lillito	Lillits	Oode
Total Recoverable Hydrocarbons	: - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S20-Ma11702	NCP	%	70		70-130	Pass	
TRH C10-C14	S20-Ma26909	NCP	%	108		70-130	Pass	
Spike - % Recovery				1 199		10.101	7 2.00	
BTEX				Result 1				
Benzene	S20-Ma11702	NCP	%	79		70-130	Pass	
Toluene	S20-Ma11702	NCP	%	81		70-130	Pass	
Ethylbenzene	S20-Ma11702	NCP	%	84		70-130	Pass	
m&p-Xylenes	S20-Ma11702	NCP	%	86		70-130	Pass	
o-Xylene	S20-Ma11702	NCP	%	85		70-130	Pass	
Xylenes - Total	S20-Ma11702	NCP	%	86		70-130	Pass	
Spike - % Recovery		1		1 22		15 155	7 0.00	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1				
Naphthalene	S20-Ma11702	NCP	%	86		70-130	Pass	
TRH C6-C10	S20-Ma11702	NCP	%	71		70-130	Pass	
TRH >C10-C16	S20-Ma26909	NCP	%	95		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbo	ns			Result 1				
Acenaphthene	S20-Ma23650	NCP	%	99		70-130	Pass	
Acenaphthylene	S20-Ma23650	NCP	%	92		70-130	Pass	
Anthracene	S20-Ma28854	NCP	%	103		70-130	Pass	
Benz(a)anthracene	S20-Ma23650	NCP	%	94		70-130	Pass	
Benzo(a)pyrene	S20-Ma23650	NCP	%	103		70-130	Pass	
Benzo(b&j)fluoranthene	S20-Ma23650	NCP	%	72		70-130	Pass	
Benzo(k)fluoranthene	S20-Ma23650	NCP	%	70		70-130	Pass	
Chrysene	S20-Ma23650	NCP	%	94		70-130	Pass	
Dibenz(a.h)anthracene	S20-Ma23650	NCP	%	110		70-130	Pass	
Fluoranthene	S20-Ma23650	NCP	%	73		70-130	Pass	
Fluorene	S20-Ma23650	NCP	%	99		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S20-Ma28854	NCP	%	70		70-130	Pass	
Naphthalene	S20-Ma23650	NCP	%	103		70-130	Pass	
Phenanthrene	S20-Ma23650	NCP	%	85		70-130	Pass	
Pyrene	S20-Ma23650	NCP	%	89		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
b-BHC	S20-Ma30019	NCP	%	129		70-130	Pass	
Endosulfan II	S20-Ma30019	NCP	%	121		70-130	Pass	
Endosulfan sulphate	S20-Ma30019	NCP	%	122		70-130	Pass	
Endrin aldehyde	S20-Ma30019	NCP	%	74		70-130	Pass	
g-BHC (Lindane)	S20-Ma30019	NCP	%	125		70-130	Pass	
Heptachlor	S20-Ma30019	NCP	%	106		70-130	Pass	
Toxaphene	S20-Ma30019	NCP	%	120		70-130	Pass	
Spike - % Recovery								
Polychlorinated Biphenyls				Result 1				
Aroclor-1260	S20-Ma19944	NCP	%	100		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S20-Ma23450	NCP	%	124		70-130	Pass	
Cadmium	S20-Ma23450	NCP	%	121		70-130	Pass	
Chromium	S20-Ma23450	NCP	%	122		70-130	Pass	
Copper	S20-Ma23450	NCP	%	122		70-130	Pass	
Lead	S20-Ma23450	NCP	%	115		70-130	Pass	
Mercury	S20-Ma23450	NCP	%	121		70-130	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Nickel	S20-Ma23450	NCP	%	116			70-130	Pass	
Zinc	S20-Ma23450	NCP	%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-Ma11701	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S20-Ma24797	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-Ma24797	NCP	mg/kg	110	< 50	110	30%	Fail	Q15
TRH C29-C36	S20-Ma24797	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S20-Ma11701	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-Ma11701	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-Ma11701	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-Ma11701	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-Ma11701	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S20-Ma11701	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-Ma11701	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-Ma11701	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S20-Ma24797	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-Ma24797	NCP	mg/kg	120	< 100	96	30%	Fail	Q15
TRH >C34-C40	S20-Ma24797	NCP	mg/kg	< 100	< 100	<1	30%	Pass	Q.10
Duplicate	OZO WAZ 47 07	1401	mg/kg	100	V 100		0070	1 455	
Polycyclic Aromatic Hydrocarbons	•			Result 1	Result 2	RPD			
Acenaphthene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S20-Ma26404	NCP		< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene			mg/kg	1					
Benzo(b&j)fluoranthene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-Ma26404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate							T		
Organochlorine Pesticides	T			Result 1	Result 2	RPD		_	
Chlordanes - Total	S20-Ma26405	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
а-ВНС	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	



Duplicate											
Organochlorine Pesticides				Result 1	Result 2	RPD					
Endosulfan II	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Endosulfan sulphate	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Endrin	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Endrin aldehyde	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Endrin ketone	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
g-BHC (Lindane)	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Heptachlor	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Heptachlor epoxide	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Hexachlorobenzene	S20-Ma26405	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Methoxychlor	S20-Ma26405	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Toxaphene	S20-Ma26405	NCP	mg/kg	< 1	< 1	<1	30%	Pass			
Duplicate	CZO WAZO 100	110.	1119/119				0070	1 400			
Polychlorinated Biphenyls		Result 1	Result 2	RPD							
Aroclor-1016	S20-Ma26405	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Aroclor-1221	S20-Ma26405	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
Aroclor-1232	S20-Ma26405	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Aroclor-1242	S20-Ma26405	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Aroclor-1248	S20-Ma26405	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Aroclor-1254	S20-Ma26405	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Aroclor-1260	S20-Ma26405	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Duplicate											
•				Result 1	Result 2	RPD					
Conductivity (1:5 aqueous extract at 25°C as rec.)	M20-Ma23274	NCP	uS/cm	290	260	7.3	30%	Pass			
pH (1:5 Aqueous extract at 25°C as rec.)	S20-Ma21847	NCP	pH Units	5.8	5.9	Pass	30%	Pass			
Duplicate	020 Waz 1047	1401	prionits	0.0	0.0	1 433	3070	1 433			
Cation Exchange Capacity				Result 1	Result 2	RPD					
Cation Exchange Capacity	B20-Ma24831	NCP	meg/100g	3.0	2.8	1.0	30%	Pass			
Duplicate	BZO WAZ-1001	1401	meq/100g	0.0	2.0	1.0	0070	1 433			
Heavy Metals				Result 1	Result 2	RPD					
Arsenic	S20-Ma22896	СР	mg/kg	7.9	6.2	23	30%	Pass			
Cadmium	S20-Ma22896	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass			
Chromium	S20-Ma22896	CP	mg/kg	13	19	40	30%	Fail	Q15		
Copper	S20-Ma22896	CP	mg/kg	24	27	12	30%	Pass			
Lead	S20-Ma22896	CP	mg/kg	22	28	22	30%	Pass			
Mercury	S20-Ma22896	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
Nickel	S20-Ma22896	CP	mg/kg	10	17	48	30%	Fail	Q15		
Zinc	S20-Ma22896	CP	mg/kg	30	54	58	30%	Fail	Q02		
Duplicate			, J								
				Result 1	Result 2	RPD					
% Moisture	S20-Ma22897	СР	%	12	14	17	30%	Pass			



#### Comments

#### Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

#### **Qualifier Codes/Comments**

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

#### **Authorised By**

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Emily Rosenberg Senior Analyst-Metal (VIC) Gabriele Cordero Senior Analyst-Inorganic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW) Nibha Vaidya Senior Analyst-Asbestos (NSW) Scott Beddoes Senior Analyst-Inorganic (VIC)



#### Glenn Jackson

#### **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to six production arising from this report. This document in other personal or expensed.



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Chris Kauffman

Report 707966-W
Project name PROSPECT DSI

Project ID 58238

Received Date Mar 16, 2020

Client Sample ID			RIN201
Sample Matrix			Water
Eurofins Sample No.			S20-Ma22906
Date Sampled			Mar 09, 2020
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM		Offic	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.02	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
BTEX	0.1	i iiig/L	7 0.1
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.001	mg/L	< 0.001
o-Xylene	0.001	mg/L	< 0.002
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	143
Total Recoverable Hydrocarbons - 2013 NEPM		70	140
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons	'		
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001



Client Sample ID			RIN201
Sample Matrix			Water
Eurofins Sample No.			S20-Ma22906
·			
Date Sampled			Mar 09, 2020
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons	<u> </u>	1	
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	130
p-Terphenyl-d14 (surr.)	1	%	118
Organochlorine Pesticides			
Chlordanes - Total	0.001	mg/L	< 0.001
4.4'-DDD	0.0001	mg/L	< 0.0001
4.4'-DDE	0.0001	mg/L	< 0.0001
4.4'-DDT	0.0001	mg/L	< 0.0001
a-BHC	0.0001	mg/L	< 0.0001
Aldrin	0.0001	mg/L	< 0.0001
b-BHC	0.0001	mg/L	< 0.0001
d-BHC	0.0001	mg/L	< 0.0001
Dieldrin	0.0001	mg/L	< 0.0001
Endosulfan I	0.0001	mg/L	< 0.0001
Endosulfan II	0.0001	mg/L	< 0.0001
Endosulfan sulphate	0.0001	mg/L	< 0.0001
Endrin	0.0001	mg/L	< 0.0001
Endrin aldehyde	0.0001	mg/L	< 0.0001
Endrin ketone	0.0001	mg/L	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	< 0.0001
Heptachlor	0.0001	mg/L	< 0.0001
Heptachlor epoxide	0.0001	mg/L	< 0.0001
Hexachlorobenzene	0.0001	mg/L	< 0.0001
Methoxychlor	0.0001	mg/L	< 0.0001
Toxaphene	0.01	mg/L	< 0.01
Aldrin and Dieldrin (Total)*	0.0001	mg/L	< 0.0001
DDT + DDE + DDD (Total)*	0.0001	mg/L	< 0.0001
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	< 0.001
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	< 0.001
Dibutylchlorendate (surr.)	1	%	85
Tetrachloro-m-xylene (surr.)	1	%	125
Polychlorinated Biphenyls		-	
Aroclor-1016	0.005	mg/L	< 0.005
Aroclor-1221	0.001	mg/L	< 0.001
Aroclor-1232	0.005	mg/L	< 0.005
Aroclor-1242	0.005	mg/L	< 0.005
Aroclor-1248	0.005	mg/L	< 0.005
Aroclor-1254	0.005	mg/L	< 0.005
Aroclor-1260	0.005	mg/L	< 0.005
Total PCB*	0.001	mg/L	< 0.001
Dibutylchlorendate (surr.)	1	%	85
Tetrachloro-m-xylene (surr.)	1	%	125



Client Sample ID Sample Matrix Eurofins Sample No.			RIN201 Water S20-Ma22906	
Date Sampled				Mar 09, 2020
Test/Reference		LOR	Unit	
Heavy Metals				
Arsenic		0.001	mg/L	< 0.001
Cadmium		0.0002	mg/L	< 0.0002
Chromium		0.001	mg/L	< 0.001
Copper		0.001	mg/L	< 0.001
Lead		0.001	mg/L	< 0.001
Mercury		0.0001	mg/L	< 0.0001
Nickel		0.001	mg/L	0.002
Zinc		0.005	mg/L	< 0.005

#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Mar 21, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Mar 16, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 16, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 21, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Mar 21, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Mar 21, 2020	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Mar 21, 2020	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Mar 20, 2020	180 Days

⁻ Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

> = = = (

Report #: Phone:

707966 02 8245 0300

Fax:

Received: Mar 16, 2020 1:49 PM Due: Mar 23, 2020

**Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

**New Zealand** 

35 O'Rorke Road

Penrose, Auckland 1061

Phone: +64 9 526 45 51

Auckland

IANZ # 1327

		Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2				
Melb	Melbourne Laboratory - NATA Site # 1254 & 14271									Х	
Sydı	Sydney Laboratory - NATA Site # 18217							Х	Х	Х	Х
Bris	Brisbane Laboratory - NATA Site # 20794										<u> </u>
	h Laboratory - N		36								
Exte	rnal Laboratory	,			1						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP200_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22894	Х		Х	Х	Х	Х
2	TP201_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22895	Х			Х		Х
3	TP202_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22896	Х			Х		Х
4	TP203_0.5-0.6	Mar 09, 2020		Soil	S20-Ma22897	Х			Х		Х
5	TP204_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22898	Х		Х	Х	Х	Х
6	TP205_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22899	Х			Х		Х
7	TP206_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22900	Х			Х		Х
8	TP207_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22901	Х			Х		Х
9	TP208_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22902	Х			Х		Х
10	TP209_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22903	Х			Х		Χ



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

**New Zealand** 

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #: Phone:

707966 02 8245 0300

Fax:

Received: Mar 16, 2020 1:49 PM

Due: Mar 23, 2020 **Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

	Sample Detail							pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
Melbourne Laboratory - NATA Site # 1254 & 14271										Х	
	ney Laboratory					Х	Х	Х	Х	Х	Х
	bane Laboratory										
	h Laboratory - N		36	Ī							
11	TP210_0.4-0.5			Soil	S20-Ma22904	Х			Х		Х
12	TP211_0.0-0.1	,		Soil	S20-Ma22905	Х			Х		Х
13	RIN201	Mar 09, 2020		Water	S20-Ma22906						Х
14	TP200_0.2-0.3	Mar 09, 2020		Soil	S20-Ma22907		Х				
15	TP200_0.5-0.7			Soil	S20-Ma22953		Х				
16	TP201_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22954		Х				
17	TP201_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22955		Х				
18	TP201_1.2-1.3	Mar 09, 2020		Soil	S20-Ma22956		Х				
19	TP201_1.4-1.5	·		Soil	S20-Ma22957		Х				
20	TP202_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22958		Х				
21	TP203_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22959		Х				
22	TP203_1.0-1.1	Mar 09, 2020		Soil	S20-Ma22960		Х				
23	TP203_1.6-1.7	Mar 09, 2020		Soil	S20-Ma22961		Х				



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Mar 16, 2020 1:49 PM

**New Zealand** 

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.:

Report #: Phone:

707966 02 8245 0300

Fax:

Received: Due:

Mar 23, 2020 **Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

	Sample Detail								Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
Melk	Melbourne Laboratory - NATA Site # 1254 & 14271									Х	
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794								
Pert	h Laboratory - N		36								
24	TP204_0.5-0.6	Mar 09, 2020		Soil	S20-Ma22962		Х				
25	TP204_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22963		Х				
26	TP205_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22964		Х				
27	TP205_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22965		Х				
28	TP206_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22966		Х				
29	TP207_0.3-0.4	Mar 09, 2020		Soil	S20-Ma22967		Х				
30	TP207_0.5-0.6	Mar 09, 2020		Soil	S20-Ma22968		Х				
31	TP208_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22969		Х				
32	TP208_0.4-0.5			Soil	S20-Ma22970		Х				
33	TP208_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22971		Х				
34	TP209_0.0 0.1	Mar 09, 2020		Soil	S20-Ma22972		Х				
35	TP209_0.4-0.5	Mar 09, 2020		Soil	S20-Ma22973		Х				



ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

PROSPECT DSI

Project ID:

58238

Order No.: Report #:

707966

02 8245 0300

Phone: Fax:

Received: Mar 16, 2020 1:49 PM

Due: Mar 23, 2020 **Priority:** 5 Day

**Contact Name:** Chris Kauffman

**Eurofins Analytical Services Manager: Ursula Long** 

	Sample Detail					Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity	JBS&G Suite 2
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71						Χ	
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Χ	Χ	Х
Brisl	bane Laboratory	y - NATA Site #	20794								
Perti	h Laboratory - N	ATA Site # 237	36								
36	TP209_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22974		Χ				
37	TP210_0.0-0.1	Mar 09, 2020		Soil	S20-Ma22975		Х				
38	TP210_0.9-1.0	Mar 09, 2020		Soil	S20-Ma22976		Х				
39	TP210_1.4-1.5	Mar 09, 2020		Soil	S20-Ma22977		Х				
40	TP211_0.3-0.4	Mar 09, 2020		Soil	S20-Ma22978		Х				
41	41 TP211_0.7-0.8 Mar 09, 2020 Soil S20-Ma22979						Х				
Test	Counts					12	28	2	12	2	13



#### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/k: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **Terms**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%  $\,$ 

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$ 

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



# **Environment Testing**

#### **Quality Control Results**

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
втех					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank		10.000	3.000		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene		< 0.001	0.001	Pass	
` '	mg/L	1			
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		T T			
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
I ICAGO NOI ODGI IZGI IG	IIIg/L	\ 0.0001	0.0001	1 000	



# **Environment Testing**

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Toxaphene			mg/L	< 0.01			0.01	Pass	
Method Blank									
Polychlorinated Biphenyls									
Aroclor-1016			mg/L	< 0.005			0.005	Pass	
Aroclor-1221			mg/L	< 0.001			0.001	Pass	
Aroclor-1232			mg/L	< 0.005			0.005	Pass	
Aroclor-1242			mg/L	< 0.005			0.005	Pass	
Aroclor-1248			mg/L	< 0.005			0.005	Pass	
Aroclor-1254			mg/L	< 0.005			0.005	Pass	
Aroclor-1260			mg/L	< 0.005			0.005	Pass	
Total PCB*			mg/L	< 0.001			0.001	Pass	
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.001			0.001	Pass	
Cadmium			mg/L	< 0.0002			0.0002	Pass	
Chromium			mg/L	< 0.001			0.001	Pass	
Copper			mg/L	< 0.001			0.001	Pass	
Lead			mg/L	< 0.001			0.001	Pass	
Mercury			mg/L	< 0.0001			0.0001	Pass	
Nickel			mg/L	< 0.001			0.001	Pass	
Zinc			mg/L	< 0.005			0.005	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	<u> </u>						•		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S20-Ma23472	NCP	%	82			70-130	Pass	
Spike - % Recovery	<u> </u>						•		
BTEX				Result 1					
Benzene	S20-Ma23472	NCP	%	96			70-130	Pass	
Toluene	S20-Ma23472	NCP	%	100			70-130	Pass	
Ethylbenzene	S20-Ma23472	NCP	%	102			70-130	Pass	
m&p-Xylenes	S20-Ma23472	NCP	%	105			70-130	Pass	
o-Xylene	S20-Ma23472	NCP	%	105			70-130	Pass	
Xylenes - Total	S20-Ma23472	NCP	%	105			70-130	Pass	
Spike - % Recovery		1121	7.5				10.100	1 5.55	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S20-Ma23472	NCP	%	110			70-130	Pass	
TRH C6-C10	S20-Ma23472	NCP	%	79			70-130	Pass	
Spike - % Recovery		1101	,,,				10.00	. 455	
Heavy Metals				Result 1					
Arsenic	S20-Ma23471	NCP	%	98			70-130	Pass	
Cadmium	S20-Ma23471	NCP	%	98			70-130	Pass	
Chromium	S20-Ma23471	NCP	%	98			70-130	Pass	
Copper	S20-Ma23471	NCP	%	98			70-130	Pass	
Lead	S20-Ma23471	NCP	%	104			70-130	Pass	
Mercury	S20-Ma23471	NCP	%	107			70-130	Pass	
Nickel	S20-Ma23471	NCP	%	98			70-130	Pass	
Zinc		NCP	%	90			70-130	Pass	
	S20-Ma23471	QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate	4000 1:22:								
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD	<del> </del>		
TRH C6-C9	S20-Ma23471	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	



# **Environment Testing**

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S20-Ma23471	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S20-Ma23471	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S20-Ma23471	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S20-Ma23471	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S20-Ma23471	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S20-Ma23471	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydroc	arbons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-Ma23471	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S20-Ma23471	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-Ma23470	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S20-Ma23470	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S20-Ma23470	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S20-Ma23470	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S20-Ma23470	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S20-Ma23470	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S20-Ma23470	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S20-Ma23470	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	



#### Comments

#### Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

#### **Qualifier Codes/Comments**

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

#### **Authorised By**

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW)



#### Glenn Jackson

#### **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deaderines and to be production arising from this report. This document shall not be reproduced except in full and not eliens indicated otherwise, the tests were performed on the samples as received.



customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 218764**

<b>Client Details</b>	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	C Kauffman
Address	Level 1, 50 Margaret St, Sydney, NSW, 2000

Sample Details	
Your Reference	56425, Clunies Ross St
Number of Samples	2 soil
Date samples received	31/05/2019
Date completed instructions received	31/05/2019

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	04/06/2019
Date of Issue	04/06/2019
NATA Accreditation Number 2901. This	document shall not be reproduced except in full.
Accredited for compliance with ISO/IEC	17025 - Testing. Tests not covered by NATA are denoted with *

#### **Asbestos Approved By**

Analysed by Asbestos Approved Identifier: Panika Wongchanda Authorised by Asbestos Approved Signatory: Matt Tang

#### **Results Approved By**

Giovanni Agosti, Group Technical Manager Matthew Tang, Asbsestos Supervisor Steven Luong, Organics Supervisor **Authorised By** 

Nancy Zhang, Laboratory Manager

TECHNICAL

VOCs in soil			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
Date extracted	-	03/06/2019	03/06/2019
Date analysed	-	04/06/2019	04/06/2019
Dichlorodifluoromethane	mg/kg	<1	<1
Chloromethane	mg/kg	<1	<1
Vinyl Chloride	mg/kg	<1	<1
Bromomethane	mg/kg	<1	<1
Chloroethane	mg/kg	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1
1,1-dichloroethane	mg/kg	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1
bromochloromethane	mg/kg	<1	<1
chloroform	mg/kg	<1	<1
2,2-dichloropropane	mg/kg	<1	<1
1,2-dichloroethane	mg/kg	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1
1,1-dichloropropene	mg/kg	<1	<1
Cyclohexane	mg/kg	<1	<1
carbon tetrachloride	mg/kg	<1	<1
Benzene	mg/kg	<0.2	<0.2
dibromomethane	mg/kg	<1	<1
1,2-dichloropropane	mg/kg	<1	<1
trichloroethene	mg/kg	<1	<1
bromodichloromethane	mg/kg	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1
Toluene	mg/kg	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1
dibromochloromethane	mg/kg	<1	<1
1,2-dibromoethane	mg/kg	<1	<1
tetrachloroethene	mg/kg	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1
chlorobenzene	mg/kg	<1	<1
Ethylbenzene	mg/kg	<1	<1

VOCs in soil			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
bromoform	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
styrene	mg/kg	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1
o-Xylene	mg/kg	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1
isopropylbenzene	mg/kg	<1	<1
bromobenzene	mg/kg	<1	<1
n-propyl benzene	mg/kg	<1	<1
2-chlorotoluene	mg/kg	<1	<1
4-chlorotoluene	mg/kg	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1
tert-butyl benzene	mg/kg	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1
sec-butyl benzene	mg/kg	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1
4-isopropyl toluene	mg/kg	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1
n-butyl benzene	mg/kg	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1
hexachlorobutadiene	mg/kg	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1
Surrogate Dibromofluorometha	%	113	112
Surrogate aaa-Trifluorotoluene	%	102	101
Surrogate Toluene-d ₈	%	91	91
Surrogate 4-Bromofluorobenzene	%	89	87

TRH in Soil (C6-C9) NEPM			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
Date extracted	-	03/06/2019	03/06/2019
Date analysed	-	04/06/2019	04/06/2019
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
Surrogate aaa-Trifluorotoluene	%	102	101

svTRH (C10-C40) in Soil			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
Date extracted	-	03/06/2019	03/06/2019
Date analysed	-	04/06/2019	04/06/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	89	87

PAHs in Soil			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
Date extracted	-	03/06/2019	03/06/2019
Date analysed	-	04/06/2019	04/06/2019
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	91	92

Organochlorine Pesticides in soil			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
Date extracted	-	03/06/2019	03/06/2019
Date analysed	-	04/06/2019	04/06/2019
нсв	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	108	107

PCBs in Soil			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
Date extracted	-	03/06/2019	03/06/2019
Date analysed	-	04/06/2019	04/06/2019
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	108	107

Acid Extractable metals in soil			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
Date prepared	-	03/06/2019	03/06/2019
Date analysed	-	03/06/2019	03/06/2019
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	220	34
Copper	mg/kg	36	44
Lead	mg/kg	6	3
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	160	140
Zinc	mg/kg	65	42

Moisture			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
Date prepared	-	03/06/2019	03/06/2019
Date analysed	-	04/06/2019	04/06/2019
Moisture	%	21	12

Asbestos ID - soils NEPM - ASB-001			
Our Reference		218764-1	218764-2
Your Reference	UNITS	QC01	QC02
Date Sampled		30.05.2019	30.05.2019
Type of sample		soil	soil
Date analysed	-	03/06/2019	03/06/2019
Sample mass tested	g	470.85	692.02
Sample Description	-	Brown clayey soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos#1	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_
FA and AF Estimation*	g	_	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004.  Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	<b>NOTE</b> #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.  Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql 'eq="" 2.="" 3.="" <pql="" a="" above.<="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" is="" least="" may="" mid-point="" more="" most="" negative="" not="" pahs="" positive="" pql'values="" pql.="" present="" present.="" reported="" stipulated="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero'values="" zero.=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALI	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	218764-2
Date extracted	-			03/06/2019	1	03/06/2019	03/06/2019		03/06/2019	03/06/2019
Date analysed	-			04/06/2019	1	04/06/2019	04/06/2019		04/06/2019	04/06/2019
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	88	115
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-014	<1	1	<1	<1	0	98	126
2,2-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	92	121
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	81	105
1,1-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Cyclohexane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-014	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
dibromomethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	86	113
bromodichloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	100	131
trans-1,3-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-014	<0.5	1	<0.5	<0.5	0	[NT]	[NT]
1,3-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	95	128
1,2-dibromoethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	89	114
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
bromoform	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-014	<2	1	<2	<2	0	[NT]	[NT]
styrene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]

QUALI	TY CONTRO	L: VOCs	ITY CONTROL: VOCs in soil					Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	218764-2	
o-Xylene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
isopropylbenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
bromobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
n-propyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
2-chlorotoluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
4-chlorotoluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
tert-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
sec-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
4-isopropyl toluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
n-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
hexachlorobutadiene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
Surrogate Dibromofluorometha	%		Org-014	113	1	113	113	0	110	112	
Surrogate aaa-Trifluorotoluene	%		Org-014	100	1	102	101	1	92	109	
Surrogate Toluene-d ₈	%		Org-014	102	1	91	93	2	91	92	
Surrogate 4-Bromofluorobenzene	%		Org-014	79	1	89	89	0	91	92	

QUALITY CON	TROL: TRH	in Soil (C	6-C9) NEPM			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	218764-2
Date extracted	-			03/06/2019	1	03/06/2019	03/06/2019		03/06/2019	03/06/2019
Date analysed	-			04/06/2019	1	04/06/2019	04/06/2019		04/06/2019	04/06/2019
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	77	100
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	77	100
Surrogate aaa-Trifluorotoluene	%		Org-016	100	1	102	101	1	92	109

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	218764-2	
Date extracted	-			03/06/2019	1	03/06/2019	03/06/2019		03/06/2019	03/06/2019	
Date analysed	-			04/06/2019	1	04/06/2019	04/06/2019		04/06/2019	04/06/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	89	90	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	91	96	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	90	78	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	89	90	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	91	96	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	90	78	
Surrogate o-Terphenyl	%		Org-003	90	1	89	89	0	95	96	

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	218764-2
Date extracted	-			03/06/2019	1	03/06/2019	03/06/2019		03/06/2019	03/06/2019
Date analysed	-			04/06/2019	1	04/06/2019	04/06/2019		04/06/2019	04/06/2019
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	108	112
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	96	102
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	94	98
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	88	94
Pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	92	98
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	94	102
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	<0.05	<0.05	0	92	100
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	93	1	91	91	0	85	90

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	218764-2
Date extracted	-			03/06/2019	1	03/06/2019	03/06/2019		03/06/2019	03/06/2019
Date analysed	-			04/06/2019	1	04/06/2019	04/06/2019		04/06/2019	04/06/2019
нсв	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	93	96
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	97	97
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	95	98
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	103	92
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	101	105
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	104	107
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	110	113
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	106	108
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	93	95
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	98	102
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	108	1	108	114	5	96	99

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			03/06/2019	1	03/06/2019	03/06/2019		03/06/2019	
Date analysed	-			04/06/2019	1	04/06/2019	04/06/2019		04/06/2019	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	108	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCLMX	%		Org-006	108	1	108	114	5	111	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	218764-2
Date prepared	-			03/06/2019	1	03/06/2019	03/06/2019		03/06/2019	03/06/2019
Date analysed	-			03/06/2019	1	03/06/2019	03/06/2019		03/06/2019	03/06/2019
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	108	77
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	104	72
Chromium	mg/kg	1	Metals-020	<1	1	220	170	26	109	82
Copper	mg/kg	1	Metals-020	<1	1	36	29	22	106	97
Lead	mg/kg	1	Metals-020	<1	1	6	5	18	110	77
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	81	95
Nickel	mg/kg	1	Metals-020	<1	1	160	120	29	108	72
Zinc	mg/kg	1	Metals-020	<1	1	65	56	15	113	72

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Qu	ality Contro	ol Definitions
	Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
	Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
	Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
	S (Laboratory ontrol Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Su	ırrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Reference: 218764 Page | 23 of 24

R00

# **Report Comments**

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, sample 218764-1 was below the minimum 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Envirolab Reference: 218764 Page | 24 of 24

Revision No: R00

019331

# **CHAIN OF CUSTODY**



PROJECT NO.: S642	Ţ.					LA	BOF	ATO	ORY	BATC	н ио	.:										-						
PROJECT NAME: Closi	es Ra	2 د ۱	7			SA	MP	LERS	S: c	こに	+7	F												_	,-			
PROJECT NAME: Cludi DATE NEEDED BY: 48	hr TH	<u> </u>		<del>.</del>						M (2							-		_									
PHONE: Sydney: 02 8245 030	00   Perth: (	)8 9488 01	.00   Brisi	pane: 07 3112 2688																				_				
SEND REPORT & INVOICE TO	: (1) admini	nsw@jbsg.	com.au; (	2) ckaulthan @jt	sg.com.a	u; (	3)						@j	ibsg	.con	า,ลเ	ľ											
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOS	AL:							<i>.</i>	T			Ī									TYPE	OF STOS					
								PCR	Š.	t d			-			-						ANA	<b>LYSIS</b>					
						'n	Ħ	2	.2	Ø,			- 1									ATION	_					
		<u>,</u>				. #	PM	Ŭ	2	<u>-2</u>	İ		-	ļ		-						E	NEPM/WA					
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН		/	9	1	T	<u> </u>					$\perp$					Т.	DE.	발	NO	ES;			
(360)	Soil	30.5.19		J.B		×	×	×	'ע	×													×					
13402				<b>*</b>		Š	乀	ĸ	×.	<u> </u>													حا					
											Ì												[′					]
				-																								
· = •				-							1				╗	7		T			T-							
			-						_		1					$\neg$		T			┪							
	<del>-</del>										T -					T		1			T		$\vdash$					
		_									1		$\overline{}$		Env	irola	b Ser	vice	5	$\top$	┰	1			-			$\neg$
·	<u> </u>	<del>                                     </del>									E	nvir	OLPB	; ]	Envi	<del>- 1</del> 2	Ash NSV	<del>(e) {</del> / 206	5 <del>t  </del> 57		╁			1	-			
	<del> </del>							_	$\neg$		+-	٣			Ph:	(02)	9910	620	10	┪	1	1	$\vdash$	1				$\neg$
									_	_	<del>  </del>	ob	<u> 40:</u>	<del>214</del>	37	<del>6 y</del>		$\top$	+	+-	+	1		$\vdash$				$\dashv$
<u> </u>	_	<del>                                     </del>							$\dashv$		Η,	2010	Boo	aive	1:31 d: 16 mbiz	75	119		$\dashv$	+	+	+	$\vdash$	<del>                                     </del>				
		<del> </del>		,	+			-	$\dashv$	-	<del>- -'</del>	Time	Rec	eive	d: / 6	┇╬	77	+	+-	╁	╁	╁	┢	1				
		<del> </del>		<u> </u>	-		_		-	-	-	Rece	iveg	- by:	cs.	-	-	-	╬	╬	+	+		<del> </del>				
		<del> </del> -				<u> </u>			-	_	-∤	Tem	• <b>4</b>		mbile	<u>pt</u>		+	+	+	+	4	├	<del> </del>				-
		ļ			_					_	-	Cool	ıng:I	ice v	יייעשי	-	1	- 1	$\bot$		4	<u> </u>	<u> </u>	₩		-		
											<u> </u>	Sec	unity	nua	c)Bro	2661	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			$\perp$	4	<u> </u>	<u> </u>	<u> </u>				
													_							┸	$\downarrow$	<u> </u>	<u> </u>	<u> </u>				
	<u></u>			<u> </u>															$\perp$		$\perp$			L				
	L										<u> </u>												L.					
RELINQUISHED BY				METHOD OF SHIPMENT:			Ξ		RE	CEIVED	BY:							7	FC	R RE	CEIV	ING L	АВί	JSE O	ILY: Broken			
NAME: / DATE: -	31.5.1	← CONS	IGNMENT N	IOTE NO.		N/	ME:	16.5 37.7	Pr	ing	ZX.										•••••	. Int	act		Broken	*********		
OF: JBS&G	- ( - ) (		SPORT CO.			OF	:	- /	<i>5</i> / /	′					coc	DLER	TEMI	р <i>6</i> .	de	g C		_						
NAME: DATE:		CONS	IGNMENT N	NOTE NO.			ME:				D	ATE:			COC	DLER	SEAL	. — Yı	25	. No		. Int	tact .		Broken .			
OF:		TRAN	SPORT CO			OF	:							ļ	רחר	) FR	TEMI	D	. dei	z C								
	astic; J = Soil Jar;			cid Prsvd.; C = Sodium Hydroxide Prsvd: VC =	- Hydrochlor	ic Aci	d Prsy	rd.Via	1; VS =	Sulfuri	Acid P	rsvd.\	/ial; S	– Sul							=£0	TA Pis	vd: 5	T - Ste	ile Bottle	<u>: 0 0</u> 1	ther -	

IMSO FormsO15 - Chain of Custody - Generic



					TO A COLOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	
					LABORATORT BATCH NO.:	
PROJECT NAME: CLON (@)	ies hoss	はっ			SAMPLERS: C /Z + T F	
DATE NEEDED BY: 48	3	11			QC LEVEL: NEPM (2013)	
PHONE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688	300   Perth: (	08 9488 01	00   Brisba			
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) C. K.C. (T. C.	0: (1) adminr	nsw@jbsg.	:om.au; (2)		.@jbsg.com.au; (3)@jb	@jbsg.com.au
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	orage or dispos/	ar:			230,1 50,10 200,1 H	증전취
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	115 HUL 434 400 400 401 401 401 401 401 401 401 40	NOTES:
\$501	Soil	Res.4		7+8	× × ×	X
5507	1				× × × × ×	×
5563					× × ×	×
5504					× × × ×	×
55 G C					×××××××××××××××××××××××××××××××××××××××	
Em81	7			7	XXXXX	
FRAGOS	Bustingt			B	×	×
HAOI	50.			7+8	×	×
HAGZ					× × × ×	×
4403					× × × × × ×	×
HOAH				->	Х 	
TP010-0.1				J+8	× × × ×	X
1 0.3-64				1	×	
1-1-1	/				×	
S.1-4-1-5	-				×	
TP62 0-0-1					××	X
0-5-0	6			7		
ーナー				6	××	***
7-2.1	9	)		り		
RELINQUISHED BY:	BY:			METHOD OF SHIPMENT:	RECEIVED BY:	FOR RECEIVING LAB USE ONLY:
NAME: CK DATE:	DATE: 31, 5.19	CONS	CONSIGNMENT NOTE NO.	TE NO.	DATE: MON 45:28	COOLER SEAL – Yes No Intact Broken
NAME: DATE:		CONS	CONSIGNMENT NOTE NO.	IE NO.	NAME: DATE:	COOLER SEAL – Yes No Intact Broken
		NVOL	COLEGORIA		OF:	COO ER TEMP
		I I IVAII	000000000000000000000000000000000000000		LIMINSTON CO	

IMSO FormsO13 - Chain of Custody - Generic

658838





				- CALCITY DATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF	
- NOSECT NO.	00-160	1		בארטואוסואוסואוסייי	
PROJECT NAME:	CONG D	osi st		SAMPLERS:	
DATE NEEDED BY:	DBY: 48 hr T	MA NOTE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE		QC LEVEL: NEPM (2013)	
HONE: Sydr	PHONE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112	h: 08 9488 0100   L	2688		
SEND REPOR	SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	innsw@jbsg.com.a	6/200/tmcn	.@jbsg.com.au; (3)@jbs	@jbsg.com.au
COMMENTS / SPE	COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	POSAL:		satsod:	TPRE OF ASBESTOS ANALYSIS ANANYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANANANYSIS ANANYSIS ANANYSIS ANANYSIS ANANYSIS ANANYSIS ANANYSIS AN
SAN	SAMPLE ID MATRIX	X DATE TIME	E TYPE & PRESERVATIVE	THE TE	NOTES:
1001	2-4-25 5001	305.19	h		
TPO3	1 1.0.0		7+3	X	***************************************
	9.0-5.0		7		
	1-1-1		h		
2	2-2.1		h		
TROY	0-0-1		5+5	X X X X X	
_	8.5.0.6		7+8	×	
7	1/1-1		h		
TOOL	1.0-0		2+5	<i>x</i> × ×	8
	1-1-1		h		
	2-2-2			×	
>	2-4-2.5		<b>→</b>		
100 C	0.0.0		5+3	2XXXXX	A C- Ancive all (Feb. Lyse
-	1-1-1		4		
>	1.4-1.5		3	×	
T067	1.0-0		0+1	XXXXX	×
7008	1.0-0		٠	X	R
7009	0.0.1				
7	S.0-1-0	0	7	×	×
	RELINQUISHED BY:		METHOD OF SHIPMENT:	RECEIVED BY:	FOR RECEIVING LAB USE ONLY:
NAME:	DATE:	CONSIGNME	CONSIGNMENT NOTE NO.	18C - 20 17 : 19	COOLER SEAL – Yes No Intact Broken
OF: JBS&G		TRANSPORT CO.	.00	31 1 3 20%	
NAME:	DATE:	CONSIGNME	CONSIGNMENT NOTE NO.	NAME: DATE:	COOLER SEAL – Yes No Intact Broken
Ģ.		COTROGRANT			COOLER TEMP deg C

IMSO FormsO13 - Chain of Custody - Generic





PROJECT NO.: 5247					LABORATORY BATCH NO.:	
PROJECT NAME: Clantes	Res	15			SAMPLERS: Churr	
DATE NEEDED BY: 48 ha	15	TA I			QC LEVEL: NEPM (2013)	
PHONE: Sydney: 02 8245 0300   F	Perth: 08	Perth: 08 9488 0100	0   Brisba	OK		
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	adminns	w@jbsg.c	om.au; (2,	- Jung	@jbsg.com.au; (3)@	@jbsg.com.au
COMMENTS / SPECIAL HANDLING / STORAGE O	OR DISPOSAL				)Q (S)	TYPE OF ASBESTIOS ANALYSIS
					23/3/20/3/1/11/11/11/11/11/11/11/11/11/11/11/11	FICATION
SAMPLEID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	THE HE	IDENTI NEPM/
TRS 9.9-1.0 SOT	Soil	305.19		1+8		
1				_	×	×
20-4-01						
1:1-1					X	×
TPII 0-0 1					×	
J. 0.3-6.4					*	
1-1-1						
1-2.1						
4 2.7-2.8					X	×
TP12 0-0-1						X
1 0.5-06					. X ×	2
5.1-15.1				7		
(2) Carbol				54-13	У Х Х	
O R02	7			7+0	х х х	
RINOI	H20			TXVICE IN P. J. Amb	X	
+5				10	×	
7.8	· de	>		7	×	
RELINQ				METHOD OF SHIPMENT:	RECEIVED BY:	FOR RECEIVING LAB USE ONLY:
NAME: (h DATE: 31,5.(4	5.(4	CONSI	CONSIGNMENT NOTE NO.	TE NO.	DATE: CLOS ST	COOLER SEAL – Yes No Intact Broken
NAME: DATE:		CONSI	CONSIGNMENT NOTE NO.	TE NO.	NAME: DATE:	COOLER SEAL - Yes No Intact Broken
30		TRANS	TRANSPORT CO		OF:	COOLER TEMP deg C
Container & Preservative Codes: P = Plastic; J	I = Soil Jar; B	= Glass Bottle	. N = Nitric Aci	1 Prsvd.: C = Sodium Hydroxide Prsvd; VC = Hy	drochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial;	Container & Preservative Codes: P = Plastic: J = Soil Jar: B = Glass Bottle: N = Nitric Acid Prsvd; C = Sodium Hydroxide Prsvd; V = Hydrochlorire Acid Prsvd Vial; VS = Sulfuric Acid Prsvd; Z = Zinc Prsvd; Z = Zinc Prsvd; ST = Sterile Bottle: O = Other

IMSO FormsO13 - Chain of Custody - Generic





PROJECT NO:						
PROJECT NAME:	wies Ro	45 rs0			SAMPLERS: CK ATE	
DATE NEEDED BY:	48 hour -A	上			QC LEVEL: NEPM (2013)	
PHONE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 311	45 0300   Perth:	08 9488 01	00   Brisban	e: 07 3112 2688		
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	ICE TO: (1) admin	nsw@jbsg.	com.au; (2) .	S	@jbsg.com.au; (3)@jb	.@jbsg.com.au
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	NG / STORAGE OR DISPOS	AL:			50473 5701/ 700/ 71	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	777 128 11VL 11VL 12VH 15	IDENTIFIC
mao 1 oum	1.0-	36.5.19		J+6	<i>x</i> × ×	X
5.0 1	0.1-5-6	94				
1.9	-2.0				×	X
2.9	-3.0					
3 9	3 9-4.0					
44	0.5.5.4					
6.4	0-9-6.5					
0.6-7.0	7.0				××	
J 7.9-	-8.0			P		
mwo?	1			270	×	
- 5.0	1.0			1	Д Х Х	8
- b-l	2.0					
- 6-2	-3.0					
3.6	- H.O			0		
77	5-6			h		
5.6	0.9			-		
-5.9	7.0					
7.6	8.6	7		7		
	PETINO IICIIED DX.	-		MCTUOD OF SUIDMENT.	RECEIVED BY:	FOR RECEIVING LAB USE ONLY:
b	SHEU BT.	3400	TOM TRAIL	METHOD OF SHIPTIMENT.	NAME:	COOLER SEAL - Yes No Intact Broken
NAME: C C	34.5-19		TRANSPORT CO.		DATE: NO 2 S	COOLER TEMP deg C
	DATE:	CON	CONSIGNMENT NOTE NO.	E NO.	NAME: DATE:	COOLER SEAL - Yes No Intact Broken
0F:		TRAN	TRANSPORT CO		OF:	COOLER TEMP deg C
				L = 7/V special Decision Decision Decision III	Carlo and Anial Duning Mint, MC - Conference Acid Decord Mint. C.	Other Schlieberg And Brend Viel V. C. Strain Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend Viel V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Schlieberg And Brend V. C. Sch





PROJECT NO.: <497.5				LABORATORY BATCH NO.:	
PROJECT NAME: CLUCICA	Ross !	さい		SAMPLERS: CEATE	
DATE NEEDED BY: 48 hc	That			QC LEVEL: NEPM (2013)	
PHONE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688	Perth: 08 9	488 0100   Brit	bane: 07 3112 2688		
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	adminnsw	@jbsg.com.au;	1 :	@jbsg.com.au; (3)@jbs	@jbsg.com.au
COMIMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	OR DISPOSAL:			regrag 87d/d DON/H Hyd	A SRESION AND A STREET OF THE CATION
SAMPLEID	MATRIX	DATE TIME	TYPE & PRESERVATIVE	ry Ha	IDEET NOTES:
mw63 0-0-1 S	5011 30	30.5.19	2+0		
07-5-8	-		1	XXXX	R
1.9-2.0					
7.9-3.0			<del>-)</del>		
3.9-4.0			1		
0.2-8-h					
5.9-60					
6-1-2.9	-	,			
7.9-8.6	7		7	×××	
RELING			METHOD OF SHIPMENT:	RECEIVED BY:	z
NAME: (L DATE: St.	34.5.19	CONSIGNIMENT NOTE NO.	NOTE NO.	DATE: SI/S COR	COOLER SEAL – Yes No Intact Broken
NAME: DATE:		CONSIGNMENT NOTE NO.	NOTE NO.	DATE	COOLER SEAL - Yes No Intact Broken
		TRANSPORT CO		OF:	
Container & Preservative Codes: P = Plastic; J	J = Soil Jar; B = G	lass Bottle; N = Nitric	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = H	ydrochloric Acid Prsvd Viał; VS = Sulfuric Acid Prsvd Vial; S = S	Container & Preservative Codes: P = Plastic, J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other

IMSO FormsO13 - Chain of Custody - Generic



Melbourne

**Sydney** Unit F3, Building F 
 Melbourne
 Sydney
 Brisbane

 6 Monterey Road
 Unit F3, Building F
 1/21 Smallwood Place

 Dandenong South Vic 3175 16 Mars Road
 Murarrie QLD 4172

 Phone: +61 3 8564 5000
 Lane Cove West NSW 2066
 Murarrie QLD 4172

 NATA # 1261
 Phone: +61 2 9900 8400
 NATA # 1261 Site # 18217

 Site # 1254 & 14271
 NATA # 1261 Site # 18217

Brisbane

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web : www.eurofins.com.au

# Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Chris Kauffman **CLUNIES ROSS ST** Project name:

Project ID: 56425

COC number: Not provided

Turn around time: 2 Day

May 31, 2019 5:28 PM Date/Time received:

Eurofins | mgt reference: 658838

#### Sample information

- $\mathbf{V}$ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\mathbf{V}$ Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 3.5 degrees Celsius.
- $\mathbf{V}$ All samples have been received as described on the above COC.
- $\square$ COC has been completed correctly.
- $\square$ Attempt to chill was evident.
- $\mathbf{V}$ Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- $\mathbf{V}$ Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Appropriate sample containers have been used.
- $\mathbf{V}$ Sample containers for volatile analysis received with zero headspace.
- XSplit sample sent to requested external lab.
- $\boxtimes$ Some samples have been subcontracted.

Notes^{N/A} Custody Seals intact (if used).

TP05 1-1.1 jar received broken. TP06 1-1.1, HA01 - jar received broken - salvaged. TP12 1.4-1.5 - bag not received. TP12 0.5-0.6 - 2 bags received.

#### Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Chris Kauffman - ckauffman@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.



Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis





Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name:

**CLUNIES ROSS ST** 

Project ID: 564

56425

 Order No.:
 Received:
 May 31, 2019 5:28 PM

 Report #:
 658838
 Due:
 Jun 4, 2019

658838 **Due:** Jun 4, 2019 02 8245 0300 **Priority:** 2 Day

Contact Name: Chris Kauffman

Pr	oject ID:	56425															Euro	fins	mgt	Analyt	tical Services Manager : Nibha Vaidya
		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2	
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271														Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Bris	bane Laborator	y - NATA Site #	20794																		
Pert	h Laboratory - N	NATA Site # 237	36																		
Exte	rnal Laboratory				1																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	SS01	May 30, 2019		Soil	S19-My49731	Х					Х	Х	Х	Х		Х	Х		Х		
2	SS02	May 30, 2019		Soil	S19-My49732	Х					Х	Х	Х	Х		Х	Х		Х		
3	SS03	May 30, 2019		Soil	S19-My49733	Х					Х			Х			Х				
4	SS04	May 30, 2019		Soil	S19-My49734	Х					Х			Х			Х				
5	SS05	May 30, 2019		Soil	S19-My49735	Х					Х	Х	Х	Х			Х				
6	EMB1	May 30, 2019		Soil	S19-My49736	Х					Х	Х	Х	Х		X	Х		X		
7	FRAG01	May 30, 2019		Building Materials	S19-My49737		Х														
8	HA01	May 30, 2019		Soil	S19-My49738	Х					Х			Х			Х				
9	HA02	May 30, 2019		Soil	S19-My49739	Х					Х	Х	Х	Х		Х	Х		X		



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

658838

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

**Contact Name:** 

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

May 31, 2019 5:28 PM

Jun 4, 2019

Chris Kauffman

2 Day

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** 

**CLUNIES ROSS ST** 

Project ID: 56425

		Sample			Asbestos - WA guidelines	Asbestos Absence / Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
		ory - NATA Site # 125	4 & 14271														Х		$\square$
		- NATA Site # 18217			Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		y - NATA Site # 2079	4																$\vdash$
		NATA Site # 23736																	<b>—</b>
10	HA03	May 30, 2019	Soil	S19-My49740	Х					Х	Х	Х	Х		Х	Х		Х	<b>—</b>
11	HA04	May 30, 2019	Soil	S19-My49741	Х					Х			Х			Х			<b>—</b>
12	TP01 0-0.1	May 30, 2019	Soil	S19-My49742	Х					Х	Х	Х	Χ		Х	Х		Х	$\square$
13	TP01 0.3-0.4	May 30, 2019	Soil	S19-My49743					Х							Х	Х		
14	TP01 1-1.1	May 30, 2019	Soil	S19-My49744											Х	Х		Х	
15	TP01 1.4-1.5	May 30, 2019	Soil	S19-My49745					Х							Χ	Х		
16	TP02 0-0.1	May 30, 2019	Soil	S19-My49746	Х						Х	Х				Χ			
17	TP02 0.5-0.6	May 30, 2019	Soil	S19-My49747				Х											Ш
18	TP02 1-1.1	May 30, 2019	Soil	S19-My49748						Х			Χ			Χ			
19	TP02 2-2.1	May 30, 2019	Soil	S19-My49749				Х											
20	TP02 2.4-2.5	May 30, 2019	Soil	S19-My49771				Х											
21	TP03 0-0.1	May 30, 2019	Soil	S19-My49772	Х					Х			Х			Х			



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name:

**CLUNIES ROSS ST** 

Project ID: 56425

Order No.: Report #:

658838

Phone:

02 8245 0300

Fax:

**Received:** May 31, 2019 5:28 PM **Due:** Jun 4, 2019

Priority: 2 Day

Contact Name: Chris Kauffman

		Sample	Detail		Asbestos - WA guidelines	Asbestos Absence / Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	ourne Laborate	ory - NATA Site # 125	54 & 14271														Χ		
Syd	ney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х
Bris	bane Laborator	y - NATA Site # 2079	4																
Pert	h Laboratory - N	NATA Site # 23736	<u>,                                      </u>																
22	TP03 0.5-0.6	May 30, 2019	Soil	S19-My49773				Х											
23	TP03 1-1.1	May 30, 2019	Soil	S19-My49774				Х											$\vdash$
24	TP03 2-2.1	May 30, 2019	Soil	S19-My49775				Х											
25	TP04 0-0.1	May 30, 2019	Soil	S19-My49776	Х					Х	Х	Х	Х		Х	Χ		Χ	
26	TP04 0.5-0.6	May 30, 2019	Soil	S19-My49777	Х					Х			Х			Χ			
27	TP04 1-1.1	May 30, 2019	Soil	S19-My49778				Х											$\vdash$
28	TP05 0-0.1	May 30, 2019	Soil	S19-My49779	Х					Х			Х			Χ			$\longrightarrow$
29	TP05 1-1.1	May 30, 2019	Soil	S19-My49780			Х												$\longrightarrow$
30	TP05 2-2.2	May 30, 2019	Soil	S19-My49781							Х	Х				Χ			$\longrightarrow$
31	TP05 2.4-2.5	May 30, 2019	Soil	S19-My49782				Х											$\longrightarrow$
32	TP06 0-0.1	May 30, 2019	Soil	S19-My49783	Х					Х	Х	Х	Х		Х	Χ		Χ	$\longrightarrow$
33	TP06 1-1.1	May 30, 2019	Soil	S19-My49784				Х											



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

658838

02 8245 0300

Sydney Unit F3, Building F Brisbane 16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

**CLUNIES ROSS ST** 

56425

Received: May 31, 2019 5:28 PM

Due: Jun 4, 2019 Priority: 2 Day

**Contact Name:** Chris Kauffman

		Sar	mple Detail		Asbestos - WA guidelines	Asbestos Absence / Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	oourne Laborate	ory - NATA Site	# 1254 & 14271														Х		
Syd	ney Laboratory	- NATA Site # 18	8217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ
Bris	bane Laborator	y - NATA Site # :	20794																
Pert	h Laboratory - I	NATA Site # 237	36																
34	TP06 1.4-1.5	May 30, 2019	Soil	S19-My49785						Х			Х			Χ			
35	TP07 0-0.1	May 30, 2019	Soil	S19-My49786	Х					Х	Х	Х	Χ		Х	Х		Х	
36	TP08 0-0.1	May 30, 2019	Soil	S19-My49787	Х					Х			Χ			Χ			
37	TP09 0-0.1	May 30, 2019	Soil	S19-My49788				Х											
38	TP09 0.4-0.5	May 30, 2019	Soil	S19-My49789	Х					Х			Х			Х			
39	TP09 0.9-1.0	May 30, 2019	Soil	S19-My49790				Х											
40	TP10 0-0.1	May 30, 2019	Soil	S19-My49791	Х					Х			Х			Х			
41	TP10 0.4-0.5	May 30, 2019	Soil	S19-My49792				Х											
42	TP10 1-1.1	May 30, 2019	Soil	S19-My49793	Х					Х	Х	Х	Х		Х	Х		Х	
43	TP11 0-0.1	May 30, 2019	Soil	S19-My49794	Х					Х			Х			Х			
44	TP11 0.3-0.4	May 30, 2019	Soil	S19-My49795											Х	Х		Х	
45	TP11 1-1.1	May 30, 2019	Soil	S19-My49796				Х											



Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: Project ID: **CLUNIES ROSS ST** 

56425

 Order No.:
 Received:
 May 31, 2019 5:28 PM

 Report #:
 658838
 Due:
 Jun 4, 2019

658838 **Due:** Jun 4, 2019 02 8245 0300 **Priority:** 2 Day

Contact Name: Chris Kauffman

Eurofins	mgt Analytical Services Manager : Nibha Vaidya

		Sample I			Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	ourne Laborate	ory - NATA Site # 1254	4 & 14271														Χ		
		- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 20794	ļ																$\vdash$
Pert	h Laboratory - I	NATA Site # 23736	T																
46	TP11 2-2.1	May 30, 2019	Soil	S19-My49797				Х											
47	TP11 2.7-2.8	May 30, 2019	Soil	S19-My49798	Х					Х			Х			Χ			
48	TP12 0-0.1	May 30, 2019	Soil	S19-My49799	Х					Х	Х	Х	Х		Х	Χ		Х	
49	TP12 0.5-0.6	May 30, 2019	Soil	S19-My49800	Х					Х			Х			Χ			
50	TP12 1-1.1	May 30, 2019	Soil	S19-My49801				Х											
51	TP12 1.4-1.5	May 30, 2019	Soil	S19-My49802				Х											
52	QA01	May 30, 2019	Soil	S19-My49803	Х					Х	Х	Х	Х		Х	Χ		Х	
53	QA02	May 30, 2019	Soil	S19-My49804	Х					Х	Х	Х	Х		Х	Х		Х	
54	RIN01	May 30, 2019	Water	S19-My49805															Х
55	TS	May 30, 2019	Water	S19-My49806										Х					
56	ТВ	May 30, 2019	Water	S19-My49807										Х					
57	MW01 0-0.1	May 30, 2019	Soil	S19-My49808	Х						Х	Х			Х	Х		Х	



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

658838

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name: Project ID: **CLUNIES ROSS ST** 

56425

**Received:** May 31, 2019 5:28 PM

 Due:
 Jun 4, 2019

 Priority:
 2 Day

Contact Name: Chris Kauffman

		Sai	mple Detail			Asbestos - WA guidelines	Asbestos Absence / Presence	CANCELLED	НОГД	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site	# 1254 & 14271															Х		
Syd	ney Laboratory	- NATA Site # 1	8217			Χ	Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794																	
Pert	h Laboratory - N	IATA Site # 237	i																	
58	MW01 0.9-1.0	May 30, 2019	So		S19-My49809				Χ											
59	MW01 1.9-1.0		So		S19-My49810	Χ														
60		May 30, 2019	So		S19-My49811				Χ											
61		May 30, 2019	So		S19-My49812				Χ											
62		May 30, 2019	So		S19-My49813				Χ											
63	MW01 5.9-6.0	May 30, 2019	So		S19-My49814				Χ											
64	MW01 6.9-7.0	May 30, 2019	So		S19-My49815						Χ			Χ			Χ			
65		May 30, 2019	So		S19-My49816				Χ											
66	MW02 0-0.1	May 30, 2019	So		S19-My49817							Х	Χ				Χ			
67	MW02 0.9-1.0	May 30, 2019	So		S19-My49818	Χ					Χ			Χ			Χ			
68		May 30, 2019	So		S19-My49819				Χ											
69	MW02 2.9-3.0	May 30, 2019	So	oil	S19-My49820				Χ											



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

658838

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name:

Project ID:

**CLUNIES ROSS ST** 

56425

Received: May 31, 2019 5:28 PM

Due: Jun 4, 2019 Priority: 2 Day

Brisbane

**Contact Name:** Chris Kauffman

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence / Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	oourne Laborat	ory - NATA Site	# 1254 & 142	71														Х		
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794																	
Pert	h Laboratory - I	NATA Site # 237	36																	
70	MW02 3.9-4.0	May 30, 2019		Soil	S19-My49821				Х											
71	MW02 4.9-5.0			Soil	S19-My49822				Х											$\square$
72	MW02 5.9-6.0	May 30, 2019		Soil	S19-My49823				Х											
73		May 30, 2019		Soil	S19-My49824				Х											$\square$
74		May 30, 2019		Soil	S19-My49825				Х											$\vdash$
75	MW03 0-0.1	May 30, 2019		Soil	S19-My49826				Х											$\vdash$
76	MW03 0.9-1.0	May 30, 2019		Soil	S19-My49827	Х					Х	Х	Х	Χ		Х	Х		Х	$\vdash$
77		May 30, 2019		Soil	S19-My49828				Х											$\vdash$
78	MW03 2.9-3.0			Soil	S19-My49829				Х											$\vdash$
79		May 30, 2019		Soil	S19-My49830				Х											$\square$
80	MW03 4.9-5.0	May 30, 2019		Soil	S19-My49831				Х											$\sqcup$
81	MW03 5.9-6.0	May 30, 2019		Soil	S19-My49832				Х											



Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID: **CLUNIES ROSS ST** 

56425

 Order No.:
 Received:
 May 31, 2019 5:28 PM

 Report #:
 658838
 Due:
 Jun 4, 2019

658838 **Due:** Jun 4, 2019 02 8245 0300 **Priority:** 2 Day

Contact Name: Chris Kauffman

		Sar	mple Detail			Asbestos - WA guidelines	Asbestos Absence / Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71														Х		
Sydi	ney Laboratory	- NATA Site # 18	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794																	
Pert	h Laboratory - N	ATA Site # 237	36																	
82	MW03 6.9-7.0	May 30, 2019		Soil	S19-My49833				Х											
83	MW03 7.9-8.0	May 30, 2019		Soil	S19-My49834						Х			Х		Х	Х		Х	
Test	Counts					32	1	1	36	2	33	19	19	33	2	18	41	2	18	1



# Certificate of Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Chris Kauffman

658838-AID

Project Name CLUNIES ROSS ST

Project ID 56425

**Received Date** May 31, 2019 **Date Reported** Jun 07, 2019





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

# Methodology:

Asbestos Fibre Identification

Attention:

Report

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil

Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.







Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name CLUNIES ROSS ST

Project ID 56425

Date SampledMay 30, 2019Report658838-AID

Client Sample ID	Eurofins   mgt Sample No.	Date Sampled	Sample Description	Result
SS01	19-My49731	May 30, 2019	Approximate Sample 484g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
SS02	19-My49732	May 30, 2019	Approximate Sample 490g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
SS03	19-My49733	May 30, 2019	Approximate Sample 577g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
SS04	19-My49734	May 30, 2019	Approximate Sample 492g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
SS05	19-My49735	May 30, 2019	Approximate Sample 560g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
EMB1	19-My49736	May 30, 2019	Approximate Sample 561g Sample consisted of: Brown coarse-grained soil, rocks and cement	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
FRAG01	19-My49737	May 30, 2019	Approximate Sample 77g / 140x60x7mm Sample consisted of: Grey compressed fibre cement	Chrysotile and amosite asbestos detected.
HA01	19-My49738	May 30, 2019	Approximate Sample 548g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.







## NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins   mgt Sample No.	Date Sampled	Sample Description	Result
HA02	19-My49739	May 30, 2019	Approximate Sample 747g Sample consisted of: Brown coarse-grained soil, rocks and fragments of glass	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
HA03	19-My49740	May 30, 2019	Approximate Sample 615g Sample consisted of: Brown coarse-grained soil, rocks and fragments of glass	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
HA04	19-My49741	May 30, 2019	Approximate Sample 845g Sample consisted of: Brown coarse-grained soil, rocks and fragments of glass	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP01 0-0.1	19-My49742	May 30, 2019	Approximate Sample 660g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP02 0-0.1	19-My49746	May 30, 2019	Approximate Sample 487g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP03 0-0.1	19-My49772	May 30, 2019	Approximate Sample 492g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP04 0-0.1	19-My49776	May 30, 2019	Approximate Sample 1069g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP04 0.5-0.6	19-My49777	May 30, 2019	Approximate Sample 530g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP05 0-0.1	19-My49779	May 30, 2019	Approximate Sample 490g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP06 0-0.1	19-My49783	May 30, 2019	Approximate Sample 549g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP07 0-0.1	19-My49786	May 30, 2019	Approximate Sample 758g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP08 0-0.1	19-My49787	May 30, 2019	Approximate Sample 612g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP09 0.4-0.5	19-My49789	May 30, 2019	Approximate Sample 888g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.







## NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins   mgt Sample No.	Date Sampled	Sample Description	Result
TP10 0-0.1	19-My49791	May 30, 2019	Approximate Sample 713g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
TP10 1-1.1	19-My49793	May 30, 2019	Approximate Sample 846g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
TP11 0-0.1	19-My49794	May 30, 2019	Approximate Sample 532g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
TP11 2.7-2.8	19-My49798	May 30, 2019	Approximate Sample 764g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
TP12 0-0.1	19-My49799	May 30, 2019	Approximate Sample 465g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
TP12 0.5-0.6	19-My49800	May 30, 2019	Approximate Sample 1410g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
QA01	19-My49803	May 30, 2019	Approximate Sample 534g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
QA02	19-My49804	May 30, 2019	Approximate Sample 809g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
MW01 0-0.1	19-My49808	May 30, 2019	Approximate Sample 359g Sample consisted of: Brown coarse-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
MW01 1.9-1.0	19-My49810	May 30, 2019	Approximate Sample 825g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
MW02 0.9-1.0	19-My49818	May 30, 2019	Approximate Sample 877g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
MW03 0.9-1.0	19-My49827	May 30, 2019	Approximate Sample 136g Sample consisted of: Organic debris and brown soil residue	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.



# **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	<b>Holding Time</b>
Asbestos - LTM-ASB-8020	Sydney	Jun 05, 2019	Indefinite
Asbestos - LTM-ASB-8020	Sydney	Jun 05, 2019	Indefinite



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

02 8245 0300

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Unit F3, Building F

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** Project ID:

**CLUNIES ROSS ST** 

56425

Received: May 31, 2019 5:28 PM 658838

Due: Jun 4, 2019 Priority: 2 Day

**Contact Name:** Chris Kauffman

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	oourne Laborate	ory - NATA Site	# 1254 & 142	271														Х		
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
Bris	bane Laborator	y - NATA Site #	20794																	
Pert	h Laboratory - N	NATA Site # 237	36																	
Exte	rnal Laboratory	<u>'</u>																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	SS01	May 30, 2019		Soil	S19-My49731	Х					Х	Х	Х	Х		Х	Х		Х	
2	SS02	May 30, 2019		Soil	S19-My49732	Х					Х	Х	Х	Х		Х	Х		Х	
3	SS03	May 30, 2019		Soil	S19-My49733	Х					Х			Х			Х			
4	SS04	May 30, 2019		Soil	S19-My49734	Х					Х			Х			Х			
5	SS05	May 30, 2019		Soil	S19-My49735	Х					Х	Х	Х	Х			Х			
6	EMB1	May 30, 2019		Soil	S19-My49736	Х					Х	Х	Х	Х		Х	Х		Х	
7	FRAG01	May 30, 2019		Building Materials	S19-My49737		Х													
8	HA01	May 30, 2019		Soil	S19-My49738	Х					Х			Х			Х			
9	HA02	May 30, 2019		Soil	S19-My49739	Х					Х	Х	Х	Х		Х	Х		Х	



Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

**Project Name:** Project ID:

**CLUNIES ROSS ST** 

56425

Order No.: Received: May 31, 2019 5:28 PM Report #:

658838 Due: Jun 4, 2019 02 8245 0300 Priority: 2 Day

> **Contact Name:** Chris Kauffman

		Sample	Detail		Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	oourne Laborat	ory - NATA Site # 12	54 & 14271														Х		
Syd	ney Laboratory	- NATA Site # 18217	•		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 2079	94																
Pert	h Laboratory - I	NATA Site # 23736																	
10	HA03	May 30, 2019	Soil	S19-My49740	Х					Х	Х	Х	Х		Х	Х		Х	
11	HA04	May 30, 2019	Soil	S19-My49741	Х					Х			Х			Х			
12	TP01 0-0.1	May 30, 2019	Soil	S19-My49742	Х					Х	Х	Х	Х		Х	Х		Х	
13	TP01 0.3-0.4	May 30, 2019	Soil	S19-My49743					Х							Х	Х		
14	TP01 1-1.1	May 30, 2019	Soil	S19-My49744											Х	Х		Х	
15	TP01 1.4-1.5	May 30, 2019	Soil	S19-My49745					Х							Х	Х		
16	TP02 0-0.1	May 30, 2019	Soil	S19-My49746	Х						Х	Х				Х			
17	TP02 0.5-0.6	May 30, 2019	Soil	S19-My49747				Х											
18	TP02 1-1.1	May 30, 2019	Soil	S19-My49748						Х			Х			Х			
19	TP02 2-2.1	May 30, 2019	Soil	S19-My49749				Х											
20	TP02 2.4-2.5	May 30, 2019	Soil	S19-My49771				Х											
21	TP03 0-0.1	May 30, 2019	Soil	S19-My49772	Х					Х			Х			Х			



Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** 

**CLUNIES ROSS ST** 

Project ID: 56425 Order No.: Received: May 31, 2019 5:28 PM

Sydney

Report #: 658838 Due: Jun 4, 2019 Phone: 02 8245 0300 Priority: 2 Day

> **Contact Name:** Chris Kauffman

			ole Detail		Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	ХЭТВ	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mel	bourne Laborat	ory - NATA Site # 1	254 & 14271														Х		
Syd	ney Laboratory	- NATA Site # 1821	17		Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 20	794																
Pert	1	NATA Site # 23736																	
22	TP03 0.5-0.6	May 30, 2019	Soil	S19-My49773				Х											
23	TP03 1-1.1	May 30, 2019	Soil	S19-My49774				Х											
24	TP03 2-2.1	May 30, 2019	Soil	S19-My49775				Х											
25	TP04 0-0.1	May 30, 2019	Soil	S19-My49776	Х					Х	Х	Х	Χ		Χ	Χ		Х	
26	TP04 0.5-0.6	May 30, 2019	Soil	S19-My49777	Х					Х			Χ			Χ			
27	TP04 1-1.1	May 30, 2019	Soil	S19-My49778				Х											
28	TP05 0-0.1	May 30, 2019	Soil	S19-My49779	Х					Х			Χ			Χ			
29	TP05 1-1.1	May 30, 2019	Soil	S19-My49780			Х												
30	TP05 2-2.2	May 30, 2019	Soil	S19-My49781							Х	Х				Χ			
31	TP05 2.4-2.5	May 30, 2019	Soil	S19-My49782				Х											
32	TP06 0-0.1	May 30, 2019	Soil	S19-My49783	Х					Х	Х	Х	Χ		Χ	Χ		Х	
33	TP06 1-1.1	May 30, 2019	Soil	S19-My49784				Х											



Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

**Brisbane**1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.:

Address: Level 1, 50 Margaret St

Sydney NSW 2000

CLUNIES ROSS ST

Project ID: 56425

**Project Name:** 

**Order No.:** Received: May 31, 2019 5:28 PM

 Report #:
 658838
 Due:
 Jun 4, 2019

 Phone:
 02 8245 0300
 Priority:
 2 Day

Contact Name: Chris Kauffman

Projec	ct ID:	50425															Euro	fins	mgt	Analy	ytical Services Manager : Nibha Vaidya
		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2	
Melbou	rne Laborato	ory - NATA Site	# 1254 & 14271															Х			
Sydney	Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Brisban	e Laborator	y - NATA Site #	20794																		
Perth La	aboratory - N	NATA Site # 237																			
-		May 30, 2019			S19-My49785						Х			Х			Х				
	P07 0-0.1	May 30, 2019			S19-My49786	Х					Х	Х	Х	Х		X	Х		X		
-	P08 0-0.1	May 30, 2019			S19-My49787	Х					Х			Х			Х				
	P09 0-0.1	May 30, 2019			S19-My49788				Х												
		May 30, 2019		i i	S19-My49789	Х					Х			Х			Х				
-		May 30, 2019		i i	S19-My49790				Х												
	P10 0-0.1	May 30, 2019		i i	S19-My49791	Х					Х			Х			Х				
		May 30, 2019		i i	S19-My49792				Х												
	P10 1-1.1	May 30, 2019		i i	S19-My49793	Х					Х	Х	Х	Х		X	Х		X		
	P11 0-0.1	May 30, 2019		i i	S19-My49794	Х					Х			Х			Х				-
	P11 0.3-0.4	May 30, 2019			S19-My49795											X	Х		X		
45 TP	P11 1-1.1	May 30, 2019	s	oil :	S19-My49796				Х												



**CLUNIES ROSS ST** 

**Project Name:** 

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: May 31, 2019 5:28 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 658838
 Due:
 Jun 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 2 Day

NSW 2000 Fax: Contact Name: Chris Kauffman

NSW 2000 Fax. Contact Name. Critis Radiinian

Project ID: 56425

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sample	Detail		Asbestos - WA guidelines	Asbestos Absence / Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	oourne Laborat	ory - NATA Site # 125	4 & 14271														Х		
Syd	ney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 2079	4																
Pert	h Laboratory - I	NATA Site # 23736	<u> </u>																
46	TP11 2-2.1	May 30, 2019	Soil	S19-My49797				Х											
47	TP11 2.7-2.8	May 30, 2019	Soil	S19-My49798	Х					Х			Х			Х			
48	TP12 0-0.1	May 30, 2019	Soil	S19-My49799	Х					Х	Х	Х	Х		Х	Х		Х	
49	TP12 0.5-0.6	May 30, 2019	Soil	S19-My49800	Х					Х			Х			Х			
50	TP12 1-1.1	May 30, 2019	Soil	S19-My49801				Х											
51	TP12 1.4-1.5	May 30, 2019	Soil	S19-My49802				Х											
52	QA01	May 30, 2019	Soil	S19-My49803	Х					Х	Х	Х	Х		Х	Х		Х	
53	QA02	May 30, 2019	Soil	S19-My49804	Х					Х	Х	Х	Х		Х	Х		Х	
54	RIN01	May 30, 2019	Water	S19-My49805															Х
55	TS	May 30, 2019	Water	S19-My49806										Х					
56	ТВ	May 30, 2019	Water	S19-My49807										Х					
57	MW01 0-0.1	May 30, 2019	Soil	S19-My49808	Х						Х	Х			Х	Х		Х	



**CLUNIES ROSS ST** 

Address:

**Project Name:** 

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: May 31, 2019 5:28 PM

 Level 1, 50 Margaret St
 Report #:
 658838
 Due:
 Jun 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 2 Day

NSW 2000 Fax: Contact Name: Chris Kauffman

Now 2000 Tax. Office Nation.

Project ID: 56425

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sam	ple Detail		Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	oourne Laborato	ory - NATA Site #	1254 & 14271														Х		
Syd	ney Laboratory	- NATA Site # 18	217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site # 2	0794																
Pert	h Laboratory - N	IATA Site # 2373	6																
58	MW01 0.9-1.0	May 30, 2019	Soil	S19-My49809				Х											
59	MW01 1.9-1.0	May 30, 2019	Soil	S19-My49810	Х														
60	MW01 2.9-3.0	May 30, 2019	Soil	S19-My49811				Х											
61	MW01 3.9-4.0	May 30, 2019	Soil	S19-My49812				Х											
62	MW01 4.9-5.0	May 30, 2019	Soil	S19-My49813				Х											
63	MW01 5.9-6.0	May 30, 2019	Soil	S19-My49814				Х											
64	MW01 6.9-7.0	May 30, 2019	Soil	S19-My49815						Х			Х			Х			
65	MW01 7.9-8.0	May 30, 2019	Soil	S19-My49816				Х											
66	MW02 0-0.1	May 30, 2019	Soil	S19-My49817							Х	Х				Х			
67	MW02 0.9-1.0	May 30, 2019	Soil	S19-My49818	Х					Х			Х			Х			
68	MW02 1.9-2.0	May 30, 2019	Soil	S19-My49819				Х											
69	MW02 2.9-3.0	May 30, 2019	Soil	S19-My49820				Х											



**CLUNIES ROSS ST** 

**Project Name:** 

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Unit F3, Building F

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: May 31, 2019 5:28 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 658838
 Due:
 Jun 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 2 Day

NSW 2000 Fax: Contact Name: Chris Kauffman

NSW 2000 Fax. Collist National

Project ID: 56425

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sam	nple Detail		Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site #	1254 & 14271														Х		
Syd	ney Laboratory	- NATA Site # 18	217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 2	20794																
Pert	h Laboratory - N	NATA Site # 2373	6	,															
70	MW02 3.9-4.0	May 30, 2019	Soil	S19-My49821				Х											
71	MW02 4.9-5.0	May 30, 2019	Soil	S19-My49822				Х											
72	MW02 5.9-6.0	May 30, 2019	Soil	S19-My49823				Х											
73	MW02 6.9-7.0	May 30, 2019	Soil	S19-My49824				Х											
74	MW02 7.9-8.0	May 30, 2019	Soil	S19-My49825				Х											
75	MW03 0-0.1	May 30, 2019	Soil	S19-My49826				Х											
76	MW03 0.9-1.0	May 30, 2019	Soil	S19-My49827	Х					Х	Х	Х	Х		Х	Х		Х	
77	MW03 1.9-2.0	May 30, 2019	Soil	S19-My49828				Х											
78	MW03 2.9-3.0		Soil	S19-My49829				Х											
79	MW03 3.9-4.0		Soil	S19-My49830				Х										igsquare	
80	MW03 4.9-5.0	May 30, 2019	Soil	S19-My49831				Х											
81	MW03 5.9-6.0	May 30, 2019	Soil	S19-My49832				Х											



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Unit F3, Building F

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L Order No.: Received: May 31, 2019 5:28 PM

Address: Level 1, 50 Margaret St Report #: 658838 Due: Jun 4, 2019 Sydney Phone: 02 8245 0300 Priority: 2 Day

NSW 2000 Fax: **Contact Name:** Chris Kauffman

**Project Name: CLUNIES ROSS ST** Project ID: 56425 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2	
Mell	bourne Laborate	ory - NATA Site	# 1254 & 142	71														Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Bris	bane Laborator	y - NATA Site #	20794																		
Pert	h Laboratory - N	NATA Site # 237	<b>'</b> 36																		
82	MW03 6.9-7.0	May 30, 2019		Soil	S19-My49833				Х												
83	MW03 7.9-8.0	May 30, 2019		Soil	S19-My49834						Х			Х		Х	Х		Х		
Tes	t Counts				_	32	1	1	36	2	33	19	19	33	2	18	41	2	18	1	



## **Internal Quality Control Review and Glossary**

#### General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

#### Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

#### **Terms**

**Dry** Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as equivalent to "non-bonded / friable".

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable

Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Page 14 of 15



### Comments

# Sample Integrity

N/A
Yes
No

## **Qualifier Codes/Comments**

Code Description N/A Not applicable

# **Asbestos Counter/Identifier:**

Authorised by:

Glenn Jackson

**General Manager** 

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, In on case shall Eurofins I mg be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported used except in full and relates only to the tiens tested. Unless indicated otherwise, the tests were, the test share reported most make indicated otherwise, the tests were, the test share of the samples as received in a single share of the production arising from this report. This document share of the reported of the report of the profit of the report of th

Page 15 of 15



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Chris Kauffman

Report 658838-S

Project name CLUNIES ROSS ST

Project ID 56425

Received Date May 31, 2019

Client Sample ID			SS01	SS02	SS03	SS04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49731	S19-My49732	S19-My49733	S19-My49734
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fr						
TRH C6-C9	20	mg/kg	< 20	< 20	-	-
TRH C10-C14	20	mg/kg	< 20	30	-	-
TRH C15-C28	50	mg/kg	130	180	-	-
TRH C29-C36	50	mg/kg	110	210	-	-
TRH C10-36 (Total)	50	mg/kg	240	420	-	-
Volatile Organics	'					
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	-	-
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	-	-
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	-	-
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Butanone (MEK)	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	< 0.5	-	-
4-Chlorotoluene	0.5	mg/kg	< 0.5	< 0.5	-	-
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	< 0.5	-	-
Allyl chloride	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	-
Bromobenzene	0.5	mg/kg	< 0.5	< 0.5	-	-
Bromochloromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Bromodichloromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Bromoform	0.5	mg/kg	< 0.5	< 0.5	-	-
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Carbon disulfide	0.5	mg/kg	< 0.5	< 0.5	-	-
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	-	-



Client Sample ID			SS01	SS02	SS03	SS04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49731	S19-My49732	S19-My49733	S19-My49734
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	may 00, 2010	ay 55, 2515	ay 55, 2515	ay 55, 2515
Volatile Organics	LOR	Offic				
	0.5	m a/lea	. O. F	< 0.5		
Chlorobenzene Chloroethane	0.5	mg/kg	< 0.5 < 0.5	< 0.5	-	-
Chloroform	0.5	mg/kg	< 0.5	< 0.5	-	-
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	-	-
	0.5	mg/kg	< 0.5	< 0.5	-	-
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Ethylbenzene		mg/kg			-	-
lodomethane Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	-	<del>-</del>
	0.5	mg/kg	< 0.5	< 0.5	=	-
m&p-Xylenes Methylene Chloride	0.2	mg/kg	< 0.2	< 0.2	-	-
	0.5	mg/kg	< 0.5	< 0.5	-	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	-
Styrene	0.5	mg/kg	< 0.5	< 0.5	=	-
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
Toluene		mg/kg			=	-
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	-	<del>-</del>
Trichloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Vinyl chloride	0.5	mg/kg	< 0.5	< 0.5	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	-
Total MAH*	0.5	mg/kg	< 0.5	< 0.5	-	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	-	-
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	-	-
4-Bromofluorobenzene (surr.)	1	%	107	82	-	-
Toluene-d8 (surr.)	1	%	108	87	-	-
Total Recoverable Hydrocarbons - 2013 NEPM		T				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	-
TRH C6-C10	20	mg/kg	< 20	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	=	-
TRH >C10-C16	50	mg/kg	< 50	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	-
TRH >C16-C34	100	mg/kg	210	340	=	-
TRH >C34-C40	100	mg/kg	< 100	130	-	-
TRH >C10-C40 (total)*	100	mg/kg	210	470	-	-
Polycyclic Aromatic Hydrocarbons		1				-
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.9
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	1.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.5
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.9
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7



Client Sample ID			SS01	SS02	SS03	SS04
Sample Matrix			Soil	Soil	Soil	Soil
•					S19-My49733	S19-My49734
Eurofins   mgt Sample No.			S19-My49731	S19-My49732		1
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		1				
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	4.2
2-Fluorobiphenyl (surr.)	1	%	76	59	63	62
p-Terphenyl-d14 (surr.)	1	%	58	103	110	107
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	=	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	=	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-	-
Toxaphene	1 0.05	mg/kg	< 1	< 1	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	149	108	-	-
Tetrachloro-m-xylene (surr.)	1 1	70	INT	105	-	-
Polychlorinated Biphenyls	0.5	ma a // -	.05	.05		+
Arcelor 1004	0.5	mg/kg	< 0.5	< 0.5	-	-
Arcelor 1222	0.1	mg/kg	< 0.1	< 0.1	-	-
Arcelor 1232	0.5	mg/kg	< 0.5	< 0.5	-	-
Arcelor 1242	0.5	mg/kg	< 0.5	< 0.5	-	-
Arcelor 1254	0.5	mg/kg	< 0.5	< 0.5	-	-
Arcelor 1000	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-	-



Client Sample ID Sample Matrix Eurofins   mgt Sample No.			SS01 Soil S19-My49731	SS02 Soil S19-My49732	SS03 Soil S19-My49733	SS04 Soil S19-My49734
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	, , , , , , , , , , , , , , , , , , , ,	,,	, , , , , , , , , , , , , , , , , , , ,	,,,
Polychlorinated Biphenyls	'					
Dibutylchlorendate (surr.)	1	%	149	108	-	-
Tetrachloro-m-xylene (surr.)	1	%	INT	105	-	-
% Moisture	1	%	9.4	12	21	15
Heavy Metals						
Arsenic	2	mg/kg	3.2	2.5	< 2	2.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	140	91	170	99
Copper	5	mg/kg	66	49	84	67
Lead	5	mg/kg	16	18	20	16
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	120	66	120	84
Zinc	5	mg/kg	92	80	100	98

Client Sample ID			SS05	EMB1	HA01	HA02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49735	S19-My49736	S19-My49738	S19-My49739
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 I	NEPM Fractions					
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	22	-	< 20
TRH C15-C28	50	mg/kg	-	57	-	53
TRH C29-C36	50	mg/kg	-	91	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	170	-	53
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1-Dichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dibromoethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dichloropropane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.3-Dichloropropane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
2-Butanone (MEK)	0.5	mg/kg	-	< 0.5	-	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	-	< 0.5	-	< 0.5
4-Chlorotoluene	0.5	mg/kg	-	< 0.5	-	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	< 0.5	-	< 0.5
Allyl chloride	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzene	0.1	mg/kg	-	< 0.1	-	< 0.1



				1	1	1
Client Sample ID			SS05	EMB1	HA01	HA02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49735	S19-My49736	S19-My49738	S19-My49739
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Volatile Organics	<u>'</u>	•				
Bromobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromochloromethane	0.5	mg/kg	_	< 0.5	-	< 0.5
Bromodichloromethane	0.5	mg/kg	_	< 0.5	-	< 0.5
Bromoform	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromomethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Carbon disulfide	0.5	mg/kg	-	< 0.5	-	< 0.5
Carbon Tetrachloride	0.5	mg/kg	-	< 0.5	-	< 0.5
Chlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
Chloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Chloroform	0.5	mg/kg	-	< 0.5	-	< 0.5
Chloromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	_	< 0.5	-	< 0.5
Dibromochloromethane	0.5	mg/kg	_	< 0.5	-	< 0.5
Dibromomethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	< 0.1
lodomethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	-	< 0.5	-	< 0.5
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	< 0.2
Methylene Chloride	0.5	mg/kg	-	< 0.5	-	< 0.5
o-Xylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Styrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Tetrachloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
Toluene	0.1	mg/kg	_	< 0.1	-	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	_	< 0.5	-	< 0.5
Trichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
Trichlorofluoromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Vinyl chloride	0.5	mg/kg	-	< 0.5	-	< 0.5
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	< 0.3
Total MAH*	0.5	mg/kg	-	< 0.5	-	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	-	< 0.5	-	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	-	< 0.5	-	< 0.5
4-Bromofluorobenzene (surr.)	1	%	-	95	-	96
Toluene-d8 (surr.)	1	%	-	98	-	97
Total Recoverable Hydrocarbons - 2013 NEPM Fra	_					-
Naphthalene ^{N02}	0.5	mg/kg	_	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	_	< 20	_	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-	< 20
TRH >C10-C16	50	mg/kg	_	< 50	_	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	< 50	_	< 50
TRH >C16-C34	100	mg/kg	_	120	_	< 100
TRH >C34-C40	100	mg/kg	-	< 100	_	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	120	_	< 100



Client Sample ID Sample Matrix Eurofins   mgt Sample No.			SS05 Soil S19-My49735	EMB1 Soil S19-My49736	HA01 Soil S19-My49738	HA02 Soil S19-My49739
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	11	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	11	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	11	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	1.2	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	3.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	7.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	7.1	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	8.4	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	6.6	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	3.4	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	5.9	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	1.3	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	15	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	5.2	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	10	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	13	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	89.3	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	61	71	58	71
p-Terphenyl-d14 (surr.)	1	%	96	124	99	124
Organochlorine Pesticides	0.1		.0.1	.0.4		.0.4
Chlordanes - Total 4.4'-DDD	0.05	mg/kg	< 0.1 < 0.05	< 0.1 < 0.05	-	< 0.1 < 0.05
4.4'-DDE	0.05	mg/kg mg/kg	< 0.05	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	_	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
, ,		1			1	1 .00
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	< 0.2
Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)* Dibutylchlorendate (surr.)	0.1 0.1 1	mg/kg mg/kg %	< 0.2 < 0.2 92	< 0.2 < 0.2 98	-	< 0.2 < 0.2 86



Client Sample ID			SS05	EMB1	HA01	HA02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49735	S19-My49736	S19-My49738	S19-My49739
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Dibutylchlorendate (surr.)	1	%	92	98	-	86
Tetrachloro-m-xylene (surr.)	1	%	93	92	-	89
% Moisture	1	%	9.5	9.0	6.8	9.4
Heavy Metals						
Arsenic	2	mg/kg	2.9	< 2	13	22
Cadmium	0.4	mg/kg	< 0.4	< 0.4	2.4	4.0
Chromium	5	mg/kg	86	190	130	120
Copper	5	mg/kg	69	66	220	360
Lead	5	mg/kg	23	11	430	930
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.2	0.3
Nickel	5	mg/kg	78	130	150	170
Zinc	5	mg/kg	89	160	1300	2400

Client Sample ID Sample Matrix			HA03 Soil	HA04 Soil	TP01 0-0.1 Soil	TP01 0.3-0.4 Soil
Eurofins   mgt Sample No.			S19-My49740	S19-My49741	S19-My49742	S19-My49743
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 N	EPM Fractions	<u>'</u>				
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	20	-	< 20	-
TRH C15-C28	50	mg/kg	120	-	< 50	-
TRH C29-C36	50	mg/kg	110	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	250	-	< 50	-
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	-	< 0.5	-
1.1-Dichloroethene	0.5	mg/kg	< 0.5	-	< 0.5	-
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	-	< 0.5	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	< 0.5	-
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	-	< 0.5	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	< 0.5	-
1.2-Dibromoethane	0.5	mg/kg	< 0.5	-	< 0.5	-
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	-
1.2-Dichloroethane	0.5	mg/kg	< 0.5	-	< 0.5	-
1.2-Dichloropropane	0.5	mg/kg	< 0.5	-	< 0.5	-
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	-	< 0.5	-
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	-	< 0.5	-
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	-
1.3-Dichloropropane	0.5	mg/kg	< 0.5	-	< 0.5	-



Client Sample ID			HA03	HA04	TP01 0-0.1	TP01 0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
·						
Eurofins   mgt Sample No.			S19-My49740	S19-My49741	S19-My49742	S19-My49743
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Volatile Organics						
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	-	< 0.5	-
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Butanone (MEK)	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	-	< 0.5	-
4-Chlorotoluene	0.5	mg/kg	< 0.5	-	< 0.5	-
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	-	< 0.5	-
Allyl chloride	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Bromobenzene	0.5	mg/kg	< 0.5	-	< 0.5	-
Bromochloromethane	0.5	mg/kg	< 0.5	-	< 0.5	-
Bromodichloromethane	0.5	mg/kg	< 0.5	-	< 0.5	-
Bromoform	0.5	mg/kg	< 0.5	-	< 0.5	-
Bromomethane	0.5	mg/kg	< 0.5	-	< 0.5	-
Carbon disulfide	0.5	mg/kg	< 0.5	-	< 0.5	-
Carbon Tetrachloride	0.5	mg/kg	< 0.5	-	< 0.5	-
Chlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chloroethane	0.5	mg/kg	< 0.5	-	< 0.5	-
Chloroform	0.5	mg/kg	< 0.5	-	< 0.5	-
Chloromethane	0.5	mg/kg	< 0.5	-	< 0.5	-
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	-	< 0.5	-
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibromochloromethane	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibromomethane	0.5	mg/kg	< 0.5	-	< 0.5	-
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	-	< 0.5	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
lodomethane	0.5	mg/kg	< 0.5	-	< 0.5	-
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	-	< 0.5	-
m&p-Xylenes	0.2	mg/kg	0.3	-	< 0.2	-
Methylene Chloride	0.5	mg/kg	< 0.5	-	< 0.5	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Styrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Tetrachloroethene	0.5	mg/kg	< 0.5	-	< 0.5	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	=
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	-	< 0.5	=
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	-	< 0.5	-
Trichloroethene	0.5	mg/kg	< 0.5	-	< 0.5	-
Trichlorofluoromethane	0.5	mg/kg	< 0.5	-	< 0.5	-
Vinyl chloride	0.5	mg/kg	< 0.5	-	< 0.5	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	-
Total MAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	-	< 0.5	-
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	-	< 0.5	-
4-Bromofluorobenzene (surr.)	1	%	92	-	72	-
Toluene-d8 (surr.)	1	%	95	-	73	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac			0.5		0.5	
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	=
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-



Client Sample ID			HA03	HA04	TP01 0-0.1	TP01 0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49740	S19-My49741	S19-My49742	S19-My49743
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	, 55, 2515			
Total Recoverable Hydrocarbons - 2013 NEPM		Onit				
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	_	< 50	_
TRH >C16-C34	100	mg/kg	180		< 100	
TRH >C34-C40	100	mg/kg	< 100	_	< 100	_
TRH >C10-C40 (total)*	100	mg/kg	180	_	< 100	_
Polycyclic Aromatic Hydrocarbons	1 100	ing/itg	100		1100	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	=
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	=
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	70	61	62	-
p-Terphenyl-d14 (surr.)	1	%	122	106	107	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	=
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	=
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	-
Methoxychlor	0.2	mg/kg	< 0.2	-	< 0.2	-



Client Sample ID			HA03	HA04	TP01 0-0.1	TP01 0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49740	S19-My49741	S19-My49742	S19-My49743
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides	'	-				
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	< 0.2	-
Dibutylchlorendate (surr.)	1	%	82	-	106	-
Tetrachloro-m-xylene (surr.)	1	%	92	-	108	-
Polychlorinated Biphenyls		_				
Aroclor-1016	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PCB*	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibutylchlorendate (surr.)	1	%	82	-	106	-
Tetrachloro-m-xylene (surr.)	1	%	92	-	108	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	-	-	-	94
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		-	-	7.1
% Moisture	1	%	13	9.4	16	13
Heavy Metals		T				
Arsenic	2	mg/kg	15	4.5	2.2	-
Cadmium	0.4	mg/kg	2.0	0.7	< 0.4	-
Chromium	5	mg/kg	160	160	280	-
Copper	5	mg/kg	250	120	62	-
Lead	5	mg/kg	1100	150	5.2	-
Mercury	0.1	mg/kg	0.2	< 0.1	< 0.1	-
Nickel	5	mg/kg	180	140	180	-
Zinc	5	mg/kg	1200	380	100	-
Cation Exchange Capacity		1				
Cation Exchange Capacity	0.05	meq/100g	-	-	-	45

Client Sample ID			TP01 1-1.1	TP01 1.4-1.5	TP02 0-0.1	TP02 1-1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49744	S19-My49745	S19-My49746	S19-My49748
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999	NEPM Fractions					
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	< 20	-	-	-
TRH C15-C28	50	mg/kg	< 50	-	-	-
TRH C29-C36	50	mg/kg	< 50	-	-	-
TRH C10-36 (Total)	50	mg/kg	< 50	-	-	-



Client Sample ID			TP01 1-1.1	TP01 1.4-1.5	TP02 0-0.1	TP02 1-1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49744	S19-My49745	S19-My49746	S19-My49748
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	may 00, 2010	ay 00, 2010	ay 00, 2010	ay 00, 2010
Volatile Organics	LOK	Offic				
1.1-Dichloroethane	0.5	m a/lea	. O. F			
1.1-Dichloroethane	0.5 0.5	mg/kg	< 0.5 < 0.5	-	-	-
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	-	
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.1.2Tichloroethane	0.5	mg/kg	< 0.5	-	-	-
1.2-Dibromoethane	0.5	mg/kg	< 0.5	-	-	-
1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Distribution 1.2-Di	0.5	mg/kg	< 0.5	-	-	-
1.2-Dichloroethane	0.5	mg/kg	< 0.5	-	-	
		mg/kg				
1.2-Dichloropropane 1.2.3-Trichloropropane	0.5	mg/kg mg/kg	< 0.5 < 0.5	-	-	-
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	-	-	-
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	-
1.3-Dichloropropane	0.5	mg/kg	< 0.5	-	-	-
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	-	-	<del>-</del>
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	-	-	-
2-Butanone (MEK)	0.5	mg/kg	< 0.5	-	-	<u> </u>
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	-	-	<u> </u>
4-Chlorotoluene	0.5	mg/kg	< 0.5	-	-	<u> </u>
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	-	-	
Allyl chloride	0.5	mg/kg	< 0.5	-	-	_
Benzene	0.1	mg/kg	< 0.1	-	_	_
Bromobenzene	0.5	mg/kg	< 0.5	_	_	_
Bromochloromethane	0.5	mg/kg	< 0.5	_	_	_
Bromodichloromethane	0.5	mg/kg	< 0.5	_	_	_
Bromoform	0.5	mg/kg	< 0.5	_	_	_
Bromomethane	0.5	mg/kg	< 0.5	_	_	_
Carbon disulfide	0.5	mg/kg	< 0.5	_	_	_
Carbon Tetrachloride	0.5	mg/kg	< 0.5	_	_	_
Chlorobenzene	0.5	ma/ka	< 0.5	-	-	_
Chloroethane	0.5	mg/kg	< 0.5	_	_	-
Chloroform	0.5	mg/kg	< 0.5	_	_	_
Chloromethane	0.5	mg/kg	< 0.5	_	_	_
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	_	_	_
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	_	_	_
Dibromochloromethane	0.5	mg/kg	< 0.5	-	_	-
Dibromomethane	0.5	mg/kg	< 0.5	-	_	-
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	-	-	_
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	_
Iodomethane	0.5	mg/kg	< 0.5	-	-	_
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	_	_	_
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	_
Methylene Chloride	0.5	mg/kg	< 0.5	-	-	_
o-Xylene	0.1	mg/kg	< 0.1	-	-	_
Styrene	0.5	mg/kg	< 0.5	-	-	_
Tetrachloroethene	0.5	mg/kg	< 0.5	-	-	_
Toluene	0.1	mg/kg	< 0.1	-	-	_
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	_	_	_
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	_	_	_



Client Sample ID			TP01 1-1.1	TD04.4.4.5	TD00 0 0 4	TP02 1-1.1
•			Soil	TP01 1.4-1.5	TP02 0-0.1 Soil	Soil
Sample Matrix				Soil		
Eurofins   mgt Sample No.			S19-My49744	S19-My49745	S19-My49746	S19-My49748
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Volatile Organics						
Trichloroethene	0.5	mg/kg	< 0.5	-	-	-
Trichlorofluoromethane	0.5	mg/kg	< 0.5	-	-	-
Vinyl chloride	0.5	mg/kg	< 0.5	-	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	-
Total MAH*	0.5	mg/kg	< 0.5	-	-	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	-	-	-
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	-	-	-
4-Bromofluorobenzene (surr.)	1	%	97	-	-	-
Toluene-d8 (surr.)	1	%	101	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	-	-
TRH >C10-C16	50	mg/kg	< 50	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-
TRH >C16-C34	100	mg/kg	< 100	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1 1	%	-	-	-	123
p-Terphenyl-d14 (surr.)	1	%	-	-	-	146
Organochlorine Pesticides	T _	T ::			_	
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-BHC	0.05	mg/kg mg/kg	-	-	< 0.05 < 0.05	-
Aldrin	0.05		-	-		-



Client Sample ID			TP01 1-1.1	TP01 1.4-1.5	TP02 0-0.1	TP02 1-1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49744	S19-My49745	S19-My49746	S19-My49748
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
•	LOD	l ladit	Way 30, 2019	Way 30, 2019	Way 30, 2019	Way 30, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides	<del></del>					
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	=	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	=	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	=	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.2	mg/kg	-	-	< 0.2	-
Toxaphene	1	mg/kg	-	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Dibutylchlorendate (surr.)	1	%	-	-	123	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	112	-
Polychlorinated Biphenyls		1				
Aroclor-1016	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1242	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1248	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1254	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1260	0.5	mg/kg	-	-	< 0.5	-
Total PCB*	0.5	mg/kg	-	-	< 0.5	-
Dibutylchlorendate (surr.)	1	%	-	-	123	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	112	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm		F20		
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	530 7.1	<del>-</del>	<del>-</del>
	1	%	11	14	17	13
% Moisture	l	70	11	14	17	13
Heavy Metals						
Arsenic	2	mg/kg	-	-	-	< 2
Cadmium	0.4	mg/kg	-	-	-	< 0.4
Chromium	5	mg/kg	-	-	-	160
Copper	5	mg/kg	-	-	-	51
Lead	5	mg/kg	-	-	-	< 5
Mercury	0.1	mg/kg	-	-	-	< 0.1
Nickel 7:	5	mg/kg	-	-	-	430
Zinc	5	mg/kg	-	-	-	110
Cation Exchange Capacity		<u> </u>				
Cation Exchange Capacity	0.05	meq/100g	-	62	-	-



Client Sample ID			TP03 0-0.1	TP04 0-0.1	TP04 0.5-0.6	TP05 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49772	S19-My49776		S19-My49779
				1	S19-My49777	_
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac		1				
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	< 50	-	-
TRH C10-36 (Total)	50	mg/kg	-	< 50	-	-
Volatile Organics	1	1				
1.1-Dichloroethane	0.5	mg/kg	-	< 0.5	-	-
1.1-Dichloroethene	0.5	mg/kg	-	< 0.5	-	-
1.1.1-Trichloroethane	0.5	mg/kg	-	< 0.5	-	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	-	-
1.1.2-Trichloroethane	0.5	mg/kg	-	< 0.5	-	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	-	-
1.2-Dibromoethane	0.5	mg/kg	-	< 0.5	-	-
1.2-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	-
1.2-Dichloroethane	0.5	mg/kg	-	< 0.5	-	-
1.2-Dichloropropane	0.5	mg/kg	-	< 0.5	-	-
1.2.3-Trichloropropane	0.5	mg/kg	-	< 0.5	-	-
1.2.4-Trimethylbenzene	0.5	mg/kg	-	< 0.5	-	-
1.3-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	-
1.3-Dichloropropane	0.5	mg/kg	-	< 0.5	-	-
1.3.5-Trimethylbenzene	0.5	mg/kg	-	< 0.5	-	-
1.4-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	-
2-Butanone (MEK)	0.5	mg/kg	-	< 0.5	-	-
2-Propanone (Acetone)	0.5	mg/kg	-	< 0.5	-	-
4-Chlorotoluene	0.5	mg/kg	-	< 0.5	-	-
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	< 0.5	-	-
Allyl chloride	0.5	mg/kg	-	< 0.5	-	-
Benzene	0.1	mg/kg	-	< 0.1	-	-
Bromobenzene	0.5	mg/kg	-	< 0.5	-	-
Bromochloromethane	0.5	mg/kg	-	< 0.5	-	-
Bromodichloromethane	0.5	mg/kg	-	< 0.5	-	-
Bromoform	0.5	mg/kg	-	< 0.5	-	-
Bromomethane	0.5	mg/kg	-	< 0.5	-	-
Carbon disulfide	0.5	mg/kg	-	< 0.5	-	-
Carbon Tetrachloride	0.5	mg/kg	-	< 0.5	-	-
Chlorobenzene	0.5	mg/kg	-	< 0.5	-	-
Chloroethane	0.5	mg/kg	-	< 0.5	-	-
Chloroform	0.5	mg/kg	-	< 0.5	-	-
Chloromethane	0.5	mg/kg	-	< 0.5	-	-
cis-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	-	-
cis-1.3-Dichloropropene	0.5	mg/kg	-	< 0.5	-	-
Dibromochloromethane Dibromochloromethane	0.5	mg/kg	-	< 0.5	-	-
Dibromomethane	0.5	mg/kg	-	< 0.5	-	-
Dichlorodifluoromethane	0.5	mg/kg	-	< 0.5	-	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-
lodomethane	0.5	mg/kg	-	< 0.5	-	-
Isopropyl benzene (Cumene)	0.5	mg/kg mg/kg	-	< 0.5 < 0.2	-	-
m&p-Xylenes			-	0.2	-	-



Client Sample ID			TP03 0-0.1	TP04 0-0.1	TP04 0.5-0.6	TP05 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49772	S19-My49776	S19-My49777	S19-My49779
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
•	LOD	Linit	May 30, 2013	Way 30, 2013	Way 30, 2013	Way 30, 2013
Test/Reference	LOR	Unit				
Volatile Organics	<u> </u>	T				
o-Xylene	0.1	mg/kg	-	< 0.1	-	-
Styrene	0.5	mg/kg	-	< 0.5	=	-
Tetrachloroethene	0.5	mg/kg	-	< 0.5	=	-
Toluene	0.1	mg/kg	-	< 0.1	-	-
trans-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	-	-
trans-1.3-Dichloropropene	0.5	mg/kg	-	< 0.5	-	-
Trichloroethene	0.5	mg/kg	-	< 0.5	-	-
Trichlorofluoromethane	0.5	mg/kg	-	< 0.5	-	-
Vinyl chloride	0.5	mg/kg	-	< 0.5	-	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	-
Total MAH*	0.5	mg/kg	-	< 0.5	-	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	-	< 0.5	-	-
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	-	< 0.5	-	-
4-Bromofluorobenzene (surr.)	1	%	-	91	-	-
Toluene-d8 (surr.)	1	%	-	93	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	-
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	=	-
TRH >C34-C40	100	mg/kg	-	< 100	=	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	=	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5			< 0.5	< 0.5	
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
		mg/kg	< 0.5			< 0.5
Pyrene Total PALI*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.5
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	66 112	64 113	60 110	60 106



Client Sample ID			TP03 0-0.1	TP04 0-0.1	TP04 0.5-0.6	TP05 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins   mgt Sample No.			S19-My49772	S19-My49776	S19-My49777	S19-My49779
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	=	=
4.4'-DDD	0.05	mg/kg	-	< 0.05	=	=
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
а-ВНС	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	=	=
Endrin	0.05	mg/kg	-	< 0.05	=	=
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.2	mg/kg	-	< 0.2	-	-
Toxaphene	1	mg/kg	-	< 1	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	-	102	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	105	-	-
Polychlorinated Biphenyls	•					
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	_	< 0.5	-	_
Aroclor-1248	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	_	< 0.5	-	_
Aroclor-1260	0.5	mg/kg	-	< 0.5	-	-
Total PCB*	0.5	mg/kg	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	102	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	105	-	-
	1					
% Moisture	1	%	17	< 1	11	16
Heavy Metals						
Arsenic	2	mg/kg	4.9	< 2	3.0	5.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	130	15	270	510
Copper	5	mg/kg	38	5.2	37	95
Lead	5	mg/kg	11	5.4	6.5	19
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	110	6.7	270	440
Zinc	5	mg/kg	100	30	85	190



Client Sample ID			TP05 2-2.2	TP06 0-0.1	TP06 1.4-1.5	TP07 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49781	S19-My49783	S19-My49785	S19-My49786
, ,			1	1		1
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEF		1				
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	< 20	-	< 20
TRH C15-C28	50	mg/kg	-	< 50	-	< 50
TRH C29-C36	50	mg/kg	-	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	< 50	-	< 50
Volatile Organics		T				
1.1-Dichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1-Dichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dibromoethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dichloropropane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	-	< 0.5	=	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.3-Dichloropropane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
2-Butanone (MEK)	0.5	mg/kg	-	< 0.5	-	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	-	< 0.5	-	< 0.5
4-Chlorotoluene	0.5	mg/kg	-	< 0.5	-	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	< 0.5	-	< 0.5
Allyl chloride	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzene	0.1	mg/kg	-	< 0.1	-	< 0.1
Bromobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromochloromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromodichloromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromoform	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromomethane Contract distributes	0.5	mg/kg	-	< 0.5	-	< 0.5
Carbon disulfide	0.5	mg/kg	-	< 0.5	-	< 0.5
Carbon Tetrachloride	0.5	mg/kg	-	< 0.5	-	< 0.5
Chlorophysia	0.5	mg/kg	-	< 0.5	-	< 0.5
Chloroform	0.5	mg/kg	-	< 0.5	-	< 0.5
Chloromothono	0.5	mg/kg		< 0.5	-	< 0.5
Chloromethane cis-1.2-Dichloroethene	0.5 0.5	mg/kg	-	< 0.5 < 0.5	-	< 0.5 < 0.5
		mg/kg	-			
cis-1.3-Dichloropropene Dibromochloromethane	0.5 0.5	mg/kg	-	< 0.5 < 0.5	-	< 0.5 < 0.5
		mg/kg			-	
Dibromomethane  Dichloradifluoromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Dichlorodifluoromethane  Ethylbograpa	0.5	mg/kg	-	< 0.5	-	< 0.5
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	< 0.1
lodomethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	-	< 0.5	-	< 0.5
m&p-Xylenes Methylene Chloride	0.2	mg/kg mg/kg	-	< 0.2 < 0.5	-	< 0.2 < 0.5



Client Sample ID			TP05 2-2.2	TP06 0-0.1	TP06 1.4-1.5	TP07 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49781	S19-My49783	S19-My49785	
, , ,				1	_	S19-My49786
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Volatile Organics						
o-Xylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Styrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Tetrachloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
Toluene	0.1	mg/kg	-	< 0.1	-	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	-	< 0.5	-	< 0.5
Trichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
Trichlorofluoromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Vinyl chloride	0.5	mg/kg	-	< 0.5	-	< 0.5
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	< 0.3
Total MAH*	0.5	mg/kg	-	< 0.5	-	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	-	< 0.5	-	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	-	< 0.5	=	< 0.5
4-Bromofluorobenzene (surr.)	1	%	-	90	-	87
Toluene-d8 (surr.)	1	%	-	92	-	91
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	=	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	< 20
TRH >C10-C16	50	mg/kg	-	< 50	_	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	_	< 50
TRH >C16-C34	100	mg/kg	_	< 100	_	< 100
TRH >C34-C40	100	mg/kg	-	< 100	_	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	_	< 100
Polycyclic Aromatic Hydrocarbons		1 3 3				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	_	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Naphthalene	0.5		-	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5	< 0.5	
		mg/kg				< 0.5
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	-	65 116	60 107	70 129



Client Sample ID			TP05 2-2.2	TP06 0-0.1	TP06 1.4-1.5	TP07 0-0.1
-			Soil	Soil	Soil	Soil
Sample Matrix						
Eurofins   mgt Sample No.			S19-My49781	S19-My49783	S19-My49785	S19-My49786
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	=	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	=	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	< 0.2
Dibutylchlorendate (surr.)	1	%	97	100	-	111
Tetrachloro-m-xylene (surr.)	1	%	98	97	-	105
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Dibutylchlorendate (surr.)	1	%	97	100	-	111
Tetrachloro-m-xylene (surr.)	1	%	98	97	-	105
	<u> </u>					
% Moisture	1	%	13	19	16	16
Heavy Metals	1					
Arsenic	2	mg/kg	-	3.1	< 2	< 2
Cadmium	0.4	mg/kg	-	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	-	550	200	150
Copper	5	mg/kg	-	87	47	36
Lead	5	mg/kg	-	7.3	< 5	< 5
Mercury	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	-	550	510	130
Zinc	5	mg/kg	-	240	100	70



Client Sample ID			TP08 0-0.1	TP09 0.4-0.5	TP10 0-0.1	TP10 1-1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49787	S19-My49789	S19-My49791	S19-My49793
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	may 00, 2010	May 50, 2015	May 60, 2016	May 50, 2015
Total Recoverable Hydrocarbons - 1999 NE		Offic				
TRH C6-C9	20					< 20
TRH C10-C14	20	mg/kg mg/kg	-	-	-	< 20
TRH C15-C28	50	mg/kg	_			< 50
TRH C29-C36	50	mg/kg	_		_	< 50
TRH C10-36 (Total)	50	mg/kg	_		_	< 50
Volatile Organics	] 30	ing/kg				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1.1-Dichloroethane	0.5	mg/kg	_	_	_	< 0.5
1.1-Dichloroethene	0.5	mg/kg	-	-	-	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg		-		< 0.5
1.1.1.2-Tetrachloroethane	0.5			-		< 0.5
1.1.2-Trichloroethane	0.5	mg/kg mg/kg	-	-	-	< 0.5
1.1.2.2-Trichloroethane	0.5	mg/kg	-	-	-	< 0.5
1.2-Dibromoethane	0.5	mg/kg		-		< 0.5
1.2-Dibromoetriane 1.2-Dichlorobenzene	0.5	mg/kg	_	-	-	< 0.5
1.2-Dichloroethane	0.5	mg/kg	_	_	-	< 0.5
1.2-Dichloropropane	0.5	mg/kg	_	_	-	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	_	_	_	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	_	_	_	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	_	_	_	< 0.5
1.3-Dichloropropane	0.5	mg/kg	_	_	_	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	_	_	_	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	-	-	_	< 0.5
2-Butanone (MEK)	0.5	mg/kg	-	_	_	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	-	_	_	< 0.5
4-Chlorotoluene	0.5	mg/kg	-	-	-	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	-	-	< 0.5
Allyl chloride	0.5	mg/kg	-	-	-	< 0.5
Benzene	0.1	mg/kg	-	-	-	< 0.1
Bromobenzene	0.5	mg/kg	-	-	-	< 0.5
Bromochloromethane	0.5	mg/kg	-	-	-	< 0.5
Bromodichloromethane	0.5	mg/kg	-	-	-	< 0.5
Bromoform	0.5	mg/kg	-	-	-	< 0.5
Bromomethane	0.5	mg/kg	-	-	-	< 0.5
Carbon disulfide	0.5	mg/kg	-	-	-	< 0.5
Carbon Tetrachloride	0.5	mg/kg	-	-	-	< 0.5
Chlorobenzene	0.5	mg/kg	-	-	-	< 0.5
Chloroethane	0.5	mg/kg	-	-	-	< 0.5
Chloroform	0.5	mg/kg	-	-	-	< 0.5
Chloromethane	0.5	mg/kg	-	-	-	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	-	-	-	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	-	-	-	< 0.5
Dibromochloromethane	0.5	mg/kg	-	-	-	< 0.5
Dibromomethane	0.5	mg/kg	-	-	-	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	-	-	-	< 0.5
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
lodomethane	0.5	mg/kg	-	-	-	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	-	-	-	< 0.5
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
Methylene Chloride	0.5	mg/kg	-	-	-	< 0.5



Client Sample ID			TP08 0-0.1	TP09 0.4-0.5	TP10 0-0.1	TP10 1-1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49787	S19-My49789	S19-My49791	S19-My49793
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Volatile Organics		-				
o-Xylene	0.1	mg/kg	_	-	_	< 0.1
Styrene	0.5	mg/kg	_	_	_	< 0.5
Tetrachloroethene	0.5	mg/kg	_	_	_	< 0.5
Toluene	0.1	mg/kg	_	_	_	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	_	_	_	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	_	_	_	< 0.5
Trichloroethene	0.5	mg/kg	_	-	_	< 0.5
Trichlorofluoromethane	0.5	mg/kg	_	-	_	< 0.5
Vinyl chloride	0.5	mg/kg	_	_	_	< 0.5
Xylenes - Total	0.3	mg/kg	_	_	_	< 0.3
Ayleries - Total  Total MAH*	0.5	mg/kg		-	-	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg		-		< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	_	_	_	< 0.5
4-Bromofluorobenzene (surr.)	1	// // // // // // // // // // // // //	_	_	_	88
Toluene-d8 (surr.)	1	%	-		_	87
Total Recoverable Hydrocarbons - 2013 NEPM		/0	-	-	_	07
<u>,                                      </u>						0.5
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	-	< 20
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	< 100
TRH >C34-C40	100	mg/kg	-	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	< 100
Polycyclic Aromatic Hydrocarbons	1	<u> </u>				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	122	126	116	149
p-Terphenyl-d14 (surr.)	1	%	124	125	117	INT



Client Sample ID			TP08 0-0.1	TP09 0.4-0.5	TP10 0-0.1	TP10 1-1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49787	S19-My49789	S19-My49791	S19-My49793
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	Way 30, 2013	May 30, 2013	Way 30, 2013	Way 50, 2015
	LOR	Unit				
Organochlorine Pesticides	0.4					.0.4
Chlordanes - Total 4.4'-DDD	0.1	mg/kg	-	-	-	< 0.1 < 0.05
4.4'-DDE		mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	-	< 0.05
a-BHC	0.05 0.05	mg/kg mg/kg	<u>-</u>	-	-	< 0.05
Aldrin	0.05	mg/kg		-		< 0.05
b-BHC	0.05	mg/kg				< 0.05
d-BHC	0.05	mg/kg	<u> </u>		-	< 0.05
Dieldrin	0.05	mg/kg			-	< 0.05
Endosulfan I	0.05	mg/kg	_	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	_	_	-	< 0.05
Endrin aldehyde	0.05	mg/kg	_	-	-	< 0.05
Endrin ketone	0.05	mg/kg	_	_	_	< 0.05
g-BHC (Lindane)	0.05	mg/kg	_	_	_	< 0.05
Heptachlor	0.05	mg/kg	_	_	_	< 0.05
Heptachlor epoxide	0.05	mg/kg	_	-	_	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	_	_	< 0.2
Toxaphene	1	mg/kg	-	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	-	83
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	88
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1221	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB*	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	83
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	88
% Moisture	1	%	11	7.3	7.4	9.5
Heavy Metals						
Arsenic	2	mg/kg	6.5	2.2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	160	49	110	150
Copper	5	mg/kg	55	41	85	52
Lead	5	mg/kg	17	14	12	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	180	86	100	340
Zinc	5	mg/kg	130	65	120	100



Client Sample ID			TP11 0-0.1	TP11 0.3-0.4	TP11 2.7-2.8	TP12 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
· ·			S19-My49794	S19-My49795		S19-My49799
Eurofins   mgt Sample No.				_	S19-My49798	_
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 Ni	EPM Fractions	1				
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	< 20	-	< 20
TRH C15-C28	50	mg/kg	-	< 50	-	< 50
TRH C29-C36	50	mg/kg	-	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	< 50	-	< 50
Volatile Organics		1				
1.1-Dichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1-Dichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dibromoethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dichloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2-Dichloropropane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.3-Dichloropropane	0.5	mg/kg	-	< 0.5	-	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
2-Butanone (MEK)	0.5	mg/kg	-	< 0.5	-	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	-	< 0.5	-	< 0.5
4-Chlorotoluene	0.5	mg/kg	-	< 0.5	-	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	< 0.5	-	< 0.5
Allyl chloride	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzene	0.1	mg/kg	-	< 0.1	-	< 0.1
Bromobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromochloromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromodichloromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromoform	0.5	mg/kg	-	< 0.5	-	< 0.5
Bromomethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Carbon disulfide	0.5	mg/kg	-	< 0.5	-	< 0.5
Carbon Tetrachloride	0.5	mg/kg	-	< 0.5	-	< 0.5
Chlorobenzene	0.5	mg/kg	-	< 0.5	-	< 0.5
Chloroethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Chloroform	0.5	mg/kg	-	< 0.5	-	< 0.5
Chloromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	-	< 0.5	-	< 0.5
Dibromochloromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Dibromomethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	< 0.1
lodomethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	-	< 0.5	-	< 0.5
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	< 0.2
Methylene Chloride	0.5	mg/kg	-	< 0.5	-	< 0.5



Client Sample ID			TP11 0-0.1	TP11 0.3-0.4	TP11 2.7-2.8	TP12 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49794	S19-My49795	S19-My49798	S19-My49799
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOB	Linit	May 30, 2013	Way 30, 2013	Way 30, 2013	Way 30, 2013
	LOR	Unit				
Volatile Organics		T				
o-Xylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Styrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Tetrachloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
Toluene	0.1	mg/kg	-	< 0.1	-	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	-	< 0.5	-	< 0.5
Trichloroethene	0.5	mg/kg	-	< 0.5	-	< 0.5
Trichlorofluoromethane	0.5	mg/kg	-	< 0.5	-	< 0.5
Vinyl chloride	0.5	mg/kg	-	< 0.5	-	< 0.5
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	< 0.3
Total MAH*	0.5	mg/kg	-	< 0.5	-	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	-	< 0.5	=	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	-	< 0.5	-	< 0.5
4-Bromofluorobenzene (surr.)	1	%	-	96	-	80
Toluene-d8 (surr.)	1	%	-	88	-	66
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	< 20
TRH >C10-C16	50	mg/kg	-	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	< 50
TRH >C16-C34	100	mg/kg	-	< 100	-	< 100
TRH >C34-C40	100	mg/kg	-	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	< 100
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	_	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	_	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
	0.5			-	< 0.5	
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5		< 0.5	< 0.5
		mg/kg	< 0.5	-		< 0.5
Pyrene Total PALI*	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	123 123	-	123 123	128 126



Client Sample ID			TP11 0-0.1	TP11 0.3-0.4	TP11 2.7-2.8	TP12 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49794	S19-My49795	S19-My49798	S19-My49799
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	May 30, 2013	Way 50, 2015	Way 30, 2013	Way 50, 2015
Organochlorine Pesticides	LOR	Offic				
	0.4					.0.4
Chlordanes - Total 4.4'-DDD	0.1	mg/kg	-	-	-	< 0.1 < 0.05
4.4'-DDE		mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg		-	-	< 0.05
a-BHC	0.05 0.05	mg/kg mg/kg	<u>-</u>	-	-	< 0.05
Aldrin	0.05	mg/kg		-		< 0.05
b-BHC	0.05	mg/kg		-		< 0.05
d-BHC	0.05	mg/kg			-	< 0.05
Dieldrin	0.05	mg/kg			-	< 0.05
Endosulfan I	0.05	mg/kg	_	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg		-	-	< 0.05
Endrin	0.05	mg/kg	_	_	_	< 0.05
Endrin aldehyde	0.05	mg/kg	_	_	_	< 0.05
Endrin ketone	0.05	mg/kg	_	_	_	< 0.05
g-BHC (Lindane)	0.05	mg/kg	_	_	_	< 0.05
Heptachlor	0.05	mg/kg	_	_	_	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	_	_	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	_	_	< 0.2
Toxaphene	1	mg/kg	-	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	-	72
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	69
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1221	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB*	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	72
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	69
% Moisture	1	%	11	9.1	5.7	15
Heavy Metals						
Arsenic	2	mg/kg	< 2	-	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	< 0.4
Chromium	5	mg/kg	170	-	120	160
Copper	5	mg/kg	90	-	44	71
Lead	5	mg/kg	6.0	-	< 5	14
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Nickel	5	mg/kg	130	-	320	150
Zinc	5	mg/kg	120	_	92	110



Client Sample ID			TP12 0.5-0.6	QA01	QA02	MW01 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
· ·						
Eurofins   mgt Sample No.			S19-My49800	S19-My49803	S19-My49804	S19-My49808
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	_				
TRH C6-C9	20	mg/kg	-	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	-	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	-	< 50	< 50	230
TRH C29-C36	50	mg/kg	-	< 50	< 50	160
TRH C10-36 (Total)	50	mg/kg	-	< 50	< 50	390
Volatile Organics		1				
1.1-Dichloroethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2-Butanone (MEK)	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Bromobenzene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Bromochloromethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Bromoform	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Carbon disulfide	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Chloroethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Chloroform	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibromochloromethane  Dibromochloromethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	0.6
Iodomethane	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	3.2



Client Sample ID			TP12 0.5-0.6	QA01	QA02	MW01 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49800	S19-My49803	S19-My49804	S19-My49808
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	may 00, 2010	ay 55, 2515		may 55, 2515
Volatile Organics	LOIX	Offic				
o-Xylene	0.1	ma/ka	_	< 0.1	< 0.1	1.2
Styrene	0.1	mg/kg mg/kg	-	< 0.5	< 0.1	< 0.5
Tetrachloroethene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Toluene	0.3	mg/kg	-	< 0.1	< 0.1	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Vinyl chloride	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Xylenes - Total	0.3	mg/kg	_	< 0.3	< 0.3	4.4
Total MAH*	0.5	mg/kg	-	< 0.5	< 0.5	5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
4-Bromofluorobenzene (surr.)	1	%	_	82	85	94
Toluene-d8 (surr.)	1	%	_	81	84	83
Total Recoverable Hydrocarbons - 2013 NEPM		,,,		1		
Naphthalene ^{N02}	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	_	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	_	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	_	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	-	< 100	< 100	350
TRH >C34-C40	100	mg/kg	-	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	< 100	350
Polycyclic Aromatic Hydrocarbons	'					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	123	139	135	-
p-Terphenyl-d14 (surr.)	1	%	121	137	134	-



01. 10. 1.10				1	1	T
Client Sample ID			TP12 0.5-0.6	QA01	QA02	MW01 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49800	S19-My49803	S19-My49804	S19-My49808
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	-	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	-	119	95	131
Tetrachloro-m-xylene (surr.)	1	%	-	122	105	127
Polychlorinated Biphenyls	ı					
Aroclor-1016	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	-	119	95	131
Tetrachloro-m-xylene (surr.)	1	%	-	122	105	127
		<del>                                     </del>				
% Moisture	1	%	9.6	16	8.2	12
Heavy Metals		<del></del>		1		1
Arsenic	2	mg/kg	< 2	2.3	< 2	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	90	470	94	-
Copper	5	mg/kg	50	65	61	-
Lead	5	mg/kg	< 5	6.7	< 5	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Nickel	5	mg/kg	260	400	280	-
Zinc	5	mg/kg	90	110	100	-



Client Sample ID			MW01 6.9-7.0	G01MW02 0-0.1	MW02 0.9-1.0	^{G01} MW03 0.9-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49815	S19-My49817	S19-My49818	S19-My49827
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	, 55, 2515		, 55, 2515	, 55, 2516
Total Recoverable Hydrocarbons - 1999 NE		Offic				
TRH C6-C9	20	mg/kg				< 40
TRH C10-C14	20	mg/kg	_	-	_	52
TRH C15-C28	50	mg/kg	_	-	_	420
TRH C29-C36	50	mg/kg	_	-	_	340
TRH C10-36 (Total)	50	mg/kg	_	_	_	812
Volatile Organics	00	ing/kg				012
1.1-Dichloroethane	0.5	mg/kg	_	_	-	< 1
1.1-Dichloroethene	0.5	mg/kg	-	_	-	< 1
1.1.1-Trichloroethane	0.5	mg/kg	_	-	_	< 1
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	-	-	< 1
1.1.2-Trichloroethane	0.5	mg/kg	-	-	-	< 1
1.1.2.2-Tetrachloroethane	0.5	mg/kg	_	-	-	< 1
1.2-Dibromoethane	0.5	mg/kg	-	-	-	< 1
1.2-Dichlorobenzene	0.5	mg/kg	-	-	-	< 1
1.2-Dichloroethane	0.5	mg/kg	-	-	-	< 1
1.2-Dichloropropane	0.5	mg/kg	-	-	-	< 1
1.2.3-Trichloropropane	0.5	mg/kg	-	-	-	< 1
1.2.4-Trimethylbenzene	0.5	mg/kg	-	-	-	< 1
1.3-Dichlorobenzene	0.5	mg/kg	-	-	-	< 1
1.3-Dichloropropane	0.5	mg/kg	-	-	-	< 1
1.3.5-Trimethylbenzene	0.5	mg/kg	-	-	-	< 1
1.4-Dichlorobenzene	0.5	mg/kg	-	-	-	< 1
2-Butanone (MEK)	0.5	mg/kg	-	-	-	< 1
2-Propanone (Acetone)	0.5	mg/kg	-	-	-	< 1
4-Chlorotoluene	0.5	mg/kg	-	-	-	< 1
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	-	-	< 1
Allyl chloride	0.5	mg/kg	-	-	-	< 1
Benzene	0.1	mg/kg	-	-	-	< 0.2
Bromobenzene	0.5	mg/kg	-	-	-	< 1
Bromochloromethane	0.5	mg/kg	-	-	-	< 1
Bromodichloromethane	0.5	mg/kg	-	-	-	< 1
Bromoform	0.5	mg/kg	-	-	-	< 1
Bromomethane	0.5	mg/kg	-	-	-	< 1
Carbon disulfide	0.5	mg/kg	-	-	-	< 1
Carbon Tetrachloride	0.5	mg/kg	-	-	-	< 1
Chlorobenzene	0.5	mg/kg	-	-	-	< 1
Chloroethane	0.5	mg/kg	-	-	-	< 1
Chloroform	0.5	mg/kg	-	-	-	< 1
Chloromethane	0.5	mg/kg	-	-	-	< 1
cis-1.2-Dichloroethene	0.5	mg/kg	-	-	-	< 1
cis-1.3-Dichloropropene	0.5	mg/kg	-	-	-	<1
Dibromochloromethane  Dibromomethane	0.5	mg/kg	-	-	-	<1
Dichlorodifluoromethane	0.5	mg/kg	-	-	-	<1
Dichlorodifluoromethane Ethylbenzene	0.5 0.1	mg/kg mg/kg	-	-	-	< 1 < 0.2
Iodomethane	0.1	mg/kg	-	-	-	< 0.2
Isopropyl benzene (Cumene)	0.5	mg/kg	-	-	-	< 1
m&p-Xylenes	0.5	mg/kg	-	-	-	< 0.4
Methylene Chloride	0.5	mg/kg		-	-	< 1



Client Sample ID			MW01 6.9-7.0	^{G01} MW02 0-0.1	MW02 0.9-1.0	^{G01} MW03 0.9-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49815	S19-My49817	S19-My49818	S19-My49827
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Volatile Organics	! -					
o-Xylene	0.1	mg/kg	-	-	-	< 0.2
Styrene	0.5	mg/kg	-	-	-	< 1
Tetrachloroethene	0.5	mg/kg	-	-	-	< 1
Toluene	0.1	mg/kg	_	-	-	< 0.2
trans-1.2-Dichloroethene	0.5	mg/kg	-	-	-	< 1
trans-1.3-Dichloropropene	0.5	mg/kg	-	-	-	< 1
Trichloroethene	0.5	mg/kg	-	-	-	< 1
Trichlorofluoromethane	0.5	mg/kg	-	-	-	< 1
Vinyl chloride	0.5	mg/kg	-	-	-	< 1
Xylenes - Total	0.3	mg/kg		-	-	< 0.6
Total MAH*	0.5	mg/kg	-	-	-	< 1
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	-	-	-	< 1
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	-	-	-	< 1
4-Bromofluorobenzene (surr.)	1	%	-	-	-	89
Toluene-d8 (surr.)	1	%	-	-	-	82
Total Recoverable Hydrocarbons - 2013 NEPN	l Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 1
TRH C6-C10	20	mg/kg	-	-	-	< 40
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 40
TRH >C10-C16	50	mg/kg	-	-	-	87
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	-	87
TRH >C16-C34	100	mg/kg	-	-	-	660
TRH >C34-C40	100	mg/kg	-	-	-	170
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	917
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	2.2
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	2.2
2-Fluorobiphenyl (surr.)	1	%	133	-	142	149
p-Terphenyl-d14 (surr.)	1	%	135	-	141	143



Client Sample ID			MW01 6.9-7.0	G01 <b>MW02 0-0.1</b>	MW02 0.9-1.0	^{G01} MW03 0.9-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins   mgt Sample No.			S19-My49815	S19-My49817	S19-My49818	S19-My49827
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	Way 50, 2015	Way 30, 2013	May 30, 2013	Way 30, 2013
Organochlorine Pesticides	LOR	Unit				
Chlordanes - Total	0.1	ma/ka	-	< 1		< 1
4.4'-DDD	0.05	mg/kg	-	< 0.5	-	< 0.5
4.4'-DDE	0.05	mg/kg mg/kg		< 0.5	-	< 0.5
4.4'-DDT	0.05	mg/kg	<del>-</del>	< 0.5	-	< 0.5
a-BHC	0.05	mg/kg		< 0.5	-	< 0.5
Aldrin	0.05	mg/kg		< 0.5	-	< 0.5
b-BHC	0.05	mg/kg	_	< 0.5	_	< 0.5
d-BHC	0.05	mg/kg	_	< 0.5	_	< 0.5
Dieldrin	0.05	mg/kg	_	< 0.5	_	< 0.5
Endosulfan I	0.05	mg/kg	_	< 0.5	_	< 0.5
Endosulfan II	0.05	mg/kg	_	< 0.5	-	< 0.5
Endosulfan sulphate	0.05	mg/kg	_	< 0.5	_	< 0.5
Endrin	0.05	mg/kg	_	< 0.5	_	< 0.5
Endrin aldehyde	0.05	mg/kg	_	< 0.5	_	< 0.5
Endrin ketone	0.05	mg/kg	_	< 0.5	_	< 0.5
g-BHC (Lindane)	0.05	mg/kg	_	< 0.5	_	< 0.5
Heptachlor	0.05	mg/kg	_	< 0.5	_	< 0.5
Heptachlor epoxide	0.05	mg/kg	-	< 0.5	-	< 0.5
Hexachlorobenzene	0.05	mg/kg	-	< 0.5	-	< 0.5
Methoxychlor	0.2	mg/kg	-	< 2	-	< 2
Toxaphene	1	mg/kg	-	< 10	-	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.5	-	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.5	-	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 2	-	< 2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 2	-	< 2
Dibutylchlorendate (surr.)	1	%	-	114	-	107
Tetrachloro-m-xylene (surr.)	1	%	-	74	-	140
Polychlorinated Biphenyls	•	•				
Aroclor-1016	0.5	mg/kg	-	< 5	-	< 5
Aroclor-1221	0.1	mg/kg	-	< 1	-	< 1
Aroclor-1232	0.5	mg/kg	-	< 5	-	< 5
Aroclor-1242	0.5	mg/kg	-	< 5	-	< 5
Aroclor-1248	0.5	mg/kg	-	< 5	-	< 5
Aroclor-1254	0.5	mg/kg	-	< 5	-	< 5
Aroclor-1260	0.5	mg/kg	-	< 5	-	< 5
Total PCB*	0.5	mg/kg	-	< 5	-	< 5
Dibutylchlorendate (surr.)	1	%	-	114	-	107
Tetrachloro-m-xylene (surr.)	1	%	-	74	-	140
	·	•				
% Moisture	1	%	9.0	7.5	11	14
Heavy Metals	<u>.</u>			_		
Arsenic	2	mg/kg	< 2	-	4.0	< 2
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	< 0.4
Chromium	5	mg/kg	94	-	220	36
Copper	5	mg/kg	53	-	70	22
Lead	5	mg/kg	< 5	-	20	7.3
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Nickel	5	mg/kg	310	-	270	53
Zinc	5	mg/kg	98	_	140	75



Client Sample ID			MW03 7.9-8.0
Sample Matrix			Soil
·			
Eurofins   mgt Sample No.			S19-My49834
Date Sampled			May 30, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-36 (Total)	50	mg/kg	< 50
Volatile Organics			
1.1-Dichloroethane	0.5	mg/kg	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5
Benzene	0.1	mg/kg	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5
Bromochloromethane	0.5	mg/kg	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5
Bromoform	0.5	mg/kg	< 0.5
Bromomethane	0.5	mg/kg	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5
Chlorosthana	0.5	mg/kg	< 0.5
Chloroform	0.5	mg/kg	< 0.5
Chloromothana	0.5	mg/kg	< 0.5
Chloromethane	0.5	mg/kg	< 0.5
cis-1.2-Dichloropropop	0.5	mg/kg	< 0.5
cis-1.3-Dichloropropene Dibromochloromethane	0.5 0.5	mg/kg	< 0.5
Dibromocnioromethane  Dibromomethane	0.5	mg/kg	< 0.5
Dichlorodifluoromethane		mg/kg	< 0.5
	0.5	mg/kg	< 0.5
Ethylbenzene lodomethane	0.1	mg/kg mg/kg	< 0.1 < 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5
m&p-Xylenes	0.3	mg/kg	< 0.5
Methylene Chloride	0.2	mg/kg	< 0.2



Client Sample ID			MW03 7.9-8.0
Sample Matrix			Soil
Eurofins   mgt Sample No.			S19-My49834
Date Sampled			May 30, 2019
Test/Reference	LOR	Unit	
Volatile Organics	'		
o-Xylene	0.1	mg/kg	< 0.1
Styrene	0.5	mg/kg	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5
Toluene	0.1	mg/kg	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5
Xylenes - Total	0.3	mg/kg	< 0.3
Total MAH*	0.5	mg/kg	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5
4-Bromofluorobenzene (surr.)	1	%	91
Toluene-d8 (surr.)	1	%	87
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	124
p-Terphenyl-d14 (surr.)	11	%	122
% Moisture	1	%	6.7



Client Sample ID Sample Matrix Eurofins   mgt Sample No.			MW03 7.9-8.0 Soil S19-My49834
Date Sampled			May 30, 2019
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic	2	mg/kg	< 2
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	120
Copper	5	mg/kg	46
Lead	5	mg/kg	< 5
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	340
Zinc	5	mg/kg	98



# Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 01, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 01, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 01, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 01, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Jun 01, 2019	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Jun 01, 2019	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Jun 01, 2019	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Volatile Organics	Sydney	Jun 01, 2019	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Jun 01, 2019	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Jun 11, 2019	7 Day
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Jun 05, 2019	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	May 31, 2019	14 Day



Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

658838

02 8245 0300

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received:

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CLUNIES ROSS ST

Project ID: 5642

56425

**Received:** May 31, 2019 5:28 PM

Due: Jun 4, 2019 Priority: 2 Day

Contact Name: Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail  Melbourne Laboratory - NATA Site # 1254 & 14271						Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271														Х		
Sydi	Sydney Laboratory - NATA Site # 18217					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	oane Laboratory	y - NATA Site #	20794																	
Pert	n Laboratory - N	NATA Site # 237	736																	
Exte	rnal Laboratory	,																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	SS01	May 30, 2019		Soil	S19-My49731	Х					Х	Х	Х	Х		Х	Х		Х	
2	SS02	May 30, 2019		Soil	S19-My49732	Х					Х	Х	Х	Х		Х	Х		Х	
3	SS03	May 30, 2019		Soil	S19-My49733	Х					Х			Х			Х			
4	SS04	May 30, 2019		Soil	S19-My49734	Х					Х			Х			Х			
5	SS05	May 30, 2019		Soil	S19-My49735	Х					Х	Х	Х	Х			Х			
6	EMB1	May 30, 2019		Soil	S19-My49736	Х					Х	Х	Х	Х		Х	Х		Х	
7	FRAG01	May 30, 2019		Building Materials	S19-My49737		Х													
8	HA01	May 30, 2019		Soil	S19-My49738	Х					Х			Х			Х			
9	HA02	May 30, 2019		Soil	S19-My49739	Х					Х	Х	Х	Х		Х	Х		Х	

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN : 50 005 085 521 Telephone: +61 2 9900 8400 Page 36 of 52 Report Number: 658838-S



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

658838

02 8245 0300

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F

Received:

Priority:

**Contact Name:** 

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

May 31, 2019 5:28 PM

Jun 4, 2019

Chris Kauffman

2 Day

JBS & G Australia (NSW) P/L **Company Name:** 

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name:

**CLUNIES ROSS ST** 

Project ID: 56425

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail					Asbestos - WA guidelines	Asbestos Absence / Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Melk	Melbourne Laboratory - NATA Site # 1254 & 14271																Х		
Syd	ney Laboratory	- NATA Site # 18217	7		Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х
		y - NATA Site # 207	94																
Pert	<mark>h Laboratory - I</mark>	NATA Site # 23736																	
10	HA03	May 30, 2019	Soil	S19-My49740	Х					Х	Х	Х	Х		Х	Х		Х	
11	HA04	May 30, 2019	Soil	S19-My49741	Х					Х			Х			Х			
12	TP01 0-0.1	May 30, 2019	Soil	S19-My49742	Х					Х	Х	Х	Х		Х	Х		Х	
13	TP01 0.3-0.4	May 30, 2019	Soil	S19-My49743					Х							Х	Χ		
14	TP01 1-1.1	May 30, 2019	Soil	S19-My49744											Х	Х		Х	
15	TP01 1.4-1.5	May 30, 2019	Soil	S19-My49745					Х							Х	Х		
16	TP02 0-0.1	May 30, 2019	Soil	S19-My49746	Х						Х	Х				Х			
17	TP02 0.5-0.6	May 30, 2019	Soil	S19-My49747				Х											
18	TP02 1-1.1	May 30, 2019	Soil	S19-My49748						Х			Х			Х			
19	TP02 2-2.1	May 30, 2019	Soil	S19-My49749				Х											
20	TP02 2.4-2.5	May 30, 2019	Soil	S19-My49771				Х										ш	Ш
21	TP03 0-0.1	May 30, 2019	Soil	S19-My49772	Х					Х			Χ			Χ			



Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID: **CLUNIES ROSS ST** 

56425

 Order No.:
 Received:
 May 31, 2019 5:28 PM

 Report #:
 658838
 Due:
 Jun 4, 2019

Phone: 02 8245 0300 Priority: 2 Day

Contact Name: Chris Kauffman

Ask	Asb	CA	Ю	PH	Poly	Org	Poly	Met	вте	Vol	Moi	Cat	Tot	JBS		

		Sample	e Detail		sbestos - WA guidelines	sbestos Absence /Presence	ANCELLED	IOLD	H (1:5 Aqueous extract at 25°C as rec.)	olycyclic Aromatic Hydrocarbons	)rganochlorine Pesticides	olychlorinated Biphenyls	1etals M8	πEX	olatile Organics	loisture Set	ation Exchange Capacity	otal Recoverable Hydrocarbons	BS&G Suite 2
Mell	bourne Laborat	ory - NATA Site # 12	254 & 14271														Х		
		- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х
		y - NATA Site # 207	94															<u> </u>	
		NATA Site # 23736																	
22	TP03 0.5-0.6	May 30, 2019	Soil	S19-My49773				Х											
23	TP03 1-1.1	May 30, 2019	Soil	S19-My49774				Х											
24	TP03 2-2.1	May 30, 2019	Soil	S19-My49775				Х										<u> </u>	
25	TP04 0-0.1	May 30, 2019	Soil	S19-My49776	Х					Х	Х	Х	Х		Х	Х		Х	
26	TP04 0.5-0.6	May 30, 2019	Soil	S19-My49777	Х					Х			Х			Х			
27	TP04 1-1.1	May 30, 2019	Soil	S19-My49778				Х											
28	TP05 0-0.1	May 30, 2019	Soil	S19-My49779	Х					Х			Х			Х			
29	TP05 1-1.1	May 30, 2019	Soil	S19-My49780			Х											<u> </u>	
30	TP05 2-2.2	May 30, 2019	Soil	S19-My49781							Х	Х				Х			
31	TP05 2.4-2.5	May 30, 2019	Soil	S19-My49782				Х											
32	TP06 0-0.1	May 30, 2019	Soil	S19-My49783	Х					Х	Х	Х	Х		Х	Х		Х	
33	TP06 1-1.1	May 30, 2019	Soil	S19-My49784				Х											



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

658838

02 8245 0300

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

**CLUNIES ROSS ST** 

56425

Received: May 31, 2019 5:28 PM

Due: Jun 4, 2019 Priority: 2 Day

**Contact Name:** Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Samp	le Detail		Asbestos - WA guidelines	Asbestos Absence / Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	oourne Laborat	ory - NATA Site # 1	254 & 14271														Х		
Syd	ney Laboratory	- NATA Site # 1821	17		Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 20	794																
Pert	h Laboratory - I	NATA Site # 23736																	
34	TP06 1.4-1.5	May 30, 2019	Soil	S19-My49785						Х			Х			Х			
35	TP07 0-0.1	May 30, 2019	Soil	S19-My49786	Х					Х	Х	Х	Χ		Х	Х		Х	
36	TP08 0-0.1	May 30, 2019	Soil	S19-My49787	Х					Х			Χ			Х			
37	TP09 0-0.1	May 30, 2019	Soil	S19-My49788				Х											
38	TP09 0.4-0.5	May 30, 2019	Soil	S19-My49789	Х					Х			Χ			Х			
39	TP09 0.9-1.0	May 30, 2019	Soil	S19-My49790				Х											
40	TP10 0-0.1	May 30, 2019	Soil	S19-My49791	Х					Х			Х			Х			
41	TP10 0.4-0.5	May 30, 2019	Soil	S19-My49792				Х											
42	TP10 1-1.1	May 30, 2019	Soil	S19-My49793	Х					Х	Х	Х	Χ		Х	Х		Х	
43	TP11 0-0.1	May 30, 2019	Soil	S19-My49794	Х					Х			Χ			Х			
44	TP11 0.3-0.4	May 30, 2019	Soil	S19-My49795											Х	Х		Х	
45	TP11 1-1.1	May 30, 2019	Soil	S19-My49796				Х											



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Due:

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

May 31, 2019 5:28 PM

Jun 4, 2019

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

658838

02 8245 0300

Priority: 2 Day
Contact Name: Chris Kauffman

Contact Name: C

Project Name:

CLUNIES ROSS ST

Project ID: 56425

	oject iD:	50425														Euro	fins	mgt	Analy	rtical Services Manager : Nibha Vaidya
		Sample Deta	ail		Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2	
Mell	ourne Laborate	ory - NATA Site # 1254 &	14271														Х			
Syd	ney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
		y - NATA Site # 20794																		
		NATA Site # 23736																		
46	TP11 2-2.1	May 30, 2019	Soil	S19-My49797				Х												
47	TP11 2.7-2.8	May 30, 2019	Soil	S19-My49798	Х					Х			Х			Х				
48	TP12 0-0.1	May 30, 2019	Soil	S19-My49799	X					Х	Х	Х	Х		Х	Х		Х		
49	TP12 0.5-0.6	May 30, 2019	Soil	S19-My49800	Х					Х			Х			Х				
50	TP12 1-1.1	May 30, 2019	Soil	S19-My49801				X												
51	TP12 1.4-1.5	May 30, 2019	Soil	S19-My49802	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Х		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
52	QA01	May 30, 2019	Soil	S19-My49803	X					X	X	X	X		X	X		X		
53	QA02	May 30, 2019	Soil	S19-My49804	Х					Х	Х	Х	Х		Х	Х		Х	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
54	RIN01	May 30, 2019	Water	S19-My49805										V					Х	
55	TS	May 30, 2019	Water	S19-My49806										X						
56	TB	May 30, 2019	Water	S19-My49807										Х				V		
57	MW01 0-0.1	May 30, 2019	Soil	S19-My49808	Х						Х	Х			X	Х		Х		



Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Unit F3. Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** Project ID:

MW02 1.9-2.0 May 30, 2019

MW02 2.9-3.0 May 30, 2019

**CLUNIES ROSS ST** 

56425

Order No.: Received: May 31, 2019 5:28 PM Report #:

Sydney

658838 Due: Jun 4, 2019 02 8245 0300 Priority: 2 Day

> **Contact Name:** Chris Kauffman

	roject iD:	50425															Euro	fins	mgt	Analy	tical Services Manager : Nibha Vaidya
		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2	
Mel	lbourne Laborat	ory - NATA Site	# 1254 & 142	271														Х			
Syc	dney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Bris	sbane Laborator	y - NATA Site #	20794																		
Per	th Laboratory - I		36		1																
58		May 30, 2019		Soil	S19-My49809				Х												
59		May 30, 2019		Soil	S19-My49810	X															
60		May 30, 2019		Soil	S19-My49811				Х												
61		May 30, 2019		Soil	S19-My49812				Х												
62		May 30, 2019		Soil	S19-My49813				Х												
63		May 30, 2019		Soil	S19-My49814				Х												
64		May 30, 2019		Soil	S19-My49815						Х			Х			Х				
65		May 30, 2019		Soil	S19-My49816				Х												
66	MW02 0-0.1	May 30, 2019		Soil	S19-My49817							Х	Х				Х				
67	MW02 0.9-1.0	May 30, 2019		Soil	S19-My49818	X					Х			Х			Х				

S19-My49819

S19-My49820

Soil

Soil



Address:

**Project Name:** 

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

JBS & G Australia (NSW) P/L **Company Name:** Order No.: Received: May 31, 2019 5:28 PM

> Level 1, 50 Margaret St Report #: 658838 Due: Jun 4, 2019

Sydney Phone: 02 8245 0300 Priority: 2 Day **Contact Name:** NSW 2000 Fax: Chris Kauffman

**CLUNIES ROSS ST** 

Project ID: 56425 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			ole Detail		Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site # 1	1254 & 14271														Χ		
Syd	ney Laboratory	- NATA Site # 182	17		Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х
Bris	bane Laboratory	y - NATA Site # 20	794																
Pert		IATA Site # 23736		I															
70	MW02 3.9-4.0	May 30, 2019	Soil	S19-My49821				Χ											
71	MW02 4.9-5.0		Soil	S19-My49822				Χ											
72	MW02 5.9-6.0	May 30, 2019	Soil	S19-My49823				Χ											
73	MW02 6.9-7.0	May 30, 2019	Soil	S19-My49824				Χ											
74	MW02 7.9-8.0		Soil	S19-My49825				Χ											
75	MW03 0-0.1	May 30, 2019	Soil	S19-My49826				Χ											
76	MW03 0.9-1.0	May 30, 2019	Soil	S19-My49827	Х					Х	Х	Х	Х		Χ	Χ		Χ	$\square$
77	MW03 1.9-2.0	May 30, 2019	Soil	S19-My49828				Χ											$\square$
78	MW03 2.9-3.0	May 30, 2019	Soil	S19-My49829				Χ											$\perp$
79	MW03 3.9-4.0	May 30, 2019	Soil	S19-My49830				Χ											$\square$
80	MW03 4.9-5.0	May 30, 2019	Soil	S19-My49831				Χ											$\square$
81	MW03 5.9-6.0	May 30, 2019	Soil	S19-My49832				Х											



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

May 31, 2019 5:28 PM

Jun 4, 2019

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

**CLUNIES ROSS ST** 

56425

Order No.: Report #: 658838

Phone: Fax:

02 8245 0300

Priority: 2 Day **Contact Name:** 

Received:

Due:

Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sar	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	71														Х		
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Bris	bane Laboratory	y - NATA Site #	20794																	
Pert	h Laboratory - N	IATA Site # 237	36																	
82	MW03 6.9-7.0	May 30, 2019		Soil	S19-My49833				Х											
83	MW03 7.9-8.0	May 30, 2019		Soil	S19-My49834						Х			Х		Х	Х		Х	
Test	Counts					32	1	1	36	2	33	19	19	33	2	18	41	2	18	1



### Internal Quality Control Review and Glossary

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

### **Terms**

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. Certified Reference Material - reported as percent recovery. CRM

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

A second piece of analysis from the same sample and reported in the same units as the result to show comparison. Duplicate

USEPA United States Environmental Protection Agency

**APHA** American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018 CP Client Parent - QC was performed on samples pertaining to this report

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within NCP

TEQ Toxic Equivalency Quotient

## QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHxA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

## QC Data General Comments

- Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 658838-S



# **Quality Control Results**

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dichloropropane	mg/kg	< 0.5	0.5	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.5	0.5	Pass	
1.2.4-Trimethylbenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichloropropane	mg/kg	< 0.5	0.5	Pass	
1.3.5-Trimethylbenzene	mg/kg	< 0.5	0.5	Pass	
1.4-Dichlorobenzene		< 0.5	0.5	Pass	
2-Butanone (MEK)	mg/kg	< 0.5	0.5	Pass	
2-Propanone (Acetone)	mg/kg	< 0.5	0.5	Pass	
4-Chlorotoluene	mg/kg	< 0.5	0.5	Pass	
	mg/kg				
4-Methyl-2-pentanone (MIBK)	mg/kg	< 0.5	0.5	Pass	
Allyl chloride	mg/kg	< 0.5	0.5	Pass	
Benzene	mg/kg	< 0.1	0.1	Pass	
Bromobenzene	mg/kg	< 0.5	0.5	Pass	
Bromochloromethane	mg/kg	< 0.5	0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5	0.5	Pass	
Bromoform	mg/kg	< 0.5	0.5	Pass	
Bromomethane	mg/kg	< 0.5	0.5	Pass	
Carbon disulfide	mg/kg	< 0.5	0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5	0.5	Pass	
Chlorobenzene	mg/kg	< 0.5	0.5	Pass	
Chloroethane	mg/kg	< 0.5	0.5	Pass	
Chloroform	mg/kg	< 0.5	0.5	Pass	
Chloromethane	mg/kg	< 0.5	0.5	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Dibromochloromethane	mg/kg	< 0.5	0.5	Pass	
Dibromomethane	mg/kg	< 0.5	0.5	Pass	
Dichlorodifluoromethane	mg/kg	< 0.5	0.5	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
lodomethane	mg/kg	< 0.5	0.5	Pass	
Isopropyl benzene (Cumene)	mg/kg	< 0.5	0.5	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
Methylene Chloride	mg/kg	< 0.5	0.5	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Styrene	mg/kg	< 0.5	0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5	0.5	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Trichloroethene	mg/kg	< 0.5	0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5	0.5	Pass	
Vinyl chloride	mg/kg	< 0.5	0.5	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene  Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene					
	mg/kg	< 0.5	0.5	Pass	
Pyrene  Method Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank Organochlorine Pesticides			T I	l	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD					
	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE 4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank	ı mg/ng ı	10.0	7 0.0	1 400	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 0.4	5	Pass	
Copper	mg/kg	< 5	5	Pass	
••	mg/kg		5	Pass	
Lead		< 5			
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank		Т	T		
Cation Exchange Capacity				_	
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Frac					
TRH C10-C14	%	70	70-130	Pass	
LCS - % Recovery					
Volatile Organics					
1.1-Dichloroethene	%	104	70-130	Pass	
1.1.1-Trichloroethane	%	102	70-130	Pass	
1.2-Dichlorobenzene	%	112	70-130	Pass	
1.2-Dichloroethane	%	102	70-130	Pass	
Benzene	%	99	70-130	Pass	
Ethylbenzene	%	112	70-130	Pass	
m&p-Xylenes	%	104	70-130	Pass	
o-Xylene	%	103	70-130	Pass	
Toluene	%	95	70-130	Pass	
Trichloroethene	%	97	70-130	Pass	
Xylenes - Total	%	104	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions				
Naphthalene	%	110	70-130	Pass	
TRH >C10-C16	%	72	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	111	70-130	Pass	
-	%	117	70-130	Pass	
Acenaphthylene					
Acenaphthylene Anthracene		119	/0-130	Pass	
Anthracene	%	119 121	70-130 70-130	Pass Pass	
		119 121 119	70-130 70-130 70-130	Pass Pass Pass	



Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(g.h.i)perylene			%	127	70-130	Pass	
Benzo(k)fluoranthene			%	114	70-130	Pass	
Chrysene			%	117	70-130	Pass	
Dibenz(a.h)anthracene			%	130	70-130	Pass	
Fluoranthene			%	119	70-130	Pass	
Fluorene			%	118	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	129	70-130	Pass	
Naphthalene			%	113	70-130	Pass	
Phenanthrene			%	119	70-130	Pass	
Pyrene			%	117	70-130	Pass	
LCS - % Recovery			/0	117	70-130	1 033	
Organochlorine Pesticides							
4.4'-DDE			%	122	70-130	Pass	
4.4'-DDT			%				
				115	70-130	Pass	
a-BHC			%	120	70-130	Pass	
Aldrin			%	120	70-130	Pass	
b-BHC			%	112	70-130	Pass	
d-BHC			%	121	70-130	Pass	
Dieldrin			%	120	70-130	Pass	
Endosulfan I			%	119	70-130	Pass	
Endosulfan II			%	123	70-130	Pass	
Endosulfan sulphate			%	122	70-130	Pass	
Endrin			%	115	70-130	Pass	
Endrin aldehyde			%	118	70-130	Pass	
Endrin ketone			%	114	70-130	Pass	
g-BHC (Lindane)			%	120	70-130	Pass	
Heptachlor			%	120	70-130	Pass	
Heptachlor epoxide			%	124	70-130	Pass	
Hexachlorobenzene			%	112	70-130	Pass	
Methoxychlor			%	112	70-130	Pass	
LCS - % Recovery							
Polychlorinated Biphenyls							
Aroclor-1260			%	95	70-130	Pass	
LCS - % Recovery				•			
Heavy Metals							
Arsenic			%	100	70-130	Pass	
Cadmium			%	98	70-130	Pass	
Chromium			%	104	70-130	Pass	
Copper			%	102	70-130	Pass	
Lead			%	102	70-130	Pass	
Mercury			%	98	70-130	Pass	
Nickel			%	104	70-130	Pass	
Zinc			%	102	70-130	Pass	
		QA			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1	Limits	Limits	Code
Spike - % Recovery				Descript			
Heavy Metals	04044 4==		- ·	Result 1	70.45		
Arsenic	S19-My49741	CP	%	87	70-130	Pass	
Cadmium	S19-My49741	CP	%	93	70-130	Pass	
Chromium	S19-My49741	CP	%	71	70-130	Pass	
Copper	S19-My49741	CP	%	93	70-130	Pass	
Lead	S19-My49741	CP	%	87	70-130	Pass	
Mercury	S19-My49741	CP	%	109	70-130	Pass	
Nickel	S19-My49741	CP	%	75	70-130	Pass	
Spike - % Recovery							I



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Polychlorinated Biphenyls	-			Result 1					
Aroclor-1260	S19-My49786	СР	%	108			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbon	ıs			Result 1					
Acenaphthene	S19-My49787	СР	%	125			70-130	Pass	
Acenaphthylene	S19-My49787	СР	%	125			70-130	Pass	
Anthracene	S19-My49787	СР	%	124			70-130	Pass	
Benz(a)anthracene	S19-My49787	СР	%	125			70-130	Pass	
Benzo(a)pyrene	S19-My49787	CP	%	126			70-130	Pass	
Benzo(k)fluoranthene	S19-My49787	CP	%	120			70-130	Pass	
Chrysene	S19-My49787	CP	%	127			70-130	Pass	
Dibenz(a.h)anthracene	S19-My49787	CP	%	130			70-130	Pass	
Fluoranthene	S19-My49787	CP	%	121			70-130	Pass	
Fluorene	S19-My49787	CP	%	126			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-My49787	CP	%	130			70-130	Pass	
Naphthalene	S19-My49787	CP	%	128			70-130	Pass	
Phenanthrene	S19-My49787	CP	%	124			70-130	Pass	
Pyrene	S19-My49787	CP	%	121			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S19-My49731	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S19-My49731	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-My49731	CP	mg/kg	130	150	9.0	30%	Pass	
TRH C29-C36	S19-My49731	CP	mg/kg	110	110	3.0	30%	Pass	
Duplicate	1 2.2,			1.4			5575	1 5.55	
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2-Trichloroethane	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichlorobenzene	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.4-Trimethylbenzene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichlorobenzene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3.5-Trimethylbenzene	S19-My49731	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Butanone (MEK)	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Propanone (Acetone)		1	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Propanone (Acetone) 4-Chlorotoluene	S19-Mv49731	L CP	IIIU/NU	,					
4-Chlorotoluene	S19-My49731 S19-My49731	CP CP		< 0.5	< 0.5	<1	30%	Pass	
4-Chlorotoluene 4-Methyl-2-pentanone (MIBK)	S19-My49731	СР	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	
4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) Allyl chloride	S19-My49731 S19-My49731	CP CP	mg/kg mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) Allyl chloride Benzene	S19-My49731 S19-My49731 S19-My49731	CP CP	mg/kg mg/kg mg/kg	< 0.5 < 0.1	< 0.5 < 0.1	<1 <1	30% 30%	Pass Pass	
4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) Allyl chloride Benzene Bromobenzene	S19-My49731 S19-My49731 S19-My49731 S19-My49731	CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.1 < 0.5	< 0.5 < 0.1 < 0.5	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) Allyl chloride Benzene Bromobenzene Bromochloromethane	\$19-My49731 \$19-My49731 \$19-My49731 \$19-My49731 \$19-My49731	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.1 < 0.5 < 0.5	< 0.5 < 0.1 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) Allyl chloride Benzene Bromobenzene	S19-My49731 S19-My49731 S19-My49731 S19-My49731	CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.1 < 0.5	< 0.5 < 0.1 < 0.5	<1 <1 <1	30% 30% 30%	Pass Pass Pass	



D Parts									
Duplicate							T		
Volatile Organics	T =			Result 1	Result 2	RPD		_	
Carbon disulfide	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroethane	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.2-Dichloroethene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorodifluoromethane	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethylbenzene	S19-My49731	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
lodomethane	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Isopropyl benzene (Cumene)	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
m&p-Xylenes	S19-My49731	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methylene Chloride	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
o-Xylene	S19-My49731	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Styrene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toluene	S19-My49731	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
trans-1.2-Dichloroethene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Xylenes - Total	S19-My49731	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				T	1		T		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	ı	Result 1	Result 2	RPD			
Naphthalene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-My49731	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S19-My49731	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-My49731	CP	mg/kg	210	220	8.0	30%	Pass	
TRH >C34-C40	S19-My49731	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				T	T		ı	T	
Polycyclic Aromatic Hydrocarbons	S		T	Result 1	Result 2	RPD			
Acenaphthene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S19-My49731	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	



Duplicate									
		Dogult 1	Decult 2	DDD					
Heavy Metals	040 M 40740	0.0		Result 1	Result 2	RPD	000/	D	
Arsenic	S19-My49740	CP	mg/kg	15	11	<1	30%	Pass	
Cadmium	S19-My49740	CP	mg/kg	2.0	1.7	16	30%	Pass	
Chromium	S19-My49740	CP	mg/kg	160	140	11	30%	Pass	
Copper	S19-My49740	CP	mg/kg	250	260	4.0	30%	Pass	
Lead	S19-My49740	CP	mg/kg	1100	400	<1	30%	Pass	
Mercury	S19-My49740	CP	mg/kg	0.2	0.2	18	30%	Pass	
Nickel	S19-My49740	CP	mg/kg	180	180	2.0	30%	Pass	
Zinc	S19-My49740	CP	mg/kg	1200	1000	13	30%	Pass	
Duplicate				ı	1		1		
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S19-My49743	СР	uS/cm	94	58	39	30%	Fail	Q15
pH (1:5 Aqueous extract at 25°C as rec.)	S19-My49743	СР	pH Units	7.1	7.3	Pass	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S19-My49786	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-My49786	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-My49786	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S19-My49786	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-My49786	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S19-My49786	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD			
Acenaphthene	S19-My49786	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S19-My49786	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S19-My49786	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S19-My49786	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S19-My49786	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S19-My49786	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S19-My49786	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	



#### Comments

# Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

#### **Qualifier Codes/Comments**

Code	Description

The LORs have been raised due to matrix interference G01

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

# **Authorised By**

N02

Nibha Vaidya Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Senior Analyst-Metal (VIC) Emily Rosenberg Gabriele Cordero Senior Analyst-Inorganic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW) Julie Kay Senior Analyst-Inorganic (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW)



#### Glenn Jackson

# **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential changes including, but not limited to, lost profits, damages for relative to meet declarities and other production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unless indicated otherwise, the tests were performed on the samples as received.



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Chris Kauffman

Report 658838-W

Project name CLUNIES ROSS ST

Project ID 56425

Received Date May 31, 2019

Client Sample ID			RIN01	R20 <b>TS</b>	тв
Sample Matrix			Water	Water	Water
Eurofins   mgt Sample No.			S19-My49805	S19-My49806	S19-My49807
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit	, , , , , , , , , , , , , , , , , , , ,	,,,	, , , , , , , , , , , , , , , , , , , ,
Total Recoverable Hydrocarbons - 1999 NEPM		Offic			
TRH C6-C9	0.02	mg/L	< 0.02	_	_
TRH C10-C14	0.05	mg/L	< 0.05	-	
TRH C15-C28	0.03	mg/L	< 0.1		_
TRH C29-C36	0.1	mg/L	< 0.1		
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-	
BTEX	0.1	IIIg/L	< 0.1	<del>-</del>	_
	0.001	ma/l	- 0.001	100	z 0 001
Benzene Toluene	0.001	mg/L	< 0.001	100 98	< 0.001
	0.001	mg/L	< 0.001	98	< 0.001
Ethylbenzene m&p-Xylenes	0.001	mg/L mg/L	< 0.001 < 0.002	99	< 0.001 < 0.002
	0.002			99	
o-Xylene		mg/L	< 0.001	99	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003		< 0.003
4-Bromofluorobenzene (surr.)	-	%	95	67	87
Total Recoverable Hydrocarbons - 2013 NEPM		<u> </u>			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-	-
TRH C6-C10	0.02	mg/L	< 0.02	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	=	-
TRH >C10-C16	0.05	mg/L	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	=	-
TRH >C16-C34	0.1	mg/L	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	-	-
Polycyclic Aromatic Hydrocarbons	<u> </u>	Ι			
Acenaphthene	0.001	mg/L	< 0.001	-	-
Acenaphthylene	0.001	mg/L	< 0.001	-	-
Anthracene	0.001	mg/L	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	-	-
Fluorene	0.001	mg/L	< 0.001	-	-



Client Sample ID			RIN01	R20 <b>TS</b>	тв
Sample Matrix			Water	Water	Water
·					
Eurofins   mgt Sample No.			S19-My49805	S19-My49806	S19-My49807
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	-	-
Total PAH*	0.001	mg/L	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	69	-	-
p-Terphenyl-d14 (surr.)	1	%	75	-	-
Organochlorine Pesticides					
Chlordanes - Total	0.001	mg/L	< 0.001	-	-
4.4'-DDD	0.0001	mg/L	< 0.0001	-	-
4.4'-DDE	0.0001	mg/L	< 0.0001	-	-
4.4'-DDT	0.0001	mg/L	< 0.0001	-	-
a-BHC	0.0001	mg/L	< 0.0001	-	-
Aldrin	0.0001	mg/L	< 0.0001	-	-
b-BHC	0.0001	mg/L	< 0.0001	-	-
d-BHC	0.0001	mg/L	< 0.0001	-	-
Dieldrin	0.0001	mg/L	< 0.0001	-	-
Endosulfan I	0.0001	mg/L	< 0.0001	-	-
Endosulfan II	0.0001	mg/L	< 0.0001	-	-
Endosulfan sulphate	0.0001	mg/L	< 0.0001	-	-
Endrin	0.0001	mg/L	< 0.0001	-	-
Endrin aldehyde	0.0001	mg/L	< 0.0001	_	-
Endrin ketone	0.0001	mg/L	< 0.0001	-	-
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	_	-
Heptachlor	0.0001	mg/L	< 0.0001	-	-
Heptachlor epoxide	0.0001	mg/L	< 0.0001	-	-
Hexachlorobenzene	0.0001	mg/L	< 0.0001	-	-
Methoxychlor	0.0001	mg/L	< 0.0001	-	-
Toxaphene	0.01	mg/L	< 0.01	-	-
Aldrin and Dieldrin (Total)*	0.0001	mg/L	< 0.0001	-	-
DDT + DDE + DDD (Total)*	0.0001	mg/L	< 0.0001	-	-
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	< 0.001	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	< 0.001	-	-
Dibutylchlorendate (surr.)	1	%	INT	-	-
Tetrachloro-m-xylene (surr.)	1	%	INT	-	-
Polychlorinated Biphenyls	1	1			
Aroclor-1016	0.005	mg/L	< 0.005	_	-
Aroclor-1221	0.001	mg/L	< 0.001	_	-
Aroclor-1232	0.005	mg/L	< 0.005	_	_
Aroclor-1242	0.005	mg/L	< 0.005	_	-
Aroclor-1248	0.005	mg/L	< 0.005	_	_
Aroclor-1254	0.005	mg/L	< 0.005	_	_
Aroclor-1260	0.005	mg/L	< 0.005	-	_
Total PCB*	0.003	mg/L	< 0.003	_	_
Dibutylchlorendate (surr.)	1	%	INT	_	_
Tetrachloro-m-xylene (surr.)	1	%	INT	-	-

Report Number: 658838-W



Client Sample ID Sample Matrix			RIN01 Water	R20TS Water	TB Water
Eurofins   mgt Sample No.			S19-My49805	S19-My49806	S19-My49807
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit			
Heavy Metals					
Arsenic	0.001	mg/L	< 0.001	-	-
Cadmium	0.0002	mg/L	< 0.0002	-	-
Chromium	0.001	mg/L	< 0.001	-	-
Copper	0.001	mg/L	< 0.001	-	-
Lead	0.001	mg/L	< 0.001	-	-
Mercury	0.0001	mg/L	< 0.0001	-	-
Nickel	0.001	mg/L	< 0.001	-	-
Zinc	0.005	mg/L	< 0.005	_	_

Report Number: 658838-W



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	<b>Holding Time</b>
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 31, 2019	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 31, 2019	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 31, 2019	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 31, 2019	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	May 31, 2019	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	May 31, 2019	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	May 31, 2019	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	May 31, 2019	28 Day

⁻ Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Report Number: 658838-W



Address:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Unit F3, Building F

Sydney

**Brisbane**1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: May 31, 2019 5:28 PM

 Level 1, 50 Margaret St
 Report #:
 658838
 Due:
 Jun 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 2 Day

NSW 2000 Fax: Contact Name: Chris Kauffman

Project Name: CLUNIES ROSS ST

Project ID: 56425

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail  Melbourne Laboratory - NATA Site # 1254 & 14271							Asbestos Absence / Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271														Х		
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Χ
Bris	bane Laborator	y - NATA Site #	20794																	
Pert	h Laboratory - N	NATA Site # 237	36																	
Exte	rnal Laboratory	<u>'</u>																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	SS01	May 30, 2019		Soil	S19-My49731	Х					Х	Х	Х	Х		Х	Х		Х	
2	SS02	May 30, 2019		Soil	S19-My49732	Х					Х	Х	Х	Х		Х	Х		Х	
3	SS03	May 30, 2019		Soil	S19-My49733	Х					Х			Х			Х			
4	SS04	May 30, 2019		Soil	S19-My49734	Х					Х			Х			Х			
5	SS05	May 30, 2019		Soil	S19-My49735	Х					Х	Х	Х	Х			Х			
6	EMB1	May 30, 2019		Soil	S19-My49736	Х					Х	Х	Х	Х		Х	Х		Х	
7	FRAG01	May 30, 2019		Building Materials	S19-My49737		Х													
8	HA01	May 30, 2019		Soil	S19-My49738	Х					Х			Х			Χ			
9	HA02	May 30, 2019		Soil	S19-My49739	Х					Х	Х	Х	Х		Χ	Х		Х	

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 5 of 17
Report Number: 658838-W



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

02 8245 0300

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID: **CLUNIES ROSS ST** 

56425

Received: May 31, 2019 5:28 PM 658838 Due: Jun 4, 2019

 Due:
 Jun 4, 2019

 Priority:
 2 Day

Contact Name: Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail						CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	oourne Laborate	ory - NATA Site #	1254 & 14271														Х		
Syd	ney Laboratory	- NATA Site # 182	17		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Bris	bane Laborator	y - NATA Site # 20	)794																
Pert	h Laboratory - I	NATA Site # 23736	3																
10	HA03	May 30, 2019	Soil	S19-My49740	Х					Х	Х	Х	Х		Х	Х		Х	
11	HA04	May 30, 2019	Soil	S19-My49741	Х					Х			Х			Χ			
12	TP01 0-0.1	May 30, 2019	Soil	S19-My49742	Х					Х	Х	Х	Х		Х	Χ		Х	
13	TP01 0.3-0.4	May 30, 2019	Soil	S19-My49743					Х							Х	Х		
14	TP01 1-1.1	May 30, 2019	Soil	S19-My49744											Х	Х		Х	
15	TP01 1.4-1.5	May 30, 2019	Soil	S19-My49745					Х							Χ	Х		
16	TP02 0-0.1	May 30, 2019	Soil	S19-My49746	Х						Х	Х				Х			
17	TP02 0.5-0.6	May 30, 2019	Soil	S19-My49747				Х											
18	TP02 1-1.1	May 30, 2019	Soil	S19-My49748						Х			Х			Х			
19	TP02 2-2.1	May 30, 2019	Soil	S19-My49749				Х											
20	TP02 2.4-2.5	May 30, 2019	Soil	S19-My49771				Х											
21	TP03 0-0.1	May 30, 2019	Soil	S19-My49772	Х					Х			Х			Χ			



Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F **Brisbane**1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID: **CLUNIES ROSS ST** 

56425

 Order No.:
 Received:
 May 31, 2019 5:28 PM

 Report #:
 658838
 Due:
 Jun 4, 2019

658838 **Due:** Jun 4, 2019 02 8245 0300 **Priority:** 2 Day

Contact Name: Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail					Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	ourne Laborate	ory - NATA Site #	1254 & 14271														Χ		
Syd	ney Laboratory	- NATA Site # 182	217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х
Bris	bane Laborator	y - NATA Site # 20	0794																
Pert	h Laboratory - I	NATA Site # 23736	6																
22	TP03 0.5-0.6	May 30, 2019	Soil	S19-My49773				Х											
23	TP03 1-1.1	May 30, 2019	Soil	S19-My49774				Х											
24	TP03 2-2.1	May 30, 2019	Soil	S19-My49775				Х											
25	TP04 0-0.1	May 30, 2019	Soil	S19-My49776	Х					Х	Х	Х	Х		Χ	Χ		Х	
26	TP04 0.5-0.6	May 30, 2019	Soil	S19-My49777	Х					Х			Х			Χ			
27	TP04 1-1.1	May 30, 2019	Soil	S19-My49778				Х											
28	TP05 0-0.1	May 30, 2019	Soil	S19-My49779	Х					Х			Х			Χ			
29	TP05 1-1.1	May 30, 2019	Soil	S19-My49780			Х												
30	TP05 2-2.2	May 30, 2019	Soil	S19-My49781							Х	Х				Χ			
31	TP05 2.4-2.5	May 30, 2019	Soil	S19-My49782				Х											
32	TP06 0-0.1	May 30, 2019	Soil	S19-My49783	Х					Х	Х	Х	Х		Χ	Х		Х	
33	TP06 1-1.1	May 30, 2019	Soil	S19-My49784				Х											



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

658838

02 8245 0300

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

May 31, 2019 5:28 PM

Jun 4, 2019

Chris Kauffman

2 Day

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name:

**CLUNIES ROSS ST** 

Project ID:

56425

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Received:

Priority:

**Contact Name:** 

Due:

	Sample Detail						CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	oourne Laborat	ory - NATA Site # 1	254 & 14271														Χ		
Syd	ney Laboratory	- NATA Site # 1821	17		Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 20	794																
Pert	h Laboratory - I	NATA Site # 23736																	
34	TP06 1.4-1.5	May 30, 2019	Soil	S19-My49785						Х			Х			Х			
35	TP07 0-0.1	May 30, 2019	Soil	S19-My49786	Х					Х	Х	Х	Χ		Х	Х		Х	
36	TP08 0-0.1	May 30, 2019	Soil	S19-My49787	Х					Х			Χ			Х			
37	TP09 0-0.1	May 30, 2019	Soil	S19-My49788				Х											
38	TP09 0.4-0.5	May 30, 2019	Soil	S19-My49789	Х					Х			Х			Х			
39	TP09 0.9-1.0	May 30, 2019	Soil	S19-My49790				Х											
40	TP10 0-0.1	May 30, 2019	Soil	S19-My49791	Х					Х			Х			Х			
41	TP10 0.4-0.5	May 30, 2019	Soil	S19-My49792				Х											
42	TP10 1-1.1	May 30, 2019	Soil	S19-My49793	Х					Х	Х	Х	Χ		Х	Х		Х	
43	TP11 0-0.1	May 30, 2019	Soil	S19-My49794	Х					Х			Χ			Х			
44	TP11 0.3-0.4	May 30, 2019	Soil	S19-My49795											Х	Х		Х	
45	TP11 1-1.1	May 30, 2019	Soil	S19-My49796				Х											



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

**Contact Name:** 

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

May 31, 2019 5:28 PM

Jun 4, 2019

Chris Kauffman

2 Day

JBS & G Australia (NSW) P/L **Company Name:** 

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name:

**CLUNIES ROSS ST** 

Project ID: 56425

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

02 8245 0300

658838

																		, 5	
		Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2			
Mel	bourne Laborate	ory - NATA Site # 12													Х				
Syd	ney Laboratory		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Bris	bane Laborator	y - NATA Site # 2079	94																
Per	th Laboratory - I	NATA Site # 23736																	
46	TP11 2-2.1	May 30, 2019	Soil	S19-My49797				Х											
47	TP11 2.7-2.8	May 30, 2019	Soil	S19-My49798	Х					Х			Х			Х			
48	TP12 0-0.1	May 30, 2019	Soil	S19-My49799	Х					Х	Х	Х	Х		Χ	Х		Х	
49	TP12 0.5-0.6	May 30, 2019	Soil	S19-My49800	Х					Х			Х			Х			
50	TP12 1-1.1	May 30, 2019	Soil	S19-My49801				Х											
51	TP12 1.4-1.5	May 30, 2019	Soil	S19-My49802				Х											
52	QA01	May 30, 2019	Soil	S19-My49803	Х					Х	Х	Х	Х		Χ	Х		Х	
53	QA02	May 30, 2019	Soil	S19-My49804	Х					Х	Х	Х	Х		Х	Х		Х	
54	RIN01	May 30, 2019	Water	S19-My49805														Ш	Х
55	TS	May 30, 2019	Water	S19-My49806										Х					
56	ТВ	May 30, 2019	Water	S19-My49807										Х					
57	MW01 0-0.1	May 30, 2019	Soil	S19-My49808	Х						Х	Х			Χ	Х		Х	i



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 **Brisbane**1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID: **CLUNIES ROSS ST** 

56425

 Order No.:
 Received:
 May 31, 2019 5:28 PM

 Report #:
 658838
 Due:
 Jun 4, 2019

Phone: 02 8245 0300 Priority: 2 Day

Fax: Contact Name: Chris Kauffman

Eurofins   mgt Analytical Services Manager : Nibha Vaidya
-----------------------------------------------------------

		Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2			
Mell	oourne Laborato	ory - NATA Site #														Х			
Syd	ney Laboratory	- NATA Site # 18	217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site # 2	0794																
Pert	h Laboratory - N	IATA Site # 2373	6																
58	MW01 0.9-1.0	May 30, 2019	Soil	S19-My49809				Х											
59	MW01 1.9-1.0	May 30, 2019	Soil	S19-My49810	Х														
60	MW01 2.9-3.0	May 30, 2019	Soil	S19-My49811				Х											
61	MW01 3.9-4.0	May 30, 2019	Soil	S19-My49812				Х											
62	MW01 4.9-5.0	May 30, 2019	Soil	S19-My49813				Х											
63	MW01 5.9-6.0	May 30, 2019	Soil	S19-My49814				Х											
64	MW01 6.9-7.0	S19-My49815						Х			Х			Х					
65	MW01 7.9-8.0	May 30, 2019	Soil	S19-My49816				Х											
66	MW02 0-0.1	May 30, 2019	Soil	S19-My49817							Х	Х				Х			
67	MW02 0.9-1.0	May 30, 2019	Soil	S19-My49818	Х					Х			Х			Х			
68	MW02 1.9-2.0	May 30, 2019	Soil	S19-My49819				Х											
69	MW02 2.9-3.0	May 30, 2019	Soil	S19-My49820				Х											



Address:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: May 31, 2019 5:28 PM

 Level 1, 50 Margaret St
 Report #:
 658838
 Due:
 Jun 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 2 Day

NSW 2000 Fax: Contact Name: Chris Kauffman

Project Name: CLUNIES ROSS ST

Project ID: 56425

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Asbestos - WA guidelines	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2			
Mel	bourne Laborate	ory - NATA Site # 12													Х				
Syc	Iney Laboratory	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Bris	sbane Laborator	y - NATA Site # 207	94																
Per	th Laboratory - N	NATA Site # 23736																	
70	MW02 3.9-4.0	May 30, 2019	Soil	S19-My49821				Х											
71	MW02 4.9-5.0	May 30, 2019	Soil	S19-My49822				Х											
72	MW02 5.9-6.0	May 30, 2019	Soil	S19-My49823				Х											
73	MW02 6.9-7.0	May 30, 2019	Soil	S19-My49824				Х											
74	MW02 7.9-8.0	May 30, 2019	Soil	S19-My49825				Х											
75	MW03 0-0.1	May 30, 2019	Soil	S19-My49826				Х											
76	MW03 0.9-1.0	S19-My49827	Х					Х	Х	Х	Х		Х	Х		Х			
77	MW03 1.9-2.0	May 30, 2019	Soil	S19-My49828				Х											
78	MW03 2.9-3.0	May 30, 2019	Soil	S19-My49829				Х											
79	MW03 3.9-4.0	May 30, 2019	Soil	S19-My49830				Х											
80	MW03 4.9-5.0	May 30, 2019	Soil	S19-My49831				Х											
81	MW03 5.9-6.0	May 30, 2019	Soil	S19-My49832				Х								7		7	, l



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

**CLUNIES ROSS ST** 

56425

Order No.: Report #:

658838

Phone: 02 8245 0300

Fax:

Priority:

Received:

Due:

Jun 4, 2019

2 Day

May 31, 2019 5:28 PM

**Contact Name:** Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sample Detail  Laboratory - NATA Site # 1254 & 14271 boratory - NATA Site # 18217 aboratory - NATA Site # 20794 boratory - NATA Site # 23736					Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Volatile Organics	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	71														Х		
Syd	ney Laboratory	- NATA Site # 18	3217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794																	
Pert	Perth Laboratory - NATA Site # 23736																			
82									Х											
83	3 MW03 7.9-8.0 May 30, 2019 Soil S19-My498										Х			Х		Х	Х		Х	
Test Counts							1	1	36	2	33	19	19	33	2	18	41	2	18	1



#### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

**ppm:** Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **Terms**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**USEPA** United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



# **Quality Control Results**

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		, , , , , , , , , , , , , , , , , , , ,		T	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	1				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank	, j				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank	1g, =	, , , , ,	, , , , , , , , , , , , , , , , , , , ,	1	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	1 -				
	mg/L	< 0.001 < 0.001	0.001	Pass	
Fluorene	mg/L		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	-
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		T T		T	
Polychlorinated Biphenyls	"	0.005	2007	+-	
Aroclor-1016	mg/L	< 0.005	0.005	Pass	
Aroclor-1221	mg/L	< 0.001	0.001	Pass	-
Aroclor-1232	mg/L	< 0.005	0.005	Pass	-
Aroclor-1242	mg/L	< 0.005	0.005	Pass	
Aroclor-1248	mg/L	< 0.005	0.005	Pass	-
Aroclor-1254	mg/L	< 0.005	0.005	Pass	
Aroclor-1260	mg/L	< 0.005	0.005	Pass	
Total PCB*	mg/L	< 0.001	0.001	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	T				
TRH C6-C9	%	98	70-130	Pass	



					Acceptance	Pass	Qualifying
		Units	Result 1		Limits	Limits	Code
		%	74		70-130	Pass	
				1			
		%	103		70-130	Pass	
2010 NEDM E			T	T T		Ι	
· 2013 NEPM Fract	ions	0/	444		70.100	_	
			i				
		%	/4		70-130	Pass	
•							
<u>5</u>		0/	04		70.400	Doc-	
			i				
			1				
			1				
			1				
			1				
			i		1		
			1				
-			i e				
		%	76		70-130	Pass	
Lab Sample ID	QA Source	Units	Result 1				Qualifying Code
4000 NEDI	·		December 4				
		0.1			70.400	D	
S19-My49286	I NCP	%	103		70-130	Pass	
			Decult 4				
C40 M: 40000	NOD	0/	1		70.400	Dana	
1							
<u> </u>							
1							
1	1						
319-101949200	INCP	70	105		10-130	rass	
- 2013 NEDM Eroot	ione		Recult 1				
S19-My49286	NCP	%	107		70-130	Pass	
1		%	107		70-130	Pass	
S19-Mv/49286							
S19-My49286	NCP	70	100		70 100		
S19-My49286	NCP	70	Result 1		70 100		
	Lab Sample ID  - 1999 NEPM Fract	Lab Sample ID	%   %   %   %   %   %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %   %     %     %     %     %     %     %     %     %     %     %   %     %     %     %     %     %     %     %     %     %     %   %     %     %     %     %     %     %     %     %     %     %   %     %     %     %     %     %     %     %     %     %     %   %     %     %     %     %     %     %     %     %     %     %   %     %     %     %     %     %     %     %     %     %     %   %     %     %     %     %     %     %     %     %     %     %   %     %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %	%   74	%   74	%   74   70-130	



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Cadmium	S19-My46113	NCP	%	97			70-130	Pass	
Chromium	S19-My46113	NCP	%	100			70-130	Pass	
Copper	S19-My46113	NCP	%	97			70-130	Pass	
Lead	S19-My46113	NCP	%	98			70-130	Pass	
Mercury	S19-My46113	NCP	%	99			70-130	Pass	
Nickel	S19-My46113	NCP	%	98			70-130	Pass	
Zinc	S19-My46113	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S19-My49257	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S19-My49257	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S19-My49257	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S19-My49257	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S19-My49257	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S19-My49257	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S19-My49257	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S19-My49257	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S19-My49257	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-My49805	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S19-My49805	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S19-My49805	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S19-My49805	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S19-My49805	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S19-My49805	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S19-My49805	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	



#### Comments

# Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

#### **Qualifier Codes/Comments**

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

#### **Authorised By**

N02

Nibha Vaidva Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW)



### Glenn Jackson

#### **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

# CHAIN OF CUSTODY



DATE TIME TYPE & PRESERVATIVE pH 353.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4.4  3.5.4  3.5.4  3.5.4  3.5.4  3.5.4  3.5.4  3.5.4  3.5.4  3.5.4	SPO M.	COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:		SAMPLE ID MATRIX	SSO6 Soil			1000	003	100						RELINQUISHED BY:	elant 4	DATE:
TIME TYPE & PRESERVATIVE PH AS B  THE STATE OF SHIPMENT:  NAME: CHARLE OF S	nnsw@	ISPOSAL:					cud 46										61.3	
TYPE & PRESERVATIVE DH ASSOCIATION DE SHIPMENT:  METHOD OF SHIPMENT:  METHOD OF SHIPMENT:  MAME: CHACLE  DATE: 416  NAME: CHACLE  DATE: 416  NAME: CHACLE  DATE: 416	jbsg.com.a				14		19										CONSIGNMEI TRANSPORT	CONSIGNME
NAME: CHICLE PATE: TICE PATE: DATE:	SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)				7+0	+	Bas	-		*						METHOD OF SHIPMENT:	NT NOTE NO.	NT NOTE NO.
RECEIVED BY:  RECEIVED BY:  AME: CHACLE  ATE: 416  DATE:	bsg.com.			PH	3													
COOLER SEA COOLER SEA	_				×	X	*	*	*	8						RECEIVED BY:	NAME: GIACLE DATE: 416 OF: EUICH-N	
	@jbsg.com.au	ASBES ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY ANALY	ANALYSIS ANALYSIS M/WA	NEPM/V		×	*	×	×							FOR RECEIVING LAB USE ONLY:	COOLER SEAL – Yes No Intact Broken COOLER TEMP deg C	0

IMSO FormsO13 - Chain of Custody - Generic



Melbourne

**Sydney** Unit F3, Building F 

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

# Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Chris Kauffman **CLUNIES ROSS ST** Project name:

Project ID: 56425

COC number: Not provided

Turn around time: 1 Day

Jun 4, 2019 3:26 PM Date/Time received:

Eurofins | mgt reference: 659015

# Sample information

- $\mathbf{V}$ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\mathbf{V}$ Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 12.3 degrees Celsius.
- $\mathbf{V}$ All samples have been received as described on the above COC.
- $\square$ COC has been completed correctly.
- $\square$ Attempt to chill was evident.
- $\mathbf{V}$ Appropriately preserved sample containers have been used.
- $\mathbf{V}$ All samples were received in good condition.
- $\square$ Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Appropriate sample containers have been used.
- $\boxtimes$ Split sample sent to requested external lab.
- $\boxtimes$ Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

#### Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Chris Kauffman - ckauffman@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.



NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis





Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

659015

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name:

Project ID: 56425

**CLUNIES ROSS ST** 

Received: Jun 4, 2019 3:26 PM

Due: Jun 5, 2019 Priority: 1 Day

**Contact Name:** Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Asbestos - WA guidelines	Asbestos Absence /Presence	Lead										
Melk	oourne Laborat	ory - NATA Site	# 1254 & 142	271									
		- NATA Site # 1				Х	Х	Х					
	Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736												
Exte													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SS06	Jun 03, 2019		Soil	S19-Jn01663	Х							
2	SS07	Jun 03, 2019		Soil	S19-Jn01664	Х							
3	BP-001	Jun 03, 2019		Building Materials	S19-Jn01665		Х						
4	BP-002	Jun 03, 2019		Building Materials	S19-Jn01666		Х						
5	BP-003	Jun 03, 2019		Building Materials	S19-Jn01667		Х						
6	BP-004	Jun 03, 2019		Building Materials	S19-Jn01668			х					
Test	Counts					2	3	1					



# Certificate of Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Chris Kauffman

659015-AID

Project Name CLUNIES ROSS ST

Project ID 56425

**Received Date** Jun 04, 2019 **Date Reported** Jun 06, 2019





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

# Methodology:

Asbestos Fibre Identification

Attention:

Report

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.







Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Project Name CLUNIES ROSS ST** 

Project ID 56425

Date Reported: Jun 06, 2019

**Date Sampled** Jun 03, 2019 Report 659015-AID

Client Sample ID	Eurofins   mgt Sample No.	Date Sampled	Sample Description	Result
SS06	19-Jn01663	Jun 03, 2019	Sample consisted of: Brown coarse argined soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS07	19-Jn01664	Jun 03, 2019		No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BP-001	19-Jn01665	Jun 03, 2019	Approximate Sample 1g / 30x30x1mm Sample consisted of: Soft fibrous material	No asbestos detected. Synthetic mineral fibre detected.
BP-002	19-Jn01666	Jun 03, 2019	Approximate Sample 1g / 40x10x1mm Sample consisted of: Scraped fibrous plaster cement	No asbestos detected. Organic fibre detected.
BP-003	19-Jn01667	Jun 03, 2019	Approximate Sample 2g / 30x12x2mm Sample consisted of: Flexible floor covering material	No asbestos detected.

Page 2 of 6 Report Number: 659015-AID ABN: 50 005 085 521 Telephone: +61 2 9900 8400



# **Sample History**

Date Reported: Jun 06, 2019

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	<b>Testing Site</b>	Extracted	<b>Holding Time</b>
Asbestos - LTM-ASB-8020	Sydney	Jun 04, 2019	Indefinite
Asbestos - LTM-ASB-8020	Sydney	Jun 04, 2019	Indefinite



Fax:

Asbesto Asbesto Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** Project ID:

**CLUNIES ROSS ST** 

56425

Order No.: Received: Jun 4, 2019 3:26 PM

Report #: 659015 Due: Jun 5, 2019 Phone: 02 8245 0300 Priority: 1 Day

> **Contact Name:** Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail							os Absence /Presence	
Melbourne Laboratory - NATA Site # 1254 & 14271								
Sydney Laboratory - NATA Site # 18217						Х	Х	Х
Brisbane Laboratory - NATA Site # 20794								
Perth Laboratory - NATA Site # 23736								
External Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	SS06	Jun 03, 2019		Soil	S19-Jn01663	Х		
2	SS07	Jun 03, 2019		Soil	S19-Jn01664	Х		
3	BP-001	Jun 03, 2019		Building Materials	S19-Jn01665		Х	
4	BP-002	Jun 03, 2019		Building Materials	S19-Jn01666		Х	
5	BP-003	Jun 03, 2019		Building Materials	S19-Jn01667		Х	
6	BP-004	Jun 03, 2019		Building Materials	S19-Jn01668			х
Test Counts						2	3	1

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 4 of 6



#### **Internal Quality Control Review and Glossary**

#### General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

#### Units

**% w/w:** weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

#### **Terms**

**Dry** Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standard

Date Reported: Jun 06, 2019

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

AF equivalent to "non-bonded / friable".

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400



#### Comments

# Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

#### **Qualifier Codes/Comments**

Code Description N/A Not applicable

#### **Asbestos Counter/Identifier:**

Sayeed Abu Senior Analyst-Asbestos (NSW)

#### Authorised by:

Charl Du Preez Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Date Reported: Jun 06, 2019

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 6 of 6



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Chris Kauffman

Report 659015-S

Project name CLUNIES ROSS ST

Project ID 56425

Received Date Jun 04, 2019

Client Sample ID			BP-004 Building
Sample Matrix			Materials
Eurofins   mgt Sample No.			S19-Jn01668
Date Sampled			Jun 03, 2019
Test/Reference	LOR	Unit	
Heavy Metals			
Lead	5	mg/kg	< 5



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeHeavy MetalsSydneyJun 05, 2019180 Day

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Unit F3. Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

**Priority:** 

**Contact Name:** 

Due:

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 4, 2019 3:26 PM

Jun 5. 2019

Chris Kauffman

1 Day

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

**Company Name:** 

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

**Project Name:** 

**CLUNIES ROSS ST** 

Project ID: 56425

02 8245 0300

659015

Asbestos Asbestos Absence - WA guidelines /Presence Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217 Χ Χ Χ Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 **External Laboratory** Sample ID No Sample Date Sampling **Matrix** LAB ID Time SS06 Jun 03, 2019 Soil S19-Jn01663 Х SS07 Soil Х S19-Jn01664 Jun 03, 2019 BP-001 Building Materials Jun 03, 2019 S19-Jn01665 Х Building BP-002 S19-Jn01666 Jun 03, 2019 Х Materials BP-003 Building Jun 03, 2019 S19-Jn01667 Х Materials BP-004 Building Jun 03, 2019 S19-Jn01668 Χ Materials **Test Counts** 2 3

> Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 3 of 5



#### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

**ppm:** Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **Terms**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**USEPA** United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 4 of 5

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 659015-S



#### Comments

# Sample Integrity

Custody Seals Intact (if used)		N/A
Attempt to Chill was evident		Yes
Sample correctly preserved		Yes
Appropriate sample containers have bee	n used	Yes
Sample containers for volatile analysis re	eceived with minimal headspace	Yes
Samples received within HoldingTime		Yes
Some samples have been subcontracted	1	No

# **Authorised By**

Nibha Vaidya Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)
Nibha Vaidya Senior Analyst-Asbestos (NSW)



# Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, in no case shall Eurofins I mg be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported.

# **Enviro Sample NSW**

**To:** Nibha Vaidya; COC NSW

Cc: Alena Bounkeua

Subject: RE: ****1 DAY TAT - FW: 658838: Clunies Ross St (56425) Test results

From: Christopher Kauffman [mailto:ckauffman@jbsq.com.au]

Sent: Wednesday, 5 June 2019 12:30 PM

**To:** Ursula Long

Cc: Nibha Vaidya; Ursula Long; Charl Du Preez

Subject: RE: 658838: Clunies Ross St (56425) Test results

#### **EXTERNAL EMAIL***

Hi Ursula,

I need to schedule some additional analysis for this job as a high priority. Could you please let me know that you guys will be able to achieve this? And I not can we please have the appropriate samples couriered to envirolab?

Can we schedule **ASLP and TCLP for PAHs** on sample **SS05**.

Can we schedule ASLP and TCLP for Heavy Metals on samples TP06 0-0.1 and HA03

We need these on a 24 hour tat.

Please let me know,

Kind regards,

Chris

From: Ursula Long < <a href="mailto:ursulalong85@gmail.com">ursulalong85@gmail.com</a>>

Sent: Tuesday, 4 June 2019 10:12 PM

To: Christopher Kauffman < ckauffman@jbsg.com.au>

Cc: Nibha Vaidya <nibhavaidya@eurofins.com>; ursulalong@eurofins.com

Subject: 658838: Clunies Ross St (56425) Test results

Dear Chris,

Please find attached results for report 658838.

Kind regards,

**Ursula Long** 

Click here to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any



Melbourne

**Sydney** Unit F3, Building F 

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

# Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Chris Kauffman

ADDITIONAL - CLUNIES ROSS ST Project name:

Project ID: 56425

COC number: Not provided

Turn around time: 1 Day

Jun 5, 2019 12:30 PM Date/Time received:

Eurofins | mgt reference: 659182

# Sample information

- $\mathbf{V}$ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\mathbf{V}$ Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 3.5 degrees Celsius.
- $\mathbf{V}$ All samples have been received as described on the above COC.
- $\square$ COC has been completed correctly.
- $\square$ Attempt to chill was evident.
- $\mathbf{V}$ Appropriately preserved sample containers have been used.
- $\mathbf{V}$ All samples were received in good condition.
- $\square$ Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Appropriate sample containers have been used.
- $\boxtimes$ Split sample sent to requested external lab.
- $\boxtimes$ Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

#### Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Chris Kauffman - ckauffman@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.



NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis





Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 5, 2019 12:30 PM

Jun 6, 2019

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** Project ID:

ADDITIONAL - CLUNIES ROSS ST

56425

Order No.: Report #: Phone:

659182

Fax:

02 8245 0300

Priority: 1 Day **Contact Name:** 

Received:

Due:

Chris Kauffman

		Sa	mple Detail			Polycyclic Aromatic Hydrocarbons	AUS Leaching Procedure	USA Leaching Procedure	Metals M8				
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271									
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х				
Brisk	oane Laborator	y - NATA Site #	20794										
Perth	n Laboratory - I	NATA Site # 237	36										
Exte	rnal Laboratory	/		1	I								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SS05	May 30, 2019		US Leachate	S19-Jn02674	Х		Х					
2	SS05	May 30, 2019		AUS Leachate	S19-Jn02675	Х	Х						
3	TP06 0-0.1	May 30, 2019		US Leachate	S19-Jn02676			Х	Х				
4	TP06 0-0.1	May 30, 2019		AUS Leachate	S19-Jn02677		Х		Х				
5	HA03												
6	HA03	May 30, 2019		AUS Leachate	S19-Jn02679		Х		Х				
Test	Counts					2	3	3	4				



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Chris Kauffman

Report 659182-L

Project name ADDITIONAL - CLUNIES ROSS ST

Project ID 56425 Received Date Jun 05, 2019

Client Sample ID			SS05	SS05	TP06 0-0.1	TP06 0-0.1
Sample Matrix			US Leachate	AUS Leachate	US Leachate	AUS Leachate
Eurofins   mgt Sample No.			S19-Jn02674	S19-Jn02675	S19-Jn02676	S19-Jn02677
Date Sampled			May 30, 2019	May 30, 2019	May 30, 2019	May 30, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	_	-
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	-	-
Anthracene	0.001	mg/L	< 0.001	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	0.001	-	-
Benzo(a)pyrene	0.001	mg/L	0.002	0.002	-	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	0.002	0.003	-	-
Benzo(g.h.i)perylene	0.001	mg/L	0.002	0.003	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	0.001	-	-
Chrysene	0.001	mg/L	< 0.001	0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	-	-
Fluoranthene	0.001	mg/L	0.002	0.003	-	-
Fluorene	0.001	mg/L	< 0.001	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	0.001	0.002	-	-
Naphthalene	0.001	mg/L	< 0.001	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	-	-
Pyrene	0.001	mg/L	0.002	0.003	-	-
Total PAH*	0.002	mg/L	0.011	0.019	-	-
2-Fluorobiphenyl (surr.)	1	%	71	143	-	-
p-Terphenyl-d14 (surr.)	1	%	62	122	-	-
Heavy Metals						
Arsenic	0.01	mg/L	-	-	< 0.01	< 0.01
Cadmium	0.005	mg/L	-	-	< 0.005	0.0006
Chromium	0.05	mg/L	-	-	< 0.05	0.80
Copper	0.05	mg/L	-	-	< 0.05	0.069
Lead	0.01	mg/L	-	-	< 0.01	0.007
Mercury	0.001	mg/L	-	-	< 0.001	< 0.0001
Nickel	0.01	mg/L	-	-	0.12	0.44
Zinc	0.05	mg/L	-	-	0.12	0.31
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	-	4.0	-	4.0
pH (initial)	0.1	pH Units	-	7.2	-	7.3
pH (Leachate fluid)	0.1	pH Units	-	7.0	-	7.0
pH (off)	0.1	pH Units	-	6.5	-	8.9



Client Sample ID Sample Matrix Eurofins   mgt Sample No. Date Sampled			SS05 US Leachate S19-Jn02674 May 30, 2019	SS05 AUS Leachate S19-Jn02675 May 30, 2019	TP06 0-0.1 US Leachate S19-Jn02676 May 30, 2019	TP06 0-0.1 AUS Leachate S19-Jn02677 May 30, 2019
Test/Reference	LOR	Unit				
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1	-	1	-
pH (initial)	0.1	pH Units	7.0	-	7.0	-
pH (off)	0.1	pH Units	5.3	-	5.2	-
pH (USA HCl addition)	0.1	pH Units	2	-	2	-

Client Sample ID Sample Matrix Eurofins   mgt Sample No. Date Sampled			HA03 US Leachate S19-Jn02678 May 30, 2019	HA03 AUS Leachate S19-Jn02679 May 30, 2019
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	0.01	mg/L	< 0.01	< 0.01
Cadmium	0.005	mg/L	0.006	0.0005
Chromium	0.05	mg/L	< 0.05	0.17
Copper	0.05	mg/L	0.09	0.11
Lead	0.01	mg/L	0.03	0.23
Mercury	0.001	mg/L	< 0.001	0.0002
Nickel	0.01	mg/L	0.05	0.095
Zinc	0.05	mg/L	1.8	0.67
AUS Leaching Procedure				
Leachate Fluid ^{C01}		comment	-	4.0
pH (initial)	0.1	pH Units	=	6.9
pH (Leachate fluid)	0.1	pH Units	-	7.0
pH (off)	0.1	pH Units	=	6.1
USA Leaching Procedure				
Leachate Fluid ^{C01}		comment	1	-
pH (initial)	0.1	pH Units	6.6	-
pH (off)	0.1	pH Units	5.2	-
pH (USA HCI addition)	0.1	pH Units	2	-



## Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	<b>Holding Time</b>
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 05, 2019	7 Days
- Method:			
Metals M8	Sydney	Jun 06, 2019	28 Day
- Method:			
AUS Leaching Procedure	Sydney	Jun 05, 2019	7 Days
- Method:			
USA Leaching Procedure	Sydney	Jun 05, 2019	14 Day
- Method:			

Report Number: 659182-L



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

Sydney

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 5, 2019 12:30 PM

Jun 6, 2019

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

**Company Name:** JBS & G Australia (NSW) P/L Order No.:

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

ADDITIONAL - CLUNIES ROSS ST

Project ID:

**Project Name:** 

56425

Report #: 659182

Phone: 02 8245 0300 Fax:

Priority: 1 Day **Contact Name:** Chris Kauffman

Received:

Due:

		Sa	mple Detail			Polycyclic Aromatic Hydrocarbons	AUS Leaching Procedure	USA Leaching Procedure	Metals M8
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271					
		- NATA Site # 1				Х	Х	Х	Х
		y - NATA Site #							
		NATA Site # 237	36						
No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	SS05	May 30, 2019		US Leachate	S19-Jn02674	Х		Х	
2	SS05	May 30, 2019		AUS Leachate	S19-Jn02675	Х	Х		
3	TP06 0-0.1	May 30, 2019		US Leachate	S19-Jn02676			Х	Х
4	TP06 0-0.1	May 30, 2019		AUS Leachate	S19-Jn02677		Х		Х
5	HA03	May 30, 2019		US Leachate	S19-Jn02678			Х	Х
6	HA03	May 30, 2019		AUS Leachate	S19-Jn02679		Х		Х
Test	Counts					2	3	3	4

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 4 of 7



#### **Internal Quality Control Review and Glossary**

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

**ppm:** Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **Terms**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**USEPA** United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

## QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

## **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

 Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
 Page 5 of 7

 ABN : 50 005 085 521 Telephone: +61 2 9900 8400
 Report Number: 659182-L



## **Quality Control Results**

Т	est		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.01			0.01	Pass	
Cadmium			mg/L	< 0.005			0.005	Pass	
Chromium			mg/L	< 0.05			0.05	Pass	
Copper			mg/L	< 0.05			0.05	Pass	
Lead			mg/L	< 0.01			0.01	Pass	
Mercury			mg/L	< 0.001			0.001	Pass	
Nickel			mg/L	< 0.01			0.01	Pass	
Zinc			mg/L	< 0.05			0.05	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	96			70-130	Pass	
Cadmium			%	93			70-130	Pass	
Chromium			%	98			70-130	Pass	
Copper			%	97			70-130	Pass	
Lead			%	93			70-130	Pass	
Mercury			%	101			70-130	Pass	
Nickel			%	98			70-130	Pass	
Zinc			%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				•					
Heavy Metals				Result 1					
Arsenic	S19-Jn02679	СР	%	92			70-130	Pass	
Cadmium	S19-Jn02679	СР	%	94			70-130	Pass	
Chromium	S19-Jn02679	СР	%	97			70-130	Pass	
Copper	S19-Jn02679	СР	%	97			70-130	Pass	
Lead	S19-Jn02679	СР	%	107			70-130	Pass	
Mercury	S19-Jn02679	СР	%	110			70-130	Pass	
Nickel	S19-Jn02679	СР	%	96			70-130	Pass	
Zinc	S19-Jn02679	СР	%	112			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							·		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Jn02114	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Cadmium	S19-Jn02114	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chromium	S19-Jn02114	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Copper	S19-Jn02114	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead	S19-Jn02114	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Mercury	S19-Jn02114	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Nickel	S19-Jn02114	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Zinc	S19-Jn02114	NCP	mg/L	0.05	0.05	1.0	30%	Pass	



#### Comments

## Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

## **Qualifier Codes/Comments**

Code Description

Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other C01

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

## **Authorised By**

Nibha Vaidva Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW)

## Glenn Jackson

## **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mg be liable for consequential damages including, but not limited to, lost profits, damages for indiative to meet deadlines and lots by reportuding indiative to the reportude of except in full and refless only to the tiens indicated otherwise, the tests were, the tests were sincificated otherwise, the tests were, the test sent of liables indicated otherwise, the tests were, the test sent of the samples as required.

# 017294

## **CHAIN OF CUSTODY**



PROJECT NO.: 56425		LABORATORY BATCH NO.:						
PROJECT NAME: Clonies Ross Street		SAMPLERS: (R + ) ]						
DATE NEEDED BY: Same day		QC LEVEL: NEPM (2013)						
PHONE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688								
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	ibsg.com	nau: (3) NC Size O@ibsg.com.au						
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:		TYPE OF						
Same day - Before 9am Monday		ASBESTOS ANALYSIS NOTES:						
SAMPLE ID MATRIX DATE TIME TYPE & PRESERVATIVE	рН	DENTIFICA NOTES:						
AQ010-0.6 So.1 14.8.17 B		× X						
AQ010.6-1.6 1 1								
AQ02 0.3-1-0		X X						
AQ02 0.3-1-0 L 1.0-1.5								
AQ03 0.1-0.95		× × × × × × × × × × × × × × × × × × ×						
Agai 0-0.6								
U 0.6-1.5								
AQ05 0-0-1	11/							
6.1-1.1								
1.1-2.1								
U Z.4-3.0		×						
ABOR 04-1.1		×   \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \						
1.1-1.7								
ADG7 0-6.2		lx l l l l l l l l						
J 6.4-1.2 1.2-2.1								
1.2-2.1								
HQ08 6-09								
0.9-1.6								
AQ09 0-0.3 + D								
RELINQUISHED BY: METHOD OF SHIPMENT:		RECEIVED BY: FOR RECEIVING LAB USE ONLY:						
NAME: DATE: M. 6. (C CONSIGNMENT NOTE NO. TRANSPORT CO.		NAME: COLER SEAL - Yes No Intact Broken  DATE: OF: EUROPHY NEW 5:26 PM COOLER TEMP deg C						
NAME: DATE: CONSIGNMENT NOTE NO.		NAME: DATE: COOLER SEAL – Yes No Intact Broken						
OF: TRANSPORT CO		OF:						
	= Hydrochlo	COOLER TEMP deg C  Dric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other						

IMSO FormsO13 - Chain of Custody - Generic

# 660830

# 017295

## **CHAIN OF CUSTODY**



PROJECT NO.: 5649	25					LA	BOR/	TORY B	ATCH N	0.:							
PROJECT NAME: Clonk  DATE NEEDED BY: San	2 Ross	Stro	RA			SA	MPLE	RS: C	K.	+ 02							
DATE NEEDED BY:	ne De	w						L: NEPN									
PHONE: Sydney: 02 8245 030	0   Perth: 0	18 9488 01	00 Brisba	ne: 07 3112 2688													
SEND REPORT & INVOICE TO	(1) adminr	sw@jbsg.	com.au; (2)	charten @	bsg.com	.au; (	3)(	ددي	ser	\@ib	sg.con	n.au					
COMMENTS / SPECIAL HANDLING / STOR.	AGE OR DISPOSA	AL:						-	1 -1-		ĪI	1 1	1 1		TYPE	QF	
Same day (	belor	e 9a	in me	(Mobile		346,401									IDENTIFICATION	YSIS	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	3									DENT	NOTES:	
AQ 69 0.3-1.3	Soil	14.6.9		B		×										V	
D 1.2-5.1						5										i	
@ AQ100-04	1					X											
J B-4-1.0		-				X											
AQU 0-06						X											
\$ 0.6-1.0						×					1						
AQ12 0-0-1						×											
\$ 0.1-1.1						1											
AQ13 0-6.6						7										1	
A 0.6-1.0						D											
AQIM 0-1.0						X											
d 1-1.5						7											
AQ15 0-05						X											
AQ15 0-0.5						X										1	
QC03																	
QR03				W.													
					1												
								4000									
RELINQUISHED BY:				METHOD OF SHIPMENT:		E		RECEI	VED BY:				FOI	R RECEIVI	NG LA	B USE ONLY:	
NAME: CK DATE: OF: JBS&G	4.6.14		IGNMENT NOT SPORT CO.	E NO.		DAT DE:	ME: U	uer D		5126 AM			. – Yes P deg		Intac	ct Broken	
NAME: DATE:			GNMENT NOT	E NO.		NAI	ME:	July.	D	ATE:					Inta	ct Broken	
OF:			SPORT CO			OF:					coo	LER TEMI	P, deg	С			
Container & Preservative Codes: P = Plan	stic; J = Soil Jar; I	3 = Glass Bottle	; N = Nitric Acid	Prsvd.; C = Sodium Hydroxide Prsvd; VC	= Hydrochlor	ic Acid	Prsvd \	/ial; VS = Sul	furic Acid	Prsvd Vial; S = S	ulfuric A	id Prsvd; 2	Z = Zinc Prs	vd; E = EDT	A Prsvc	l; ST = Sterile Bottl	e; O = Other
MSO FormsO13 - Chain of Custody - Ge	nerić																

#660830



Melbourne

**Sydney** Unit F3, Building F 
 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Building F

 Dandenong South Vic 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove West NSW 2066

 NATA # 1261
 Phone : +61 2 9900 8400

 Site # 1254 & 14271
 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

## Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Chris Kauffman

**CLUNIES ROSS STREET** Project name:

Project ID: 56425

COC number: Not provided Turn around time: Overnight

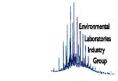
Jun 14, 2019 5:26 PM Date/Time received:

Eurofins | mgt reference: 660830

## Sample information

- $\mathbf{V}$ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\mathbf{V}$ All samples have been received as described on the above COC.
- $\mathbf{V}$ COC has been completed correctly.
- N/A Attempt to chill was evident.
- $\mathbf{V}$ Appropriately preserved sample containers have been used.
- $\mathbf{V}$ All samples were received in good condition.
- $\mathbf{V}$ Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Appropriate sample containers have been used.
- $\boxtimes$ Split sample sent to requested external lab.
- $\boxtimes$ Some samples have been subcontracted.
- Custody Seals intact (if used).

## **Contact notes**


If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Chris Kauffman - ckauffman@jbsq.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.







Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

660830

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name:

**CLUNIES ROSS STREET** 

Project ID: 56425

Received: Jun 14, 2019 5:26 PM

Due: Jun 17, 2019 Priority: Overnight **Contact Name:** Chris Kauffman

			mple Detail			Asbestos - WA guidelines	HOLD
	ourne Laboratoney  Laboratory			271		Х	X
	bane Laborator					_ ^	
	h Laboratory - N						
	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	AQ01 0-0.6	Jun 14, 2019		Soil	S19-Jn16196	Х	
2	AQ02 0.3-1.0	Jun 14, 2019		Soil	S19-Jn16197	Х	
3	AQ03 0.1-0.95	Jun 14, 2019		Soil	S19-Jn16198	Х	
4	AQ04 0-0.6	Jun 14, 2019		Soil	S19-Jn16199	Х	
5	AQ05 0-0.1	Jun 14, 2019		Soil	S19-Jn16200	Х	
6	AQ05 2.4-3.0	Jun 14, 2019		Soil	S19-Jn16201	Х	
7	AQ06 0.4-1.1	Jun 14, 2019		Soil	S19-Jn16202	Х	
8	AQ07 0-0.2	Jun 14, 2019		Soil	S19-Jn16203	Х	
9	AQ08 0-0.9	Jun 14, 2019		Soil	S19-Jn16204	Х	



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: Project ID: **CLUNIES ROSS STREET** 

56425

Order No.: Report #:

660830

02 8245 0300

Phone: Fax:

Due: Priority:

Received:

Jun 17, 2019 Overnight

Jun 14, 2019 5:26 PM

Contact Name: Chris Kauffman

		Sa	mple Detail			Asbestos - WA guidelines	HOLD
	ourne Laborate			71			
	ney Laboratory					Х	Х
	bane Laborator						
	h Laboratory - N		736		1		
10	AQ08 0.9-1.6	Jun 14, 2019		Soil	S19-Jn16205	Х	
11	AQ09 0-0.3	Jun 14, 2019		Soil	S19-Jn16206	Х	
12	AQ09 0.3-1.3	Jun 14, 2019		Soil	S19-Jn16207	Χ	
13	AQ09 1.5-2.1	Jun 14, 2019		Soil	S19-Jn16208	Χ	
14	AQ10 0-0.4	Jun 14, 2019		Soil	S19-Jn16209	Χ	
15	AQ10 0.4-1.0	Jun 14, 2019		Soil	S19-Jn16210	Χ	
16	AQ11 0-0.6	Jun 14, 2019		Soil	S19-Jn16211	Χ	
17	AQ12 0-0.1	Jun 14, 2019		Soil	S19-Jn16212	Х	
18	AQ12 0.1-1.1	Jun 14, 2019		Soil	S19-Jn16213	Х	
19	AQ13 0-0.6	Jun 14, 2019		Soil	S19-Jn16214	Х	
20	AQ13 0.6-1.0	Jun 14, 2019		Soil	S19-Jn16215	Х	
21	AQ14 0-1.0	Jun 14, 2019		Soil	S19-Jn16216	Х	



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

660830

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

**Project Name:** 

**CLUNIES ROSS STREET** 

Project ID: 56425

Received: Jun 14, 2019 5:26 PM

Due: Jun 17, 2019 Priority: Overnight **Contact Name:** Chris Kauffman

		Sa	ımple Detail			Asbestos - WA guidelines	HOLD
Mell	oourne Laborat	ory - NATA Site	# 1254 & 142	271			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х
Bris	bane Laborator	y - NATA Site #	20794				
Pert	h Laboratory - I	NATA Site # 237	736				
22	AQ14 1-1.5	Jun 14, 2019		Soil	S19-Jn16217	Х	
23	AQ15 0-0.5	Jun 14, 2019		Soil	S19-Jn16218	Х	
24	AQ15 0.5-1.5	Jun 14, 2019		Soil	S19-Jn16219	Х	
25	AQ01 0.6-1.6	Jun 14, 2019		Soil	S19-Jn16220		Х
26	AQ02 1.0-1.5	Jun 14, 2019		Soil	S19-Jn16221		Х
27	AQ04 0.6-1.5	Jun 14, 2019		Soil	S19-Jn16222		Х
28	AQ05 0.1-1.1	Jun 14, 2019		Soil	S19-Jn16223		Х
29	AQ05 1.1-2.1	Jun 14, 2019		Soil	S19-Jn16224		Х
30	AQ06 1.1-1.7	Jun 14, 2019		Soil	S19-Jn16225		Х
31	AQ07 0.4-1.2	Jun 14, 2019		Soil	S19-Jn16226		Х
32	AQ07 1.2-2.1	Jun 14, 2019		Soil	S19-Jn16227		Х
33	QC03	Jun 14, 2019		Soil	S19-Jn16228		Х



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road

Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: Project ID:

**CLUNIES ROSS STREET** 

56425

Order No.:

Report #:

660830 02 8245 0300

Phone: Fax:

Received:

Jun 14, 2019 5:26 PM

Due: Jun 17, 2019 Priority: Overnight **Contact Name:** Chris Kauffman

		Sa	mple Detail			Asbestos - WA guidelines	HOLD
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71			
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х
Brisk	oane Laboratory	/ - NATA Site #	20794				
Perth	Laboratory - N	ATA Site # 237	36				
34	QA03	Jun 14, 2019		Soil	S19-Jn16229		Х
35 AQ11 0.6-1.0 Jun 14, 2019 Soil S19-Jn16237							
Test	Counts					25	10



## Certificate of Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Chris Kauffman Report 660830-AID

Project Name CLUNIES ROSS STREET

Project ID 56425

Received Date Jun 14, 2019
Date Reported Jun 17, 2019

## Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Report Number: 660830-AID







Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name CLUNIES ROSS STREET

Project ID 56425

Date Reported: Jun 17, 2019

Date SampledJun 14, 2019Report660830-AID

Client Sample ID	Eurofins   mgt Sample No.	Date Sampled	Sample Description	Result
AQ01 0-0.6	19-Jn16196	Jun 14, 2019	Approximate Sample 582g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ02 0.3-1.0	19-Jn16197	Jun 14, 2019	Approximate Sample 495g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ03 0.1-0.95	19-Jn16198	Jun 14, 2019	Approximate Sample 598g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ04 0-0.6	19-Jn16199	Jun 14, 2019	Approximate Sample 553g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ05 0-0.1	19-Jn16200	Jun 14, 2019	Approximate Sample 585g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ05 2.4-3.0	19-Jn16201	Jun 14, 2019	Approximate Sample 612g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ06 0.4-1.1	19-Jn16202	Jun 14, 2019	Approximate Sample 773g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ07 0-0.2	19-Jn16203	Jun 14, 2019	Approximate Sample 458g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 2 of 11

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 660830-AID



Date Reported: Jun 17, 2019





## **NATA Accredited Accreditation Number 1261** Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 3 of 11

Client Sample ID	Eurofins   mgt Sample No.	Date Sampled	Sample Description	Result
AQ08 0-0.9	19-Jn16204	Jun 14, 2019	Approximate Sample 670g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ08 0.9-1.6	19-Jn16205	Jun 14, 2019	Approximate Sample 630g Sample consisted of: Grey coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ09 0-0.3	19-Jn16206	Jun 14, 2019	Approximate Sample 448g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ09 0.3-1.3	19-Jn16207	Jun 14, 2019	Approximate Sample 697g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ09 1.5-2.1	19-Jn16208	Jun 14, 2019	Approximate Sample 720g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ10 0-0.4	19-Jn16209	Jun 14, 2019	Approximate Sample 644g Sample consisted of: Brown coarse-grained soil, rocks, fragments of glass and corroded metal	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ10 0.4-1.0	19-Jn16210	Jun 14, 2019	Approximate Sample 625g Sample consisted of: Brown coarse-grained soil and rocks	AF: Chrysotile asbestos detected in fibre cement fragments. Approximate raw weight of AF = 0.0040g Estimated asbestos content in AF = 0.0010g* Total estimated asbestos concentration in AF = 0.00016% w/w* No asbestos detected at the reporting limit of 0.001% w/w.*  Organic fibre detected. No respirable fibres detected.
AQ11 0-0.6	19-Jn16211	Jun 14, 2019	Approximate Sample 740g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ12 0-0.1	19-Jn16212	Jun 14, 2019	Approximate Sample 586g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ12 0.1-1.1	19-Jn16213	Jun 14, 2019	Approximate Sample 640g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ13 0-0.6	19-Jn16214	Jun 14, 2019	Approximate Sample 708g Sample consisted of: Brown coarse-grained soil, rocks and fragments of glass	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Report Number: 660830-AID ABN: 50 005 085 521 Telephone: +61 2 9900 8400







#### NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins   mgt Sample No.	Date Sampled	Sample Description	Result
AQ13 0.6-1.0	19-Jn16215	Jun 14, 2019	Approximate Sample 672g Sample consisted of: Brown coarse-grained soil and rocks	AF: Chrysotile asbestos detected in fibre cement fragments and in the form of loose fibre bundles. Approximate raw weight of AF = 0.024g* Estimated asbestos content in AF = 0.011g* Total estimated asbestos concentration in AF = 0.0016% w/w*  Organic fibre detected. No respirable fibres detected.
AQ14 0-1.0	19-Jn16216	Jun 14, 2019	Approximate Sample 711g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ14 1-1.5	19-Jn16217	Jun 14, 2019	Approximate Sample 720g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.
AQ15 0-0.5	19-Jn16218	Jun 14, 2019	Approximate Sample 667g Sample consisted of: Brown coarse-grained soil, rocks, glass and corroded metal fragments	AF: Chrysotile asbestos detected in the form of loose fibre bundles. Approximate raw weight of AF = 0.0040g* Estimated asbestos content in AF = 0.0040g* Total estimated asbestos concentration in AF = 0.00060% w/w* No asbestos detected at the reporting limit of 0.001% w/w.*  Organic fibre detected. No respirable fibres detected.
AQ15 0.5-1.5	19-Jn16219	Jun 14, 2019	Approximate Sample 434g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
AQ11 0.6-1.0	19-Jn16237	Jun 14, 2019	Approximate Sample 708g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Page 4 of 11



## **Sample History**

Date Reported: Jun 17, 2019

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyJun 14, 2019Indefinite

Report Number: 660830-AID



Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

**Project Name:** Project ID:

**CLUNIES ROSS STREET** 

56425

Order No.: Received: Jun 14, 2019 5:26 PM Report #: 660830 Due:

Jun 17, 2019 Phone: 02 8245 0300 Priority: Overnight **Contact Name:** Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail  Melhourne Laboratory - NATA Site # 1254 & 14271									
Melbourne Laboratory - NATA Site # 1254 & 14271									
	ney Laboratory					Х	Х		
Brisl	pane Laborator	y - NATA Site #	20794						
	n Laboratory - N		36						
	rnal Laboratory				T				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	AQ01 0-0.6	Jun 14, 2019		Soil	S19-Jn16196	Х			
2	AQ02 0.3-1.0	Jun 14, 2019		Soil	S19-Jn16197	Х			
3	AQ03 0.1-0.95	Jun 14, 2019		Soil	S19-Jn16198	Х			
4	AQ04 0-0.6	Jun 14, 2019		Soil	S19-Jn16199	Х			
5 AQ05 0-0.1 Jun 14, 2019 Soil S19-Jn16200									
6	AQ05 2.4-3.0	Jun 14, 2019		Soil	S19-Jn16201	Х			
7	AQ06 0.4-1.1	Jun 14, 2019		Soil	S19-Jn16202	Х			
8	AQ07 0-0.2	Jun 14, 2019		Soil	S19-Jn16203	Х			
9	AQ08 0-0.9	Jun 14, 2019		Soil	S19-Jn16204	Х			

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Unit F3, Building F

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: Project ID: **CLUNIES ROSS STREET** 

56425

 Order No.:
 Received:
 Jun 14, 2019 5:26 PM

 Report #:
 660830
 Due:
 Jun 17, 2019

Phone: 02 8245 0300 Priority: Overnight
Fax: Contact Name: Chris Kauffman

Sydney

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - WA guidelines	HOLD
Melbourne Laboratory - NATA Site # 1254 & 14271							
	ney Laboratory					Χ	Х
Bris	bane Laborator	y - NATA Site #	20794				
Pert	<mark>h Laboratory - N</mark>	NATA Site # 237	736	1			
10	AQ08 0.9-1.6	Jun 14, 2019		Soil	S19-Jn16205	Χ	
11	AQ09 0-0.3	Jun 14, 2019		Soil	S19-Jn16206	Χ	
12	AQ09 0.3-1.3	Jun 14, 2019		Soil	S19-Jn16207	Χ	
13	AQ09 1.5-2.1	Jun 14, 2019		Soil	S19-Jn16208	Χ	
14	AQ10 0-0.4	Jun 14, 2019		Soil	S19-Jn16209	Χ	
15	AQ10 0.4-1.0	Jun 14, 2019		Soil	S19-Jn16210	Χ	
16	AQ11 0-0.6	Jun 14, 2019		Soil	S19-Jn16211	Χ	
17	AQ12 0-0.1	Jun 14, 2019		Soil	S19-Jn16212	Χ	
18	AQ12 0.1-1.1	Jun 14, 2019		Soil	S19-Jn16213	Χ	
19	AQ13 0-0.6	Jun 14, 2019		Soil	S19-Jn16214	Χ	
20	AQ13 0.6-1.0	Jun 14, 2019		Soil	S19-Jn16215	Χ	
21	AQ14 0-1.0	Jun 14, 2019		Soil	S19-Jn16216	Χ	

Page 7 of 11



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name: Project ID:

Address:

**CLUNIES ROSS STREET** 

56425

 Order No.:
 Received:
 Jun 14, 2019 5:26 PM

 Report #:
 660830
 Due:
 Jun 17, 2019

 Phone:
 02 8245 0300
 Priority:
 Overnight

 Fax:
 Contact Name:
 Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - WA guidelines	НОГД
Melbourne Laboratory - NATA Site # 1254 & 14271							
		- NATA Site # 1				Х	Х
Bris	bane Laborator	y - NATA Site #	20794				
Pert	<mark>h Laboratory - I</mark>	NATA Site # 237	36	T			
22	AQ14 1-1.5	Jun 14, 2019		Soil	S19-Jn16217	Χ	
23	AQ15 0-0.5	Jun 14, 2019		Soil	S19-Jn16218	Χ	
24	AQ15 0.5-1.5	Jun 14, 2019		Soil	S19-Jn16219	Χ	
25	AQ01 0.6-1.6	Jun 14, 2019		Soil	S19-Jn16220		Х
26	AQ02 1.0-1.5	Jun 14, 2019		Soil	S19-Jn16221		Х
27	AQ04 0.6-1.5	Jun 14, 2019		Soil	S19-Jn16222		Х
28	AQ05 0.1-1.1	Jun 14, 2019		Soil	S19-Jn16223		Х
29	AQ05 1.1-2.1	Jun 14, 2019		Soil	S19-Jn16224		Х
30	AQ06 1.1-1.7	Jun 14, 2019		Soil	S19-Jn16225		Х
31	AQ07 0.4-1.2	Jun 14, 2019		Soil	S19-Jn16226		Х
32	AQ07 1.2-2.1	Jun 14, 2019		Soil	S19-Jn16227		Х
33	QC03	Jun 14, 2019		Soil	S19-Jn16228		Х

Page 8 of 11



Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** 

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

**Project Name:** Project ID:

Address:

**CLUNIES ROSS STREET** 

56425

Order No.: Received: Jun 14, 2019 5:26 PM Report #: 660830 Due: Jun 17, 2019

Phone: 02 8245 0300 Priority: Overnight **Contact Name:** Chris Kauffman

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - WA guidelines	HOLD
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71			
Sydn	ey Laboratory	- NATA Site # 1	8217			Χ	Х
Brisk	oane Laboratory	y - NATA Site #	20794				
Perth Laboratory - NATA Site # 23736							
34	QA03	Jun 14, 2019		Soil	S19-Jn16229		Χ
35 AQ11 0.6-1.0 Jun 14, 2019 Soil S19-Jn16237							
Test	Counts					25	10

Page 9 of 11



## **Internal Quality Control Review and Glossary**

#### General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

## **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

#### Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

#### **Terms**

**Dry** Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standard

Date Reported: Jun 17, 2019

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

AF equivalent to "non-bonded / friable".

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Report Number: 660830-AID



## Comments

S19-Jn16197, S19-Jn16203, S19-Jn16206, S19-Jn16219: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

## Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

## **Qualifier Codes/Comments**

Code Description N/A Not applicable

## **Asbestos Counter/Identifier:**

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

## Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

Date Reported: Jun 17, 2019

Measurement uncertainty of test data is available on request or please  $\underline{\text{click here.}}$ 

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced everyein full and are fetted sonly to the identities storied, to the fetter steated. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 660830-AID

⁻ Indicates Not Requested

 $^{^{\}star}$  Indicates NATA accreditation does not cover the performance of this service



Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention: Edward Wu

Report 370054-S

Client Reference BRICKWORKS PROSPECT ENAURHOD04463AA

Received Date Feb 25, 2013

## Certificate of Analysis



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			BH1_(0.0-0.2M)	BH2_(0.0-0.2M)	BH3_(0.0-0.2M)	BH4_(0.0-0.1M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18699	S13-Fe18701	S13-Fe18702	S13-Fe18703
Date Sampled			Feb 20, 2013	Feb 19, 2013	Feb 20, 2013	Feb 20, 2013
Test/Reference	LOR	Unit		, , ,	, , ,	
Total Recoverable Hydrocarbons - 1999 NEPM F						
TRH C6-C9	10	mg/kg	< 10	-	-	< 10
TRH C10-C14	50	mg/kg	< 50	-	-	< 50
TRH C15-C28	100	mg/kg	< 100	-	-	< 100
TRH C29-C36	100	mg/kg	< 100	-	-	< 100
TRH C10-36 (Total)	100	mg/kg	< 100	-	-	< 100
ВТЕХ						
Benzene	0.5	mg/kg	< 0.5	-	-	< 0.5
Toluene	0.5	mg/kg	< 0.5	-	-	< 0.5
Ethylbenzene	0.5	mg/kg	< 0.5	-	-	< 0.5
m&p-Xylenes	1	mg/kg	< 1	-	-	< 1
o-Xylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Xylenes - Total	1.5	mg/kg	< 1.5	-	-	< 1.5
Total BTEX	1.5	mg/kg	< 1.5	-	-	< 1.5
4-Bromofluorobenzene (surr.)	1	%	96	-	-	79
Total Recoverable Hydrocarbons - Draft 2010 NB	EPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	-	< 20
TRH >C10-C16	50	mg/kg	< 50	-	-	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	-	< 50
TRH >C16-C34	100	mg/kg	< 100	-	-	< 100
TRH >C34-C40	100	mg/kg	< 100	-	-	< 100
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	72
Organochlorine Pesticides (OC)						
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.2	mg/kg	-	-	-	< 0.2
а-ВНС	0.05	mg/kg	-	-	-	< 0.05



Client Sample ID			RH1 (0.0-0.2M)	BH2 (0.0-0.2M)	BH3_(0.0-0.2M)	BH4 (0.0-0.1M)
Sample Matrix			Soil	Soil	Soil	Soil
· .					1	
mgt-LabMark Sample No.			S13-Fe18699	S13-Fe18701	S13-Fe18702	S13-Fe18703
Date Sampled			Feb 20, 2013	Feb 19, 2013	Feb 20, 2013	Feb 20, 2013
Test/Reference	LOR	Unit				
Organochlorine Pesticides (OC)						
a-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
g-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	-	72
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	88
Polyaromatic Hydrocarbons (PAH)	II.					
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	< 1	< 1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Total PAH	1	mg/kg	< 1	< 1	1.3	< 1
2-Fluorobiphenyl (surr.)	1	%	102	110	105	108
p-Terphenyl-d14 (surr.)	1	%	96	108	99	104
Heavy Metals	<u> </u>					
Arsenic	2	mg/kg	< 2	2.5	5.2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	0.5	< 0.4
Chromium	5	mg/kg	< 5	< 5	24	< 5
Cobalt	5	mg/kg	< 5	6.3	< 5	< 5
Copper	5	mg/kg	13	120	20	5.3
Lead	5	mg/kg	< 5	< 5	20	< 5
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	< 5	< 5	6.6	< 5
Zinc	5	mg/kg	11	21	22	5.9
Titanium	10	mg/kg	220	1100	15	18



Client Sample ID			BH1_(0.0-0.2M)	BH2_(0.0-0.2M)	BH3_(0.0-0.2M)	BH4_(0.0-0.1M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18699	S13-Fe18701	S13-Fe18702	S13-Fe18703
Date Sampled			Feb 20, 2013	Feb 19, 2013	Feb 20, 2013	Feb 20, 2013
Test/Reference	LOR	Unit				
% Moisture	0.1	%	6.1	17	19	3.2
Asbestos			see attached	-	-	-

Client Sample ID			BH5_(0.0-0.2M)	BH6_(0.16- 0.26M)	BH6_(1.0-1.1M)	BH7_(0.08- 0.13M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18705	S13-Fe18706	S13-Fe18708	S13-Fe18710
Date Sampled			Feb 20, 2013	Feb 18, 2013	Feb 19, 2013	Feb 18, 2013
Test/Reference	LOR	Unit		, , , , , , , , , , , , , , , , , , , ,	, 200	, , , , , , , , , , , , , , , , , , , ,
Total Recoverable Hydrocarbons - 1999 NEPM F		Offic				
TRH C6-C9	10	mg/kg	-	< 10	-	-
TRH C10-C14	50	mg/kg	-	< 50	-	-
TRH C15-C28	100	mg/kg	-	< 100	-	-
TRH C29-C36	100	mg/kg	-	< 100	-	-
TRH C10-36 (Total)	100	mg/kg	-	< 100	-	-
ВТЕХ	<u> </u>	3 3				
Benzene	0.5	mg/kg	-	< 0.5	-	-
Toluene	0.5	mg/kg	-	< 0.5	-	-
Ethylbenzene	0.5	mg/kg	-	< 0.5	-	-
m&p-Xylenes	1	mg/kg	-	< 1	-	-
o-Xylene	0.5	mg/kg	-	< 0.5	-	-
Xylenes - Total	1.5	mg/kg	-	< 1.5	-	-
Total BTEX	1.5	mg/kg	-	< 1.5	-	-
4-Bromofluorobenzene (surr.)	1	%	-	76	-	-
Total Recoverable Hydrocarbons - Draft 2010 N	EPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	-
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg	-	< 100	-	-
Heavy Metals						
Arsenic	2	mg/kg	2.8	3.3	6.3	< 2
Cadmium	0.4	mg/kg	0.4	2.3	< 0.4	5.0
Chromium	5	mg/kg	42	13	70	< 5
Cobalt	5	mg/kg	17	99	66	130
Copper	5	mg/kg	34	41	48	7.7
Lead	5	mg/kg	13	< 5	< 5	< 5
Mercury	0.05	mg/kg	0.34	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	57	61	360	< 5
Zinc	5	mg/kg	51	35	68	7.3
Titanium	10	mg/kg	120	690	1200	38
% Moisture	0.1	%	18	23	13	13
Asbestos			see attached	see attached	-	-



Client Comple ID			DUZ (0.0.0.2M)	DUZ (0.4.0.5M)	DUO (0.0.0.0M)	DUO (0.0.0.4M)
Client Sample ID			1	1	1	BH9_(0.0-0.1M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18711	S13-Fe18712	S13-Fe18713	S13-Fe18714
Date Sampled			Feb 18, 2013	Feb 18, 2013	Feb 20, 2013	Feb 20, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions					
TRH C6-C9	10	mg/kg	< 10	-	< 10	< 10
TRH C10-C14	50	mg/kg	< 50	-	< 50	< 50
TRH C15-C28	100	mg/kg	< 100	-	190	< 100
TRH C29-C36	100	mg/kg	< 100	-	340	< 100
TRH C10-36 (Total)	100	mg/kg	< 100	-	530	< 100
BTEX						
Benzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Toluene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
m&p-Xylenes	1	mg/kg	< 1	-	< 1	< 1
o-Xylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Xylenes - Total	1.5	mg/kg	< 1.5	-	< 1.5	< 1.5
Total BTEX	1.5	mg/kg	< 1.5	-	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1	%	70	-	76	89
Total Recoverable Hydrocarbons - Draft 2010 NEP	M Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	-	480	< 100
TRH >C34-C40	100	mg/kg	< 100	-	210	< 100
Polychlorinated Biphenyls (PCB)	1					
Aroclor-1016	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	82	-	70	76
Organochlorine Pesticides (OC)		T "				
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
4.4'-DDT	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
a-Chlordane	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
b-BHC d-BHC	0.05 0.05	mg/kg	< 0.05 < 0.05	-	< 0.05 < 0.05	< 0.05 < 0.05
Dieldrin	0.05	mg/kg mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05



Client Sample ID			BH7_(0.2-0.3M)	BH7_(0.4-0.5M)	BH8_(0.0-0.2M)	BH9_(0.0-0.1M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18711	S13-Fe18712	S13-Fe18713	S13-Fe18714
Date Sampled			Feb 18, 2013	Feb 18, 2013	Feb 20, 2013	Feb 20, 2013
Test/Reference	LOR	Unit	1 00 10, 2010	1 00 10, 2010	1 0.0 20, 2010	0.0 = 0, = 0.10
Organochlorine Pesticides (OC)	LOIK	Onit				
g-Chlordane	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
Methoxychlor	0.03	mg/kg	< 0.2	_	< 0.03	< 0.2
Dibutylchlorendate (surr.)	1	%	82	_	70	76
Tetrachloro-m-xylene (surr.)	1	%	102	_	85	99
Polyaromatic Hydrocarbons (PAH)	<u>'</u>	70	102		00	33
Acenaphthene	0.5	ma/ka	< 0.5	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg mg/kg	< 0.5	_	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	_	< 1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Total PAH	1	mg/kg	< 1	_	< 1	< 1
2-Fluorobiphenyl (surr.)	1	%	99	_	92	97
p-Terphenyl-d14 (surr.)	1	%	96	_	90	98
Heavy Metals		,,,				- 55
Arsenic	2	mg/kg	2.4	4.4	< 2	3.5
Cadmium	0.4	mg/kg	1.7	2.0	0.5	< 0.4
Chromium	5	mg/kg	24	10	41	< 5
Cobalt	5	mg/kg	31	39	6.8	< 5
Copper	5	mg/kg	40	46	61	19
Lead	5	mg/kg	< 5	< 5	68	< 5
Mercury	0.05	mg/kg	< 0.05	< 0.05	0.39	< 0.05
Nickel	5	mg/kg	75	91	31	7.1
Zinc	5	mg/kg	30	37	190	34
Titanium	10	mg/kg	470	470	310	130
	,	, ···ə' ··ə	1.0			
% Moisture	0.1	%	17	15	4.4	16
Asbestos	0.1	70	-	-	see attached	see attached



Client Sample ID			BH10_(0.16- 0.26M)	BH11_(0.19- 0.29M)	BH12_(0.4- 0.5M)	BH13_(0.13- 0.23M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18716	S13-Fe18717	S13-Fe18719	S13-Fe18720
Date Sampled			Feb 20, 2013	Feb 20, 2013	Feb 20, 2013	Feb 20, 2013
Test/Reference	LOR	Unit	, ,	,	,	, , ,
Total Recoverable Hydrocarbons - 1999 NEPM Frac		O i iii				
TRH C6-C9	10	mg/kg	< 10	< 10	< 10	< 10
TRH C10-C14	50	mg/kg	< 50	< 50	< 50	< 50
TRH C15-C28	100	mg/kg	< 100	< 100	< 100	< 100
TRH C29-C36	100	mg/kg	< 100	< 100	120	< 100
TRH C10-36 (Total)	100	mg/kg	< 100	< 100	120	< 100
BTEX						
Benzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
m&p-Xylenes	1	mg/kg	< 1	< 1	< 1	< 1
o-Xylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes - Total	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Total BTEX	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1	%	79	79	80	73
Total Recoverable Hydrocarbons - Draft 2010 NEPM	Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	180	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Heavy Metals						
Arsenic	2	mg/kg	4.6	3.4	5.7	5.0
Cadmium	0.4	mg/kg	< 0.4	2.7	1.5	0.9
Chromium	5	mg/kg	41	17	71	130
Cobalt	5	mg/kg	26	48	22	62
Copper	5	mg/kg	64	63	75	56
Lead	5	mg/kg	5.4	< 5	170	< 5
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	91	92	59	290
Zinc	5	mg/kg	56	41	180	72
Titanium	10	mg/kg	470	520	360	1400
	T	1				
% Moisture	0.1	%	6.3	10.0	9.6	20
Asbestos			-	-	-	see attached

Client Sample ID			BH14_(0.19- 0.29M)	BH15_(0.15- 0.25M)	BH16_(0.0- 0.2M)	BH17_(0.5- 0.6M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18722	S13-Fe18724	S13-Fe18726	S13-Fe18728
Date Sampled			Feb 18, 2013	Feb 18, 2013	Feb 20, 2013	Feb 19, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	10	mg/kg	< 10	< 10	< 10	< 10



			DU14 (0.10	DU15 (0.15	DU16 (0.0	DU17 /0 F
Client Sample ID			BH14_(0.19- 0.29M)	BH15_(0.15- 0.25M)	BH16_(0.0- 0.2M)	BH17_(0.5- 0.6M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18722	S13-Fe18724	S13-Fe18726	S13-Fe18728
Date Sampled			Feb 18, 2013	Feb 18, 2013	Feb 20, 2013	Feb 19, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C10-C14	50	mg/kg	< 50	< 50	< 50	< 50
TRH C15-C28	100	mg/kg	< 100	< 100	< 100	< 100
TRH C29-C36	100	mg/kg	< 100	< 100	< 100	< 100
TRH C10-36 (Total)	100	mg/kg	< 100	< 100	< 100	< 100
ВТЕХ						
Benzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
m&p-Xylenes	1	mg/kg	< 1	< 1	< 1	< 1
o-Xylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes - Total	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Total BTEX	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1	%	84	75	79	77
Total Recoverable Hydrocarbons - Draft 2010 N	IEPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polychlorinated Biphenyls (PCB)	'					
Aroclor-1016	0.5	mg/kg	-	_	-	< 0.5
Aroclor-1232	0.5	mg/kg	-	_	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	72
Organochlorine Pesticides (OC)		•				
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.2	mg/kg	-	-	-	< 0.2
a-BHC	0.05	mg/kg	-	-	-	< 0.05
a-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	_	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg		-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
g-Chlordane	0.05	mg/kg	-	-	-	< 0.05



Client Sample ID			BH14_(0.19- 0.29M)	BH15_(0.15- 0.25M)	BH16_(0.0- 0.2M)	BH17_(0.5- 0.6M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18722	S13-Fe18724	S13-Fe18726	S13-Fe18728
Date Sampled			Feb 18, 2013	Feb 18, 2013	Feb 20, 2013	Feb 19, 2013
•	LOD	l ladit	1 65 10, 2013	1 65 10, 2013	1 65 20, 2013	1 65 13, 2013
Test/Reference	LOR	Unit				
Organochlorine Pesticides (OC)	0.05					0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene  Mathamathan	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor  Dibat della conductor (comp.)	0.2	mg/kg	-	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	-	72
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	95
Polyaromatic Hydrocarbons (PAH)		T #				
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	-	-	-	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH	1	mg/kg	-	-	-	< 1
2-Fluorobiphenyl (surr.)	1	%	-	-	-	101
p-Terphenyl-d14 (surr.)	1	%	-	-	-	100
Heavy Metals		_				
Arsenic	2	mg/kg	6.7	4.5	2.1	4.2
Cadmium	0.4	mg/kg	0.6	0.6	< 0.4	< 0.4
Chromium	5	mg/kg	89	160	94	8.6
Cobalt	5	mg/kg	50	50	7.3	< 5
Copper	5	mg/kg	45	42	30	38
Lead	5	mg/kg	5.3	< 5	45	< 5
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	180	250	52	5.1
Zinc	5	mg/kg	94	65	83	17
Titanium	10	mg/kg	810	1500	410	360
% Moisture	0.1	%	23	28	7.3	15
Asbestos	-		-	-	see attached	see attached



Client Sample ID			BH18_(0.0- 0.2M)	BH19_(0.4- 0.5M)	BH19_(1.0- 1.1M)	BH20_(0.0- 0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18733	S13-Fe18735	S13-Fe18736	S13-Fe18737
Date Sampled			Feb 20, 2013	Feb 19, 2013	Feb 19, 2013	Feb 20, 2013
Test/Reference	LOR	Unit	1 05 20, 2010	1 05 13, 2010	1 05 13, 2010	1 05 20, 2010
Total Recoverable Hydrocarbons - 1999 NEPM		Unit				
TRH C6-C9	10	ma/ka		110	_	
TRH C10-C14	50	mg/kg	-	< 10 < 50	-	-
TRH C15-C28	100	mg/kg mg/kg		< 100		
TRH C29-C36	100	mg/kg		< 100		
TRH C10-36 (Total)	100	mg/kg		< 100	_	_
BTEX	100	IIIg/kg		V 100		
Benzene	0.5	mg/kg	_	< 0.5	_	_
Toluene	0.5	mg/kg		< 0.5		
Ethylbenzene	0.5	mg/kg	_	< 0.5	-	_
m&p-Xylenes	1	mg/kg	-	< 1		
o-Xylene	0.5	mg/kg	-	< 0.5	-	
Xylenes - Total	1.5	mg/kg	-	< 1.5	-	
Total BTEX	1.5	mg/kg		< 1.5	-	_
4-Bromofluorobenzene (surr.)	1.5	%	_	77	_	_
Total Recoverable Hydrocarbons - Draft 2010 I				1		
Naphthalene ^{N02}	0.5	mg/kg	_	< 0.5		_
TRH C6-C10	20	mg/kg	-	< 20	-	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	
TRH >C10-C16	50	mg/kg	-	< 50	-	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	_
TRH >C16-C34	100	mg/kg	-	< 100	-	_
TRH >C34-C40	100	mg/kg	-	< 100	_	_
Polychlorinated Biphenyls (PCB)	100	ing/itg		1100		
Aroclor-1016	0.5	mg/kg	-	< 0.5	_	_
Aroclor-1232	0.5	mg/kg	-	< 0.5	_	_
Aroclor-1242	0.5	mg/kg	-	< 0.5	_	_
Aroclor-1248	0.5	mg/kg	_	< 0.5	_	_
Aroclor-1254	0.5	mg/kg	-	< 0.5	_	_
Aroclor-1260	0.5	mg/kg	_	< 0.5	_	_
Total PCB	0.5	mg/kg	-	< 0.5	-	_
Dibutylchlorendate (surr.)	1	%	_	76	-	_
Organochlorine Pesticides (OC)	<u>'</u>	1				
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.2	mg/kg	-	< 0.2	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
a-Chlordane	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-



			BH18_(0.0-	BH19_(0.4-	BH19_(1.0-	BH20_(0.0-
Client Sample ID			0.2M)	0.5M)	1.1M)	0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18733	S13-Fe18735	S13-Fe18736	S13-Fe18737
Date Sampled			Feb 20, 2013	Feb 19, 2013	Feb 19, 2013	Feb 20, 2013
Test/Reference	LOR	Unit				
Organochlorine Pesticides (OC)	·					
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
g-Chlordane	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.2	mg/kg	-	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	-	76	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	99	-	-
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	=	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	-	-	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	=	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	=	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Total PAH	1	mg/kg	< 1	-	-	< 1
2-Fluorobiphenyl (surr.)	1	%	89	-	-	96
p-Terphenyl-d14 (surr.)	1	%	81	-	-	97
Heavy Metals						
Arsenic	2	mg/kg	3.3	2.4	9.8	2.6
Cadmium	0.4	mg/kg	< 0.4	0.5	< 0.4	< 0.4
Chromium	5	mg/kg	15	8.6	11	38
Cobalt	5	mg/kg	7.8	23	16	15
Copper	5	mg/kg	22	110	43	27
Lead	5	mg/kg	13	< 5	15	7.5
Mercury	0.05	mg/kg	< 0.05	< 0.05	0.07	< 0.05
Nickel	5	mg/kg	19	64	25	38
Zinc	5	mg/kg	50	50	130	31
Titanium	10	mg/kg	110	760	< 10	98
		1				
% Moisture	0.1	%	8.2	15	13	10
Asbestos			see attached	see attached	-	see attached



Client Sample ID			BH21_(0.0- 0.2M)	BH21_(1.0- 1.1M)	BH21_(3.0- 3.1M)	BH21_(3.9- 4.0M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18738	S13-Fe18740	S13-Fe18742	S13-Fe18743
Date Sampled			Feb 19, 2013	Feb 19, 2013	Feb 19, 2013	Feb 19, 2013
Test/Reference	LOR	Unit	1 05 15, 2010	1 05 13, 2010	1 05 15, 2010	1 05 10, 2010
Total Recoverable Hydrocarbons - 1999 NEPM		Unit				
TRH C6-C9	10	ma/ka		_	- 10	
TRH C10-C14	50	mg/kg mg/kg	-		< 10 < 50	
TRH C15-C28	100	mg/kg	-		< 100	
TRH C29-C36	100	mg/kg		-	< 100	
TRH C10-36 (Total)	100	mg/kg		_	< 100	_
BTEX	100	ilig/kg	-	_	V 100	<del>-</del>
Benzene	0.5	mg/kg	_	_	< 0.5	
Toluene	0.5	mg/kg		-	< 0.5	<u> </u>
Ethylbenzene	0.5	mg/kg	-		< 0.5	<u> </u>
m&p-Xylenes	1	mg/kg	-		< 1	<u> </u>
o-Xylene	0.5	mg/kg	-		< 0.5	<u> </u>
Xylenes - Total	1.5	mg/kg	-		< 1.5	<u> </u>
Total BTEX	1.5	mg/kg			< 1.5	<u> </u>
4-Bromofluorobenzene (surr.)	1.5	%	_		78	-
Total Recoverable Hydrocarbons - Draft 2010 N			-		70	<del>-</del>
Naphthalene ^{N02}	0.5				< 0.5	_
TRH C6-C10	20	mg/kg	-	-	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	< 20	-
TRH >C10-C16	50	mg/kg	-		< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-		< 50	
TRH >C16-C34	100	mg/kg mg/kg	-		< 100	
TRH >C34-C40	100	mg/kg	-		< 100	-
Polychlorinated Biphenyls (PCB)	100	IIIg/kg	-		V 100	<del> </del>
Aroclor-1016	0.5	mg/kg	< 0.5	_	-	_
Aroclor-1232	0.5	mg/kg	< 0.5	_	_	_
Aroclor-1242	0.5	mg/kg	< 0.5	_	_	_
Aroclor-1248	0.5	mg/kg	< 0.5	_	_	_
Aroclor-1254	0.5	mg/kg	< 0.5	_	_	_
Aroclor-1260	0.5	mg/kg	< 0.5	_	_	_
Total PCB	0.5	mg/kg	< 0.5	_	_	_
Dibutylchlorendate (surr.)	1	%	85	_	_	_
Organochlorine Pesticides (OC)		,,,				
4.4'-DDD	0.05	mg/kg	< 0.05	_	-	_
4.4'-DDE	0.05	mg/kg	< 0.05	_	_	_
4.4'-DDT	0.2	mg/kg	< 0.2	_	_	_
a-BHC	0.05	mg/kg	< 0.05	-	-	_
a-Chlordane	0.05	mg/kg	< 0.05	-	-	_
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-



			BH21_(0.0-	BH21_(1.0-	BH21_(3.0-	BH21_(3.9-
Client Sample ID			0.2M)	1.1M)	3.1M)	4.0M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18738	S13-Fe18740	S13-Fe18742	S13-Fe18743
Date Sampled			Feb 19, 2013	Feb 19, 2013	Feb 19, 2013	Feb 19, 2013
Test/Reference	LOR	Unit	0.0 10, 2010	1 00 10, 2010	10, 2010	100000
Organochlorine Pesticides (OC)	LOIC	Offic				
q-BHC (Lindane)	0.05	mg/kg	< 0.05	_	_	_
g-Chlordane	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	_	_
Heptachlor epoxide	0.05	mg/kg	< 0.05	_	_	_
Hexachlorobenzene	0.05	mg/kg	< 0.05	_	_	_
Methoxychlor	0.2	mg/kg	< 0.2	_	_	_
Dibutylchlorendate (surr.)	1	%	85	_	_	_
Tetrachloro-m-xylene (surr.)	1	%	90	_	_	_
Polyaromatic Hydrocarbons (PAH)		, ,,				
Acenaphthene	0.5	mg/kg	< 0.5	-	_	_
Acenaphthylene	0.5	mg/kg	< 0.5	_	_	_
Anthracene	0.5	mg/kg	< 0.5	_	_	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	_	_	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	_	_	_
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	_	_	_
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	_	_	_
Chrysene	0.5	mg/kg	< 0.5	_	_	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	_	_	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH	1	mg/kg	< 1	-	-	-
2-Fluorobiphenyl (surr.)	1	%	91	-	-	-
p-Terphenyl-d14 (surr.)	1	%	84	-	-	-
Heavy Metals						
Arsenic	2	mg/kg	3.3	< 2	5.0	13
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	0.8
Chromium	5	mg/kg	33	14	99	73
Cobalt	5	mg/kg	10	< 5	99	50
Copper	5	mg/kg	26	12	18	34
Lead	5	mg/kg	< 5	< 5	7.5	12
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	31	6.7	110	62
Zinc	5	mg/kg	22	14	36	93
Titanium	10	mg/kg	330	380	82	97
% Moisture	0.1	%	9.3	13	24	20
Asbestos			see attached	-	-	-



Client Sample ID			BH22_(0.0- 0.1M)	BH23_(0.08- 0.18M)	BH23_(0.5- 0.6M)	BH24_(0.08- 0.18M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18744	S13-Fe18745	S13-Fe18746	S13-Fe18748
Date Sampled			Feb 19, 2013	Feb 19, 2013	Feb 19, 2013	Feb 19, 2013
Test/Reference	LOR	Unit		,	, , ,	, , ,
Total Recoverable Hydrocarbons - 1999 NEPM Frac		O i iii				
TRH C6-C9	10	mg/kg	_	< 10	< 10	< 10
TRH C10-C14	50	mg/kg	_	< 50	< 50	< 50
TRH C15-C28	100	mg/kg	-	< 100	< 100	< 100
TRH C29-C36	100	mg/kg	-	< 100	< 100	< 100
TRH C10-36 (Total)	100	mg/kg	-	< 100	< 100	< 100
BTEX		3 3				
Benzene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Toluene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
m&p-Xylenes	1	mg/kg	-	< 1	< 1	< 1
o-Xylene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Xylenes - Total	1.5	mg/kg	-	< 1.5	< 1.5	< 1.5
Total BTEX	1.5	mg/kg	-	< 1.5	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1	%	-	80	81	81
Total Recoverable Hydrocarbons - Draft 2010 NEPM	I Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	-	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	-	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	-	< 100	< 100	< 100
Heavy Metals						
Arsenic	2	mg/kg	2.9	4.8	6.1	4.4
Cadmium	0.4	mg/kg	0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	31	6.3	31	11
Cobalt	5	mg/kg	17	19	22	21
Copper	5	mg/kg	80	110	35	76
Lead	5	mg/kg	53	< 5	13	< 5
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	37	46	65	59
Zinc	5	mg/kg	260	39	66	33
Titanium	10	mg/kg	550	600	57	600
% Moisture	0.1	%	25	4.4	12	4.6
Asbestos			see attached	-	-	-

Client Sample ID			BH24_(0.5- 0.6M)	BH24_(1.1- 1.2M)	BH25_(0.19- 0.29M)	BH26_(0.18- 0.28M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18749	S13-Fe18750	S13-Fe18751	S13-Fe18752
Date Sampled			Feb 19, 2013	Feb 19, 2013	Feb 18, 2013	Feb 18, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	10	mg/kg	-	< 10	< 10	< 10



		1		1	<u> </u>	1
Client Sample ID			BH24_(0.5- 0.6M)	BH24_(1.1- 1.2M)	BH25_(0.19- 0.29M)	BH26_(0.18- 0.28M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18749	S13-Fe18750	S13-Fe18751	S13-Fe18752
Date Sampled			Feb 19, 2013	Feb 19, 2013	Feb 18, 2013	Feb 18, 2013
Test/Reference	LOR	Unit	, , ,	, ,	, , ,	
Total Recoverable Hydrocarbons - 1999 NEPM		Offic				
TRH C10-C14	50	mg/kg	_	< 50	< 50	< 50
TRH C15-C28	100	mg/kg	_	< 100	< 100	< 100
TRH C29-C36	100	mg/kg	_	< 100	< 100	< 100
TRH C10-36 (Total)	100	mg/kg	_	< 100	< 100	< 100
BTEX	100	ilig/kg		100	1100	100
Benzene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Toluene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
m&p-Xylenes	1	mg/kg	_	< 1	< 1	< 1
o-Xylene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Xylenes - Total	1.5	mg/kg	_	< 1.5	< 1.5	< 1.5
Total BTEX	1.5	mg/kg	-	< 1.5	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1.5	%	-	97	91	92
Total Recoverable Hydrocarbons - Draft 2010 N				0.	0.	02
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	_	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	-	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	_	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	_	< 100	< 100	< 100
Polychlorinated Biphenyls (PCB)	1.00	19,9		1.00	1.00	1.00
Aroclor-1016	0.5	mg/kg	-	_	< 0.5	-
Aroclor-1232	0.5	mg/kg	_	-	< 0.5	_
Aroclor-1242	0.5	mg/kg	_	-	< 0.5	_
Aroclor-1248	0.5	mg/kg	_	_	< 0.5	_
Aroclor-1254	0.5	mg/kg	_	_	< 0.5	_
Aroclor-1260	0.5	mg/kg	-	_	< 0.5	_
Total PCB	0.5	mg/kg	_	_	< 0.5	_
Dibutylchlorendate (surr.)	1	%	-	_	75	_
Organochlorine Pesticides (OC)		1 70			1	
4.4'-DDD	0.05	mg/kg	_	_	< 0.05	_
4.4'-DDE	0.05	mg/kg	_	_	< 0.05	_
4.4'-DDT	0.2	mg/kg	_	_	< 0.2	_
a-BHC	0.05	mg/kg	_	_	< 0.05	_
a-Chlordane	0.05	mg/kg	_	_	< 0.05	_
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
g-Chlordane	0.05	mg/kg	-	-	< 0.05	-



Client Sample ID			BH24_(0.5- 0.6M)	BH24_(1.1- 1.2M)	BH25_(0.19- 0.29M)	BH26_(0.18- 0.28M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18749	S13-Fe18750	S13-Fe18751	S13-Fe18752
Date Sampled			Feb 19, 2013	Feb 19, 2013	Feb 18, 2013	Feb 18, 2013
Test/Reference	LOR	Unit	1 05 15, 2010	1 05 13, 2010	1 05 10, 2010	1 05 10, 2010
Organochlorine Pesticides (OC)	LOR	Unit				
	0.05				+ 0.0F	
Heptachlor epoxide	0.05	mg/kg mg/kg	-	-	< 0.05 < 0.05	-
Hexachlorobenzene	0.05		-	-	< 0.05	<del>-</del>
Methoxychlor	0.03	mg/kg mg/kg	-		< 0.05	<del>-</del>
Dibutylchlorendate (surr.)	1	%	-	_	75	-
Tetrachloro-m-xylene (surr.)	1	%	-	_	101	-
Polyaromatic Hydrocarbons (PAH)	·	/0	-	_	101	<del>-</del>
Acenaphthene	0.5	ma/ka	-	_	< 0.5	_
•	0.5	mg/kg	-		< 0.5	<del>-</del>
Acenaphthylene Anthracene	0.5	mg/kg	-		< 0.5	
Benz(a)anthracene	0.5	mg/kg	-		< 0.5	
Benzo(a)pyrene	0.5	mg/kg mg/kg	-		< 0.5	-
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	-		< 1	-
Benzo(g.h.i)perylene	0.5		-		< 0.5	-
Chrysene	0.5	mg/kg	-		< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg mg/kg	-		< 0.5	-
Fluoranthene	0.5	mg/kg	-		< 0.5	
Fluorene	0.5	mg/kg			< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-		< 0.5	-
Naphthalene	0.5	mg/kg	-		< 0.5	-
Phenanthrene	0.5	mg/kg	-		< 0.5	-
Pyrene	0.5	mg/kg	_	_	< 0.5	
Total PAH	1	mg/kg	_	_	< 1	
2-Fluorobiphenyl (surr.)	1	// // // // // // // // // // // // //	_	_	109	_
p-Terphenyl-d14 (surr.)	1	%	_	_	103	
Heavy Metals		70			100	
Arsenic	2	mg/kg	4.6	2.6	2.6	2.6
Cadmium	0.4	mg/kg	< 0.4	0.5	2.3	3.2
Chromium	5	mg/kg	20	89	20	17
Cobalt	5	mg/kg	13	73	44	47
Copper	5	mg/kg	29	57	78	70
Lead	5	mg/kg	8.2	< 5	< 5	5.5
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	40	400	110	80
Zinc	5	mg/kg	51	82	49	41
Titanium	10	mg/kg	17	740	750	490
		, 5 5				
% Moisture	0.1	%	17	12	7.4	9.1



		BH27_(0.17- 0.27M)	BH27_(0.4- 0.5M)	BH28_(0.16- 0.26M)	BH29_(0.19- 0.29M)
		Soil	Soil	Soil	Soil
		S13-Fe18753	S13-Fe18754	S13-Fe18756	S13-Fe18757
		Feb 18, 2013	Feb 18, 2013	Feb 18, 2013	Feb 18, 2013
LOP	Linit	1 0.0 10, 2010	100000	10010, 2010	
	Offic				
	ma/ka	< 10	< 10	< 10	< 10
					< 50
					< 100
					< 100
					< 100
100	ing/itg	1100	1100	1100	1 100
0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
					< 0.5
					< 0.5
					< 1
					< 0.5
					< 1.5
					< 1.5
1					93
// Fractions					
	1	< 0.5	< 0.5	< 0.5	< 0.5
					< 20
					< 20
					< 50
					< 50
100					< 100
100		< 100		< 100	< 100
0.5	mg/kg	< 0.5	-	-	-
0.5		< 0.5	-	-	-
0.5	mg/kg	< 0.5	-	-	-
0.5	mg/kg	< 0.5	-	-	-
0.5	mg/kg	< 0.5	-	-	-
0.5	mg/kg	< 0.5	-	-	-
0.5	mg/kg	< 0.5	-	-	-
1	%	91	-	-	-
0.05	mg/kg	< 0.05	-	-	-
0.05	mg/kg	< 0.05	-	-	-
0.2	mg/kg	< 0.2	-	-	-
0.05	mg/kg	< 0.05	-	-	-
0.05	mg/kg	< 0.05	-	-	-
0.05	mg/kg	< 0.05	-	-	-
0.05	mg/kg	< 0.05	-	-	-
0.05	mg/kg	< 0.05	-	-	-
0.05	mg/kg	< 0.05	-	-	-
			-	-	-
0.05	mg/kg	< 0.05	-	-	-
0.05		i	-	-	-
0.05	mg/kg	< 0.05	-	-	-
0.05	mg/kg	< 0.05			
	0.5 20 20 50 100 100 100 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	10	No.   Soil   S13-Fe18753   Feb 18, 2013	No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	D.27M)   Soil


Client Sample ID			BH27_(0.17- 0.27M)	BH27_(0.4- 0.5M)	BH28_(0.16- 0.26M)	BH29_(0.19- 0.29M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18753	S13-Fe18754	S13-Fe18756	S13-Fe18757
Date Sampled			Feb 18, 2013	Feb 18, 2013	Feb 18, 2013	Feb 18, 2013
Test/Reference	LOR	Unit	1 02 10, 2010	1 05 10, 2010	100 10, 2010	1 05 10, 2010
Organochlorine Pesticides (OC)	LOR	Offic				
g-BHC (Lindane)	0.05	ma/ka	< 0.05	-	_	_
g-Chlordane	0.05	mg/kg	< 0.05	-		-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg mg/kg	< 0.05	-	-	<u> </u>
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	<u> </u>
Methoxychlor	0.03	mg/kg	< 0.03	-	-	<u> </u>
Dibutylchlorendate (surr.)	1	%	91	-	-	_
Tetrachloro-m-xylene (surr.)	1	%	114	-	-	<u> </u>
Polyaromatic Hydrocarbons (PAH)	1	/0	114	-	<del>-</del>	-
Acenaphthene	0.5	ma/ka	< 0.5	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg mg/kg	< 0.5	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	-	< 1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Total PAH	1	mg/kg	< 1	_	< 1	< 1
2-Fluorobiphenyl (surr.)	1	%	115	_	93	104
p-Terphenyl-d14 (surr.)	1	%	111	_	94	104
Heavy Metals		,,,				101
Arsenic	2	mg/kg	5.5	5.3	4.0	2.7
Cadmium	0.4	mg/kg	1.3	1.6	5.8	< 0.4
Chromium	5	mg/kg	20	17	13	63
Cobalt	5	mg/kg	58	65	58	47
Copper	5	mg/kg	58	54	100	37
Lead	5	mg/kg	< 5	8.0	< 5	6.0
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	110	74	87	130
Zinc	5	mg/kg	68	67	51	34
Titanium	10	mg/kg	340	120	750	130
TRAINGH	1 10	ı mg/kg	3-0	120	750	100
9/ Maietura	0.1	0/.	17	16	0.0	24
% Moisture	0.1	%	17	16	9.8	24



Client Sample ID			BH30_(0.19- 0.29M)	BH31_(0.0- 0.2M)	BH31_(0.4- 0.5M)	BH32_(0.08- 0.18M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18759	S13-Fe18760	S13-Fe18761	S13-Fe18762
Date Sampled			Feb 18, 2013	Feb 20, 2013	Feb 20, 2013	Feb 20, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions	1				
TRH C6-C9	10	mg/kg	< 10	< 10	< 10	-
TRH C10-C14	50	mg/kg	< 50	< 50	< 50	-
TRH C15-C28	100	mg/kg	140	< 100	< 100	-
TRH C29-C36	100	mg/kg	180	< 100	< 100	-
TRH C10-36 (Total)	100	mg/kg	320	< 100	< 100	-
ВТЕХ						
Benzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Toluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Ethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
m&p-Xylenes	1	mg/kg	< 1	< 1	< 1	-
o-Xylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Xylenes - Total	1.5	mg/kg	< 1.5	< 1.5	< 1.5	-
Total BTEX	1.5	mg/kg	< 1.5	< 1.5	< 1.5	-
4-Bromofluorobenzene (surr.)	1	%	95	94	95	-
Total Recoverable Hydrocarbons - Draft 2010 NEPM	Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	320	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
Heavy Metals						
Arsenic	2	mg/kg	23	3.4	-	3.4
Cadmium	0.4	mg/kg	0.4	< 0.4	-	< 0.4
Chromium	5	mg/kg	19	14	-	18
Cobalt	5	mg/kg	14	9.8	-	6.9
Copper	5	mg/kg	33	12	-	12
Lead	5	mg/kg	190	11	-	5.1
Mercury	0.05	mg/kg	0.23	< 0.05	-	< 0.05
Nickel	5	mg/kg	27	9.8	-	19
Zinc	5	mg/kg	93	28	-	29
Titanium	10	mg/kg	19	11	-	290
% Moisture	0.1	%	13	13	13	6.8

Client Sample ID Sample Matrix mgt-LabMark Sample No. Date Sampled			BH33_(0.0- 0.2M) Soil S13-Fe18763 Feb 20, 2013	BH34_(0.09- 0.19M) Soil S13-Fe18765 Feb 19, 2013	BH34_(1.0- 1.1M) Soil S13-Fe18767 Feb 19, 2013	BH35_(0.08- 0.18M) Soil S13-Fe18768 Feb 18, 2013
Test/Reference	LOR	Unit	1 05 20, 2010	1 05 15, 2010	1 05 15, 2010	105 10, 2010
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	1				
TRH C6-C9	10	mg/kg	-	-	< 10	< 10
TRH C10-C14	50	mg/kg	-	-	< 50	< 50



Client Sample ID			BH33_(0.0- 0.2M)	BH34_(0.09- 0.19M)	BH34_(1.0- 1.1M)	BH35_(0.08- 0.18M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18763	S13-Fe18765	S13-Fe18767	S13-Fe18768
Date Sampled			Feb 20, 2013	Feb 19, 2013	Feb 19, 2013	Feb 18, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions					
TRH C15-C28	100	mg/kg	-	-	< 100	< 100
TRH C29-C36	100	mg/kg	-	-	< 100	< 100
TRH C10-36 (Total)	100	mg/kg	-	-	< 100	< 100
ВТЕХ						
Benzene	0.5	mg/kg	-	-	< 0.5	< 0.5
Toluene	0.5	mg/kg	-	-	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	-	-	< 0.5	< 0.5
m&p-Xylenes	1	mg/kg	-	-	< 1	< 1
o-Xylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Xylenes - Total	1.5	mg/kg	-	-	< 1.5	< 1.5
Total BTEX	1.5	mg/kg	-	-	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1	%	-	-	93	95
Total Recoverable Hydrocarbons - Draft 2010 NEP	M Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	< 20	< 20
TRH >C10-C16	50	mg/kg	-	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	< 50	< 50
TRH >C16-C34	100	mg/kg	-	-	< 100	< 100
TRH >C34-C40	100	mg/kg	-	-	< 100	< 100
Heavy Metals						
Arsenic	2	mg/kg	6.0	< 2	4.4	2.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	2.3
Chromium	5	mg/kg	130	< 5	27	8.9
Cobalt	5	mg/kg	39	8.0	9.9	42
Copper	5	mg/kg	23	36	19	12
Lead	5	mg/kg	15	< 5	5.0	6.1
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	50	18	30	6.8
Zinc	5	mg/kg	52	25	34	35
Titanium	10	mg/kg	48	510	< 10	220
% Moisture	0.1	%	23	6.2	14	11

Client Sample ID Sample Matrix			BH35_(0.4- 0.5M) Soil	BH36_(0.0- 0.2M) Soil	BH37_(0.0- 0.2M) Soil	BH38_(0.0- 0.2M) Soil
mgt-LabMark Sample No.			S13-Fe18769	S13-Fe18770	S13-Fe18772	S13-Fe18774
Date Sampled			Feb 18, 2013	Feb 20, 2013	Feb 21, 2013	Feb 21, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	10	mg/kg	-	< 10	< 10	< 10
TRH C10-C14	50	mg/kg	-	< 50	< 50	< 50
TRH C15-C28	100	mg/kg	-	< 100	< 100	< 100
TRH C29-C36	100	mg/kg	-	100	< 100	< 100



			DU05 (0.4	DU100 (0.0	DU127 (0.0	DU120 (0.0
Client Sample ID			BH35_(0.4- 0.5M)	BH36_(0.0- 0.2M)	BH37_(0.0- 0.2M)	BH38_(0.0- 0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18769	S13-Fe18770	S13-Fe18772	S13-Fe18774
Date Sampled			Feb 18, 2013	Feb 20, 2013	Feb 21, 2013	Feb 21, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fr						
TRH C10-36 (Total)	100	mg/kg	-	100	< 100	< 100
BTEX	1 .00	19,9			1.00	1.00
Benzene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Toluene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
m&p-Xylenes	1	mg/kg	_	< 1	< 1	< 1
o-Xylene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Xylenes - Total	1.5	mg/kg	_	< 1.5	< 1.5	< 1.5
Total BTEX	1.5	mg/kg	_	< 1.5	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1	%	_	91	89	90
Total Recoverable Hydrocarbons - Draft 2010 NE						
Naphthalene ^{N02}	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	_	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	_	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	_	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	_	110	< 100	< 100
TRH >C34-C40	100	mg/kg	_	< 100	< 100	< 100
Polyaromatic Hydrocarbons (PAH)	1 100	1 1119/119		1100	1100	1100
Acenaphthene	0.5	mg/kg	-	< 0.5	-	_
Acenaphthylene	0.5	mg/kg	-	< 0.5	_	_
Anthracene	0.5	mg/kg	-	< 0.5	_	_
Benz(a)anthracene	0.5	mg/kg	_	< 0.5	_	_
Benzo(a)pyrene	0.5	mg/kg	_	< 0.5	_	_
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	_	< 1	_	_
Benzo(g.h.i)perylene	0.5	mg/kg	_	< 0.5	_	_
Chrysene	0.5	mg/kg	_	< 0.5	_	_
Dibenz(a.h)anthracene	0.5	mg/kg	_	< 0.5	_	_
Fluoranthene	0.5	mg/kg	_	< 0.5	_	_
Fluorene	0.5	mg/kg	_	< 0.5	_	_
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	_	< 0.5	_	_
Naphthalene	0.5	mg/kg	_	< 0.5	_	_
Phenanthrene	0.5	mg/kg	_	< 0.5	_	_
Pyrene	0.5	mg/kg	-	< 0.5	_	_
Total PAH	1	mg/kg	-	< 1	_	_
2-Fluorobiphenyl (surr.)	1	%	-	108	-	_
p-Terphenyl-d14 (surr.)	1	%	-	97	-	_
Heavy Metals						
Arsenic	2	mg/kg	2.3	6.9	5.7	7.8
Cadmium	0.4	mg/kg	1.7	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	8.4	98	160	110
Cobalt	5	mg/kg	21	36	98	34
Copper	5	mg/kg	36	40	38	35
Lead	5	mg/kg	< 5	19	7.5	15
Mercury	0.05	mg/kg	< 0.05	0.06	< 0.05	< 0.05
Nickel	5	mg/kg	9.6	69	150	68
Zinc	5	mg/kg	24	95	43	72
Titanium	10	mg/kg	290	110	98	840



Client Sample ID			BH35_(0.4- 0.5M)	BH36_(0.0- 0.2M)	BH37_(0.0- 0.2M)	BH38_(0.0- 0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18769	S13-Fe18770	S13-Fe18772	S13-Fe18774
Date Sampled			Feb 18, 2013	Feb 20, 2013	Feb 21, 2013	Feb 21, 2013
Test/Reference	LOR	Unit				
% Moisture	0.1	%	11	22	22	20
Asbestos			-	-	see attached	see attached

Client Sample ID			BH38_(0.4- 0.5M)	BH39_(0.0- 0.2M)	BH40_(0.0- 0.2M)	DUP2
Sample Matrix			Soil	Soil	Soil	Soil
•						
mgt-LabMark Sample No.			S13-Fe18775	S13-Fe18776	S13-Fe18778	S13-Fe18781
Date Sampled			Feb 21, 2013	Feb 21, 2013	Feb 21, 2013	Feb 18, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac		1				
TRH C6-C9	10	mg/kg	-	-	-	< 10
TRH C10-C14	50	mg/kg	-	-	-	< 50
TRH C15-C28	100	mg/kg	-	-	-	< 100
TRH C29-C36	100	mg/kg	-	-	-	< 100
TRH C10-36 (Total)	100	mg/kg	-	-	-	< 100
BTEX	1	1				
Benzene	0.5	mg/kg	-	-	-	< 0.5
Toluene	0.5	mg/kg	-	-	-	< 0.5
Ethylbenzene	0.5	mg/kg	-	-	-	< 0.5
m&p-Xylenes	1	mg/kg	-	-	-	< 1
o-Xylene	0.5	mg/kg	-	-	-	< 0.5
Xylenes - Total	1.5	mg/kg	-	-	-	< 1.5
Total BTEX	1.5	mg/kg	-	-	-	< 1.5
4-Bromofluorobenzene (surr.)	1	%	-	-	-	88
Total Recoverable Hydrocarbons - Draft 2010 NEPN	I Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 20
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	< 100
TRH >C34-C40	100	mg/kg	-	-	-	< 100
Heavy Metals						
Arsenic	2	mg/kg	2.5	4.1	3.1	< 2
Cadmium	0.4	mg/kg	0.6	< 0.4	< 0.4	4.1
Chromium	5	mg/kg	190	92	50	19
Cobalt	5	mg/kg	71	47	26	79
Copper	5	mg/kg	47	48	30	45
Lead	5	mg/kg	16	8.5	7.9	< 5
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	120	83	40	140
Zinc	5	mg/kg	72	49	26	50
Titanium	10	mg/kg	490	84	53	590
% Moisture	0.1	%	22	16	15	16



Client Sample ID			DUP3	DUP5	TB1	TB2
Sample Matrix			Soil	Soil	Soil	Soil
· ·						
mgt-LabMark Sample No.			S13-Fe18782	S13-Fe18784	S13-Fe18792	S13-Fe18794
Date Sampled			Feb 19, 2013	Feb 19, 2013	Feb 15, 2013	Feb 15, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	10	mg/kg	< 10	-	< 10	< 10
TRH C10-C14	50	mg/kg	< 50	-	-	-
TRH C15-C28	100	mg/kg	< 100	-	-	-
TRH C29-C36	100	mg/kg	< 100	-	-	-
TRH C10-36 (Total)	100	mg/kg	< 100	-	-	-
BTEX		<u> </u>				
Benzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Toluene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
m&p-Xylenes	1	mg/kg	< 1	-	< 1	< 1
o-Xylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Xylenes - Total	1.5	mg/kg	< 1.5	-	< 1.5	< 1.5
Total BTEX	1.5	mg/kg	< 1.5	-	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1	%	88	-	92	89
Total Recoverable Hydrocarbons - Draft 2010 I	NEPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	-	-
TRH >C10-C16	50	mg/kg	< 50	-	-	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	-	-
TRH >C16-C34	100	mg/kg	< 100	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	-	-
Total PCB	0.5	mg/kg	< 0.5	-	-	-
Dibutylchlorendate (surr.)	1	%	87	-	-	-
Organochlorine Pesticides (OC)						
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.2	mg/kg	< 0.2	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
a-Chlordane	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-



Client Sample ID			DUP3	DUP5	TB1	TB2
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18782	S13-Fe18784	S13-Fe18792	S13-Fe18794
Date Sampled			Feb 19, 2013	Feb 19, 2013	Feb 15, 2013	Feb 15, 2013
Test/Reference	LOR	Unit	, , , , , , , , , , , , , , , , , , , ,		10, 200	, , , , , , , , , , , , , , , , , , , ,
Organochlorine Pesticides (OC)	LOIK	Offic				
q-Chlordane	0.05	mg/kg	< 0.05	_	_	<u> </u>
Heptachlor	0.05	mg/kg	< 0.05	_	_	_
Heptachlor epoxide	0.05	mg/kg	< 0.05	_	_	_
Hexachlorobenzene	0.05	mg/kg	< 0.05	_	_	_
Methoxychlor	0.2	mg/kg	< 0.2	_	_	_
Dibutylchlorendate (surr.)	1	%	87	_	_	_
Tetrachloro-m-xylene (surr.)	1	%	99	_	_	_
Polyaromatic Hydrocarbons (PAH)		70	33			
Acenaphthene	0.5	mg/kg	< 0.5	_	_	_
Acenaphthylene	0.5	mg/kg	< 0.5	_	_	_
Anthracene	0.5	mg/kg	< 0.5	_	_	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	_	_	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	_	_	_
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	_	_	_
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	_	_	_
Chrysene	0.5	mg/kg	< 0.5	_	_	_
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	_	-	_
Fluoranthene	0.5	mg/kg	< 0.5	_	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH	1	mg/kg	< 1	-	-	-
2-Fluorobiphenyl (surr.)	1	%	101	-	-	-
p-Terphenyl-d14 (surr.)	1	%	102	-	-	-
Heavy Metals	•					
Arsenic	2	mg/kg	< 2	7.2	-	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	-
Chromium	5	mg/kg	8.9	7.6	-	-
Cobalt	5	mg/kg	< 5	10.0	-	-
Copper	5	mg/kg	20	40	-	-
Lead	5	mg/kg	< 5	11	-	-
Mercury	0.05	mg/kg	< 0.05	< 0.05	-	-
Nickel	5	mg/kg	5.7	18	-	-
Zinc	5	mg/kg	13	61	-	-
Titanium	10	mg/kg	300	< 10	-	-
% Moisture	0.1	%	13	13	-	-



Client Sample ID			TS2	TS3	SED1	SED2
Sample Matrix			Soil	Soil	Soil	Soil
•						1
mgt-LabMark Sample No.			S13-Fe18795	S13-Fe18797	S13-Fe18798	S13-Fe18799
Date Sampled			Feb 20, 2013	Feb 20, 2013	Feb 21, 2013	Feb 21, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	10	mg/kg	95%	104%	< 10	< 10
TRH C10-C14	50	mg/kg	-	-	< 50	< 50
TRH C15-C28	100	mg/kg	-	-	< 100	< 100
TRH C29-C36	100	mg/kg	-	-	< 100	< 100
TRH C10-36 (Total)	100	mg/kg	-	-	< 100	< 100
BTEX		•				
Benzene	0.5	mg/kg	96%	89%	< 0.5	< 0.5
Toluene	0.5	mg/kg	96%	94%	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	96%	98%	< 0.5	< 0.5
m&p-Xylenes	1	mg/kg	96%	97%	< 1	< 1
o-Xylene	0.5	mg/kg	97%	96%	< 0.5	< 0.5
Xylenes - Total	1.5	mg/kg	96%	97%	< 1.5	< 1.5
Total BTEX	1.5	mg/kg	96%	95%	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1	%	85	104	76	71
Total Recoverable Hydrocarbons - Draft 2010 N	NEPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	< 20	< 20
TRH >C10-C16	50	mg/kg	-	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	< 50	< 50
TRH >C16-C34	100	mg/kg	-	-	< 100	< 100
TRH >C34-C40	100	mg/kg	-	-	< 100	< 100
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1232	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1242	0.5	mg/kg	=	-	< 0.5	-
Aroclor-1248	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1254	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1260	0.5	mg/kg	-	-	< 0.5	-
Total PCB	0.5	mg/kg	-	-	< 0.5	-
Dibutylchlorendate (surr.)	1	%	-	-	123	-
Organochlorine Pesticides (OC)						
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.2	mg/kg	-	-	< 0.2	-
a-BHC	0.05	mg/kg	-	-	< 0.05	-
a-Chlordane	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-



Client Sample ID			TS2	TS3	SED1	SED2
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S13-Fe18795	S13-Fe18797	S13-Fe18798	S13-Fe18799
Date Sampled			Feb 20, 2013	Feb 20, 2013	Feb 21, 2013	Feb 21, 2013
Test/Reference	LOR	Unit		, , ,	,	, , ,
Organochlorine Pesticides (OC)	LOIN	Onit				
g-Chlordane	0.05	mg/kg	_	_	< 0.05	_
Heptachlor	0.05	mg/kg	_	-	< 0.05	_
Heptachlor epoxide	0.05	mg/kg	_	_	< 0.05	_
Hexachlorobenzene	0.05	mg/kg	_	_	< 0.05	_
Methoxychlor	0.2	mg/kg	_	_	< 0.2	_
Dibutylchlorendate (surr.)	1	%	_	_	123	_
Tetrachloro-m-xylene (surr.)	1	%	-	_	70	-
Polyaromatic Hydrocarbons (PAH)		,,,				
Acenaphthene	0.5	mg/kg	_	_	< 0.5	_
Acenaphthylene	0.5	mg/kg	_	_	< 0.5	_
Anthracene	0.5	mg/kg	-	-	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	-	_	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	-	-	< 1	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	-	< 0.5	-
Pyrene	0.5	mg/kg	-	-	< 0.5	-
Total PAH	1	mg/kg	-	-	< 1	-
2-Fluorobiphenyl (surr.)	1	%	-	-	99	-
p-Terphenyl-d14 (surr.)	1	%	-	-	94.5	-
Heavy Metals						
Arsenic	2	mg/kg	-	-	< 2	< 2
Cadmium	0.4	mg/kg	-	-	< 0.4	< 0.4
Chromium	5	mg/kg	-	-	12	65
Cobalt	5	mg/kg	-	-	6.1	16
Copper	5	mg/kg	-	-	17	21
Lead	5	mg/kg	-	-	6.5	< 5
Mercury	0.05	mg/kg	-	-	< 0.05	< 0.05
Nickel	5	mg/kg	-	-	11	42
Zinc	5	mg/kg	-	-	44	32
Titanium	10	mg/kg	-	-	90	190



Client Sample ID			SED3
Sample Matrix			Soil
mgt-LabMark Sample No.			S13-Fe18800
Date Sampled			Feb 21, 2013
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	<u> </u>		
TRH C6-C9	10	mg/kg	< 10
TRH C10-C14	50	mg/kg	< 50
TRH C15-C28	100	mg/kg	860
TRH C29-C36	100	mg/kg	< 100
TRH C10-36 (Total)	100	mg/kg	860
BTEX	•		
Benzene	0.5	mg/kg	< 0.5
Toluene	0.5	mg/kg	< 0.5
Ethylbenzene	0.5	mg/kg	< 0.5
m&p-Xylenes	1	mg/kg	< 1
o-Xylene	0.5	mg/kg	< 0.5
Xylenes - Total	1.5	mg/kg	< 1.5
Total BTEX	1.5	mg/kg	< 1.5
4-Bromofluorobenzene (surr.)	1	%	70
Total Recoverable Hydrocarbons - Draft 2010 N	IEPM Fractions	*	
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	890
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	890
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
Heavy Metals			
Arsenic	2	mg/kg	< 2
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	31
Cobalt	5	mg/kg	76
Copper	5	mg/kg	84
Lead	5	mg/kg	5.2
Mercury	0.05	mg/kg	< 0.05
Nickel	5	mg/kg	73
Zinc	5	mg/kg	86
Titanium	10	mg/kg	280
	T	1	
% Moisture	0.1	%	54



# **Sample History**

 $Where \ samples \ are \ submitted/analysed \ over \ several \ days, \ the \ last \ date \ of \ extraction \ and \ analysis \ is \ reported.$ 

Description	Testing Site	Extracted	<b>Holding Time</b>
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Feb 26, 2013	14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions	Sydney	Feb 26, 2013	14 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	Feb 26, 2013	14 Day
- Method: E029/E016 BTEX			
Polychlorinated Biphenyls (PCB)	Sydney	Feb 26, 2013	14 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Organochlorine Pesticides (OC)	Sydney	Feb 26, 2013	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polyaromatic Hydrocarbons (PAH)	Sydney	Feb 26, 2013	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Heavy Metals	Sydney	Feb 26, 2013	180 Day
- Method: E022 Acid Extractable metals in Soils			
% Moisture	Sydney	Feb 26, 2013	28 Day

web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

Client Job No.: BRICKWORKS PROSPECT ENAURHOD04463AA

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is co																																
	oratory - NATA S		4271		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u></u>	\ \ \			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							· ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	atory - NATA Site				Х	X	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Χ	Х	Х	Х	Х
External Labor	ratory - NATA Si	te # 20794						Х			-		$\dashv$																			-	
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				^																									
	-	Time							_																								$\vdash$
BH1_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18699	Х	Х		Х	Х		Х		Х		Х			Χ		Χ		Χ		Χ			Χ		Χ			Х	Х
BH1_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18700													Х																
BH2_(0.0- 0.2M)	Feb 19, 2013		Soil	S13-Fe18701	Х	Х			Х		х		Х		Х			Х		Х		Х		Х			Х					Х	
BH3_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18702	Х	х			х		х		Х		Х			Х		Х		Х		Х			Х					Х	
BH4_(0.0- 0.1M)	Feb 20, 2013		Soil	S13-Fe18703	Х	Х			Х		х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х
BH4_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18704													Х																

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																															$\vdash\vdash$	_
	oratory - NATA		271			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\ \ \	\ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \	. V		. V	V		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V		_
	atory - NATA Site				X	X	Х		Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	X	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
External Labor	ratory - NATA Si	ite # 20794						X																								$\Box$	-
BH5_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18705	Х	Х		X	Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH6_(0.16- 0.26M)	Feb 18, 2013		Soil	S13-Fe18706	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH6_(0.4- 0.5M)	Feb 19, 2013		Soil	S13-Fe18707													Х																
BH6_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18708	Х	X			Х		Х		Х		Х			Х		Х		Х		Х			х						
BH6_(1.9- 2.0M)	Feb 19, 2013		Soil	S13-Fe18709													Х																
BH7_(0.08- 0.13M)	Feb 18, 2013		Soil	S13-Fe18710	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH7_(0.2- 0.3M)	Feb 18, 2013		Soil	S13-Fe18711	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			х		Х	Х	Х	х	х

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** Edward Wu NSW 2067 Fax: +61 2 9406 1004

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	НОГД	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	ВТЕХ	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																																
	oratory - NATA		271																													$\perp \perp \perp$	
	atory - NATA Site				X	X	Х		Х	X	Χ	X	Χ	Χ	Χ	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х
Brisbane Labo	ratory - NATA Si	te # 20794																															
External Labor	atory	i	<u> </u>					X																									
BH7_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18712	Х	Х			Х		Х		Х		Χ			Х		Х		Х		Х			Х						
BH8_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18713	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х
BH9_(0.0- 0.1M)	Feb 20, 2013		Soil	S13-Fe18714	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х
BH9_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18715													Х																
BH10_(0.16- 0.26M)	Feb 20, 2013		Soil	S13-Fe18716	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH11_(0.19- 0.29M)	Feb 20, 2013		Soil	S13-Fe18717	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH12_(0.23- 0.33M)	Feb 20, 2013		Soil	S13-Fe18718													Х																

web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																																_
	poratory - NATA		4271			L.,																											_
	atory - NATA Site				Х	X	Х		Х	Х	Χ	Х	Х	Χ	Х	Χ	Х	Χ	Χ	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х
	oratory - NATA Si	ite # 20794						\ \ \																									
External Labor			lo :	040 5 40740				Х																									-
BH12_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18719	Х	Х			Х		Χ		Х		Х			Х		Х		Х		Χ			Χ		Х				Х
BH13_(0.13- 0.23M)	Feb 20, 2013		Soil	S13-Fe18720	Х	Х		Х	х		Х		х		Х			Х		Х		Х		X			Х		Х				X
BH13_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18721													Х																
BH14_(0.19- 0.29M)	Feb 18, 2013		Soil	S13-Fe18722	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH14_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18723													х																
BH15_(0.15- 0.25M)	Feb 18, 2013		Soil	S13-Fe18724	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH15_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18725													х																

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013

Chatswood Phone: +61 2 9406 1000 Priority: 4 Day **Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																															$\vdash$	_
	oratory - NATA		1271																													$\vdash$	
	atory - NATA Site				X	X	Х		Х	Х	Х	X	Χ	Χ	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	X
	ratory - NATA Si	ite # 20794																														$\vdash$	_
External Labor								X																								$\vdash$	
BH16_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18726	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Χ		Х			Ш	Х
BH17_(0.08- 0.18M)	Feb 19, 2013		Soil	S13-Fe18727													Х																
BH17_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18728	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х
BH17_(0.9- 1.0M)	Feb 19, 2013		Soil	S13-Fe18729													Х																
BH17_(2.0- 2.1M)	Feb 19, 2013		Soil	S13-Fe18730													Х																
BH17_(3.0- 3.1M)	Feb 19, 2013		Soil	S13-Fe18731													Х																
BH17_(3.8- 3.9M)	Feb 19, 2013		Soil	S13-Fe18732													Х																

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013

Chatswood Phone: +61 2 9406 1000 Priority: 4 Day **Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																															$\vdash$	
	oratory - NATA		1271																											<u> </u>	igsqcup	$\vdash$	
	atory - NATA Site				X	X	Х		Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	X	X	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
	ratory - NATA Si	ite # 20794																												<u></u> '	igwdapprox	$\vdash$	_
External Labor			1					Х																						<u> </u>	igsqcup	$\vdash$	
BH18_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18733	Х	Х		Х	Х		Χ		Χ		Х			Х		Х		Х		Х			Χ					Х	
BH19_(0.0- 0.15M)	Feb 19, 2013		Soil	S13-Fe18734													Х																
BH19_(0.4- 0.5M)	Feb 19, 2013		Soil	S13-Fe18735	Х	Х		х	Х		Х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х		Х
BH19_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18736	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH20_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18737	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х					Х	
BH21_(0.0- 0.2M)	Feb 19, 2013		Soil	S13-Fe18738	Х	Х		Х	Х		X		Х		Х			Х		Х		Х		Х			Х			Х	Х	Х	
BH21_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18739													Х																

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																													$\bigsqcup$	$\vdash \vdash$		
	oratory - NATA		271			L.,											L.,		L.,											$\sqcup$	$\vdash$		
	atory - NATA Site				X	Х	Х		Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х
	ratory - NATA Si	ite # 20794						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																						$\sqcup$	$\vdash$		
External Labor		I	I					X																						$\vdash$	$\vdash$	$\longrightarrow$	
BH21_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18740	Х	Х			Χ		Χ		Χ		Х			Х		Х		Χ		Х			Χ						
BH21_(2.0- 2.1M)	Feb 19, 2013		Soil	S13-Fe18741													Х																
BH21_(3.0- 3.1M)	Feb 19, 2013		Soil	S13-Fe18742	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH21_(3.9- 4.0M)	Feb 19, 2013		Soil	S13-Fe18743	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH22_(0.0- 0.1M)	Feb 19, 2013		Soil	S13-Fe18744	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH23_(0.08- 0.18M)	Feb 19, 2013		Soil	S13-Fe18745	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH23_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18746	Х	Х			Х		Х		Х		Х			х		Х		Х		Х			Х		Х				Х

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail	ı		% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																															<u> </u>	$\vdash$
	oratory - NATA		4271		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			· ·												\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								· · ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	atory - NATA Site				Х	X	Х		Х	Х	Χ	Х	Х	Χ	Χ	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
External Labor	ratory - NATA Si	ite # 20/94						Х																							$\rightarrow$		
	Feb 19, 2013		Soil	S13-Fe18747				^																							$\dashv$		П
BH23_(1.0- 1.1M)																	Х															<u> </u>	
BH24_(0.08- 0.18M)	Feb 19, 2013		Soil	S13-Fe18748	Х	Х			Х		Χ		Х		Х			Χ		Χ		Х		Х			Х		Х				Х
BH24_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18749	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH24_(1.1- 1.2M)	Feb 19, 2013		Soil	S13-Fe18750	Х	Х			Х		Х		Х		Х			X		X		Х		Х			Х		Х				Х
BH25_(0.19- 0.29M)	Feb 18, 2013		Soil	S13-Fe18751	Х	Х			Х		Х		х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х
BH26_(0.18- 0.28M)	Feb 18, 2013		Soil	S13-Fe18752	Х	Х			Х		Х		х		Х			Х		Х		Х		Х			Х		Х				Х
BH27_(0.17- 0.27M)	Feb 18, 2013		Soil	S13-Fe18753	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х

web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detai	I		% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	НОГД	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																																_
	ooratory - NATA		4271																														
	atory - NATA Site				Х	X	Х		Х	Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Х
	ratory - NATA Si	ite # 20794																															_
External Labor		T						X																									
BH27_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18754	Х	Х			Х		Х		Х		Х			Χ		Х		Х		Х			Х		Х				Х
BH27_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18755													Х																
BH28_(0.16- 0.26M)	Feb 18, 2013		Soil	S13-Fe18756	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х			Х	X
BH29_(0.19- 0.29M)	Feb 18, 2013		Soil	S13-Fe18757	Х	Х			Х		Х		Х		Х			X		Х		Х		Х			Х		Х			Х	х
BH29_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18758													Х																
BH30_(0.19- 0.29M)	Feb 18, 2013		Soil	S13-Fe18759	Х	Х			х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH31_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18760	Х	х			х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Χ

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013

Chatswood Phone: +61 2 9406 1000 Priority: 4 Day **Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																													<u> </u>		$\vdash$	_
	oratory - NATA		271		.,	<u> </u>			.,				.,				.,	.,	.,			.,			.,	.,	.,	.,	.,	<del> </del>			_
	atory - NATA Site				X	X	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X
	ratory - NATA Si	ite # 20794						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																						├	$\vdash$	$\vdash$	_
External Labor			0-11	040 5 40704			-	Х																						$\vdash$	$\vdash \vdash$	$\vdash$	
BH31_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18761	Х																								Х				Х
BH32_(0.08- 0.18M)	Feb 20, 2013		Soil	S13-Fe18762	Х	Х			Х		Х		Х		X			Х		Х		Х		Х			Х						
BH33_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18763	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH33_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18764													Х																
BH34_(0.09- 0.19M)	Feb 19, 2013		Soil	S13-Fe18765	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH34_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18766													Х																
BH34_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18767	Х	Х			Х		Х		Х		Х			х		Х		Х		Х			Х		х				х

web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detai			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	НОГ	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c				_																											$\dashv$	
	poratory - NATA		4271		.,	\	.,		.,	.,		.,	.,	.,	.,				.,	.,		.,						.,		.,			
	atory - NATA Site				X	X	Х		Χ	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	X
	oratory - NATA Si	ite # 20794						Х																								$\dashv$	
External Labor	Feb 18, 2013		Soil	S13-Fe18768				_																								$\dashv$	-
BH35_(0.08- 0.18M)	Feb 16, 2013		3011	313-1 610700	Х	Х			Х		Χ		Х		Х			Χ		Х		Χ		Χ			Χ		Х				Х
BH35_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18769	Х	Х			Х		Х		Х		Х			X		Х		Х		X			X						
BH36_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18770	Х	Х			Х		Х		Χ		Х			Χ		Х		Х		X			Х		Х			Х	х
BH36_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18771													Х																_
BH37_(0.0- 0.2M)	Feb 21, 2013		Soil	S13-Fe18772	Х	Х		Х	х		Х		Х		х			Х		х		Х		Х			Х		Х				Х
BH37_(0.4- 0.5M)	Feb 21, 2013		Soil	S13-Fe18773													Х																
BH38_(0.0- 0.2M)	Feb 21, 2013		Soil	S13-Fe18774	Х	Х		Х	Х		X		Х		Х			Х		Х		Х		Х			Х		Х				Х

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

NSW 2067 Fax: +61 2 9406 1004 **Contact Name:** Edward Wu

Client Job No.: BRICKWORKS PROSPECT ENAURHOD04463AA mgt-LabMark Client Manager: Jean Heng

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	ПОП	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory wh	nere analysis is co	onducted																															
Melbourne La	boratory - NATA S	Site # 1254 & 14	271																														
Sydney Labor	atory - NATA Site	# 18217			Х	Х	Х		Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х
Brisbane Labo	oratory - NATA Sit	te # 20794																															
<b>External Labo</b>	ratory							Х																									
BH38_(0.4- 0.5M)	Feb 21, 2013		Soil	S13-Fe18775	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH39_(0.0- 0.2M)	Feb 21, 2013		Soil	S13-Fe18776	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH39_(0.4- 0.5M)	Feb 21, 2013		Soil	S13-Fe18777													Х																
BH40_(0.0- 0.2M)	Feb 21, 2013		Soil	S13-Fe18778	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH40_(0.4- 0.5M)	Feb 21, 2013		Soil	S13-Fe18779													Х																
DUP1	Feb 18, 2013		Soil	S13-Fe18780													Χ																Ш
DUP2	Feb 18, 2013		Soil	S13-Fe18781	Х	X			Х		Х		Χ		Χ			Χ		Х		Х		Х			Х		Х				Х
DUP3	Feb 19, 2013		Soil	S13-Fe18782	X	X			Χ		Χ		Χ		Χ			Χ		X		Х		Х			Χ		Χ	Х	Χ	Χ	Х

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

Client Job No.: BRICKWORKS PROSPECT ENAURHOD04463AA

## mgt-LabMark Client Manager: Jean Heng

	Sample			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	nere analysis is conducted																															_
	boratory - NATA Site # 12			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \																			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								_
	atory - NATA Site # 18217			Х	X	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Х	Χ	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Х	X
	oratory - NATA Site # 2079	94					Х																								$\rightarrow$	-
External Labo	Feb 19, 2013	Soil	S13-Fe18783				X									х															$\dashv$	_
DUP5		Soil		X	X			Х		Х		Х		Х			Х		Х		Х		X			Х					$\rightarrow$	
DUP5	Feb 19, 2013 Feb 20, 2013	Soil	S13-Fe18784 S13-Fe18785	<del>  ^</del>				^		^		^		^	_	Х	^		^		^		^			^					$\dashv$	$\dashv$
DUP7	Feb 20, 2013	Soil	S13-Fe18786													X															$\dashv$	-
DUP8	Feb 20, 2013	Soil	S13-Fe18787													x															$\dashv$	$\dashv$
DUP9	Feb 21, 2013	Soil	S13-Fe18788					$\dashv$						$\dashv$		X															$\dashv$	$\dashv$
RB1	Feb 19, 2013	Water	S13-Fe18789													X															$\dashv$	$\dashv$
RB2	Feb 20, 2013	Water	S13-Fe18790													X															$\dashv$	$\dashv$
RB3	Feb 21, 2013	Water	S13-Fe18791			Х			Х		Х		Х		Х	- 1		Х		Х		Х		Х			Х	Х	Х	Х	Х	Х
TB1	Feb 15, 2013	Soil	S13-Fe18792																						Х			Х				
TS1	Feb 15, 2013	Soil	S13-Fe18793													Х																

Page 40 of 54

Date Reported:Mar 04, 2013 Date Reported:Mar 04, 2013 Report Number: 370054-S

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

NSW 2067 Fax: +61 2 9406 1004 **Contact Name:** Edward Wu

Client Job No.: BRICKWORKS PROSPECT ENAURHOD04463AA

## mgt-LabMark Client Manager: Jean Heng

	Sa	ample Detail		% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
-	where analysis is cond																														$\longrightarrow$	$\dashv$
	aboratory - NATA Site			Х	X	х		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X
	oratory - NATA Site # 1 boratory - NATA Site #			^	<del>  ^</del>			^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	<del>- ^  </del>	<del></del>
External Lab		20134					Х																									_
TB2	Feb 15, 2013	Soil	S13-Fe18794																						Х			Х				$\neg$
TS2	Feb 20, 2013	Soil	S13-Fe18795																						Х			Х			1	
TB3	Feb 15, 2013	Soil	S13-Fe18796													Х																
TS3	Feb 20, 2013	Soil	S13-Fe18797																						Χ			Х				
SED1	Feb 21, 2013	Soil	S13-Fe18798	Х	Х			Х		Χ		Х		Х			Χ		Х		Χ		Χ			Χ		Χ	Х	Χ	Х	Х
SED2	Feb 21, 2013	Soil	S13-Fe18799	Х	Х			Х		Χ		Х		Х			Χ		Χ		Χ		Χ			Χ		Χ				Χ
SED3	Feb 21, 2013	Soil	S13-Fe18800	Х	Х			Х		Χ		Χ		Χ			Χ		Χ		Х		Χ			Χ		Χ				Х
SW1	Feb 21, 2013	Water	S13-Fe18801		Х			Х		Χ		Х		Х			Χ		Χ		Χ		Χ			Χ		Χ			Χ	Х
SW2	Feb 21, 2013	Water	S13-Fe18802		X			Х		Χ		Χ		Х			Χ		Χ		Χ		Χ			Χ		Χ			Х	Х
SW3	Feb 21, 2013	Water	S13-Fe18803		X			Х		Χ		Χ		Х			Χ		Χ		Χ		Χ			Χ		Χ			Х	Х
TS1LAB	Feb 15, 2013	Soil	S13-Fe18804													Χ																

Page 41 of 54

Date Reported:Mar 04, 2013 Date Reported:Mar 04, 2013 Report Number: 370054-S



### mgt-LabMark Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

### UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **TERMS**

**Dry** Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery

CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

# QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

### **QC DATA GENERAL COMMENTS**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM F Petroleum Hydrocarbons (TPH)	ractions E004				
TRH C6-C9	mg/kg	< 10	10	Pass	
TRH C10-C14	mg/kg	< 50	50	Pass	
TRH C15-C28	mg/kg	< 100	100	Pass	
TRH C29-C36	mg/kg	< 100	100	Pass	
Method Blank					
BTEX E029/E016 BTEX					
Benzene	mg/kg	< 0.5	0.5	Pass	
Toluene	mg/kg	< 0.5	0.5	Pass	
Ethylbenzene	mg/kg	< 0.5	0.5	Pass	
m&p-Xylenes	mg/kg	< 1	1	Pass	
o-Xylene	mg/kg	< 0.5	0.5	Pass	
Xylenes - Total	mg/kg	< 1.5	1.5	Pass	
Total BTEX	mg/kg	< 1.5	1.5	Pass	
Method Blank					
Total Recoverable Hydrocarbons - Draft 2010 NE LTM-ORG2010	EPM Fractions LM-				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polychlorinated Biphenyls (PCB) E013 Polychlo (PCB)	rinated Biphenyls				
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB	mg/kg	< 0.5	0.5	Pass	
Method Blank		1 0.0	0.0		
Organochlorine Pesticides (OC) E013 Organoch	lorine Pesticides (OC)				
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.2	0.2	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
a-Chlordane	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
g-Chlordane	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic F (PAH)	lydrocarbons				
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/kg	< 1	1	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	1 3 3				
Heavy Metals E022 Acid Extractable metals in Soils					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Cobalt	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Titanium	mg/kg	< 10	10	Pass	
LCS - % Recovery	I IIIg/Ng	V 10	10	1 455	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions Petroleum Hydrocarbons (TPH)	s E004				
TRH C6-C9	%	93	70-130	Pass	
TRH C10-C14	%	99	70-130	Pass	
LCS - % Recovery	1				
BTEX E029/E016 BTEX					
Benzene	%	90	70-130	Pass	
Toluene	%	99	70-130	Pass	
Ethylbenzene	%	97	70-130	Pass	
m&p-Xylenes	%	96	70-130	Pass	
o-Xylene	%	96	70-130	Pass	
Xylenes - Total	%	96	70-130	Pass	
LCS - % Recovery	1 /0		1 70-100	. uss	
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fra LTM-ORG2010	ctions LM-				
Naphthalene	%	91	70-130	Pass	
TRH C6-C10	%	121	70-130	Pass	
TRH >C10-C16	%	105	70-130	Pass	
LCS - % Recovery	1 /0		1 70-100	. uss	
Polychlorinated Biphenyls (PCB) E013 Polychlorinated (PCB)	Biphenyls				
Aroclor-1260	%	84	70-130	Pass	
,	/ / /	· · · ·	1 70 100	. 400	



Te	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Organochlorine Pesticides (O	C) E013 Organochlorin	ne Pestici	des (OC)				
4.4'-DDD					70-130	Pass	
4.4'-DDE	DDE			92	70-130	Pass	
4.4'-DDT	-DDT			91	70-130	Pass	
I-BHC			%	96	70-130	Pass	
a-Chlordane			%	90	70-130	Pass	
Aldrin			%	97	70-130	Pass	
b-BHC				99	70-130	Pass	
d-BHC			%	92	70-130	Pass	
Dieldrin			%	93	70-130	Pass	
Endosulfan I			%	95	70-130	Pass	
Endosulfan II			%	92	70-130	Pass	
Endosulfan sulphate			%	86	70-130	Pass	
Endrin			%	92	70-130	Pass	
Endrin aldehyde			%	90	70-130	Pass	
Endrin ketone			%	91	70-130	Pass	
g-BHC (Lindane)			%	93	70-130	Pass	
g-Chlordane			%	93	70-130	Pass	
Heptachlor			%	98	70-130	Pass	
Heptachlor epoxide			%	95	70-130	Pass	
Hexachlorobenzene			%	102	70-130	Pass	
Methoxychlor			%	91	70-130	Pass	
LCS - % Recovery			/0	91	70-130	1 033	
Polyaromatic Hydrocarbons (F (PAH)	PAH) E007 Polyaroma	tic Hydro	carbons				
Acenaphthene			%	107	70-130	Pass	
Acenaphthylene			%	100	70-130	Pass	
Anthracene			%	108	70-130	Pass	
Benz(a)anthracene			%	91	70-130	Pass	
Benzo(a)pyrene			%	91	70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene			%	95	70-130	Pass	
Benzo(g.h.i)perylene	Kilidorantilono		%	91	70-130	Pass	
Chrysene			%	109	70-130	Pass	
Dibenz(a.h)anthracene			%	90	70-130	Pass	
` '			%	97	70-130	Pass	
Fluoranthene						<u> </u>	
Fluorene			<u>%</u> %	102	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	90	70-130	Pass	
•	Naphthalene			110	70-130	Pass	
Phenanthrene			%	100	70-130	Pass	
Pyrene			%	103	70-130	Pass	
LCS - % Recovery	etable metals in Calls			1		I	
Heavy Metals E022 Acid Extractable metals in Soils			0/	90	70.400	Dag:	
Arsenic			%	82	70-130	Pass	
Cadmium			%	97	70-130	Pass	
Chromium			%	86	70-130	Pass	
Cobalt			%	92	70-130	Pass	
Copper			%	119	70-130	Pass	
Lead			%	93	70-130	Pass	
Mercury			%	97	70-130	Pass	
Nickel			%	90	70-130	Pass	
Zinc			%	101	70-130	Pass	
Titanium			%	75	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
	•	Source			Lillita	Lilling	



Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9	S13-Fe18699	CP	%	84	70-130	Pass	
TRH C10-C14	S13-Fe18699	СР	%	100	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S13-Fe18699	CP	%	94	70-130	Pass	
Toluene	S13-Fe18699	CP	%	92	70-130	Pass	
Ethylbenzene	S13-Fe18699	СР	%	92	70-130	Pass	
m&p-Xylenes	S13-Fe18699	СР	%	93	70-130	Pass	
o-Xylene	S13-Fe18699	СР	%	93	70-130	Pass	
Xylenes - Total	S13-Fe18699	СР	%	93	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - Draft 2010 NEPM	Fractions	S	Result 1			
Naphthalene	S13-Fe18699	СР	%	89	70-130	Pass	
TRH C6-C10	S13-Fe18699	СР	%	86	70-130	Pass	
TRH >C10-C16	S13-Fe18699	СР	%	107	70-130	Pass	
Spike - % Recovery					· ·	•	
Polyaromatic Hydrocarbons (F	PAH)			Result 1			
Acenaphthene	S13-Fe20489	NCP	%	121	70-130	Pass	
Acenaphthylene	S13-Fe20489	NCP	%	113	70-130	Pass	
Anthracene	S13-Fe20489	NCP	%	112	70-130	Pass	
Benz(a)anthracene	S13-Fe20489	NCP	%	108	70-130	Pass	
Benzo(a)pyrene	S13-Fe20489	NCP	%	104	70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Fe20489	NCP	%	107	70-130	Pass	
Benzo(g.h.i)perylene	S13-Fe20489	NCP	<del>%</del>	101	70-130	Pass	
Chrysene	S13-Fe20489	NCP	<del>%</del>	114	70-130	Pass	
Dibenz(a.h)anthracene	S13-Fe20489	NCP	<del>%</del>	99	70-130	Pass	
Fluoranthene	S13-Fe20489	NCP	<del>%</del>	113	70-130	Pass	
Fluorene	S13-Fe20489	NCP	<del>%</del>	118	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-Fe20489	NCP	<del>%</del>	106	70-130	Pass	
Naphthalene	S13-Fe20489	NCP	<del>%</del>	113	70-130	Pass	
Phenanthrene	S13-Fe20489	NCP	<del>%</del>	115	70-130	Pass	
Pyrene	S13-Fe20489	NCP	<del>%</del>	113	70-130	Pass	
Spike - % Recovery	0131020403	1401	70	110	70 100	1 433	
Heavy Metals				Result 1			
Arsenic	S13-Fe18699	СР	%	86	70-130	Pass	
Cadmium	S13-Fe18699	CP	<del>%</del>	95	70-130	Pass	
Chromium	S13-Fe18699	CP	%	80	70-130	Pass	
Cobalt	S13-Fe18699	CP	<del>%</del>	90	70-130	Pass	
Lead	S13-Fe18699	CP	%	91	70-130	Pass	
Mercury	S13-Fe18699	CP	%	91	70-130	Pass	
Nickel	S13-Fe18699	CP	%	77	70-130	Pass	
Zinc	S13-Fe18699	CP	%	105	70-130	Pass	
Spike - % Recovery	0101010000	U.	70	100	10 100	1 400	
Heavy Metals				Result 1		Τ	
Arsenic	S13-Fe18713	СР	%	106	70-130	Pass	
Cadmium	S13-Fe18713	CP	<del>%</del>	89	70-130	Pass	
Cobalt	S13-Fe18713	СР	%	89	70-130	Pass	
Mercury	S13-Fe18713	СР	%	81	70-130	Pass	
Nickel	S13-Fe18713	CP	%	108	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S13-Fe18722	СР	%	101	70-130	Pass	
Toluene	S13-Fe18722	CP	%	94	70-130	Pass	
Ethylbenzene	S13-Fe18722	CP	%	93	70-130	Pass	
m&p-Xylenes	S13-Fe18722	CP	%	92	70-130	Pass	



EIVVIIIO	NMENTAL LABO		120				
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
o-Xylene	S13-Fe18722	CP	%	91	70-130	Pass	
Xylenes - Total	S13-Fe18722	CP	%	92	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	s - Draft 2010 NEPM	Fraction	s	Result 1			
Naphthalene	S13-Fe18722	CP	%	87	70-130	Pass	
TRH C6-C10	S13-Fe18722	CP	%	88	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S13-Fe18733	CP	%	84	70-130	Pass	
Cadmium	S13-Fe18733	CP	%	90	70-130	Pass	
Chromium	S13-Fe18733	CP	%	77	70-130	Pass	
Cobalt	S13-Fe18733	CP	%	88	70-130	Pass	
Lead	S13-Fe18733	CP	%	84	70-130	Pass	
Mercury	S13-Fe18733	CP	%	97	70-130	Pass	
Nickel	S13-Fe18733	CP	%	91	70-130	Pass	
Spike - % Recovery				,			
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	S13-Fe18742	CP	%	95	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	s - Draft 2010 NEPM	Fractions	s	Result 1			
TRH >C10-C16	S13-Fe18742	СР	%	105	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S13-Fe18746	СР	%	76	70-130	Pass	
Cadmium	S13-Fe18746	СР	%	90	70-130	Pass	
Chromium	S13-Fe18746	СР	%	128	70-130	Pass	
Cobalt	S13-Fe18746	СР	%	84	70-130	Pass	
Copper	S13-Fe18746	СР	%	113	70-130	Pass	
Mercury	S13-Fe18746	СР	%	105	70-130	Pass	
Nickel	S13-Fe18746	СР	%	91	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S13-Fe18751	СР	%	105	70-130	Pass	
Toluene	S13-Fe18751	СР	%	100	70-130	Pass	
Ethylbenzene	S13-Fe18751	СР	%	91	70-130	Pass	
m&p-Xylenes	S13-Fe18751	СР	%	99	70-130	Pass	
o-Xylene	S13-Fe18751	СР	%	95	70-130	Pass	
Xylenes - Total	S13-Fe18751	CP	%	98	70-130	Pass	
Spike - % Recovery					, , , , , , , ,		
Total Recoverable Hydrocarbons	s - Draft 2010 NEPM	Fractions	s	Result 1			
Naphthalene	S13-Fe18751	СР	%	86	70-130	Pass	
TRH C6-C10	S13-Fe18751	CP	%	93	70-130	Pass	
Spike - % Recovery					, , , , , , , ,		
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	tions		Result 1			
TRH C10-C14	S13-Fe18757	СР	%	98	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	s - Draft 2010 NEPM	Fraction	s	Result 1			
TRH >C10-C16	S13-Fe18757	CP	%	103	70-130	Pass	
Spike - % Recovery		-	,,,		1		
Heavy Metals				Result 1			
Cadmium	S13-Fe18759	СР	%	92	70-130	Pass	
Chromium	S13-Fe18759	CP	%	80	70-130	Pass	
Cobalt	S13-Fe18759	CP	%	115	70-130	Pass	
Copper	S13-Fe18759	CP	%	100	70-130	Pass	
			. /U	1 100 1	1 10-100		i



Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	•	Source					Limits	Limits	Code
Nickel	S13-Fe18759	СР	%	79			70-130	Pass	
Spike - % Recovery				T	Т		T		
BTEX				Result 1				_	
Benzene	S13-Fe18768	CP	%	105			70-130	Pass	
Toluene	S13-Fe18768	CP	%	99			70-130	Pass	
Ethylbenzene	S13-Fe18768	CP	%	90			70-130	Pass	
m&p-Xylenes	S13-Fe18768	CP	%	98			70-130	Pass	
o-Xylene	S13-Fe18768	CP	%	94			70-130	Pass	
Xylenes - Total	S13-Fe18768	СР	%	97			70-130	Pass	
Spike - % Recovery	D (( 0040 NED14				1 1		I		
Total Recoverable Hydrocarbons				Result 1			70.400	_	
Naphthalene	S13-Fe18768	CP	%	85			70-130	Pass	
TRH C6-C10	S13-Fe18768	СР	%	92			70-130	Pass	
Spike - % Recovery				T	I I		T		
Heavy Metals	040 5 40774	0.0	0/	Result 1			70.400	_	
Cadmium	S13-Fe18774	CP	%	97			70-130	Pass	
Chromium	S13-Fe18774	CP	%	108			70-130	Pass	
Cobalt	S13-Fe18774	CP	%	110			70-130	Pass	
Copper	S13-Fe18774	CP	%	101			70-130	Pass	
Lead	S13-Fe18774	CP	%	87			70-130	Pass	
Mercury	S13-Fe18774	CP	%	99			70-130	Pass	
Nickel	S13-Fe18774	CP	%	82			70-130	Pass	
Zinc	S13-Fe18774	CP	%	92			70-130	Pass	
Spike - % Recovery	4000 11771			T	I I		T		
Total Recoverable Hydrocarbons				Result 1				_	
TRH C10-C14	S13-Fe18782	CP	%	102			70-130	Pass	
Spike - % Recovery	D (( 0040 NED14			D 11.4	1 1		1		
Total Recoverable Hydrocarbons				Result 1			70.400	_	
TRH >C10-C16	S13-Fe18782	CP	%	108			70-130	Pass	
Spike - % Recovery	<u> </u>			Doort 4					
Polychlorinated Biphenyls (PCB	<u> </u>	0.0	0/	Result 1			70.400	D	
Aroclor-1260	S13-Fe18782	CP	%	88			70-130	Pass	Ouglifying
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1	1				
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S13-Fe18699	CP	mg/kg	< 10	< 10	<1	30%	Pass	
TRH C10-C14	S13-Fe18699	CP	mg/kg	< 50	< 50	3.0	30%	Pass	
TRH C15-C28	S13-Fe18699	CP	mg/kg	< 100	< 100	11	30%	Pass	
TRH C29-C36	S13-Fe18699	CP	mg/kg	< 100	< 100	25	30%	Pass	
Duplicate				I	1 1				
BTEX	T = =			Result 1	Result 2	RPD		_	
Benzene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toluene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethylbenzene			mg/kg	< 0.5	< 0.5	<1	30%	Pass	
•	S13-Fe18699	CP							
m&p-Xylenes	S13-Fe18699	СР	mg/kg	< 1	< 1	<1	30%	Pass	
m&p-Xylenes o-Xylene	S13-Fe18699 S13-Fe18699	CP CP	mg/kg mg/kg	< 1 < 0.5	< 1 < 0.5	<1 <1	30% 30%	Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total	S13-Fe18699 S13-Fe18699 S13-Fe18699	CP CP	mg/kg mg/kg mg/kg	< 1 < 0.5 < 1.5	< 1 < 0.5 < 1.5	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Total BTEX	S13-Fe18699 S13-Fe18699	CP CP	mg/kg mg/kg	< 1 < 0.5	< 1 < 0.5	<1 <1	30% 30%	Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Total BTEX Duplicate	S13-Fe18699 S13-Fe18699 S13-Fe18699 S13-Fe18699	CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 1 < 0.5 < 1.5 < 1.5	< 1 < 0.5 < 1.5 < 1.5	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Total BTEX Duplicate Total Recoverable Hydrocarbons	\$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$5 - Draft 2010 NEPM	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 1 < 0.5 < 1.5 < 1.5	< 1 < 0.5 < 1.5 < 1.5	<1 <1 <1 <1 RPD	30% 30% 30% 30%	Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Total BTEX Duplicate Total Recoverable Hydrocarbons Naphthalene	\$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$5 - Draft 2010 NEPM \$13-Fe18699	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 1 < 0.5 < 1.5 < 1.5 Result 1	< 1 < 0.5 < 1.5 < 1.5 Result 2 < 0.5	<1 <1 <1 <1 <1 RPD	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Total BTEX Duplicate Total Recoverable Hydrocarbons Naphthalene TRH C6-C10	\$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$ - Draft 2010 NEPM \$13-Fe18699 \$13-Fe18699	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 1 < 0.5 < 1.5 < 1.5 Result 1 < 0.5 < 20	< 1 < 0.5 < 1.5 < 1.5 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Total BTEX Duplicate Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 TRH C6-C10 less BTEX (F1)	\$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$13-Fe18699	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 1 < 0.5 < 1.5 < 1.5 Result 1 < 0.5 < 20 < 20	< 1 < 0.5 < 1.5 < 1.5 Result 2 < 0.5 < 20 < 20	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Total BTEX Duplicate Total Recoverable Hydrocarbons Naphthalene TRH C6-C10	\$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$13-Fe18699 \$ - Draft 2010 NEPM \$13-Fe18699 \$13-Fe18699	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 1 < 0.5 < 1.5 < 1.5 Result 1 < 0.5 < 20	< 1 < 0.5 < 1.5 < 1.5 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	



	MENTAL LABO	RAIUK	IE3						
Duplicate							İ		
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD		<u> </u>	
TRH >C34-C40	S13-Fe18699	CP	mg/kg	< 100	< 100	1.0	30%	Pass	
Duplicate							T		
Polyaromatic Hydrocarbons (PAH)			,,	Result 1	Result 2	RPD		+	
Acenaphthene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acthorage	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene Benzo(b)fluoranthene &	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S13-Fe18699	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Fe18699	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-Fe18699	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S13-Fe18699	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S13-Fe18699	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S13-Fe18699	CP	mg/kg	< 2	< 2	46	30%	Fail	Q15
Cadmium	S13-Fe18699	CP	mg/kg	< 0.4	< 0.4	65	30%	Fail	Q15
Chromium	S13-Fe18699	CP	mg/kg	< 5	< 5	6.0	30%	Pass	
Cobalt	S13-Fe18699	CP	mg/kg	< 5	< 5	4.0	30%	Pass	
Copper	S13-Fe18699	CP	mg/kg	13	19	41	30%	Fail	Q15
Lead	S13-Fe18699	CP	mg/kg	< 5	< 5	29	30%	Pass	
Mercury	S13-Fe18699	CP	mg/kg	< 0.05	< 0.05	110	30%	Fail	
Nickel	S13-Fe18699	CP	mg/kg	< 5	< 5	13	30%	Pass	
Zinc	S13-Fe18699	CP	mg/kg	11	14	25	30%	Pass	
Titanium	S13-Fe18699	CP	mg/kg	220	230	3.0	30%	Pass	
Duplicate				ı	1		1		
Heavy Metals	T			Result 1	Result 2	RPD			
Arsenic	S13-Fe18713	CP	mg/kg	< 2	2.4	200	30%	Fail	Q15
Cadmium	S13-Fe18713	CP	mg/kg	0.5	0.4	27	30%	Pass	
Chromium	S13-Fe18713	CP	mg/kg	41	41	2.0	30%	Pass	
Cobalt	S13-Fe18713	CP	mg/kg	6.8	7.3	6.0	30%	Pass	
Copper	S13-Fe18713	CP	mg/kg	61	41	40	30%	Fail	Q15
Lead	S13-Fe18713	CP	mg/kg	68	59	14	30%	Pass	
Mercury	S13-Fe18713	CP	mg/kg	0.39	0.47	18	30%	Pass	
Nickel	S13-Fe18713	CP	mg/kg	31	31	<1	30%	Pass	
Zinc	S13-Fe18713	CP	mg/kg	190	180	5.0	30%	Pass	
Titanium	S13-Fe18713	CP	mg/kg	310	310	3.0	30%	Pass	
Duplicate							I	1	
Total Recoverable Hydrocarbons -			n	Result 1	Result 2	RPD	0001	D	
TRH C10-C14	S13-Fe18719	CP	mg/kg	< 50	< 50	5.0	30%	Pass	
TRH C15-C28	S13-Fe18719	CP	mg/kg	< 100	< 100	5.0	30%	Pass	
TRH C29-C36	S13-Fe18719	CP	mg/kg	120	140	18	30%	Pass	
Duplicate	D# 0040 1155-	F== - +:	_	Destit	Deside	DDC			
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD	2007	Desir	
TRH >C10-C16	S13-Fe18719	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S13-Fe18719	CP	mg/kg	180	200	14	30%	Pass	
TRH >C34-C40	S13-Fe18719	CP	mg/kg	< 100	< 100	10	30%	Pass	



ENVIRON	MENTAL LABO	RATOR	IES						
Duplicate									
втех				Result 1	Result 2	RPD			
Benzene	S13-Fe18722	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toluene	S13-Fe18722	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethylbenzene	S13-Fe18722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
m&p-Xylenes	S13-Fe18722	СР	mg/kg	< 1	< 1	<1	30%	Pass	
o-Xylene	S13-Fe18722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Xylenes - Total	S13-Fe18722	CP	mg/kg	< 1.5	< 1.5	<1	30%	Pass	
Total BTEX	S13-Fe18722	СР	mg/kg	< 1.5	< 1.5	<1	30%	Pass	
Duplicate		_	<u> </u>						
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fraction	s	Result 1	Result 2	RPD			
Naphthalene	S13-Fe18722	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-Fe18722	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Fe18722	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	0.0.0.0.0.22	<u> </u>	19,9	120	120	7.1	3373		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S13-Fe18733	СР	mg/kg	3.3	2.8	16	30%	Pass	
Cadmium	S13-Fe18733	CP	mg/kg	< 0.4	< 0.4	4.0	30%	Pass	
Chromium	S13-Fe18733	CP	mg/kg	15	15	5.0	30%	Pass	
Cobalt	S13-Fe18733	CP	mg/kg	7.8	9.2	16	30%	Pass	
Copper	S13-Fe18733	CP	mg/kg	22	23	2.0	30%	Pass	
- ' '	S13-Fe18733	CP		13	15	13	30%	Pass	
Lead		CP	mg/kg		1				
Mercury	S13-Fe18733		mg/kg	< 0.05	< 0.05	11	30%	Pass	
Nickel	S13-Fe18733	CP	mg/kg	19	19	1.0	30%	Pass	
Zinc	S13-Fe18733	CP	mg/kg	50	57	14	30%	Pass	
Titanium	S13-Fe18733	CP	mg/kg	110	110	6.0	30%	Pass	
Duplicate	4000 NEDM F	•		Door It 4	Don't O	DDD	I		
Total Recoverable Hydrocarbons			Ι "	Result 1	Result 2	RPD	000/	+	
TRH C10-C14	S13-Fe18742	CP	mg/kg	< 50	< 50	16	30%	Pass	
TRH C15-C28	S13-Fe18742	CP	mg/kg	< 100	< 100	16	30%	Pass	
TRH C29-C36	S13-Fe18742	СР	mg/kg	< 100	< 100	6.0	30%	Pass	
Duplicate	- 4:				- II - II - II - II - II - II - II - I		T		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		_	
TRH >C10-C16	S13-Fe18742	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S13-Fe18742	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S13-Fe18742	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				I	1		ı	T	
Heavy Metals	<u> </u>	1	1	Result 1	Result 2	RPD			
Arsenic	S13-Fe18746	CP	mg/kg	6.1	3.9	44	30%	Fail	Q15
Cadmium	S13-Fe18746	CP	mg/kg	< 0.4	< 0.4	28	30%	Pass	
Chromium	S13-Fe18746	CP	mg/kg	31	33	8.0	30%	Pass	
Cobalt	S13-Fe18746	CP	mg/kg	22	22	<1	30%	Pass	
Copper	S13-Fe18746	CP	mg/kg	35	38	7.0	30%	Pass	
Lead	S13-Fe18746	CP	mg/kg	13	6.0	71	30%	Fail	Q15
Mercury	S13-Fe18746	CP	mg/kg	< 0.05	< 0.05	18	30%	Pass	
Nickel	S13-Fe18746	CP	mg/kg	65	100	42	30%	Fail	Q15
Zinc	S13-Fe18746	CP	mg/kg	66	56	17	30%	Pass	
Titanium	S13-Fe18746	CP	mg/kg	57	46	20	30%	Pass	
Duplicate									
втех	1			Result 1	Result 2	RPD			
Benzene	S13-Fe18751	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toluene	S13-Fe18751	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethylbenzene	S13-Fe18751	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
m&p-Xylenes	S13-Fe18751	CP	mg/kg	< 1	< 1	<1	30%	Pass	
o-Xylene	S13-Fe18751	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Xylenes - Total	S13-Fe18751	СР	mg/kg	< 1.5	< 1.5	<1	30%	Pass	
Trylones Total									



	MENTAL LABO	HAIOH	ILO						
Duplicate	- 4:			T	I				
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD	000/	<u> </u>	
Naphthalene	S13-Fe18751	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-Fe18751	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Fe18751	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate  Total Bassystable Hydrosorbane	4000 NEDM Front	lana		Dogult 1	Dogult 2	DDD			
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD	200/	Door	
TRH C10-C14 TRH C15-C28	S13-Fe18757 S13-Fe18757	CP CP	mg/kg mg/kg	< 50 < 100	< 50 < 100	6.0 8.0	30% 30%	Pass Pass	
TRH C15-C26	S13-Fe18757	CP	mg/kg	< 100	< 100	 <1	30%	Pass	
Duplicate	313-1-610737	L CF	i ilig/kg	< 100	V 100		30 /6	Fass	
Total Recoverable Hydrocarbons	- Draft 2010 NEDM	Fraction	<u> </u>	Result 1	Result 2	RPD			
TRH >C10-C16	S13-Fe18757	CP	mg/kg	< 50	< 50	6.0	30%	Pass	
TRH >C16-C34	S13-Fe18757	CP	mg/kg	< 100	< 100	18	30%	Pass	
TRH >C34-C40	S13-Fe18757	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	1 6161 616767	01	i iiig/kg	1 100	100		0070	1 400	
Polyaromatic Hydrocarbons (PAH	)			Result 1	Result 2	RPD			
Acenaphthene	S13-Fe18757	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S13-Fe18757	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b)fluoranthene &									
Benzo(k)fluoranthene	S13-Fe18757	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene _	S13-Fe18757	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S13-Fe18757	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate					D 4.0	DDD		T	
Heavy Metals	040 5-40750	OD		Result 1	Result 2	RPD	000/	F-11	045
Arsenic	S13-Fe18759	CP	mg/kg	23	16	36	30%	Fail	Q15
Cadmium	S13-Fe18759	CP	mg/kg	0.4	0.5	8.0	30%	Pass	
Chromium	S13-Fe18759	CP CP	mg/kg	19	19	3.0	30%	Pass	
Copper	S13-Fe18759	CP	mg/kg	14	15	11	30%	Pass	
Copper Lead	S13-Fe18759 S13-Fe18759	CP	mg/kg mg/kg	190	32 170	4.0 10	30% 30%	Pass Pass	
Mercury	S13-Fe18759	CP	mg/kg	0.23	0.24	5.0	30%	Pass	
Nickel	S13-Fe18759	CP	mg/kg	27	31	14	30%	Pass	
Zinc	S13-Fe18759	CP	mg/kg	93	88	5.0	30%	Pass	
Titanium	S13-Fe18759	CP	mg/kg	19	32	53	30%	Fail	Q15
Duplicate		<u> </u>			<u> </u>			, i dii	Q.10
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Fe18768	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toluene	S13-Fe18768	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethylbenzene	S13-Fe18768	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
m&p-Xylenes	S13-Fe18768	СР	mg/kg	< 1	< 1	<1	30%	Pass	
o-Xylene	S13-Fe18768	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vidence Tetal		СР	mg/kg	< 1.5	< 1.5	<1	30%	Pass	
Xylenes - Total	S13-Fe18768	CI	9,9						
Total BTEX	S13-Fe18768 S13-Fe18768	CP	mg/kg	< 1.5	< 1.5	<1	30%	Pass	
							30%	Pass	
Total BTEX	S13-Fe18768	СР	mg/kg				30%	Pass	



	WENTAL LABO	HAIOH	ILO						
Duplicate  Tatal Bassacrable Hudroserbane	D==ft 2040 NEDM	Function	_	Daguit 4	Desult 0	DDD			
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD	000/	<b>D</b>	
TRH C6-C10	S13-Fe18768	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Fe18768	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				D 11.4	D 40	222			
Heavy Metals	T a.a = .a==.			Result 1	Result 2	RPD		+	
Arsenic	S13-Fe18774	CP	mg/kg	7.8	6.0	26	30%	Pass	
Cadmium	S13-Fe18774	CP	mg/kg	< 0.4	< 0.4	43	30%	Fail	Q15
Chromium	S13-Fe18774	CP	mg/kg	110	120	4.0	30%	Pass	
Cobalt	S13-Fe18774	CP	mg/kg	34	33	<1	30%	Pass	
Copper	S13-Fe18774	CP	mg/kg	35	38	6.0	30%	Pass	
Lead	S13-Fe18774	CP	mg/kg	15	16	6.0	30%	Pass	
Mercury	S13-Fe18774	CP	mg/kg	< 0.05	< 0.05	10	30%	Pass	
Nickel	S13-Fe18774	CP	mg/kg	68	69	2.0	30%	Pass	
Zinc	S13-Fe18774	CP	mg/kg	72	76	5.0	30%	Pass	
Titanium	S13-Fe18774	CP	mg/kg	840	700	18	30%	Pass	
Duplicate				1			T		
Total Recoverable Hydrocarbons			1	Result 1	Result 2	RPD		+	
TRH C10-C14	S13-Fe18782	CP	mg/kg	< 50	< 50	15	30%	Pass	
TRH C15-C28	S13-Fe18782	CP	mg/kg	< 100	< 100	20	30%	Pass	
TRH C29-C36	S13-Fe18782	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1					
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fraction		Result 1	Result 2	RPD			
TRH >C10-C16	S13-Fe18782	CP	mg/kg	< 50	< 50	11	30%	Pass	
TRH >C16-C34	S13-Fe18782	CP	mg/kg	< 100	< 100	24	30%	Pass	
TRH >C34-C40	S13-Fe18782	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				T			T		
Polychlorinated Biphenyls (PCB)	T	1	T	Result 1	Result 2	RPD			
Aroclor-1016	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides (OC)				Result 1	Result 2	RPD			
4.4'-DDD	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S13-Fe18782	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
a-BHC	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-Chlordane	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-Chlordane	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S13-Fe18782	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	



Duplicate									
Polyaromatic Hydrocarbons (PA	ıH)			Result 1	Result 2	RPD			
Acenaphthene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Fe18782	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S13-Fe18782	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S13-Fe18782	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	



### Comments

Asbestos analysed by: ASET, NATA accreditation no. 14484, report reference ASET32453/35633 / 1 - 15.

# Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	Yes

### **Qualifier Codes/Comments**

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
Q15	The RPD reported passes mgt-LabMark's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

### **Authorised By**

Jean Heng Client Services

 Laura Schofield
 Senior Analyst-Volatile (NSW)

 Ryan Hamilton
 Senior Analyst-Organic (NSW)

 James Norford
 Senior Analyst-Metal (NSW)



### Dr. Bob Symons

### **Laboratory Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

inglit Labilar's shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mg/L abilitary be liable for consequential damages including, but not limited to, lost original, search sets or failure to meet deadlines and to store production gristing from this report. This documents have except in full and reties shall do the liens lested. Unless indicated otherwise, the tests were performed on the samples as previous.



# Certificate of Analysis

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention: Edward Wu

Report 370054-W

Client Reference BRICKWORKS PROSPECT ENAURHOD04463AA

Received Date Feb 25, 2013

Client Sample ID			RB3	SW1	SW2	SW3
Sample Matrix			Water	Water	Water	Water
mgt-LabMark Sample No.			S13-Fe18791	S13-Fe18801	S13-Fe18802	S13-Fe18803
Date Sampled			Feb 21, 2013	Feb 21, 2013	Feb 21, 2013	Feb 21, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Total BTEX	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
4-Bromofluorobenzene (surr.)	1	%	95	95	95	95
Total Recoverable Hydrocarbons - Draft 2010 N	NEPM Fractions	*				
Naphthalene ^{N02}	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.005	mg/L	< 0.005	-	-	-
Aroclor-1232	0.005	mg/L	< 0.005	-	-	-
Aroclor-1242	0.005	mg/L	< 0.005	-	-	-
Aroclor-1248	0.005	mg/L	< 0.005	-	-	-
Aroclor-1254	0.005	mg/L	< 0.005	-	-	-
Aroclor-1260	0.005	mg/L	< 0.005	-	-	-
Total PCB	0.005	mg/L	< 0.005	-	-	-
Dibutylchlorendate (surr.)	1	%	96	-	-	-
Organochlorine Pesticides (OC)						
4.4'-DDD	0.0005	mg/L	< 0.0005	-	-	-
4.4'-DDE	0.0005	mg/L	< 0.0005	-	-	-
4.4'-DDT	0.002	mg/L	< 0.002	-	-	-
a-BHC	0.0005	mg/L	< 0.0005	-	-	-



Client Sample ID			RB3	SW1	SW2	SW3
•				-	_	
Sample Matrix			Water	Water	Water	Water
mgt-LabMark Sample No.			S13-Fe18791	S13-Fe18801	S13-Fe18802	S13-Fe18803
Date Sampled			Feb 21, 2013	Feb 21, 2013	Feb 21, 2013	Feb 21, 2013
Test/Reference	LOR	Unit				
Organochlorine Pesticides (OC)						
a-Chlordane	0.0005	mg/L	< 0.0005	-	-	-
Aldrin	0.0005	mg/L	< 0.0005	-	-	-
b-BHC	0.0005	mg/L	< 0.0005	-	-	-
d-BHC	0.0005	mg/L	< 0.0005	-	-	-
Dieldrin	0.0005	mg/L	< 0.0005	-	-	-
Endosulfan I	0.0005	mg/L	< 0.0005	-	-	-
Endosulfan II	0.0005	mg/L	< 0.0005	-	-	-
Endosulfan sulphate	0.0005	mg/L	< 0.0005	-	-	-
Endrin	0.0005	mg/L	< 0.0005	-	-	-
Endrin aldehyde	0.0005	mg/L	< 0.0005	-	-	-
Endrin ketone	0.0005	mg/L	< 0.0005	-	-	-
g-BHC (Lindane)	0.0005	mg/L	< 0.0005	-	-	-
g-Chlordane	0.0005	mg/L	< 0.0005	-	-	-
Heptachlor	0.0005	mg/L	< 0.0005	-	-	-
Heptachlor epoxide	0.0005	mg/L	< 0.0005	-	-	-
Hexachlorobenzene	0.0005	mg/L	< 0.0005	-	-	-
Methoxychlor	0.002	mg/L	< 0.002	-	-	-
Dibutylchlorendate (surr.)	1	%	96	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	93	-	-	-
Polyaromatic Hydrocarbons (PAH)		T				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b)fluoranthene & Benzo(k)fluoranthene	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
2-Fluorobiphenyl (surr.)	1	%	90	103	110	100
p-Terphenyl-d14 (surr.)	1	%	96	115	119	107
Heavy Metals		T				
Arsenic	0.005	mg/L	-	< 0.005	0.023	< 0.005
Cadmium	0.0005	mg/L	-	< 0.0005	0.0009	< 0.0005
Chromium	0.005	mg/L	-	< 0.005	0.16	< 0.005
Cobalt	0.005	mg/L	-	< 0.005	0.033	< 0.005
Copper	0.005	mg/L	-	< 0.005	0.31	< 0.005
Lead	0.005	mg/L	-	< 0.005	0.077	< 0.005
Mercury	0.0001	mg/L	-	< 0.0001	< 0.0001	< 0.0001
Nickel	0.005	mg/L	-	< 0.005	0.15	< 0.005
Zinc	0.005	mg/L	-	< 0.005	2.0	< 0.005
Titanium	0.005	mg/L	-	0.006	5.5	0.016



Client Sample ID Sample Matrix mgt-LabMark Sample No. Date Sampled	100		RB3 Water S13-Fe18791 Feb 21, 2013	SW1 Water S13-Fe18801 Feb 21, 2013	SW2 Water S13-Fe18802 Feb 21, 2013	SW3 Water S13-Fe18803 Feb 21, 2013
Test/Reference Heavy Metals	LOR	Unit				
Lead (filtered)	0.001	mg/L	< 0.001	-	-	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	-	-	-
Nickel (filtered)	0.001	mg/L	< 0.001	-	-	-
Arsenic (filtered)	0.001	mg/L	< 0.001	-	-	-
Cadmium (filtered)	0.0001	mg/L	< 0.0001	-	-	-
Chromium (filtered)	0.001	mg/L	< 0.001	-	-	-
Cobalt (filtered)	0.001	mg/L	< 0.001	-	-	-
Copper (filtered)	0.001	mg/L	< 0.001	-	-	-
Zinc (filtered)	0.005	mg/L	< 0.005	-	-	-
Titanium (filtered)	0.005	mg/L	< 0.005	-	-	-



- Method: E022/E030 Unfiltered Metals in Water & E026 Mercury

Description	Testing Site	Extracted	<b>Holding Time</b>
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Feb 27, 2013	7 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions	Sydney	Feb 27, 2013	7 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	Feb 26, 2013	14 Day
- Method: E029/E016 BTEX			
Polychlorinated Biphenyls (PCB)	Sydney	Feb 27, 2013	7 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Organochlorine Pesticides (OC)	Sydney	Feb 27, 2013	7 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polyaromatic Hydrocarbons (PAH)	Sydney	Feb 27, 2013	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Heavy Metals	Sydney	Feb 26, 2013	180 Day
- Method: E022/E030 Unfiltered Metals in Water			
Heavy Metals (filtered)	Sydney	Feb 26, 2013	180 Day
- Method: E020/E030 Filtered Metals in Water			
Mobil Metals : Metals M15	Sydney	Feb 26, 2013	28 Day

ABN – 50 005 085 521 e.mail : enviro@mgtlabmark.com.au

web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013
Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

Client Job No.: BRICKWORKS PROSPECT ENAURHOD04463AA

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is co																																
	oratory - NATA S		4271		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u></u>	\ \ \			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							· ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	atory - NATA Site				Х	X	Х		Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Χ	Х	Х	Х	Х
External Labor	ratory - NATA Si	te # 20794						Х			-		$\dashv$																			-	
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				^																									
	-	Time							_																								$\vdash$
BH1_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18699	Х	Х		Х	Х		Х		Х		Х			Χ		Χ		Χ		Χ			Χ		Χ			Х	Х
BH1_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18700													Х																
BH2_(0.0- 0.2M)	Feb 19, 2013		Soil	S13-Fe18701	Х	Х			Х		х		Х		Х			Х		Х		Х		Х			Х					Х	
BH3_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18702	Х	х			х		х		Х		Х			Х		Х		Х		Х			Х					Х	
BH4_(0.0- 0.1M)	Feb 20, 2013		Soil	S13-Fe18703	Х	Х			Х		х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х
BH4_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18704													Х																

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** Edward Wu NSW 2067 Fax: +61 2 9406 1004

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	ere analysis is co																															<u> </u>	$\vdash$
	oratory - NATA		271			L.,						ļ.,							L													$\vdash$	
	tory - NATA Site				X	X	Х		Х	Х	Х	X	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	ratory - NATA Si	te # 20794						\																								$\vdash$	$\vdash$
External Labor	1		I	T				X				-																				—'	$\vdash$
BH5_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18705	Х	Х		Х	Х		Х		Х		Χ			Х		Х		Х		Х			Х						
BH6_(0.16- 0.26M)	Feb 18, 2013		Soil	S13-Fe18706	Х	X		Х	Х		Х		Х		Χ			Х		Х		Х		Х			Х		Х				Х
BH6_(0.4- 0.5M)	Feb 19, 2013		Soil	S13-Fe18707													Х																
BH6_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18708	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH6_(1.9- 2.0M)	Feb 19, 2013		Soil	S13-Fe18709													Х																
BH7_(0.08- 0.13M)	Feb 18, 2013		Soil	S13-Fe18710	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH7_(0.2- 0.3M)	Feb 18, 2013		Soil	S13-Fe18711	Х	х			Х		Х		Х		Х			х		Х		Х		Х			Х		х	х	Х	Х	х

ABN – 50 005 085 521 e.mail : enviro@mgtlabmark.com.au

web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

Client Job No.: BRICKWORKS PROSPECT ENAURHOD04463AA

		Sample Detail	ı		% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																															$\dashv$	_
	oratory - NATA Site		42/1		Х	X	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	atory - NATA Site eratory - NATA Si				_	<del>  ^</del>	^		^	^	^	^	^	^	^	^	^	^	^	^	_	^	^	^	^	^	^	^	^	^	^	^	$\overline{}$
External Labor		LO II LOTOT						Х																								$\neg$	$\dashv$
BH7_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18712	Х	х			х		Х		х		Х			Х		Х		х		х			Х						
BH8_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18713	Х	Х		Х	х		Х		х		Х			Х		Х		Х		х			Х		Х	Х	х	Х	Х
BH9_(0.0- 0.1M)	Feb 20, 2013		Soil	S13-Fe18714	Х	Х		Х	Х		Χ		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х
BH9_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18715													Х																
BH10_(0.16- 0.26M)	Feb 20, 2013		Soil	S13-Fe18716	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH11_(0.19- 0.29M)	Feb 20, 2013		Soil	S13-Fe18717	Х	х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH12_(0.23- 0.33M)	Feb 20, 2013		Soil	S13-Fe18718													Х																

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail	ı		% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																																
	oratory - NATA		4271																														
	atory - NATA Site				Х	Х	Х		Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Х	Х
	ratory - NATA Si	ite # 20794						.,																								-	$\overline{}$
External Labor		1	1	1	<u> </u>			Χ																								$\longrightarrow$	$\overline{}$
BH12_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18719	Х	Х			Х		Χ		Χ		Х			Χ		Х		Х		Х			Χ		Х				Х
BH13_(0.13- 0.23M)	Feb 20, 2013		Soil	S13-Fe18720	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH13_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18721													Х																
BH14_(0.19- 0.29M)	Feb 18, 2013		Soil	S13-Fe18722	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH14_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18723													Х																
BH15_(0.15- 0.25M)	Feb 18, 2013		Soil	S13-Fe18724	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH15_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18725													Х																

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																															$\vdash$	_
	oratory - NATA		1271																													$\vdash$	
	atory - NATA Site				X	X	Х		Х	Х	Х	X	Χ	Χ	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	X
	ratory - NATA Si	ite # 20794																														$\vdash$	_
External Labor			_					X																								$\vdash$	
BH16_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18726	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Χ		Х			Ш	Х
BH17_(0.08- 0.18M)	Feb 19, 2013		Soil	S13-Fe18727													Х																
BH17_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18728	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х
BH17_(0.9- 1.0M)	Feb 19, 2013		Soil	S13-Fe18729													Х																
BH17_(2.0- 2.1M)	Feb 19, 2013		Soil	S13-Fe18730													Х																
BH17_(3.0- 3.1M)	Feb 19, 2013		Soil	S13-Fe18731													Х																
BH17_(3.8- 3.9M)	Feb 19, 2013		Soil	S13-Fe18732													Х																

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** Edward Wu NSW 2067 Fax: +61 2 9406 1004

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is co																													-	<u> </u>	$\vdash$	$\vdash$
	oratory - NATA S		271			<u> </u>													L												<del>                                     </del>	<del>                                     </del>	$\Box$
	tory - NATA Site				X	X	Х		Х	Х	Х	X	Х	Χ	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	X	Х
	ratory - NATA Si	te # 20794						\																								₩	Н
External Labor		T .	I	Ta =				X																						<u></u> '	<del>                                     </del>	—	$\vdash$
BH18_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18733	Х	Х		Х	Х		Х		Χ		Х			Х		Х		Х		Χ			Χ					Х	
BH19_(0.0- 0.15M)	Feb 19, 2013		Soil	S13-Fe18734													Х																
BH19_(0.4- 0.5M)	Feb 19, 2013		Soil	S13-Fe18735	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х		Х
BH19_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18736	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH20_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18737	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		X			Х					Х	
BH21_(0.0- 0.2M)	Feb 19, 2013		Soil	S13-Fe18738	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х			Х	Х	Х	
BH21_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18739													Х																

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** Edward Wu NSW 2067 Fax: +61 2 9406 1004

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	BTEX	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is co																										$\vdash$				$\vdash\vdash$	$\vdash\vdash$	
	oratory - NATA S		271			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V		· ·	\ \ \	V			
	atory - NATA Site ratory - NATA Sit				X	X	Х		Х	X	Х	X	Х	Х	Х	X	Х	X	X	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	X
External Labor		le # 20794						X																			$\Box$				$\Box$	П	-
BH21_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18740	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			х						
BH21_(2.0- 2.1M)	Feb 19, 2013		Soil	S13-Fe18741													Х																
BH21_(3.0- 3.1M)	Feb 19, 2013		Soil	S13-Fe18742	Х	х			х		Х		Х		х			х		Х		Х		Х			Х		Х				Х
BH21_(3.9- 4.0M)	Feb 19, 2013		Soil	S13-Fe18743	Х	х			Х		Х		Х		х			х		Х		Х		Х			Х						
BH22_(0.0- 0.1M)	Feb 19, 2013		Soil	S13-Fe18744	Х	Х		Х	Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH23_(0.08- 0.18M)	Feb 19, 2013		Soil	S13-Fe18745	Х	х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH23_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18746	Х	х			х		Х		Х		Х			х		х		Х		Х			Х		Х				х

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

Client Job No.: BRICKWORKS PROSPECT ENAURHOD04463AA

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																															<u> </u>	$\square$
	oratory - NATA		1271				.,		.,	.,		.,		.,	.,	.,			.,	.,				.,								<u> </u>	
	atory - NATA Site				X	X	Х		Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
External Labor	ratory - NATA Si	ite # 20/94						Х																							-		$\vdash$
	Feb 19, 2013	l	Soil	S13-Fe18747				^																									Н
BH23_(1.0- 1.1M)	1 65 19, 2013		3011	313-1 610747													Х																
BH24_(0.08- 0.18M)	Feb 19, 2013		Soil	S13-Fe18748	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				х
BH24_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18749	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH24_(1.1- 1.2M)	Feb 19, 2013		Soil	S13-Fe18750	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				х
BH25_(0.19- 0.29M)	Feb 18, 2013		Soil	S13-Fe18751	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х	Х	Х	Х	Х
BH26_(0.18- 0.28M)	Feb 18, 2013		Soil	S13-Fe18752	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH27_(0.17- 0.27M)	Feb 18, 2013		Soil	S13-Fe18753	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		х	Х	х	Х	Х

ABN – 50 005 085 521 e.mail : enviro@mgtlabmark.com.au

web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013

Chatswood Phone: +61 2 9406 1000 Priority: 4 Day **Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

Client Job No.: BRICKWORKS PROSPECT ENAURHOD04463AA

		Sample Detai	ı		% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																																_
	oratory - NATA		4271		.,		.,		.,	.,		.,	.,		.,	.,	.,	.,	.,	.,	.,	.,	.,	.,		.,		.,	.,		.,		$\overline{}$
	atory - NATA Site				X	X	Х		Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х
	ratory - NATA Si	ite # 20794						Х																									
External Labor	Feb 18, 2013		Soil	S13-Fe18754				^																									_
BH27_(0.4- 0.5M)	1 65 10, 2013		3011	313-1 610734	Х	Х			Х		Χ		Х		Х			Х		Х		Х		Χ			Х		Х				Х
BH27_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18755													Х																
BH28_(0.16- 0.26M)	Feb 18, 2013		Soil	S13-Fe18756	Х	х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х			Х	Х
BH29_(0.19- 0.29M)	Feb 18, 2013		Soil	S13-Fe18757	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х			Х	Х
BH29_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18758													х																
BH30_(0.19- 0.29M)	Feb 18, 2013		Soil	S13-Fe18759	Х	Х			х		Х		Х		Х			Х		Х		Х		Х			Х		Х				Х
BH31_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18760	Х	х			х		Х		Х		Х			Х		Х		Х		X			Х		Х				Х

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013

Chatswood Phone: +61 2 9406 1000 Priority: 4 Day **Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																																
	oratory - NATA		4271																														
	atory - NATA Site				Х	Х	Х		Х	Х	Χ	Χ	Х	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
	ratory - NATA Si	ite # 20794						.,																							$\overline{}$	$\square$	-
External Labor		1	T					Χ	_																						$\longrightarrow$	$\vdash$	$\overline{}$
BH31_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18761	Х																								Х				Х
BH32_(0.08- 0.18M)	Feb 20, 2013		Soil	S13-Fe18762	Х	х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH33_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18763	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH33_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18764													Х																
BH34_(0.09- 0.19M)	Feb 19, 2013		Soil	S13-Fe18765	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH34_(0.5- 0.6M)	Feb 19, 2013		Soil	S13-Fe18766													Х																
BH34_(1.0- 1.1M)	Feb 19, 2013		Soil	S13-Fe18767	Х	х			Х		Х		Х		Х			X		Х		X		Х			X		Х				Х

ABN – 50 005 085 521 e.mail : enviro@mgtlabmark.com.au

web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013

Chatswood Phone: +61 2 9406 1000 Priority: 4 Day **Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

		Sample Detail	l		% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																																_
	oratory - NATA		4271																													$\longrightarrow$	
	atory - NATA Site				X	X	Х		Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х
	ratory - NATA Si	ite # 20794																														$\longrightarrow$	_
External Labor			1					Х																								$\longrightarrow$	
BH35_(0.08- 0.18M)	Feb 18, 2013		Soil	S13-Fe18768	Х	Х			Х		Χ		Х		Х			Χ		Χ		Χ		Χ			Х		Х				Х
BH35_(0.4- 0.5M)	Feb 18, 2013		Soil	S13-Fe18769	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH36_(0.0- 0.2M)	Feb 20, 2013		Soil	S13-Fe18770	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х		Х			Х	Х
BH36_(0.4- 0.5M)	Feb 20, 2013		Soil	S13-Fe18771													Х																
BH37_(0.0- 0.2M)	Feb 21, 2013		Soil	S13-Fe18772	Х	Х		Х	Х		Х		Х		Х			Х		X		Х		X			Х		Х				Х
BH37_(0.4- 0.5M)	Feb 21, 2013		Soil	S13-Fe18773													Х																
BH38_(0.0- 0.2M)	Feb 21, 2013		Soil	S13-Fe18774	Х	Х		х	Х		Х		Х		Х			Х		Х		Х		X			Х		Х				Х

ABN – 50 005 085 521 e.mail : enviro@mgtlabmark.com.au

web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

NSW 2067 Fax: +61 2 9406 1004 **Contact Name:** Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

# mgt-LabMark Client Manager: Jean Heng

		Sample Detail			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c																																
	poratory - NATA		4271			<u> </u>																											_
	atory - NATA Site				Х	X	Х		Х	Χ	Х	X	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Х
	oratory - NATA Si	ite # 20794				<u> </u>																											
External Labor		1				<u> </u>		X																								$\longrightarrow$	
BH38_(0.4- 0.5M)	Feb 21, 2013		Soil	S13-Fe18775	Х	Х			Х		Х		Х		Х			Χ		Χ		Χ		Х			Χ						
BH39_(0.0- 0.2M)	Feb 21, 2013		Soil	S13-Fe18776	Х	Х			Х		Х		Х		Х			Х		Х		Х		Х			Х						
BH39_(0.4- 0.5M)	Feb 21, 2013		Soil	S13-Fe18777													х																
BH40_(0.0- 0.2M)	Feb 21, 2013		Soil	S13-Fe18778	Х	х			Х		х		Х		Х			Х		Х		Х		Х			Х						
BH40_(0.4- 0.5M)	Feb 21, 2013		Soil	S13-Fe18779													Х																
DUP1	Feb 18, 2013		Soil	S13-Fe18780													Χ																
DUP2	Feb 18, 2013		Soil	S13-Fe18781	Х	Х			Χ		Χ		Х		Χ			Χ		Χ		Χ		Χ			Χ		Χ				Χ
DUP3	Feb 19, 2013		Soil	S13-Fe18782	Х	Х			Χ		Х		Х		Χ			Χ		Χ		Χ		Χ			Χ		Χ	Х	Χ	Χ	Х

Page 16 of 26

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

Client Job No.: BRICKWORKS PROSPECT ENAURHOD04463AA

# mgt-LabMark Client Manager: Jean Heng

	Sample			% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	poratory where analysis is conducted																															_
	boratory - NATA Site # 12			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								_
	atory - NATA Site # 18217			X	X	Χ		Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Χ	Х	Х	Χ	Χ	Х	Χ	Х	Х	Х	Х
	oratory - NATA Site # 2079	94					Х																								$\rightarrow$	_
External Labo	Feb 19, 2013	Soil	S13-Fe18783				X									х															$\dashv$	_
DUP5		Soil		X	X			Х		Х		Х		Х			Х		Х		Х		X			Х					$\rightarrow$	
DUP5	Feb 19, 2013 Feb 20, 2013	Soil	S13-Fe18784 S13-Fe18785	<del>  ^</del>				^		^		^		^	_	Х	^		^		^		^			^					$\dashv$	$\dashv$
DUP7	Feb 20, 2013	Soil	S13-Fe18786													X															$\dashv$	-
DUP8	Feb 20, 2013	Soil	S13-Fe18787													x															$\dashv$	$\dashv$
DUP9	Feb 21, 2013	Soil	S13-Fe18788					$\dashv$						$\dashv$		X															$\dashv$	$\dashv$
RB1	Feb 19, 2013	Water	S13-Fe18789													X															$\dashv$	$\dashv$
RB2	Feb 20, 2013	Water	S13-Fe18790													X															$\dashv$	$\dashv$
RB3	Feb 21, 2013	Water	S13-Fe18791			Х			Х		Х		Х		Х	- 1		Х		Х		Х		Х			Х	Х	Х	Х	Х	Х
TB1	Feb 15, 2013	Soil	S13-Fe18792																						Х			Х				
TS1	Feb 15, 2013	Soil	S13-Fe18793													Х																

Page 17 of 26

Date Reported:Mar 04, 2013 Date Reported:Mar 04, 2013 Report Number: 370054-W

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 25, 2013 5:19 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 370054 Due: Mar 4, 2013 Chatswood Phone: +61 2 9406 1000 Priority: 4 Day

**Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

BRICKWORKS PROSPECT ENAURHOD04463AA Client Job No.:

# mgt-LabMark Client Manager: Jean Heng

								_		_	_														_							
		Sample Detail		% Moisture	Arsenic	Arsenic (filtered)	Asbestos	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	HOLD	Lead	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Titanium	Titanium (filtered)	TRH C6-C9	Zinc	Zinc (filtered)	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory wh	ere analysis is co	onducted																														
		Site # 1254 & 14271																														
	atory - NATA Site			Х	Х	Χ		Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х
	oratory - NATA Si																															
External Labo							Х																									
TB2	Feb 15, 2013	Soil	S13-Fe18794																						Х			Х				
TS2	Feb 20, 2013	Soil	S13-Fe18795																						Х			Х				
TB3	Feb 15, 2013	Soil	S13-Fe18796													Χ																
TS3	Feb 20, 2013	Soil	S13-Fe18797																						Χ			Χ				
SED1	Feb 21, 2013	Soil	S13-Fe18798	Х	Χ			Χ		Х		Χ		Χ			Χ		Χ		Χ		Χ			Χ		Χ	Χ	Χ	Χ	Χ
SED2	Feb 21, 2013	Soil	S13-Fe18799	Х	Χ			Χ		Х		Χ		Х			Χ		Χ		Χ		Χ			Χ		Χ				Χ
SED3	Feb 21, 2013	Soil	S13-Fe18800	Х	Χ			Χ		Х		Χ		Х			Χ		Χ		Χ		Χ			Х		Х				Χ
SW1	Feb 21, 2013	Water	S13-Fe18801		Χ			Χ		Х		Χ		Х			Χ		Χ		Χ		Χ			Χ		Х			_	Χ
SW2	Feb 21, 2013	Water	S13-Fe18802		Χ			Χ		Х		Χ		Х			Χ		Χ		Χ		Χ			Χ		Х			Χ	Χ
SW3	Feb 21, 2013	Water	S13-Fe18803		Χ			Χ		Χ		Χ		Χ			Χ		Χ		Χ		Χ			Χ		Х			Χ	Х
TS1LAB	Feb 15, 2013	Soil	S13-Fe18804													Χ																

Page 18 of 26

Date Reported:Mar 04, 2013 Date Reported:Mar 04, 2013 Report Number: 370054-W



### mgt-LabMark Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### TERMS

**Dry** Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

### **QC - ACCEPTANCE CRITERIA**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%  $\,$ 

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

### QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM F Petroleum Hydrocarbons (TPH)	ractions E004				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX E029/E016 BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Total BTEX	mg/L	< 0.01	0.01	Pass	
Method Blank					
Total Recoverable Hydrocarbons - Draft 2010 NI LTM-ORG2010	EPM Fractions LM-				
Naphthalene	mg/L	< 0.005	0.005	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Polychlorinated Biphenyls (PCB) E013 Polychlo (PCB)	rinated Biphenyls				
Aroclor-1016	mg/L	< 0.005	0.005	Pass	
Aroclor-1232	mg/L	< 0.005	0.005	Pass	
Aroclor-1242	mg/L	< 0.005	0.005	Pass	
Aroclor-1248	mg/L	< 0.005	0.005	Pass	
Aroclor-1254	mg/L	< 0.005	0.005	Pass	
Aroclor-1260	mg/L	< 0.005	0.005	Pass	
Total PCB	mg/L	< 0.005	0.005	Pass	
Method Blank	g, =	10.000	3.000		
Organochlorine Pesticides (OC) E013 Organoch	Iorine Pesticides (OC)				
4.4'-DDD	mg/L	< 0.0005	0.0005	Pass	
4.4'-DDE	mg/L	< 0.0005	0.0005	Pass	
4.4'-DDT	mg/L	< 0.002	0.002	Pass	
a-BHC	mg/L	< 0.0005	0.0005	Pass	
a-Chlordane	mg/L	< 0.0005	0.0005	Pass	
Aldrin	mg/L	< 0.0005	0.0005	Pass	
b-BHC	mg/L	< 0.0005	0.0005	Pass	
d-BHC	mg/L	< 0.0005	0.0005	Pass	
Dieldrin	mg/L	< 0.0005	0.0005	Pass	
Endosulfan I	mg/L	< 0.0005	0.0005	Pass	
Endosulfan II	mg/L	< 0.0005	0.0005	Pass	
Endosulfan sulphate	mg/L	< 0.0005	0.0005	Pass	
Endrin	mg/L	< 0.0005	0.0005	Pass	
Endrin aldehyde	mg/L	< 0.0005	0.0005	Pass	
Endrin ketone	mg/L	< 0.0005	0.0005	Pass	
g-BHC (Lindane)	mg/L	< 0.0005	0.0005	Pass	
g-Chlordane	mg/L	< 0.0005	0.0005	Pass	
Heptachlor	mg/L	< 0.0005	0.0005	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor epoxide	mg/L	< 0.0005	0.0005	Pass	
Hexachlorobenzene	mg/L	< 0.0005	0.0005	Pass	
Methoxychlor	mg/L	< 0.002	0.002	Pass	
Method Blank					
Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic (PAH)	Hydrocarbons				
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/L	< 0.002	0.002	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Heavy Metals E022/E030 Unfiltered Metals in Water					
Arsenic	mg/L	< 0.005	0.005	Pass	
Cadmium	mg/L	< 0.0005	0.0005	Pass	
Chromium	mg/L	< 0.005	0.005	Pass	
Cobalt	mg/L	< 0.005	0.005	Pass	
Copper	mg/L	< 0.005	0.005	Pass	
Lead	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.005	0.005	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Titanium	mg/L	< 0.005	0.005	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0001	0.0001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
Titanium (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	, ,	,			
Total Recoverable Hydrocarbons - 1999 NEPM Fractio Petroleum Hydrocarbons (TPH)	ns E004				
TRH C6-C9	%	95	70-130	Pass	
TRH C10-C14	%	106	70-130	Pass	
LCS - % Recovery					
BTEX E029/E016 BTEX					
Benzene	%	101	70-130	Pass	
Toluene	%	102	70-130	Pass	
Ethylbenzene	%	102	70-130	Pass	
m&p-Xylenes	%	102	70-130	Pass	
o-Xylene	%	102	70-130	Pass	
Xylenes - Total	%	102	70-130	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery			Limits	LIIIIIIS	Code
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fr	actions LM-				
LTM-ORG2010					
Naphthalene	%	97	70-130	Pass	
TRH C6-C10	%	97	70-130	Pass	
TRH >C10-C16	%	109	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls (PCB) E013 Polychlorinated (PCB)	d Biphenyls				
Aroclor-1260	%	103	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides (OC) E013 Organochlorine	Pesticides (OC)				
4.4'-DDD	%	106	70-130	Pass	
4.4'-DDE	%	104	70-130	Pass	
4.4'-DDT	%	104	70-130	Pass	
a-BHC	%	102	70-130	Pass	
a-Chlordane	%	106	70-130	Pass	
Aldrin	%	106	70-130	Pass	
b-BHC	%	102	70-130	Pass	
d-BHC	%	98	70-130	Pass	
Dieldrin	%	101	70-130	Pass	
Endosulfan I	%	105	70-130	Pass	
Endosulfan II	%	112	70-130	Pass	
Endosulfan sulphate	%	103	70-130	Pass	
Endrin	%	103	70-130	Pass	
Endrin aldehyde	%	106	70-130	Pass	
Endrin ketone	%	101	70-130	Pass	
g-BHC (Lindane)	%	107	70-130	Pass	
g-Chlordane	%	107	70-130	Pass	
Heptachlor	%	111	70-130	Pass	
Heptachlor epoxide	%	106	70-130	Pass	
Hexachlorobenzene	%	111	70-130	Pass	
	%	95	70-130	Pass	
Methoxychlor	70	95	70-130	Fass	
LCS - % Recovery  Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic (PAH)	Hydrocarbons	ΙΙ			
Acenaphthene	%	127	70-130	Pass	
Acenaphthylene	%	111	70-130	Pass	
Anthracene	%	127	70-130	Pass	
Benz(a)anthracene	%	121	70-130	Pass	
	%	114	70-130	Pass	
Benzo(a)pyrene	%				
Benzo(b)fluoranthene & Benzo(k)fluoranthene		117	70-130	Pass	
Benzo(g.h.i)perylene	%	119	70-130	Pass	
Chrysene	%	125	70-130	Pass	
Dibenz(a.h)anthracene	%	120	70-130	Pass	
Fluoranthene	%	129	70-130	Pass	
Fluorene	%	126	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	120	70-130	Pass	
Naphthalene	%	124	70-130	Pass	
Phenanthrene	%	128	70-130	Pass	
Pyrene	%	129	70-130	Pass	
LCS - % Recovery				ı	
Heavy Metals E022/E030 Unfiltered Metals in Water	ı	<del>                                     </del>			
Arsenic	%	97	70-130	Pass	
Cadmium	%	93	70-130	Pass	
Chromium	%	96	70-130	Pass	



Test			Units	Result 1	Accepta Limit		Qualifying Code
Cobalt			%	94	70-13	0 Pass	
Copper			%	94	70-13	0 Pass	
Lead			%	89	70-13	0 Pass	
Mercury			%	117	70-13	0 Pass	
Nickel			%	95	70-13	0 Pass	
Zinc			%	95	70-13	0 Pass	
Titanium			%	105	70-13	0 Pass	
Lead (filtered)			%	93	70-13	0 Pass	
Mercury (filtered)			%	95	70-13	0 Pass	
Nickel (filtered)			%	108	70-13	0 Pass	
Arsenic (filtered)			%	110	70-13	0 Pass	
Cadmium (filtered)			%	96	70-13	0 Pass	
Chromium (filtered)			%	111	70-13	0 Pass	
Cobalt (filtered)			%	107	70-13	0 Pass	
Copper (filtered)			%	105	70-13	0 Pass	
Zinc (filtered)			%	116	70-13	0 Pass	
Titanium (filtered)			%	118	70-13	0 Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Accepta Limit		Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S13-Fe18059	NCP	%	87	70-13	0 Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S13-Fe18059	NCP	%	97	70-13	0 Pass	
Toluene	S13-Fe18059	NCP	%	98	70-13	0 Pass	
Ethylbenzene	S13-Fe18059	NCP	%	96	70-13	0 Pass	
m&p-Xylenes	S13-Fe18059	NCP	%	94	70-13	0 Pass	
o-Xylene	S13-Fe18059	NCP	%	94	70-13	0 Pass	
Xylenes - Total	S13-Fe18059	NCP	%	94	70-13	0 Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fractions	s	Result 1			
Naphthalene	S13-Fe18059	NCP	%	89	70-13	0 Pass	
TRH C6-C10	S13-Fe18059	NCP	%	88	70-13		
Spike - % Recovery							
Heavy Metals (filtered)				Result 1			
Lead (filtered)	S13-Fe18791	СР	%	94	70-13	0 Pass	
Mercury (filtered)	S13-Fe19042	NCP	%	99	70-13		
Nickel (filtered)	S13-Fe18791	CP	%	108	70-13		
Arsenic (filtered)	S13-Fe18791	CP	%	110	70-13		1
Cadmium (filtered)	S13-Fe18791	CP	%	98	70-13		
Chromium (filtered)	S13-Fe18791	CP	%	108	70-13		1
Cobalt (filtered)	S13-Fe18791	CP	%	107	70-13		
Copper (filtered)	S13-Fe18791	CP	%	106	70-13		1
Zinc (filtered)	S13-Fe18791	CP	%	116	70-13		+
Titanium (filtered)	S13-Fe18791	CP	%	114	70-13		
Spike - % Recovery	013-1610/91	l Cr	/0	114	1 70-13	o rass	
Heavy Metals				Result 1			
Mercury	S13-Fe18903	NCP	%	115	70-13	0 Pass	+
Spike - % Recovery	1 010-1610900	NOF	/0	1 110	1 70-13	o rass	
Total Recoverable Hydrocarbons	- 1999 NFPM Fract	ions		Result 1			
TRH C10-C14	S13-Fe18802	CP	%	107	70-13	0 Pass	+
Spike - % Recovery	1 0101610002		/0	107	70-13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Total Recoverable Hydrocarbons	- Draft 2010 NEDM	Fraction	<u> </u>	Result 1			
TRH >C10-C16	S13-Fe18802	CP	%	111	70-13	0 Pass	+
15 - 31.10-1.15							



ENVIRONI	WENTAL LABO	1 1	IES	[	1 1		I.	l _	l
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Fe18056	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Fe18056	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S13-Fe18056	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S13-Fe18056	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S13-Fe18056	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S13-Fe18056	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S13-Fe18056	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Total BTEX	S13-Fe18056	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				•					
Total Recoverable Hydrocarbons -	Draft 2010 NEPM	Fractions	S	Result 1	Result 2	RPD			
Naphthalene	S13-Fe18056	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
TRH C6-C10	S13-Fe18056	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Fe18056	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate		,	J	•	,				
Heavy Metals (filtered)				Result 1	Result 2	RPD			
Lead (filtered)	S13-Fe18791	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S13-Fe19036	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S13-Fe18791	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Arsenic (filtered)	S13-Fe18791	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S13-Fe18791	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Chromium (filtered)	S13-Fe18791	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	S13-Fe18791	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S13-Fe18791	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S13-Fe18791	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Titanium (filtered)	S13-Fe18791	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate	<u> </u>	<u> </u>	9/ =	1 0.000	1 0.000	1.	0070	. 455	
Total Recoverable Hydrocarbons -	. 1999 NFPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S13-Fe18801	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S13-Fe18801	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S13-Fe18801	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate		U.	mg/ =	, , , , ,	V 0.1		3070	1 400	
Total Recoverable Hydrocarbons -	Draft 2010 NEPM	Fractions	<u> </u>	Result 1	Result 2	RPD			
TRH >C10-C16	S13-Fe18801	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S13-Fe18801	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S13-Fe18801	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate		U.	mg/ E	, , , , ,	V 0.1		3070	1 400	
Polyaromatic Hydrocarbons (PAH)	1			Result 1	Result 2	RPD			
Acenaphthene	S13-Fe18801	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Fe18801	CP		< 0.002	< 0.002	<1	30%	Pass	
· · · · · · · · · · · · · · · · · · ·			mg/L						
Benzo(g.h.i)perylene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene Dibonz(a b)anthragene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	



Duplicate									
Polyaromatic Hydrocarbons (PAH)				Result 1	Result 2	RPD			
Pyrene	S13-Fe18801	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Mercury	S13-Fe18902	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	



#### Comments

# Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	Yes

### **Qualifier Codes/Comments**

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/alinhatic analytes.

### **Authorised By**

Jean Heng Client Services

 Laura Schofield
 Senior Analyst-Volatile (NSW)

 Ryan Hamilton
 Senior Analyst-Organic (NSW)

 James Norford
 Senior Analyst-Metal (NSW)

# Dr. Bob Symons Laboratory Manager

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

mg!-LabMark shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgl!-LabMark be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

# AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref: ASET32453/35633 / 1 - 15

Your ref: 370054

NATA Accreditation No: 14484

27 February 2013

Eurofins | mgt Unit F3, 16 Mars Road Lane Cove NSW 2066

**Attn: Dr Robert Symons** 

**Laboratory & Technical Manager** 

Dear Robert

### **Asbestos Identification**

This report presents the results of fifteen samples, forwarded by Eurofins | mgt on 26 February 2013, for analysis for asbestos.

**1.Introduction:** Fifteen samples forwarded were examined and analysed for the presence of asbestos.

**2. Methods:** The samples were examined under a Stereo Microscope and selected fibres were

analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method

(Safer Environment Method 1.)

3. Results: Sample No. 1. ASET32453 / 35633 / 1. BH1 - 0.0-0.2m - Fe18699

Approx dimensions 6.1 cm x 5.5 cm x 2.1 cm

The sample consisted of a mixture of soil, stones, fragments of plaster and glass.

No asbestos detected.

Sample No. 2. ASET32453 / 35633 / 2. BH5 - 0.0-0.2m - Fe18705

Approx dimensions 5.4 cm x 5.1 cm x 2.4 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster.

No asbestos detected.

Sample No. 3. ASET32453 / 35633 / 3. BH6 - 0.16-0.26m - Fe18706

Approx dimensions 5.1 cm x 5.0 cm x 2.5 cm

The sample consisted of a mixture of soil and stones and fragments of plaster.

No asbestos detected.

Sample No. 4. ASET32453 / 35633 / 4. BH8 - 0.0-0.2m - Fe18713

Approx dimensions 5.5 cm x 5.4 cm x 2.5 cm

The sample consisted of a mixture of soil, stones, fibres^, plant matter, fragments of plaster, brick and corroded metal.

Chrysotile asbestos and Amosite asbestos detected.

Sample No. 5. ASET32453 / 35633 / 5. BH9 - 0.0-0.1m - Fe18714

Approx dimensions 5.5 cm x 5.3 cm x 2.5 cm

The sample consisted of a mixture of clayish sandy soil, stones, plant matter, fragments of plaster, brick and metal pieces.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: aset@bigpond.net.au WEBSITE: www.Ausset.com.au



### Sample No. 6. ASET32453 / 35633 / 6. BH13 - 0.13-0.23m - Fe18720

Approx dimensions 5.4 cm x 5.4 cm x 2.3 cm

The sample consisted of a mixture of clayish soil, stones, plant matter and fragments of plaster.

No asbestos detected.

# Sample No. 7. ASET32453 / 35633 / 7. BH16 - 0.0-0.2m - Fe18726

Approx dimensions 5.2 cm x 5.3 cm x 2.7 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, brick and shale.

No asbestos detected.

### Sample No. 8. ASET32453 / 35633 / 8. BH17 - 0.5-0.6m - Fe18728

Approx dimensions 5.5 cm x 5.2 cm x 2.4 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, cement and brick.

No asbestos detected.

# Sample No. 9. ASET32453 / 35633 / 9. BH18 - 0.0-0.2m - Fe18733

Approx dimensions 5.5 cm x 5.4 cm x 2.4 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster and cement.

No asbestos detected.

### Sample No. 10. ASET32453 / 35633 / 10. BH19 - 0.4-0.5m - Fe18735

Approx dimensions 6.0 cm x 5.5 cm x 2.5 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, cement and glass.

No asbestos detected.

### Sample No. 11. ASET32453 / 35633 / 11. BH20 - 0.0-0.2m - Fe18737

Approx dimensions 5.2 cm x 5.1 cm x 2.6 cm

The sample consisted of a mixture of clayish soil, stones, plant matter and fragments of plaster.

No asbestos detected.

# Sample No. 12. ASET32453 / 35633 / 12. BH21 - 0.0-0.2m - Fe18738

Approx dimensions 6.1 cm x 5.8 cm x 2.5 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, cement and brick.

No asbestos detected.

# Sample No. 13. ASET32453 / 35633 / 13. BH22 - 0.0-0.1m - Fe18744

Approx dimensions 5.8 cm x 5.5 cm x 2.6 cm

The sample consisted of a mixture of clayish soil, stones, plant matter and fragments of plaster.

No asbestos detected.

### Sample No. 14. ASET32453 / 35633 / 14. BH37 – 0.0-0.2m - Fe18772

Approx dimensions 4.5 cm x 4.4 cm x 2.1 cm

The sample consisted of a mixture of clayish soil, stones, plant matter and fragments of plaster.

No asbestos detected.



# Sample No. 15. ASET32453 / 35633 / 15. BH38 - 0.0-0.2m - Fe18774

Approx dimensions 5.0 cm x 4.5 cm x 2.4 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster. **No asbestos detected.** 

Analysed and reported by,

Nisansala Maddage. BSc(Hons)

**Environmental Scientist/Approved Identifier** 

Junus

Mahen De Silva . BSc. MSc. Grad Dip (Occ Hyg) Occupational Hygienist / Approved Signatory



This document is issued in accordance with NATA's Accreditation requirements. Accredited for compliance with ISO/IEC 17025.



Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention: Edward Wu

Report 369625-W

Client Reference ENAURHOD04463AA

Received Date Feb 21, 2013





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix mgt-LabMark Sample No. Date Sampled Test/Reference	LOR	Unit	SW1 Water S13-Fe15982 Feb 21, 2013	SW2 Water S13-Fe15983 Feb 21, 2013	SW3 Water S13-Fe15984 Feb 21, 2013
Conductivity (at 25°C)	1	uS/cm	350	610	890
pH	0.1	units	6.9	9.0	7.5



## **Sample History**

 $Where \ samples \ are \ submitted/analysed \ over \ several \ days, \ the \ last \ date \ of \ extraction \ and \ analysis \ is \ reported.$ 

Description	Testing Site	Extracted	Holding Time
Conductivity (at 25°C)	Sydney	Feb 21, 2013	28 Day
- Method: E032 Electrical conductivity (EC)			
pH	Sydney	Feb 21, 2013	1 Day

⁻ Method: E018 pH ** Samples analysed outside holding time. Analysis should be performed in situ. Results for reference only.



ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

**Company Name:** Coffey Environments Pty Ltd NSW Order No.: Received: Feb 21, 2013 2:30 PM

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Report #: 369625 Due: Feb 21, 2013

Chatswood Phone: +61 2 9406 1000 Priority: Same day **Contact Name:** NSW 2067 Fax: +61 2 9406 1004 Edward Wu

ENAURHOD04463AA Client Job No.: mgt-LabMark Client Manager: Jean Heng

		Sample Detail			Conductivity (at 25°C)	PH	
Laboratory wh	ere analysis is co	onducted					ı
Melbourne Lal	oratory - NATA	Site # 1254 & 14	271				
Sydney Labora	atory - NATA Site	# 18217			Х	Х	
Brisbane Labo	ratory - NATA Si	te # 20794					
External Labor	ratory						
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
SW1	Feb 21, 2013		Water	S13-Fe15982	Х	Х	
SW2	Feb 21, 2013		Water	S13-Fe15983	Х	Х	
SW3	Feb 21, 2013		Water	S13-Fe15984	Х	Х	



#### mgt-LabMark Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### TERMS

**Dry** Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

#### **QC - ACCEPTANCE CRITERIA**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

### QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (at 25°C)	S13-Fe15982	CP	uS/cm	350	360	3.0	30%	Pass	



#### Comments

#### **Sample Integrity**

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Organic samples had Teflon liners

Sample containers for volatile analysis received with minimal headspace

Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

#### **Authorised By**

Jean Heng Client Services

Bob Symons Senior Analyst-Inorganic (NSW)



### Dr. Bob Symons

### **Laboratory Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

ngt-LabMark shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall ngt-LabMark be liable for consequential claimages including, but not limited to, lost profits, damages for claimler to meet deadlines and to step production arising from this report. This document shall not be reproduced except in full and relates only to the intern steated. Unless indicated otherwise, the tests were performed on the samples as received.



ABN - 50 005 085 521

e.mail: enviro@mqtlabmark.com.au

web: www.matlabmark.com.au

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

**Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

# Sample Receipt Advice

Coffey Environments Pty Ltd NSW Company name:

Contact name: Edward Wu

Client job number: BRICKWORKS PROSPECT ENAURHOD04463AA

COC number: 107211-17 Turn around time: 4 Day

Feb 25, 2013 5:19 PM Date/Time received:

mgt-LabMark reference: 370054

## Sample information

- $\mathbf{V}$ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\mathbf{V}$ Sample Temperature of a random sample selected from the batch as recorded by mgt-LabMark Sample Receipt: 4 degrees Celsius.
- $\mathbf{V}$ All samples have been received as described on the above COC.
- $\square$ COC has been completed correctly.
- **7** Attempt to chill was evident.
- V Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- $\mathbf{V}$ Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Organic samples had Teflon liners.
- $\mathbf{V}$ Sample containers for volatile analysis received with zero headspace.
- **7** Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

#### **Notes**

Asbestos conducted at ASET| DUP 1A, DUP 3A, DUP 5A, DUP 7A, DUP 9A forwarded to Envirolab as requested Amber bottle for SW1, SW2 and SW3 also used in report 369625 Slight labelling discrepency: COC-W1 Bottle- SW1. We have labelled as per the bottles|Depth discrepency: COC- BH32 (0.08-0.18M) Jar- BH32 (0.08-0.28). We have labelled as per the COC unless requested otherwise Samples received by the laboratory after 4pm are deemed to have been received the following working day.

# Contact notes

ACCREDITATION

If you have any questions with respect to these samples please contact:

Jean Heng on Phone: (+61) (2) 9900 8400 or by e.mail: jean.heng@mgtlabmark.com.au

Results will be delivered electronically via e.mail to Edward Wu - edward wu@coffey.com.



Environmental Laboratory

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis



		Consignii	ng Office: (	hotsi	wood													
CO	ffev environments	Report R	esults to:	Edwar	rd Wu		Mobile	: 04	470	4461					_wv	(	@coffey.	com
00	environments  SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANI  NO: ENAURHOLO463AA Task No:	CE Invoices	io: Ed	ward	いい		Phone:					Email:	edu	uard	_wu		@coffey.	com
Project i	NO: ENAURHODO4463AA Task No:									An	alysis R	equest	Section	n				
	Name: Brickworks Project Laborator									//	//	7	//	//	///	///	/	
Sampler	r's Name: Priya DCISS Project M	anager: (-)	Lward	1 Wu			]		/	14	1801	//	//	//	///	///		
Special I	Instructions: metals 10 = As, Cd, Cr, C	u, Pb. 1	17, Zn,	H9 , Ti	, co			/	19/	7/2	1/2/	//	//	//	///	//		
		Sample Date		Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	/		)	XX		//	//	//		NC	OTES	
Lab No.	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa		Time				1	1	1		-	$\leftarrow$	-		$\leftarrow$			
18699	10	20/2/13		Soil	1x 250Mglas			//							-			-
00		<u> </u>			Par + 1 ziploc	x 4 any									-			
01	RH2_(0.0-0.2m)	19/2/13			bag.	-							-					
62		20/2/13													-			
63	BH4 (0.0-0.1M)						1		/						-			
04									-		-1-							-
oS	BH5 (0.0-0.2m)	V			<u> </u>		4											
06		18/2/13					/	_	-									
07	BH6_ (8.4-0.5M)	19/2/13							-	-	_							_
80							4	-	-	-								
09	BH6 (1.9-2.0m)									-								
10	BH7 (0.08-0.13m)	18/2/13					/		-							P		
	8H7 (0.2-0.3m)						/	//										
12	BH7_ (0.4-0.5M)						/						_		-			
13		20/2/13					1	//		/								-
14							/	1	14	1								. 14
5	8H9 (0.4-0.5m)														_			
16	8-110_(0.16-0.26M)	$\forall$		V	V	V	1	1										
	RELINQUISHED BY				REC	CEIVED BY					Sam	ple Rec	eipt Ad	vice: (La	b Use Only	y)		
Name:	Priya Dass Date: 21/2/13	-	Name:	Sul			Date:	211	1211	3	All S	amples	Recieve	ed in Goo	od Conditio	n		
Coffey E	Environments Time: 1:30 P.M	•	Compan	v: mg T			Time:	1 :	30	pu	All C	ocume	ntation	is in Pro	per Order		O O	
Name:		-		Searo			Date:	25/	2		Sam	ples Re	ceived F	roperly	Chilled		Ø	
Compar					his met		Time:		5:10	<b>Y</b>	Lab.	Ref/Ba	tch No.					
	iner Type & Preservation Codes: P - Plastic, G- Glass B	ottle, J - Glass		and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	0	eserved, C -	Hydroch	nloric A	cid Pres	served,				37	0054			
S - Sul	Iphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate	NP - No Pres	ervative, Of	- Other Pres	ervative													

			Consignir	ng Office:	Chats	boow.											MATERIAL DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACT					
CO	ffev 💞	environments specialists in environmental, social and safety performance	Report R	esults to:	Edwa	ow bux	1		Mobi	ile:									1- N		-	offey.com
		SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	Invoices	to: Ed	ware	NU K			Phon	e:					-		-		J_W	IU	@co	offey.com
Project i	VO: HALLI	SHOW DEFENDED 1938 NO.											Ana	lysis F	Reque	st Sec	ction	,,,				
Project I	Vame: Reicky	inches Prospect Laboratory:	Euvo	finsy	GT							/	//	//	//	/	//	//	///	//	//	
Sampler	's Name: Picis	JONES Prospect Laboratory: JONES Project Mana	ager: 🗀 c	wave	J Wu						/	//	4	13%		/	/	//	//	//		
Special I	nstructions:	ols 10 = As, Cd, cr, Cu	, Pb,	Ni,Zn	, Hg , 7	Ti, Co				/	3	19	64	39			//	//	//,	//		
Lab No.	- anat	Sample ID	Sample Date	Time	Matrix (Soilet		ner Type & ervative*	T-A-T (specify)	/	Ma		379	3/3		/	//	//	//	//		NOTES	
17	- No.	1.19-0.29m)	1				1	Sandard	1													
18	A	0.23 - 0.33m						4 day														
19		0.4-0.5m)							/	/												
20		0.13-0.23m)							/	-		/										
25		(0.4-0.5m)	V																			
22		(0.19-0.29m)	18/2/13						/	/												
75		(0.4-0.5m)	1																			
24		(0.15-0.25m)							/	1												
25		(0.4-0.5m)	V												_							
26		(0.0-0.2m)	20/2/13						/	/		/	1					_				
27		0.08-0.18m)	19/2/13																			
28		0.5-0.6m)							/	1	//	1/	1									
29		(m0.1-P.0)													-							
30	BH17 (	2.0 - 2.1m)													_							
31		(3.0-3.1M)												_	-							
n		(3.8-3.9m)	$\forall$									-							_			
33	BHIS (	(0.0 - 0.2  m)	20/2/13 19/2/13				1		/		_	/		4	-		_	-				
34		(0.0-0.15M)	19/2/13		V		V	1				***************************************										
		RELINQUISHED BY					RE	CEIVED BY			-	,		San	nple R	eceipt	Advi	ice: (L	ab Use O	nly)		
Name:	Priya Das	SS Date: 21/2/13	-	Name:	Sne				Date	:: 7	1/2								od Condi			
	Environments	Time: 1:30 p.M.			y: mg				Time	e:	12	Sop	m	All	Docun	nentat	ion is	in Pro	per Orde	er		
Name:		Date:		4 - 4 - 2 1 ( - 2 1	Sean				Date	: 2	5/2 S:			18.3				operly	Chilled			
Compa	ny:	Time:		Compar	14: Euro	frs M	51		Time	2:	S:	19		Lab	. Ref/I	Batch	No.	1				
**	ines Tuno O De	ervation Codes: P - Plastic, G- Glass Bott	le 1 - Glass					reserved, C -	Hydro	ochlori	c Acid f	reserv	ed,					3	700S	4		
S - Sul	nhuric Acid Prese	rved, I - Ice, ST - Sodium Thiosulfate, N	P - No Pres	ervative, O	P - Other P	reservative										Washington, and						

		Consigni	ng Office:	Chats	wood		PRI PRESENTA																
CO	ffev environments	Report R	esults to:		ard Wu		Mobil	e:											rd_i			@cof	ffey.com
00.	environments  SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE  THE ACCURACY COMMON CONTROL OF THE ACCURACY COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON CO	E Invoices	to: Ec	Sware	Wiu		Phone	9;						Ema	il: 6	di	ndi	rd.	_ W	U		@cof	ffey.com
Project N	10: ENAURHODO4463AA Task No:											Anal	ysis F	Reque	est S	ectio	n	_			,	, , ,	
Project N	Jame: Brickworks Prospect Laboratory	: Euro	fins t	YOT	***************************************					,	/	//	//	//	/	/	/	/	/,	//	//		
Sampler's	s Name: Priya DOSS Project Ma	nager:	dwar	d Wu						/	15	//	10/	//	/	//	/	/	/	//	//		
	nstructions:	72.40							/	9/	10	12	129	//	//	//	//	//	//	//			
								/	3/2	1	2/9	430°	7	//	//	//	//	//	//	/			
	1010	Sample Date	Time	Matrix (Soiletc	Container Type 8	T-A-T (specify)	1	Ag.	12)	3	9	1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	//	//	//	//	//	//	//		NO	TES	
Lab No.	Sample ID		Time	1	1	Street	17			1	1		1	1	$\overline{}$						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
35	BH19 (0.4-0.5M)									-			-									111	
	8H19 (1.0 - 1.1m)	00/1/2				4 day			/														
37	BH20 (0.0-0.2m)	20/2/13 19/2/13				1			/	1													
33	BH21 (0.0-0.2m)	111/2/13																					
39	BH21_ (6.5-0.6m)																						
yo	BH21 (1.0-1.1m)						1													******			
41	BH21 (2.0-2.1M)						/	7					-										
42	BH21 (3.0-3.1M)						/	-															
43	BH21 (3.9-4.0M)						-								***************************************				acceptation (many				
49	BH22 (0.0 -0.1m) BH23 (0.08-0.18m)	-					1	/							-								
40	BH23 (0.08-0.18m) BH23 (0.5-0.6m)								**				1										
40																							
	BH23 (1.0-1.1M) BH24 (0.08-0.18M)						/	/										7					
43	BH24 (0.08-0.18m) BH24 (0.5-0.6m)						1																
99	BH24 (1.1-1.2M)						1																
50	BH25 (0.19-0.29m)								/	1													
52	BH26_(0.18-0.28m)	18/2/13		V	1	7	1/	1															
2.0	RELINQUISHED BY				RI	CEIVED BY							Sar	nple F	Recei	pt Ad	lvice:	(Lab	Use O	nly)			
Name T	Priya Dass Date: 21/2/13	AGE	Name:	Sue			Date:	2	12	113	3		All	Samp	les R	eciev	ed in	Good	Condi	tion		I	
	nvironments Time: 1:30 p M.											`	All	Docur	ment	ation	is in I	Prope	er Orde	er			
-	Date:		Name:	ny: ma	0.			25			-		Sar	nples	Rece	ived I	Prope	erly Cl	hilled			C)	
Name:	-				fly mst		Time			:19			Lab	. Ref/	Batc	h No.	_						
Compan	1.	1 1 1 1 1 1					111		-		اد د د د						1	27	005	:4			
*Contain	ner Type & Preservation Codes: P - Plastic, G- Glass Bo phuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate,	ottle, J - Glass	Jar, V-Via	al, Z - Ziploc P - Other Pi	к ваg, N - Nitric Acid I eservative	reservea, C -	нуаго	cinorio	C ACIC	ries	erveo							2/	000	7 1			

	8		Consignin	g Office:	Chatsu	ood														
CO	ffev	environments	Report Re	sults to:	Edward	lwu		Mob	ile:				Ε	mail: (	edu	dro	1_1	NU	C	coffey.con
		environments specialists in environmental, social and safety performanc HONO446-3AA Task No:	E Invoices t	o: Ed	ward '	Nu		Phor	ie:				Ε	mail: (	edu	SOLVE	d	NU	@	coffey.con
Project	NO: EMAUR	HODO4463AA Task No:				and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s						Anal	sis Red	quest :	Sectio	n				
		Joyles Prospect Laboratory	: Euro	fins 1	1GT							//	7	//	77	7	//	///	7//	
	r's Name: Pri		nager: Eo			*****		1				3/	0/	//	//	//	//	///	//	
	Instructions:									/_	19	13	) L]	//	//		//	///		
									/	45/2	/×/		8/	/	//	//	/	//		
Lab No.		Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	1/2	29	7	//	//	//		//		NOTE	S
53	BH27 (	0.17-0.27m)	1				Santad	/	/	1	1									
24		(0.4-0.5m)	V				4day	/	/	1										
SS		(m1.1-0.1)	19/2/13																	
SC		(0.16-0.26M)	18/2/13					/	1	/										
57		(0.19-0.29m)			1			/	/	/										
SA		(0.4-0.5m)		1														***************************************		
Sa	BH30	(0.19-0.29M)	V					/	1											
60		(0.0 - 0.2 m)	20/2/13			17-11		/	/		HATT									
61		(0.4-0.5M)							/	1										
62		(M81.0-80.0)						/	_					_						
63		(D.O-0.2M)						1											***************************************	
64	ВН33_	(0.4-0.514)	V																	
65	BH 34	(0.09-0.19m)	19/2/13					1	1											
66	BH34_	(0.5-0.6m)	1'1'																	
67		(1.0-1.1m)	\ <u>\</u>					/	1	11										
18		(M81.0-80.0)	18/2/13					1	/	1_ _										
69	BH35	(0.4-0.5m)	V					/	1_											
10		(0.0-0.2m)	20/2/13		V	V	W.	/	1	1										
		RELINQUISHED BY				REC	CEIVED BY	and make					Sampl	e Rece	ipt Adv	rice: (L	ab Use	e Only)		
Name:	Priva Das	5S Date: 21/2/13	<b>→</b>	Name:	Sue			Date	: 7	1/2	113		All San	nples R	lecieve	d in Go	od Co	ndition		
	Environments	Time: 1:30 p.M.		Compan	v: mg t	<i>**</i>		Time	2;	123	op-	<u>~</u>	All Do	ument	tation i	s in Pro	oper O	rder		
Name:		Date:	>	Name:	searo.			Date	:	25/2			Sampl	es Rece	eived P	roperly	/ Chille	d	Ę	
Compa	ny:	Time:		Compan	v: Eurofin	s Met				5:19			Lab. R	ef/Bato	ch No.				<del></del>	
*Conta	iner Type & Prese	rvation Codes: P - Plastic, G- Glass Bo rved, I - Ice, ST - Sodium Thiosulfate, N	ttle, J - Glass	Jar, V- Vial	, Z - Ziplock Ba	g, N - Nitric Acid Pr	eserved, C -	Hydro	chlo	ric Acid	Preserve	d,				2	570	054		

	A	- Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Cont	Consigning	g Office:	Chat	SUL	000															
001	fov ?	environments	Report Re	sults to:	Echin	vclvc	1 Wu			Mobil	e:							Man				offey.com
COI	iey •	environments specialists in environmental, social and safety performance	Invoices to	): Fc	MUCK	di	Ju			Phone	2;					Ema	il: ed	Mai	_bv	WU	@0	offey.com
		ALLAND GALLITTER CHANAGE			1000									An	alysis	Reque	est Sec	tion	,		, ,	,
													/	//	//	//	//	//	/	///	//	
Project N	ame: RuckM	oves Prospect Laboratory:	ager: Ed	101011	INI	1						,	10	154	/00/	//	//	//	//	///	//	
Sampler's	Name: Priyo	Dass Project Man  hetals 10 = As, Cd, Cr	- С. I	VOCE VI	7.	140	7	(0				/	/0	( ) / c	3/5	//	//	//	//	///		
Special In	structions:	metals 10 = AS, Cd, Cr	-, Cu , 1	6 101	, -0,	179					/	(N)	1		5	//	//	//	//	//		
Т.			Sample		Mat	rix	Containe			/	(m)	13	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0/43		/	//	//	//	/ [	NOTES	
Lab No.	s	ample ID	Date	Time	(Soil	.etc)	Preserv	ative*	(specify)	/	/	//	//	1	//	-	4		11	/ L		
7	BHBG	(0.4-0.5m)	1						Sandard.					_		-					<u> </u>	
72		(0.0-0.2m)	21/2/13						4day	/						-		-		LOWER TO THE REAL PROPERTY.		
93		(0.4-0.5M)	1						-		_			1-1								
74		(0.0 - 0.2 m)								/	1	_					-		-			
3		(0.4-0.5m)								/		_							-			
76	-	(0.0-0.2 M)								/					_	-						
77		(0.4-0.5M)								-			-	-								
78		(0.0-0.2M)							<u> </u>	/				_			-	-				
79		(0.4-0.5m)	V				V							-		-			-		***********	47) 5000
80	DUF		18/2/13				1×25M	glass								-		-		Send to	Environ	lah
	DUI	AIC			_		Jar			-		AA.	-	-	-					JE14110	LVIVIV	LUU
41	DUF									/	_	MA.		_		-	-		-			
82	DUI		19/2/13							/	-	-			_		-		-	Send to	Enim	lah
	DUf	93A								/	-	-		_		_		_		32110 10	210100	(00
83	DUC	PH								-		-	-	-	-	-	-	-				
83	DU	P5					-		-	/					-	-	-	_	-	Send to	Fruin	olah
	DU	PSA	V			,			-V-	/	/		-							301,00,10		,.00
85	DU	P6	20/2/13				1			_					c	ample	Receint	Advice	: (Lab	Use Only)	0.00	
		RELINQUISHED BY						RE	ECEIVED BY			/	- /		-					Condition		
Name:	Priya Do	SS Date: 21/2/13	-			he	1.			Date	: '	ul	211	3				ion is in				
Coffey E	nvironments	Time: 1:30 p.M.			any: 1	-				Time	2:	1 2 3	100	· .				ed Prop			7	í
Name:		Date:	-		Se					Date		25/2					s Receiv f/Batch		Jerry CI	meu		
Compar	ny:	Time:		Comp	any: 5	wo	ins w	ST		Time	e:	7	:19		—\ ^t	ab. Kel	pateri		2-	2 mmCl	1	
**	Tunc O Descri	ervation Codes: P - Plastic, G- Glass Bo	ttle, J - Glass	Jar, V-V	ial, Z - Zi	plock E	Bag, N - Nit	ric Acid f	Preserved, C	Hydro	ochlor	ic Acid	Pres	erved,					2	70054	1	
S - Sul	ohuric Acid Prese	erved, I - Ice, ST - Sodium Thiosulfate, I	NP - No Pres	ervative,	OP - Oth	er Pres	ervative	ui net				-									ue Date: 24,	100 10010

		Con	signing	Office:	Chatsw	cod															
coffe	enviro	nments Rep	ort Resu	ults to:	Edwar	rd Wu		Mob	ile:									1_v		@	coffey.com
	SPECIALIST SOCIAL AND	nments S IN ENVIRONMENTAL, O SAFETY PERFORMANCE  LLASAA Task No:	oices to:	Ed	nard N	Ju		Phon	e:					Ε	mail: (	edu	Udvo	1_ v	JU	@	coffey.com
Project No:	ENAURHODO4	463AA Task No:											Anal	ysis Re	quest	Section	on				
Project Name	: Rrichworks P	rospect Laboratory: Fu	rofic	ns Ma	FT				oloniu y mae			7	//	//	//	//	/	//	//,	///	7
Sampler's Nar	ne: Priva Dass	Project Manager:	Edv	bypu	Wu						/	1/4	//	2/	//	//	//	//	//	//	
Special Instru	ctions: Metals 10	= As, Cd, Cr, Cu, f	Pb, 1	Vī,Z	n, Hg,	Ti, Co			. /	(5)	1/2		13/	75/	//	//	//	//	//		
Lab No.	Sample ID	Sam Dal	5	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	/	12		7.0	9	2 2 3	//	//		/	//	/[	NOTE	S
86	DUP7				1		Standard														
	DOPTA						4 day	/										S	end t	o Envi	- lab
87	DUP8	V	1																		
88	DUP9	ગ્રા/2	2/13																		a compa
	AP9UG	V	,		$\vee$	V												Se	nd to	s Envi	dist or
89	RBI	19/2	113		Water	12 Author, 2xvial	,														
90	RB2.	20/2			1	1x plastic HHO3															
91	RB3	21/2			V	V		/	/	1	1									<del>animposas perco</del>	
92	TBI	18/2	113		Soil	2×125mlgluss			/												
93	TSI	1	,			Jar !															
94	TB2	19/2	-113						/												
95	TSZ	19/2							/												
96	TB3	20/2	2/13													,					
97	TS3	Ų.			$\Psi$	V			/		-										
93	SEDI	21/3	3/13			1×250W1GJ		_	/	/	/										
	SED2							_	1												
Od	SED3				V	V		/	/												
01	WI	1	<b>'</b>		Water	11 Ambert 2V+	V	/	/	/											
	RELINQU	ISHED BY				1PU REC	EIVED BY							Samp	le Rece	ipt Ad	lvice: (	Lab Us	e Only)		
Name: Pri	ia Dass I	Date: 21/2/13	->	Name:	Sue	2		Date	: 2	11	2/1	3		All Sa	mples F	Recieve	ed in G	ood Co	ndition		
Coffey Enviro		Time: 1:30 p.iM.		Compan	v: may t		,	Time	;	1 - 3	307	, ~		All Do	cumen	tation	is in Pr	oper O	rder		
Name:		Date:	<b>→</b>	Name:	Sean t	ė		Date	: 2	25/2	2			Samp	les Rec	eived F	Properl	ly Chille	:d	C	Y
Company:	1	Time:		Compan	y: Eurof	ins mgt		Time			5:19			Lab. F	ef/Bate	ch No.		γ.			
*Container T	/pe & Preservation Codes	s: P - Plastic, G- Glass Bottle, J - 0 T - Sodium Thiosulfate, NP - No	Glass Ja	r, V- Via	, Z - Ziplock Ba	ag, N - Nitric Acid Pr	eserved, C -	Hydro	chlor	ic Acid	l Pres	erved	,				2	70	1054		

		Consignir	g Office:	Chatsu	ood																	
coffey	environments specialists in environmental, social and safety performance  AURHOD 44463AA Task No:	Report Re	esults to:	Edway	9 Ma		Mob	ile:											WU			coffey.cor
concy	SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	Invoices t	o: Ed	ward	Wu		Phon	e;	- New York					-	-			d_	WU		@(	coffey.cor
												Analy	sis Re	ques	t Se	ction	1			, ,	,	,
Project Name: R	vickworks Prospect Laboratory:	Euro.	fins M	GT		4				/	//	//	/	/	/	/	//	/,	//	//	//	
Sampler's Name:	Priya Dass Project Man	ager: Ec	ward	d Wu						/	50	//	/	/	/	/	/,	/	//	//		
Special Instruction								. /	( )	1	5/	19/3/ 1/3/	7	/	/	/	/	/	//			
Lab No.	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	(specify)		Tid.	73) 	1			//	/	/	/	/	/		1	NOTES	
	SW2	1				Status Status	/	/	/													
02	SW3	1		V	V	4day	/	/	/								_					
***************************************																-	_					
														_	_	-		4				
											_							-				
														_	_	-	_					
							_							_	_	-	-	-				
							-	_		-	_ _	-										
							_	_				_		-		-						
					12/		-	-				-			_		_					
								_	- 0.				-		-							
							_						_		-					1000		
							_	-														
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s							_				-		-	_	-					- 111		
							_	-		_	-	-						-				
							_		-	-							-					
							_	-		-					-	-						
														_		-	_					
	RELINQUISHED BY				RE	CEIVED BY	-ini	- 2					4						Use On			i.
Name: Priya Coffey Environme	Doss Date: $21/2/13$ nts Time: 1:30 p·M -	-	Name: Compa	Sue ny: mgt	hs mgt					30									Conditi r Order	on		r
Name:	Date:	-	Name:	Spart			Date	e: 7	25/1	_			Samp	ples R	Receiv	ved P	roper	rly Ch	illed			
Company:	Time:		Compa	ny: Guraf	IN MCT		Tim		5	19			Lab.	Ref/B	Batch	No.						
A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA			1- 1/10	1 7 7:	ag N. Nitric Acid D	reserved C	Hydra	achlo	ric Aci	d Pres	erved						1	37	005	4		
*Container Type &	& Preservation Codes: P - Plastic, G- Glass Bot d Preserved, I - Ice, ST - Sodium Thiosulfate, N	tie, J - Glass IP - No Pres	ervative. O	P - Other Pres	ervative	reserved, C -	riyur	CHIO	i i i	4,100	2, , 20,			Aller Control				- 1	000			

#370054 Sends

From: Edward Wu [mailto:Edward_Wu@coffey.com]

Sent: Monday, 25 February 2013 5:19 PM

To: Jean Heng

Cc: Priya Dass; Sample Receipt 1 Syd; Enviro Syd

Subject: RE: ENAURHOD04463AA samples arriving this afternoon

Hi Jean,

COC and analysis request attached for your action. Thank you.

Regards Edward

From: Edward Wu

Sent: Thursday, 21 February 2013 1:31 PM

To: 'Jean Heng'

Cc: Priya Dass; Sample Receipt 1 Syd; 'Enviro Syd'

Subject: ENAURHOD04463AA samples arriving this afternoon

Hi Jean,

Sue is picking up some samples from Priya at a site in Prospect this afternoon. Unfortunately we won't have the COC ready in time. There are three water samples (SW1 SW2 and SW3) requiring pH and EC analysis. Due to the holding time, could you arrange them to be done today?

We will forward the COC and the rest of analysis requests to you tomorrow. I trust this is ok with you.

#### Regards,

### **EDWARD WU**

Senior Associate

### **Coffey Environments**

Level 19, Tower B – Citadel Tower 799 Pacific Highway Chatswood NSW 2067 Australia T +61 2 94061000 F +61 2 94061004 M +61 4 13276891 coffey.com

El virillimente Notice. Please, crisiller ne anviru penticecre mining his email

Combinately, Words the Contain in this message and a visitation may be of visited in continuous an agranus. Any mailthours as use a storestry into prest if a course of the containing the course of the same as the course of the same as the course of the course of the same as the course of the same as the course of the same as the course of the course of the same as the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of

2 LDMCLTONS



Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067 NATA WORLD RECOGNISED

# Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Fiona Wong

Report 373350-S

Client Reference ADDITIONAL: BRICKWORKS PROSPECT ENAURHOD04463AA

Received Date Mar 22, 2013

Client Sample ID			SED3
Sample Matrix			Soil
Eurofins   mgt Sample No.			S13-Ma19687
Date Sampled			Feb 21, 2013
Test/Reference	LOR	Unit	
GC-MS Scan (Semivolatile)	0	mg/kg	M11see attached

Report Number: 373350-S



#### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description Testing Site Extracted Holding Time



Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au web : www.mgtlabmark.com.au

ADDITIONAL: BRICKWORKS PROSPECT ENAURHOD04463AA

**Company Name:** Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Laboratory where analysis is conducted

Client Job No.:

Report #: Phone:

Fax:

GC-MS Scan (Semivolatile)

Order No.:

+61 2 9406 1000 +61 2 9406 1004

373350

Received: Due:

Mar 22, 2013 12:44 PM Mar 25, 2013

Priority: 1 Day

**Contact Name:** Fiona Wong

**Eurofins | mgt Client Manager: Jean Heng** 

#### Sample Detail

Melbourne Laboratory - NATA Site # 1254 & 14271					
Sydney Laboratory - NATA Site # 18217				Х	
Brisbane Laboratory - NATA Site # 20794					
External Laboratory					
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID	
SED3	Feb 21 2013		Soil	S13-Ma19687	Χ

Page 3 of 5

Date Reported:Mar 25, 2013 Date Reported:Mar 25, 2013 Report Number: 373350-S



#### **Eurofins | mgt Internal Quality Control Review and Glossary**

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **TERMS**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

**Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate**A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

### **QC - ACCEPTANCE CRITERIA**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%  $\,$ 

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

### **QC DATA GENERAL COMMENTS**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
  in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 373350-S



#### Comments

# Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Organic samples had Teflon liners
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

## **Qualifier Codes/Comments**

Code Description

M11 NATA accreditation does not cover the performance of this service.

#### **Authorised By**

Jean Heng Client Services

Ryan Hamilton Senior Analyst-Organic (NSW)

26,25

#### Dr. Bob Symons

#### **Laboratory Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 373350-S



Unit F6, Building F 16 Mars Road Lane Cove West, NSW, 2066 Telephone (02) 8215 6222 Facsimile (02) 9420 2977

## **CERTIFICATE OF ANALYSIS**

Job Reference: 373350: ADDITIONAL: BRICKWORKS PROSPECT

<u>Attention:</u> Fiona Wong

<u>Client:</u> Coffey Environments

Level 19, Citadel Tower, 799 Pacific Highway, Chatswood NSW 2067

Samples: Semi-volatile Analysis

<u>Date:</u> 2 April 2013

All samples were analysed as received. This report relates specifically to the samples as received. Results relate to the source material only to the extent that the samples as supplied are truly representative of the sample source.

#### Methodology

### GC-MS SCAN OF SEMI-VOLATILE ORGANIC COMPOUNDS

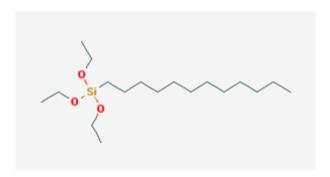
The sample was received in soil jars specifically prepared. The sample was extracted according to standard procedures and analysed using full scan electron impact ionisation mode Gas Chromatography/Mass Spectrometry (GC-MS) based upon US EPA Methods 8270 for semi-volatile components.

For samples containing components not associated with the calibration standards, a library search was made for the purpose of tentative identification. After visual comparison of sample spectra with the nearest library searches a tentative identification were assigned based upon a quality match (Qual) >80. Guidelines for tentative identification are:

- (1) Relative intensities of major ions in the reference spectrum (ions > 10% of the most abundant ion) should be present in the sample spectrum.
- (2) The relative intensities of the major ions should agree within ± 20%. (Example: For an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance must be between 30 and 70%.)
- (3) Molecular ions present in the reference spectrum should be present in the sample spectrum.
- (4) Ions present in the sample spectrum but not in the reference spectrum were reviewed for possible background contamination or presence of co-eluting compounds.
- (5) Ions present in the reference spectrum but not in the sample spectrum were reviewed for possible subtraction from the sample spectrum because of background contamination or coeluting peaks. Data system library reduction programs can sometimes create these discrepancies.

The major peaks detected in the GC-MS chromatogram were analysed by computerised library matching of their mass spectra, using the NIST / EPA / NIH (National Institute of Standards and




Unit F6, Building F 16 Mars Road Lane Cove West, NSW, 2066 Telephone (02) 8215 6222 Facsimile (02) 9420 2977

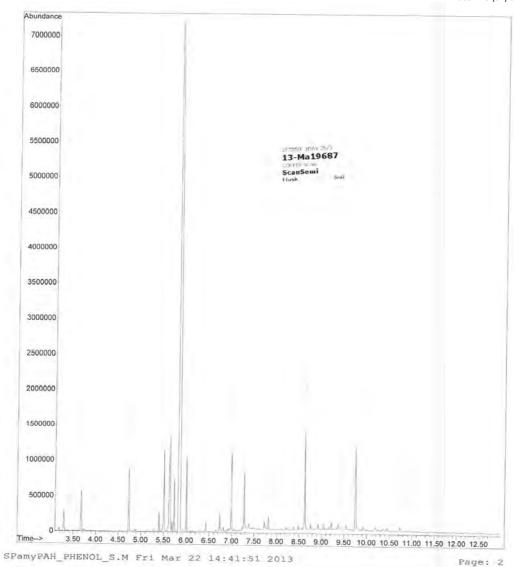
Technology) library according to the guidelines described above. Library match is a percentage of the accuracy of the ion present in the sample against the NIST library record. The library contains  $\sim 75,000$  spectra.

This scan is a representation of analytes present in the sample and is NOT a NATA certified test.

## **Results**

The Total Ion Chromatogram (TIC) revealed a single major peak that was tentatively identified, as described above, as dodecyltriethoxy-silane CAS No. 018536-91-9 Match Quality 90.




Kind regards,

Dr. Bob Symons

Laboratory and Technical Manager NSW



Unit F6, Building F 16 Mars Road Lane Cove West, NSW, 2066 Telephone (02) 8215 6222 Facsimile (02) 9420 2977





ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au

web: www.mgtlabmark.com.au

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

# Sample Receipt Advice

Coffey Environments Pty Ltd NSW Company name:

Contact name: Fiona Wong

ADDITIONAL: BRICKWORKS PROSPECT ENAURHOD04463AA Client job number:

COC number: Not provided

Turn around time: 1 Day

Mar 22, 2013 12:44 PM Date/Time received:

Eurofins | mgt reference: 373350

# Sample information

- $\mathbf{V}$ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\mathbf{V}$ Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 4 degrees Celsius.
- $\mathbf{V}$ All samples have been received as described on the above COC.
- $\square$ COC has been completed correctly.
- **7** Attempt to chill was evident.
- $\mathbf{V}$ Appropriately preserved sample containers have been used.
- $\square$ All samples were received in good condition.
- $\square$ Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Organic samples had Teflon liners.
- $\boxtimes$ Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

#### **Notes**

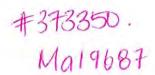
## Original Report #370054

## Contact notes

ACCREDITATION

If you have any questions with respect to these samples please contact:

Jean Heng on Phone: (+61) (2) 9900 8400 or by e.mail: jean.heng@mgtlabmark.com.au


Results will be delivered electronically via e.mail to Fiona Wong - fiona_wong@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.



**Environmental Laboratory** Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis





Website: www.mgtLabMark.com.au

From: Fiona Wong [mailto:Fiona_Wong@coffey.com]

Sent: Friday, 22 March 2013 12:44 PM

To: Bob Symons

Cc: Jean Heng; Edward Wu

Subject: FW: Request for chromatogram - Report No 370054

Importance: High

Hi Bob,

It will be good if you can run the test for us. I presume the cost will be doubled if we ask for 1 day TAT. Can you confirm?

Regards, Fiona

FIONA WONG Associate

Coffey Environments

Level 19. Citadel Tower, 799 Pacific Highway, Chatswood NSW 2067 T +61 2 9406 1000 D +61 2 9406 1213 F +61 2 9406 1004 M + 61 409 367 752 coffey.com

From: Bob Symons [mailto:Bob.Symons@mgtlabmark.com.au]

Sent: Friday, 22 March 2013 12:36 PM

To: Fiona Wong

**Cc:** Edward Wu; Jean Heng; Ryan Hamilton; Enviro Syd **Subject:** RE: Request for chromatogram - Report No 370054

Importance: High

Hi Fiona,

The chromatogram is very weird with just a single peak. The price for a GC/MS scan is \$76.00 for standard TAT but we can get something back to you on Monday if required. Please note that the library match is tentative and can only confirmed with running an authentic standard of the best match. See qualifier below:

For samples containing components not associated with the calibration standards, a library search was made for the purpose of tentative identification. After visual comparison of sample spectra with the nearest library searches a tentative identification were assigned based upon a quality match (Qual) >80. Guidelines for tentative identification are:

- (1) Relative intensities of major ions in the reference spectrum (ions > 10% of the most abundant ion) should be present in the sample spectrum.
- (2) The relative intensities of the major ions should agree within  $\pm$  20%. (Example: For an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance must be between 30 and 70%.)
- (3) Molecular ions present in the reference spectrum should be present in the sample spectrum.
- (4) Ions present in the sample spectrum but not in the reference spectrum were reviewed for possible background contamination or presence of co-eluting compounds.

(5) Ions present in the reference spectrum but not in the sample spectrum were reviewed for possible subtraction from the sample spectrum because of background contamination or co-eluting peaks. Data system library reduction programs can sometimes create these discrepancies. The major peaks detected in the GC-MS chromatogram were analysed by computerised library matching of their mass spectra, using the NIST / EPA / NIH (National Institute of Standards and Technology) library according to the guidelines described above. Library match is a percentage of the accuracy of the ion present in the sample against the NIST library record. The library contains ~ 75,000 spectra.

This scan is a representation of analytes present in the sample and is NOT a NATA certified test.

Let me know what you require and I will get this logged in.

### Dr Bob Symons

Laboratory Manager | NSW

Eurofins | mgt Unit F3, Parkview Building 16 Mars Road, Lane Cove West, NSW 2066, Australia

Phone: +61 2 9900 8400 Direct: +61 2 9900 8405 Mobile: +61 488 965 444 Fax: +61 2 9420 2977

Email: bob.symons@mgtlabmark.com.au

Website: www.mgtLabMark.com.au

From: Fiona Wong [mailto:Fiona Wong@coffey.com]

Sent: Friday, 22 March 2013 12:12 PM

To: Bob Symons

Cc: Edward Wu; Jean Heng

Subject: FW: Request for chromatogram - Report No 370054

Hi Bob,

As discussed please could you have a look at this chromatogram for us.

Please let me know the cost and the turnaround time to re-run the test, and more importantly, how certain we will be able to get information out of the re-run.

I will be out of office after 3:30pm, but contactable on my mobile if necessary.

Many thanks, Fiona

FIONA WONG Associate

**Coffey Environments** 

Level 19, Citadel Tower, 799 Pacific Highway, Chatswood NSW 2067 T +61 2 9406 1000 D +61 2 9406 1213 F +61 2 9406 1004 M + 61 409 367 752 coffey com From: Jean Heng [mailto:Jean.Heng@mgtlabmark.com.au]

Sent: Thursday, 21 March 2013 3:18 PM

**To:** Fiona Wong **Cc:** Edward Wu

Subject: RE: Request for chromatogram - Report No 370054

Hey Fiona,

Please find attached the chromatogram requested.

That peak that showed up along the C15-28 fraction is definitely not a petroleum-based hydrocarbon. But I am not able to tell you which compound it is unless we are to run it on the MS scan and through a library.

Jean Heng Client Manager | NSW

Eurofins | mgt Unit F3-F6, Parkview Building 16 Mars Road, Lane Cove West, NSW 2066, Australia

Phone: +61 2 9900 8400 Direct: +61 2 9900 8460 Mobile: +61 403 637 214 Fax: +61 2 9420 2977

Email: <u>Jean.Heng@mgtlabmark.com.au</u> Website: <u>http://www.mgtlabmark.com.au</u>

From: Fiona Wong [mailto:Fiona Wong@coffey.com]

Sent: Thursday, March 21, 2013 12:00 PM

To: Jean Heng Cc: Edward Wu

Subject: Request for chromatogram - Report No 370054

Hi Jean,

Can you please send me the chromatogram for sample ID SED3 from the above report. The project name is Prospect Brickworks.

Much appreciated if you can ask your organic chemist to provide his/her opinion about the source of the TPH.

Any questions, please give me a call. It will be good if you can send it to me today.

### Thanks and regards,

FIONA WONG

Associate

Coffey Environments

Level 19, Citadel Tower, 799 Pacific Highway, Chatswood NSW 2067 T +61 2 9406 1000 D +61 2 9406 1213 F +61 2 9406 1004 M + 61 409 367 752 coffey cont

Environmental Notice. Please consider the environment before printing this amail.

Confidentiality Notice. The content of this message and any attachments may be privileged, in confidence or sensitive. Any unauthorised use is expressly promoted, if you have received this email in arror please notify the sender, disregard and then delete the amail. This amail may have been corrupted or interfeted with. Coffey International Limited cannot guarantee that the message you receive is the same as the message we sent. All Coffey International Limited's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence. No warranty is made that this email and its contents are free from computer viruses or other defects.

CILDISCLODES

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <a href="http://www.symanteccloud.com">http://www.symanteccloud.com</a>

No virus found in this message. Checked by AVG - www.avg.com

Version: 2012.0.2240 / Virus Database: 2641/5695 - Release Date: 03/21/13

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <a href="http://www.symanteccloud.com">http://www.symanteccloud.com</a>

No virus found in this message. Checked by AVG - www.avg.com

Version: 2012.0.2240 / Virus Database: 2641/5695 - Release Date: 03/21/13



**Envirolab Services Pty Ltd** 

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

86398

CERTIFICATE OF ANALYSIS

Client:

**Coffey Environment** 

Level 19, Tower B, Citadel Tower 799 Pacific Hwy Chatswood NSW 2067

Attention: Edward Wu

Sample log in details:

Your Reference: ENAURHODO4463AA, Brickworks Prospect

No. of samples: 5 Soils

Date samples received / completed instructions received 26/02/13 / 26/02/13

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 4/03/13 / 1/03/13

Date of Preliminary Report: Not issued

Alex MacLean

Chemist

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

**Results Approved By:** 

Rhian Morgan

Reporting Supervisor

Jeremy Faircloth

Chemist



vTRH(C6-C10)/BTEXN in Soil			
Our Reference:	UNITS	86398-2	86398-3
Your Reference		DUP3A	DUP5A
Date Sampled		19/02/2013	19/02/2013
Type of sample		Soil	Soil
Date extracted	-	27/02/2013	27/02/2013
Date analysed	-	28/02/2013	28/02/2013
TRHC6 - C9	mg/kg	<25	<25
TRHC6 - C10	mg/kg	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	97	106

svTRH (C10-C40) in Soil			
Our Reference:	UNITS	86398-2	86398-3
Your Reference		DUP3A	DUP5A
Date Sampled		19/02/2013	19/02/2013
Type of sample		Soil	Soil
Date extracted	-	27/02/2013	27/02/2013
Date analysed	-	28/02/2013	28/02/2013
TRHC10 - C14	mg/kg	<50	<50
TRHC 15 - C28	mg/kg	<100	<100
TRHC29 - C36	mg/kg	<100	<100
TRH>C10-C16	mg/kg	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH>C16-C34	mg/kg	<100	<100
TRH>C34-C40	mg/kg	<100	<100
Surrogate o-Terphenyl	%	98	100

PAHs in Soil		
Our Reference:	UNITS	86398-2
Your Reference		DUP3A
Date Sampled		19/02/2013
Type of sample		Soil
Date extracted	-	27/02/2013
Date analysed	-	28/02/2013
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ	mg/kg	<0.5
Surrogate p-Terphenyl-d ₁₄	%	107

Organochlorine Pesticides in soil		
Our Reference:	UNITS	86398-2
Your Reference		DUP3A
Date Sampled		19/02/2013
Type of sample		Soil
Date extracted	-	27/02/2013
Date analysed	-	28/02/2013
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan l	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	102

PCBs in Soil		
Our Reference:	UNITS	86398-2
Your Reference		DUP3A
Date Sampled		19/02/2013
Type of sample		Soil
Date extracted	-	27/02/2013
Date analysed	-	28/02/2013
Arochlor 1016	mg/kg	<0.1
Arochlor 1221	mg/kg	<0.1
Arochlor 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1
Surrogate TCLMX	%	102

Envirolab Reference: 86398 Page 6 of 15 Revision No: R 00

Acid Extractable metals in soil				
Our Reference:	UNITS	86398-2	86398-3	86398-4
Your Reference		DUP3A	DUP5A	DUP7A
Date Sampled		19/02/2013	19/02/2013	20/02/2013
Type of sample		Soil	Soil	Soil
Date digested	-	27/02/2013	27/02/2013	27/02/2013
Date analysed	-	27/02/2013	27/02/2013	27/02/2013
Arsenic	mg/kg	<4	<4	4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	7	54	49
Copper	mg/kg	14	49	22
Lead	mg/kg	4	7	13
Nickel	mg/kg	5	150	42
Zinc	mg/kg	12	52	38
Mercury	mg/kg	<0.1	<0.1	<0.1
Titanium	mg/kg	230	260	84
Cobalt	mg/kg	2	33	15

Moisture				
Our Reference:	UNITS	86398-2	86398-3	86398-4
Your Reference		DUP3A	DUP5A	DUP7A
Date Sampled		19/02/2013	19/02/2013	20/02/2013
Type of sample		Soil	Soil	Soil
Date prepared	-	27/02/13	27/02/13	27/02/13
Date analysed	-	28/02/13	28/02/13	28/02/13
Moisture	%	20	13	9.8

Envirolab Reference: 86398 Page 8 of 15 Revision No: R 00

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

	Client Reference: ENAURHODO4463AA, Brickworks Prospect												
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery					
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD							
Date extracted	-			27/02/2 013	[NT]	[NT]	LCS-4	27/02/2013					
Date analysed	-			28/02/2 013	[NT]	[NT]	LCS-4	28/02/2013					
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-4	122%					
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-4	122%					
vTPHC6 - C10 less BTEX(F1)	mg/kg	25	Org-016	[NT]	[NT]	[NT]	[NR]	[NR]					
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-4	130%					
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-4	119%					
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-4	113%					
m+p-xylene	mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-4	125%					
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-4	127%					
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]					
Surrogate aaa- Trifluorotoluene	%		Org-016	110	[NT]	[NT]	LCS-4	112%					
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery					
svTRH (C10-C40) in Soil						Base II Duplicate II %RPD							
Date extracted	-			27/02/2 013	[NT]	[NT]	LCS-4	27/02/2013					
Date analysed	-			28/02/2 013	[NT]	[NT]	LCS-4	28/02/2013					
TRHC10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-4	97%					
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-4	92%					
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-4	88%					
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-4	97%					
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	[NT]	[NT]	[NT]	[NR]	[NR]					
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-4	92%					
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-4	88%					
Surrogate o-Terphenyl	%		Org-003	100	[NT]	[NT]	LCS-4	81%					

	Client Reference: ENAURHODO4463AA, Brickworks Prospect												
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery					
PAHs in Soil						Base II Duplicate II %RPD							
Date extracted	-			27/02/2 013	[NT]	[NT]	LCS-4	27/02/2013					
Date analysed	-			28/02/2 013	[NT]	[NT]	LCS-4	28/02/2013					
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-4	100%					
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]					
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]					
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-4	99%					
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-4	101%					
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]					
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-4	103%					
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-4	107%					
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]					
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-4	96%					
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]					
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-4	92%					
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1 [NT] [NT]		[NR]	[NR]						
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]					
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]					
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]					
Surrogate p-Terphenyl- d ₁₄	%		Org-012 subset	119	[NT]	[NT]	LCS-4	105%					

Envirolab Reference: 86398 Revision No: R 00

	Client Reference: ENAURHODO4463AA, Brickworks Prospect												
QUALITY CONTROL  Organochlorine  Pesticides in soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results  Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery					
Date extracted	-			27/02/2 013	[NT]	[NT]	LCS-4	27/02/2013					
Date analysed	-			27/02/2 013	[NT]	[NT]	LCS-4	27/02/2013					
HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	100%					
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	109%					
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	101%					
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	113%					
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	104%					
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	103%					
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	101%					
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	104%					
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	105%					
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-4	110%					
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
Surrogate TCMX	%		Org-005	102	[NT]	[NT]	LCS-4	103%					

Envirolab Reference: 86398 Revision No: R 00

Client Reference: ENAURHODO4463AA, Brickworks Prospect													
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery					
PCBs in Soil						Base II Duplicate II %RPD							
Date extracted	-			27/02/2 013	[NT]	[NT]	LCS-4	27/02/2013					
Date analysed	-			27/02/2 013	[NT]	[NT]	LCS-4	27/02/2013					
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]					
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]					
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]					
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]					
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]					
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-4	106%					
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]					
Surrogate TCLMX	%		Org-006	102	[NT]	[NT]	LCS-4	116%					
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery					
Acid Extractable metals in soil					<i></i>	Base II Duplicate II %RPD							
Date digested	-			27/02/2 013	[NT]	[NT]	LCS-2	27/02/2013					
Date analysed	-			27/02/2 013	[NT]	[NT]	LCS-2	27/02/2013					
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-2	95%					
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-2	90%					
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	97%					
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	97%					
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	94%					
Nickel	mg/kg	1	Metals-020 ICP-AES			[NT] [NT]		96%					
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	93%					
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-2	91%					
Titanium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	101%					
Cobalt	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	98%					

Envirolab Reference: 86398 R 00 Revision No:

QUALITYCONTROL	UNITS	PQL	METHOD	Blank
Moisture				
Date prepared	-			[NT]
Date analysed	-			[NT]
Moisture	%	0.1	Inorg-008	[NT]

### **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Reference: 86398 Page 15 of 15

Revision No: R 00



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

# **SAMPLE RECEIPT ADVICE**

Client:

Coffey Environment ph: 02 9406 1000 Level 19, Tower B, Citadel Tower Fax: 02 9406 1002

Chatswood NSW 2067

Attention: Edward Wu

Sample log in details:

Your reference: ENAURHODO4463AA, Brickworks Prospect

Envirolab Reference: **86398**Date received: 26/02/13
Date results expected to be reported: **4/03/13** 

Samples received in appropriate condition for analysis:

No. of samples provided

Turnaround time requested:

Temperature on receipt

Cooling Method:

Sampling Date Provided:

YES

YES

#### Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

### Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst

ph: 02 9910 6200 fax: 02 9910 6201

email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

																		`						
		Consigni	ng Office:	Chat	SW	<u>000</u>																		
CO	environments specialists in environmental, social and safety performance	Report R	tesults to:	Egn	ClV	J Wu		Mot	ile:		~				Em	ail:	edv	Λα	vd.		JU		@c	offey.com
	SOCIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	E Invoices	to: Ed	MON	V k	Vu		Pho	ne:						Em	ail:	edi	Wc	ivd_		jU		@c	offey.com
Project	NO: ENAUKHODO446344 1934 NO:												Ana	lysis			Secti							***************************************
Project	Name: Brickworks Prospect Laborator	: Euro	fins.	MGT								/	$\overline{/}$	Ζ,	7)	7	7/		7	$\overline{}$	$ \mathcal{I} $	$\overline{/}$	//	
Sample	's Name: Priya Dass Project Ma	nager: 🕞	hward	d Wu	1	£							3/	/_	/,	//	//	//	//	//	//			
Special	Instructions: hetals to = As (d)	. <del></del> (ii ,	Pb N.	Zn. (	<u>+9</u> ,	Ti.co		_		1	$\langle \lambda \rangle$	( <del>6)</del>		$\mathbb{Z}_{7}$	/,	//	//	/,	//	//	//			
			•					_	. /	30	%.	\\\\\		K	/	/,	//	/,	//	//	//			
		Sample		Matr		Container Type 8		$\Box$	\n^n	Y/5	Y y	%)		/	/	/.	//	/	//	//	/ [	NI	OTES	7
Lab No.	Sample ID	Date	Time	(50ile	eccj	Preservative*	(specify)	<del>-/</del> /	4	_	Ζ.,	{-{		_/_	_/_	_/_		-/-		_	L			
	BH36 (0.4-0.5m)		******	ļ <u> </u>			Western V							_ _	- -	-		-	-	-	h		<del></del>	
	BH37 (0.0-0.2M)	21/2/13					4day	_/_		]						-	_	_	-					~
<u> </u>	BH37 (0.4-0.5M)							_	<u> </u>				_			-	.  <u></u>	-	_	-				
	BH38 (0.0-0.2m)			-			-ll	- -	]_	_	_	4	_	_ _	_ _	-	_	-			···			
	BH38 (0.4-0.5m)						_  _	_ _		_	_		-	_	_	J		-	[	<u> </u>				
ļ	BH39 (0.0-0.2 M)		*****				.  <i> </i>	_ _					/2			_E	ı viroi	4						·- ·
	BH39 (0.4-0.5M)	_[					-l{	- ,		-	_		εn	IRDU		Chats	1 NEO	A A	hiey : W 200 10 620	t				
]	BH40 (0.0-0.2M)	_					-	- -								P	h (02	99	10 620	<b>1</b> 0				·····
	BH40 (0.4-0.5m)	V_				V		-	ļ				Job	_!-		_	98	-	.	<u> </u>				
	DUPI	18/2/13				1x 50 ml dace		1	ļ	<u> </u>			Date Time	Fee	ze ve	d 2	4/2	123		ļ				
1	DUPIA	_ _ _				751 -	-	-	<u> </u>				Rece	Re	eive	<b>d</b>	(K )	42	-	San	ul t	o Ev	lovivol	<u>als</u>
	DUP2_			-		ļ	-	- -	_	111			Tem	p. C	OKA	mble	<del>-</del>			ļ		<del></del>		
<del></del> -	DUP3	19/2/13					-	-1-	<u> </u>	_	_		Tem Cool	ina:		P Del	¥	-	-	-				
2	DUPBA						-	- -	/				Sec	unty:	(Tue	Bre	ken/	Non	<u>e</u>	250	id to	p Ev	vivola	<u> 10</u>
	DUPH						-		ļ									_	-	-				
	DUP5			-				- -						-	-	-	-		-	<u> </u>	<u> </u>			<del></del>
3	DUPSA	<u> </u>	·····	<del>   .</del>		<del>                                     </del>	<u> </u>	-	/	<u> </u>				- -	-	-	-	_ _	┼	Sec	<u> </u>	D F	บพ่อโ	aρ
	DUPG	20/2/13		I V		V	<u>i</u>	<u> </u>	<u></u>					+		1	<u> </u>	1						
	RELINQUISHED BY					RE	CEIVED BY				,			_ Sa	mple	Rece	ipt Ad	lvice	: (Lab	Use C	)nly)			
	Priya Doss Date: 21/2/13	7	Name:	Sh	-						121									l Condl				
	nvironments Time: 1.30 p.m.			ny: h	بِبّ	- -					}~ /	<u> </u>	•	-					•	er Or <b>d</b> e	er			
	Sean. D. Date: 26/2	=	- [	Otonie	χĮ	end					113								erly Cì	hilled				
Compan	v: Evofin) agt Time: 1200		Compar	iγ: <i>6</i> 1				Time	: (1	٠ ५	7			La	b. Ref	/Batc	h No.							
	ner Type & Preservation Codes: P - Plastic, G- Glass Bo						reserved, C	- Hydro	chlor	ic Aci	d Pres	erve	i,					ĺ						
ندره ما	huvia Aaid Dessanied I. Jea. CT. Codium Thiosulfata	un No Droc	anustius A	D - Othor I	Bracas	mentivo								- 1				Ł.,						

					cut 1	<del></del>																		
	ttov 🎝	environments	Consigni	ing Office:	Chatsu	1000															<del></del>			
CO	niey •	environments specialists in environmental, social and safety performance	Report R	Results to:	Edwa	va wu		Mob												$\mathcal{W}_{\mathcal{U}}$			@coffe	ey.com
		SOCIAL AND SAFETY PERFORMANCE	Invoices	to: 🗀	Mara n	JU.		Phor	ne:										<u>d_</u>	Wu			@coffe	ey.com
Project	NO: EMAUR	HODO4463AA Task No:						<u></u>					Ana	lysis	Requ	est S	ectio	n	,,					
Project	Name: Bricky	vovks Prospect Laboratory:	Euro	HUS M	IGT						,	Ζ,	//	//					/	//	//	//.		
Sample	r's Name: Pri	ra Dass Project Man	ager: 🕞	ymard	Wu						Χ	%	<del>y</del> //	6/	//	//	/		/	/,	//	//		
Special	Instructions: Me	tals 10 = As, Cd, Cr, C	w, Pb.	NI, 2	in, Hg.	Ti, Co	······································			$/\langle$	5/4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/3	/2/	//	//	//	//	/	/,	//			
ļ			1			10		l	1	XX.	$\mathcal{S}_{0}$			Ñ/	//	//	//	/	/	Ζ.				
Lab No.	S	ample iD	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)		<b>1</b>	//	/ 3	9	Trist	//	//	//	//			//		NOT	ES	]
	DO	P7					S															4		
나	<i>D0</i>	P7A					4 day	/												Serre	d to	En	المحتد	<u> </u>
	DU	P8	V												1					***************************************				a
<del></del>	DU	69	21/2/13																	<u>_</u> _	******			
5	00	AP9			$\forall$	V														Send	to	Enu	۱ ۵۰۰	طاف
	RB	1	19/2/13		Water	12 Aurber, 2xvial																		
	RB:	2	20/2/13		<u> </u>	14 HOSTIC HHOS								_										
	RB?	3	21213			i V		_	/	_	_			_ _		<u> </u>								
	TB		18/2/13		Soil	2x1254/glass										<u>                                      </u>								
	TS		V			jar							ļ_		_[	ļ								
	ΤΒ		19/2/13									.			_			_						
	2T	<u>Z</u>										. <b>.</b>		_	_									
	# TB	3	20/2/13																		***********			
	TS	3	-	<del> </del>	Y			ļ	_						_	:						<u></u>		
	S∈		21/3)13			1×250MGJ	<del></del>	_			4				_									
	SE	D2 D3	.		<u> </u>																			
	and the second second				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\lor$		_								ļi				<del></del>				
	W				Water	11 Ambert 2V+					J			-	<u></u>									
		RELINQUISHED BY				KEC	EIVED BY				····,			_						Use Onl			_	
Name:	Priya Dass	S Date: 21/2/13	7	Name:	She				: 2			•			•					Conditio	on			
	nvironments	Time: 1:30 p.iM.			iv: maj f			Time Date	: .		507	<u>ب</u> سر	•	-						Order				İ
	Sea.o.	Date: 26/2	7		Daniel 1	id												roperi	ly Chi	iled		1		1
Compar	iv: Evofini M	15t Time: (:00		Compar	iy: ELS			Time	( )	4 ب	0			– Lab	ı. Ref/	Batch	No.							
		vation Codes: P - Plastic, G- Glass Bott					eserved, C - I	Hydro	chlori	c Acid	d Pres	erved	i,											



email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd Sydney | ABN 37 112 535 645

161686

CERTIFICATE OF ANALYSIS

Client:

**DLA Environmental Services Pty Ltd** 

Unit 3, 38 Leighton PI Hornsby NSW 2077

Attention: Jack

Sample log in details:

Your Reference: DL4032, Prospect

No. of samples: 74 soils

Date samples received / completed instructions received 10/02/17 / 10/02/17

This report replaces the R00 due to addition of results for samples#71-74.

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 17/02/17 / 28/02/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing Tests not covered by NATA are denoted with *.

## **Results Approved By:**

General Manager



vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-1	161686-2	161686-3	161686-4	161686-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Double	-	0.5.0.0	4000	0.5.0.0	4000	0.5.0.0
Depth Data Sampled		0.5-0.6 8/02/2017	1.9-2.0 8/02/2017	0.5-0.6 8/02/2017	1.9-2.0 8/02/2017	0.5-0.6 8/02/2017
Date Sampled Type of sample		8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	97	104	93	111	106

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-6	161686-7	161686-8	161686-9	161686-10
Your Reference		BH3	BH4	BH4	BH4	HA5
Depth		1.9-2.0	0.5-0.6	1.9-2.0	5.9-6.0	0.2-0.3
Date Sampled		8/02/2017 Soil	7/02/2017 Soil	7/02/2017 Soil	7/02/2017 Soil	9/02/2017 Soil
Type of sample		3011	3011	5011	5011	SOII
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	102	99	96	110	108

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-11	161686-12	161686-13	161686-14	161686-15
Your Reference		HA5	BH6	BH6	BH7	BH7
	-					
Depth		0.4-0.5	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled Type of sample		9/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Type of sample		3011	3011	Sul	3011	3011
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 lessBTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	100	106	97	95

vTRH(C6-C10)/BTEXNinSoil Our Reference: Your Reference	UNITS	161686-16 BH8	161686-17 BH8	161686-18 BH9	161686-19 BH9	161686-20 BH10
Depth Date Sampled Type of sample		0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	113	108	101	104

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-21	161686-22	161686-23	161686-24	161686-25
Your Reference		BH10	BH11	BH11	BH12	BH12
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled		8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Type of sample		5011	3011	SOII	5011	5011
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	90	95	94	98	99

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-26	161686-27	161686-28	161686-29	161686-30
Your Reference		BH13	BH13	BH13	BH14	BH14
5	-	0.5.0.0	0.5.0.0		0.5.0.0	4000
Depth Depth		0.5-0.6	2.5-2.6	7.4-7.5	0.5-0.6	1.9-2.0
Date Sampled Type of sample		7/02/2017 Soil	7/02/2017 Soil	7/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	94	94	97	100	97

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-31	161686-32	161686-33	161686-34	161686-35
Your Reference		HA15	HA15	BH16	BH16	BH17
	-					
Depth		0-0.2	0.2-0.4	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	91	99	100	99	97

vTRH(C6-C10)/BTEXNinSoil Our Reference: Your Reference	UNITS	161686-36 BH17	161686-37 BH18	161686-38 BH18	161686-39 BH19	161686-40 BH19
Depth Date Sampled Type of sample		1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	92	99	101	95	94

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-41	161686-42	161686-43	161686-44	161686-45
Your Reference		HA20	HA20	BH21	BH21	BH22
Depth	-	0.2-0.3	0.5-0.6	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		9/02/2017	9/02/2017	8/02/2017	8/02/2017	7/02/2017
Type of sample		9/02/2017 Soil	9/02/2017 Soil	Soil	Soil	Soil
,						
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	15/02/2017	15/02/2017	15/02/2017	15/02/2017	15/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	89	89	99	89	97

vTRH(C6-C10)/BTEXNinSoil Our Reference: Your Reference	UNITS	161686-46 BH22	161686-47 HA23	161686-48 HA23	161686-49 BH24	161686-50 BH24
Depth Date Sampled Type of sample		1.9-2.0 7/02/2017 Soil	0.1-0.2 9/02/2017 Soil	0.2-0.3 9/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	15/02/2017	15/02/2017	15/02/2017	15/02/2017	15/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	94	80	82	93	85

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-51	161686-52	161686-53	161686-54	161686-55
Your Reference		BH25	BH25	BH26	BH26	BH27
	-					
Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	7/02/2017	7/02/2017	7/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	15/02/2017	15/02/2017	15/02/2017	15/02/2017	15/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	80	99	106	87	84

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-56	161686-57	161686-58	161686-59	161686-60
Your Reference		BH27	BH28	BH28	BH29	BH29
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled Type of sample		7/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Type of sample		3011	3011	3011	3011	3011
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	15/02/2017	15/02/2017	15/02/2017	15/02/2017	15/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	85	99	101	85	87

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161686-61	161686-62	161686-63	161686-64	161686-65
Your Reference		BH30	BH30	BH31	BH31	BH32
	-					
Depth		0.5-0.6	5.9-6.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		7/02/2017	7/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	15/02/2017	15/02/2017	15/02/2017	15/02/2017	15/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	104	95	90	87

TDU/00 040//DTEVAL:- 0-:1	1					
vTRH(C6-C10)/BTEXN in Soil	LINITO	464606.66	464606 67	404000 00	464606 60	464606 70
Our Reference:	UNITS	161686-66	161686-67	161686-68	161686-69	161686-70
Your Reference		BH32	QC105	QC101	QC102	QC104
5	-	4000				
Depth		1.9-2.0	<del>-</del>	- 	<del>-</del>	-
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	15/02/2017	15/02/2017	15/02/2017	15/02/2017	15/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	86	101	96	101	97

vTRH(C6-C10)/BTEXN in Soil					
Our Reference:	UNITS	161686-71	161686-72	161686-73	161686-74
Your Reference		TS	ТВ	TS	ТВ
	-				
Depth		-	-	-	-
Date Sampled		7/02/2017	7/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	28/02/2017	28/02/2017	28/02/2017	28/02/2017
Date analysed	-	28/02/2017	28/02/2017	28/02/2017	28/02/2017
Benzene	mg/kg	100%	<0.2	105%	<0.2
Toluene	mg/kg	99%	<0.5	104%	<0.5
Ethylbenzene	mg/kg	96%	<1	102%	<1
m+p-xylene	mg/kg	95%	<2	101%	<2
o-Xylene	mg/kg	95%	<1	100%	<1
Total +ve Xylenes	mg/kg	[NA]	<1	[NA]	<1
naphthalene	mg/kg	[NA]	<1	[NA]	<1
Surrogate aaa-Trifluorotoluene	%	76	99	79	96

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-1	161686-2	161686-3	161686-4	161686-5
Your Reference		BH1	BH1	BH2	BH2	BH3
Depth Date Sampled Type of sample	-	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	95	91	86	85	85

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-6	161686-7	161686-8	161686-9	161686-10
Your Reference		BH3	BH4	BH4	BH4	HA5
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	5.9-6.0	0.2-0.3
Date Sampled		8/02/2017	7/02/2017	7/02/2017	7/02/2017	9/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	93	96	96	85	95

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-11	161686-12	161686-13	161686-14	161686-15
Your Reference		HA5	BH6	BH6	BH7	BH7
Depth Date Sampled Type of sample		0.4-0.5 9/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date extracted	_	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	95	93	94	93
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-16	161686-17	161686-18	161686-19	161686-20

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-16	161686-17	161686-18	161686-19	161686-20
Your Reference		BH8	BH8	BH9	ВН9	BH10
Depth Date Sampled Type of sample	-	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	85	92	94	94

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-21	161686-22	161686-23	161686-24	161686-25
Your Reference		BH10	BH11	BH11	BH12	BH12
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	97	91	93	94	100

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-26	161686-27	161686-28	161686-29	161686-30
Your Reference		BH13	BH13	BH13	BH14	BH14
Depth Date Sampled Type of sample	-	0.5-0.6 7/02/2017 Soil	2.5-2.6 7/02/2017 Soil	7.4-7.5 7/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	98	102	90	97	100

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-31	161686-32	161686-33	161686-34	161686-35
Your Reference		HA15	HA15	BH16	BH16	BH17
5 "	-	0.00	0.004	0.5.0.0	4000	0.5.0.0
Depth		0-0.2	0.2-0.4	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	120	110	<100	<100	<100
TRHC29 - C36	mg/kg	320	370	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	310	330	<100	<100	<100
TRH>C34-C40	mg/kg	320	410	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	630	740	<50	<50	<50
Surrogate o-Terphenyl	%	98	99	101	90	90

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-36	161686-37	161686-38	161686-39	161686-40
Your Reference		BH17	BH18	BH18	BH19	BH19
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	95	103	90	88	90

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-41	161686-42	161686-43	161686-44	161686-45
Your Reference		HA20	HA20	BH21	BH21	BH22
	-					
Depth		0.2-0.3	0.5-0.6	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		9/02/2017	9/02/2017	8/02/2017	8/02/2017	7/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	105	94	96	102

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-46	161686-47	161686-48	161686-49	161686-50
Your Reference		BH22	HA23	HA23	BH24	BH24
Depth Date Sampled Type of sample	-	1.9-2.0 7/02/2017 Soil	0.1-0.2 9/02/2017 Soil	0.2-0.3 9/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	102	106	98	102	91

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-51	161686-52	161686-53	161686-54	161686-55
Your Reference		BH25	BH25	BH26	BH26	BH27
	-					
Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	7/02/2017	7/02/2017	7/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	101	92	100	100	103

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-56	161686-57	161686-58	161686-59	161686-60
Your Reference		BH27	BH28	BH28	BH29	BH29
Depth Date Sampled Type of sample	-	1.9-2.0 7/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	91	101	92	96	100

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-61	161686-62	161686-63	161686-64	161686-65
Your Reference		BH30	BH30	BH31	BH31	BH32
<b>5</b>	-	0.5.0.0	5000	0.5.0.0	4000	0.5.0.0
Depth		0.5-0.6	5.9-6.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		7/02/2017	7/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	104	98	101	99

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161686-66	161686-67	161686-68	161686-69	161686-70
Your Reference		BH32	QC105	QC101	QC102	QC104
Depth Date Sampled Type of sample	-	1.9-2.0 8/02/2017 Soil	- 8/02/2017 Soil	- 8/02/2017 Soil	- 8/02/2017 Soil	- 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	97	101	93	103	99

PAHs in Soil						
Our Reference:	UNITS	161686-1	161686-2	161686-3	161686-4	161686-5
Your Reference		BH1	BH1	BH2	BH2	BH3
	-					
Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled Type of sample		8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	86	90	81	82	88

PAHs in Soil						
Our Reference:	UNITS	161686-6	161686-7	161686-8	161686-9	161686-10
Your Reference		BH3	BH4	BH4	BH4	HA5
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	5.9-6.0	0.2-0.3
Date Sampled Type of sample		8/02/2017 Soil	7/02/2017 Soil	7/02/2017 Soil	7/02/2017 Soil	9/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	91	83	85	87	82

PAHs in Soil						
Our Reference:	UNITS	161686-11	161686-12	161686-13	161686-14	161686-15
Your Reference		HA5	BH6	BH6	BH7	BH7
	-					
Depth		0.4-0.5	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled Type of sample		9/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	84	82	88	85	82

PAHs in Soil						
Our Reference:	UNITS	161686-16	161686-17	161686-18	161686-19	161686-20
Your Reference		BH8	BH8	BH9	BH9	BH10
	-					
Depth Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled Type of sample		8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	88	84	82	81	79

PAHs in Soil						
Our Reference:	UNITS	161686-21	161686-22	161686-23	161686-24	161686-25
Your Reference		BH10	BH11	BH11	BH12	BH12
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled Type of sample		8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	83	87	86	85	75

PAHs in Soil						
Our Reference:	UNITS	161686-26	161686-27	161686-28	161686-29	161686-30
Your Reference		BH13	BH13	BH13	BH14	BH14
	-					
Depth		0.5-0.6	2.5-2.6	7.4-7.5	0.5-0.6	1.9-2.0
Date Sampled		7/02/2017	7/02/2017	7/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	81	91	83	82	82

PAHs in Soil						
Our Reference:	UNITS	161686-31	161686-32	161686-33	161686-34	161686-35
Your Reference		HA15	HA15	BH16	BH16	BH17
	-					
Depth		0-0.2	0.2-0.4	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.4	0.4	0.2	0.1	<0.1
Anthracene	mg/kg	0.2	0.2	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1.3	1.2	<0.1	<0.1	<0.1
Pyrene	mg/kg	1.4	1.4	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.8	0.7	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.6	0.8	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	1	2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.78	0.94	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	0.6	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.8	0.9	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.3	1.2	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.3	1.2	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.3	1.2	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	8.5	8.8	0.2	0.1	<0.05
Surrogate p-Terphenyl-d14	%	104	82	78	85	82

PAHs in Soil						
Our Reference:	UNITS	161686-36	161686-37	161686-38	161686-39	161686-40
Your Reference		BH17	BH18	BH18	BH19	BH19
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled Type of sample		8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	86	81	77	83	89

PAHs in Soil						
Our Reference:	UNITS	161686-41	161686-42	161686-43	161686-44	161686-45
Your Reference		HA20	HA20	BH21	BH21	BH22
	-					
Depth		0.2-0.3	0.5-0.6	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled Type of sample		9/02/2017 Soil	9/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	7/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total+vePAH's	mg/kg	0.1	0.1	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	80	90	84	87	86

PAHs in Soil						
Our Reference:	UNITS	161686-46	161686-47	161686-48	161686-49	161686-50
Your Reference		BH22	HA23	HA23	BH24	BH24
	-					
Depth		1.9-2.0	0.1-0.2	0.2-0.3	0.5-0.6	1.9-2.0
Date Sampled Type of sample		7/02/2017 Soil	9/02/2017 Soil	9/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	// ///////////////////////////////////	83	87	81	83	81
Surrogate p-Terphenyi-u14	/0	UJ	UI	U I	UJ	U I

PAHs in Soil						
Our Reference:	UNITS	161686-51	161686-52	161686-53	161686-54	161686-55
Your Reference		BH25	BH25	BH26	BH26	BH27
	-					
Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	7/02/2017	7/02/2017	7/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	88	85	87	79	86

PAHs in Soil						
Our Reference:	UNITS	161686-56	161686-57	161686-58	161686-59	161686-60
Your Reference		BH27	BH28	BH28	BH29	BH29
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled		7/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.5	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	81	87	80	94	93
Surrogate p-Terprienyi-014	70	01	O1	00	<del>3 1</del>	90

PAHs in Soil						
Our Reference:	UNITS	161686-61	161686-62	161686-63	161686-64	161686-65
Your Reference		BH30	BH30	BH31	BH31	BH32
	-					
Depth		0.5-0.6	5.9-6.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled Type of sample		7/02/2017 Soil	7/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	86	92	83	87	90

PAHs in Soil						
Our Reference:	UNITS	161686-66	161686-67	161686-68	161686-69	161686-70
Your Reference		BH32	QC105	QC101	QC102	QC104
	-					
Depth		1.9-2.0	-	-	-	-
Date Sampled Type of sample		8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.09	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	1.1	<0.05
Surrogate p-Terphenyl-d14	%	89	84	86	88	87

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161686-1	161686-3	161686-5	161686-7	161686-10
Your Reference		BH1	BH2	BH3	BH4	HA5
Depth	-	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.2-0.3
Date Sampled		8/02/2017	8/02/2017	8/02/2017	7/02/2017	9/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	96	99	99	101

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161686-12	161686-14	161686-16	161686-18	161686-20
Your Reference		BH6	BH7	BH8	BH9	BH10
Depth	-	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	99	99	96	103

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161686-22	161686-24	161686-26	161686-29	161686-31
Your Reference		BH11	BH12	BH13	BH14	HA15
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0-0.2
Date Sampled		8/02/2017	8/02/2017	7/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	97	104	108	102

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161686-33	161686-35	161686-37	161686-39	161686-41
Your Reference		BH16	BH17	BH18	BH19	HA20
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.2-0.3
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	9/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	113	105	101	105

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161686-43	161686-45	161686-47	161686-49	161686-51
Your Reference		BH21	BH22	HA23	BH24	BH25
	-					
Depth Depth		0.5-0.6	0.5-0.6	0.1-0.2	0.5-0.6	0.5-0.6
Date Sampled Type of sample		8/02/2017 Soil	7/02/2017 Soil	9/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil
, , , , , , , , , , , , , , , , , , ,						
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor		<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1		<0.1
	mg/kg	_	_	_	<0.1	_
Surrogate TCMX	%	105	103	101	104	102

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161686-53	161686-55	161686-57	161686-59	161686-61
Your Reference		BH26	BH27	BH28	BH29	BH30
	-					
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6
Date Sampled Type of sample		7/02/2017 Soil	7/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	7/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	gg %	115	108	107	105	103

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161686-63	161686-65	161686-67	161686-69	161686-70
Your Reference		BH31	BH32	QC105	QC102	QC104
Depth	-	0.5-0.6	0.5-0.6	-	_	
Date Sampled		8/02/2017	8/02/2017	- 8/02/2017	- 8/02/2017	- 8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	104	111	105	105

	1					
Organophosphorus Pesticides						
Our Reference:	UNITS	161686-1	161686-3	161686-5	161686-7	161686-10
Your Reference		BH1	BH2	BH3	BH4	HA5
5	-	0.5.0.0	0.5.0.0	0.5.0.0	0.5.0.0	
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.2-0.3
Date Sampled		8/02/2017	8/02/2017	8/02/2017	7/02/2017	9/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	96	99	99	101

Organophosphorus Pesticides Our Reference: Your Reference	UNITS	161686-12 BH6	161686-14 BH7	161686-16 BH8	161686-18 BH9	161686-20 BH10
Depth Date Sampled Type of sample		0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	99	99	96	103

Our an amh a mh am ia Daotiaidea	1					
Organophosphorus Pesticides Our Reference:	UNITS	161686-22	161686-24	161686-26	161686-29	161686-31
Your Reference	UNITS	BH11	BH12	BH13	BH14	HA15
four Reference		ВΠΙΙ	БПІ	рпіз	БП14	ПАТЭ
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0-0.2
Date Sampled		8/02/2017	8/02/2017	7/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	97	104	108	102

Organophosphorus Pesticides Our Reference: Your Reference	UNITS	161686-33 BH16	161686-35 BH17	161686-37 BH18	161686-39 BH19	161686-41 HA20
Depth Date Sampled Type of sample		0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0.2-0.3 9/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	113	105	101	105

Organophosphorus Pesticides	LINITTO	101000 10	101000 15	101000 17	101000 10	101000 51
Our Reference:	UNITS	161686-43	161686-45	161686-47	161686-49	161686-51
Your Reference	_	BH21	BH22	HA23	BH24	BH25
Depth		0.5-0.6	0.5-0.6	0.1-0.2	0.5-0.6	0.5-0.6
Date Sampled		8/02/2017	7/02/2017	9/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	103	101	104	102

Organophosphorus Pesticides						
Our Reference:	UNITS	161686-53	161686-55	161686-57	161686-59	161686-61
Your Reference		BH26	BH27	BH28	BH29	BH30
Doub	-	0.5.0.0	0.5.0.0	0.5.0.0	0.5.0.0	0.5.0.0
Depth Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6
Date Sampled Type of sample		7/02/2017 Soil	7/02/2017 Soil	8/02/2017 Soil	8/02/2017 Soil	7/02/2017 Soil
туре от заптріе		3011	3011	3011	3011	
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	115	108	107	105	103

Organophosphorus Pesticides						
Our Reference:	UNITS	161686-63	161686-65	161686-67	161686-69	161686-70
Your Reference		BH31	BH32	QC105	QC102	QC104
Depth Date Sampled	-	0.5-0.6 8/02/2017	0.5-0.6 8/02/2017	- 8/02/2017	- 8/02/2017	- 8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	104	111	105	105

	_				•	
PCBs in Soil						
Our Reference:	UNITS	161686-1	161686-3	161686-5	161686-7	161686-10
Your Reference		BH1	BH2	BH3	BH4	HA5
	-					
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.2-0.3
Date Sampled		8/02/2017	8/02/2017	8/02/2017	7/02/2017	9/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	106	96	99	99	101
PCBs in Soil						
Our Reference:	UNITS	161686-12	161686-14	161686-16	161686-18	161686-20
V D (		DI IO	D. 17	B. 10	D. 10	51140

PCBs in Soil						
Our Reference:	UNITS	161686-12	161686-14	161686-16	161686-18	161686-20
Your Reference		BH6	BH7	BH8	BH9	BH10
	-					
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	97	99	99	96	103

PCBs in Soil						
Our Reference:	UNITS	161686-22	161686-24	161686-26	161686-29	161686-31
Your Reference		BH11	BH12	BH13	BH14	HA15
Depth Date Sampled Type of sample		0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0.5-0.6 7/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0-0.2 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	95	97	104	108	102

PCBs in Soil						
Our Reference:	UNITS	161686-33	161686-35	161686-37	161686-39	161686-41
Your Reference		BH16	BH17	BH18	BH19	HA20
	-					
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.2-0.3
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	9/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	104	113	105	101	105

PCBs in Soil	LINITO	404000 40	404000 45	101000 17	404000 40	101000 51
Our Reference:	UNITS	161686-43	161686-45	161686-47	161686-49	161686-51
Your Reference		BH21	BH22	HA23	BH24	BH25
Depth Date Sampled Type of sample		0.5-0.6 8/02/2017 Soil	0.5-0.6 7/02/2017 Soil	0.1-0.2 9/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	105	103	101	104	102

PCBs in Soil						
Our Reference:	UNITS	161686-53	161686-55	161686-57	161686-59	161686-61
Your Reference		BH26	BH27	BH28	BH29	BH30
	-					
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6
Date Sampled		7/02/2017	7/02/2017	8/02/2017	8/02/2017	7/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	115	108	107	105	103

PCBs in Soil						
Our Reference:	UNITS	161686-63	161686-65	161686-67	161686-69	161686-70
Your Reference		BH31	BH32	QC105	QC102	QC104
Depth Date Sampled Type of sample	-	0.5-0.6 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	- 8/02/2017 Soil	- 8/02/2017 Soil	- 8/02/2017 Soil
Date extracted	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	103	104	111	105	105

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-1	161686-2	161686-3	161686-4	161686-5
Your Reference		BH1	BH1	BH2	BH2	BH3
	-					
Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	18	4	7	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	200	15	46	13	130
Copper	mg/kg	24	84	41	32	38
Lead	mg/kg	12	19	12	13	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	81	22	130	17	140
Zinc	mg/kg	26	60	37	48	45

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-6	161686-7	161686-8	161686-9	161686-10
Your Reference		BH3	BH4	BH4	BH4	HA5
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	5.9-6.0	0.2-0.3
Date Sampled		8/02/2017	7/02/2017	7/02/2017	7/02/2017	9/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	<4	<4	9	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	29	12	53	9	24
Copper	mg/kg	19	67	14	39	30
Lead	mg/kg	13	4	8	15	16
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	58	56	52	15	33
Zinc	mg/kg	56	33	21	55	58

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-11	161686-12	161686-13	161686-14	161686-15
Your Reference		HA5	BH6	BH6	BH7	BH7
Depth Date Sampled Type of sample	-	0.4-0.5 9/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	5	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	25	67	46	20	50
Copper	mg/kg	35	48	39	16	37
Lead	mg/kg	15	10	10	15	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	44	69	61	22	110
Zinc	mg/kg	59	45	47	17	48

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-16	161686-17	161686-18	161686-19	161686-20
Your Reference		BH8	BH8	ВН9	BH9	BH10
	-					
Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	70	76	46	57	19
Copper	mg/kg	44	45	17	40	130
Lead	mg/kg	4	4	4	4	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	240	250	74	280	35
Zinc	mg/kg	56	57	26	54	61

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-21	161686-22	161686-23	161686-24	161686-25
Your Reference		BH10	BH11	BH11	BH12	BH12
Depth Date Sampled Type of sample	-	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	220	7	140	25	12
Copper	mg/kg	42	62	43	39	24
Lead	mg/kg	4	5	4	17	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	220	5	120	69	19
Zinc	mg/kg	57	18	38	130	49

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-26	161686-27	161686-28	161686-29	161686-30
Your Reference		BH13	BH13	BH13	BH14	BH14
	-					
Depth		0.5-0.6	2.5-2.6	7.4-7.5	0.5-0.6	1.9-2.0
Date Sampled		7/02/2017	7/02/2017	7/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	<4	6	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	62	19	9	58	53
Copper	mg/kg	45	36	43	46	40
Lead	mg/kg	4	16	17	3	3
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	160	45	20	310	360
Zinc	mg/kg	45	82	62	54	47

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-31	161686-32	161686-33	161686-34	161686-35
Your Reference		HA15	HA15	BH16	BH16	BH17
	-					
Depth		0-0.2	0.2-0.4	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	<4	7	4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	10	15	21	290
Copper	mg/kg	47	40	44	44	31
Lead	mg/kg	21	28	13	18	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	22	25	28	28	240
Zinc	mg/kg	42	40	53	55	45

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-36	161686-37	161686-38	161686-39	161686-40
Your Reference		BH17	BH18	BH18	BH19	BH19
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	4	5	<4	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	1
Chromium	mg/kg	230	11	12	38	9
Copper	mg/kg	48	36	37	37	33
Lead	mg/kg	5	15	14	9	16
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	250	31	32	56	260
Zinc	mg/kg	59	62	58	41	200

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-41	161686-42	161686-43	161686-44	161686-45
Your Reference		HA20	HA20	BH21	BH21	BH22
Depth Date Sampled Type of sample	-	0.2-0.3 9/02/2017 Soil	0.5-0.6 9/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 7/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	7	5	19	7	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	19	21	14	13	14
Copper	mg/kg	43	44	34	28	22
Lead	mg/kg	19	16	18	14	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	39	42	23	23	9
Zinc	mg/kg	79	68	63	61	16

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-46	161686-47	161686-48	161686-49	161686-50
Your Reference		BH22	HA23	HA23	BH24	BH24
	-					
Depth		1.9-2.0	0.1-0.2	0.2-0.3	0.5-0.6	1.9-2.0
Date Sampled		7/02/2017	9/02/2017	9/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	<4	<4	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	100	160	190	17	74
Copper	mg/kg	22	25	26	42	38
Lead	mg/kg	6	17	11	13	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	65	65	110	29	80
Zinc	mg/kg	22	34	29	47	55

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-51	161686-52	161686-53	161686-54	161686-55
Your Reference		BH25	BH25	BH26	BH26	BH27
	-					
Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	7/02/2017	7/02/2017	7/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	5	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	12	60	19	160
Copper	mg/kg	57	21	34	18	18
Lead	mg/kg	11	15	11	16	16
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	49	9	62	10	48
Zinc	mg/kg	58	25	39	16	25

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-56	161686-57	161686-58	161686-59	161686-60
Your Reference		BH27	BH28	BH28	BH29	BH29
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled		7/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	110	31	12	100	160
Copper	mg/kg	52	57	22	43	37
Lead	mg/kg	14	11	8	5	5
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	56	68	9	270	130
Zinc	mg/kg	59	35	15	60	33

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-61	161686-62	161686-63	161686-64	161686-65
Your Reference		BH30	BH30	BH31	BH31	BH32
	-					
Depth		0.5-0.6	5.9-6.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		7/02/2017	7/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	130	10	19	7
Copper	mg/kg	16	26	36	34	22
Lead	mg/kg	4	9	6	18	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	59	12	25	4
Zinc	mg/kg	14	62	19	70	13

Acid Extractable metals in soil						
Our Reference:	UNITS	161686-66	161686-67	161686-68	161686-69	161686-70
Your Reference		BH32	QC105	QC101	QC102	QC104
	-					
Depth		1.9-2.0	-	-	-	-
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	200	29	33	57	46
Copper	mg/kg	34	24	35	37	32
Lead	mg/kg	4	14	14	12	19
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	140	35	52	65	41
Zinc	mg/kg	35	22	69	44	41

	Giloni	Reference.	DL4032, P105p			
Moisture Our Reference: Your Reference	UNITS	161686-1 BH1	161686-2 BH1	161686-3 BH2	161686-4 BH2	161686-5 BH3
Depth Date Sampled Type of sample		0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	21	12	23	12	25
Majatura				1	T	<u> </u>
Moisture Our Reference: Your Reference	UNITS	161686-6 BH3	161686-7 BH4	161686-8 BH4	161686-9 BH4	161686-10 HA5
Depth Date Sampled Type of sample		1.9-2.0 8/02/2017 Soil	0.5-0.6 7/02/2017 Soil	1.9-2.0 7/02/2017 Soil	5.9-6.0 7/02/2017 Soil	0.2-0.3 9/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	28	8.6	27	12	12
Moisture						
Our Reference: Your Reference	UNITS 	161686-11 HA5	161686-12 BH6	161686-13 BH6	161686-14 BH7	161686-15 BH7
Depth Date Sampled Type of sample		0.4-0.5 9/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	8.9	14	11	17	15
Moisture Our Reference: Your Reference	UNITS	161686-16 BH8	161686-17 BH8	161686-18 BH9	161686-19 BH9	161686-20 BH10
Depth Date Sampled Type of sample		0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	12	8.5	14	13	20

	Giloni	Reference.	DL4032, P105p			
Moisture Our Reference: Your Reference	UNITS	161686-21 BH10	161686-22 BH11	161686-23 BH11	161686-24 BH12	161686-25 BH12
Depth Date Sampled Type of sample		1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	23	14	23	11	5.8
Moisture						
Our Reference: Your Reference	UNITS	161686-26 BH13	161686-27 BH13	161686-28 BH13	161686-29 BH14	161686-30 BH14
Depth Date Sampled Type of sample		0.5-0.6 7/02/2017 Soil	2.5-2.6 7/02/2017 Soil	7.4-7.5 7/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	17	17	6.7	14	16
Moisture Our Reference: Your Reference	UNITS	161686-31 HA15	161686-32 HA15	161686-33 BH16	161686-34 BH16	161686-35 BH17
Depth Date Sampled Type of sample		0-0.2 8/02/2017 Soil	0.2-0.4 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	9.4	12	6.7	6.7	30
Moisture Our Reference: Your Reference	UNITS	161686-36 BH17	161686-37 BH18	161686-38 BH18	161686-39 BH19	161686-40 BH19
Depth Date Sampled Type of sample		1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil	0.5-0.6 8/02/2017 Soil	1.9-2.0 8/02/2017 Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	27	6.1	5.2	17	22

Moisture						
Our Reference:	UNITS	161686-41	161686-42	161686-43	161686-44	161686-4
Your Reference		HA20	HA20	BH21	BH21	BH22
rodi relorende	_	11/120	1 11 120	Di IZ I	Di IZ I	DI IZZ
Depth		0.2-0.3	0.5-0.6	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		9/02/2017	9/02/2017	8/02/2017	8/02/2017	7/02/201
Type of sample		Soil	Soil	Soil	Soil	Soil
			3011	3011	3011	3011
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/201
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/201
Moisture	%	14	14	7.3	8.1	15
Moisture						
Our Reference:	UNITS	161686-46	161686-47	161686-48	161686-49	161686-5
Your Reference		BH22	HA23	HA23	BH24	BH24
	-					
Depth		1.9-2.0	0.1-0.2	0.2-0.3	0.5-0.6	1.9-2.0
Date Sampled		7/02/2017	9/02/2017	9/02/2017	8/02/2017	8/02/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/201
Date analysed	_	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/201
Moisture	%	17	19	21	17	23
เขเบเจเนเ ธ	/0	11	13		17	
Moisture						
Our Reference:	UNITS	161686-51	161686-52	161686-53	161686-54	161686-5
Your Reference	014110	BH25	BH25	BH26	BH26	BH27
Tour Neierence		DI 120	טוזבט	טברום	טוזעט	DUST
Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	7/02/2017	7/02/2017	7/02/201
-		8/02/2017 Soil	8/02/2017 Soil	7/02/2017 Soil	7/02/2017 Soil	7/02/201 Soil
Type of sample		JUII	JUII	3011	3011	3011
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/201
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/201
Moisture	%	11	14	7.6	18	15
Moisture						
Our Reference:	UNITS	161686-56	161686-57	161686-58	161686-59	161686-6
Your Reference		BH27	BH28	BH28	BH29	BH29
	-					
Depth		1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0
Date Sampled		7/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/201
Date analysed	_	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/201
Moisture	0/					
ivioisture	%	24	13	19	18	28

	_			T	T	
Moisture						
Our Reference:	UNITS	161686-61	161686-62	161686-63	161686-64	161686-65
Your Reference		BH30	BH30	BH31	BH31	BH32
	-					
Depth		0.5-0.6	5.9-6.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		7/02/2017	7/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	11	22	16	8.1	16
			T	T	T	T
Moisture						
Our Reference:	UNITS	161686-66	161686-67	161686-68	161686-69	161686-70
Your Reference		BH32	QC105	QC101	QC102	QC104
	-					
Depth		1.9-2.0	-	-	-	-
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/02/2017	13/02/2017	13/02/2017	13/02/2017	13/02/2017
Date analysed	-	14/02/2017	14/02/2017	14/02/2017	14/02/2017	14/02/2017
Moisture	%	24	17	17	10	[NT]

Envirolab Reference: 161686 Revision No: R 01 Page 56 of 91

	Olioni	Reference.	DL4032, F105p			
Asbestos ID - soils						
Our Reference:	UNITS	161686-1	161686-3	161686-5	161686-7	161686-10
Your Reference		BH1	BH2	BH3	BH4	HA5
Depth	-	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.2-0.3
Date Sampled		8/02/2017	8/02/2017	8/02/2017	7/02/2017	9/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/02/2017	16/02/2017	16/02/2017	16/02/2017	16/02/2017
Sample mass tested	g	Approx. 40g	Approx. 35g	Approx. 35g	Approx. 60g	Approx. 40g
Sample Description	-	Brown coarse-	Brown coarse-	Brown coarse-	Brown coarse-	Brown coarse-
		grained soil &	grained soil &	grained soil &	grained soil &	grained soil &
		rocks	rocks	rocks	rocks	rocks
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected at	detected at	detected at	detected at	detected at
		reporting limit of 0.1g/kg	reporting limit of 0.1g/kg	reporting limit of 0.1g/kg	reporting limit of 0.1g/kg	reporting limit of 0.1g/kg
		Organic fibres	Organic fibres	Organic fibres	Organic fibres	Organic fibres
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected	detected	detected	detected	detected
Ashastas ID sails						
Asbestos ID - soils Our Reference:	UNITS	161686-12	161686-16	161686-18	161686-20	161686-21
Your Reference	UNITS	BH6	BH8	BH9	BH10	BH10
Tour Reference	-	DITO	Dilo	Dila	BITTO	Billo
Depth		0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	1.9-2.0
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/02/2017	16/02/2017	16/02/2017	16/02/2017	16/02/2017
Sample mass tested	g	Approx. 35g	Approx. 55g	Approx. 45g	Approx. 35g	Approx. 35g
Sample Description	-	Brown coarse-	Brown coarse-	Brown coarse-	Brown coarse-	Brown coarse-
		grained soil &	grained soil &	grained soil &	grained soil &	grained soil &
		rocks	rocks	rocks	rocks	rocks
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected at reporting limit of	detected at reporting limit of	detected at reporting limit of	detected at reporting limit of	detected at reporting limit of
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres	Organic fibres	Organic fibres	Organic fibres	Organic fibres
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected	detected	detected	detected	detected

	Onone	Neierence.	DL4032, F105p			
Asbestos ID - soils	LINITO	464606.00	161686-23	161686-24	464696.05	464606.06
Our Reference: Your Reference	UNITS	161686-22 BH11	BH11	BH12	161686-25 BH12	161686-26 BH13
Depth		0.5-0.6	1.9-2.0	0.5-0.6	1.9-2.0	0.5-0.6
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	7/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/02/2017	16/02/2017	16/02/2017	16/02/2017	16/02/2017
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 40g	Approx. 45g	Approx. 45g
Sample Description	-	Beige coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference:	UNITS	161686-29	161686-31	161686-33	161686-35	161686-37
Your Reference		BH14	HA15	BH16	BH17	BH18
<b>.</b>	-	0.5.0.0		0.5.0.0	0.5.0.0	0.5.0.0
Depth Date Sampled		0.5-0.6 8/02/2017	0-0.2 8/02/2017	0.5-0.6 8/02/2017	0.5-0.6 8/02/2017	0.5-0.6 8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/02/2017	16/02/2017	16/02/2017	16/02/2017	16/02/2017
Sample mass tested	g	Approx. 40g	Approx. 35g	Approx. 45g	Approx. 35g	Approx. 50g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				

	Onone	Neierence.	DL4032, F105p			
Asbestos ID - soils	LINUTTO	404000	404000 44	404000 40	404000 47	404000 54
Our Reference: Your Reference	UNITS	161686-39 BH19	161686-41 HA20	161686-43 BH21	161686-47 HA23	161686-51 BH25
Depth Date Sampled Type of sample		0.5-0.6 8/02/2017 Soil	0.2-0.3 9/02/2017 Soil	0.5-0.6 8/02/2017 Soil	0.1-0.2 9/02/2017 Soil	0.5-0.6 8/02/2017 Soil
Date analysed	-	16/02/2017	16/02/2017	16/02/2017	16/02/2017	16/02/2017
Sample mass tested	g	Approx. 40g	Approx. 35g	Approx. 45g	Approx. 35g	Approx. 35g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference:	UNITS	161686-53	161686-55	161686-57	161686-59	161686-61
Your Reference		BH26	BH27	BH28	BH29	BH30
Donth	-	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6	0.5-0.6
Depth Date Sampled		7/02/2017	7/02/2017	8/02/2017	8/02/2017	7/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/02/2017	16/02/2017	16/02/2017	16/02/2017	16/02/2017
Sample mass tested	g	Approx. 45g	Approx. 35g	Approx. 35g	Approx. 35g	Approx. 35g
Sample Description	-	Brown coarse- grained soil & rocks	Beige coarse- grained soil & rocks			
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				

Ashasta ID sails						
Asbestos ID - soils						
Our Reference:	UNITS	161686-63	161686-65	161686-68	161686-69	161686-70
Your Reference		BH31	BH32	QC101	QC102	QC104
	-					
Depth		0.5-0.6	0.5-0.6	-	-	-
Date Sampled		8/02/2017	8/02/2017	8/02/2017	8/02/2017	8/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/02/2017	16/02/2017	16/02/2017	16/02/2017	16/02/2017
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 40g	Approx. 40g	Approx. 40g
Sample Description	-	Beige coarse- grained soil & rocks	Beige coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.  Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes"
	is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.  For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" td="" the=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

**Client Reference:** DL4032, Prospect QUALITYCONTROL UNITS PQL **METHOD** Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXNin Base II Duplicate II %RPD Soil 13/02/2 161686-1 13/02/2017 || 13/02/2017 LCS-2 13/02/2017 Date extracted 017 Date analysed 15/02/2 161686-1 14/02/2017 || 14/02/2017 LCS-2 14/02/2017 017 TRHC6 - C9 mg/kg 25 Org-016 <25 161686-1 <25||<25 LCS-2 94% 161686-1 94% 25 Org-016 <25 <25||<25 LCS-2 TRHC6 - C10 mg/kg Org-016 161686-1 LCS-2 84% Benzene 0.2 < 0.2 <0.2||<0.2 mg/kg Toluene mg/kg 0.5 Org-016 < 0.5 161686-1 <0.5||<0.5 LCS-2 93% Ethylbenzene 1 Org-016 <1 161686-1 <1||<1 LCS-2 95% mg/kg 2 161686-1 LCS-2 100% m+p-xylene Org-016 <2 <2||<2 mg/kg o-Xylene 1 Org-016 <1 161686-1 <1||<1 LCS-2 98% mg/kg

naphthalene 1 Org-014 <1 161686-1 <1||<1 [NR] [NR] mg/kg 93% % Org-016 97 161686-1 97 || 103 || RPD: 6 LCS-2 Surrogate aaa-Trifluorotoluene QUALITYCONTROL UNITS PQL Blank METHOD Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery svTRH (C10-C40) in Soil Base II Duplicate II %RPD 13/02/2 161686-1 13/02/2017 || 13/02/2017 LCS-2 13/02/2017 Date extracted 017 Date analysed 14/02/2 161686-1 13/02/2017 || 13/02/2017 LCS-2 13/02/2017 017 TRHC10 - C14 mg/kg 50 Org-003 <50 161686-1 <50 | | <50 LCS-2 116% TRHC15 - C28 mg/kg 100 Org-003 <100 161686-1 <100 | | <100 LCS-2 109% 104% Org-003 161686-1 <100 || <100 LCS-2 TRHC29 - C36 mg/kg 100 <100 TRH>C10-C16 mg/kg 50 Org-003 <50 161686-1 <50 || <50 LCS-2 116% TRH>C16-C34 mg/kg 100 Org-003 <100 161686-1 <100 | | <100 LCS-2 109% Org-003 <100 161686-1 LCS-2 104% TRH>C34-C40 mg/kg 100 <100 | | <100 Surrogate o-Terphenyl % Org-003 111 161686-1 95 | | 88 | | RPD: 8 LCS-2 120% QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD Date extracted 13/02/2 161686-1 13/02/2017 || 13/02/2017 LCS-2 13/02/2017 017 14/02/2 161686-1 14/02/2017 || 14/02/2017 LCS-2 Date analysed 14/02/2017 017 Naphthalene 0.1 Org-012 <0.1 161686-1 <0.1||<0.1 LCS-2 99% mg/kg Org-012 161686-1 [NR] Acenaphthylene 0.1 < 0.1 <0.1||<0.1 [NR] mg/kg Acenaphthene mg/kg 0.1 Org-012 <0.1 161686-1 <0.1||<0.1 [NR] [NR] Fluorene 0.1 Org-012 <0.1 161686-1 <0.1||<0.1 LCS-2 104% mg/kg LCS-2 112% Phenanthrene 0.1 Org-012 <0.1 161686-1 <0.1||<0.1 mg/kg Anthracene 0.1 Org-012 < 0.1 161686-1 <0.1||<0.1 [NR] [NR] mg/kg Fluoranthene 0.1 Org-012 <0.1 161686-1 <0.1||<0.1 LCS-2 98% mg/kg LCS-2 Pyrene 0.1 Org-012 <0.1 161686-1 <0.1||<0.1 105% mg/kg Benzo(a)anthracene 0.1 Org-012 < 0.1 161686-1 <0.1||<0.1 [NR] [NR] mg/kg Chrysene 0.1 Org-012 <0.1 161686-1 <0.1||<0.1 LCS-2 105% mg/kg Benzo(b,j 0.2 Org-012 < 0.2 161686-1 <0.2||<0.2 [NR] [NR] mg/kg +k)fluoranthene

Client Reference: DL4032, Prospect								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	161686-1	<0.05  <0.05	LCS-2	93%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	92	161686-1	86  90  RPD:5	LCS-2	119%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			13/02/2 017	161686-1	13/02/2017    13/02/2017	LCS-2	13/02/2017
Date analysed	-			14/02/2 017	161686-1	14/02/2017    14/02/2017	LCS-2	14/02/2017
HCB	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	83%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	91%
Heptachlor	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	86%
delta-BHC	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	87%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	92%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	91%
Dieldrin	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	99%
Endrin	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	122%
pp-DDD	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	86%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	LCS-2	80%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	102	161686-1	106  106  RPD:0	LCS-2	129%

Client Reference: DL4032, Prospect								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II %RPD		
Date extracted	-			13/02/2 017	161686-1	13/02/2017    13/02/2017	LCS-2	13/02/2017
Date analysed	-			14/02/2 017	161686-1	14/02/2017    14/02/2017	LCS-2	14/02/2017
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	LCS-2	111%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	LCS-2	103%
Dimethoate	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	LCS-2	99%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	LCS-2	102%
Malathion	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	LCS-2	94%
Parathion	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	LCS-2	99%
Ronnel	mg/kg	0.1	Org-008	<0.1	161686-1	<0.1  <0.1	LCS-2	94%
Surrogate TCMX	%		Org-008	102	161686-1	106  106  RPD:0	LCS-2	98%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			13/02/2 017	161686-1	13/02/2017    13/02/2017	LCS-2	13/02/2017
Date analysed	-			14/02/2 017	161686-1	14/02/2017    14/02/2017	LCS-2	14/02/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	161686-1	<0.1  <0.1	LCS-2	103%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	161686-1	<0.1  <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	102	161686-1	106  106  RPD:0	LCS-2	98%

Client Reference: DL4032, Prospect									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %	
Acid Extractable metals in soil					SM#	Base II Duplicate II %RPD		Recove	<b>∍</b> ry
Date prepared	-			13/02/2 017	161686-1	13/02/2017    13/02/2017	LCS-2	13/02/	/2017
Date analysed	-			14/02/2 017	161686-1	14/02/2017    14/02/2017	LCS-2	14/02/	/2017
Arsenic	mg/kg	4	Metals-020	<4	161686-1	<4  <4	LCS-2	118	3%
Cadmium	mg/kg	0.4	Metals-020	<0.4	161686-1	<0.4  <0.4	LCS-2	103	3%
Chromium	mg/kg	1	Metals-020	<1	161686-1	200    190    RPD: 5	LCS-2	113	3%
Copper	mg/kg	1	Metals-020	<1	161686-1	24  22  RPD:9	LCS-2	115	5%
Lead	mg/kg	1	Metals-020	<1	161686-1	12  12  RPD:0	LCS-2	108	3%
Mercury	mg/kg	0.1	Metals-021	<0.1	161686-1	<0.1  <0.1	LCS-2	94	.%
Nickel	mg/kg	1	Metals-020	<1	161686-1	81    56    RPD: 36	LCS-2	103	3%
Zinc	mg/kg	1	Metals-020	<1	161686-1	26  24  RPD:8	LCS-2	105	5%
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	6	Dup. Sm#		Duplicate Duplicate+%RP	Spike Sm#	Spike % Reco	very	
5011									
Date extracted	-		161686-11	13/02/2	2017    13/02/201	7 LCS-3	13/02/2017	7	
Date analysed	-		161686-11	14/02/2	017    14/02/201	7 LCS-3	14/02/2017	7	
TRHC6 - C9	mg/ko	9	161686-11		<25  <25	LCS-3	97%		
TRHC6 - C10	mg/ko	9	161686-11		<25  <25	LCS-3	97%		
Benzene	mg/ko	9	161686-11		<0.2  <0.2	LCS-3	89%		
Toluene	mg/ko	9	161686-11		<0.5  <0.5	LCS-3	96%		
Ethylbenzene	mg/kg	9	161686-11		<1  <1	LCS-3	98%		
m+p-xylene	mg/kg		161686-11		<2  <2	LCS-3	101%		
o-Xylene	mg/kg		161686-11		'' <1  <1	LCS-3	102%		
naphthalene	mg/kç	<b>'</b>	161686-11		<1  <1	[NR]	[NR]		
Surrogate aaa-	%	<b>1</b>	161686-11	101	105  RPD:4	LCS-3	98%		
Trifluorotoluene		_				2 " 2 "			
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	5	Dup. Sm#		Duplicate  Duplicate + %RP	Spike Sm#	Spike % Reco	very	
Date extracted	-		161686-11	13/02/2	017    13/02/201	7 LCS-3	13/02/201	7	
Date analysed	-		161686-11	13/02/2	017    13/02/201	7 LCS-3	13/02/201	7	
TRHC10 - C14	mg/ko	9	161686-11		<50  <50	LCS-3	130%		
TRHC15 - C28	mg/kg	9	161686-11	<	:100  <100	LCS-3	122%		
TRHC29 - C36	mg/kg	9	161686-11	<	:100  <100	LCS-3	121%		
TRH>C10-C16	mg/kg		161686-11			LCS-3	130%		
TRH>C16-C34	mg/kg		161686-11		:100  <100	LCS-3	122%		
TRH>C34-C40	mg/kç	<b>'</b>	161686-11		:100  <100	LCS-3	121%		
Surrogate o-Terphenyl	g/\.\	<b>1</b>	161686-11		95  RPD:1	LCS-3	120%		
Guirogale 0-1 cipilellyl	/0		.5.000 11	54		200-0	120 /0		

**Client Reference:** DL4032, Prospect QUALITYCONTROL UNITS Dup.Sm# Duplicate Spike Sm# Spike % Recovery

PAHs in Soil		'	Base + Duplicate + %RPD	•	,
Date extracted	-	161686-11	13/02/2017    13/02/2017	LCS-3	13/02/2017
Date analysed	-	161686-11	14/02/2017    14/02/2017	LCS-3	14/02/2017
Naphthalene	mg/kg	161686-11	<0.1  <0.1	LCS-3	97%
Acenaphthylene	mg/kg	161686-11	<0.1  <0.1	[NR]	[NR]
Acenaphthene	mg/kg	161686-11	<0.1  <0.1	[NR]	[NR]
Fluorene	mg/kg	161686-11	<0.1  <0.1	LCS-3	99%
Phenanthrene	mg/kg	161686-11	<0.1  <0.1	LCS-3	110%
Anthracene	mg/kg	161686-11	<0.1  <0.1	[NR]	[NR]
Fluoranthene	mg/kg	161686-11	<0.1  <0.1	LCS-3	97%
Pyrene	mg/kg	161686-11	<0.1  <0.1	LCS-3	103%
Benzo(a)anthracene	mg/kg	161686-11	<0.1  <0.1	[NR]	[NR]
Chrysene	mg/kg	161686-11	<0.1  <0.1	LCS-3	104%
Benzo(b,j+k)fluoranthene	mg/kg	161686-11	<0.2  <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	161686-11	<0.05  <0.05	LCS-3	90%
Indeno(1,2,3-c,d)pyrene	mg/kg	161686-11	<0.1  <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	161686-11	<0.1  <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	161686-11	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	161686-11	84  80  RPD:5	LCS-3	118%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	LCS-3	13/02/2017
Date analysed	-	[NT]	[NT]	LCS-3	14/02/2017
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	LCS-3	81%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	LCS-3	89%
Heptachlor	mg/kg	[NT]	[NT]	LCS-3	81%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	LCS-3	86%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	LCS-3	90%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	LCS-3	90%
Dieldrin	mg/kg	[NT]	[NT]	LCS-3	98%
Endrin	mg/kg	[NT]	[NT]	LCS-3	118%
pp-DDD	mg/kg	[NT]	[NT]	LCS-3	89%
		1	[NT]	[NR]	[NR]
Endosulfan II	mg/kg	[NT]	[]		
Endosulfan II pp-DDT	mg/kg mg/kg	[NT] [NT]	[NT]	[NR]	[NR]
					[NR] [NR]

		Client Reference	e: DL4032, Prospect		
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	LCS-3	128%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	LCS-3	13/02/2017
Date analysed	-	[NT]	[NT]	LCS-3	14/02/2017
Azinphos-methyl (Guthion)	mg/kg	[NT]	[NT]	[NR]	[NR]
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	LCS-3	111%
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	[NT]	[NT]	LCS-3	99%
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	LCS-3	100%
Fenitrothion	mg/kg	[NT]	[NT]	LCS-3	102%
Malathion	mg/kg	[NT]	[NT]	LCS-3	85%
Parathion	mg/kg	[NT]	[NT]	LCS-3	97%
Ronnel	mg/kg	[NT]	[NT]	LCS-3	95%
Surrogate TCMX	%	[NT]	[NT]	LCS-3	102%
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	LCS-3	13/02/2017
Date analysed	-	[NT]	[NT]	LCS-3	14/02/2017
Aroclor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	[NT]	[NT]	LCS-3	107%
Aroclor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	LCS-3	102%

		Client Reference	e: DL4032, Prospect		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared		161686-11	13/02/2017    13/02/2017	LCS-3	13/02/2017
Date analysed	-	161686-11	 14/02/2017   14/02/2017	LCS-3	14/02/2017
Arsenic	mg/kg	161686-11	 5  5  RPD:0	LCS-3	121%
Cadmium	mg/kg	161686-11	<0.4  <0.4	LCS-3	106%
Chromium	mg/kg	161686-11	 25  32  RPD:25	LCS-3	117%
Copper	mg/kg	161686-11	 35  36  RPD:3	LCS-3	116%
Lead	mg/kg	161686-11	15  18  RPD:18	LCS-3	110%
Mercury	mg/kg	161686-11	<0.1  <0.1	LCS-3	98%
Nickel	mg/kg	161686-11	44    50    RPD: 13	LCS-3	105%
Zinc	mg/kg	161686-11	59  62  RPD:5	LCS-3	108%
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	161686-21	13/02/2017    13/02/2017	LCS-4	13/02/2017
Date analysed	-	161686-21	14/02/2017    14/02/2017	LCS-4	15/02/2017
TRHC6 - C9	mg/kg	161686-21	<25  <25	LCS-4	80%
TRHC6 - C10	mg/kg	161686-21	<25  <25	LCS-4	80%
Benzene	mg/kg	161686-21	<0.2  <0.2	LCS-4	73%
Toluene	mg/kg	161686-21	<0.5  <0.5	LCS-4	78%
Ethylbenzene	mg/kg	161686-21	<1  <1	LCS-4	81%
m+p-xylene	mg/kg	161686-21	<2  <2	LCS-4	84%
o-Xylene	mg/kg	161686-21	<1  <1	LCS-4	83%
naphthalene	mg/kg	161686-21	<1  <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	161686-21	90    90    RPD: 0	LCS-4	82%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	161686-21	13/02/2017    13/02/2017	LCS-4	13/02/2017
Date analysed	-	161686-21	14/02/2017    14/02/2017	LCS-4	14/02/2017
TRHC10 - C14	mg/kg	161686-21	<50    <50	LCS-4	128%
TRHC 15 - C28	mg/kg	161686-21	<100    <100	LCS-4	128%
TRHC29 - C36	mg/kg	161686-21	<100    <100	LCS-4	121%
TRH>C10-C16	mg/kg	161686-21	<50  <50	LCS-4	128%
TRH>C16-C34	mg/kg	161686-21	<100    <100	LCS-4	128%
TRH>C34-C40	mg/kg	161686-21	<100    <100	LCS-4	121%
Surrogate o-Terphenyl	%	161686-21	97  96  RPD:1	LCS-4	125%

		Client Reference	e: DL4032, Prospect		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	161686-21	13/02/2017    13/02/2017	LCS-4	13/02/2017
Date analysed	-	161686-21	14/02/2017    14/02/2017	LCS-4	14/02/2017
Naphthalene	mg/kg	161686-21	<0.1  <0.1	LCS-4	100%
Acenaphthylene	mg/kg	161686-21	<0.1  <0.1	[NR]	[NR]
Acenaphthene	mg/kg	161686-21	<0.1  <0.1	[NR]	[NR]
Fluorene	mg/kg	161686-21	<0.1  <0.1	LCS-4	101%
Phenanthrene	mg/kg	161686-21	<0.1  <0.1	LCS-4	113%
Anthracene	mg/kg	161686-21	<0.1  <0.1	[NR]	[NR]
Fluoranthene	mg/kg	161686-21	<0.1  <0.1	LCS-4	106%
Pyrene	mg/kg	161686-21	<0.1  <0.1	LCS-4	116%
Benzo(a)anthracene	mg/kg	161686-21	<0.1  <0.1	[NR]	[NR]
Chrysene	mg/kg	161686-21	<0.1  <0.1	LCS-4	107%
Benzo(b,j+k)fluoranthene	mg/kg	161686-21	<0.2  <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	161686-21	<0.05  <0.05	LCS-4	108%
Indeno(1,2,3-c,d)pyrene	mg/kg	161686-21	<0.1  <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	161686-21	<0.1  <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	161686-21	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	161686-21	83    82    RPD: 1	LCS-4	128%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	161686-21	13/02/2017    13/02/2017	LCS-4	13/02/2017
Date analysed	-	161686-21	14/02/2017    14/02/2017	LCS-4	14/02/2017
Arsenic	mg/kg	161686-21	<4  <4	LCS-4	121%
Cadmium	mg/kg	161686-21	<0.4  <0.4	LCS-4	104%
Chromium	mg/kg	161686-21	220  230  RPD:4	LCS-4	117%
Copper	mg/kg	161686-21	42  44  RPD:5	LCS-4	116%
Lead	mg/kg	161686-21	4  4  RPD:0	LCS-4	107%
Mercury	mg/kg	161686-21	<0.1  <0.1	LCS-4	97%
Nickel	mg/kg	161686-21	220  240  RPD:9	LCS-4	105%
Zinc	mg/kg	161686-21	57  60  RPD:5	LCS-4	108%

**Client Reference:** DL4032, Prospect QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery vTRH(C6-C10)/BTEXNin Base + Duplicate + %RPD 161686-31 13/02/2017 || 13/02/2017 LCS-5 13/02/2017 Date extracted Date analysed 161686-31 14/02/2017 || 14/02/2017 LCS-5 15/02/2017 161686-31 <25||<25 LCS-5 81% TRHC6 - C9 mg/kg <25||<25 81% TRHC6 - C10 mg/kg 161686-31 LCS-5 Benzene mg/kg 161686-31 <0.2||<0.2 LCS-5 75% <0.5||<0.5 82% Toluene 161686-31 LCS-5 mg/kg 161686-31 <1||<1 LCS-5 81% Ethylbenzene mg/kg m+p-xylene mg/kg 161686-31 <2||<2 LCS-5 83% o-Xylene 161686-31 <1||<1 LCS-5 83%

<1||<1

91||99||RPD:8

**Duplicate** 

Base + Duplicate + %RPD 13/02/2017 || 13/02/2017

14/02/2017 || 14/02/2017

<50 || <50

120 || <100

320 || 230 || RPD: 33

<50||<50

310 || 200 || RPD: 43

320 || 290 || RPD: 10

98 | 89 | RPD: 10

Duplicate

Base + Duplicate + %RPD

13/02/2017 || 13/02/2017

14/02/2017 || 14/02/2017

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

0.4 || 0.4 || RPD: 0

0.2 | | 0.1 | | RPD: 67

1.3 || 1.2 || RPD: 8

1.4 || 1.2 || RPD: 15

0.8 | | 0.5 | | RPD: 46

0.6 || 0.7 || RPD: 15

1||1||RPD:0

0.78 | 0.62 | RPD: 23

0.5 || 0.5 || RPD: 0

0.2 | < 0.1

[NR]

LCS-5

Spike Sm#

LCS-5

LCS-5

LCS-5

LCS-5

LCS-5

LCS-5

LCS-5

LCS-5

LCS-5

Spike Sm#

LCS-5

LCS-5

LCS-5

[NR]

[NR]

LCS-5

LCS-5

[NR]

LCS-5

LCS-5

[NR]

LCS-5

[NR]

LCS-5

[NR]

[NR]

[NR]

81%

Spike % Recovery

13/02/2017

14/02/2017

120%

127%

121%

120%

127%

121%

124%

Spike % Recovery

13/02/2017

14/02/2017

94%

[NR]

[NR]

100%

112%

[NR]

101%

108%

[NR]

105%

[NR]

94%

[NR]

[NR]

Envirolab Reference: 161686 Revision No: R 01

mg/kg

mg/kg

%

**UNITS** 

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

UNITS

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

161686-31

161686-31

Dup. Sm#

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

Dup.Sm#

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

161686-31

naphthalene

Surrogate aaa-

Trifluorotoluene QUALITYCONTROL

svTRH (C10-C40) in Soil

Date extracted

Date analysed

TRHC10 - C14

TRHC15 - C28

TRHC29 - C36

TRH>C10-C16

TRH>C16-C34

TRH>C34-C40

Surrogate o-Terphenyl

QUALITYCONTROL

PAHs in Soil

Date extracted

Date analysed

Naphthalene

Acenaphthylene

Acenaphthene

Fluorene

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo(a)anthracene

Chrysene

Benzo(b,j+k)fluoranthene

Benzo(a)pyrene

Indeno(1,2,3-c,d)pyrene

Dibenzo(a,h)anthracene

		Client Reference	e: DL4032, Prospect		
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Benzo(g,h,i)perylene	mg/kg	161686-31	0.8  0.8  RPD:0	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	161686-31	104  77  RPD:30	LCS-5	123%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date extracted	-	161686-31	13/02/2017    13/02/2017		
Date analysed	-	161686-31	14/02/2017    14/02/2017		
HCB	mg/kg	161686-31	<0.1  <0.1		
alpha-BHC	mg/kg	161686-31	<0.1  <0.1		
gamma-BHC	mg/kg	161686-31	<0.1  <0.1		
beta-BHC	mg/kg	161686-31	<0.1  <0.1		
Heptachlor	mg/kg	161686-31	<0.1  <0.1		
delta-BHC	mg/kg	161686-31	<0.1  <0.1		
Aldrin	mg/kg	161686-31	<0.1  <0.1		
Heptachlor Epoxide	mg/kg	161686-31	<0.1  <0.1		
gamma-Chlordane	mg/kg	161686-31	<0.1  <0.1		
alpha-chlordane	mg/kg	161686-31	<0.1  <0.1		
Endosulfan l	mg/kg	161686-31	<0.1  <0.1		
pp-DDE	mg/kg	161686-31	<0.1  <0.1		
Dieldrin	mg/kg	161686-31	<0.1  <0.1		
Endrin	mg/kg	161686-31	<0.1  <0.1		
pp-DDD	mg/kg	161686-31	<0.1  <0.1		
Endosulfan II	mg/kg	161686-31	<0.1  <0.1		
pp-DDT	mg/kg	161686-31	<0.1  <0.1		
Endrin Aldehyde	mg/kg	161686-31	<0.1  <0.1		
Endosulfan Sulphate	mg/kg	161686-31	<0.1  <0.1		
Methoxychlor	mg/kg	161686-31	<0.1  <0.1		
Surrogate TCMX	%	161686-31	102  109  RPD:7		

		Client Reference	e: DL4032, Prospect		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	161686-31	13/02/2017    13/02/2017		
Date analysed	-	161686-31	14/02/2017    14/02/2017		
Azinphos-methyl (Guthion)	mg/kg	161686-31	<0.1  <0.1		
Bromophos-ethyl	mg/kg	161686-31	<0.1  <0.1		
Chlorpyriphos	mg/kg	161686-31	<0.1  <0.1		
Chlorpyriphos-methyl	mg/kg	161686-31	<0.1  <0.1		
Diazinon	mg/kg	161686-31	<0.1  <0.1		
Dichlorvos	mg/kg	161686-31	<0.1  <0.1		
Dimethoate	mg/kg	161686-31	<0.1  <0.1		
Ethion	mg/kg	161686-31	<0.1  <0.1		
Fenitrothion	mg/kg	161686-31	<0.1  <0.1		
Malathion	mg/kg	161686-31	<0.1  <0.1		
Parathion	mg/kg	161686-31	<0.1  <0.1		
Ronnel	mg/kg	161686-31	<0.1  <0.1		
Surrogate TCMX	%	161686-31	102  109  RPD:7		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	•	
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	161686-31	13/02/2017    13/02/2017		
Date analysed	-	161686-31	14/02/2017    14/02/2017		
Aroclor 1016	mg/kg	161686-31	<0.1  <0.1		
Aroclor 1221	mg/kg	161686-31	<0.1  <0.1		
Aroclor 1232	mg/kg	161686-31	<0.1  <0.1		
Aroclor 1242	mg/kg	161686-31	<0.1  <0.1		
Aroclor 1248	mg/kg	161686-31	<0.1  <0.1		
Aroclor 1254	mg/kg	161686-31	<0.1  <0.1		
Aroclor 1260	mg/kg	161686-31	<0.1  <0.1		
Surrogate TCLMX	%	161686-31	102  109  RPD:7		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	161686-31	13/02/2017    13/02/2017	LCS-5	13/02/2017
Date analysed	-	161686-31	14/02/2017    14/02/2017	LCS-5	14/02/2017
Arsenic	mg/kg	161686-31	<4  <4	LCS-5	119%
Cadmium	mg/kg	161686-31	<0.4  <0.4	LCS-5	102%
Chromium	mg/kg	161686-31	9  11  RPD:20	LCS-5	113%
Copper	mg/kg	161686-31	47  46  RPD:2	LCS-5	114%
Lead	mg/kg	161686-31	21  23  RPD:9	LCS-5	107%
Mercury	mg/kg	161686-31	<0.1  <0.1	LCS-5	98%
Nickel	mg/kg	161686-31	22  31  RPD:34	LCS-5	103%
Zinc	mg/kg	161686-31	42  38  RPD:10	LCS-5	104%

**Client Reference:** DL4032, Prospect QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery vTRH(C6-C10)/BTEXNin Base + Duplicate + %RPD 13/02/2017 || 13/02/2017 161686-2 13/02/2017 Date extracted 161686-41 Date analysed 161686-41 15/02/2017 || 15/02/2017 161686-2 14/02/2017 161686-41 <25||<25 161686-2 111% TRHC6 - C9 mg/kg <25||<25 TRHC6 - C10 mg/kg 161686-41 161686-2 111% Benzene mg/kg 161686-41 <0.2||<0.2 161686-2 102% <0.5||<0.5 Toluene 161686-41 161686-2 105% mg/kg 161686-41 <1||<1 161686-2 111% Ethylbenzene mg/kg m+p-xylene mg/kg 161686-41 <2||<2 161686-2 118% o-Xylene 161686-41 <1||<1 161686-2 124% mg/kg naphthalene 161686-41 mg/kg <1||<1 [NR] [NR] Surrogate aaa-% 161686-41 89 | 83 | RPD: 7 161686-2 94% Trifluorotoluene QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery svTRH (C10-C40) in Soil Base + Duplicate + %RPD 13/02/2017 || 13/02/2017 Date extracted 161686-41 161686-2 13/02/2017 Date analysed 161686-41 14/02/2017 || 14/02/2017 161686-2 13/02/2017 161686-41 <50 || <50 161686-2 93% TRHC10 - C14 mg/kg 87% 161686-41 <100 || <100 161686-2 TRHC15 - C28 mg/kg 161686-41 <100 || <100 161686-2 127% TRHC29 - C36 mg/kg 161686-41 <50||<50 161686-2 93% TRH>C10-C16 mg/kg TRH>C16-C34 mg/kg 161686-41 <100 || <100 161686-2 87% 161686-41 <100 || <100 161686-2 127% TRH>C34-C40 mg/kg Surrogate o-Terphenyl % 161686-41 94 || 95 || RPD: 1 161686-2 96% QUALITYCONTROL UNITS Dup.Sm# Duplicate Spike Sm# Spike % Recovery PAHs in Soil Base + Duplicate + %RPD Date extracted 161686-41 13/02/2017 || 13/02/2017 161686-2 13/02/2017 Date analysed 161686-41 14/02/2017 || 14/02/2017 161686-2 14/02/2017 Naphthalene 161686-41 <0.1||<0.1 161686-2 97% mg/kg [NR] Acenaphthylene 161686-41 <0.1||<0.1 [NR] mg/kg Acenaphthene 161686-41 <0.1||<0.1 [NR] [NR] mg/kg Fluorene mg/kg 161686-41 <0.1||<0.1 161686-2 97% Phenanthrene 161686-41 0.1||0.1||RPD:0 161686-2 98% mg/kg Anthracene mg/kg 161686-41 <0.1||<0.1 [NR] [NR] Fluoranthene mg/kg 161686-41 <0.1||<0.1 161686-2 89% Pyrene mg/kg 161686-41 <0.1||<0.1 161686-2 102% 161686-41 Benzo(a)anthracene <0.1||<0.1 [NR] [NR] mg/kg 161686-41 161686-2 98% Chrysene <0.1||<0.1 mg/kg

Envirolab Reference: 161686 Revision No: R 01

mg/kg

mg/kg

mg/kg

mg/kg

161686-41

161686-41

161686-41

161686-41

<0.2||<0.2

<0.05||<0.05

<0.1||<0.1

<0.1||<0.1

[NR]

161686-2

[NR]

[NR]

Benzo(b,j+k)fluoranthene

Benzo(a)pyrene

Indeno(1,2,3-c,d)pyrene

Dibenzo(a,h)anthracene

[NR]

90%

[NR]

[NR]

		Client Reference	e: DL4032, Prospect		
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Benzo(g,h,i)perylene	mg/kg	161686-41	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	161686-41	80  82  RPD:2	161686-2	117%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date extracted	-	161686-41	13/02/2017    13/02/2017		
Date analysed	-	161686-41	14/02/2017    14/02/2017		
HCB	mg/kg	161686-41	<0.1  <0.1		
alpha-BHC	mg/kg	161686-41	<0.1  <0.1		
gamma-BHC	mg/kg	161686-41	<0.1  <0.1		
beta-BHC	mg/kg	161686-41	<0.1  <0.1		
Heptachlor	mg/kg	161686-41	<0.1  <0.1		
delta-BHC	mg/kg	161686-41	<0.1  <0.1		
Aldrin	mg/kg	161686-41	<0.1  <0.1		
Heptachlor Epoxide	mg/kg	161686-41	<0.1  <0.1		
gamma-Chlordane	mg/kg	161686-41	<0.1  <0.1		
alpha-chlordane	mg/kg	161686-41	<0.1  <0.1		
Endosulfan l	mg/kg	161686-41	<0.1  <0.1		
pp-DDE	mg/kg	161686-41	<0.1  <0.1		
Dieldrin	mg/kg	161686-41	<0.1  <0.1		
Endrin	mg/kg	161686-41	<0.1  <0.1		
pp-DDD	mg/kg	161686-41	<0.1  <0.1		
Endosulfan II	mg/kg	161686-41	<0.1  <0.1		
pp-DDT	mg/kg	161686-41	<0.1  <0.1		
Endrin Aldehyde	mg/kg	161686-41	<0.1  <0.1		
Endosulfan Sulphate	mg/kg	161686-41	<0.1  <0.1		
Methoxychlor	mg/kg	161686-41	<0.1  <0.1		
Surrogate TCMX	%	161686-41	105  103  RPD:2		

		Client Reference	e: DL4032, Prospect		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	161686-41	13/02/2017    13/02/2017		
Date analysed	-	161686-41	14/02/2017    14/02/2017		
Azinphos-methyl (Guthion)	mg/kg	161686-41	<0.1  <0.1		
Bromophos-ethyl	mg/kg	161686-41	<0.1  <0.1		
Chlorpyriphos	mg/kg	161686-41	<0.1  <0.1		
Chlorpyriphos-methyl	mg/kg	161686-41	<0.1  <0.1		
Diazinon	mg/kg	161686-41	<0.1  <0.1		
Dichlorvos	mg/kg	161686-41	<0.1  <0.1		
Dimethoate	mg/kg	161686-41	<0.1  <0.1		
Ethion	mg/kg	161686-41	<0.1  <0.1		
Fenitrothion	mg/kg	161686-41	<0.1  <0.1		
Malathion	mg/kg	161686-41	<0.1  <0.1		
Parathion	mg/kg	161686-41	<0.1  <0.1		
Ronnel	mg/kg	161686-41	<0.1  <0.1		
Surrogate TCMX	%	161686-41	105  103  RPD:2		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	•	
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	161686-41	13/02/2017    13/02/2017		
Date analysed	-	161686-41	14/02/2017    14/02/2017		
Aroclor 1016	mg/kg	161686-41	<0.1  <0.1		
Aroclor 1221	mg/kg	161686-41	<0.1  <0.1		
Aroclor 1232	mg/kg	161686-41	<0.1  <0.1		
Aroclor 1242	mg/kg	161686-41	<0.1  <0.1		
Aroclor 1248	mg/kg	161686-41	<0.1  <0.1		
Aroclor 1254	mg/kg	161686-41	<0.1  <0.1		
Aroclor 1260	mg/kg	161686-41	<0.1  <0.1		
Surrogate TCLMX	%	161686-41	105  103  RPD:2		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	161686-41	13/02/2017    13/02/2017	161686-2	13/02/2017
Date analysed	-	161686-41	14/02/2017    14/02/2017	161686-2	14/02/2017
Arsenic	mg/kg	161686-41	7  7  RPD:0	161686-2	92%
Cadmium	mg/kg	161686-41	<0.4  <0.4	161686-2	86%
Chromium	mg/kg	161686-41	19  18  RPD:5	161686-2	101%
Copper	mg/kg	161686-41	43  39  RPD:10	161686-2	99%
Lead	mg/kg	161686-41	19  16  RPD:17	161686-2	83%
Mercury	mg/kg	161686-41	<0.1  <0.1	161686-2	92%
Nickel	mg/kg	161686-41	39  33  RPD:17	161686-2	85%
Zinc	mg/kg	161686-41	79  75  RPD:5	161686-2	73%

		Client Reference	e: DL4032, Prospect
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
vTRH(C6-C10)/BTEXNin Soil			Base + Duplicate + %RPD
Date extracted	-	161686-51	13/02/2017    13/02/2017
Date analysed	-	161686-51	15/02/2017    15/02/2017
TRHC6 - C9	mg/kg	161686-51	<25  <25
TRHC6 - C10	mg/kg	161686-51	<25  <25
Benzene	mg/kg	161686-51	<0.2  <0.2
Toluene	mg/kg	161686-51	<0.5  <0.5
Ethylbenzene	mg/kg	161686-51	<1  <1
m+p-xylene	mg/kg	161686-51	<2  <2
o-Xylene	mg/kg	161686-51	<1  <1
naphthalene	mg/kg	161686-51	<1  <1
<i>Surrogate</i> aaa- Trifluorotoluene	%	161686-51	80    91    RPD: 13
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD
Date extracted	-	161686-51	13/02/2017    13/02/2017
Date analysed	-	161686-51	14/02/2017    14/02/2017
TRHC10 - C14	mg/kg	161686-51	<50  <50
TRHC 15 - C28	mg/kg	161686-51	<100  <100
TRHC29 - C36	mg/kg	161686-51	<100  <100
TRH>C10-C16	mg/kg	161686-51	<50  <50
TRH>C16-C34	mg/kg	161686-51	<100  <100
TRH>C34-C40	mg/kg	161686-51	<100  <100
Surrogate o-Terphenyl	%	161686-51	101  107  RPD:6
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
PAHs in Soil			Base + Duplicate + %RPD
Date extracted	-	161686-51	13/02/2017    13/02/2017
Date analysed	-	161686-51	14/02/2017    14/02/2017
Naphthalene	mg/kg	161686-51	<0.1  <0.1
Acenaphthylene	mg/kg	161686-51	<0.1  <0.1
Acenaphthene	mg/kg	161686-51	<0.1  <0.1
Fluorene	mg/kg	161686-51	<0.1  <0.1
Phenanthrene	mg/kg	161686-51	<0.1  <0.1
Anthracene	mg/kg	161686-51	<0.1  <0.1
Fluoranthene	mg/kg	161686-51	<0.1  <0.1
Pyrene	mg/kg	161686-51	<0.1  <0.1
Benzo(a)anthracene	mg/kg	161686-51	<0.1  <0.1
Chrysene	mg/kg	161686-51	<0.1  <0.1
Benzo(b,j+k)fluoranthene	mg/kg	161686-51	<0.2  <0.2
Benzo(a)pyrene	mg/kg	161686-51	<0.05  <0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	161686-51	<0.1  <0.1
Dibenzo(a,h)anthracene	mg/kg	161686-51	<0.1  <0.1

**Client Reference:** DL4032, Prospect QUALITYCONTROL UNITS Dup. Sm# Duplicate PAHs in Soil Base + Duplicate + %RPD 161686-51 <0.1||<0.1 Benzo(g,h,i)perylene mg/kg % 161686-51 88 | | 85 | | RPD: 3 Surrogate p-Terphenyl-d14 QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Base + Duplicate + %RPD Organochlorine Pesticides in soil Date extracted 161686-51 13/02/2017 || 13/02/2017 161686-3 13/02/2017 14/02/2017 || 14/02/2017 161686-3 Date analysed 161686-51 14/02/2017 **HCB** mg/kg 161686-51 <0.1||<0.1 [NR] [NR] alpha-BHC <0.1||<0.1 161686-3 82% 161686-51 mg/kg gamma-BHC mg/kg 161686-51 <0.1||<0.1 [NR] [NR] beta-BHC mg/kg 161686-51 <0.1||<0.1 161686-3 87% Heptachlor mg/kg 161686-51 <0.1||<0.1 161686-3 76% delta-BHC 161686-51 <0.1||<0.1 [NR] mg/kg [NR] Aldrin mg/kg 161686-51 <0.1||<0.1 161686-3 86% 161686-3 Heptachlor Epoxide mg/kg 161686-51 <0.1||<0.1 88% gamma-Chlordane mg/kg 161686-51 <0.1||<0.1 [NR] [NR] 161686-51 alpha-chlordane <0.1||<0.1 [NR] [NR] mg/kg Endosulfan I 161686-51 <0.1||<0.1 [NR] [NR] mg/kg pp-DDE 161686-51 <0.1||<0.1 161686-3 91% mg/kg 161686-51 161686-3 98% Dieldrin mg/kg <0.1||<0.1 Endrin mg/kg 161686-51 <0.1||<0.1 161686-3 92% pp-DDD mg/kg 161686-51 <0.1||<0.1 161686-3 90% Endosulfan II mg/kg 161686-51 <0.1||<0.1 [NR] [NR]

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

102 || 104 || RPD: 2

[NR]

[NR]

161686-3

[NR]

161686-3

[NR]

[NR]

75%

[NR]

100%

161686-51

161686-51

161686-51

161686-51

161686-51

mg/kg

mg/kg

mg/kg

mg/kg

%

Envirolab Reference: 161686 Revision No: R 01

pp-DDT

Endrin Aldehyde

Endosulfan Sulphate

Methoxychlor

Surrogate TCMX

**Client Reference:** DL4032, Prospect QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Organophosphorus Base + Duplicate + %RPD Pesticides 161686-51 13/02/2017 || 13/02/2017 161686-3 13/02/2017 Date extracted Date analysed 161686-51 14/02/2017 || 14/02/2017 161686-3 14/02/2017 Azinphos-methyl (Guthion) 161686-51 <0.1||<0.1 [NR] [NR] mg/kg <0.1||<0.1 Bromophos-ethyl mg/kg 161686-51 [NR] [NR] Chlorpyriphos mg/kg 161686-51 <0.1||<0.1 161686-3 107% <0.1||<0.1 Chlorpyriphos-methyl mg/kg 161686-51 [NR] [NR] Diazinon 161686-51 <0.1||<0.1 [NR] mg/kg [NR] Dichlorvos mg/kg 161686-51 <0.1||<0.1 161686-3 95% Dimethoate mg/kg 161686-51 <0.1||<0.1 [NR] [NR] Ethion 161686-51 <0.1||<0.1 161686-3 94% mg/kg Fenitrothion mg/kg 161686-51 <0.1||<0.1 161686-3 89% Malathion mg/kg 161686-51 <0.1||<0.1 161686-3 66% Parathion mg/kg 161686-51 <0.1||<0.1 161686-3 109% 161686-51 161686-3 91% Ronnel <0.1||<0.1 mg/kg 161686-51 161686-3 98% Surrogate TCMX % 102 | 104 | RPD: 2 QUALITYCONTROL UNITS Dup. Sm# Duplicate Spike Sm# Spike % Recovery PCBs in Soil Base + Duplicate + %RPD Date extracted 161686-51 13/02/2017 || 13/02/2017 161686-3 13/02/2017 14/02/2017 || 14/02/2017 161686-3 Date analysed 161686-51 14/02/2017 Aroclor 1016 mg/kg 161686-51 <0.1||<0.1 [NR] [NR] Aroclor 1221 161686-51 <0.1||<0.1 [NR] [NR] mg/kg Aroclor 1232 mg/kg 161686-51 <0.1||<0.1 [NR] [NR] <0.1||<0.1 Aroclor 1242 mg/kg 161686-51 [NR] [NR] Aroclor 1248 161686-51 <0.1||<0.1 [NR] [NR] mg/kg Aroclor 1254 mg/kg 161686-51 <0.1||<0.1 161686-3 108% Aroclor 1260 161686-51 <0.1||<0.1 mg/kg [NR] [NR] % 161686-51 102 || 104 || RPD: 2 161686-3 98% Surrogate TCLMX QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Acid Extractable metals in Base + Duplicate + %RPD 161686-51 Date prepared 13/02/2017 || 13/02/2017 Date analysed 161686-51 14/02/2017 || 14/02/2017 Arsenic mg/kg 161686-51 <4||<4 Cadmium mg/kg 161686-51 <0.4 || <0.4 Chromium mg/kg 161686-51 13 | 14 | RPD: 7 161686-51 57 || 67 || RPD: 16 Copper mg/kg 161686-51 11||9||RPD:20 Lead mg/kg Mercury mg/kg 161686-51 <0.1||<0.1 Nickel 161686-51 49 | 60 | RPD: 20 mg/kg

Envirolab Reference: 161686 Revision No: R 01

mg/kg

161686-51

58 | | 53 | | RPD: 9

Zinc

**Client Reference:** DL4032, Prospect QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery vTRH(C6-C10)/BTEXNin Base + Duplicate + %RPD 161686-61 13/02/2017 || 13/02/2017 13/02/2017 Date extracted 161686-22 Date analysed 161686-61 15/02/2017 || 15/02/2017 161686-22 14/02/2017 161686-61 <25||<25 161686-22 100% TRHC6 - C9 mg/kg <25||<25 100% TRHC6 - C10 mg/kg 161686-61 161686-22 Benzene mg/kg 161686-61 <0.2||<0.2 161686-22 90% <0.5||<0.5 Toluene 161686-61 161686-22 105% mg/kg 161686-61 <1||<1 161686-22 99% Ethylbenzene mg/kg m+p-xylene mg/kg 161686-61 <2||<2 161686-22 102% o-Xylene 161686-61 <1||<1 161686-22 103% mg/kg naphthalene 161686-61 mg/kg <1||<1 [NR] [NR] Surrogate aaa-% 161686-61 99 | 89 | RPD: 11 161686-22 98% Trifluorotoluene QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery svTRH (C10-C40) in Soil Base + Duplicate + %RPD 13/02/2017 || 13/02/2017 Date extracted 161686-61 161686-22 13/02/2017 Date analysed 161686-61 14/02/2017 || 14/02/2017 161686-22 14/02/2017 161686-61 <50 || <50 161686-22 112% TRHC10 - C14 mg/kg 161686-61 <100 || <100 161686-22 104% TRHC15 - C28 mg/kg 161686-61 <100 || <100 161686-22 106% TRHC29 - C36 mg/kg 161686-61 <50||<50 161686-22 112% TRH>C10-C16 mg/kg TRH>C16-C34 mg/kg 161686-61 <100 || <100 161686-22 104% 161686-61 <100 || <100 161686-22 106% TRH>C34-C40 mg/kg Surrogate o-Terphenyl % 161686-61 94 | 100 | RPD: 6 161686-22 91% QUALITYCONTROL **UNITS** Dup.Sm# Duplicate Spike Sm# Spike % Recovery PAHs in Soil Base + Duplicate + %RPD Date extracted 161686-61 13/02/2017 || 13/02/2017 161686-22 13/02/2017 Date analysed 161686-61 14/02/2017 || 14/02/2017 161686-22 14/02/2017 Naphthalene 161686-61 <0.1||<0.1 161686-22 91% mg/kg Acenaphthylene 161686-61 <0.1||<0.1 [NR] [NR] mg/kg Acenaphthene 161686-61 <0.1||<0.1 [NR] [NR] mg/kg Fluorene mg/kg 161686-61 <0.1||<0.1 161686-22 93% Phenanthrene 161686-61 <0.1||<0.1 161686-22 95% mg/kg Anthracene mg/kg 161686-61 <0.1||<0.1 [NR] [NR] Fluoranthene mg/kg 161686-61 <0.1||<0.1 161686-22 84% Pyrene mg/kg 161686-61 <0.1||<0.1 161686-22 93% 161686-61 Benzo(a)anthracene <0.1||<0.1 [NR] [NR] mg/kg

Envirolab Reference: 161686 Revision No: R 01

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Chrysene

Benzo(b,j+k)fluoranthene

Benzo(a)pyrene

Indeno(1,2,3-c,d)pyrene

Dibenzo(a,h)anthracene

161686-61

161686-61

161686-61

161686-61

161686-61

<0.1||<0.1

<0.2||<0.2

<0.05||<0.05

<0.1||<0.1

<0.1||<0.1

92%

[NR]

78%

[NR]

[NR]

161686-22

[NR]

161686-22

[NR]

[NR]

		Client Reference	e: DL4032, Prospect		
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Benzo(g,h,i)perylene	mg/kg	161686-61	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	161686-61	86  85  RPD:1	161686-22	111%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date extracted	-	161686-61	13/02/2017    13/02/2017		
Date analysed	-	161686-61	14/02/2017    14/02/2017		
HCB	mg/kg	161686-61	<0.1  <0.1		
alpha-BHC	mg/kg	161686-61	<0.1  <0.1		
gamma-BHC	mg/kg	161686-61	<0.1  <0.1		
beta-BHC	mg/kg	161686-61	<0.1  <0.1		
Heptachlor	mg/kg	161686-61	<0.1  <0.1		
delta-BHC	mg/kg	161686-61	<0.1  <0.1		
Aldrin	mg/kg	161686-61	<0.1  <0.1		
Heptachlor Epoxide	mg/kg	161686-61	<0.1  <0.1		
gamma-Chlordane	mg/kg	161686-61	<0.1  <0.1		
alpha-chlordane	mg/kg	161686-61	<0.1  <0.1		
Endosulfan I	mg/kg	161686-61	<0.1  <0.1		
pp-DDE	mg/kg	161686-61	<0.1  <0.1		
Dieldrin	mg/kg	161686-61	<0.1  <0.1		
Endrin	mg/kg	161686-61	<0.1  <0.1		
pp-DDD	mg/kg	161686-61	<0.1  <0.1		
Endosulfan II	mg/kg	161686-61	<0.1  <0.1		
pp-DDT	mg/kg	161686-61	<0.1  <0.1		
Endrin Aldehyde	mg/kg	161686-61	<0.1  <0.1		
Endosulfan Sulphate	mg/kg	161686-61	<0.1  <0.1		
Methoxychlor	mg/kg	161686-61	<0.1  <0.1		
Surrogate TCMX	%	161686-61	103  103  RPD:0		

		Client Reference	e: DL4032, Prospect		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	161686-61	13/02/2017    13/02/2017		
Date analysed	-	161686-61	14/02/2017    14/02/2017		
Azinphos-methyl (Guthion)	mg/kg	161686-61	<0.1  <0.1		
Bromophos-ethyl	mg/kg	161686-61	<0.1  <0.1		
Chlorpyriphos	mg/kg	161686-61	<0.1  <0.1		
Chlorpyriphos-methyl	mg/kg	161686-61	<0.1  <0.1		
Diazinon	mg/kg	161686-61	<0.1  <0.1		
Dichlorvos	mg/kg	161686-61	<0.1  <0.1		
Dimethoate	mg/kg	161686-61	<0.1  <0.1		
Ethion	mg/kg	161686-61	<0.1  <0.1		
Fenitrothion	mg/kg	161686-61	<0.1  <0.1		
Malathion	mg/kg	161686-61	<0.1  <0.1		
Parathion	mg/kg	161686-61	<0.1  <0.1		
Ronnel	mg/kg	161686-61	<0.1  <0.1		
Surrogate TCMX	%	161686-61	103  103  RPD:0		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	•	
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	161686-61	13/02/2017    13/02/2017		
Date analysed	-	161686-61	14/02/2017    14/02/2017		
Aroclor 1016	mg/kg	161686-61	<0.1  <0.1		
Aroclor 1221	mg/kg	161686-61	<0.1  <0.1		
Aroclor 1232	mg/kg	161686-61	<0.1  <0.1		
Aroclor 1242	mg/kg	161686-61	<0.1  <0.1		
Aroclor 1248	mg/kg	161686-61	<0.1  <0.1		
Aroclor 1254	mg/kg	161686-61	<0.1  <0.1		
Aroclor 1260	mg/kg	161686-61	<0.1  <0.1		
Surrogate TCLMX	%	161686-61	103  103  RPD:0		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	161686-61	13/02/2017    13/02/2017	161686-22	13/02/2017
Date analysed	-	161686-61	14/02/2017    14/02/2017	161686-22	14/02/2017
Arsenic	mg/kg	161686-61	<4  <4	161686-22	104%
Cadmium	mg/kg	161686-61	<0.4  <0.4	161686-22	92%
Chromium	mg/kg	161686-61	16  23  RPD:36	161686-22	99%
Copper	mg/kg	161686-61	16  18  RPD:12	161686-22	105%
Lead	mg/kg	161686-61	4  4  RPD:0	161686-22	96%
Mercury	mg/kg	161686-61	<0.1  <0.1	161686-22	92%
Nickel	mg/kg	161686-61	11    13    RPD: 17	161686-22	89%
Zinc	mg/kg	161686-61	14    12    RPD: 15	161686-22	94%

		Client Reference	e: DL4032, Prospect		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin			Base + Duplicate + %RPD		
Soil					
Date extracted	-	[NT]	[NT]	161686-42	13/02/2017
Date analysed	-	[NT]	[NT]	161686-42	15/02/2017
TRHC6 - C9	mg/kg	[NT]	[NT]	161686-42	89%
TRHC6 - C10	mg/kg	[NT]	[NT]	161686-42	89%
Benzene	mg/kg	[NT]	[NT]	161686-42	82%
Toluene	mg/kg	[NT]	[NT]	161686-42	94%
Ethylbenzene	mg/kg	[NT]	[NT]	161686-42	92%
m+p-xylene	mg/kg	[NT]	[NT]	161686-42	89%
o-Xylene	mg/kg	[NT]	[NT]	161686-42	89%
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate aaa-	%	[NT]	[NT]	161686-42	87%
Trifluorotoluene					
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	161686-42	13/02/2017
Date analysed	-	[NT]	[NT]	161686-42	14/02/2017
TRHC10 - C14	mg/kg	[NT]	[NT]	161686-42	125%
TRHC15 - C28	mg/kg	[NT]	[NT]	161686-42	124%
TRHC29 - C36	mg/kg	[NT]	[NT]	161686-42	91%
TRH>C10-C16	mg/kg	[NT]	[NT]	161686-42	125%
TRH>C16-C34	mg/kg	[NT]	[NT]	161686-42	124%
TRH>C34-C40	mg/kg	[NT]	[NT]	161686-42	91%
Surrogate o-Terphenyl	%	[NT]	[NT]	161686-42	105%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	161686-42	13/02/2017
Date analysed	-	[NT]	[NT]	161686-42	14/02/2017
Naphthalene	mg/kg	[NT]	[NT]	161686-42	93%
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	161686-42	97%
Phenanthrene	mg/kg	[NT]	[NT]	161686-42	93%
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	161686-42	85%
Pyrene	mg/kg	[NT]	[NT]	161686-42	96%
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	161686-42	93%
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	161686-42	84%
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,njanunacene	i ig/kg	ניאין	[141]	ניאיזן	[i.ni.r]

		Client Reference	e: DL4032, Prospect		
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	161686-42	111%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD		
Date extracted	-	161686-47	13/02/2017    13/02/2017		
Date analysed	-	161686-47	14/02/2017    14/02/2017		
HCB	mg/kg	161686-47	<0.1  <0.1		
alpha-BHC	mg/kg	161686-47	<0.1  <0.1		
gamma-BHC	mg/kg	161686-47	<0.1  <0.1		
beta-BHC	mg/kg	161686-47	<0.1  <0.1		
Heptachlor	mg/kg	161686-47	<0.1  <0.1		
delta-BHC	mg/kg	161686-47	<0.1  <0.1		
Aldrin	mg/kg	161686-47	<0.1  <0.1		
Heptachlor Epoxide	mg/kg	161686-47	<0.1  <0.1		
gamma-Chlordane	mg/kg	161686-47	<0.1  <0.1		
alpha-chlordane	mg/kg	161686-47	<0.1  <0.1		
Endosulfan l	mg/kg	161686-47	<0.1  <0.1		
pp-DDE	mg/kg	161686-47	<0.1  <0.1		
Dieldrin	mg/kg	161686-47	<0.1  <0.1		
Endrin	mg/kg	161686-47	<0.1  <0.1		
pp-DDD	mg/kg	161686-47	<0.1  <0.1		
Endosulfan II	mg/kg	161686-47	<0.1  <0.1		
pp-DDT	mg/kg	161686-47	<0.1  <0.1		
Endrin Aldehyde	mg/kg	161686-47	<0.1  <0.1		
Endosulfan Sulphate	mg/kg	161686-47	<0.1  <0.1		
Methoxychlor	mg/kg	161686-47	<0.1  <0.1		
Surrogate TCMX	%	161686-47	101  102  RPD:1		

		Client Reference	e: DL4032, Prospect		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	161686-47	13/02/2017    13/02/2017		
Date analysed	-	161686-47	14/02/2017    14/02/2017		
Azinphos-methyl (Guthion)	mg/kg	161686-47	<0.1  <0.1		
Bromophos-ethyl	mg/kg	161686-47	<0.1  <0.1		
Chlorpyriphos	mg/kg	161686-47	<0.1  <0.1		
Chlorpyriphos-methyl	mg/kg	161686-47	<0.1  <0.1		
Diazinon	mg/kg	161686-47	<0.1  <0.1		
Dichlorvos	mg/kg	161686-47	<0.1  <0.1		
Dimethoate	mg/kg	161686-47	<0.1  <0.1		
Ethion	mg/kg	161686-47	<0.1  <0.1		
Fenitrothion	mg/kg	161686-47	<0.1  <0.1		
Malathion	mg/kg	161686-47	<0.1  <0.1		
Parathion	mg/kg	161686-47	<0.1  <0.1		
Ronnel	mg/kg	161686-47	<0.1  <0.1		
Surrogate TCMX	%	161686-47	101    102    RPD: 1		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	•	
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	161686-47	13/02/2017    13/02/2017		
Date analysed	-	161686-47	14/02/2017    14/02/2017		
Aroclor 1016	mg/kg	161686-47	<0.1  <0.1		
Aroclor 1221	mg/kg	161686-47	<0.1  <0.1		
Aroclor 1232	mg/kg	161686-47	<0.1  <0.1		
Aroclor 1242	mg/kg	161686-47	<0.1  <0.1		
Aroclor 1248	mg/kg	161686-47	<0.1  <0.1		
Aroclor 1254	mg/kg	161686-47	<0.1  <0.1		
Aroclor 1260	mg/kg	161686-47	<0.1  <0.1		
Surrogate TCLMX	%	161686-47	101    102    RPD: 1		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	161686-42	13/02/2017
Date analysed	-	[NT]	[NT]	161686-42	14/02/2017
Arsenic	mg/kg	[NT]	[NT]	161686-42	94%
Cadmium	mg/kg	[NT]	[NT]	161686-42	86%
Chromium	mg/kg	[NT]	[NT]	161686-42	92%
Copper	mg/kg	[NT]	[NT]	161686-42	105%
Lead	mg/kg	[NT]	[NT]	161686-42	85%
Mercury	mg/kg	[NT]	[NT]	161686-42	98%
Nickel	mg/kg	[NT]	[NT]	161686-42	79%
Zinc	mg/kg	[NT]	[NT]	161686-42	88%

		Client Reference	e: DL4032, Prospect		
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	161686-24	13/02/2017    13/02/2017	161686-49	13/02/2017
Date analysed	-	161686-24	14/02/2017    14/02/2017	161686-49	14/02/2017
HCB	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
alpha-BHC	mg/kg	161686-24	<0.1  <0.1	161686-49	85%
gamma-BHC	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
beta-BHC	mg/kg	161686-24	<0.1  <0.1	161686-49	97%
Heptachlor	mg/kg	161686-24	<0.1  <0.1	161686-49	83%
delta-BHC	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
Aldrin	mg/kg	161686-24	<0.1  <0.1	161686-49	93%
Heptachlor Epoxide	mg/kg	161686-24	<0.1  <0.1	161686-49	97%
gamma-Chlordane	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
Endosulfan I	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
pp-DDE	mg/kg	161686-24	<0.1  <0.1	161686-49	97%
Dieldrin	mg/kg	161686-24	<0.1  <0.1	161686-49	106%
Endrin	mg/kg	161686-24	<0.1  <0.1	161686-49	96%
pp-DDD	mg/kg	161686-24	<0.1  <0.1	161686-49	94%
Endosulfan II	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
pp-DDT	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	161686-24	<0.1  <0.1	161686-49	75%
Methoxychlor	mg/kg	161686-24	<0.1  <0.1	[NR]	[NR]
Surrogate TCMX	%	161686-24	97  107  RPD:10	161686-49	104%

**Client Reference:** DL4032, Prospect QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Organophosphorus Base + Duplicate + %RPD Pesticides 161686-24 13/02/2017 || 13/02/2017 161686-49 13/02/2017 Date extracted Date analysed 161686-24 14/02/2017 || 14/02/2017 161686-49 14/02/2017 Azinphos-methyl (Guthion) 161686-24 <0.1||<0.1 [NR] [NR] mg/kg 161686-24 <0.1||<0.1 Bromophos-ethyl mg/kg [NR] [NR] Chlorpyriphos mg/kg 161686-24 <0.1||<0.1 161686-49 103% 161686-24 <0.1||<0.1 Chlorpyriphos-methyl [NR] [NR] mg/kg 161686-24 Diazinon <0.1||<0.1 [NR] [NR] mg/kg Dichlorvos mg/kg 161686-24 <0.1||<0.1 161686-49 97% 161686-24 Dimethoate mg/kg <0.1||<0.1 [NR] [NR] Ethion 161686-24 <0.1||<0.1 161686-49 91% mg/kg Fenitrothion mg/kg 161686-24 <0.1||<0.1 161686-49 86% Malathion mg/kg 161686-24 <0.1||<0.1 161686-49 81% Parathion mg/kg 161686-24 <0.1||<0.1 161686-49 104% 161686-24 161686-49 87% Ronnel <0.1||<0.1 mg/kg 100% 161686-24 97 || 107 || RPD: 10 161686-49 Surrogate TCMX % QUALITYCONTROL **UNITS** Dup. Sm# Spike Sm# Spike % Recovery **Duplicate** PCBs in Soil Base + Duplicate + %RPD Date extracted 161686-24 13/02/2017 || 13/02/2017 161686-49 13/02/2017 161686-24 14/02/2017 || 14/02/2017 161686-49 14/02/2017 Date analysed Aroclor 1016 mg/kg 161686-24 <0.1||<0.1 [NR] [NR] Aroclor 1221 161686-24 <0.1||<0.1 [NR] [NR] mg/kg Aroclor 1232 mg/kg 161686-24 <0.1||<0.1 [NR] [NR] 161686-24 <0.1||<0.1 Aroclor 1242 mg/kg [NR] [NR] Aroclor 1248 161686-24 <0.1||<0.1 [NR] [NR] mg/kg Aroclor 1254 mg/kg 161686-24 <0.1||<0.1 161686-49 104% Aroclor 1260 161686-24 [NR] mg/kg <0.1||<0.1 [NR] % 161686-24 97 || 107 || RPD: 10 161686-49 100% Surrogate TCLMX QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery vTRH(C6-C10)/BTEXNin Base + Duplicate + %RPD Soil 13/02/2017 Date extracted [NT] [NT] 161686-62 Date analysed [NT] [NT] 161686-62 15/02/2017 TRHC6 - C9 [NT] [NT] 161686-62 84% mg/kg 84% TRHC6 - C10 mg/kg [NT] [NT] 161686-62 Benzene mg/kg [NT] [NT] 161686-62 77% 161686-62 86% Toluene [NT] [NT] mg/kg 161686-62 84% Ethylbenzene [NT] mg/kg [NT] m+p-xylene mg/kg [NT] [NT] 161686-62 86% 161686-62 85% o-Xylene mg/kg [NT] [NT] naphthalene [NR] [NR] mg/kg [NT] [NT] 161686-62 % [NT] [NT] 83% Surrogate aaa-

Envirolab Reference: 161686 Revision No: R 01

Trifluorotoluene

		Client Referenc	e: DL4032, Prospect		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	161686-62	13/02/2017
Date analysed	-	[NT]	[NT]	161686-62	14/02/2017
TRHC10 - C14	mg/kg	[NT]	[NT]	161686-62	126%
TRHC15 - C28	mg/kg	[NT]	[NT]	161686-62	123%
TRHC29 - C36	mg/kg	[NT]	[NT]	161686-62	111%
TRH>C10-C16	mg/kg	[NT]	[NT]	161686-62	126%
TRH>C16-C34	mg/kg	[NT]	[NT]	161686-62	123%
TRH>C34-C40	mg/kg	[NT]	[NT]	161686-62	111%
Surrogate o-Terphenyl	%	[NT]	[NT]	161686-62	104%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	161686-68	13/02/2017    13/02/2017	161686-62	13/02/2017
Date analysed	-	161686-68	14/02/2017    14/02/2017	161686-62	14/02/2017
Naphthalene	mg/kg	161686-68	<0.1  <0.1	161686-62	95%
Acenaphthylene	mg/kg	161686-68	<0.1  <0.1	[NR]	[NR]
Acenaphthene	mg/kg	161686-68	<0.1  <0.1	[NR]	[NR]
Fluorene	mg/kg	161686-68	<0.1  <0.1	161686-62	98%
Phenanthrene	mg/kg	161686-68	<0.1  <0.1	161686-62	100%
Anthracene	mg/kg	161686-68	<0.1  <0.1	[NR]	[NR]
Fluoranthene	mg/kg	161686-68	<0.1  <0.1	161686-62	94%
Pyrene	mg/kg	161686-68	<0.1  <0.1	161686-62	107%
Benzo(a)anthracene	mg/kg	161686-68	<0.1  <0.1	[NR]	[NR]
Chrysene	mg/kg	161686-68	<0.1  <0.1	161686-62	98%
Benzo(b,j+k)fluoranthene	mg/kg	161686-68	<0.2  <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	161686-68	<0.05  <0.05	161686-62	95%
Indeno(1,2,3-c,d)pyrene	mg/kg	161686-68	<0.1  <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	161686-68	<0.1  <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	161686-68	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	161686-68	86  84  RPD:2	161686-62	123%

,					
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in			Base + Duplicate + %RPD		
soil					
Date prepared	-	[NT]	[NT]	161686-62	13/02/2017
Date analysed	-	[NT]	[NT]	161686-62	14/02/2017
Arsenic	mg/kg	[NT]	[NT]	161686-62	70%
Cadmium	mg/kg	[NT]	[NT]	161686-62	77%
Chromium	mg/kg	[NT]	[NT]	161686-62	104%
Copper	mg/kg	[NT]	[NT]	161686-62	118%
Lead	mg/kg	[NT]	[NT]	161686-62	90%
Mercury	mg/kg	[NT]	[NT]	161686-62	111%
Nickel	mg/kg	[NT]	[NT]	161686-62	#
Zinc	mg/kg	[NT]	[NT]	161686-62	76%

# **Report Comments:**

Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures.

We cannot guarantee that these sub-samples are indicative of the entire sample.

Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples requested for asbestos testing were sub-sampled from jars

provided by the client.

Acid Extractable Metals in Soil: # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Matt Tang
Paul Ching

INS: Insufficient sample for this test

NR: Test not required

<: Less than

PQL: Practical Quantitation Limit

RPD: Relative Percent Difference

>: Greater than

NT: Not tested

NA: Test not required

LCS: Laboratory Control Sample

Envirolab Reference: 161686 Page 90 of 91 Revision No: R 01

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

# **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 161686 Page 91 of 91

Revision No: R 01

ENVIROLAB	LAB	CHA	IN O	CHAIN OF CUSTODY		0	Client	<u>+</u>				Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolaɔ.com.au	olab Services swood, NSW 2 sydney@envi	067 irolaɔ.com.au
GROUP		ENVI	ROLAB G	ENVIROLAB GROUP - National phone number 1300 42 43 44	ional ph	one n	umber	1300 4	2 43 44			Combo1=TRH/BTEX/Pb	X/Pb	
Client: DLA					Client P	roject P	lame / I	Client Project Name / Number / Site etc (ie report title):	Site etc (i	e report	title):	Combo3=TRH/BTEX/PAH/PD	X/PAH/Met	
Contact Person:	n: Jack							D	DI 40.32			Combo4=1RH/B1EX/PAH/Met/Phen	X/PAH/Met/P	nen B/Met
Project Mgr:	Jack				PO No.:				Prospect	+		Combo6=TRH/BTEX/PAH/OC/OP/PC3/Met	X/PAH/OC/OP	PC3/Met
Sampler:	Amy				Envirolab Quote No. :	b Quot	: .oN a					Combo7=TRH/BTEX/PAH/OC/PCB/Wet/Phen	X/PAH/OC/PC	B/Met/Phen
Address: Unit	Address: Unit 3/38 Leighton Place	Hornsby			Or choose: (standard)	sults re	quired:	Date results required:  Or choose: (standard) same day / 1 day / 2 day / 3 day  Note: Inform lab in advance if urgent turnaround is required -	/ 1 day /	2 day / 3	3 day	Combo8=1RH/B1EX/PAH/OC/OP/PC3/Met/Phen Combo9=TRH/BTEX/PAH/OC/PCB/Wet/Phen/CN Combo10=TRH/BTEX/PAH/OC/OP/PC3B/Met/Phe Combo11=TRH/BTEX/PAH/OC/PC8/22met/Phen/	X/PAH/OC/OF X/PAH/OC/PC EX/PAH/OC/O	Combo8=1RH/B1EX/PAH/OC/OP/PC5/Met/Phen Combo9=TRH/BTEX/PAH/OC/PCB/Met/Phen/CN Combo10=TRH/BTEX/PAH/OC/OP/PCB/Met/Phen/CN Combo11=TRH/BTEX/PAH/OC/PCB/_2met/Phen/CN
ohono.		Moh			Surcharges apply	es apply	Surcharaes apply Report format: ecdat / equits	panie /				Combo12=TRH/BT Combo13=TRH/BT	EX/PAH/OC/P EX/PAH/OC/O	Combo12=TRH/BTEX/PAH/OC/PCB/Met/TCLP-PAH,6 Met Combo13=TRH/BTEX/PAH/OC/OP/P2B/Met/TCLP-PAH,6Met
Email:					Lab Comments:	ments		, and				A Combo with an	A' indicates As	A Combo with an 'A' indicates Ashestos is also needed
	Sydney	@dlaenviro	Sydney@dlaenvironmental.com.au	<u>an</u>								A COMBO WILLIAM	A marcares As	spesios is also necueu.
	Sample	Sample information	u,						Te	<b>Tests Required</b>	ired			Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date	Type of sample	E ognio)	2 equio)	Sotsadath							Provide as much information about the sample as you can
	BH1_0.5-0.6	0.5.0.6	6/2/17	1105		Y	~							
7	BHI- 1.9-2.0	1.9.2.0	-		×									
3	BH2-0.5-0.6	0.5-0.6			*7.	X	>							
4	BH2-1.9-2.0	1.9-2.0			×									
5	BH3-0.5-0.6	0.5-0.6				X	~						ENVE	O AB
9	BH3_ 1.9-2.0	1.9-2.0	4		X								7	Chatswood NSW 2007
7	BH4_0.5-0.6	-	7/2/		^								Z O T	No: 161686
00	BH4-1-6-1-0	1.9-2.0	1/2/17		X		-		-				a dist	(4:00
ь	BH4-5.4-6.0	5.9-6.0	7/2/17		X	*							Time	
0)	HAS_ 0.2-0.3	0.2-0.3	4/2/12			×	V						Receiv	
=	HAS- 0.4-0.5	5.0-4.0	4/2/12		×								Temp(	10.7
12	BH6-0.5-0.6	0.5-0.6	2/2/17			X							Coling	-
13	BH6_ 1.9-2.0	1.9.2.0	-		×								назае	univernitact/stoken/None
14	BH7-0.5-0.6	0.5-0.6				X								
15	BH7-1.9-2.0	1.9-2.0	-1	1	×									
Relinquished by (Company):	y (Company):	DLA			Received by (Company):	d by (C	mpany	ii Els				Lab use only:		
Print Name:	Any				Print Name:	me:		ノイン				Samples Received	I: Cool or Ar	Samples Received: Cool or Ambient (circle one)
Date & Time:	10/2/17				Date & Time:	ime:	10	1/2/11	14:	4:00		Temperature Received at:		3. (if applicable)
	1				Signature.	į		1	1			Transported by Hand delivered	Samuel American	rad / conriar

ENVIROLAB	LAB	CHA	INO	CHAIN OF CUSTODY - Client	<u>\</u>	ਹ	ient			12 / Ph (	<u>Sydney Lab</u> - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolaɔ.com.au	7 aɔ.com.au
GROUP		ENVIE	ROLAB G	ENVIROLAB GROUP - National phone number 1300 42 43 44	ional pho	ne nu	mber 130	0 42 43 44		Co	Combo1=TRH/BTEX/Pb	
Client: DLA	1				Client Pr	oject Na	me / Numb	Client Project Name / Number / Site etc (ie report title):	e report title)		Combo3=TRH/BTEX/PAH/PD Combo3=TRH/BTEX/PAH/Met	
Contact Person:	on: Jack							Dr 4032		Co	Combo4=TRH/BTEX/PAH/Met/Phen	n Mot
Project Mgr:	Jack				PO No.:			Prospect	+	3 3	ComboS=1RH/B1EX/PAH/OC/PCB/Wet Combo6=TRH/BTEX/PAH/OC/OP/PC3/Met	C3/Met
Sampler:	Amy				Envirolab Quote No.:	Quote	No.:			Cor	Combo7=TRH/BTEX/PAH/OC/PCB/Wet/Phen	Wet/Phen
Address: Uni	Address: Unit 3/38 Leighton Place				Date resi	ılts req	iired:			Ö Ö	Combo8=TRH/BTEX/PAH/OC/OP/PC3/Met/Phen Combo9=TRH/BTEX/PAH/OC/PC8/Met/Phen/CN	C3/Met/Phen Met/Phen/CN
		Hornsby			Or choos Note: Info	e: stan	lard same	Or choose: Standard & same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharges annly.	2 day / 3 day d is required -		Combo10=TRH/BTEX/PAH/OC/OP/PCB/Met/Phen/CN Combo11=TRH/BTEX/PAH/OC/PCB/-2met/Phen/CN Combo12=TRH/BTEX/PAH/OC/PCB/Met/TCLP-PAH,6 Met	PCB/Met/Phen/CN /-2met/Phen/CN /Met/TCLP-PAH,6 Met
Phone:		Mob:			Report fo	rmat: e	Report format: esdat / equis /	/:		Co	Combo13=TRH/BTEX/PAH/OC/OP/PCB/Met/TCLP-PAH,6Met	PCB/Met/TCLP-PAH,6Met
Email:	Sydney	Qdlaenviror	Sydney@dlaenvironmental.com.au	au.	Lab Com	ments:				AC	A Combo with an 'A' indicates Asbestos is also needed.	stos is also needed.
	Sampl	Sample information	n					Ţ	<b>Tests Required</b>			Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date	Type of sample	E ognio)	Sotsodeth	Carra					Provide as much information about th sample as you can
90909	BH8 0.5-0.6	9.0-2.0	8/2/17	lios		X						
7	1.6	1.0-7.0	-		×							
8	849_ 0.5-0.6	0.5-0.6			_	X						
6	BH9 - 1.9-2.0	19-2.0			×							
20	2410_0.5-0.6	0.5-0.6			^	X						
21	BHIO- 1.9-2.0	1.9-2.0			X	×						
22	BHII - 0.5-0.6	0.5-0.6			^	X						
23	BHII - 1.9-2.0	1.9-20			×	×						
24	BH12 - 0.5-0.6	0.5-0.6			×	×						
25	BH12 - 1.9-2.0	1.9-7.0	-(		×	×						
26	BH13_ 0.5-0.6	0.5-0.6	L1/2/L			X						
27	2	2.5.2.6	1/2/17		×							
28	BH13 7.4-7.5	7475	1/2/17		>							
29	1	0.5-0.6	11/2/8		^	×						
30	BH14_ 1.9-2.0	19-2.0	1	-1	×							
Relinguished	Relinguished by (Company):	DLA			Received by (Company):	by (Cor	npany):	57:		r qe7	Lab use only:	
Print Name:	Ann				Print Name:	.e:	,	144		Samp	Samples Received: Cool or Ambient (circle one)	ient (circle one)
Date & Time:	10/2/17				Date & Time:	me:	10 21	7. 14:	4:00	Temp	Temperature Received at:	(if applicable)
Cionstirro					Signature			1		Trans	Transported by Hand delivered / courier	1 / courier

ENVIROLAB	LAB	CHA	IN OF	CHAIN OF CUSTODY	4.	<u> </u>	Client				Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolan.com.au	m.au
GROUP	1	ENVIE	SOLAB G	ENVIROLAB GROUP - National phone number 1300 42 43 44	onal ph	one nun	ber 13	00 42 4	3 44		Combo1=TRH/BTEX/Pb	
Client: DLA					Client P	oject Nan	ne / Num	ber / Site	Client Project Name / Number / Site etc (ie report title):	title):	Combo2=TRH/BTEX/PAH/Pb Combo3=TRH/BTEX/PAH/Met	
Contact Person:	on: Jack							DI 4032	232		Combo4=TRH/BTEX/PAH/Met/Phen	
Project Mgr:	1				PO No.:			Pro	Prospect		ComboS=TRH/BTEX/PAH/OC/PCB/Nºet ComboS=TRH/BTEX/PAH/OC/OP/PC3/Met	Total Control
Sampler:	Amy				Envirola	Envirolab Quote No.					Combo7=TRH/BTEX/PAH/OC/PCB/Met/Phen	Phen
Address: Uni	Address: Unit 3/38 Leighton Place	Hornsby			Or choo:	Or choose: (standard) Note: Inform lab in adva	ed: rd sam	e day / 1 urgent turr	Date results required:  Or choose: (standard) same day / 1 day / 2 day / 3 day  Note: Inform lab in advance if urgent turnaround is required -	3 day ired -	Combo8=TRH/BTEX/PAH/OC/OP/PC3/Met/Phen Combo9=TRH/BTEX/PAH/OC/PC8/Wet/Phen/CN Combo10=TRH/BTEX/PAH/OC/OP/PC8/Met/Phen/CN Combo11=TRH/BTEX/PAH/OC/PC8/.2met/Phen/CN Combo12=TRH/BTEX/PAH/OC/PC8/.2met/Phen/CN	let/Phen Phen/CN Met/Phen/CN et/Phen/CN /TCLP-PAH,6 Met
Phone:		Mob:			Report 1	Report format: esdat / equis	lat / equ	/ 5!			Combo13=TRH/BTEX/PAH/OC/OP/PCB/Met/TCLP-PAH,6Met	Met/TCLP-PAH,6Met
Email:	Sydney	@dlaenviror	Sydney@dlaenvironmental.com.au	an	Lab Comments:	ments:					A Combo with an 'A' indicates Asbestos is also needed.	is also needed.
	Sampl	Sample information	u						Tests Required	uired		Comments
Envirolab Sample ID	Client Sample ID or information	Depth	<b>Date</b> sampled	Type of sample	E ognio)	2 odnos					.5	Provide as much information about the sample as you can
3/00	MAIS_0-0.2	2.0.0	11/2/8	Soil		×		-				
78	HAIS, 0,2-0.4	4.0-20	_		X							
33	BH16-0.5-0.6	0.5-0.6				×						
34	BH16_ 1.9-2.0	19-2.0			X							
35	BHI7- 0.5-0.6	0.5-0.6			,	×						
36	BHIT- 1.9-2.0	0.2-6.1			×							
37	BH18_ 0.5-0.6	0.5-0.6				×						
33	BH18, 1.9-2.0	1.9-7.0			×					5		
39	BHIA, 0.5-0.6	0.5-0.6				X						
40	BHI9 - 1.9-2.0	1.9-2.0	7		×							
41	HA20-0.2-0.3	8.0-2.0	4/2/12		/\	×						
42	HA20-0.5-0.6	0.5-0.6	4/2/6		×							
43	BHZ1- 0.5-0.6	0.5-0.6	1128		1	×						
44	1	0.2-6.1	7		X							
45	BHZL- 0.5-0-6	0.5-0.6	7/2/17	-1		>						
Relinquished L	Relinquished by (Company):	DLA			Received	Received by (Company):	any):	573			Lab use only:	
Print Name:	Amy				Print Name:	ne:	)	JYH			Samples Received: Cool or Ambient (circle one)	(circle one)
Date & Time:	10/2/17				Date & Time:	ime:	10/2	N	14:00.		Temperature Received at: (i	(if applicable)
Cianataria	1				Signature:			4			Transported by: Hand delivered / courier	urier

ENVIROLAB	JURB	CHA	IN OF	CHAIN OF CUSTODY	6	- Client	ent		Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolaɔ.com.au	Services od, NSW 2067 ney@envirolaɔ.com	n:au
GROUP	1	ENVIE	ROLAB G	ENVIROLAB GROUP - National phone number 1300 42 43 44	onal pho	ne nur	ber 1300 42	43 44	Combo1=TRH/BTEX/Pb		
Client: DLA					Client Pro	ject Nan	e / Number / S	Client Project Name / Number / Site etc (ie report title):	Combo2=TRH/BTEX/PAH/Pb Combo3=TRH/BTEX/PAH/Met	AH/Pb AH/Met	
Contact Person:	on: Jack						DF	or 4032	Combo4=TRH/BTEX/PAH/Met/Phen	NH/Met/Phen	
Project Mgr:	Jack				PO No.:		(+	Prospert	ComboS=TRH/BTEX/PAH/OC/PCB/N'et Combo6=TRH/BTEX/PAH/OC/OP/PC3/Met	NH/OC/PCB/Met	
Sampler:	Amy				Envirolab Quote No.	Quote N			Combo7=TRH/BTEX/PAH/OC/PCB/Met/Phen	NH/OC/PCB/Met/Ph	hen
Address: Uni	Address: Unit 3/38 Leighton Place	Hornsby			Date results required: Or choose: (standard) Note: Inform lab in adva	ilts requires: standarm lab in a	ed: rd same day /	Date results required:  Or choose: (standard) same day / 1 day / 2 day / 3 day  Note: Inform lab in advance if urgent turnaround is required -	ComboB=TRH/BTEX/PAH/OC/OP/PC3/Met/Phen ComboJ=TRH/BTEX/PAH/OC/OP/PC3/Met/Phen/CN ComboJ10=TRH/BTEX/PAH/OC/OP/PC3/SMet/Phen/CN ComboJ13=TRH/BTEX/PAH/OC/PC8/-2Met/Phen/CN ComboJ13=TRH/BTEX/PAH/OC/PC8/-2Met/Phen/CN	AH/OC/OP/PC3/Me AH/OC/PCB/Met/PP AH/OC/OP/PCB/M AH/OC/PCB/_2met	et/Phen hen/CN et/Phen/CN t/Phen/CN
Phone:		Mob:			Report fo	: apply rmat: esc	Surcharges apply Report format: esdat / equis /	þ	Combo13=TRH/BTEX/PAH/OC/OP/PCB/Met/TCLP-PAH, b Met Combo13=TRH/BTEX/PAH/OC/OP/PCB/Met/TCLP-PAH,6Met	AH/OC/PCB/Met/	ICLP-PAH, b Met let/TCLP-PAH, 6Met
Email:	Sydney@	gdlaenviror	Sydney@dlaenvironmental.com.au	an	Lab Comments:	nents:			A Combo with an 'A' indicates Asbestos is also needed.	dicates Asbestos is	also needed.
	Sample	Sample information	u					Tests Required			Comments
					3	Son					
Envirolab Sample ID	Client Sample ID or information	Depth	Date	Type of sample	ogus)	rame)				in s	Provide as much information about the sample as you can
46	BH22, 19-2.0	19-2.0	1/2/17	lios	×						
10° 15	(HA23-0.1-0.2	2.0-1.0	9/2/17		×	X					
48 199	(HAZZ-0.2-0.3	0.2-0.3	0/2/17		X						
49	BH24-0.5-0.6	0.5-0.6	8/2/17		×						
6	BHZ4-1.9-2.0	1.9-2.0			X						
51	BH25, 0.5-0.6	0.0-5.0			X	×					
25	BHZ5-1.9-2.6	1.9-2.0	1		×						
25	BH26-0.5-0.6	0.0-5.0	7/2/17		×	×					
75	BHZ6-1.9-2.0	1.9-2.0	7/2/17		X						
23	BH27, 0.5-0.6	0.5-0.6	7/2/17		×	×					
25	BH27-1.9-2.0	1.9-2.0	7/2/17		×						
15	BH18-0.5-0.6	2.0-5.0	11/2/8		×	×					
85	BH28-1.9-2.0	1.9-7.0			×						
59	Bit29_6.5-0.6	9.0-5.0			<	X					
09	BH29-1-9-2.0	1.9.2.0	7	ヿ	X						
Relinquished	Relinquished by (Company):	DLA			Received by (Company):	by (Comp	any): $\mathcal{E}$	S	Lab use only:		
Print Name:	Any				Print Name:	e:	FX-5		Samples Received: Cool or Ambient (circle one)	ol or Ambient (c	circle one)
Date & Time:	10/2/17				Date & Time:	ne:	10/2/17	1400	Temperature Received at:		(if applicable)
	1				Signature.		5		Transported by Hand delivered / courier	dolinord / com	rior

ENVIROLAB	UHB	CHA	IN OF	CHAIN OF CUSTODY		- Client	ent			Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW Ph 02 9910 6200 / sydney@en	<u>Sydney Lab</u> - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolaɔ.com.au	ao.com.au
GROUP	1	ENVI	ROLAB G	ENVIROLAB GROUP - National phone number 1300 42 43 44	onal pho	nne num	ber 1300 42	43 44		Combo1=TRH/BTEX/Pb	TEX/Pb	
Client: DLA					Client Pr	oject Nam	Client Project Name / Number / Site etc (ie report title):	ite etc (ie re	oort title):	Combo3=TRH/BTEX/PAH/Pb Combo3=TRH/BTEX/PAH/Met	TEX/PAH/Pb TEX/PAH/Met	
Contact Person:	on: Jack					· ·	DL	Dr 4032		Combo4=TRH/B1	Combo4=TRH/BTEX/PAH/Met/Phen	
Project Mgr:	Jack				PO No.:		()	Prospert		ComboS=TRH/B1	Combo5=1RH/BTEX/PAH/OC/PCB/Wet Combo6=TRH/BTEX/PAH/OC/OP/PC3/Met	/et 3/Met
Sampler:	Amy				Envirola	Envirolab Quote No. :				Combo7=TRH/B1	Combo7=TRH/BTEX/PAH/OC/PCB/Net/Phen	/et/Phen
Address: Uni	Address: Unit 3/38 Leighton Place				Date res	Date results required:	:pa			Combo8=TRH/B1	Combo8=TRH/BTEX/PAH/OC/OP/PC3/Met/Phen Combo9=TRH/BTEX/PAH/OC/PCB/Wet/Phen/CN	C3/Met/Phen
		Hornsby			Or choose: Sta Note: Inform lab	e: standai	Or choose: (standard same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - curcharges annly	' 1 day / 2 da turnaround is i	y / 3 day equired -	Combo10=TRH/E Combo11=TRH/E Combo12=TRH/E	Combo10=TRH/BTEX/PAH/OC/OP/P.CB/Met/Phen/CN Combo11=TRH/BTEX/PAH/OC/PCB/-2met/Phen/CN Combo12=TRH/BTEX/PAH/OC/PCB/Met/TCLP-PAH,61	Combo10=TRH/BTEX/PAH/OC/OP/PCB/Met/Phen/CN Combo11=TRH/BTEX/PAH/OC/PCB/-2met/Phen/CN Combo12=TRH/BTEX/PAH/OC/PCB/Met/TCLP-PAH,6 Met
Phone:		Mob:			Report f	Report format: esdat / equis	at / equis /			Combo13=TRH/B	BTEX/PAH/OC/OP/P	Combo13=TRH/BTEX/PAH/OC/OP/PCB/Met/TCLP-PAH,6Met
Email:	Sydney(	@dlaenviro	Sydney@dlaenvironmental.com.au	an	Lab Comments:	ments:				A Combo with an	A Combo with an `A' indicates Asbestos is also needed.	stos is also needed.
	Sampl	Sample information	u					Tests	Tests Required			Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	E ognio)	2 odnos						Provide as much information about the sample as you can
61686.	BH30_0.5-0.6	0.5-0.6	7/2/7	lios		×						
29	1	5.9-6.0	7/2/17		×							
63	BH31_ 6.5-0.6	0.5-0.6	6/2/17		<i>&gt;</i>	×						
64	BH31_ 1.9-2.0	1.9-7.0	4		×							
59	BH32-0.5-0.6	0.5-0.6			×	X						
99	BH32-1,9-2.0	1.9-2.0			X							
19	QLIOS	0.5-0.6			^	~						
89	QC101	2.5-2.6			×	×						
69	QC102	0.0-5.0				X						
70.	QC104	0.5-0.6	4		/	X						
21/12	TS1TB		7/2/17									
73/74	TSKB		8/2/11									
				7			_					
Relinquished	Relinquished by (Company):	DLA			Received	by (Company):	any): SC			Lab use only:		
Print Name:					Print Name:	ne:	TAC	0.11		Samples Received: Cool or Ambient (circle one)	ed: Cool or Ambi	ent (circle one)
Date & Time:	10/2/17				Date & Time:	me:	020	400		Temperature Received at:	ceived at:	(if applicable)
Signature:	1				Signature		6			I ransported by: Hand delivered /	Hand delivered	/ courier



# **ANALYTICAL REPORT**





CLIENT DETAILS -

LABORATORY DETAILS

Sydney Office Contact

DLA ENVIRONMENTAL SERVICES PTY LTD Client

Address

NSW 2077

38 Leighton Pl

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Unit 16, 33 Maddox St Address

Alexandria NSW 2015

61 2 98700900 +61 2 8594 0400 Telephone Telephone Facsimile 61 2 98700999 Facsimile +61 2 8594 0499

Email sydney@dlaenvironmental.com.au Email au.environmental.sydney@sgs.com

Project **DL4032 Prospect** SGS Reference SE161937 R0 Order Number Prospect Date Received 13/2/2017 2 16/2/2017 Samples Date Reported

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environment, Health and Safety recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Kamrul Ahsan

Senior Chemist

Ly Kim Ha

Organic Section Head

Kinter

Ravee Sivasubramaniam

W. Erwande

Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

Member of the SGS Group



SE161937 R0

#### VOC's in Soil [AN433] Tested: 14/2/2017

			QC103	QC106
			SOIL	SOIL
PARAMETER	UOM	LOR	- 7/2/2017 SE161937.001	- 8/2/2017 SE161937.002
Benzene	mg/kg	0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1

16/02/2017 Page 2 of 14



SE161937 R0

#### Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 14/2/2017

			QC103	QC106
			SOIL	SOIL
				-
			7/2/2017	8/2/2017
PARAMETER	UOM	LOR	SE161937.001	SE161937.002
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

16/02/2017 Page 3 of 14





#### TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/2/2017

			QC103	QC106
			SOIL	SOIL
			- 7/2/2017	- 8/2/2017
PARAMETER	UOM	LOR	SE161937.001	SE161937.002
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210

16/02/2017 Page 4 of 14





#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/2/2017

			QC103	QC106
			SOIL	SOIL
			-	-
PARAMETER	UOM	LOR	7/2/2017 SE161937.001	8/2/2017 SE161937.002
Naphthalene	mg/kg	0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8

16/02/2017 Page 5 of 14



#### OC Pesticides in Soil [AN420] Tested: 14/2/2017

			QC103	QC106
			SOIL	SOIL
			-	-
			7/2/2017	
PARAMETER	UOM	LOR	SE161937.001	SE161937.002
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1

16/02/2017 Page 6 of 14



SE161937 R0

#### OP Pesticides in Soil [AN420] Tested: 14/2/2017

			QC103	QC106
			SOIL	SOIL
			7/2/2017	
PARAMETER	UOM	LOR	SE161937.001	SE161937.002
Dichlorvos	mg/kg	0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2

16/02/2017 Page 7 of 14



SE161937 R0

PCBs in Soil [AN420] Tested: 14/2/2017

			QC103	QC106
			SOIL	SOIL
			- 7/2/2017	- 8/2/2017
PARAMETER	UOM	LOR	SE161937.001	SE161937.002
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

16/02/2017 Page 8 of 14





#### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 14/2/2017

			QC103	QC106
			SOIL	SOIL
			- 7/2/2017	- 8/2/2017
PARAMETER	UOM	LOR	SE161937.001	SE161937.002
Arsenic, As	mg/kg	3	4	4
Cadmium, Cd	mg/kg	0.3	0.4	<0.3
Chromium, Cr	mg/kg	0.3	63	20
Copper, Cu	mg/kg	0.5	39	18
Lead, Pb	mg/kg	1	15	12
Nickel, Ni	mg/kg	0.5	78	10
Zinc, Zn	mg/kg	0.5	58	13

16/02/2017 Page 9 of 14



SE161937 R0

#### Mercury in Soil [AN312] Tested: 15/2/2017

			QC103	QC106
			SOIL	SOIL
				-
			7/2/2017	8/2/2017
PARAMETER	UOM	LOR	SE161937.001	SE161937.002
Mercury	mg/kg	0.05	<0.05	<0.05

16/02/2017 Page 10 of 14



SE161937 R0

Moisture Content [AN002] Tested: 15/2/2017

			QC103	QC106
			SOIL	SOIL
			7/2/2017	
PARAMETER	UOM	LOR	SE161937.001	SE161937.002
% Moisture	%w/w	0.5	16	18

16/02/2017 Page 11 of 14



SE161937 R0

Fibre Identification in soil [AN602] Tested: 15/2/2017

			QC103	QC106
			SOIL	SOIL
				-
			7/2/2017	8/2/2017
PARAMETER	UOM	LOR	SE161937.001	SE161937.002
Asbestos Detected	No unit	-	No	No

16/02/2017 Page 12 of 14



SE161937 R0



- METHOD _____ METHODOLOGY SUMMARY _

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

**AN403** 

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.

AN403

Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

AN403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN420

SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN433

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

AN602

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).

AN602

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602

The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
- (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg; and
- (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

16/02/2017 Page 13 of 14

FOOTNOTES SE161937 R0

FOOTNOTES -

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.
 NVL Not validated.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received.
Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at <a href="http://www.sgs.com/en/terms-and-conditions">http://www.sgs.com/en/terms-and-conditions</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

16/02/2017 Page 14 of 14



#### **ANALYTICAL REPORT**



SGS Alexandria Environmental



CLIENT DETAILS -

LABORATORY DETAILS

Contact

Sydney Office

Client

DLA ENVIRONMENTAL SERVICES PTY LTD

Address

38 Leighton PI

NSW 2077

Unit 3

61 2 98700900

Facsimile

61 2 98700999

Email

sydney@dlaenvironmental.com.au

Project

Telephone

**DL4032 Prospect** 

Order Number Samples

**Prospect** 2

Address

Telephone

SGS Reference

Date Received

Date Reported

Facsimile

Manager

Laboratory

Email

+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com

**Huong Crawford** 

Unit 16. 33 Maddox St

Alexandria NSW 2015

SE161937 R0 13 Feb 2017

16 Feb 2017

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied.

SGS Environment, Health and Safety recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemis

Kamrul Ahsan Senior Chemist Ly Kim Ha

Organic Section Head

Kinly

S. Carlebrolows

Ravee Sivasubramaniam Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

Member of the SGS Group



# SGS

## **ANALYTICAL REPORT**

RESULTS —	tion in soil				Method AN602
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification
SE161937.001	QC103	Soil	55g Clay, Rocks	07 Feb 2017	No Asbestos Found
SE161937.002	QC106	Soil	76g Clay, Rocks	08 Feb 2017	No Asbestos Found

16/02/2017 Page 2 of 3





#### **METHOD SUMMARY**

METHOD -

METHODOLOGY SUMMARY

AN602

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS), AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of

suspect fibres/bundles from the sample which cannot be returned.

AN602

AN602

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4. Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602

The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

- no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
- the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
- these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

#### FOOTNOTES -

Amosite **Brown Asbestos** Not Analysed Chrysotile White Asbestos INR Listed. Not Required

Crocidolite Blue Asbestos NATA accreditation does not cover the performance of this service.

Amosite and/or Crocidolite Amphiboles Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

#### Sampled by the client

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining.

Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining.

Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

16/02/2017 Page 3 of 3

	1	1
FI	า์งเริง	I AR
U- 5	V BROWN	1

# **CHAIN OF CUSTODY - Client**

ENVIROLAB GROUP - National phone number 1300 42 43 44

Client: DLA Contact Person: Jack			Client	Projec	t Nam	ie / Nu				report t	itle):	Co	mbo3=Tl	RH/BTEX/P	AH/Met			
Project Mgr:	Jack Jack			_	PO No.: Prospect				Co	Combo4=TRH/BTEX/PAH/Met/Phen Combo5=TRH/BTEX/PAH/OC/PCB/Met								
Sampler: Amy Address: Unit 3/38 Leighton Place Hornsby				1		ote M			troj	PECI	-	_	Co	mbo6=Ti	RH/BTEX/P	AH/OC/OP/	PC3/Met	
			Envirolab Quote No.:  Date results required:  Or choose: Standard same day / 1 day / 2 day / 3 day  Note: Inform lab in advance if urgent turnaround is required - surcharges apply				Co Co Co	Combo7=TRH/BTEX/PAH/OC/PCB/Met/Phen Combo8=TRH/BTEX/PAH/OC/OP/PCB/Met/Phen Combo9=TRH/BTEX/PAH/OC/PCB/Met/Phen/CN Combo10=TRH/BTEX/PAH/OC/OP/PCB/Met/Phen/CN Combo11=TRH/BTEX/PAH/OC/PCB/_Zmet/Phen/CN Combo12=TRH/BTEX/PAH/OC/PCB/Met/TCLP-PAH,6 Met			PCB/Met/Phen /Met/Phen/CN /PCB/Met/Phen/CN B/L2met/Phen/CN							
Phone:		Mab:			Repor			at / ed	quis /									PPCB/Met/TCLP-PAH, 6Met
Email:	Sydney	@dlaenviron	mental.com	.au	Lab Co	mmen	its:							A	ombo w	ith an `A' in	idicates Asl	nestos is also needed.
	Samp	le information	1								Test	s Requi	red					Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Kindens	CANALON &	Arbentos											Provide as much information about the sample as you can
- 1	QC103	0.5-0.6	7/2/17	Soil	20	leas	e-	SON	ol -	0	Sa	5	-+	_				
Z	QC106	0.5-0.6	8/2/17		3,	for	C	LIT	SU	te:		besto	5 1	reslat	5			
																808	EHS Alay	andria Laboratory
																SE1	6193	7 COC Feb - 2017
																	-	T
Relinguished	by (Company):	DLA EL	5		Receiv	ed by (	Comp	any):	ECK	161	98()			Lahi	se only			
Print Name: Date & Time:	Amy 10/2/17	1	mes 3	40	Print N Date &	ame: Time:			MH		1400	) ,		Samp	les Rec	eived: Co		vient (circle one)
Signature:	106	> 12	101	~	Signat	ure:		1	~						parted	by: Hand	delivere	d / courier

Sydney Lab - Envirolab Services
12 Ashley St, Chatswood, NSW 2067
Ph 02 9910 6200 / sydney@envirolab.com.au

Combo1=TRH/BTEX/Pb



email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

161636

Client:

**DLA Environmental Services Pty Ltd** 

Unit 3, 38 Leighton PI Hornsby NSW 2077

Attention: Jack, Amy

Sample log in details:

Your Reference: DL4032, Prospect
No. of samples: 3 sediments 3 waters

Date samples received / completed instructions received 09/02/17 / 09/02/17 / 09/02/17

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 16/02/17 / 15/02/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

#### **Results Approved By:**

David Springer General Manager



vTRH(C6-C10)/BTEXNinSoil				
Our Reference:	UNITS	161636-1	161636-2	161636-3
Your Reference		SD2	SD3	QCSED
1 55. 1 15.5 15.5	-	332	520	Q0 0 <u></u>
Date Sampled		9/02/2017	9/02/2017	9/02/2017
Type of sample		Sediment	Sediment	Sediment
Date extracted	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	13/02/2017	13/02/2017	13/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25
vTPHC6 - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	78	70	78

svTRH (C10-C40) in Soil				
Our Reference:	UNITS	161636-1	161636-2	161636-3
Your Reference		SD2	SD3	QCSED
	-			
Date Sampled		9/02/2017	9/02/2017	9/02/2017
Type of sample		Sediment	Sediment	Sediment
Date extracted	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	11/02/2017	11/02/2017	11/02/2017
TRHC 10 - C14	mg/kg	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100
TRHC29 - C36	mg/kg	<100	250	<100
TRH>C10-C16	mg/kg	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH>C16-C34	mg/kg	<100	240	<100
TRH>C34-C40	mg/kg	<100	120	<100
Total+veTRH(>C10-C40)	mg/kg	<50	360	<50
Surrogate o-Terphenyl	%	90	107	91

PAHs in Soil				
Our Reference:	UNITS	161636-1	161636-2	161636-3
Your Reference		SD2	SD3	QCSED
D. O. J.	-	0/00/0047	0/00/0047	0/00/0047
Date Sampled Type of sample		9/02/2017 Sediment	9/02/2017 Sediment	9/02/2017 Sediment
Date extracted	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	13/02/2017	13/02/2017	13/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	80	89	81

Organochlorine Pesticides in soil				
Our Reference:	UNITS	161636-1	161636-2	161636-3
Your Reference		SD2	SD3	QCSED
Date Sampled	-	9/02/2017	9/02/2017	9/02/2017
Type of sample		Sediment	Sediment	Sediment
Date extracted	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	123	107

Organophosphorus Pesticides Our Reference: Your Reference	UNITS	161636-1 SD2	161636-2 SD3	161636-3 QCSED
Date Sampled Type of sample		9/02/2017 Sediment	9/02/2017 Sediment	9/02/2017 Sediment
Date extracted	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	123	107

PCBs in Soil				
Our Reference:	UNITS	161636-1	161636-2	161636-3
Your Reference		SD2	SD3	QCSED
	-			
Date Sampled		9/02/2017	9/02/2017	9/02/2017
Type of sample		Sediment	Sediment	Sediment
Date extracted	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	106	123	107

Acid Extractable metals in soil				
Our Reference:	UNITS	161636-1	161636-2	161636-3
Your Reference		SD2	SD3	QCSED
	-			
Date Sampled		9/02/2017	9/02/2017	9/02/2017
Type of sample		Sediment	Sediment	Sediment
Date prepared	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017
Arsenic	mg/kg	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	50	20	42
Copper	mg/kg	60	20	56
Lead	mg/kg	7	6	6
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	32	24	27
Zinc	mg/kg	57	220	50

Moisture Our Reference:	UNITS	161636-1	161636-2	161636-3
Your Reference		SD2	SD3	QCSED
Date Sampled		9/02/2017	9/02/2017	9/02/2017
Type of sample		Sediment	Sediment	Sediment
Date prepared	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	13/02/2017	13/02/2017	13/02/2017
Moisture	%	42	67	42

VTPH/C6 C10\/RTEXNip\//otor				
vTRH(C6-C10)/BTEXNinWater Our Reference: Your Reference	UNITS	161636-4 SP2	161636-5 SP3	161636-6 QCW
Date Sampled Type of sample		9/02/2017 water	9/02/2017 water	9/02/2017 water
Date extracted	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	13/02/2017	10/02/2017	13/02/2017
TRHC6 - C9	μg/L	<100	<10	<100
TRHC6 - C10	μg/L	<100	<10	<100
TRHC6 - C10 less BTEX (F1)	μg/L	[NA]	<10	[NA]
Benzene	μg/L	<10	<1	<10
Toluene	μg/L	<10	<1	<10
Ethylbenzene	μg/L	<10	<1	<10
m+p-xylene	μg/L	<20	<2	<20
o-xylene	μg/L	<10	<1	<10
Naphthalene	μg/L	<10	<1	<10
Surrogate Dibromofluoromethane	%	100	104	101
Surrogate toluene-d8	%	96	97	97
Surrogate 4-BFB	%	92	96	91

svTRH (C10-C40) in Water				
Our Reference:	UNITS	161636-4	161636-5	161636-6
Your Reference		SP2	SP3	QCW
	-			
Date Sampled		9/02/2017	9/02/2017	9/02/2017
Type of sample		water	water	water
Date extracted	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	11/02/2017	11/02/2017	11/02/2017
TRHC10 - C14	μg/L	<50	<50	<50
TRHC 15 - C28	μg/L	<100	<100	<100
TRHC29 - C36	μg/L	<100	<100	<100
TRH>C10 - C16	μg/L	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	μg/L	<50	<50	<50
TRH>C16 - C34	μg/L	<100	<100	<100
TRH>C34 - C40	μg/L	<100	<100	<100
Surrogate o-Terphenyl	%	106	89	82

PAHs in Water				
Our Reference:	UNITS	161636-4	161636-5	161636-6
Your Reference		SP2	SP3	QCW
2.0	-	0/00/0047	0/00/0047	0/00/0047
Date Sampled		9/02/2017 water	9/02/2017 water	9/02/2017 water
Type of sample		water	water	water
Date extracted	-	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	13/02/2017	13/02/2017	13/02/2017
Naphthalene	μg/L	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1
Fluorene	μg/L	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1
Anthracene	μg/L	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1
Pyrene	μg/L	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1
Chrysene	μg/L	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	116	101	92

HM in water - dissolved Our Reference:	UNITS	161636-4	161636-5	161636-6
Your Reference		SP2	SP3	QCW
Date Sampled Type of sample		9/02/2017 water	9/02/2017 water	9/02/2017 water
Date prepared	-	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	09/02/2017	09/02/2017	09/02/2017
Arsenic-Dissolved	μg/L	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	3	<1	3
Copper-Dissolved	μg/L	6	<1	6
Lead-Dissolved	μg/L	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1
Zinc-Dissolved	μg/L	<1	4	<1

Miscellaneous Inorganics				
Our Reference:	UNITS	161636-4	161636-5	161636-6
Your Reference		SP2	SP3	QCW
	-			
Date Sampled		9/02/2017	9/02/2017	9/02/2017
Type of sample		water	water	water
Date prepared	-	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	09/02/2017	09/02/2017	09/02/2017
рН	pH Units	8.2	7.3	8.1
Electrical Conductivity	μS/cm	800	110	800

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.  Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
	is simply a sum of the positive individual Aylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.  For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" td="" the=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Metals-022	Determination of various metals by ICP-MS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.

Envirolab Reference: 161636

Revision No: R 00

			III Velelelle	· DL
QUALITYCONTROL	UNITS	PQL	METHOD	Blank
vTRH(C6-C10)/BTEXNin				
Soil				
Date extracted	-			10/02/2
				017
Date analysed	-			13/02/2
				017
TRHC6 - C9	mg/kg	25	Org-016	<25
TRHC6 - C10	mg/kg	25	Org-016	<25
Benzene	mg/kg	0.2	Org-016	<0.2
Toluene	mg/kg	0.5	Org-016	<0.5
Ethylbenzene	mg/kg	1	Org-016	<1
m+p-xylene	mg/kg	2	Org-016	<2
o-Xylene	mg/kg	1	Org-016	<1
naphthalene	mg/kg	1	Org-014	<1
Surrogate aaa-	g/kg %	•	Org-016	101
Trifluorotoluene	70		019-010	101
QUALITYCONTROL	UNITS	PQL	METHOD	Blank
svTRH (C10-C40) in Soil				
Date extracted	-			10/02/2
				017
Date analysed	-			11/02/2
				017
TRHC10 - C14	mg/kg	50	Org-003	<50
TRHC 15 - C28	mg/kg	100	Org-003	<100
TRHC29 - C36	mg/kg	100	Org-003	<100
TRH>C10-C16	mg/kg	50	Org-003	<50
TRH>C16-C34	mg/kg	100	Org-003	<100
TRH>C34-C40	mg/kg	100	Org-003	<100
Surrogate o-Terphenyl	%		Org-003	101
QUALITYCONTROL	UNITS	PQL	METHOD	Blank
PAHs in Soil	0	. ~_		2.6
Date extracted	_			10/02/2
2410 07111 40110 4				017
Date analysed	_			13/02/2
-				017
Naphthalene	mg/kg	0.1	Org-012	<0.1
Acenaphthylene	mg/kg	0.1	Org-012	<0.1
Acenaphthene	mg/kg	0.1	Org-012	<0.1
Fluorene	mg/kg	0.1	Org-012	<0.1
Phenanthrene	mg/kg	0.1	Org-012	<0.1
Anthracene	mg/kg	0.1	Org-012	<0.1
Fluoranthene	mg/kg	0.1	Org-012	<0.1
Pyrene	mg/kg	0.1	Org-012	<0.1
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1
Chrysene	mg/kg	0.1	Org-012	<0.1
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012	<0.2
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05
		0.03	_	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1

	Client Reference:				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	
PAHs in Soil					
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	
Surrogate p-Terphenyl- d14	%		Org-012	79	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	
Organochlorine Pesticides in soil					
Date extracted	-			10/02/2 017	
Date analysed	-			10/02/2 017	
HCB	mg/kg	0.1	Org-005	<0.1	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	
beta-BHC	mg/kg	0.1	Org-005	<0.1	
Heptachlor	mg/kg	0.1	Org-005	<0.1	
delta-BHC	mg/kg	0.1	Org-005	<0.1	
Aldrin	mg/kg	0.1	Org-005	<0.1	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	
pp-DDE	mg/kg	0.1	Org-005	<0.1	
Dieldrin	mg/kg	0.1	Org-005	<0.1	
Endrin	mg/kg	0.1	Org-005	<0.1	
pp-DDD	mg/kg	0.1	Org-005	<0.1	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	
pp-DDT	mg/kg	0.1	Org-005	<0.1	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	
Surrogate TCMX	%		Org-005	116	

			III Veletelle	<u>.                                     </u>
QUALITYCONTROL	UNITS	PQL	METHOD	Blank
Organophosphorus				
Pesticides				
Date extracted	-			10/02/2
				017
Date analysed	-			10/02/2 017
A = :		0.4	0	-
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1
Diazinon	mg/kg	0.1	Org-008	<0.1
Dichlorvos	mg/kg	0.1	Org-008	<0.1
Dimethoate	mg/kg	0.1	Org-008	<0.1
Ethion	mg/kg	0.1	Org-008	<0.1
Fenitrothion	mg/kg	0.1	Org-008	<0.1
Malathion	mg/kg	0.1	Org-008	<0.1
Parathion	mg/kg	0.1	Org-008	<0.1
Ronnel	mg/kg	0.1	Org-008	<0.1
Surrogate TCMX	gg %		Org-008	116
QUALITYCONTROL	UNITS	PQL	METHOD	Blank
PCBs in Soil				
Date extracted	_			10/02/2
Date extracted				017
Date analysed	-			10/02/2 017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1
Aroclor 1221	mg/kg	0.1	Org-006	<0.1
Aroclor 1232	mg/kg	0.1	Org-006	<0.1
Aroclor 1242	mg/kg	0.1	Org-006	<0.1
Aroclor 1248	mg/kg	0.1	Org-006	<0.1
Aroclor 1254	mg/kg	0.1	Org-006	<0.1
Aroclor 1260	mg/kg	0.1	Org-006	<0.1
Surrogate TCLMX	%		Org-006	116
QUALITYCONTROL	UNITS	PQL	METHOD	Blank
Acid Extractable metals				
in soil				
Date prepared	-			10/02/2 017
Date analysed	-			10/02/2 017
Arsenic	mg/kg	4	Metals-020	<4
Cadmium	mg/kg	0.4	Metals-020	<0.4
Chromium	mg/kg	1	Metals-020	<1
Copper	mg/kg	1	Metals-020	<1
Lead	mg/kg	1	Metals-020	<1
Mercury	mg/kg	0.1	Metals-021	<0.1
Nickel	mg/kg	1	Metals-020	<1
Zinc	mg/kg	1	Metals-020	<1
		1	1	

PQL  10 10 1 1 2 1 1 PQL	Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-016	Blank  10/02/2 017 13/02/2 017 <10 <10 <1 <1 <1 <1 <96 97  Blank	Duplicate Sm#  [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT	Duplicate results  Base II Duplicate II %RPD  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [NT]  [N	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 Spike Sm#	Spike % Recovery  10/02/2017  13/02/2017  91% 91% 91% 91% 91% 91% [NR] 99%  100% 99%  Spike % Recovery
10 1 1 1 2 1	Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-013 Org-016 Org-016	017 13/02/2 017 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <96 97	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1	13/02/2017  91% 91% 91% 91% 91% 91% [NR] 99%  100% 99%  Spike %
10 1 1 1 2 1	Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-013 Org-016 Org-016	017 13/02/2 017 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <96 97	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1	13/02/2017  91% 91% 91% 91% 91% 91% [NR] 99%  100% 99%  Spike %
10 1 1 1 2 1	Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-013 Org-016 Org-016	017 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 100  96 97	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1	91% 91% 91% 91% 91% 92% 91% [NR] 99%
10 1 1 1 2 1	Org-016 Org-016 Org-016 Org-016 Org-016 Org-016 Org-013 Org-016 Org-016	<10 <1 <1 <1 <2 <1 100 <96 97	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1 LCS-W1	91% 91% 91% 91% 92% 91% [NR] 99%
1 1 1 2 1	Org-016 Org-016 Org-016 Org-016 Org-013 Org-016 Org-016 Org-016	<1 <1 <1 <2 <1 <1 100 96 97	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 LCS-W1 [NR] LCS-W1 LCS-W1 LCS-W1	91% 91% 91% 92% 91% [NR] 99% 100% 99%
1 1 2 1	Org-016 Org-016 Org-016 Org-013 Org-016 Org-016 Org-016	<1 <1 <2 <1 100 96 97	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 LCS-W1 [NR] LCS-W1 LCS-W1 LCS-W1	91% 91% 92% 91% [NR] 99% 100% 99%
1 2 1 1	Org-016 Org-016 Org-013 Org-016 Org-016 Org-016	<1 <2 <1 <1 100 96 97	[NT] [NT] [NT] [NT] [NT] [NT]  [NT]  [NT]	[NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]	LCS-W1 LCS-W1 [NR] LCS-W1 LCS-W1 LCS-W1	91% 92% 91% [NR] 99% 100% 99% Spike %
2 1 1	Org-016 Org-016 Org-013 Org-016 Org-016	<2 <1 <1 100 96 97	[NT] [NT] [NT] [NT] [NT] [NT]	[NT] [NT] [NT] [NT]  [NT]  [NT]  [NT]  Duplicate results	LCS-W1 LCS-W1 [NR] LCS-W1 LCS-W1	92% 91% [NR] 99% 100% 99% Spike %
1	Org-016 Org-013 Org-016 Org-016 Org-016	<1 <1 100 96 97	[NT] [NT] [NT] [NT]  [NT]  Duplicate	[NT] [NT] [NT] [NT] [NT] Duplicate results	LCS-W1 [NR] LCS-W1 LCS-W1 LCS-W1	91% [NR] 99% 100% 99% Spike %
1	Org-013 Org-016 Org-016 Org-016	<1 100 96 97	[NT] [NT] [NT] [NT] Duplicate	[NT] [NT] [NT] [NT] Duplicate results	[NR] LCS-W1 LCS-W1 LCS-W1	[NR] 99% 100% 99% Spike %
	Org-016 Org-016 Org-016	100 96 97	[NT] [NT] [NT] Duplicate	[NT] [NT] [NT] Duplicate results	LCS-W1 LCS-W1 LCS-W1	99% 100% 99% Spike %
PQL	Org-016 Org-016	96 97	[NT] [NT] Duplicate	[NT] [NT] Duplicate results	LCS-W1 LCS-W1	100% 99% Spike %
PQL	Org-016	97	[NT] Duplicate	[NT]  Duplicate results	LCS-W1	99% Spike %
PQL			Duplicate	Duplicate results		Spike %
PQL	METHOD	Blank			Spike Sm#	-
				Base II Duplicate II %RPD		,
Ī		13/02/2 017	[NT]	[NT]	LCS-W1	10/02/2017
		13/02/2 017	[NT]	[NT]	LCS-W1	10/02/2017
50	Org-003	<50	[NT]	[NT]	LCS-W1	97%
100	Org-003	<100	[NT]	[NT]	LCS-W1	91%
100	Org-003	<100	[NT]	[NT]	LCS-W1	99%
50	Org-003	<50	[NT]	[NT]	LCS-W1	97%
100	Org-003	<100	[NT]	[NT]	LCS-W1	91%
100	Org-003	<100	[NT]	[NT]	LCS-W1	99%
	Org-003	107	[NT]	[NT]	LCS-W1	100%
PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
				Base II Duplicate II %RPD		
		10/02/2 017	[NT]	[NT]	LCS-W1	10/02/2017
		13/02/2 017	[NT]	[NT]	LCS-W1	13/02/2017
1	Org-012	<1	[NT]	[NT]	LCS-W1	81%
1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
1	Org-012	<1	[NT]	[NT]	LCS-W1	91%
i '	Org-012	<1	[NT]	[NT]	LCS-W1	107%
1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
	Org-012	<1	[NT]	[NT]	LCS-W1	101%
1	_	<1	[NT]	[NT]	LCS-W1	99%
1 1	Org-012	1			[NR]	[NR]
	1 1 1 1	1 Org-012 1 Org-012 1 Org-012 1 Org-012 1 Org-012 1 Org-012 1 Org-012 1 Org-012	017 13/02/2 017  1 Org-012 <1 1 Org-012 <1 1 Org-012 <1 1 Org-012 <1 1 Org-012 <1 1 Org-012 <1 1 Org-012 <1 1 Org-012 <1 1 Org-012 <1 1 Org-012 <1 1 Org-012 <1	017 13/02/2 017  1 Org-012 <1 [NT] 1 Org-012 <1 [NT] 1 Org-012 <1 [NT] 1 Org-012 <1 [NT] 1 Org-012 <1 [NT] 1 Org-012 <1 [NT] 1 Org-012 <1 [NT] 1 Org-012 <1 [NT] 1 Org-012 <1 [NT] 1 Org-012 <1 [NT] 1 Org-012 <1 [NT]	017 13/02/2 017  1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT] 1 Org-012 <1 [NT] [NT]	017       13/02/2 017       [NT]       [NT]       LCS-W1         1       Org-012 <1 [NT]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		,
Chrysene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	95%
Benzo(b,j+k) fluoranthene	μg/L	2	Org-012	<2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	108%
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	98	[NT]	[NT]	LCS-W1	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II %RPD		
Date prepared	-			09/02/2 017	[NT]	[NT]	LCS-W3	09/02/2017
Date analysed	-			09/02/2 017	[NT]	[NT]	LCS-W3	09/02/2017
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	97%
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]	[NT]	LCS-W3	99%
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	93%
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	89%
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	103%
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]	[NT]	LCS-W3	102%
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	95%
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	93%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Miscellaneous Inorganics					SII#	Base II Duplicate II %RPD		Recovery
Date prepared	-			09/02/2 017	[NT]	[NT]	LCS-W1	09/02/2017
Date analysed	-			09/02/2 017	[NT]	[NT]	LCS-W1	09/02/2017
pН	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-W1	102%
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]	[NT]	LCS-W1	102%
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	very
vTRH(C6-C10)/BTEXNin Soil				Base+[	Ouplicate+%RP	D O		
Date extracted	-		[NT]		[NT]	LCS-4	10/02/201	7
Date analysed	-		[NT]		[NT]	LCS-4	13/02/2017	7
TRHC6 - C9	mg/k	g	[NT]		[NT]	LCS-4	108%	
TRHC6 - C10	mg/k		[NT]		[NT]	LCS-4	108%	
Benzene	mg/k	g	[NT]		[NT]	LCS-4	98%	
Toluene	mg/k	g	[NT]		[NT]	LCS-4	105%	
Ethylbenzene	mg/k	g	[NT]		[NT]	LCS-4	111%	
m+p-xylene	mg/k	g	[NT]		[NT]	LCS-4	112%	
o-Xylene	mg/k	g	[NT]		[NT]	LCS-4	113%	
naphthalene	mg/k	g	[NT]		[NT]	[NR]	[NR]	

Client Reference: DL4032, Prospect								
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	LCS-4	101%			
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-	[NT]	[NT]	LCS-4	10/02/2017			
Date analysed	-	[NT]	[NT]	LCS-4	11/02/2017			
TRHC10 - C14	mg/kg	[NT]	[NT]	LCS-4	100%			
TRHC15 - C28	mg/kg	[NT]	[NT]	LCS-4	100%			
TRHC29 - C36	mg/kg	[NT]	[NT]	LCS-4	94%			
TRH>C10-C16	mg/kg	[NT]	[NT]	LCS-4	100%			
TRH>C16-C34	mg/kg	[NT]	[NT]	LCS-4	100%			
TRH>C34-C40	mg/kg	[NT]	[NT]	LCS-4	94%			
Surrogate o-Terphenyl	%	[NT]	[NT]	LCS-4	124%			
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-	[NT]	[NT]	LCS-4	10/02/2017			
Date analysed	-	[NT]	[NT]	LCS-4	13/02/2017			
Naphthalene	mg/kg	[NT]	[NT]	LCS-4	101%			
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Fluorene	mg/kg	[NT]	[NT]	LCS-4	107%			
Phenanthrene	mg/kg	[NT]	[NT]	LCS-4	111%			
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Fluoranthene	mg/kg	[NT]	[NT]	LCS-4	104%			
Pyrene	mg/kg	[NT]	[NT]	LCS-4	102%			
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Chrysene	mg/kg	[NT]	[NT]	LCS-4	103%			
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Benzo(a)pyrene	mg/kg	[NT]	[NT]	LCS-4	75%			
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	LCS-4	116%			

		Client Reference	e: DL4032, Prospect		
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	LCS-4	10/02/2017
Date analysed	-	[NT]	[NT]	LCS-4	10/02/2017
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	LCS-4	87%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	LCS-4	111%
Heptachlor	mg/kg	[NT]	[NT]	LCS-4	90%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	LCS-4	100%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	LCS-4	103%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	LCS-4	117%
Dieldrin	mg/kg	[NT]	[NT]	LCS-4	114%
Endrin	mg/kg	[NT]	[NT]	LCS-4	109%
pp-DDD	mg/kg	[NT]	[NT]	LCS-4	97%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	LCS-4	84%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	LCS-4	125%

		Client Referenc	e: DL4032, Prospect		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus			Base + Duplicate + %RPD		
Pesticides					
Date extracted	-	[NT]	[NT]	LCS-4	10/02/2017
Date analysed	-	[NT]	[NT]	LCS-4	10/02/2017
Azinphos-methyl (Guthion)	mg/kg	[NT]	[NT]	[NR]	[NR]
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	LCS-4	84%
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	[NT]	[NT]	LCS-4	86%
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	LCS-4	98%
Fenitrothion	mg/kg	[NT]	[NT]	LCS-4	72%
Malathion	mg/kg	[NT]	[NT]	LCS-4	85%
Parathion	mg/kg	[NT]	[NT]	LCS-4	95%
Ronnel	mg/kg	[NT]	[NT]	LCS-4	70%
Surrogate TCMX	%	[NT]	[NT]	LCS-4	101%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	LCS-4	10/02/2017
Date analysed	-	[NT]	[NT]	LCS-4	10/02/2017
Aroclor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	[NT]	[NT]	LCS-4	112%
Aroclor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	LCS-4	101%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in			Base + Duplicate + %RPD		
soil					
Date prepared	-	[NT]	[NT]	LCS-5	10/02/2017
Date analysed	-	[NT]	[NT]	LCS-5	10/02/2017
Arsenic	mg/kg	[NT]	[NT]	LCS-5	110%
Cadmium	mg/kg	[NT]	[NT]	LCS-5	100%
Chromium	mg/kg	[NT]	[NT]	LCS-5	110%
Copper	mg/kg	[NT]	[NT]	LCS-5	106%
Lead	mg/kg	[NT]	[NT]	LCS-5	99%
Mercury	mg/kg	[NT]	[NT]	LCS-5	86%
Nickel	mg/kg	[NT]	[NT]	LCS-5	99%
Zinc	mg/kg	[NT]	[NT]	LCS-5	100%

# **Report Comments:**

BTEX in water:

PQL has been raised as the sample/s were foamy and required dilution.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 161636 Page 25 of 26 Revision No: R 00

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 161636 Page 26 of 26

	OLAB	,		CHAIN OF COSTOD !					11 0	12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolac.com.au	2067 virolaɔ.com.au
GROUP		ENVIR	OLAB G	ENVIROLAB GROUP - National phone number 1300 42 43 44	onal phone	number 13	00 42 43 4	4	0	Combo1=TRH/BTEX/Pb	
Client: DLA					Client Project	Name / Nun	ber / Site et	Client Project Name / Number / Site etc (ie report title):		Combo2=TRH/BTEX/PAH/Pb Combo3=TRH/BTEX/PAH/Met	
Contact Person:	son: Tack						07710	K	0	Combo4=TRH/BTEX/PAH/Met/Phen	/Phen
Project Mgr:	Jack				PO No.:		Pro	rospect	5 0	ComboS=1RH/BTEX/PAH/OC/PCB/IVet Combo6=TRH/BTEX/PAH/OC/OP/PC3/Met	2CB/IVet
Sampler:	Ams				Envirolab Quote No. :	ote No. :				Combo7=TRH/BTEX/PAH/OC/PCB/Wet/Phen	CB/Wet/Phen
Address: U	Address: Unit 3/38 Leighton Place				Date results required:	equired:				Combo8=TRH/BTEX/PAH/OC/OP/PC3/Met/Phen Combo9=TRH/BTEX/PAH/OC/PC8/Met/Phen/CN	DP/PCB/Met/Phen
	-	Hornsby			Or choose: (st Note: Inform is	andard / san to in advance is	ne day / 1 day urgent turnar	Or choose: (standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - curchances annly		Combo10=TRH/BTEX/PAH/OC/OP/P2B/Met/Phen/CN Combo11=TRH/BTEX/PAH/OC/PCB/_2met/Phen/CN Combo12=TRH/BTEX/PAH/OC/PCB/_Amet/TCLP-PAH,6 Met	/OP/PCB/Met/Phen/CN PCB/12met/Phen/CN PCB/Met/TCLP-PAH,6 Met
Phone:		Mob:			Report format: esdat / equis	t: esdat / equ	is /			ombol3=TRH/BTEX/PAH/OC/	Combol3=TRH/BTEX/PAH/OC/OP/PCB/Met/TCLP-PAH,6Met
Email:	Sydney@	dlaenviror	Sydney@dlaenvironmental.com.au	an	Lab Comments:	:S:			d	A Combo with an `A' indicates Asbestos is also needed.	Asbestos is also needed.
	Sample	Sample information						Tests Required	P		Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	23/Hd Eaguro)	9 ogwo)					Provide as much information about the sample as you can
	105	ZZ	9/2/17	sediment		>					
7	503					Y					
M	QC SED			1		×					
4	Tas			water	X	1	- 0				
7	Eds				X	5 pleas	hiter .	W/ HEA		(4)	Endrolah Service
2	N 70	-5	-)	-1	XX	1				EDV TO	Chaleumod McMr 5.
				No						)	Ph:
										J. DMG.	161636
										Date Receiv	ed
										Time R.	;pa/
										Temm	
										2	0 0
											Introventione
											)
Relinquishe	Relinquished by (Company):	DLA			Received by (Company):	Company): P	la		Lat	Lab use only:	
Print Name:	Any				Print Name:	8	1		San	Samples Received: Cool or Ambient (circle one)	Ambient (circle one)
Date & Time:	11/1/2				Date & Time:	9/12	40	Aco		Temperature Received at:	(if applicable)
Signature:	100				Cignoturo.	1	4	1	F	reining / horoxiloh hard and hotomorar	spinist / bone



email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd Sydney | ABN 37 112 535 645

**CERTIFICATE OF ANALYSIS** 

161636-A

Client:

**DLA Environmental Services Pty Ltd** 

Unit 3, 38 Leighton PI Hornsby NSW 2077

Attention: Jack, Amy

Sample log in details:

Your Reference: DL4032, Prospect
No. of samples: 3 sediments 3 waters

Date samples received / completed instructions received 09/02/17 / 28/02/17

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 28/02/17 / 28/02/17 / 28/02/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

## **Results Approved By:**

General Manager



Miscellaneous Inorganics			
Our Reference:	UNITS	161636-A-4	161636-A-6
Your Reference		SP2	QCW
	-		
Date Sampled		9/02/2017	9/02/2017
Type of sample		water	water
Date prepared	-	28/02/2017	28/02/2017
Date analysed	-	28/02/2017	28/02/2017
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005

Envirolab Reference: 161636-A

Method ID	Methodology Summary
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically.

Envirolab Reference: 161636-A Page 3 of 6

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II %RPD		
Date prepared	-			28/02/2 017	[NT]	[NT]	LCS-W1	28/02/2017
Date analysed	-			28/02/2 017	[NT]	[NT]	LCS-W1	28/02/2017
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024	<0.005	[NT]	[NT]	LCS-W1	101%

## **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 161636-A Page 5 of 6

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 161636-A Page 6 of 6

# **Nancy Zhang**

Amy Dorrington <amy.dorrington@dlaenvironmental.com.au> From: Tuesday, 28 February 2017 10:31 AM Sent: Nancy Zhang To: 161636 further analysis Subject: Hi Nancy, 4 6 Just confirming hex chromium on SP2 and QC W, project 161636. Results today would be amazing © Thanks! 161636-A. If you have any questions, please feel free to contact our office. Regards, **Amy Dorrington Environmental Consultant** M: 0425 333 596 P: 02 9476 1765 E: amy.dorrington@dlaenvironmental.com.au

www.dlaenvironmental.com.au

×

×

This email may contain confidential and/or private information If you received this email in error phase detect and notify solids.



email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

162047

Client:

**DLA Environmental Services Pty Ltd** 

Unit 3, 38 Leighton PI Hornsby NSW 2077

Attention: Jack

Sample log in details:

Your Reference: DL4032, Prospect

No. of samples: 2 Waters

Date samples received / completed instructions received 16/02/2017 / 16/02/2017

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 23/02/17 / 21/02/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

## **Results Approved By:**

David Springer General Manager



VTDI I/CC C40\/DTEVNi=\W-t==			
vTRH(C6-C10)/BTEXN in Water	LINITO	400047.4	400047.0
Our Reference:	UNITS	162047-1	162047-2
Your Reference		MW30	QCGW
5.0	-	40/00/0047	40/00/0047
Date Sampled		16/02/2017	16/02/2017
Type of sample		Water	Water
Date extracted	-	17/02/2017	17/02/2017
Date analysed	-	20/02/2017	20/02/2017
TRHC6 - C9	μg/L	<10	<10
TRHC6 - C10	μg/L	<10	<10
TRHC6 - C10 less BTEX (F1)	μg/L	<10	<10
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	103	103
Surrogate toluene-d8	%	96	96
Surrogate 4-BFB	%	98	96

	1		
svTRH (C10-C40) in Water			
Our Reference:	UNITS	162047-1	162047-2
Your Reference		MW30	QCGW
	-		
Date Sampled		16/02/2017	16/02/2017
Type of sample		Water	Water
Date extracted	-	17/02/2017	17/02/2017
Date analysed	-	17/02/2017	17/02/2017
TRHC10 - C14	μg/L	<50	<50
TRHC 15 - C28	μg/L	<100	<100
TRHC29 - C36	μg/L	<100	<100
TRH>C10 - C16	μg/L	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	μg/L	<50	<50
TRH>C16 - C34	μg/L	<100	<100
TRH>C34 - C40	μg/L	<100	<100
Surrogate o-Terphenyl	%	74	77

	1		
PAHs in Water	LINITO	100017.1	100017.0
Our Reference:	UNITS	162047-1	162047-2
Your Reference		MW30	QCGW
Date Sampled		16/02/2017	16/02/2017
Type of sample		Water	Water
Date extracted		17/02/2017	17/02/2017
	-		
Date analysed	-	17/02/2017	17/02/2017
Naphthalene	μg/L	<1	<1
Acenaphthylene	μg/L	<1	<1
Acenaphthene	μg/L	<1	<1
Fluorene	μg/L	<1	<1
Phenanthrene	μg/L	<1	<1
Anthracene	μg/L	<1	<1
Fluoranthene	μg/L	<1	<1
Pyrene	μg/L	<1	<1
Benzo(a)anthracene	μg/L	<1	<1
Chrysene	μg/L	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2
Benzo(a)pyrene	μg/L	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	71	70

HM in water - dissolved			
Our Reference:	UNITS	162047-1	162047-2
Your Reference		MW30	QCGW
	-		
Date Sampled		16/02/2017	16/02/2017
Type of sample		Water	Water
Date prepared	-	17/02/2017	17/02/2017
Date analysed	-	17/02/2017	17/02/2017
Arsenic-Dissolved	μg/L	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	8	6
Copper-Dissolved	μg/L	4	4
Lead-Dissolved	μg/L	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05
Nickel-Dissolved	μg/L	4	4
Zinc-Dissolved	μg/L	<1	<1

Miscellaneous Inorganics			
Our Reference:	UNITS	162047-1	162047-2
Your Reference		MW30	QCGW
	-		
Date Sampled		16/02/2017	16/02/2017
Type of sample		Water	Water
Date prepared	-	16/02/2017	16/02/2017
Date analysed	-	16/02/2017	16/02/2017
рН	pH Units	11.3	11.2
Electrical Conductivity	μS/cm	860	780

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Metals-022	Determination of various metals by ICP-MS.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.

		Cile	nt Referenc	e: Di	L4032,  Prosp	ect		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water					3.117	Base II Duplicate II %RPD		reservery
Date extracted	-			17/02/2 017	[NT]	[NT]	LCS-W2	17/02/2017
Date analysed	-			20/02/2 017	[NT]	[NT]	LCS-W2	20/02/2017
TRHC6 - C9	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W2	107%
TRHC6 - C10	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W2	107%
Benzene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W2	105%
Toluene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W2	106%
Ethylbenzene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W2	107%
m+p-xylene	μg/L	2	Org-016	<2	[NT]	[NT]	LCS-W2	108%
o-xylene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W2	107%
Naphthalene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-016	103	[NT]	[NT]	LCS-W2	100%
Surrogate toluene-d8	%		Org-016	95	[NT]	[NT]	LCS-W2	99%
Surrogate 4-BFB	%		Org-016	96	[NT]	[NT]	LCS-W2	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH(C10-C40)in Water					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			17/02/2 017	[NT]	[NT]	LCS-W2	17/02/2017
Date analysed	-			17/02/2 017	[NT]	[NT]	LCS-W2	17/02/2017
TRHC10 - C14	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W2	115%
TRHC 15 - C28	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W2	105%
TRHC29 - C36	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W2	83%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W2	115%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W2	105%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W2	83%
Surrogate o-Terphenyl	%		Org-003	89	[NT]	[NT]	LCS-W2	93%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-			17/02/2 017	[NT]	[NT]	LCS-W2	17/02/2017
Date analysed	-			17/02/2 017	[NT]	[NT]	LCS-W2	17/02/2017
Naphthalene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	88%
Acenaphthylene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	99%
Phenanthrene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	120%
Anthracene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	98%
Pyrene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	96%
Benzo(a)anthracene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]

		Clie	nt Referenc	e: Di	L4032, Prosլ	pect		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Chrysene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	92%
Benzo(b,j +k)fluoranthene	μg/L	2	Org-012	<2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	99%
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	73	[NT]	[NT]	LCS-W2	69%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
HM in water - dissolved						Base II Duplicate II %RPD		
Date prepared	-			17/02/2 017	[NT]	[NT]	LCS-W3	17/02/2017
Date analysed	-			17/02/2 017	[NT]	[NT]	LCS-W3	17/02/2017
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	103%
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]	[NT]	LCS-W3	105%
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	100%
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	92%
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	106%
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]	[NT]	LCS-W3	98%
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	101%
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	LCS-W3	92%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II %RPD		
Date prepared	-			16/02/2 017	[NT]	[NT]	LCS-W1	16/02/2017
Date analysed	-			16/02/2 017	[NT]	[NT]	LCS-W1	16/02/2017
pН	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-W1	101%
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]	[NT]	LCS-W1	104%

## **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 162047 Page 11 of 11 Revision No: R 00

Enviro	/IROLAB	CHA	IN OF	CHAIN OF CUSTODY	Δ	C	Client	<b>.</b>					<u>Sydney Lab</u> - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolaɔ.com.au	lab Services vood, NSW 206 sydney@enviro	57 olao.com.au
)		ENVIE	COLAB G	ENVIROLAB GROUP - National phone number 1300 42 43 44	onal pl	one n	ımber	1300 4	2 43 44				Combo1=TRH/BTEX/Pb	/Pb	
Client: DLA	Took to				Client F	Project Name	ame / N	/ napper /	Client Project Name / Number / Site etc (ie report title):	ie repor	t title):		Combo3=TRH/BTEX/PAH/Met Combo4=TRH/BTEX/PAH/Met/Phen	/PAH/Met /PAH/Met/Phe	ua
Project Mar:	1				PO No.:	1				1		Г	ComboS=TRH/BTEX/PAH/OC/PCB/Wet	/PAH/OC/PCB	/Wet
Sampler:	Ann				Envirol	Envirolab Ouote No. :	No. :					Г	Combob=1RH/BIEX/PAH/OC/PCB/Met/Phen	/PAH/OC/PCB,	/Wet/Phen
Address: Uni	Address: Unit 3/38 Leighton Place				Date re	Date results required:	uired:	-					Combo8=TRH/BTEX/PAH/OC/OP/PC3/Met/Phen	/PAH/OC/OP/I	PC3/Met/Phen
		Hornsby			Or choo	Or choose: star Note: Inform lab	idard / s	ame day e if urgen	Or choose: standard/ same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required -	/ 2 day , nd is req	3 day		Combo10=TRH/BTE Combo11=TRH/BTE Combo12=TRH/BTE	X/PAH/OC/PCI X/PAH/OC/PCI X/PAH/OC/PCI	Combo1=1RH/BTEX/PAH/OC/PCB/Met/Phen/CN Combo11=TRH/BTEX/PAH/OC/PCB/12met/Phen/CN Combo11=TRH/BTEX/PAH/OC/PCB/12met/Phen/CN Combo12=TRH/BTEX/PAH/OC/PCB/Met/TCLP-PAH,6 Met
Phone:		Mob:			Report	format:	Report format: esdat / equis	/ sinba				Γ	Combo13=TRH/BTE	X/PAH/OC/OP	Combo13=TRH/BTEX/PAH/OC/OP/PCB/Met/TCLP-PAH,6Met
Email:	Sydney(6	gdlaenviror	Sydney@dlaenvironmental.com.au	an	Lab Co	Lab Comments:							Combo with an 'A	الا indicates Asb،	A Combo with an 'A' indicates Asbestos is also needed.
	Sample	Sample information	-						-	Tests Required	quired	1			Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	E ogmo)	DELHO									Provide as much information about the sample as you can
-	MIN130	١	11011	Jot 10. 11	>	5	MOON	4,3	1	4	Many	staton			
7	33	1	-1	5-1	X										
										H					
														(4	Envirolab Services
														ETIVIROLH	Ch
														ON THE	Ph: (02) 9910 6200
														ON GOD	162047
														Date Re	Date Received:16.2
														TimeRed	-
														Received	DV AC
						200								Choling	3
														Security	Intact/Broken/None
							4			+					
Relinquished	Relinquished by (Company):	DLA			Received		by (Company):	573	-	-		7	Lab use only:		
Print Name:	Ams				Print Name:	me:	Som	ess				Sa	mples Received	: Cool or Am	Samples Received: Cool or Ambient (circle one)
Date & Time:	-				Date & Time:	Time:	2.0	0	30			٦	Temperature Received at:	ived at:	(if applicable)
	1				Cionating	,	0	1				+	Transnorted by Hand delivered / courier	and doliver	od / courier



email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

162047-A

Client:

**DLA Environmental Services Pty Ltd** 

Unit 3, 38 Leighton PI Hornsby NSW 2077

Attention: Jack

Sample log in details:

Your Reference: DL4032, Prospect

No. of samples: 2 Waters

Date samples received / completed instructions received 16/02/2017 / 28/02/17

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 28/02/17 / 28/02/17 / 28/02/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

## **Results Approved By:**

General Manager



Miscellaneous Inorganics			
Our Reference:	UNITS	162047-A-1	162047-A-2
Your Reference		MW30	QCGW
	-		
Date Sampled		16/02/2017	16/02/2017
Type of sample		Water	Water
Date prepared	-	28/02/2017	28/02/2017
Date analysed	-	28/02/2017	28/02/2017
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005

Envirolab Reference: 162047-A
Revision No: R 00

Page 2 of 6

Method ID	Methodology Summary
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically.

Envirolab Reference: 162047-A Page 3 of 6

						· <del>· · · ·</del>		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II %RPD		
Date prepared	-			28/02/2 017	[NT]	[NT]	LCS-W1	28/02/2017
Date analysed	-			28/02/2 017	[NT]	[NT]	LCS-W1	28/02/2017
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024	<0.005	[NT]	[NT]	LCS-W1	101%

# **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 162047-A Page 5 of 6 Revision No: R 00

### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 162047-A Page 6 of 6

# **Nancy Zhang**

From:

Amy Dorrington <amy.dorrington@dlaenvironmental.com.au>

Sent:

Tuesday, 28 February 2017 9:36 AM

To:

Aileen Hie

Cc:

Nancy Zhang

Subject:

162047 further analysis

Hi Aileen and Nancy,

Could I please get chromium VI on the 2 waters in project 162047? Would I be able to get a result today?

If you have any questions, please feel free to contact our office.

Regards,

#### **Amy Dorrington**

Environmental Consultant

M: 0425 333 596

P: 02 9476 1765

E: amy.dorrington@dlaenvironmental.com.au



www.dlaenvironmental.com.au



This email may contain confident of and/or private information If you received this only in each picase delete and noisy see ter-

16200 A Mue 28/2



# © JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

#### **Document Distribution**

Rev No.	Copies	Recipient	Date
Α	1 x Electronic	David Lousick (Aliro Management Pty Ltd)	9/04/2020
0	1 x Electronic	David Lousick (Aliro Management Pty Ltd)	3/06/2020

### **Document Status**

Day No	A. Aban	Reviewer	Approved for Issue		
Rev No.	Author	Name	Name	Signature	Date
A	Chris Kauffman	Matthew Bennett	Matthew Bennett	Apb Et	9/04/2020
0	Chris Kauffman	Matthew Bennett	Matthew Bennett	Apb A	3/06/2020

www.jbsg.com.au