

Section 10.7 Certificates

Applicant:

JK Environments Pty Ltd PO Box 976 NORTH RYDE BC NSW 1670

Planning Certificate – Section 10.7 (2)(5) Certificate Environmental Planning and Assessment Act, 1979

Delivery option:

E32889B

Certificate date: 06/12/2019 Your reference:

ePC:19/5156

Property:

Certificate no:

Lot 1 DP 1253156 30 Eton Street SUTHERLAND NSW 2232

Zone:

* Sutherland Shire Local Environmental Plan 2015

Zone B3 Commercial Core

Zone RE1 Public Recreation

Notes:

- (a) The information in this certificate only relates to the real property Identifier associated with the property and not to any licence or permissive occupancy that may be attached to and included in the property details contained in the description of the land.
- (b) The Environmental Planning and Assessment Act 1979 will be referred to in this Certificate as 'the Act'.
- Disclaimer:
- (a) This certificate contains information provided to Council by third parties and is as current as the latest information available to Council at the time of production of this document. Council does not warrant the accuracy of the information contained within the information provided by third parties and has not independently verified the information. It is strongly recommended that you contact the relevant third parties to confirm the accuracy of the information.

INFORMATION PURSUANT TO SECTION 10.7(2), ENVIRONMENTAL PLANNING & ASSESSMENTACT, 1979

1. Names of relevant instruments and DCPs

- 1. The name of each environmental planning instrument that applies to the carrying out of development on the land:
 - * Sutherland Shire Local Environmental Plan 2015

* Greater Metropolitan Regional Environmental Plan No. 2 - Georges River Catchment (5/2/1999) (deemed SEPP).

* Sydney Regional Environmental Plan No.09 (Extractive Industry (No.2) 1995) (deemed SEPP).

- * SEPP (Building Sustainability Index: BASIX) 2004
- * SEPP (Exempt and Complying Development Codes) 2008
- * SEPP (Affordable Rental Housing) 2009
- * SEPP (Educational Establishments & Child Care Facilities) 2017
- * SEPP (Infrastructure) 2007
- * SEPP (Mining, Petroleum & Extractive Industries) 2007
- * SEPP (Miscellaneous Consent Provisions) 2007
- * SEPP (Housing for Seniors or People with a Disability) 2004
- * SEPP No.19 Bushland in Urban Areas
- * SEPP No.21 Caravan Parks
- * SEPP No.33 Hazardous and Offensive Development
- * SEPP No.50 Canal Estates
- * SEPP No.55 Remediation of Land

- * SEPP No.64 Advertising and Signage
- * SEPP No.65 Design Quality of Residential Flats
- * SEPP No.70 Affordable Housing (Revised Schemes)
- * SEPP (State and Regional Development) 2011
- * SEPP (State Significant Precincts) 2005
- * SEPP (Vegetation in Non-Rural Areas) 2017
- * SEPP (Concurrences) 2018
- * SEPP (Primary Production and Rural Development) 2019

2. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

> The following Draft State Environmental Planning Policies apply: Amendments to SEPP (Infrastructure) 2007, SEPP (Mining, Petroleum Production and Extractive Industries) 2007, SEPP (Housing for Seniors or People with a Disability) 2004, SEPP (State Significant Precincts) 2005, SEPP (Exempt and Complying Development Codes) 2008, and new draft policies - SEPP Environment, SEPP Short-term Rental Accommodation and SEPP Remediation of Land.

3. The name of each development control plan that applies to the carrying out of development on the land:

Sutherland Shire Development Control Plan 2015

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

2. Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) in any zone (however described).

(a) The name and number of the zone:

Sutherland Shire Local Environmental Plan 2015 Zone B3 Commercial Core

(b) Permitted without consent:

Home occupations

(c) Permitted with consent:

Centre-based child care facilities; Commercial premises; Community facilities; Educational establishments; Entertainment facilities; Function centres; Hotel or motel accommodation; Information and education facilities; Medical centres; Oyster aquaculture; Passenger transport facilities; Recreation facilities (indoor); Registered clubs; Respite day care centres; Restricted premises, Roads; Tank-based aquaculture

Any other development not specified in item (b) or (d).

(d) Prohibited:

Advertising structures; Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Attached dwellings; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Depots; Dual occupancies; Dwelling houses; Eco-tourist facilities; Electricity generating works; Exhibition homes; Exhibition villages; Farm buildings; Forestry; Freight transport facilities; General industries; Heavy industrial storage establishments; Heavy industries; Helipads; Highway service centres; Home-based child care; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Jetties; Marinas; Multi dwelling housing; Open cut mining; Pondbased aquaculture; Recreation facilities (major); Resource recovery facilities; Rural industries; Rural worker's dwellings; Semi-detached dwellings; Sewage treatment plants; Sex services premises; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Warehouse or distribution centres; Waste disposal

facilities; Water recycling facilities; Water supply systems; Wholesale supplies.

Sutherland Shire Local Environmental Plan 2015 Zone RE1 Public Recreation

(b) Permitted without consent:

Environmental protection works

(c) Permitted with consent:

Aquaculture; Community facilities; Environmental facilities; Food and drink premises; Information and education facilities; Kiosks; Passenger transport facilities; Recreation areas; Recreation facilities (indoor); Recreation facilities (outdoor); Roads

(d) Prohibited:

Pubs; Any other development not specified in item (b) or (c)

(e) Minimum land dimensions fixed for the erection of a dwelling-house on the land:

Under Sutherland Shire Local Environmental Plan 2015 there are no relevant development standards for the erection of a dwelling house due to site dimensions.

(f) Does the land include or comprise critical habitat?

No

(g) Is the land in a conservation area?

No

(h) Is an item of environmental heritage situated on the land?

There is no item of environmental heritage situated on the property.

2A. Zoning and land use under State Environmental Planning Policy (Sydney Region Growth Centres) 2006

To the extent that the land is within any zone (however described) under:

- (a) Part 3 of the State Environmental Planning Policy (Sydney Region Growth Centres) 2006 (**the 2006 SEPP**), or
- (b) a Precinct Plan (within the meaning of the 2006 SEPP), or
- (c) a proposed Precinct Plan that is or has been the subject of community consultation or on public exhibition under the Act,

the particulars referred to in clause 2 (a)-(h) in relation to that land (with a reference to "the instrument" in any of those paragraphs being read as a reference to Part 3 of the 2006 SEPP, or the Precinct Plan or proposed Precinct Plan, as the case requires).

Note: Sutherland Shire Council does not currently have any land in the Growth Centres that has been zoned by a Precinct Plan in the Appendices to this SEPP, proposed to be zoned in a draft Precinct Plan (that has been publicly exhibited or formally consulted on) or has been zoned under Part 3 of the Growth Centres SEPP.

3. Complying Development

- (1) The extent to which the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.
- (2) The extent to which complying development may not be carried out on that land because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4) and 1.19 of that Policy and the reasons why it may not be carried out under those clauses.
- (3) If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that a restriction applies to the land, but it may not apply to all of the land, and that council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land.

Housing Code

Complying development may be carried out on the land under this Code.

(Note: this code applies only to land within, or proposed to be within, the following zones R1, R2, R3, R4 or RU5. Check the zoning on the front of this certificate.)

Housing Alterations Code

Complying development may be carried out on the land under the Housing Internal Alterations Code.

Commercial and Industrial Alterations Code

Complying development may be carried out on the land under the Commercial and Industrial Alterations Code.

Commercial and Industrial (New Buildings and Additions) Code

Complying development may be carried out on the land under the Commercial and Industrial (New Buildings and Additions) Code.

(Note: this code applies only to land within, or proposed to be within, the following zones B1, B2, B3, B4, B5, B6, B7, B8, IN1, IN2, IN3, IN4 or SP3. Check the zoning on the front of this certificate.)

Container Recycling Facilities Code

Complying development may be carried out on the land under the Container Recycling Facilities Code.

Subdivisions Code

Complying development may be carried out on the land under the Subdivisions Code.

Rural Housing Code

Complying development may be carried out on the land under the Rural Housing Code.

(Note: this code applies only to land within, or proposed to be within, the following zones RU1, RU2, RU3, RU4, RU6 or R5. Check the zoning on the front of this certificate.)

Low Rise Medium Density Housing Code

Complying development may be carried out on the land under the Low Rise Medium Density Housing Code.

(Note: All land in the Sutherland Shire is deferred from this code until the 1st of July 2020.)

Green Field Housing Code

Complying development under the Greenfield Housing Code may be carried out on the land.

(Note: This code applies to land within the Greenfield Housing Code Area as mapped in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.)

General Development Code

Complying development may be carried out on the land under the General Development Code.

Demolition Code

Complying development may be carried out on the land under the Demolition Code.

Fire Safety Code

Complying development may be carried out on the land under the Fire Safety Code.

Inland Code

Complying development may be carried out on the land under this Code.

(Note: This code only applies to local government areas specified in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008. At this time it does not apply to the Sutherland Shire.)

4B. Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

In relation to a coastal council—whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal

protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

There are no properties subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services.

Note. "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the Local Government Act 1993.

5. Mine Subsidence

Is the land proclaimed to be a mine subsidence district within the meaning of the *Coal Mine Subsidence Compensation Act 2017*?

No

6. Road Widening and Road Realignment

(a) Is the land affected by a road widening or road realignment under Division 2 of Part 3 of the *Roads Act 1993*?

No

(b) Is the land affected by any road widening or road realignment under any environmental planning instrument?

No

(c) Is the land affected by any road widening or road realignment under any resolution of the Council?

No

7. Council and other public authority policies on hazard risk restrictions

(a) Is the land affected by a policy adopted by the council that restricts the development of the land because of the likelihood of landslip, bushfire, tidal inundation, subsidence, acid sulfate or any other risk?

No

(b) Is the land affected by a policy adopted by any other public authority that restricts the development of the land because of the likelihood of landslip, bushfire, tidal inundation, subsidence, acid sulphate or any other risk?

No

7A. Flood related development controls information

(1) Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

(2) Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

(3) Words and expressions in this clause have the same meanings as in the Instrument set out in the Schedule to the Standard Instrument (Local Environmental Plans) Order 2006.

8. Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 3.15 of the Act?

No

9. Contribution Plans

Council has adopted the following Contribution Plans that apply to the land:

- The 2016 Section 7.12 Development Contributions Plan applies to this property (Effective 01/01/17).
- The 2016 Section 7.11 Development Contributions Plan applies to this property (Effective 01/01/17).

9A. Biodiversity certified land

If the land is biodiversity certified land under Part 8 of the *Biodiversity Conservation Act 2016*, a statement to that effect.

Note. Biodiversity certified land includes land certified under Part 7AA of the *Threatened Species Conservation Act 1995* that is taken to be certified under Part 8 of the *Biodiversity Conservation Act 2016*.

No

10. Biodiversity stewardship sites

If the land is a biodiversity stewardship site under a biodiversity stewardship agreement under Part 5 of the *Biodiversity Conservation Act 2016*, a statement to that effect (but only if the council has been notified of the existence of the agreement by the Chief Executive of the Office of Environment and Heritage).

Note. Biodiversity stewardship agreements include biobanking agreements under Part7A of the *Threatened Species Conservation Act 1995* that are taken to be biodiversity stewardship agreements under Part 5 of the *Biodiversity Conservation Act 2016*.

No

10A. Native vegetation clearing set asides

If the land contains a set aside area under section 60ZC of the Local Land Services Act 2013, a statement to that effect (but only if the council has been notified of the existence of the set aside area by Local Land Services or it is registered in the public register under that section).

11. Bush fire prone land

Is the land bush fire prone?

No

12. Property Vegetation Plans

Has Council been notified that a property vegetation plan under the *Native Vegetation Act 2003* applies to the land?

No

13. Orders Under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if Council has been notified of the order).

No.

14. Directions under Part 3A

Is there a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act that does not have effect?

No

15. Site compatibility certificates and conditions for seniors housing

Is there a current site compatibility certificate (seniors housing) under State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004, of which the council is aware, in respect of proposed development on the land? If there is a certificate, the period for which the certificate is current. Are there any terms of a kind referred to in clause 18 (2) of that Policy that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land?

No

16. Site compatibility certificates for infrastructure, schools or TAFE establishments

Is there a valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land?

No

17. Site compatibility certificates and conditions for affordable rental housing

Is there a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land? If so this statement sets out the period for which the certificate is current and any conditions pursuant to cl17(1) or cl38(1) of SEPP (Affordable Rental Housing) 2009.

No

18. Paper subdivision information

Is the land subject to any development plan adopted by a relevant authority or that is proposed to be subject to a consent ballot? If so, this statement sets out the date of any subdivision order that applies to the land. Note: Words and expressions used in this clause have the same meaning as they have in Part 16C of this Regulation.

No

19. Site verification certificates

Is there a current site verification certificate, of which the council is aware, in respect of the land?

If so, this statement includes:

(a) the matter certified by the certificate, and

(b) the date on which the certificate ceases to be current (if any), and

(c) that a copy may be obtained from the head office of the Department of Planning and Infrastructure.

Note. A site verification certificate sets out the Director-General's opinion as to whether the land concerned is or is not biophysical strategic agricultural land or critical industry cluster

land—see Division 3 of Part 4AA of State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

No

20. Loose-fill asbestos insulation

Is the land to which the certificate relates identified on the Loose-Fill Asbestos Insulation Register maintained by the Secretary of NSW Fair Trading?

No

21. Affected building notices and building product rectification orders

Are there any affected building notices of which the council is aware that is in force in respect of the land.

No

If so, this statement includes:

(a) whether there is any building product rectification order of which the council is aware that is in force in respect of the land and has not been fully complied with, and

(b) whether any notice of intention to make a building product rectification order of which the council is aware has been given in respect of the land and is outstanding.

Note: affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017.

building product rectification order has the same meaning as in the Building Products (Safety) Act 2017.

- **Note:** The following matters are prescribed by section 59 (2) of the Contaminated Land Management Act 1997 as additional matters to be specified in a planning certificate:
 - (a) Is the land significantly contaminated land within the meaning of that Act? No
 - (b) Is the land subject to a management order within the meaning of that Act?

No

- (c) Is the land the subject of an approved voluntary management proposal within the meaning of that Act? No
- (d) Is the land subject to an ongoing maintenance order within the meaning of that Act?

No

(e) Is the land subject of a site audit statement within the meaning of that Act?

No

Any Other Prescribed Matter

Note: Section 26 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009 provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the Council is provided with a copy of the exemption or authorisation by the Co-ordinator General under the Act. No

Additional Information

Council holds additional information relating to this property for provision in accordance with Section 10.7(5) of the Environmental Planning and Assessment Act, 1979.

ADDITIONAL INFORMATION PURSUANT TO SECTION 10.7(5), ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

The following additional information relating to the land is provided in good faith. The information is not exhaustive of matters likely to affect the land. Section 10.7(6) states that a council shall not incur any liability in respect of any advice provided in good faith pursuant to subsection (5).

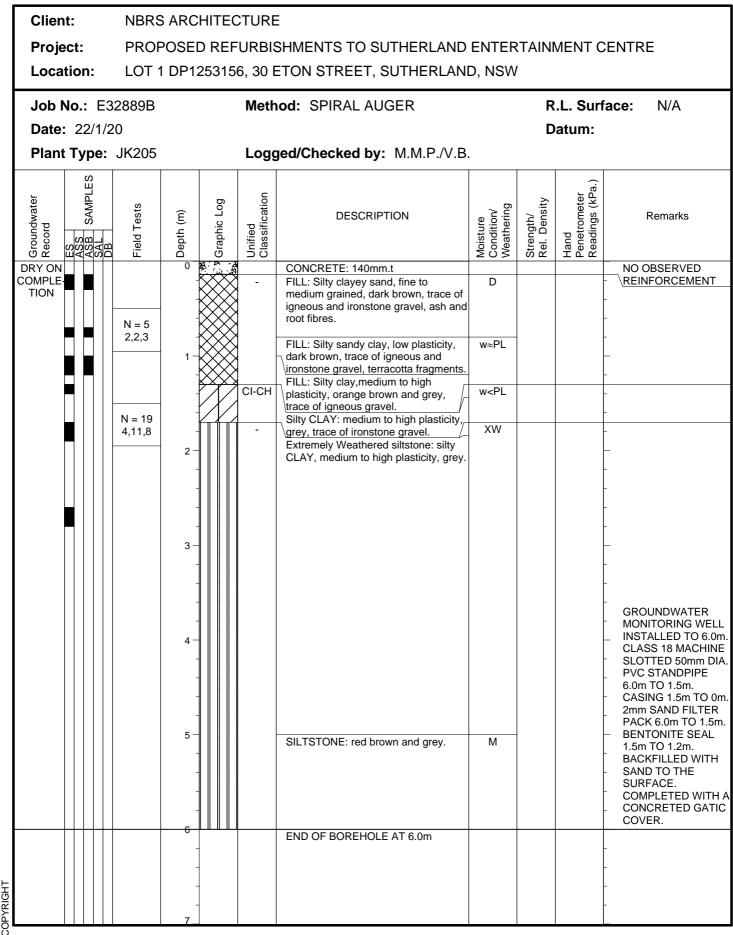
This land is within an area of high Aboriginal Archaeological Sensitivity. Aboriginal objects and areas are protected by the National Parks and Wildlife Act 1974. It is an offence to damage, deface, remove or destroy or cause damage, defacement, removal or destruction of aboriginal objects and areas without the consent of the NSW Office of Environment and Heritage. Further information is available on Council and the OEH websites www.environment.nsw.gov.au.

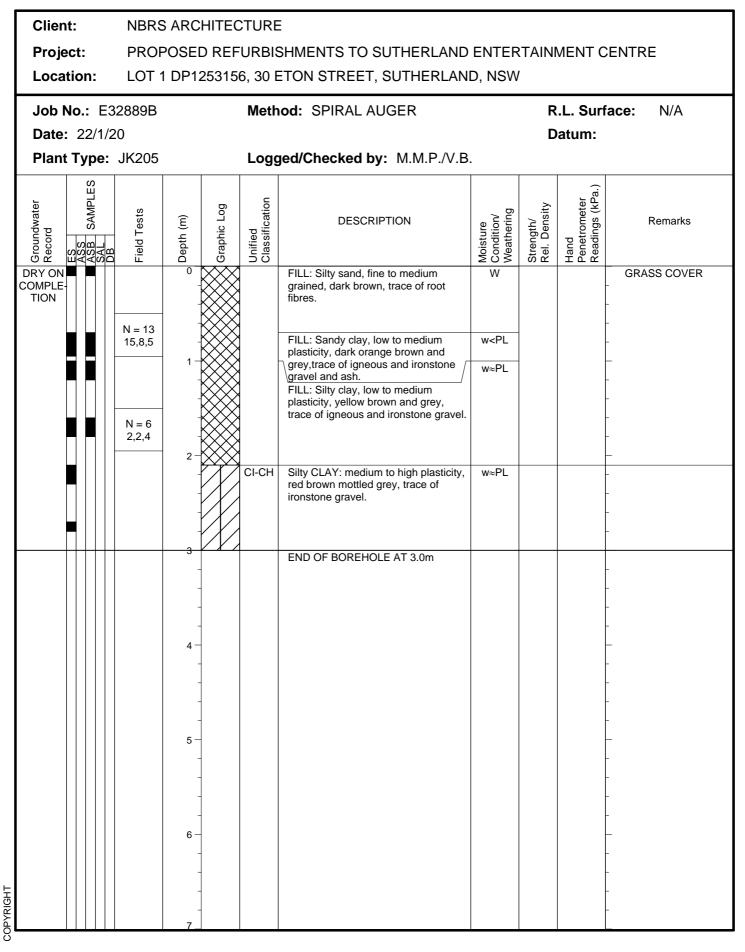
For further information please telephone [02] 9710 0333.

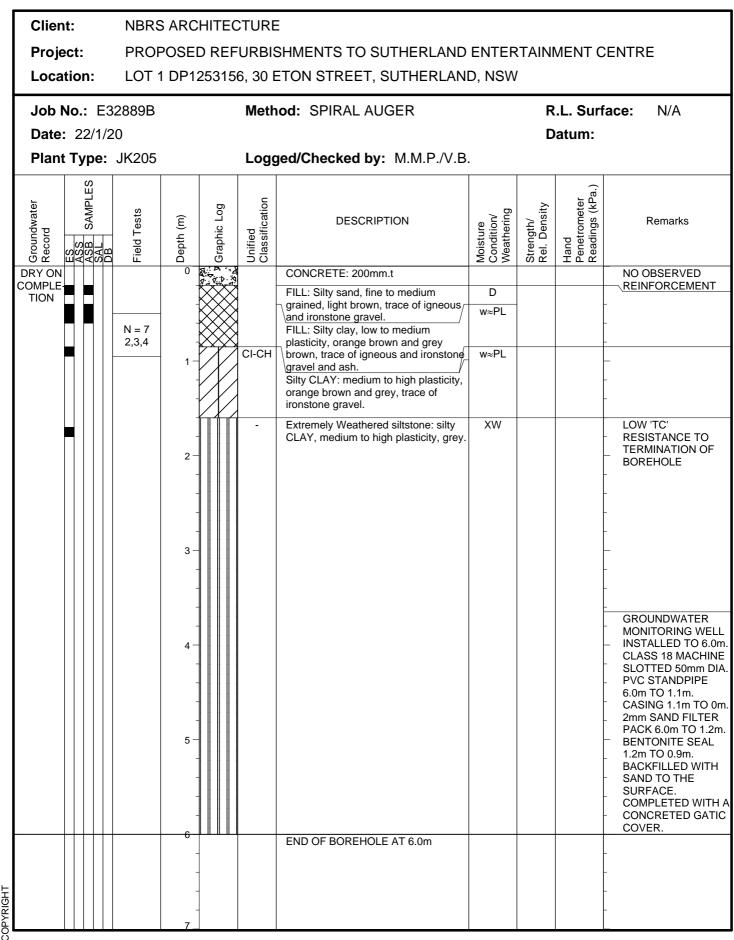
Yours faithfully

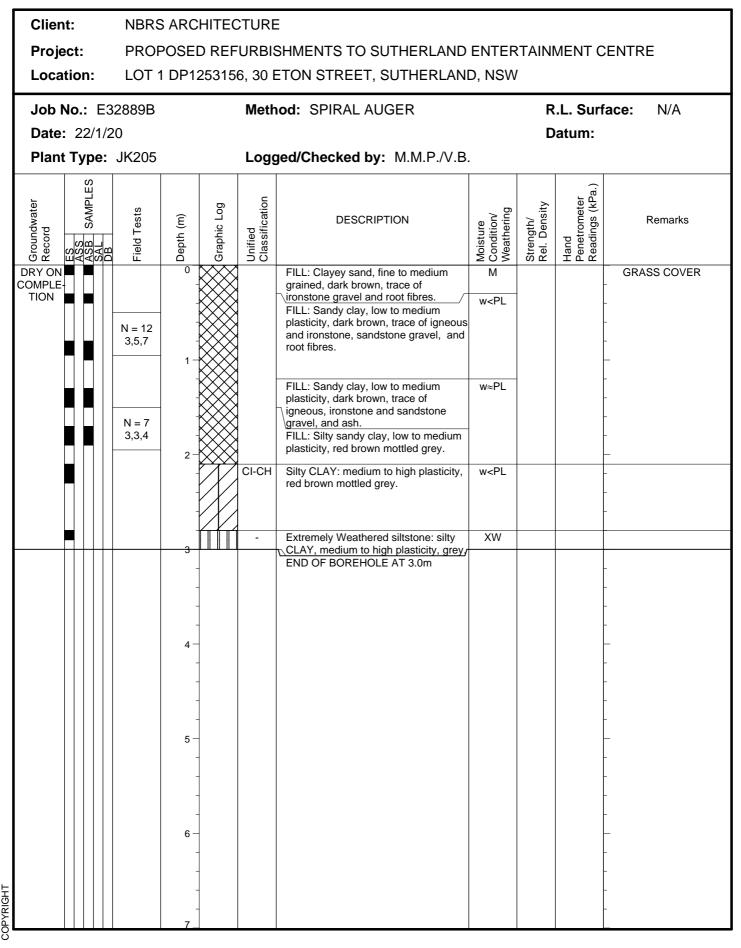
Mark Carlon Manager Strategic Planning

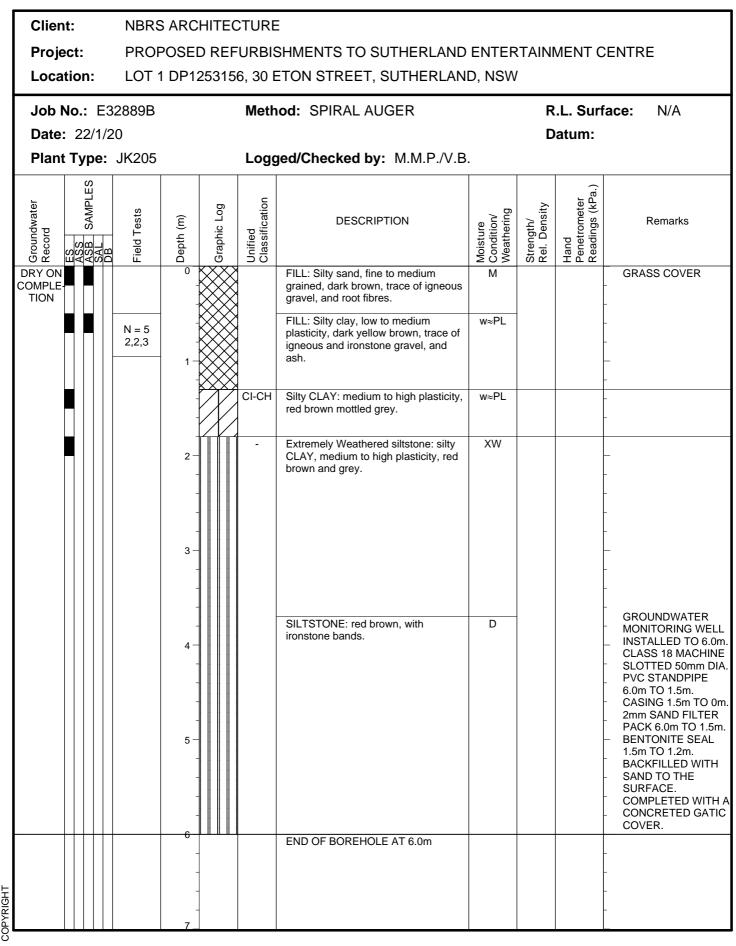
SafeWork NSW Records (pending)




Appendix D: Borehole Logs

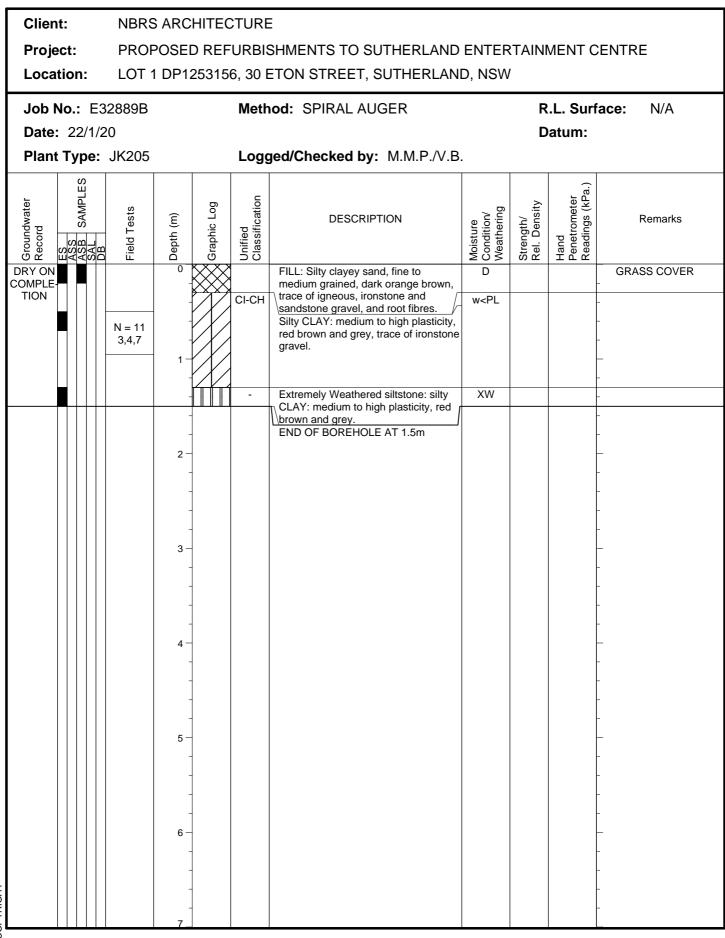

Log No. BH/MW1 1/1 DUPMP5: 0.14m-0.3m




Log No. BH/MW3 1/1 DUPMP1: 0.2m-0.3m

Log No. BH4 1/1

Log No. BH/MW5 1/1 DUPMP3: 0.0m-0.2m



Log No. BH6 1/1 DUPMP2: 0.14m-0.3m

Job No.: E32889B Rethod: SPIRAL AUGER R.L. Surface: NA Date: 22/1/20 Datum: Hant Type: JA205 Logged/Checked by: M.M.P./V.B. Image: Spin and the state of the stat		Project: PROP					NBRS ARCHITECTURE PROPOSED REFURBISHMENTS TO SUTHERLAND ENTERTAINMENT CENTRE LOT 1 DP1253156, 30 ETON STREET, SUTHERLAND, NSW							
CONCRETE: 140mm.1 NO OBSERVED REINFORCEMENT grained, light brown, trace of igneous W FILL: Sand, fine to medium grained, yelow brown. FILL: Sand, fine to medium grained, yelow brown. CI-CH Silty CLAY: medium to high plasticity, red brown mottled grey. END OF BOREHOLE AT 1.5m - - - - - - - - - - - - -		Date	: 2	2/1	/20				Datum:					ace: N/A
CONCRETE: 140mm.1 NO OBSERVED REINFORCEMENT Gradient for the served of t		iroundwater ecord SS SAMPLES			DB	Field Tests		Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
Image: Set in the set of th							0							
Image: Second							-	\bigotimes		FILL: Clayey sand, fine to medium grained, light brown, trace of igneous	M			
Image: Second		•			6/	150mm	- - 1 –			And ironstone gravel. FILL: Sand, fine to medium grained,	W			-
							-		CI-CH	Silty CLAY: medium to high plasticity, red brown mottled grey.	w <pl< td=""><td></td><td></td><td>-</td></pl<>			-
	RIGHT									END OF BOREHOLE AT 1.5m				

Log No. BH7 1/1 DUPMP4: 0m-0.2m

Environmental logs are not to be used for geotechnical purposes

COPYRIGHT

Log No. BH8 1/1

Client:	NBRS ARCHIT	ECTURE						
Project:	PROPOSED REFURBISHMENTS TO SUTHERLAND ENTERTAINMENT CENTRE							
Location:	LOT 1 DP1253	253156, 30 ETON STREET, SUTHERLAND, NSW						
Job No.: E32	2889B	Metho	d: HAND AUGER		R	.L. Surf	ace: N/A	
Date: 22/1/20	0				D	atum:		
Plant Type:		Logge	ed/Checked by: M.M.P./V.B.					
Groundwater Record <u>ASS</u> SAL DB DB	Field Tests Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLE- TION			FILL: Silty sand, fine to medium grained, dark brown, trace of (ironstone gravel, and root fibres.	M w≈PL			GRASS COVER	
COPYRIGHT			FILL: Sandy clay, low to medium plasticity, grey brown, trace of igneous and ironstone gravel, and ash. END OF BOREHOLE AT 0.4m				HAND AUGER REFUSAL ON GRAVEL	

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)	
Very Soft (VS)	≤25	≤12	
Soft (S)	> 25 and \leq 50	> 12 and \leq 25	
Firm (F)	> 50 and \leq 100	> 25 and \leq 50	
Stiff (St)	$>$ 100 and \leq 200	> 50 and \leq 100	
Very Stiff (VSt)	$>$ 200 and \leq 400	$> 100 \text{ and} \le 200$	
Hard (Hd)	> 400	> 200	
Friable (Fr)	Strength not attainable – soil crumbles		

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

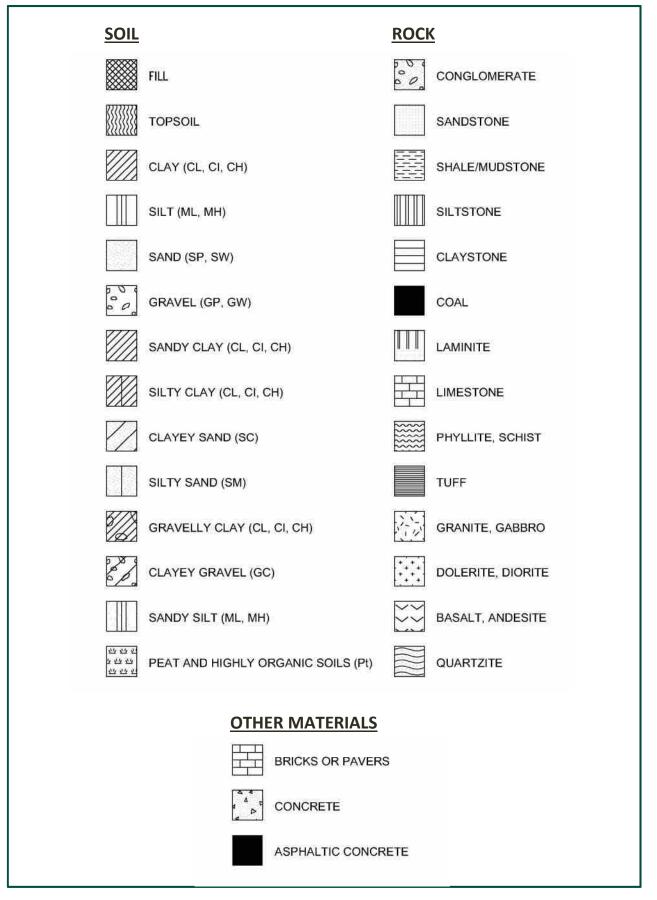
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

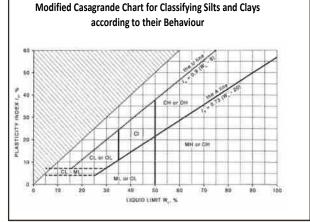
SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory Classification	
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
ersize fraction is	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
6		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
65% of sail exdu than 0.075mm)		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
re than 65% greater thar	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>
Coarse grained soil (more than 65% of soil excluding greater than 0.075mm)	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

		Group			Laboratory Classification		
Ma	jor Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
Bupr	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ained soils (more than 35% of soil excl oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35% ssthan		OL	Organic silt	Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m e fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
inegrained solis (more than 33% of soil excluding oversize fraction is less than 0.075mm)		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

JKEnvironments

LOG SYMBOLS

Log Column	Symbol	Definition				
Groundwater Record	—	Standing water level. Time delay following completion of drilling/excavation may be shown.				
		Extent of borehole/test pit collapse shortly after drilling/excavation.				
		Groundwater seepage into borehole or test pit noted during drilling or excavation.				
Samples	ES U50 DB DS ASB ASS SAL	Sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos analysis. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.				
Field Tests	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	N _c = 5 7 3R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	VNS = 25 PID = 100	Vane shear reading in kPa of undrained shear strength. Photoionisation detector reading in ppm (soil sample headspace test).				
Moisture Condition (Fine Grained Soils)	w > PL w ≈ PL w < PL w ≈ LL w > LL	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit.				
(Coarse Grained Soils)	D M W	 DRY – runs freely through fingers. MOIST – does not run freely but no free water visible on soil surface. WET – free water visible on soil surface. 				
Strength (Consistency) VS Cohesive Soils S F Si VS Hu Fi (VERY SOFT- unconfined compressive strength ≤ 25 kPa.SOFT- unconfined compressive strength > 25kPa and ≤ 50 kPa.FIRM- unconfined compressive strength > 50kPa and ≤ 100 kPa.STIFF- unconfined compressive strength > 100kPa and ≤ 200 kPa.VERY STIFF- unconfined compressive strength > 200kPa and ≤ 400 kPa.HARD- unconfined compressive strength > 400kPa.FRIABLE- strength not attainable, soil crumbles.Bracketed symbol indicates estimated consistency based on tactile examination or other assessment.				
Density Index/ Relative Density		Density Index (I _D) SPT 'N' Value Range Range (%) (Blows/300mm)				
(Cohesionless Soils)	VL	VERY LOOSE ≤ 15 $0-4$				
	L	LOOSE > 15 and \leq 35 4 - 10				
	MD	MEDIUM DENSE > 35 and ≤ 65 10 - 30				
	D	DENSE > 65 and \leq 85 30 - 50				
	VD ()	VERY DENSE > 85 > 50 Bracketed symbol indicates estimated density based on ease of drilling or other assessment.				
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.				

6

Log Column	Symbol	Definition				
Remarks	'V' bit	Hardened steel 'V	Hardened steel 'V' shaped bit.			
	'TC' bit	Twin pronged tun	gsten carbide bit.			
	T_{60}	Penetration of au without rotation of	ger string in mm under static load of rig applied by drill head hydraulics of augers.			
	Soil Origin	The geological ori	gin of the soil can generally be described as:			
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 			
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 			
		ALLUVIAL	- soil deposited by creeks and rivers.			
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 			
		MARINE	- soil deposited in a marine environment.			
		AEOLIAN	 soil carried and deposited by wind. 			
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 			
		LITTORAL	– beach deposited soil.			

Classification of Material Weathering

Term		Abbre	viation	Definition		
Residual Soil		F	ß	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.		
Extremely Weathered		х	W	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.		
Highly Weathered	Distinctly Weathered	ered DW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.		
Moderately Weathered	(Note 1)			The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.		
Slightly Weathered		S	W	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.		
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.		

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering.* The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

				Guide to Strength
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Appendix E: Laboratory Report/s & COC Documents

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 235189

Client Details	
Client	Environmental Investigation Services
Attention	Vittal Boggaram
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32889B, Sutherland
Number of Samples	43 Soil
Date samples received	24/01/2020
Date completed instructions received	24/01/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 03/02/2020

 Date of Issue
 03/02/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Loren Bardwell, Senior Chemist Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		235189-1	235189-2	235189-7	235189-13	235189-14
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.14-0.3	0.7-0.8	0.0-0.1	0.2-0.3	0.4-0.6
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020	31/01/2020	31/01/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	105	102	107	104	106
5		1	1			
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		235189-17	235189-21	235189-24	235189-28	235189-32
	UNITS	235189-17 BH4	235189-21 BH4	235189-24 BH5	235189-28 BH6	235189-32 BH7
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH4	BH4	BH5	BH6	BH7
Our Reference Your Reference Depth	UNITS	BH4 0.0-0.1	BH4 1.7-1.9	BH5 0.0-0.2	BH6 0.14-0.3	BH7 0.0-0.2
Our Reference Your Reference Depth Date Sampled	UNITS	BH4 0.0-0.1 22/01/2020	BH4 1.7-1.9 22/01/2020	BH5 0.0-0.2 22/01/2020	BH6 0.14-0.3 22/01/2020	BH7 0.0-0.2 22/01/2020
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH4 0.0-0.1 22/01/2020 Soil	BH4 1.7-1.9 22/01/2020 Soil	BH5 0.0-0.2 22/01/2020 Soil	BH6 0.14-0.3 22/01/2020 Soil	BH7 0.0-0.2 22/01/2020 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020 31/01/2020	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020 31/01/2020	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020 31/01/2020	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020 31/01/2020 <25	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020 31/01/2020 <25	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020 31/01/2020 <25	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_10$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <0.2 <0.2 <0.5	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.5 <1 <1 <2	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH4 0.0-0.1 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	BH4 1.7-1.9 22/01/2020 Soil 29/01/2020 31/01/2020 <25	BH5 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	BH6 0.14-0.3 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	BH7 0.0-0.2 22/01/2020 Soil 29/01/2020 31/01/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		235189-35	235189-36	235189-37	235189-39	235189-41
Your Reference	UNITS	BH8	BH8	SDUP1	SDUP3	TS-S1
Depth		0.0-0.1	0.1-0.2	-	-	-
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020	31/01/2020	31/01/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	[NA]
TRH C6 - C10	mg/kg	<25	<25	<25	<25	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	98%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	98%
Ethylbenzene	mg/kg	<1	<1	<1	<1	100%
m+p-xylene	mg/kg	<2	<2	<2	<2	100%
o-Xylene	mg/kg	<1	<1	<1	<1	99%
naphthalene	mg/kg	<1	<1	<1	<1	[NA]
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	[NA]
Surrogate aaa-Trifluorotoluene	%	105	107	106	102	104

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		235189-42
Your Reference	UNITS	TB-S1
Depth		-
Date Sampled		22/01/2020
Type of sample		Soil
Date extracted	-	29/01/2020
Date analysed	-	31/01/2020
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	106

svTRH (C10-C40) in Soil						
Our Reference		235189-1	235189-2	235189-7	235189-13	235189-14
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.14-0.3	0.7-0.8	0.0-0.1	0.2-0.3	0.4-0.6
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020	31/01/2020	31/01/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	210	<100	<100	110	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	230	<100	<100	140	<100
TRH >C ₃₄ -C ₄₀	mg/kg	240	150	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	470	150	<50	140	<50
Surrogate o-Terphenyl	%	82	77	86	76	75

3V H(H (C 10-C+0) III 30II						
Our Reference		235189-17	235189-21	235189-24	235189-28	235189-32
Your Reference	UNITS	BH4	BH4	BH5	BH6	BH7
Depth		0.0-0.1	1.7-1.9	0.0-0.2	0.14-0.3	0.0-0.2
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020	31/01/2020	31/01/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	74	81	82	72	80

svTRH (C10-C40) in Soil					
Our Reference		235189-35	235189-36	235189-37	235189-39
Your Reference	UNITS	BH8	BH8	SDUP1	SDUP3
Depth		0.0-0.1	0.1-0.2	-	-
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020	31/01/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	110	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	140	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	190	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	190	<50
Surrogate o-Terphenyl	%	80	73	76	72

PAHs in Soil						
Our Reference		235189-1	235189-2	235189-7	235189-13	235189-14
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.14-0.3	0.7-0.8	0.0-0.1	0.2-0.3	0.4-0.6
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	88	86	86	86	85

PAHs in Soil						
Our Reference		235189-17	235189-21	235189-24	235189-28	235189-32
Your Reference	UNITS	BH4	BH4	BH5	BH6	BH7
Depth		0.0-0.1	1.7-1.9	0.0-0.2	0.14-0.3	0.0-0.2
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	0.1	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	84	86	81	85	86

PAHs in Soil					
Our Reference		235189-35	235189-36	235189-37	235189-39
Your Reference	UNITS	BH8	BH8	SDUP1	SDUP3
Depth		0.0-0.1	0.1-0.2	-	-
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.06	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.06	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	83	86	84	87

Organochlorine Pesticides in soil						
Our Reference		235189-1	235189-7	235189-13	235189-17	235189-24
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.14-0.3	0.0-0.1	0.2-0.3	0.0-0.1	0.0-0.2
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	96	95	94	89

Organochlorine Pesticides in soil						
Our Reference		235189-28	235189-32	235189-35	235189-37	235189-39
Your Reference	UNITS	BH6	BH7	BH8	SDUP1	SDUP3
Depth		0.14-0.3	0.0-0.2	0.0-0.1	-	-
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	96	93	94	96

Organophosphorus Pesticides in Soil						
Our Reference		235189-1	235189-7	235189-13	235189-17	235189-24
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.14-0.3	0.0-0.1	0.2-0.3	0.0-0.1	0.0-0.2
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	96	95	94	89

Organophosphorus Pesticides in Soil						
Our Reference		235189-28	235189-32	235189-35	235189-37	235189-39
Your Reference	UNITS	BH6	BH7	BH8	SDUP1	SDUP3
Depth		0.14-0.3	0.0-0.2	0.0-0.1	-	-
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	96	93	94	96

PCBs in Soil						
Our Reference		235189-1	235189-7	235189-13	235189-17	235189-24
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.14-0.3	0.0-0.1	0.2-0.3	0.0-0.1	0.0-0.2
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	96	95	94	89

PCBs in Soil						
Our Reference		235189-28	235189-32	235189-35	235189-37	235189-39
Your Reference	UNITS	BH6	BH7	BH8	SDUP1	SDUP3
Depth		0.14-0.3	0.0-0.2	0.0-0.1	-	-
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	96	93	94	96

Acid Extractable metals in soil						
Our Reference		235189-1	235189-2	235189-7	235189-13	235189-14
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.14-0.3	0.7-0.8	0.0-0.1	0.2-0.3	0.4-0.6
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Arsenic	mg/kg	6	11	5	5	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	29	10	19	19
Copper	mg/kg	20	2	9	240	51
Lead	mg/kg	58	19	12	68	35
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	2	6	11	6
Zinc	mg/kg	92	5	28	280	130

Acid Extractable metals in soil							
Our Reference		235189-17	235189-21	235189-24	235189-28	235189-32	
Your Reference	UNITS	BH4	BH4	BH5	BH6	BH7	
Depth		0.0-0.1	1.7-1.9	0.0-0.2	0.14-0.3	0.0-0.2	
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date prepared	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020	
Date analysed	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020	
Arsenic	mg/kg	<4	6	5	<4	6	
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4	
Chromium	mg/kg	6	21	7	14	14	
Copper	mg/kg	14	14	30	13	22	
Lead	mg/kg	12	34	21	31	24	
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Nickel	mg/kg	3	12	4	8	3	
Zinc	mg/kg	31	43	88	22	140	

Acid Extractable metals in soil					
Our Reference		235189-35	235189-36	235189-37	235189-39
Your Reference	UNITS	BH8	BH8	SDUP1	SDUP3
Depth		0.0-0.1	0.1-0.2	-	-
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Arsenic	mg/kg	5	5	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	4	18	12	7
Copper	mg/kg	5	11	260	22
Lead	mg/kg	5	19	61	20
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	10	9	3
Zinc	mg/kg	310	49	300	78

Moisture						
Our Reference		235189-1	235189-2	235189-7	235189-13	235189-14
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.14-0.3	0.7-0.8	0.0-0.1	0.2-0.3	0.4-0.6
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Moisture	%	13	22	19	14	15
Moisture						
Our Reference		235189-17	235189-21	235189-24	235189-28	235189-32
Your Reference	UNITS	BH4	BH4	BH5	BH6	BH7
Depth		0.0-0.1	1.7-1.9	0.0-0.2	0.14-0.3	0.0-0.2
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Moisture	%	22	18	15	11	18
Moisture					_	
Our Reference		235189-35	235189-36	235189-37	235189-39	
Your Reference	UNITS	BH8	BH8	SDUP1	SDUP3	
Depth		0.0-0.1	0.1-0.2	-	-	
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	
Moisture	%	10	12	12	14	

Asbestos ID - soils						
Our Reference		235189-1	235189-2	235189-7	235189-13	235189-14
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.14-0.3	0.7-0.8	0.0-0.1	0.2-0.3	0.4-0.6
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Sample mass tested	g	Approx. 20g	Approx. 15g	Approx. 15g	Approx. 25g	Approx. 15g
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils						
Our Reference		235189-17	235189-21	235189-24	235189-28	235189-32
Your Reference	UNITS	BH4	BH4	BH5	BH6	BH7
Depth		0.0-0.1	1.7-1.9	0.0-0.2	0.14-0.3	0.0-0.2
Date Sampled		22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	03/02/2020	03/02/2020	03/02/2020	03/02/2020	03/02/2020
Sample mass tested	g	Approx. 10g	Approx. 25g	Approx. 15g	Approx. 25g	Approx. 25g
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils			
Our Reference		235189-35	235189-36
Your Reference	UNITS	BH8	BH8
Depth		0.0-0.1	0.1-0.2
Date Sampled		22/01/2020	22/01/2020
Type of sample		Soil	Soil
Date analysed	-	03/02/2020	03/02/2020
Sample mass tested	g	Approx. 20g	Approx. 20g
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Spike Re	covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	235189-7
Date extracted	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	29/01/2020
Date analysed	-			31/01/2020	1	31/01/2020	31/01/2020		31/01/2020	31/01/2020
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	111	101
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	111	101
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	118	113
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	116	111
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	105	91
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	108	95
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	107	93
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	103	1	105	102	3	110	102

QUALITY CONT	ROL: vTRH	(C6-C10)/	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	39	29/01/2020	29/01/2020			[NT]
Date analysed	-			[NT]	39	31/01/2020	31/01/2020			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	39	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	39	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-016	[NT]	39	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-016	[NT]	39	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-016	[NT]	39	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-016	[NT]	39	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-016	[NT]	39	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-014	[NT]	39	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	39	102	105	3		[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	235189-7
Date extracted	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	30/01/2020
Date analysed	-			31/01/2020	1	31/01/2020	31/01/2020		31/01/2020	31/01/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	100	102
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	102	130
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	210	170	21	108	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	100	102
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	230	190	19	102	130
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	240	220	9	108	[NT]
Surrogate o-Terphenyl	%		Org-003	74	1	82	78	5	84	86

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	39	29/01/2020	29/01/2020			
Date analysed	-			[NT]	39	31/01/2020	31/01/2020			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	39	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	39	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	39	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	39	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	39	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	39	<100	<100	0		
Surrogate o-Terphenyl	%		Org-003	[NT]	39	72	71	1		

QUALII	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	235189-7
Date extracted	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	29/01/2020
Date analysed	-			30/01/2020	1	30/01/2020	30/01/2020		30/01/2020	30/01/2020
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	96
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	99
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	108	102
Anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	97
Pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	99
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	116	108
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	1	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	1	<0.05	<0.05	0	108	99
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	90	1	88	85	3	90	84

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	39	29/01/2020	29/01/2020			[NT]
Date analysed	-			[NT]	39	30/01/2020	30/01/2020			[NT]
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	39	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	39	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	39	87	83	5		[NT]

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	235189-7
Date extracted	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	29/01/2020
Date analysed	-			30/01/2020	1	30/01/2020	30/01/2020		30/01/2020	30/01/2020
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	99
НСВ	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	99
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	94
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	112	107
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	106
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	104
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	116	104
Endrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	118	109
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	96
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	99
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	105	1	97	93	4	96	92

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	39	29/01/2020	29/01/2020			[NT]	
Date analysed	-			[NT]	39	30/01/2020	30/01/2020			[NT]	
alpha-BHC	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
НСВ	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
beta-BHC	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
gamma-BHC	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Heptachlor	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
delta-BHC	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Aldrin	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
gamma-Chlordane	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
pp-DDE	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Dieldrin	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Endrin	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Endosulfan II	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
pp-DDD	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
pp-DDT	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Methoxychlor	mg/kg	0.1	Org-012/017	[NT]	39	<0.1	<0.1	0		[NT]	
Surrogate TCMX	%		Org-012/017	[NT]	39	96	93	3		[NT]	

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	235189-7
Date extracted	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	29/01/2020
Date analysed	-			30/01/2020	1	30/01/2020	30/01/2020		30/01/2020	30/01/2020
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	116	124
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	102
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	98	111
Malathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	131	125
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	112	106
Parathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	124	104
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	112	104
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	105	1	97	93	4	96	92

QUALITY CONTRO	L: Organopł	nosphorus	s Pesticides in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				39	29/01/2020	29/01/2020			[NT]
Date analysed	-				39	30/01/2020	30/01/2020			[NT]
Dichlorvos	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	AT-008		39	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017		39	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017		39	96	93	3		[NT]

QUALI	TY CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	235189-7
Date extracted	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	29/01/2020
Date analysed	-			30/01/2020	1	30/01/2020	30/01/2020		30/01/2020	30/01/2020
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	100	95
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	105	1	97	93	4	96	92

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	39	29/01/2020	29/01/2020			
Date analysed	-			[NT]	39	30/01/2020	30/01/2020			
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	39	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	39	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	39	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	39	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	39	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	39	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	39	<0.1	<0.1	0		
Surrogate TCMX	%		Org-006	[NT]	39	96	93	3	[NT]	[NT]

QUALITY CONTROL: Acid Extractable metals in soil						Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	235189-7	
Date prepared	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	29/01/2020	
Date analysed	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	29/01/2020	
Arsenic	mg/kg	4	Metals-020	<4	1	6	8	29	101	89	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	93	81	
Chromium	mg/kg	1	Metals-020	<1	1	16	21	27	103	81	
Copper	mg/kg	1	Metals-020	<1	1	20	24	18	104	91	
Lead	mg/kg	1	Metals-020	<1	1	58	79	31	105	84	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	0.1	0	90	98	
Nickel	mg/kg	1	Metals-020	<1	1	11	12	9	96	82	
Zinc	mg/kg	1	Metals-020	<1	1	92	100	8	101	69	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	39	29/01/2020	29/01/2020			[NT]
Date analysed	-			[NT]	39	29/01/2020	29/01/2020			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	39	5	4	22		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	39	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	39	7	7	0		[NT]
Copper	mg/kg	1	Metals-020	[NT]	39	22	26	17		[NT]
Lead	mg/kg	1	Metals-020	[NT]	39	20	20	0		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	39	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	39	3	4	29		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	39	78	100	25	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Acid Extractable Metals in Soil - Spike recovery for Zn in sample #7 at 69% which is outside lab acceptance criteria (70-130%), however, the LCS recovery is acceptable at 101%. Sample heterogeneity suspected.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 235189-35, 37 were sub-sampled from jars provided by the client.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 235189-1, 2, 7, 13, 14, 17, 21, 24, 28, 32, 36 were sub-sampled from bags provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Vittal Boggaram

Sample Login Details	
Your reference	E32889B, Sutherland
Envirolab Reference	235189
Date Sample Received	24/01/2020
Date Instructions Received	24/01/2020
Date Results Expected to be Reported	03/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	43 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	2.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au						

Analysis Underway, details on the following page:

T

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	On Hold
BH1-0.14-0.3	✓	✓	✓	√	\checkmark	✓	✓	✓	
BH1-0.7-0.8	\checkmark	\checkmark	✓				✓	\checkmark	
BH1-1.0-1.2									\checkmark
BH1-1.3-1.4									✓
BH1-1.7-1.9									✓
BH1-2.6-2.8									\checkmark
BH2-0.0-0.1	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	
BH2-0.7-0.95									\checkmark
BH2-1.0-1.2									✓ ✓ ✓
BH2-1.6-1.8									✓
BH2-2.1-2.3									
BH2-2.7-2.8									✓
BH3-0.2-0.3	\checkmark	✓	✓	✓	\checkmark	✓	\checkmark	\checkmark	
BH3-0.4-0.6	\checkmark	\checkmark	✓				✓	✓	
BH3-0.85-0.95									✓
BH3-1.7-1.8									✓
BH4-0.0-0.1	✓	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	
BH4-0.3-0.4									✓
BH4-0.8-0.95									✓
BH4-1.3-1.5									✓
BH4-1.7-1.9	✓	✓	✓				✓	✓	
BH4-2.1-2.3									✓
BH4-2.8-2.9									✓
BH5-0.0-0.2	✓	✓	✓	✓	\checkmark	✓	✓	✓	
BH5-0.3-0.5									✓
BH5-1.3-1.5									✓
BH5-1.8-2.0									✓
BH6-0.14-0.3	\checkmark	✓	✓	✓	\checkmark	✓	\checkmark	\checkmark	
BH6-0.4-0.5									✓
BH6-0.9-1.0									✓
BH6-1.1-1.3									✓
BH7-0.0-0.2	\checkmark	\checkmark	✓	✓	\checkmark	✓	\checkmark	\checkmark	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	On Hold
BH7-0.5-0.7									\checkmark
BH7-1.3-1.5									\checkmark
BH8-0.0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH8-0.1-0.2	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	
SDUP1	1	✓	✓	✓	\checkmark	✓	\checkmark		
SDUP2									\checkmark
SDUP3	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark		
SDUP4									\checkmark
TS-S1	\checkmark								
TB-S1	\checkmark								
BH5-0.5-0.7									\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

<u>TO:</u> ENVIROLAB	SERVICI			EIS Job	SAMP	LE AND CHAIN OF CUSTO	DDY	FOR	<u>M</u>		FROM	<u>Vi:</u>		-				
12 ASHLEY S CHATSWOOI	TREET D NSW 2			Number	r													
P: (02) 99106 F: (02) 99106								REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113										
Attention: A	ileen			1.0f2		P: 02-9888 5000 F: 02-9888 5001 Attention: VITTAL vboggaram@ikenvironments.com.au												
Location:	Suthe	rland					1			Sam								
Sampler:	MMP			*	· · · · · · · · · · · · · · · · · · ·						τ	'ests R	equire	ed				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	Pid	Sample Description	Combo 2	Combo 3a	Combo 6	Combo 6a	8 Metals	PAHS	TRH/BTEX	BTEX	Asbestos			
22.1.20	١	BH1	0.14-0.3	G, A	0.3	F: Silty clayey sand				X		-						
22.1.20	2	BH1	0.7-0.8	G, A	0	F: Silty sandy clay		X										
22.1.20	3	вн1	1.0-1.2	G, A	0	F: Silty clay												
22.1.20	4	вн1	1.3-1.4	G	0	Silty clay			,									
22.1.20	5	BH1	1.7-1.9	G	0	Weathered siltstone											Ĺ	
22.1.20	6	вн1	2.6-2.8	G	0	Weathered siltstone												
22.1.20	2	вн2	0-0.1	G, A	0	F: Silty sand				\mathbb{X}								
22.1.20	3	BH2	0.7-0.95	G, A	0.1	F: Sandy clay												
22.1.20	9	BH2	1-1.2	G, A	0.9	F: Silty clay						-						
22.1.20	10	BH2	1.6-1.8	G, A	0	F: Silty clay												
22.1.20	<u>n</u>	BH2	2.1-2.3	G	0	Silty clay												
22.1.20	12	BH2	2.7-2.8	G	0	· Silty clay												
22.1.20	13	внз	0.2-0.3	G, A	2.5	F: Silty sand				X								
22.1.20	14	внз	0.4-0.6	G, A	1.3	F: Silty clay		X		Ì.								
22.1.20	15	внз	0.85-0.95	G	0	Silty clay												
22.1.20	16	внз	1.7-1.8	G	0	Extremely weathered siltstone												
22.1.20	17	BH4	0-0.1	G, A	0	F: Clayey sand				\geq								
22.1.20	14	BH4	0.3-0.4	G, A	0	F: Sandy clay												
22.1.20	19	вна	0.8-0.95	G, A	0	F: Sandy clay												
22.1.20	20	ВН4	1.3-1.5	G, A	0	F: Sandy clay												
22.1.20	2.1	BH4	1.7-1.9	G, A	<i>,</i> 0	F: Silty sandy clay		X										
22.1.20	22	BH4	2.1-2.3	G	0	Silty clay												
22.1.20	23	вн4	2.8-2.9	G	0	Extremely weathered siltstone												
22.1.20	24	вн5	0-0.2	G, A	0	F: Silty sand				X								
22.1.20	25	вн5	0.3-0.5	G, A	0	F: Silty clay												
Remarks (cor	mments	/detection li	mits required):			G - 2 A - Zi	50mg (iplock	Glass Asbes	Jar 🕤	ıg		<u> </u>	<u> </u>		•	<u> </u>	
Relinquished	•			Date:		,,,,			lag		Rece	ived E	ly:			Date	:	
<u> </u>	tto	el B	S	Required: MACQUARE PARK, NSW 2113 Page: 1.0f 2 Page: 1.0f 2 Sample Freeword in Extra construction automatic construction automatin automatic construction automatin automatic constructic														
					·					GROUP	/	Cha F	tswoo Ph: (0	12 As 50 NS 2) 99	hley W 20 10 62	St 67		
									<u>Jo</u> Da	ite Re	<u>).</u> eceiv	۲۲ ed:	55 24	18 +/י ろの	12	<i>م</i> ،		
									Te	me R eceive emp: (ooling	ധ്യ	AUD	lent	N	w	P		
									S	ecurit	y: 10e	act/E	Broke	n/No	ne			

N

7

r.

•

12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200					EIS Job E32889B Number: Date Results STANDARD							FROM: JKEnvironments REAR OF 115 WICKS ROAD									
F: (02) 99106201 Attention: Aileen				Required: Page: 2 of,2			i . *	L			MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: vboggaram@jkenvironments.com.au										
Location:	Suthe	rland	ang tang ang ang ang ang ang ang ang ang ang	тар 1911 - 2 1911 - 34	ر مراجع	and the second state of th				Sam			ed in E			conna	4				
Sampler:	MMP		ي من							-	Tests Required										
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	comba 3	Combo 3a	Combo 6	Combo 6a	8 Metals	PAHs	TRH/BTEX	ВТЕХ	Asbestos						
22.1.20	26	вн5	1.3-1.5	G	O	Silty clay															
22.1.20	27	BH5	1.8-2	G	0	Extremely weathered siltstone	ŀ														
22.1.20	28	вне	0.14-0.3	G, A	0	F: Clayey sand	1			\mathbf{X}				-			\neg				
22.1.20	29	BH6	0.4-0.5	G, A	0	F: Sand				<u>~</u>											
22.1.20	30	вне	0.9-1.0	G, A	0	F: Sand										-					
22.1.20	31	BH6	1.1-1.3	G	0	Silty clay															
22.1.20	32	BH7	0-0.2	G, A	0	F: Silty clayey sand		<u>+</u>		X			,			•					
22.1.20	33	BH7	0.5-0.7	G	0	Silty clay					-										
22.1.20	34	BH7	1.3-1.5	G	o	Extremely weathered siltstone			-		· ·						-				
22.1.20	35	BH8	0-0.1	G, A	0	F: Silty sand	1.			\mathbf{X}					4						
22.1.20	36	BH8	0.1-0.2	G, A	0	F: Sandy clay		$\mathbf{\nabla}$			<u>.</u>										
22.1.20	37	SDUP1	-	G	R9-	Soil		r .	\mathbf{X}	<u>. `</u>		-	<u> </u>								
22.1.20	38	SDUP2	-	G		Soil	<u> </u>									. •		·			
22.1.20	æ	SDUP3	-	G	-	Soil ·	-	<u>†</u>	\mathbf{X}		<u> </u>										
22.1.20	40	· · · · · · · · · · · · · · · · · · ·	-	G		Soil								·			\neg				
22.1.20	-	SDUP5		G	-	Soil	X	-	Ň	⊳ Ç	-	1.	v	10							
22.1.20 [,]	41	TS-S1	-	v	-	Soil								Ň							
22.1.20		TB-S1	-	G		Soil					,	· .	1.	$\mathbf{\hat{X}}$		٠r					
	43	BHS	0.5-0.7)					· .				<u> </u>				_,				
					2								ŀ								
·					*`.		1	1										 			
							1.														
								Ī													
		19.000				· · · · · · · · · · · · · · · · · · ·		1				1									
								Ť										_			
emarks (con	ments	/detection lin	mits required)	:		·	G - 2 A - Z	ple Co 50mg iplock lastic E	Glass J Asbes	ar						I					
lelinquished	Вү:	,	3	Date:			Time		oag		Rece	ived_E	By:	_		Date:					
		s R .	<u>.</u>													•					
					•	· ·									-	·					

. .

清章

. 16

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 235189-A

Client Details	
Client	Environmental Investigation Services
Attention	Harley Wang
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32889B, Sutherland
Number of Samples	43 Soil
Date samples received	24/01/2020
Date completed instructions received	10/02/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	13/02/2020		
Date of Issue	13/02/2020		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Jaimie Loa-Kum-Cheung, Metals Supervisor Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 235189-A Revision No: R00

Page | 1 of 8

CEC			
Our Reference		235189-A-13	235189-A-35
Your Reference	UNITS	BH3	BH8
Depth		0.2-0.3	0.0-0.1
Date Sampled		22/01/2020	22/01/2020
Type of sample		Soil	Soil
Date prepared	-	13/02/2020	13/02/2020
Date analysed	-	13/02/2020	13/02/2020
Exchangeable Ca	meq/100g	45	3.4
Exchangeable K	meq/100g	0.5	<0.1
Exchangeable Mg	meq/100g	0.34	0.52
Exchangeable Na	meq/100g	0.15	<0.1
Cation Exchange Capacity	meq/100g	46	4.0

Misc Inorg - Soil			
Our Reference		235189-A-13	235189-A-35
Your Reference	UNITS	BH3	BH8
Depth		0.2-0.3	0.0-0.1
Date Sampled		22/01/2020	22/01/2020
Type of sample		Soil	Soil
Date prepared	-	12/02/2020	12/02/2020
Date analysed	-	12/02/2020	12/02/2020
pH 1:5 soil:water	pH Units	10.1	6.8

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.

QUALITY CONTROL: CEC						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/02/2020	[NT]		[NT]	[NT]	13/02/2020	
Date analysed	-			13/02/2020	[NT]		[NT]	[NT]	13/02/2020	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	104	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	105	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	109	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	111	

QUALITY CONTROL: Misc Inorg - Soil					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			12/02/2020	35	12/02/2020	12/02/2020		12/02/2020	[NT]
Date analysed	-			12/02/2020	35	12/02/2020	12/02/2020		12/02/2020	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	35	6.8	6.6	3	101	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions			
Blank	BlankThis is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Harley Wang

Sample Login Details	
Your reference	E32889B, Sutherland
Envirolab Reference	235189-A
Date Sample Received	24/01/2020
Date Instructions Received	10/02/2020
Date Results Expected to be Reported	13/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	43 Soil
Turnaround Time Requested	3 days
Temperature on Receipt (°C)	2.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst	
Phone: 02 9910 6200	Phone: 02 9910 6200	
Fax: 02 9910 6201	Fax: 02 9910 6201	
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au	

Analysis Underway, details on the following page:

Sample ID	CEC	Misc Inorg - Soil	On Hold
BH1-0.14-0.3			✓
BH1-0.7-0.8			✓
BH1-1.0-1.2			✓
BH1-1.3-1.4			✓
BH1-1.7-1.9			
BH1-2.6-2.8			✓
BH2-0.0-0.1			✓
BH2-0.7-0.95			✓
BH2-1.0-1.2			✓
BH2-1.6-1.8			✓
BH2-2.1-2.3			✓
BH2-2.7-2.8			✓
BH3-0.2-0.3	✓	✓	
BH3-0.4-0.6			✓
BH3-0.85-0.95			 ✓ ✓
BH3-1.7-1.8			✓
BH4-0.0-0.1			✓
BH4-0.3-0.4			✓
BH4-0.8-0.95			✓
BH4-1.3-1.5			✓
BH4-1.7-1.9			✓
BH4-2.1-2.3			
BH4-2.8-2.9			✓
BH5-0.0-0.2			✓
BH5-0.3-0.5			✓
BH5-1.3-1.5			✓
BH5-1.8-2.0			
BH6-0.14-0.3			✓
BH6-0.4-0.5			✓
BH6-0.9-1.0			✓
BH6-1.1-1.3			✓
BH7-0.0-0.2			\checkmark

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au

www.envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	CEC	Misc Inorg - Soil	On Hold
BH7-0.5-0.7			✓
BH7-1.3-1.5			✓
BH8-0.0-0.1	\checkmark	\checkmark	
BH8-0.1-0.2			\checkmark
SDUP1			✓ ✓
SDUP2			\checkmark
SDUP3			✓
SDUP4			\checkmark
TS-S1			✓
TB-S1			✓
BH5-0.5-0.7			\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Aileen Hie

From: Sent: To:	Harley Wang <hwang@jkenvironments.com.a Monday, 10 February 2020 1:55 PM Aileen Hie</hwang@jkenvironments.com.a 	
Cc: Subject:	Nancy Zhang; Ken Nguyen; Vittal Boggaram Results for Registration 235189 E32889B	Ref; 235 189 - A
		TAT: 3 day
Hi Aileen,	к ₁₉ , <u>і</u>	Dre: 13/2/20
Can I get additional testing for th	nis job as follows:	-Fitz

Borehole	Depth	Sample No.	Additional Test/s Required
ВНЗ	0.2-0.3	235189-13	CEC and pH
BH8	0-0.1	235189-35	CEC and pH

Please undertake the additional analysis for the above samples on a **3-day TAT**.

Any issues please contact me.

Regards Harley Wang **Environmental Scientist**

South East Queensland Announcement

The JK Group are excited to announce that from 4 November 2019 we will have a full time presence in South East Queensland, based in Maroochydore and supported by our head office in Sydney. For all enquiries regarding our South East Queensland office, please contact Paul Roberts (proberts@jkgeotechnics.com.au).

T: +612 9888 5000 E: HWang@jkenvironments.com.au www.jkenvironments.com.au

PO Box 976 NORTH RYDE BC NSW 1670 115 Wicks Road MACQUARIE PARK NSW 2113

JKEnvironments

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

This email has been scanned for email related threats and delivered safely by Mimecast. For more information please visit http://www.mimecast.com

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 235447

Client Details	
Client	Environmental Investigation Services
Attention	Vittal Boggaram
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32889B, Sutherland
Number of Samples	6 Water
Date samples received	28/01/2020
Date completed instructions received	28/01/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	04/02/2020			
Date of Issue	04/02/2020			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Nick Sarlamis, Inorganics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 235447 Revision No: R00

Page | 1 of 19

VOCs in water					
Our Reference		235447-1	235447-2	235447-3	235447-4
Your Reference	UNITS	MW1	MW3	MW5	GWDUP1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Water	Water	Water	Water
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1	<1
Chloroform	µg/L	<1	<1	<1	<1
2,2-dichloropropane	µg/L	<1	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1	<1
Benzene	µg/L	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1

VOCs in water					
Our Reference		235447-1	235447-2	235447-3	235447-4
Your Reference	UNITS	MW1	MW3	MW5	GWDUP1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Water	Water	Water	Water
Bromoform	µg/L	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2
Styrene	µg/L	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1	<1
o-xylene	µg/L	<1	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1	<1
Isopropylbenzene	µg/L	<1	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	108	106	106	107
Surrogate toluene-d8	%	102	100	100	102
Surrogate 4-BFB	%	116	105	115	115

vTRH(C6-C10)/BTEXN in Water						
Our Reference		235447-1	235447-2	235447-3	235447-4	235447-5
Your Reference	UNITS	MW1	MW3	MW5	GWDUP1	TB-W1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
TRH C ₆ - C ₉	µg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	[NA]
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	108	106	106	107	105
Surrogate toluene-d8	%	102	100	100	102	103
Surrogate 4-BFB	%	116	105	115	115	115

vTRH(C6-C10)/BTEXN in Water		
Our Reference		235447-6
Your Reference	UNITS	TS-W1
Date Sampled		28/01/2020
Type of sample		Water
Date extracted	-	29/01/2020
Date analysed	-	30/01/2020
Benzene	μg/L	120%
Toluene	μg/L	122%
Ethylbenzene	μg/L	109%
m+p-xylene	μg/L	105%
o-xylene	μg/L	111%
Surrogate Dibromofluoromethane	%	107
Surrogate toluene-d8	%	106
Surrogate 4-BFB	%	112

svTRH (C10-C40) in Water					
Our Reference		235447-1	235447-2	235447-3	235447-4
Your Reference	UNITS	MW1	MW3	MW5	GWDUP1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Water	Water	Water	Water
Date extracted	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020	31/01/2020
TRH C ₁₀ - C ₁₄	µg/L	<50	79	58	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	54	81	60	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	54	81	60	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	67	71	77	65

PAHs in Water - Low Level					
Our Reference		235447-1	235447-2	235447-3	235447-4
Your Reference	UNITS	MW1	MW3	MW5	GWDUP1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Water	Water	Water	Water
Date extracted	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	77	66	71	68

HM in water - dissolved					
Our Reference		235447-1	235447-2	235447-3	235447-4
Your Reference	UNITS	MW1	MW3	MW5	GWDUP1
Date Sampled		28/01/2020	28/01/2020	28/01/2020	28/01/2020
Type of sample		Water	Water	Water	Water
Date prepared	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Arsenic-Dissolved	µg/L	<1	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	0.3	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1
Copper-Dissolved	µg/L	3	2	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	3	27	6	6
Zinc-Dissolved	µg/L	23	160	36	35

Miscellaneous Inorganics				
Our Reference		235447-1	235447-2	235447-3
Your Reference	UNITS	MW1	MW3	MW5
Date Sampled		28/01/2020	28/01/2020	28/01/2020
Type of sample		Water	Water	Water
Date prepared	-	28/01/2020	28/01/2020	28/01/2020
Date analysed	-	28/01/2020	28/01/2020	28/01/2020
рН	pH Units	7.0	6.4	5.0
Electrical Conductivity	µS/cm	1,200	3,500	1,600

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUAL	ITY CONTROL	: VOCs i	n water			Du	uplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			29/01/2020	[NT]		[NT]	[NT]	29/01/2020	
Date analysed	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]		
Chloromethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]		
Vinyl Chloride	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]		
Bromomethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]		
Chloroethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]		
Trichlorofluoromethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]		
1,1-Dichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Trans-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	121	
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Bromochloromethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Chloroform	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	122	
2,2-dichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
1,2-dichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	120	
1,1,1-trichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	120	
1,1-dichloropropene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Cyclohexane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Carbon tetrachloride	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Dibromomethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
1,2-dichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Trichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Bromodichloromethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	111	
trans-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
1,1,2-trichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Toluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
1,3-dichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Dibromochloromethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	100	
1,2-dibromoethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Tetrachloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	116	
1,1,1,2-tetrachloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Chlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Ethylbenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
Bromoform	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
m+p-xylene	µg/L	2	Org-013	<2	[NT]		[NT]	[NT]		
Styrene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		
1,1,2,2-tetrachloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]		

QUALIT	Y CONTRO	L: VOCs ii	n water			Du	iplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
o-xylene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Isopropylbenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Bromobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
n-propyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Tert-butyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Sec-butyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
n-butyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dibromo-3-chloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-013	111	[NT]		[NT]	[NT]	102		
Surrogate toluene-d8	%		Org-013	98	[NT]		[NT]	[NT]	101		
Surrogate 4-BFB	%		Org-013	113	[NT]		[NT]	[NT]	104		

QUALITY CONT	ROL: vTRH(C6-C10)/E	3TEXN in Water		Duplicate Spike					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			29/01/2020	[NT]		[NT]	[NT]	29/01/2020	
Date analysed	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	121	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	121	
Benzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	121	
Toluene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	128	
Ethylbenzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	118	
m+p-xylene	μg/L	2	Org-016	<2	[NT]		[NT]	[NT]	120	
o-xylene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	117	
Naphthalene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	111	[NT]		[NT]	[NT]	102	
Surrogate toluene-d8	%		Org-016	98	[NT]		[NT]	[NT]	101	
Surrogate 4-BFB	%		Org-016	113	[NT]		[NT]	[NT]	104	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	235447-2	
Date extracted	-			30/01/2020	1	30/01/2020	30/01/2020		30/01/2020	30/01/2020	
Date analysed	-			31/01/2020	1	31/01/2020	31/01/2020		31/01/2020	31/01/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	1	<50	80	46	81	93	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	1	<100	<100	0	84	97	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	1	<100	<100	0	82	125	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	1	54	90	50	81	93	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	1	<100	<100	0	84	97	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	1	<100	<100	0	82	125	
Surrogate o-Terphenyl	%		Org-003	96	1	67	78	15	130	71	

QUALITY CO	NTROL: PAH	ls in Wate	er - Low Level			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	235447-2
Date extracted	-			30/01/2020	1	30/01/2020	30/01/2020		30/01/2020	30/01/2020
Date analysed	-			30/01/2020	1	30/01/2020	30/01/2020		30/01/2020	30/01/2020
Naphthalene	μg/L	0.2	Org-012/017	<0.2	1	<0.2	<0.2	0	112	110
Acenaphthylene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	104
Phenanthrene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	116
Anthracene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	92	88
Pyrene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	96	106
Benzo(a)anthracene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	124	96
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-012/017	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	84	72
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	µg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	µg/L	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	72	1	77	70	10	75	68

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	235447-2
Date prepared	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	29/01/2020
Date analysed	-			29/01/2020	1	29/01/2020	29/01/2020		29/01/2020	29/01/2020
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	96	94
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	91	97
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	97	88
Copper-Dissolved	µg/L	1	Metals-022	<1	1	3	3	0	101	84
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	103	94
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	105	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	3	3	0	96	80
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	23	24	4	96	#

QUALITY CONTROL: Miscellaneous Inorganics						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			28/01/2020	[NT]		[NT]	[NT]	28/01/2020	
Date analysed	-			28/01/2020	[NT]		[NT]	[NT]	28/01/2020	
рН	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	102	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	105	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions					
Blank This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Eaecal Enterococci, & E Coli levels are less than					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - dissolved - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Vittal Boggaram

Sample Login Details	
Your reference	E32889B, Sutherland
Envirolab Reference	235447
Date Sample Received	28/01/2020
Date Instructions Received	28/01/2020
Date Results Expected to be Reported	04/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	6 Water
Turnaround Time Requested	2 days
Temperature on Receipt (°C)	13.8
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	HM in water - dissolved	Hq	Electrical Conductivity
MW1	\checkmark	✓	\checkmark	\checkmark	✓	✓	✓
MW3	✓	✓	\checkmark	\checkmark	\checkmark	✓	✓
MW5	✓	\checkmark	\checkmark	\checkmark	✓	✓	✓
GWDUP1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
TB-W1		\checkmark					
TS-W1		✓					

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM

<u>TO:</u>										FRON	1:						
ENVIROLAB S		PTY LTD	EIS Job		E32889B							$\boldsymbol{<}$					
12 ASHLEY ST			Number:								J	KĒ	Ìnv	iro	nm	er	nts
CHATSWOOD		67	Data Darulta		CTANDADD					DCAD							
P: (02) 99106 F: (02) 99106			Date Results Required:		STANDARD	1						ls Wic Ie par			-		
L: (05) 22100	201		kequirea:							P: 02			(K, NS		.3 9888 !	5001	
Attention: Ai	een		Page:		1 of 1	;									oggara		
ALLEILIOII. AI	cen ,		rage.		÷011					Allei					nents.		iu.
Loontion	Sutherla		1		,				Sam	ple Pr		ed in E					<u> </u>
Location:		anu.	<u> </u>							•		equire	-				
Sampler:	нw	1	· · · · · · · · · · · · · · · · · · ·			+		1		,	esis n		20 T				
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 2	Combo 3L	VOCs	pH / EC	8 Metals	PAHs	ткн/втех	BTEX	Hardness			
28.1.20	١	MW1	2xG1, 6xV, H, PVC	0.5	Water		x	X	x								
28.1.20	2	MW3	2xG1, 6xV, H, PVC	5.7	Water		x	x	x								
28.1.20	3	MW5	2xG1, 6xV, H	1.1	Water		x	X	x								
28.1.20	4	GWDUP1	2xG1, 6xV, H	NA	Water		<u>x</u>	x									
28.1.20		GWDUP2	2xG1, 6xV, H	NA	Water		_x	x		2)EZ	2	ero	(410		C	
28.1.20	Ś	TB-W1	v	NA	Water								x				
28.1.20	6	TS-W1	v	NA	Water					_			x				
										5		En	virola	b Sen	ices		
									<u> </u>		<u> </u>	Chats Pt	wood	Ashle NSW 9910	2067		
						-			Da	te Re	ceive	d: 20	810	172			
									Til Re	ne Re ceive	ceive d by:	d: 19 SE	2	8			
									Te	mp:	001/4	mbier epac	it				1
					 	+	•			Curity	Inter	epac t/Bro	K kon/h				
					1					1			C				
	<u> </u>							ļ		/		<u> </u>	Ļ	L			L
										l.							
					1			1		n –							
		ľ				1		1	1			1	<u> </u>				
													l				
	-	detection limits				G1 - 5	600ml		er Gla				I	<u>. </u>	L		
Al Relinquished		s PULS to ANZE	CC (2000) Detection Li	mits Ple	ase		HDPE		H - H ic Bot	tles					Dat-		
-	By:		Date: 28/11	1202	Ð		Sat	દ			ived B SB	y: a)			Date: 28	01	120
-7 -							-				-	$ \downarrow $			I		
											\bigcirc						

. -5

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 19779

Client Details	
Client	JK Environments
Attention	Vittal Boggaram
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details				
Your Reference	<u>E32889B</u>			
Number of Samples	1 Soil			
Date samples received	29/01/2020			
Date completed instructions received	29/01/2020			

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	04/02/2020	
Date of Issue	04/02/2020	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

Client Reference: E32889B

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		19779-1
Your Reference	UNITS	SDUP5
Date Sampled		22/01/2020
Type of sample		Soil
Date extracted	-	30/01/2020
Date analysed	-	30/01/2020
vTRH C ₆ - C ₉	mg/kg	<25
vTRH C6 - C10	mg/kg	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	79

TRH Soil C10-C40 NEPM		
Our Reference		19779-1
Your Reference	UNITS	SDUP5
Date Sampled		22/01/2020
Type of sample		Soil
Date extracted	-	30/01/2020
Date analysed	-	31/01/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	180
Total +ve TRH (C10-C36)	mg/kg	180
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	180
TRH >C ₃₄ -C ₄₀	mg/kg	100
Total +ve TRH (>C10-C40)	mg/kg	280
Surrogate o-Terphenyl	%	82

PAHs in Soil		
Our Reference		19779-1
Your Reference	UNITS	SDUP5
Date Sampled		22/01/2020
Type of sample		Soil
Date extracted	-	30/01/2020
Date analysed	-	03/02/2020
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	0.06
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d ₁₄	%	106

Acid Extractable metals in soil		
Our Reference		19779-1
Your Reference	UNITS	SDUP5
Date Sampled		22/01/2020
Type of sample		Soil
Date digested	-	30/01/2020
Date analysed	-	30/01/2020
Arsenic	mg/kg	7
Cadmium	mg/kg	<0.4
Chromium	mg/kg	23
Copper	mg/kg	28
Lead	mg/kg	74
Mercury	mg/kg	<0.1
Nickel	mg/kg	14
Zinc	mg/kg	110

Moisture		
Our Reference		19779-1
Your Reference	UNITS	SDUP5
Date Sampled		22/01/2020
Type of sample		Soil
Date prepared	-	30/01/2020
Date analysed	-	31/01/2020
Moisture	%	13

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du	Duplicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	19779-1
Date extracted	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	30/01/2020
Date analysed	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	30/01/2020
vTRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	87	79
vTRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	87	79
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	86	76
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	82	77
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	87	78
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	90	81
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	89	81
Naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	82	[NT]		[NT]	[NT]	81	72

QUALITY CONTROL: TRH Soil C10-C40 NEPM						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	19779-1
Date extracted	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	30/01/2020
Date analysed	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020	31/01/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	92	85
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106	110
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	107	101
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	92	85
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106	110
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	107	101
Surrogate o-Terphenyl	%		Org-003	82	[NT]		[NT]	[NT]	81	79

QUALITY CONTROL: PAHs in Soil					Duplicate Spike R					ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	
Date analysed	-			03/02/2020	[NT]		[NT]	[NT]	03/02/2020	
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	116	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	108	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	116	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	122	
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	112	
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	116	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	118	
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	88	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-012	100	[NT]		[NT]	[NT]	100	

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date digested	-			30/01/2020	1	30/01/2020	30/01/2020		30/01/2020	
Date analysed	-			30/01/2020	1	30/01/2020	30/01/2020		30/01/2020	
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	1	7	8	13	95	
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	1	<0.4	<0.4	0	96	
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	1	23	27	16	93	
Copper	mg/kg	1	Metals-020 ICP- AES	<1	1	28	27	4	93	
Lead	mg/kg	1	Metals-020 ICP- AES	<1	1	74	78	5	93	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	1	<0.1	<0.1	0	88	
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	1	14	18	25	94	
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	1	110	130	17	93	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci. & E.Coli levels are less than								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

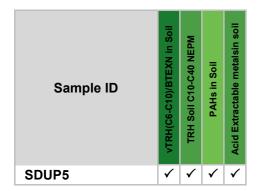
SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Vittal Boggaram

Sample Login Details	
Your reference	E32889B
Envirolab Reference	19779
Date Sample Received	29/01/2020
Date Instructions Received	29/01/2020
Date Results Expected to be Reported	04/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	22.1
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil


Please direct any queries to:

Pamela Adams	Analisa Mathrick
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: amathrick@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

235189.

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB 12 ASHLEY S CHATSWOO P: (02) 99106 F: (02) 99106	TREET D NSW 5200 5201			EIS Job Number Date Res Required	sults	E32889B STANDARD					MAC	J OF 1 QUAR	15 WI	CKS RC RK, NS	DAD W 211			nts	
Attention: A	ileen			Page:		2 of 2						ntion:	-						
Location:	Suthe	rland	NOS123	1.11						Sarr	vboggaram@jkenvironments.com.au ample Preserved in Esky on Ice								
Sampler:	MMP								_				equire	_					
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo3	Combo 3a	Combo 6	Combo 6a	8 Metals	PAHs	TRH/BTEX	BTEX	Asbestos				
22.1.20	26	BHS	1.3-1.5	G	0	Silty clay												-	
22.1.20	27	BH5	1.8-2	G	0	Extremely weathered siltstone			-			10		1				-	
22.1.20	28	вне	0.14-0.3	G, A	0	F: Clayey sand			1	X	- 9			1.5					
22.1.20	29	BH6	0.4-0.5	G, A	0	F: Sand												_	
22.1.20	30	BH6	0.9-1.0	G, A	0	F: Sand						1							
22.1.20	31	BH6	1.1-1.3	G	0	Silty clay												-	
22.1.20	32	BH7	0-0.2	G, A	0	F: Silty clayey sand				X									
22.1.20	33	BH7	0.5-0.7	G	0	Silty clay												_	
22.1.20	34	BH7	1.3-1.5	G	0	Extremely weathered siltstone			2						5				
22.1.20	35	BH8	0-0.1	G, A	0	F: Silty sand		1		X		1							
22.1.20	36	BH8	0.1-0.2	G, A	0	F: Sandy clay		X									-		
22.1.20	37	SDUP1		G	12	Soil			X										
22.1.20	38	SDUP2	-	G	~	Soil													
22.1.20	39	SDUP3		G	375	Soil			X							1			
22.1.20	40	SDUP4	-	G		Soil					10				24				
22.1.20	-	SDUPS		G	-	Soil	X		>	P.Se	no	11	v	ic					
22.1.20	41	TS-S1	-	v		Soil								X					
22.1.20	42	TB-S1		G	-	Soil					-			X		$\cap F$	- =		
	43	BHS	0.5-07														-		
						2 1 2			- 1										
								-						-	-			-	
		10																	
						and the second s													
			mits required)			1	G - 25	i0mg plock	ntaine Glass Asbes Bag	lar	g								
Relinquished	BY: C	M Vor	1710	Date:	28/1	10	Time				Rece	ived B	Y:			Date			
(m.	W.	enc.		1.00	ENVIROLAB 25 Resea												_	

Croydon South VIC 3136 Ph: (03) 9763 2500

Job No: 19 779

Date Received: 29/11/20 Time Received: 1Pm Received By: CS Temp: Cool/Ambient 22 - 1 Cooling: Ice/Icepact Security: Intac/Broken/None

2.95

SAMPLE AND CHAIN OF CUSTODY FORM

<u>TO:</u> ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 F: (02) 99106201		EIS Job Number: Date Res Required	ber: Results STANDARD						FROM: JKEnvironments REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001									
Attention: A	ileen			Page:		1 of 2					1.	ntion:	1		TT	AL		
Location:	Suthe	rland		Service Service	1		T			Sam			@jker ed in			.com.au	1	_
Sampler:	MMP						1				-	_	equin					
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 2	Combo 3a	Combo 6	Combo 6a	8 Metals	PAHs	TRH/BTEX	BTEX	Asbestos	100		
22.1.20	1	BH1	0.14-0.3	G, A	0.3	F: Silty clayey sand	1			X							+	
22.1.20	2	BH1	0.7-0.8	G, A	0	F: Silty sandy clay	1	X		1							+	
22.1.20	3	BH1	1.0-1.2	G, A	0	F: Silty clay		r									+	
22.1.20	4	BH1	1.3-1.4	G	0	Silty clay	1							1			+	-
22.1.20	5	BH1	1.7-1.9	G	0	Weathered siltstone											+	
22.1.20	6	BH1	2.6-2.8	G	0	Weathered siltstone	1					-					+	
22.1.20	2	BH2	0-0.1	G, A	0	F: Silty sand			1.2	X			-				+	
22.1.20	8	BH2	0.7-0.95	G, A	0.1	F: Sandy clay				r							+	-
22.1.20	9	BH2	1-1.2	G, A	0.9	F: Silty clay	1	11									+	
22.1.20	10	BH2	1.6-1.8	G, A	0	F: Silty clay											+	
22.1.20	h	BH2	2.1-2.3	G	0	Silty clay											-	_
22.1.20	12	BH2	2.7-2.8	G	0	Silty clay												
22.1.20	13	BH3	0.2-0.3	G, A	2.5	F: Silty sand				X		-				1	1	
22.1.20	14	внз	0.4-0.6	G, A	1.3	F: Silty clay		X										
22.1.20	15	внз	0.85-0.95	G	0	Silty clay									-		1	
22.1.20	16	BH3	1.7-1.8	G	0	Extremely weathered siltstone						-					1	
22.1.20	17	BH4	0-0.1	G, A	0	F: Clayey sand				X								
22.1.20	18	BH4	0.3-0.4	G, A	0	F: Sandy clay				\square								
22.1.20	19	BH4	0.8-0.95	G, A	0	F: Sandy clay								1			1	
22.1.20	20	BH4	1.3-1.5	G, A	0	F: Sandy day							1					-
22.1.20	21	BH4	1.7-1.9	G, A	0	F: Silty sandy clay	1	X									+	
22.1.20	22	BH4	2.1-2.3	G	0	Silty clay		r `							1			_
22.1.20	23	BH4	2.8-2.9	G	0	Extremely weathered siltstone								1	1			
22.1.20	24	BH5	0-0.2	G, A	0	F: Silty sand	-			X								-
22.1.20	25	BH5	0.3-0.5	G, A	0	F: Silty clay	1								1.0			-
		/detection li	mits required):			G - 2 A - Z	ple Cor 50mg (iplock lastic B	Glass . Asbes	Jar	ıg							
Relinquished		el.B	5	Date: 2	30	12020	Time				Rece	ived B	γ :			Date:	ø	

Viettal: B-S Reinguished by: Eusydney CUAINE malenzue 28/1/20 1200 CM.

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 19796

Client Details	
Client	JK Environments
Attention	Vittal Boggaram
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	<u>E32889B</u>
Number of Samples	1 Water
Date samples received	30/01/2020
Date completed instructions received	30/01/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	05/02/2020					
Date of Issue	05/02/2020					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

VOCs in water		
Our Reference		19796-1
Your Reference	UNITS	GWDUP2
Date Sampled		28/01/2020
Type of sample		Water
Date extracted	-	04/02/2020
Date analysed	-	04/02/2020
Dichlorodifluoromethane	µg/L	<10
Chloromethane	µg/L	<10
Vinyl Chloride	µg/L	<10
Bromomethane	µg/L	<10
Chloroethane	µg/L	<10
Trichlorofluoromethane	µg/L	<10
1,1-Dichloroethene	µg/L	<1
Trans-1,2-dichloroethene	µg/L	<1
1,1-dichloroethane	µg/L	<1
Cis-1,2-dichloroethene	µg/L	<1
Bromochloromethane	µg/L	<1
Chloroform	µg/L	<1
2,2-dichloropropane	µg/L	<1
1,2-dichloroethane	µg/L	<1
1,1,1-trichloroethane	µg/L	<1
1,1-dichloropropene	µg/L	<1
Cyclohexane	µg/L	<1
Carbon tetrachloride	µg/L	<1
Benzene	µg/L	<1
Dibromomethane	µg/L	<1
1,2-dichloropropane	µg/L	<1
Trichloroethene	µg/L	<1
Bromodichloromethane	µg/L	<1
trans-1,3-dichloropropene	µg/L	<1
cis-1,3-dichloropropene	µg/L	<1
1,1,2-trichloroethane	µg/L	<1
Toluene	µg/L	<1
1,3-dichloropropane	µg/L	<1
Dibromochloromethane	µg/L	<1
1,2-dibromoethane	µg/L	<1
Tetrachloroethene	µg/L	<1
1,1,1,2-tetrachloroethane	µg/L	<1
Chlorobenzene	µg/L	<1
Ethylbenzene	µg/L	<1

VOCs in water		
Our Reference		19796-1
Your Reference	UNITS	GWDUP2
Date Sampled		28/01/2020
Type of sample		Water
Bromoform	μg/L	<1
m+p-xylene	µg/L	<2
Styrene	µg/L	<1
1,1,2,2-tetrachloroethane	μg/L	<1
o-xylene	μg/L	<1
1,2,3-trichloropropane	µg/L	<1
Isopropylbenzene	μg/L	<1
Bromobenzene	μg/L	<1
n-propyl benzene	μg/L	<1
2-chlorotoluene	µg/L	<1
4-chlorotoluene	μg/L	<1
1,3,5-trimethyl benzene	µg/L	<1
Tert-butyl benzene	μg/L	<1
1,2,4-trimethyl benzene	µg/L	<1
1,3-dichlorobenzene	μg/L	<1
Sec-butyl benzene	μg/L	<1
1,4-dichlorobenzene	μg/L	<1
4-isopropyl toluene	µg/L	<1
1,2-dichlorobenzene	μg/L	<1
n-butyl benzene	µg/L	<1
1,2-dibromo-3-chloropropane	µg/L	<1
1,2,4-trichlorobenzene	µg/L	<1
Hexachlorobutadiene	µg/L	<1
1,2,3-trichlorobenzene	µg/L	<1
Surrogate Dibromofluoromethane	%	96
Surrogate toluene-d8	%	96
Surrogate 4-BFB	%	95

vTRH(C6-C10)/BTEXN in Water		
Our Reference		19796-1
Your Reference	UNITS	GWDUP2
Date Sampled		28/01/2020
Type of sample		Water
Date extracted	-	04/02/2020
Date analysed	-	04/02/2020
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ -C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	μg/L	<2
o-xylene	µg/L	<1
Naphthalene	μg/L	<1
Total +ve Xylenes	µg/L	<1
Surrogate Dibromofluoromethane	%	105
Surrogate toluene-d8	%	101
Surrogate 4-BFB	%	98

TRH Water(C10-C40) NEPM		
Our Reference		19796-1
Your Reference	UNITS	GWDUP2
Date Sampled		28/01/2020
Type of sample		Water
Date extracted	-	31/01/2020
Date analysed	-	31/01/2020
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
Total +ve TRH (C10-C36)	µg/L	<50
TRH >C10 - C16	µg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Total +ve TRH (>C10-C40)	µg/L	<50
Surrogate o-Terphenyl	%	89

PAHs in Water - Low Level		
Our Reference		19796-1
Your Reference	UNITS	GWDUP2
Date Sampled		28/01/2020
Type of sample		Water
Date extracted	-	31/01/2020
Date analysed	-	05/02/2020
Naphthalene	µg/L	<0.1
Acenaphthylene	µg/L	<0.1
Acenaphthene	µg/L	<0.1
Fluorene	µg/L	<0.1
Phenanthrene	µg/L	<0.1
Anthracene	µg/L	<0.1
Fluoranthene	µg/L	<0.1
Pyrene	µg/L	<0.1
Benzo(a)anthracene	µg/L	<0.1
Chrysene	µg/L	<0.1
Benzo(b,j&k)fluoranthene	µg/L	<0.2
Benzo(a)pyrene	µg/L	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1
Total +ve PAH's	µg/L	NIL (+)VE PAH
Benzo(a)pyrene TEQ	µg/L	<0.5
Surrogate p-Terphenyl-d ₁₄	%	104

HM in water - dissolved		
Our Reference		19796-1
Your Reference	UNITS	GWDUP2
Date Sampled		28/01/2020
Type of sample		Water
Date prepared	-	31/01/2020
Date analysed	-	31/01/2020
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	3
Lead-Dissolved	µg/L	<1
Nickel-Dissolved	µg/L	3
Zinc-Dissolved	µg/L	28
Mercury-Dissolved	µg/L	<0.05

Method ID	Methodology Summary
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALI	TY CONTROL	.: VOCs ii	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			04/02/2020	1	04/02/2020	04/02/2020		04/02/2020	
Date analysed	-			04/02/2020	1	04/02/2020	04/02/2020		04/02/2020	
Dichlorodifluoromethane	µg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Chloromethane	µg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Vinyl Chloride	μg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Bromomethane	μg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Chloroethane	μg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
Trichlorofluoromethane	μg/L	10	Org-013	<10	1	<10	<10	0	[NT]	
1,1-Dichloroethene	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,1-dichloroethane	μg/L	1	Org-013	<1	1	<1	<1	0	94	
Cis-1,2-dichloroethene	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Bromochloromethane	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Chloroform	μg/L	1	Org-013	<1	1	<1	<1	0	95	
2,2-dichloropropane	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,2-dichloroethane	µg/L	1	Org-013	<1	1	<1	<1	0	89	
1,1,1-trichloroethane	μg/L	1	Org-013	<1	1	<1	<1	0	93	
1,1-dichloropropene	μg/L	1	Org-013	<1	1	<1	<1	0	INT	
Cyclohexane		1	Org-013	<1	1	<1	<1	0		
Carbon tetrachloride	µg/L	1	-	<1		<1	<1	0	[NT]	
	µg/L		Org-013		1				[NT]	
Benzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Dibromomethane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,2-dichloropropane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Trichloroethene	µg/L	1	Org-013	<1	1	<1	<1	0	97	
Bromodichloromethane	µg/L	1	Org-013	<1	1	<1	<1	0	89	
trans-1,3-dichloropropene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Toluene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,3-dichloropropane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Dibromochloromethane	µg/L	1	Org-013	<1	1	<1	<1	0	91	
1,2-dibromoethane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Tetrachloroethene	µg/L	1	Org-013	<1	1	<1	<1	0	97	
1,1,1,2-tetrachloroethane	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Chlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Ethylbenzene	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Bromoform	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
m+p-xylene	µg/L	2	Org-013	<2	1	<2	<2	0	[NT]	
Styrene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	

QUALIT	Du	iplicate		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
o-xylene	μg/L	1	Org-013	<1	1	<1	<1	0		[NT]
1,2,3-trichloropropane	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
Isopropylbenzene	μg/L	1	Org-013	<1	1	<1	<1	0		[NT]
Bromobenzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
n-propyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
2-chlorotoluene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
4-chlorotoluene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
Tert-butyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
1,3-dichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
Sec-butyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
1,4-dichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
4-isopropyl toluene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
1,2-dichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
n-butyl benzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
1,2-dibromo-3-chloropropane	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
Hexachlorobutadiene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	1	<1	<1	0		[NT]
Surrogate Dibromofluoromethane	%		Org-013	95	1	96	97	1	94	[NT]
Surrogate toluene-d8	%		Org-013	97	1	96	96	0	101	[NT]
Surrogate 4-BFB	%		Org-013	94	1	95	95	0	94	[NT]

QUALITY CONTI	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			04/02/2020	1	04/02/2020	04/02/2020		04/02/2020	
Date analysed	-			04/02/2020	1	04/02/2020	04/02/2020		04/02/2020	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	1	<10	<10	0	94	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	1	<10	<10	0	92	
Benzene	μg/L	1	Org-016	<1	1	<1	<1	0	92	
Toluene	μg/L	1	Org-016	<1	1	<1	<1	0	90	
Ethylbenzene	μg/L	1	Org-016	<1	1	<1	<1	0	97	
m+p-xylene	μg/L	2	Org-016	<2	1	<2	<2	0	95	
o-xylene	μg/L	1	Org-016	<1	1	<1	<1	0	85	
Naphthalene	μg/L	1	Org-013	<1	1	<1	<1	0	110	
Surrogate Dibromofluoromethane	%		Org-016	104	1	105	107	2	101	
Surrogate toluene-d8	%		Org-016	102	1	101	101	0	100	
Surrogate 4-BFB	%		Org-016	98	1	98	98	0	98	

QUALITY CONTROL: TRH Water(C10-C40) NEPM							Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020		
Date analysed	-			31/01/2020	[NT]		[NT]	[NT]	03/02/2020		
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	68		
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	102		
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	120		
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	68		
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	102		
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	120		
Surrogate o-Terphenyl	%		Org-003	87	[NT]		[NT]	[NT]	88		

QUALITY CON		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020	
Date analysed	-			05/02/2020	[NT]		[NT]	[NT]	05/02/2020	
Naphthalene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	60	
Acenaphthylene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	100	
Acenaphthene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	110	
Phenanthrene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	122	
Anthracene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	126	
Pyrene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	126	
Benzo(a)anthracene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	120	
Benzo(b,j&k)fluoranthene	μg/L	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	114	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-012	98	[NT]		[NT]	[NT]	100	

QUALITY CC		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	19796-1
Date prepared	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020	31/01/2020
Date analysed	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020	31/01/2020
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	108	113
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]		[NT]	[NT]	111	103
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	110	119
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	109	105
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	108	110
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	109	106
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	111	100
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]		[NT]	[NT]	110	#

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions									
	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

METALS: # Low spike recovery was obtained for Mercury for this sample. The sample was re-digested and re-spiked and the low recovery was confirmed. This is due to matrix interferences. However, an acceptable recovery was obtained for the LCS.

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

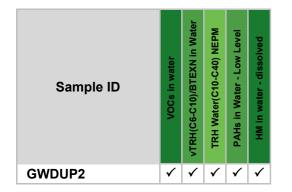
SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Vittal Boggaram

Sample Login Details	
Your reference	E32889B
Envirolab Reference	19796
Date Sample Received	30/01/2020
Date Instructions Received	30/01/2020
Date Results Expected to be Reported	05/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	23.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil


Please direct any queries to:

Pamela Adams	Analisa Mathrick									
Phone: 03 9763 2500	Phone: 03 9763 2500									
Fax: 03 9763 2633	Fax: 03 9763 2633									
Email: padams@envirolab.com.au	Email: amathrick@envirolab.com.au									

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

<u>TO:</u> ENVIROLAB S 12 ASHLEY ST CHATSWOOD P: (02) 99106 F: (02) 99106 Attention: A	REET 0 NSW 20 200 201		EIS Job E32889B Number: Date Results STANDARD Required:			FROM: JKEnvironment: REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Vittal Boggaram vboggaram@jkenvironments.com.au														
Location:	Suther	land						Sample Preserved in Esky on Ice Tests Required												
Sampler:	HW	and the state		20 <u>- w</u>	1 and the	Tests Required										-				
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 2	Combo 3L	vocs	pH / EC	8 Metals	PAHs	TRH/BTEX	BTEX	Hardness						
28.1.20	۱	MW1	2xG1, 6xV, H, PVC	0.5	Water		x	x	x											
28.1.20	2	MW3	2xG1, 6xV, H, PVC	5.7	Water		x	x	x											
28.1.20	3	MW5	2xG1, 6xV, H	1.1	Water		x	X	x											
28.1.20	4	GWDUP1	2xG1, 6xV, H	NA	Water		x	x												
28.1.20	-	GWDUP2	2xG1, 6xV, H	NA	Water		x	x	1200	-7/	0,60	æ.	eno	10	VIC	7				
28.1.20	S	TB-W1	v	NA	Water								x							
28.1.20	6	TS-W1	v	NA	Water						2		x							
		1000				$\left \right\rangle$		1			8									
13.3 m	1	ENVIRO	Envirolab S AB 25 Researd Croydon South V Ph: (03) 97	h Drive IC 3136					E	VIRON	AB		12	Serv Ashle	v St					
			19796								2	35	: (02) 	9910	5200					
		Time R	eceived: 30/1/20 eceived: 10m d By:GS	>							ceive ceive			8	10					
	ĝ-s	Cooling	Cool/Ambient : Ice/(cepaok 23 y: Intac//Broken/Nor	. 6					Co	oling	ce/l	epac	ĸ							
				1	94				56	cunty	Intac	UBro	ken/N	one)						
				and a	and in															
															test t					
		detection limits	required): C (2000) Detection Li	mits Plea	ase	G1 - 5 V - BT	i00mL EX Vi	al	er Gla	NO3 V	tle Vash F	vc								
Relinquished By: Date: Relinquished by: E			Date: 28/11	11/2020			Time: 1.528				Received By: SBa					1/20				
Rel	ngu	ished b	y: EVS 540 CLATINE 20/1/2	mul 70 1	230						C	Ŧ	-							

Appendix F: Report Explanatory Notes

Standard Sampling Procedure

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by JKE. The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

A. Soil Sampling

- Prepare a borehole/test pit log or made a note of the sample description for stockpiles.
- Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The work area should be at a distance from the drill rig/excavator such that the machine can operate in a safe manner.
- Ensure all sampling equipment has been decontaminated prior to use.
- Remove any surface debris from the immediate area of the sampling location.
- Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possible to prevent the loss of any volatiles. If possible, fill the glass jars completely.
- Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- Label the sampling containers with the JKE job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- Photoionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples using the soil sample headspace method. Headspace measurements are taken following equilibration of the headspace gasses in partly filled zip-lock plastic bags. PID headspace data is recorded on the borehole/test pit log and the chain of custody forms.
- Record the lithology of the sample and sample depth on the borehole/test pit log generally in accordance with AS1726-2017¹⁹.
- Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab. All samples are preserved in accordance with the standards outlined in the report.
- Check for the presence of groundwater after completion of each borehole using an electronic dip metre or water whistle. Boreholes should be left open until the end of fieldwork where it is safe to do so. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

B. Decontamination Procedures for Soil Sampling Equipment

- All sampling equipment should be decontaminated between every sampling location. This excludes single use PVC tubing used for push tubes etc. Equipment and materials required for the decontamination include:
 - Phosphate free detergent (Decon 90);
 - Potable water;
 - Stiff brushes; and
 - Plastic sheets.
- Ensure the decontamination materials are clean prior to proceeding with the decontamination.
- Fill both buckets with clean potable water and add phosphate free detergent to one bucket.
- In the bucket containing the detergent, scrub the sampling equipment until all the material attached to the equipment has been removed.
- Rinse sampling equipment in the bucket containing potable water.
- Place cleaned equipment on clean plastic sheets.

¹⁹ Standards Australia, (2017), Geotechnical Site Investigations. (AS1726-2017)

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes, then the equipment should not be used until it has been thoroughly cleaned.

C. <u>Groundwater Sampling</u>

Groundwater samples are more sensitive to contamination than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard.

The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells (well development) to remove any water introduced during the drilling process and/or the water that is disturbed during installation of the monitoring well. This should be completed prior to purging and sampling.
- Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior to purging or sampling, the condition of each well should observed and any anomalies recorded on the field data sheets. The following information should be noted: the condition of the well, noting any signs of damage, tampering or complete destruction; the condition and operation of the well lock; the condition of the protective casing and the cement footing (raised or cracked); and, the presence of water between protective casing and well.
- Measure the groundwater level from the collar of the piezometer/monitoring well using an electronic dip meter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micro-purge (or other low flow) techniques.
- Layout and organize all equipment associated with groundwater sampling in a location where they will not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment generally required includes:
 - Stericup single-use filters (for heavy metals samples);
 - Bucket with volume increments;
 - Sample containers: teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles;
 - Bucket with volume increments;
 - Flow cell;
 - pH/EC/Eh/Temperature meters;
 - Plastic drums used for transportation of purged water;
 - Esky and ice;
 - Nitrile gloves;
 - Distilled water (for cleaning);
 - Electronic dip meter;
 - Low flow peristaltic pump and associated tubing; and
 - Groundwater sampling forms.
- Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The procedure for decontamination of groundwater equipment is outlined at the end of this section.
- Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow sampling equipment to reduce the disturbance of the water column and loss of volatiles.

JKEnvironments

- During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential and groundwater levels are monitored (where possible) using calibrated field instruments to assess the development of steady state conditions. Steady state conditions are generally considered to have been achieved when the difference in the pH measurements is less than 0.2 units, the difference in conductivity is less than 10% and whilst the well is no longer in draw-down.
- All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples are obtained directly from the pump tubing and placed in appropriate glass bottles, BTEX vials or plastic bottles.
- All samples are preserved in accordance with water sampling requirements specified by the laboratory and placed in an insulated container with ice. Groundwater samples are preserved by immediate storage in an insulated sample container with ice.
- At the end of each water sampling complete a chain of custody form for samples being sent to the laboratory.

D. Decontamination Procedures for Groundwater Sampling Equipment

- All equipment associated with the groundwater sampling procedure (other than single-use items) are decontaminated between every sampling location.
- The following equipment and materials are required for the decontamination procedure:
 - Phosphate free detergent;
 - Potable water;
 - Distilled water; and
 - Plastic Sheets or bulk bags (plastic bags).
- Fill one bucket with clean potable water and phosphate free detergent, and one bucket with distilled water.
- Flush potable water and detergent through pump head. Wash sampling equipment and pump head using brushes in the bucket containing detergent until all materials attached to the equipment are removed.
- Flush pump head with distilled water.
- Change water and detergent solution after each sampling location.
- Rinse sampling equipment in the bucket containing distilled water.
- Place cleaned equipment on clean plastic sheets.
- If all materials are not removed by this procedure that equipment should not be used until it has been thoroughly cleaned

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²⁰ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)²¹. The NEPM (2013) is consistent with these documents.

A. <u>Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)</u>

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: *"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).*

B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;

 ²⁰ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 ²¹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

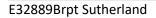
G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added


I. <u>Surrogate Spikes</u>

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix G: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. <u>INTRODUCTION</u>

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in Section 6.1 of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this assessment is provided in the following table:

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Intra-laboratory duplicate (soil)	SDUP1 (primary sample BH3 0.2-0.3m)	Approximately 17% of primary samples	Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs
Intra-laboratory duplicate (soil)	SDUP3 (primary sample BH5 0-0.2m)		As above
Inter-laboratory duplicate (soil)	SDUP5 (primary sample BH1 0.14-0.3m)	Approximately 7% of primary samples	Heavy metals, TRH/BTEX, PAHs
Intra-laboratory duplicate (groundwater)	GWDUP1 (primary sample MW5)	Approximately 33% of primary samples	Heavy metals, TRH/BTEX and PAHs
Inter-laboratory duplicate (groundwater)	GWDUP2 (primary sample MW1)	Approximately 33% of primary samples	Heavy metals, TRH/BTEX and PAHs
Trip spike	TS-S1 – soil spike of 22 January 2020 TS-W1 – groundwater spike of 28 January 2020	One for the assessment for each medium to demonstrate adequacy of preservation, storage and transport methods	BTEX
Trip blank	TB-S1 – soil blank of 22 January 2020 TB-W1 – groundwater blank of 28 January 2020	One for the assessment for each medium to demonstrate adequacy of storage and transport methods	BTEX

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table Q1 to Q6 inclusive) attached to the assessment report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report.

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

Method Blanks

• All results less than PQL.

B. DATA EVALUATION

JKEnvironments

1. <u>Sample Collection, Storage, Transport and Analysis</u>

Samples were collected by trained field staff in accordance with the JKE SSP. The SSP was developed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. Laboratory PQLs

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC, with the exception of the anthracene and vinyl chloride PQL for groundwater analysis which was 10 times and 33 times greater than the ecological SAC respectively.

In light of the PAH concentrations reported for soil and groundwater, JKE are of the opinion that anthracene PQL above the SAC is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the assessment.

Vinyl chloride PQL for groundwater analysis was 33 times greater than the HSL criterion. In light of the VOC concentrations reported for groundwater, JKE are of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the assessment. In addition, significant concentrations of vinyl chloride would not be expected in the absence of other compounds such as tetra/perchloroethylene which was commonly used for dry cleaning, or trichloroethene (TCE) which was commonly used as a degreaser in mechanics workshops.

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

- Elevated RPDs were reported for arsenic, chromium and TRH F3 compounds in SDUP1/BH3 (0.2-0.3m);
- Elevated RPDs were reported for mercury, nickel, benzo(a)pyrene and TRH F4 compounds in SDUP5/BH1 (0.14-0.3m);
- Elevated RPD was reported for TRH F2 compound in GWDUP1/MW5; and
- Elevated RPD was reported for TRH F2 compound in GWDUP2/MW1.

Values outside the acceptable limits have been attributed to results that are close to the PQLs and the difficulties associated with obtaining homogenous soil duplicate samples of heterogeneous matrices. Where applicable, the higher duplicate value has been adopted as a conservative measure (see attached report

JKEnvironments

tables). As both the primary and duplicate sample results were less than the SAC in the majority of the cases, the exceedances are not considered to have had an adverse impact on the data set as a whole.

Trip Blanks

During the investigation, one soil trip blank and one water trip blank was placed in the esky during sampling and transported back to the laboratory. The results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

Trip Spikes

The results ranged from 98% to 100% for soil and ranged from 105% to 122% for water indicated that field preservation methods during soil and groundwater sampling were appropriate.

4. Laboratory QA/QC

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this assessment.

A review of the laboratory QA/QC data identified the following minor non-conformances:

- Report 235189, spike recovery for zinc in sample number 7 was at 69% which was outside the lab acceptance criteria of 70-130%. However, the LCS recovery was acceptable at 101%;
- Report 235447, percent recovery for heavy metal matrix spike in water was not possible due to high concentration of the elements in the sample. However, an acceptable recovery was obtained for the LCS; and
- Report 19796, low spike recovery was obtained for mercury in the groundwater sample GWDUP2. The sample was re-digested and re-spiked and the low recovery was confirmed. This was due to matrix interferences. However, an acceptable recovery was obtained for the LCS.

C. DATA QUALITY SUMMARY

JKE are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These nonconformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

There was only one groundwater monitoring event undertaken for the assessment. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods. However, given the low contaminant concentrations reported, the site history and the surrounding land uses, this is not considered to alter the conclusions of the assessment. JKE also undertook a conservative approach to assessing risks posed by groundwater,

particularly in the context of human health risks from volatile contaminants. Therefore, the uncertainty is not considered to be unacceptable in the context of the proposed development.

Appendix H: Field Work Documents

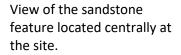
View of the site from Eton Street, looking east. Note the terraced lawn areas.

View of the Sutherland Entertainment Centre building from the southern part of the site, fronting Eton Street. Note the location of MW1.

MW1

Typical view of the water feature ponds located at the site.

JKEnvironments



View of the site from the Sutherland Entertainment Centre, overlooking Eton Street to the west.

ACCURACY 5 r

View of the northern part of the site, overlooking at the Japanese garden to the east. Note the location of MW5.

MW5

E32889Brpt Sutherland

View of the electricity transformer located along the eastern site boundary.

Off-site: view of the Council chamber building and associated carpark to the north of the site.

Off-site: view of Eton Street, overlooking Eton Arcade and predominantly commercial and retail land use to the west of the site.

Client:	NBRS Are	chitecture				Job No.:	E328	89B
Project:	Proposed	Refurbish	ments to Sutherland Ent	Well No.:	л	1~1		
Location:	Lot 1 DP1	253156, 3	0 Eton Street, SUTHER	Depth (m):		5.0		
WELL FINISH								
Gatic C			Standpi	e			Other (descr	ibe)
WELL PURGE DET	AILS:							
Method:			tow perstallie pu	mp	SWL – Be		3.45	
Date:	796.4	28/11	2020		Time – Be	efore:	9:550	
Undertaken By:		HW			Total Vol	Removed:	~0.8	4
Pump Program No:		1.05			PID (ppm):	0.5	
PURGING / SAMPL	T	REMENTS	r	Toma	1 80			-
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
7	3.56	0.5	Clear	23.9	3.0	1524	5.41	166.7
15	3.61	0.6		23.9	2.8	1519	5.35	183.3
20	3.68		11	24.2	2.7	1518	5.38	183.4
24	3.70	0.8	<u>u</u>	24.3	2.6	1520	5.38	184.6
			Stort Sampling		_			
			~				******	
					11			

**********************		********	*************************************		1			
		************			[
• • • • • • • • • • • • • • • • • • • •		***********	**********		T			

************************						******		
******************************		*************						
				-				
				-				

			<u> </u>					
	(YES / NO	NAPL/	PSH (YES / NO)) Sheen	YES / NO	, Steady St	ate Achieved (YES / (NO)	
G-WDVP2			abor 10x prevates 0		41	001 - L		
YSI used: 3	iers Used.7	x glass an	nber, $2 \times BTEX$ vials, 2×2	CHNO3 plas	auc, x H2	SU4 plastic, ()	unpreserve	a plastic
Tested By: Vittal Beg	garam HL	,	Remarks:					
			- Steady state conditio					
Date Tested: 28		**********	- difference in the pH I	ess than 0.	2 units, diff	erence in cond	luctivity less	than 10%
	12/2020		10% and SWL stable/	iot in drawd	iown			

 \cap

 \bigcirc

11

JKEnvironments

Client:	NBRS Architecture Job No.: E32889B									
Project:	Proposed	Proposed Refurbishments to Sutherland Entertainment Centre Well No.: MW.								
Location:	Lot 1 DP1	253156, 3	0 Eton Street, SUTHERI	AND, NSV	V	Depth (m):		6.0		
WELL FINISH		/								
Gatic C WELL PURGE DET			Standpip	00			Other (desc	ribe)		
Method:					SWL – Be	fore:	211			
Date:			12020	mp	Time – Be		3.16m			
Undertaken By:			12020			Removed:	11:18 a			
Pump Program No:		HW		********	PID (ppm		~0.9	÷		
PURGING / SAMPLI		I.IS			Lein (bbw));	5.7			
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)		
7	3.30	0.5	clear	25.7	3.0	4271	5.18	153.3		
13	3.37	0.6	11	25.7	2.5	4282	5.07	163.3		
20	3.43	0.7	(1	26.5	***********	4349	5.03	166.5		
25	3.47	0.8	4	26.6	2.0	4379	5.02	169.0		
XE 30	3.51	0.9	[T	26.4	2.0	4379	5.02	170.5		
			start sampling							
			7		1					
**********************		*******	*******		[

				-						
	-			+						

			********				**************			
	-									
				ļ						
				2.750/0843077107101						
				T						
				_	*******			1		
	-		PSH (YES / 10) Sheen (nber, $\int x$ BTEX vials, $\int x$	U			U	ed plastic		
Tested By: Vittal Bog	Geram Un		Remarks:							
Date Tested: 28//			- Steady state condition							
	B		- difference in the pH le 10% and SWL stable/n			erence in cond	luctivity less	than 10%		
Date: (2)	the second second second second second second second second		- Stable/I	or in drawd	OWIT					

Project:		chitecture				Job No.:	E328	8AR
	Proposed	Refurbish	ments to Sutherland Ent	Well No.:	1	FWS		
Location:	Lot 1 DP1	253156, 3	0 Eton Street, SUTHERI	v	Depth (m):	• • • • • • • • • • • • • • • • • • •	6.0	
WELL FINISH								
Gatic C	the second se		Standpip)e			Other (descr	ibe)
WELL PURGE DET	AILS:			_	1		0.40	
Method:			w Perstallic pum	P	SWL – Be		3.68 m	
Date:			/2020		Time – Be		8:250	
Undertaken By:		HW				Removed:	~0.86	
Pump Program No: PURGING / SAMPL		1.05			PID (ppm	:	1.1	
	TI	a,		Temp	DO			T
Time (min)	SWL (m)	Vol (L)	Notes	(°C)	(mg/L)	EC (µS/cm)	рН	Eh (n
10	3.82	0.5	clear	21.7	4.0	1701	5.42	106
15	3.86	0.6	11	21.5	3.7	1694	5.31	114
20	3.88	0.7	11	21.7	3.9	1691	5.31	116
24	3.91	0.8	11	21.7	4.2	1685	5.33	117
			Start sampling					
	-							
					†	********		
				-	1			
					1			
**********************			*****		1			
					†			
		********		••••••••				
			*****************************	-				
			*****	+				
				•				
				·				
			******	·				
								ļ
GWBVP Sampling Contai	-		PSH (YES / 00, Sheen (-			0	l
YSI used: 3								
Tested By: Vittal Bo	ygaram U	W	Remarks: - Steady state conditio	De				

Client:	NBRS Archit	ecture					Job No	o.:		E32889B
Project:	Proposed Re	furbishme	ents to Suther	and Entertainm	ent Centre		Well No	 D.:		Musi
ocation:	Lot 1 DP125	3156, 30 E	ton Street, S	UTHERLAND, N	1SW		Depth ((m):		5.75
VELL FIN	ISH DETAILS									
		Gatic Cov			[]				Ē	1
			er ica	Standpir				Other (desc	ribe) ∟	
Method:			Des. le	1.0	SWL - Bef	ore (m):	_		4.6	2
Date:		100000005050000	2311	00	Time – Bef			••••••	CIL	
Jndertake	n Bv:		-10h		SWL - Afte				RU	
	Removed:		4	<u>v</u>	Time – Afte			·····	0948	
	ng (ppm):		01						21.9	
Comments	•		6.1		1					
	MENT MEASU	REMENT	s							
Vol	ume Removed		Temp (°C		DO		EC	рН		Eh (mV
	(L)		22	(n	ng/L)		6/cm)			
	2	······	5	8.6	0	Sa		5.90		NiG.C.
			005		2	13K	5	5.75		15/1.9
	2		011			13-	15		JA- OSCIMI	1586
*******	<u> </u>		.216	4_(138		5.57	200000000000000000000000000000000000000	160.6
			<u></u>	21.5		129	9	5.85	5	157.9
	6		21.9	(,)		140	<u>6</u>	2-0-2		1741-7
		1999 (1993) (1999 - 1993) 1999 (1995 - 1995 - 1995)								
						*******			********	**************
			••••••						0.000000000	
				******	**************					
		1777 CT 110 CT 127				essentands				
				•••••						
						••••••	******			
						********	******			
ommentr	s:Odours (YES	1 (NO).	NAPL/PSH	(YES / NO), SI	neen (YES /	NO), S	teadv St	ate Achieved	YES /	NO)
		150		10	10	<u>_</u>				
SI Used:	4									17
		2						ale	n w	charge
ested By:		MWb		marks:						
		1.		Steady state cond		0.0	n aliffere	non in the arrest	d	. Inco 4k 400
ate Teste	d:	23/12		oifference in the d SWL stable/no			s, aimere	nce in the cond	auctiveity	riess than 10%
								القريبية ال	tin offention.	
				/inimum 2 moonit		LIMON -				
hecked B	y:	VB 12/2	CONTRACTOR OF CONTRACT	/inimum 3 monit	oring well vo	umes p	urgea, ur	niess weil purg	ed until i	t is enectively

 \bigcirc

 \bigcirc

Client:	NBRS Architecture)		Job No.:	2		E32889B		
Project:	Proposed Refurbis	hments to Suth	erland Enter	ntre	Well No.:			M622	
Location:	Lot 1 DP1253156,	30 Eton Street,	SUTHERLA	ND, NSW		Depth (r	n):		591
	SH DETAILS						,		0.0
	1	2		-			1		
	Gatic ELOPMENT DETAI	Cover 🗵	Sta	ndpipe 🕒			Other (de	escribe) L	
Method:		D.	RUMP	Iswi	– Before (m):			37	
Date:	*****	Dest			- Before:			OPIN	
Undertake	n Bv [.]	1		******	– After (m):	*********		Qc.	
Total Vol. F	******************************	4	<u></u>		– After:			093	
PID Readin		ă			- Alter,			0.0	50
Comments									
DEVELOP	MENT MEASUREM	ENTS							
Volu	me Removed	Temp (°C)	DO		EC	p	н	Eh (mV)
	<u>(L)</u>	019		(mg/L)		6/cm)	<u> </u>		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Colorest	2	35	37		6.20		143.4
	4 7	02		9.4		61	6.4		146.1
	<u> </u>	00 0	<i></i>	4.6	33	52	6.1	5	13322
	2	120	·····	5.0	57	105	5.8	2	
		172.0		4, 7	291	decentration of the	8.3		135.7
		12.0		************		77	5.0		1361
*****	à	00		5.7	na	dit-	0- C		139.4
•••••	Ō		<u>&gt;</u>	2.4	0.0	21		20	132-6
•••••		•••		**********		- <u>y</u>			
••••••						***********			
			*****	************	******		•		
	4						-		
				******				*******	*****
				•••••			••••••		1,000-010-00-00-00-00-00-00-00-00-00-00-00
		***			*****	********			
			******						
			******		******	******			
	******							******	
	*******							***********	
								•••••	
Comments	Odours (YES /	IO), NAPL/PS	H (YES / N	O), Sheen (	ES / NO), S	teady Sta	te Achieve	d (YES /	NO)
			Ĺ	2	0	·			S
<b>(SI Used:</b> لر							è	1000	ren aige
ested By:	n	0 1	Remarks:					and the second	0
		-	Steady state						
Date Tested	1: 23		Difference in and SWL state			s, differen	ce in the co	nductiveit	y less than 10%
Checked By	VP		Minimum 3	monitoring w	ell volumes p	urged, unl	ess well pu	rged until	it is effectively d

ж. Т

Client:	NRRS Arch	RS Architecture						Job No.			E32889B
Project:	Proposed R		nts to Sut	herland F	ntertainm	ent Centre		Well No.			
*****	**********			********	••••••	********		1	******	********	MWS
_ocation:	1		ton Street	Street, SUTHERLAND, NSW					m):		5.95 m
VELL FIN	ISH DETAILS	5							- <u>r</u>		
		Gatic Cove	er 📈		Standpip	be 🗌			Other (des	scribe)	
NELL DEV	ELOPMENT	DETAILS									
Method:			Des		- <b>C</b>	SWL - B	efore (m):			4.10	1
Date:			23/1	120	*********	Time – B	***********				10:10
Jndertake			mpl			SWL - A	fter (m):			Day	
	Removed:		5			Time – A	fter:			10:5	¢.
PID Readi		weet a CDI III COCOLO	(	Э			ne - 18 9 no - 18 9 1				
Comments											
	MENT MEAS				r	DO	1	EC	Т		
VOI	ume Remove (L)		Temp	(°C)		ng/L)		EC S/cm)	pł	4	Eh (mV)
	1	0	12.9		9.2		122		510	2.	124.5
	2		219	2,	7.		1510	***********	Sila	******	115 7
	3		18 CI		7.0		14.	74	5.19 5.0		45.3
*********	Ĺ.		127			·····	150		5.20	3	15.4
	<		18.8		7.3	·····	153	**********	5.19		1700
			10.0			•••••	1.9.7			(	1 (~) ~
							IP TO MANAGEMENT				
•••••			•••••	**********							
						3					
******											
			*******		•••••	0.010-0000-016-0				**********	*****
					***********						••••••
			******	******		*******			••		
						***********					
				0.0000000000000000000000000000000000000							
							1				
				******			-				
					•••••						
Comments	:Odours (YE	S / NO)	NAPL/PS	H (YES	/ NO) SI	heen (YES	(NO) S	teady St	ate Achiever	I (YES /	NO)
'SI Used:											
							6	XCVC	Elow	coch	SubC.
ested By:		MULL		Remarks							0
Date Teste	d:	23/1/20		- Differer				s, differer	nce in the cor	nductiveity	/ less than 10%
Checked B		102		- Minimu	m 3 monit	oring well	volumes p	urged, ur	less well pur	ged until i	t is effectively dr

JOB NO: E 228898 LOCATION: 30 Eton Street, Sutterland, NSW JKEnvironments

 $\bigcirc$ 

### FIELD CALIBRATION FORM

			Sampliks			
PID			3			
Make: MiniRAE	Model: 2000	Unit: Green	Date of last factory calibration: $20/7/202$			
Date of calibration: 24	11/2020	Name of Calibrator:				
Calibration gas: Iso-buty		Calibration Gas Concer				
Measured reading:	/00 ppm	Error in measured read	ing: ± 👩 ppm			
Measured reading Accep	table (Yes)No):					
DISSOLVED OXYGE	EN	2-012				
Make:		Model: Aqua DY				
Date of calibration: 28/	1/2020	Name of Calibrator:	J			
Span value: 70% to 130%						
Measured value: 102	h					
Measured reading Accept						
pH METER		199 A.S.S.				
Make: Orion	president of the second	Model: Four star	159			
Date of calibration: 28/	1/2020	Name of Calibrator: HL	J			
Buffer 1: Theoretical pH =		Expiry date: Nov 2020				
Buffer 2: Theoretical pH =	4.01± 0.01	Expiry date: Jun 2020	Lot No: 332234 Lot No: 3254/8			
Measured reading of Buff			20770			
Measured reading of Buff	er 2: 4.11	Contraction of the				
Slope:		Measured reading A	ling Acceptable (Yes/No):			
CONDUCTIVITY ME	TER					
Make: Orion		Model: Four star				
Date: 28/1/2000	Name of Calibrator:	HW	Temperature: 25.8 °C			
Calibration solution:	returnet s Samland	Expiry date: J-2020	Lot No: 331609			
Theoretical conductivity a	t temperature (see sol		<b>44</b> ο μS/cm			
Measured conductivity:	<b>1465</b> μS/cm	Measured reading A	Acceptable (Yes No):			
Make: Orion		Model: Four star				
Date of calibration: 28	11/2020	Name of Calibrator: HW	1			
Date of calibration: 28 Calibration solution: 0RM	= rest santion	Expiry date: Jan 2024	Lot No: 7822			
Theoretical redox value:		240mV				
Measured redox reading:	2.42.4 mV	Measured reading A	Acceptable (Yes/No):			

## **JKEnvironments**



### **PID FIELD CALIBRATION FORM**

Client:	NBRS Architecture							
Project:	Proposed Refurbishments to Sutherland Entertainment Centre							
Location:	Lot 1 DP1253156, 30 Eton S	treet, SUTHERLAND, NSW						
Job Number:	E32889B							
	Р	ID						
Xellow			Date of last factory					
Make:	Model:	Unit: Yellow	calibration: 20/1/20					
Date of calibration:	2/120	Name of Calibrator: 🛛 🏱	imp					
Calibration gas: Iso-butylen	е	Calibration Gas Concentrati	on: 100.0 ppm					
Measured reading:	🏷 ppm	Error in measured reading:	± 🔿 ppm					
Measured reading Acceptab	le (Yes/No):							
	Р	ID						
	Model: L,Ye	Unit: Green	Date of last factory calibration: 20/1/2-0					
Date of calibration: 28/1	1/20	Name of Calibrator: HW						
Calibration gas: Iso-butylen	е	Calibration Gas Concentration: 100.0 ppm						
Measured reading:	o <i>O</i> ppm	Error in measured reading:	± /pcoppm					
Measured reading Acceptab	le ((es/No):							
	Р	ID						
			Date of last factory					
Make:	Model:	Unit:	calibration:					
Date of calibration:		Name of Calibrator:						
Calibration gas: Iso-butylen	е	Calibration Gas Concentration: 100.0 ppm						
Measured reading:	ppm	Error in measured reading: ± ppm						
Measured reading Acceptab	le (Yes/No):							
	Р	ID						
			Date of last factory					
Make:	Model:	Unit:	calibration:					
Date of calibration:		Name of Calibrator:						
Calibration gas: Iso-butylen	e	<b>Calibration Gas Concentrati</b>	on: 100.0 ppm					
Measured reading:	ppm	Error in measured reading:	± ppm					
Measured reading Acceptab	le (Yes/No):							
	Р	ID						
Make:	Model:	Unit:	Date of last factory calibration:					
Date of calibration:		Name of Calibrator:						
Calibration gas: Iso-butylen	е	Calibration Gas Concentrati	on: 100.0 ppm					
Measured reading:	ppm	Error in measured reading:	± ppm					
Measured reading Acceptab								



### **Appendix I: Guidelines and Reference Documents**





Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2018). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW Office of Environment and Heritage (OEH), (2011). Guidelines for Consultants Reporting on Contaminated Sites

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy No.55 – Remediation of Land 1998 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

