

GeoEnviro Consultancy Pty Ltd Unit 5, 39-41 Fourth Avenue, Blacktown, NSW 2148, Australia PO Box 1543, Macquarie Centre. North Ryde, NSW 2113

ABN 62 084 294 762 Tel: (02) 9679 8733 Fax: (02) 9679 8744

Report

Phase 2 Contamination Assessment Proposed Landscape Works St Francis Catholic College Lots 20-23 DP 29317 Jardine Avenue Edmondson Park NSW

Prepared for: Catholic Education Office Diocese Wollongong C/- JDH Architects Suite 4b, Level 4 116-120 Kippax Street SURRY HILLS NSW 2010

Ref: JC16261F-r1 December 2019

GeoEnviro Consultancy Pty Ltd

Unit 5, 39-41 Fourth Avenue, Blacktown, NSW 2148, Australia PO Box 1543, Macquarie Centre. North Ryde, NSW 2113 ABN 62 084 294 762 Tel: (02) 9679 8733 Fax: (02) 9679 8744

4th December 2019

Our Ref: JC16261F-r1

Catholic Education Office Diocese Wollongong C/- JDH Architects Suite 4b, Level 4 116-120 Kippax Street SURRY HILLS NSW 2010

Attention: Mr Guiseppe Lauriola

Dear Sir

Re: Phase 2 Contamination Assessment Report Proposed Landscape Works St Francis Catholic College Lots 20-23 DP 29317 Jardine Drive Edmondson Park

We are pleased to submit our Phase 2 Contamination Assessment report for the proposed landscape works at the St Francis Catholic College.

Should you have any queries, please contact the undersigned.

Yours faithfully GeoEnviro Consultancy Pty Ltd

Solern Liew MIEA CPEng NER Director

D:\16JOB\261\B\JC16261F-r1.DOC

GeoEnviro Consultancy Pty Ltd Unit 5, 39-41 Fourth Avenue, Blacktown, NSW 2148, Australia PO Box 1543, Macquarie Centre. North Ryde, NSW 2113

ABN 62 084 294 762 Tel: (02) 9679 8733 Fax: (02) 9679 8744

Document Control

Document Details		
Job No	JC16261F	
Revision	r1	
Title	Phase 2 Contamination Assessment	
	Landscape Works	
	St Francis Catholic College	
	Lots 20-23 DP 29317 Jardine Avenue	
	Edmondson Park NSW	
Address	Lots 20-23 DP 29317 Jardine Avenue Edmondson Park NSW	
Client	JDH Architects	

Document Status				
Status	Prepared By	Reviewed By	Date	
Final	A Tejada	S Liew	4 th December 2019	
		Status Prepared By	Status Prepared By Reviewed By	

TABLE OF CONTENTS

Section

Page

Contents

1	. <i>I</i> N	TRODUCTION1	!
2	. <i>S</i> (COPE OF WORK1	1
3	. <i>SI</i>	TE INFORMATION2)
	3.1	Site Location2	2
	3.2	Site Topography and Geological Setting3	;
	3.3	Previous Contamination Assessment Reports	;
	3.4	Recent School Development Works5	;
	3.5	Existing Site Conditions and Description6	Í
4	. <i>C</i> (ONCEPTUAL SITE MODEL	7
	4.1	Potentially Contaminated Media7	1
	4.2	Exposure Pathways7	,
	4.3	Potential for Migration8	\$
	4.4	Sensitive Receptors	\$
5	. SA	AMPLING, ANALYTICAL AND QUALITY PLAN9)
	5.1	Overview9)
	5.2	Data Quality Objectives9)
	5.3	Data Quality Indicators11	L
6	. <i>I</i> N	VESTIGATION AND ANALYSIS METHODOLOGY	ļ
	6.1	Field Investigation14	ŀ
	6.2	Laboratory Analysis14	ŀ
7.	. Ll	EGISLATION AND GUIDELINES16	í
	7.1	Legislation16	j
	7.2	Assessment Criteria17	,
8	R	ESULTS OF THE INVESTIGATION19)
	8.1	Subsurface Conditions19)
	8.2	Laboratory Test Results20)
	8.3	Quality Assurance/Quality Control (QA/QC)21	L
9	. A.	SSESSMENT AND SITE CHARACTERISATION	;
1	0.	CONCLUSION AND RECOMENDATIONS	ļ
1	1.	<i>LIMITATIONS</i>	,

LIST OF DRAWINGS

Drawing No 1 Test Pit Location Plan

LIST OF TABLES

Table 1	Summary of Soil Profile
---------	-------------------------

- Table 2Analytical Program
- Table 3
 Summary of Analytical Results Heavy Metals
- Table 4Summary of Analytical Results OCP
- Table 5Summary of Analytical Results PCB
- Table 6
 Summary of Analytical Results TRH and VOC
- Table 7Summary of Analytical Results PAH
- Table 8Summary of Analytical Results Asbestos
- Table 9Summary of Analytical Results Quality Assurance

LIST OF APPENDICES

Appendix A	Extracts of GeoEnviro Contamination Assessment –
	reference JC15236A-r1(rev) July 2015
Appendix B	Extracts of GHD Preliminary Site Investigation –
	Reference 21/23862 dated April 2015
Appendix C	Sampling Quality Assurance Plan
Appendix D	Laboratory Test Certificates
Appendix E	Unexpected Finds Protocol
Appendix F	Important Information about your Environmental Site Assessment Report.
	Explanatory Notes.

ii

Executive Summary

This report presents the results of a Phase 2 Contamination Assessment for the proposed landscaping area (Subject Site) at St Francis Catholic College at Lots 20-23 DP 29317 Jardine Avenue Edmondson Park as shown on Drawing No 1.

We understand that the Subject Site comprises of the strip of land about 10m to 15m wide along the eastern, southern and western boundaries and this land will be landscaped as part of the St Francis Catholic College development as shown on Drawing No 1. Total area of landscaping is about 1 hectare

The objective of this study was to assess if significant land contamination is likely to exist on Subject Site that may present a risk to human health and/or the environment as a result of previous and current land use and to provide our assessment and recommendation on suitability of the site for the proposed landscape development.

The investigation consisted of a site inspection, test pit investigation, soil sampling and laboratory analysis.

At the time of our site investigation, the St Francis Catholic College occupied the site with school buildings on the western portion of the site and playing fields at the north-western portions. Some construction works for a new school building (Stage 2 - TAS Building) was underway at the central-eastern portion of the site with the south-eastern portion of the site mainly vacant.

The proposed landscape areas (Subject Site) along the boundaries of the school premises were mainly vacant with a portion of the eastern boundary occupied by a accessway for the construction works.

Field investigation included excavation of test pits within the Subject Site on the 29th October 2019. A total of twenty-four test pits (TP 1 to 24) were excavated across the site using a 5-tonne excavator. The test pit locations are shown on Drawing No 1.

The following is summary of subsurface conditions encountered during our test pit investigation;

• Topsoil and topsoil/fill were encountered on the surface or below fill in all test pits except TP 7, 8 and 15 consisting predominantly of Clayey Silt and Gravelly Clayey Silt of low liquid limit. Thickness of the topsoil and topsoil/fill was found to range from 100mm to 600mm.

GeoEnviro Consultancy

• Some fill was encountered on the surface of TP 4 to 8 along the eastern southern boundary and below the topsoil/fill in TP 21 to 24 along the western boundary adjacent the current playing field. The fill was generally found to comprise of Crushed Rock, Gravelly Clayey Silt and Gravelly Silty Clay and have thickness ranging from 0.1m to 1.10m thick.

iv

- Natural soil was encountered on the surface of TP 15 and below the topsoil, topsoil/fill and fill in the remaining test pits generally consisting of medium to high plasticity Silty Clay. The natural clay was assessed to be dry to moist (ie moisture content equal to or less than the plastic limit).
- Bedrock consisting was not encountered in any of the test pits which were taken to a maximum depth of about 1.5m below existing ground surface.
- All test pits were found to be dry during and upon completion of the test pit investigation.

Selected samples were analysed for potential contaminants consisting of Heavy metals (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn), Organochlorine Pesticides, Polychlorinated Biphenyls, Total Recoverable Hydrocarbons, Benzene, Toluene, Ethyl Benzene and Xylene, Polycyclic Aromatic Hydrocarbons and asbestos. All samples were found to have contaminants of concern within the Site Criteria.

Based on the results of this Phase 2 Contamination Assessment, we are of the opinion that the risk of gross ground contamination from previous landuse and activities causing adverse health risk to future occupants of the property is considered low and therefore the Subject Site is suitable for the proposed landscaping works.

Section 10 of this report provides additional comments on potential contamination issues including unexpected asbestos finds and recommendations to address these issues.

1. INTRODUCTION

This report presents the results of a Phase 2 Contamination Assessment for the proposed landscape area (ie Subject Site) at St Francis Catholic College at Nos 132, 130, 150 and 170, Lots 20-23 DP 29317 Jardine Avenue in Edmondson Park as shown on Drawing No 1. The investigation was commissioned by The Catholic Education Diocese of Wollongong (Purchase Order No 123P000638 dated 18th October 2019. The scope of this assessment was carried out in general accordance with our proposal referenced JC16261A-L8 dated 9th October 2019.

1

We understand that the Subject Site comprises of the strip of land about 10m to 15m wide along the eastern, southern and western boundaries and this land will be landscaped as part of the St Francis Catholic College development as shown on Drawing No 1. Total area of landscaping is about 1 hectare.

Lot 21 (No 150) was the subject of a contamination assessment undertaken by GeoEnviro in July 2015 (Reference 1) and Lots 20 (No 170), 22 (No 130) and 23 (No 132) were the subject of a preliminary site investigation undertaken by GHD in April 2015 (Reference 2). Based on the reports, the site was assessed to have a low risk of gross ground contamination with respect to the proposed school development. School development is currently in progress with a number of school buildings constructed and the proposed landscape areas partially formed from general bulk earthworks for the school playing fields and frontage road construction (ie Vinny Road and Guillemont Road).

The objective of this study was to assess if significant land contamination is likely to exist on Subject Site that may present a risk to human health and/or the environment as a result of previous and current land use and to provide our assessment and recommendation on suitability of the site for the proposed landscape development.

2. SCOPE OF WORK

This contamination assessment was performed in general conformance with our understanding of the guidelines by the Australian and New Zealand Conservation Council (ANZECC), the NSW Environment Protection Authority (NSW EPA) and the Office of Environment and Heritage (OEH).

The scope of work conducted consisted of:

- A review of the Contamination Assessment report prepared by GeoEnviro referenced JC15236A-r1(rev) dated July 2015 (Reference 1) and Preliminary Site Investigation report prepared by GHD referenced 21/23862 dated April 2015 (Reference 2).
- An inspection of the site to assess contamination within the site.
- Develop a conceptual site model to determine contamination sources and exposure pathways.
- Establish a sampling, analytical and quality plan.
- Undertake intrusive investigation by excavation of test pits using a 5-tonne excavator to assess subsurface ground condition.
- Undertake subsurface soil sampling from the test pits for laboratory analysis.
- Scheduling samples and laboratory analysis by Envirolab Services Pty Ltd to detect the presence or otherwise of the contaminants of concern.

3. SITE INFORMATION

3.1 Site Location

The proposed landscape works area (ie Subject Site) is situated along the eastern, southern and western boundaries of the St Francis Catholic College school premises occupying a strip of land about 10m to 25m along the full length of the boundaries.

St Francis Catholic College occupies 4 lots (ie Lots 20 to 23) and is situated on the south eastern corner of Jardine Drive in Edmondson Park as shown on Drawing No 1. The overall site is irregular in shape with an approximate 350m frontage to Jardine Drive and extends about 415m in the east-west orientation by about 255m in the north-south orientation.

The adjoining and surrounding properties consist of semi-rural residential properties and some recently completed subdivision developments with newly constructed houses.

3.2 Site Topography and Geological Setting

The site is situated on gently undulating terrain. Ground surface within the school site has a gentle slope of about 2 to 6 degrees dipping in a general direction toward the north and north western corner of the site. Based on the survey drawing provided, ground surface at the south eastern corner of the site is at about Reduced Level (RL) 67.5m Australian Height Datum (AHD) and ground surface drops to about RL 60.5m at the northern corner of the site and RL 53.5m at the north western corner.

The 1:100,000 Soil Landscape Map of Penrith (Reference 3) prepared by the Soil Conservation Services of NSW indicates the site to be underlain by residual soil belonging to the Blacktown landscape group. Typically, soil consists of low permeability, highly plastic and moderately reactive soil.

The 1:100,000 Geological Map of Penrith (Reference 4) indicates the underlying bedrock to consist of Bringelly shale of the Wianamatta Group consisting of shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone, rare coal and tuff.

3.3 Previous Contamination Assessment Reports

Lot 21 (No 150) of the St Francis Catholic College School site was the subject of a contamination assessment undertaken by GeoEnviro (Reference 1) in July 2015 and Lots 20 (No 170), 22 (No 130) and 23 (No 132) were the subject of a preliminary site investigation undertaken by GHD in April 2015 (Reference 2).

Extracts of the reports are attached in Appendix A and B of this report. The following is a summary of the previous assessment reports;

<u>GeoEnviro Consultancy Pty Ltd - Contamination Assessment referenced JC15236A-r1(rev)</u> dated July 2015

The scope of works included the following;

- A review of available information on the site history from aerial photographs and historical titles search from NSW Land and Property Information (LPI),
- A search of records on previous notices issued by NSW EPA.
- A search of information on Groundwater Boreholes in the area from the NSW Natural Resource Atlas (NRA)

- A review of Liverpool City Councils Section 149(2) Zoning Certificates
- A review of published information on the subsurface conditions in the general area
- An inspection of the site and test pit investigation to identify apparent or suspected areas of contamination.
- Collection of soil samples complying to the NSW EPA minimum sampling protocol.
- Collection of dam silt samples and water sample
- Laboratory analysis on the soil, silt and dam water samples to detect the presence or otherwise of the contaminants of concern

Field investigation included excavation of test pits using a tractor mounted backhoe on the 11th June 2015. A total of thirty-one test pits (TP 1 to 31) were excavated across the site (No 150).

Within the proposed landscaping areas, five test pits (TP 1 to 4 and 13) were excavated and the test pits encountered topsoil overlying natural Silty Clay, Gravelly Silty Clay and Shaley Clay. Shale bedrock was encountered in TP 1 and 13 at depths of 1.0m and 1.6m below existing ground surface respectively. Minor fill of 250mm thick was encountered on the surface of TP 4 consisting of crushed rock.

Selected samples were analysed for a range of potential contaminants consisting of Heavy metals (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn), Organochlorine pesticides, Polychlorinated Biphenyls, Total Recoverable Hydrocarbons, Benzene, Toluene, Ethyl Benzene and Xylene, Polycyclic Aromatic Hydrocarbons and asbestos. The results were interpreted by comparison with guideline Criteria recommended by the NSW EPA. The laboratory test results encountered all concentrations of contaminants of concern in all samples analysed to be all within the Site Criteria.

For the proposed landscape area (Subject Site), the report concluded the risk of gross ground contamination is generally considered low.

GHD - Preliminary Site Investigation referenced 21/23862 dated April 2015

The Preliminary Site Investigation undertaken by GHD included a desktop study and an intrusive site investigation.

The soil investigation consisted of drilling 40 boreholes (BH 101 to 120 and BH 201 to 220) across the entire school site with the exception of No 21. The boreholes were drilled to a maximum depth of 0.5m below existing ground surface. Selected soil samples were analysed for contaminants of potential concern.

A total of seven boreholes (BH 109, 110, 115, 120, 206, 209 and 210) were drilled at the approximate location of the proposed landscape works. Fill consisting of Clay was encountered on the surface of BH 115, 120, 206, 209 and 210 with thickness ranging from 100mm to 200mm. Natural soil consisting of Clay and Sandy Clay was encountered in the remaining boreholes and below the fill in BH 120 and 210.

The laboratory results indicate all samples collected and analysed to be below the laboratory limit of reporting and therefore within the adopted human health site investigation criteria.

For the proposed landscape area (Subject Site), the report concluded no gross contamination within the site.

3.4 Recent School Development Works

Following our previous contamination assessment in July 2015, development of the school site had been undertaken which involved earthworks over the majority of the site and construction of the western and northern portions of the school. This included construction of the current school blocks, playing fields and carpark.

Stage 2 development of the school site was subsequently carried out which currently includes the construction of a new two-storey building (TAS Block) towards the central-eastern portion of the site. The south-eastern portion of the school site was mainly vacant with stockpiles of soil and building material.

During this time, construction of Poziers Road to the northern boundary, Lacy Road to the southern boundary and half road construction of Vinnys Road to the eastern boundary were completed.

3.5 Existing Site Conditions and Description

A site visit was carried out on the 29th October 2019 by an environmental scientist to observe existing site features and identify obvious or suspected areas of potential contamination.

At the time of our site investigation, the St Francis Catholic College occupied western and northern portions of the site with school buildings and playing fields. Some construction works for a new school building (Stage 2 - TAS Building) was underway at the central-eastern portion of the site with the south-eastern portion of the site mainly vacant.

The proposed landscape areas (Subject Site) along the boundaries of the site were mainly vacant with a portion of the eastern boundary occupied by a driveway for the construction works.

4. CONCEPTUAL SITE MODEL

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources and exposure pathways between those sources and receptors. The model provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future and it enables an assessment of the potential pathways.

4.1 Potentially Contaminated Media

The potential for contaminated media for the Subject Site includes topsoil, natural soil and surface water. Some fill may also be present in the construction work areas which may also be classified as potentially contaminated media. The site appeared to be mainly on natural ground and therefore not likely to have significant fill as a potential contaminated media.

Any fill encountered within the site has the potential to be contaminated with Heavy Metals, OCP, PCB TRH/BTEX/PAH and asbestos (ACM, AF/FA).

The potential leachability through rainfall and stormwater runoffs can lead to infiltration of the contaminated media through the topsoil/surface fill material and contaminating the underlying natural soil.

In view of the relatively low permeability of the underlying natural soil and as the property was used for residential and is situated away from contaminating activities (eg industrial, workshop) and water bodies (eg creek, drainage channel), contamination through ground water media is not conceivable.

4.2 Exposure Pathways

Taking into consideration the existing landuse as agricultural and the future potential site development activities, the potential contaminants in the above media has the potential to be mobilised through the following pathways;

- Dermal and oral contact to contaminated topsoil and surface fill (and associated dust) during excavation and construction works.
- Leaching of heavy metals into the ground and uptake of contaminants by vegetation (eg vegetables and fruit trees)/
- Ingestion via eating edible plants (eg vegetables and fruit trees) by site occupants.

- Direct ingestion of soil by children playing on the ground surface in unpaved areas and
- Inhalation of dust (including asbestos) by site occupants and construction workers.

4.3 **Potential for Migration**

Contaminants can migrate from site through wind, stormwater runoffs, infiltration of surface water and groundwater flows. The factors influencing the potential for contaminants to migrate include;

- Type of contaminants (eg mobility characteristics, bioability).
- Extent (eg localised or widespread) and concentrations of contaminants.
- Locality and source of contaminants
- Physical characteristics of the site (eg topography, geology, hydrology and hydrogeology).

The potential contaminants identified on this site are present in soil (eg impacted soil or fill and asbestos). There are no known liquid forms of contaminants on this site.

There is a potential for stormwater runoff infiltrating through the contaminated fill and leaching contaminants into the underlying natural soil. Excess stormwater runoffs has the potential to carry asbestos dust downstream and into adjoining sites.

There is no potential for vapours or ground gases associated with volatile contaminants generated from the site and impacting on adjoining sites.

4.4 Sensitive Receptors

Potential receptors of environmental impacts on the subject site include'

- Construction and maintenance workers during construction site redevelopment.
- Future site users following development of the site with the most sensitive receptor being a child.
- Land users in adjacent areas.

5. SAMPLING, ANALYTICAL AND QUALITY PLAN

5.1 Overview

The sampling analytical and quality plan has been developed in order to ensure that the data collected for this investigation is representative for the site assessment decisions. The plan has been completed in general accordance with the NSW EPA guidelines and includes;

- Data quality objectives
- Sampling methodologies and procedures
- Field screening methods
- Sample handling, preservation and storage procedures
- Analytical QA/QC

5.2 Data Quality Objectives

The purpose of establishing Data Quality Objectives (DQO) is to ensure that the field investigations and subsequent analyses are undertaken in a way that enables the collection and reporting of reliable data on which to base the assessment.

A process for establishing DQOs for a site has been defined by the US EPA. That process has been adopted within the Australian Standard: AS 4482.1-2005 and referenced by the *National Environment Protection (Assessment of Site Contamination) Measure* (NEPC, 1999) and the *Guidelines for the NSW Site Auditor Scheme, 2nd ed* (NSW DEC, 2006).

The DQO process, involves the following seven steps:

Step 1 State the problem;

The detailed site investigation is being undertaken in order to ascertain the current contamination status of the sites whether contamination present at the site may pose an unacceptable health and/or environmental risk under the current land use and whether the sites are suitable for the proposed development.

Step 2 Identify the decision;

The site investigations are to identify areas of environmental concerns which may be the source of potential contamination. To assess the suitability of the site for future use, decisions are to be made based on the following questions

• Is contamination present in soil at concentrations above the applicable approved guidelines?

- Where contamination has occurred, does it have the potential to adversely impact on human health and/or environmental receptors?
- Does the site appear suitable (from a contamination perspective) for the current and future proposed land use?

Step 3 Identify inputs to the decision;

Data to be inputted to the decision making process will include:

- Information gained from a review of existing information;
- Soil sampling at nominated locations (where access is available) across the site.
- Laboratory analytical results for relevant to the area of environmental concerns.
- Appropriate screening-level criteria (investigation thresholds) for soil.
- Quantitative data gained via intrusive sampling and analytical works
- Assessment of the suitability of the data obtained from sampling an analyses as measured against data quality indicators (DQIs).
- Assessment of analytical results against site suitable human health criteria.

Step 4 Define the study boundaries;

The lateral boundaries of the study area are the site boundaries, as depicted on the drawings.

The vertical boundary with respect to soil shall be the depth of the deepest soil borehole

Step 5 Develop a decision rule;

Project analytical data will be compared to appropriate NSW EPA prepared or endorsed guidelines for various land use. If the concentration of contaminants in the soils exceeds the adopted assessment criteria; an assessment of the need to further investigate, remediate and or manage the onsite impacts in relation to the proposed development will be undertaken.

On the basis of this initial comparison, plus an assessment of potential contaminant exposure pathways, a decision will be made as to whether or not the contamination may pose a potential risk, warranting management and/or remediation.

Step 6 Specify limits on decision errors; and

Guidance found in ASC NEPM (1999 amended 2013) Schedule B2 regarding 95% upper confidence limit (UCL) states that the 95% UCL of the arithmetic mean provides a 95% confidence level that the true population mean will be less than or equal to this value. Therefore a decision can be made based on a probability that 95% of the data collected will satisfy the site acceptance criteria. A limit on decision error will be 5% that a conclusive statement may be incorrect.

11

Step 7 Optimise the design for obtaining data.

The sampling program was designed with reference to the desktop works completed for the, sites and the known layout of site infrastructure. The sampling program was designed to target, those areas of the site where potential contamination was identified as being most likely

5.3 Data Quality Indicators

To minimise the potential for decision errors, Data Quality Indicators (DQIs) have been determined, for completeness, comparability, representativeness, precision and accuracy as detailed below;

The DQIs for sampling techniques and laboratory analysis of collected samples defines the acceptable level of error required for this investigation.

The data quality objectives will be assessed by reference to data quality indicators as follows:

- **Completeness** defined as the percentage of measurements made which are judged to be valid measurements. To ensure data set completeness, the following is required:
 - ➤Confirmation that all sampling methodology was completed in general accordance with GeoEnviro sampling quality assurance plan.
 - Chain of Custody and receipt forms.
 - ➢Results from all Laboratory QA/QC samples (Lab blanks, matrix spikes, lab duplicates).
 - >NATA accreditation stamp on all laboratory reports

• **Comparability** - is the confidence that data may be considered to be equivalent for each sampling and analytical event. It provides a qualitative parameter expressing the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples and ensuring analysing laboratories use consistent analysis techniques and reporting methods.

12

Data comparability is maintained by ensuring that:

- All site sampling events are undertaken following methodologies outlined in GeoEnviro Sampling Quality Assurance Plan and published guidelines.
- NATA accredited laboratory methodologies shall be followed on all laboratory testing.
- **Representativeness** expresses the degree which sample data accurately and precisely represents a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples in an appropriate pattern across the site, and by using an adequate number of sample locations to characterise the site. Consistent and repeatable sampling techniques and methods are utilised throughout the sampling.
- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the data is assessed by calculating the Relative Percent Difference (RPD) between duplicate sample pairs.

 $RPD(\%) = [|C_0 - C_d| / C_0 + C_d] \ge 200$

GeoEnviro adopts nominal acceptance criteria of 30% RPD for field duplicates and splits for inorganics and nominal acceptance criteria of 50% RPD for field duplicates and splits for organics, however it is noted that this will not always be achieved, particularly in heterogenous soil or fill materials, or at low analyte concentrations • Accuracy - measures the bias in a measurement system or a quantitative measure of the closeness of reported date to the true value. Accuracy can be undermined by such factors as field contamination of samples, poor preservation of samples, poor sample preparation techniques and poor selection of analysis techniques by the analysing laboratory. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes, laboratory blanks and analyses against reference standards.

The nominal "acceptance limits" on laboratory control samples are defined as follows:

- Laboratory spikes - 70-130% for metals / inorganics 60-140% for organics.

– Laboratory duplicates – <30% for metals / inorganics, <50% for organics.

- Laboratory blanks - < practical quantitation limit.

Accuracy of field works is assessed by examining the level of contamination detected in field and equipment blanks. Blanks should return concentrations of all organic analytes as being less than the practical quantitation limit of the testing laboratory.

6. INVESTIGATION AND ANALYSIS METHODOLOGY

6.1 Field Investigation

Field investigation included excavation of test pits on the 29th October 2019. A total of twenty-four test pits (TP 1 to 24) were excavated on the Subject Site using a 5-tonne excavator. The test pit locations are shown on Drawing No 1.

The test pits were excavated to depths varying from 0.4m to 1.5m below existing ground surface. The test pits were observed for groundwater during and upon completion of the excavation. The field results together with details of the strata encountered are presented in Table 1.

Environmental soil samples were collected in duplicate from surface and at lower depths. Disturbed samples were taken from the site to our laboratory for analysis. GeoEnviro Consultancy's standard procedures were used for sampling and more information on the procedures adopted is provided in Appendix C.

6.2 Laboratory Analysis

As part of the soil sampling program, selected soil samples were submitted to the nominated contracted laboratory for analysis of contaminants of potential concern consisting of the following;

- Heavy Metals Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Lead (Pb), Nickel (Ni) and Zinc (Zn)
- Organochlorine Pesticides (OCP).
- Polychlorinated Biphenyls (PCB)
- Total Recoverable Hydrocarbons (TRH)
- Benzene, Toluene, Ethyl Benzene and Xylene (BTEX)
- Polycyclic Aromatic Hydrocarbon (PAH)
- Asbestos
- pH

Individual samples were taken for laboratory analysis. The soil analytical schedule completed is presented in Table 2. The following is a summary of analysis undertaken;

Analytes	No of Samples	Samples
Heavy Metals, OCP, PCB, TRH, BTEX, PAH, Asbestos	13 Soil	TP 1 (0.0-0.1m), TP 3 (0.1-0.2m), TP 4 (0.2-0.3m), TP 7 (0.0-0.1m), TP 8 (0.5-0.6m), TP 10 (0.1-0.2m), TP 12 (0.2-0.3m), TP 14 (0.0-0.1m), TP 16 (0.1-0.2m), TP 18 (0.0-0.1m), TP 21 (0.2-0.3m), TP 23 (0.6-0.7m), TP 24 (0.2-0.3m),
Heavy Metals, OCP, PCB	4 Soil	TP 5 (0.1-0.2m), TP 11 (0.0-0.1m), TP 17 (0.0-0.1m), TP 20 (0.0-0.1m)
TRH, BTEX, PAH	3 Soil	TP 2 (0.0-0.1m), TP 13 (0.4-0.5m), TP 22 (0.1-0.2m),

The laboratory results are summarised in Tables 3 to 8. The laboratory test results are detailed on the attached Laboratory Test Report in Appendix D.

Soil analysis was performed by Envirolab Services Pty Ltd, a laboratory accredited by the National Association of Testing Authorities (NATA) for the tests performed. The analytical results and methods employed are presented in the Laboratory Test Report in Appendix D.

7. LEGISLATION AND GUIDELINES

7.1 Legislation

Since 1997, the DECCW has introduced significant reforms to the identification and management of contaminated sites within NSW. The purpose of reforms is to provide uniform state-wide control of the management, investigation and remediation of contaminated land. The following documents outline the reforms undertaken;

- The Contaminated Land Management Act 1997 (CLMA) establishes a process for investigating and remediating land where contamination presents a significant risk of harm to human health or the environment. The main objectives of CLMA are;
 - i. To set out accountabilities for managing contaminated land, if a significant risk of harm is identified.
 - ii. To set out the role of the DECCW in the supervision of contaminated site investigations and/or remediation.
 - To provide for the accreditation of site auditors of contaminated land to ensure appropriate standards of auditing in the management of contaminated land, and
 - iv. To ensure that contaminated land is managed with regard to the principals of ecologically sustainable development.
- The OEH's Guidelines on the Significant Risk of Harm from Contaminated land and the Duty to Report, 1999 provide guidelines on the following;
 - i. Assessing whether site contamination presents a significant risk of harm under the CLMA.
 - ii. The duty to report to the OEH of a site is known of suspected to present a significant risk of harm under the CLMA.
- The State Environmental Planning Policy (SEPP) No 55. Remediation of Land 1998, prepared by the Department of Urban Affairs and Planning (DUAP) is an environmental planning instrument that sets out matters which must be considered by local councils and other planning authorities when determining development application, or making zoning or rezoning decisions. The Managing Land Contamination: Planning Guidelines 1998, prepared by DUAP and the DECCW, have been developed to further provide guidance to consent authorities on their responsibilities under SEPP55 and the Environmental Planning and Assessment Act 1979.

7.2 Assessment Criteria

The results of laboratory analyses for this investigation were compared with published Australian contamination assessment criteria. These Criteria were originally presented in the Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, May 1992 (ANZECC/NHMRC Guidelines, Reference 5). The OEH endorsed the use of these guidelines for the assessment of contaminated sites.

More recent guidelines such as those published by the OEH and National Environmental Health Forum (NEHF) (Reference 7) are commonly used to assess contaminant concentrations. The NEHF criteria which was recently updated by the National Environment Protection Council Service Corporation (NEPC) in the National Environmental Protection (Assessment of Contaminated Sites) Measure (NEPM) – Schedule B1 (Reference 8) includes health based soil investigation levels (HBILs) and this was adopted by OEH in May 2013.

HBILs are scientifically based, generic assessment criteria designed to be used in the first stage (Tier 1 or 'screening') of an assessment of potential risks to human health from chronic exposure to contaminants. They are intentionally conservative and are based on a reasonable worst-case scenario.

For the purpose of assessing the contamination status of the site, the criteria for developed open space such as parks, playgrounds, playing fields (eg ovals), secondary schools and footpath that being HBIL C has been adopted as the Site Criteria. HBIL A residential with garden/accessible soil, has also been assessed for comparison.

The more recent updates to the NEPM criteria (Reference 7) have included Health Screening Levels (HSL) developed by the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) leading to the adoption of health criteria for TRH, BTEX and PAH. The HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via the inhalation and direct contact pathways. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures and they apply to different soil types and depths below surface up to 4 m depth.

For the purpose of assessing the contamination status of the site for TRH, BTEX and PAH, the HSL A and B (Low to high density residential) have been adopted.

The NEPC also includes EIL criteria for the protection of species based on 95% survival and this criteria is based on average background concentrations (ABC) for individual sites and added contaminant levels (ACL) calculated from survival rates for various species to contaminant exposures in different settings. For ecological levels for TRH, BTEX and PAH, the NEPC has provided ecological screening level (ESL) for the assessment. The EIL and ESL criteria have been included in the relevant tables as a sensitivity measure for the protection of ecological diversity within the site.

The results of laboratory analysis of individual samples have been directly compared with the Criteria. The relevant criteria are presented in the summary table of results (Table 3 to 8).

In addition to the above, the NEPM 2013 guidelines address the issue of aesthetic considerations in relation to non-hazardous inert foreign material (refuse) in soil or fill resulting from human activities. The guidelines permit the presence of foreign matter within the fill to be retained within the site subject to compliant of the fill material to the Site Criteria and aesthetically acceptable (eg malodorous soils, discoloured chemical deposits, stained soil, large monolithic deposits/large inert foreign matter, putrescible refuse and animal remains). Though the guidelines do not outline specific trigger values, we consider fill containing greater than 5% by weight of foreign matter to be aesthetically unacceptable, therefore the insitu fill is within acceptable limits.

8. **RESULTS OF THE INVESTIGATION**

8.1 Subsurface Conditions

Reference should be made to the attached Table 1 for a summary of subsurface profiles encountered from the test pit investigation undertaken within the Subject Site. The following is a summary of the subsurface profiles encountered in test pits;

Topsoil and Topsoil/Fill

Topsoil and topsoil/fill were encountered on the surface or below fill in all test pits except TP 7, 8 and 15 consisting predominantly of Clayey Silt and Gravelly Clayey Silt of low liquid limit.

Thickness of the topsoil and topsoil/fill was found to range from 100mm to 600mm.

Fill

Some fill was encountered on the surface of TP 4 to 8 along the eastern southern boundary and below the topsoil/fill in TP 21 to 24 along the western boundary adjacent the current playing field.

The fill was generally found to comprise of Crushed Rock, Gravelly Clayey Silt and Gravelly Silty Clay and have thickness ranging from 0.1m to 1.10m thick.

Natural Soil

Natural soil was encountered on the surface of TP 15 and below the topsoil, topsoil/fill and fill in the remaining test pits generally consisting of medium to high plasticity Silty Clay. The natural clay was assessed to be dry to moist (ie moisture content equal to or less than the plastic limit).

Bedrock

Bedrock consisting was not encountered in any of the test pits which were taken to a maximum depth of about 1.5m below existing ground surface.

Groundwater

All test pits were found to be dry during and upon completion of the test pit investigation. No groundwater was encountered in all the test pits.

GeoEnviro Consultancy

8.2 Laboratory Test Results

Heavy Metals

A total of seventeen soil samples were analysed for a range of heavy metals consisting of As, Cd, Cr, Cu, Pb, Hg, Ni and Zn. All concentrations of heavy metals were found to be within the HBIL A levels and therefore within the Site Criteria. The results are summarised in Table 3.

Organochlorine Pesticides (OCP)

A total of seventeen soil samples were analysed for a range of organochlorine pesticides. All concentrations of OCP were found to be below detection limits and therefore within the Site Criteria. The results are summarised in Table 4.

Polychlorinated Biphenyls (PCB)

A total seventeen soil samples were analysed for a range of Polychlorinated Biphenyls. All concentrations of PCB were found to be below the detection limits and therefore within the Site Criteria. The results are summarised in Table 5.

Total Recoverable Hydrocarbons (TRH)

A total of sixteen soil samples were analysed for TRH. All concentrations of TRH were found to have concentrations below the detection limits and therefore within the Site Criteria. The results are summarised in Table 6.

Benzene, Toluene, Ethyl Benzene and Xylene (BTEX) and Naphthalene

A total of sixteen soil samples were analysed for BTEX and Napthalene. All samples analysed were found to have concentrations of BTEX and Napthalene below laboratory detection limits and therefore within the Site Criteria. The results are summarised in Table 6.

Polycyclic Aromatic Hydrocarbons (PAH)

A total of sixteen soil samples were analysed for PAH. All samples analysed were found to have concentrations of PAH below laboratory detection limits or with low concentrations and therefore within the Site Criteria. The results are summarised in Table 7.

Asbestos

A total of thirteen soil samples and one material samples was analysed for the presence of Asbestos. All soil samples analysed did not detect respirable asbestos fibres. The results are summarised Table 8.

8.3 Quality Assurance/Quality Control (QA/QC)

Chain of Custody Forms and Preservation

The fieldwork for this investigation was carried out in accordance with GeoEnviro Consultancy's Standard procedures. This included collection of samples in new glass jars, preservation of samples in ice chests and transport of samples to the contract laboratory under chain of custody documentation. Refer to Appendix A.

Field Duplicates

Two duplicate sample (DUP A and DUP B) were prepared from primary samples TP 1 (0.0-0.1m) and TP 10 (0.1-0.2m) respectively and analysed. Refer to Table 9 for details.

The Relative Percentage Difference (RPD) values between primary and the duplicate sample was calculated to assess the results. A zero RPD means perfect agreement of results between the primary and duplicate sample whilst an RPD above 200% indicates total disagreement in results.

The maximum RPD value obtained for heavy metals (ie Lead) is 37.5%. The RPD values for OCP, PCB, TRH, BTEX and PAH could not be calculated because the results were below laboratory detection limits in both primary and duplicate samples.

The internal laboratory QA/QC results which are presented in the laboratory certificates in Appendix C are considered acceptable based on the duplicate and control samples analysed. The overall results suggest that the laboratory analysis carried out is reliable for this assessment.

Laboratory QA

Envirolab Services carried out internal QA/QC procedures which normally includes one or more of the following;

- Preparation and analysis of duplicate and triplicate samples to assess precision of laboratory results,
- A spike and duplicate spike is prepared for each sample batch. This involves spiking a sample with a known concentration of contaminant to verify the absence of matrix effects and to assess precision,
- Analysis of sample batch as reagent blanks to monitor reagent purity and as an overall procedural blank. Reagent blank will also be run after samples with a high concentration to prevent carry over.
- A surrogate is added to all samples to monitor sample matrix effects throughout all analytical stages by calculating the % recovery at the completion of the analysis.

The laboratory control results are included in the laboratory test reports in Appendix D.

QA/QC Assessment

The QA/QC indicators either all complied with the required standards or showed variations that would have no significant effect on the quality or interpretation of the data. It is therefore assessed that for the purposes of this analysis, the QA/QC results are adequate and the quality of the data is acceptable for use in this contamination assessment.

9. ASSESSMENT AND SITE CHARACTERISATION

At the time of our site investigation, the St Francis Catholic College occupied the site with school buildings on the western portion of the site and playing fields at the north-western portions. Some construction works for new school building were underway at the central-eastern portion of the site with the south-eastern portion of the site mainly vacant.

The proposed landscape areas (Subject Site) along the boundaries of the school premises were mainly vacant with a portion of the eastern boundary occupied by a accessway for the construction works.

Field investigation included excavation of test pits within the Subject Site on the 29th October 2019. A total of twenty-four test pits (TP 1 to 24) were excavated across the site using a 5-tonne excavator. The test pit locations are shown on Drawing No 1.

The following is summary of subsurface conditions encountered during our test pit investigation;

- Topsoil and topsoil/fill were encountered on the surface or below fill in all test pits except TP 7, 8 and 15 consisting predominantly of Clayey Silt and Gravelly Clayey Silt of low liquid limit. Thickness of the topsoil and topsoil/fill was found to range from 100mm to 600mm.
- Some fill was encountered on the surface of TP 4 to 8 along the eastern southern boundary and below the topsoil/fill in TP 21 to 24 along the western boundary adjacent the current playing field. The fill was generally found to comprise of Crushed Rock, Gravelly Clayey Silt and Gravelly Silty Clay and have thickness ranging from 0.1m to 1.10m thick.
- Natural soil was encountered on the surface of TP 15 and below the topsoil, topsoil/fill and fill in the remaining test pits generally consisting of medium to high plasticity Silty Clay. The natural clay was assessed to be dry to moist (ie moisture content equal to or less than the plastic limit).
- Bedrock consisting was not encountered in any of the test pits which were taken to a maximum depth of about 1.5m below existing ground surface.
- All test pits were found to be dry during and upon completion of the test pit investigation. No groundwater was encountered in all the test pits.

GeoEnviro Consultancy

Selected soil samples were analysed for potential contaminants consisting of Heavy metals (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn), Organochlorine Pesticides, Polychlorinated Biphenyls, Total Recoverable Hydrocarbons, Benzene, Toluene, Ethyl Benzene and Xylene, Polycyclic Aromatic Hydrocarbons and asbestos. All samples were found to have contaminants of concern within the Site Criteria.

The absence of wide spread chemical contaminations within the soil indicates that the potential for groundwater contamination beneath the site is low and the potential off-site impacts of contaminants on groundwater and waterbodies are considered negligible.

10. CONCLUSION AND RECOMENDATIONS

Based on the results of this Phase 2 Contamination Assessment, we are of the opinion that the risk of gross ground contamination from previous landuse and activities causing adverse health risk to future occupants of the property is considered low and therefore the Subject Site is suitable for the proposed landscaping works.

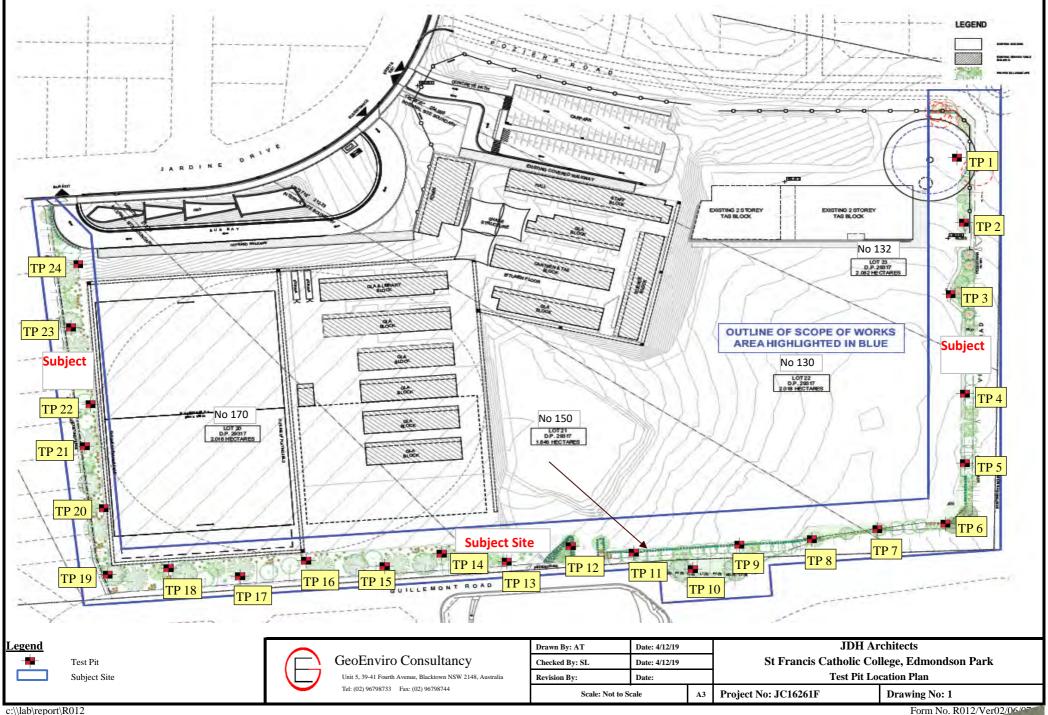
Notwithstanding the above, the following issues may need to be addressed prior to development of the site are as follows;

- All other surface rubbish material not mentioned above and asbestos material where encountered on-site should be appropriate disposed off-site to an OEH approved landfill.
- Though buried rubbish fill was not encountered in all of our test pits, it may still exist in between test pit locations. All buried rubbish fill if encountered during construction should be excavated and disposed off-site to an NSW EPA approved landfill. Rubbish fill containing bonded asbestos should be removed and disposal to a landfill as "Special Waste – Asbestos".
- Rubbish fill containing bonded asbestos may still be present elsewhere within the site in between test pit locations and should bonded asbestos be encountered during construction works, all works should cease and an "Unexpected Finds Protocol" as outlined in Appendix E should be initiated. Should asbestos be encountered, the asbestos impacted fill should be disposed to a landfill as "Special Waste- Asbestos".
- All fill material requiring off-site disposal should be laboratory tested and characterised in accordance with NSW EPA's guidelines (Reference 10).

GeoEnviro Consultancy

11. LIMITATIONS

The findings contained in this report are the results of Discrete/specific sampling methodologies used in accordance with normal practices and standards. There is no investigation which is thorough enough to preclude the presence of material which presently, or in future, may be considered hazardous to the site. The site has been the subject of dumping of rubbish fill in the past and the scope of this report do not cover for future dumping and burial of such material on the site.


As regulatory evaluation criteria are constantly updated, concentrations of contaminants presently considered low, may in the future fall short of regulatory standards that require further investigation/redemption.

The statements presented in these documents are intended to advise you of what should be your realistic expectations of this report, and to present you with recommendations on how to minimise the risks associated with the ground works for this project. The document is not intended to reduce the level of responsibility accepted by GeoEnviro Consultancy Pty Ltd, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing. Attached in Appendix F are documents entitled "Important Information about Your Environmental Site Assessment" and Explanatory Notes in conjunction with which this report must be read, as it details important limitations regarding the investigation undertaken and this report.

C:\16JOB\261\F\JC16261F-r1 04/12/2019 12:39 PM

REFERENCES

- "Contamination Assessment Lot 21 in DP 29317, No 150 Jardine Drive, Edmondson Park, NSW" – GeoEnviro Consultancy Pty Ltd reference JC15236A-r1(rev) dated July 2015
- 2. "Preliminary Site Investigation 130, 132, 160 and 170 Jardine Drive Edmondson Park – GHD reference 21/23862 dated April 2015
- 3. 1:100,000 Soil Landscape Map of Penrith Department of Environment, Climate Change and Water; Soil Landscape Series Sheet 9030 [Edition 1 Reprint]
- 4. 1:100,000 Geological Map of Penrith– Geological Survey NSW Department Minerals and Energy; Geological Series Sheet 9030 (Edition 1) 1991
- 5. Australian & New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Australian and New Zealand Conservation Council and National Health and Medical Research Council, 1992.
- 6. Assessment of Orchard and Market Garden Contamination Contaminated Sites Discussion Paper, NSW EPA 1999.
- 7. Health Based Soil Investigation Levels, National Environmental Health Forum Monographs Soil Series No. 1 – 1996
- 8. National Environment Protection (Assessment of Site Contamination) Measure 1999(including updated Schedule B1 2014
- 9. Guidelines for Assessment Service Station-sites NSW EPA 1994
- 10. Guidelines for the NSW Auditor Scheme, NSW EPA
- 11. Part 1 Classifying Waste 2015, NSW EPA
- 12. Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000 ANZECC.
- 13. Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia – Department of Health -May 2009

Test Pit	Depth	Profile	Description
Number	(m)	Туре	
1	0.00-0.25	Topsoil	Clayey Silt: low liquid limit, brown with trace of gravel, dry
	0.25-0.50	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and brown, dry
2	0.00-0.25	Topsoil	Clayey Silt: low liquid limit, brown with trace of gravel, dry
	0.25-0.60	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and brown, dry
3	0.00-0.30	Topsoil	Clayey Silt: low liquid limit, brown with trace of gravel, dry
	0.30-0.70	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and brown, dry
4	0.00-0.10	Fill	Crushed Rock
Driveway	0.10-0.30	Topsoil	Clayey Silt: low liquid limit, brown with trace of gravel, dry
	0.30-0.60	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and brown, dry
5	0.00-0.18	Fill	Crushed Rock
Driveway	0.18-0.35	Topsoil	Clayey Silt: low liquid limit, brown with trace of gravel, dry
	0.35-0.70	Natural	(CH) Silty Clay: high plasticity, red brown, dry to moist
6	0.00-0.11	Fill	Crushed Rock
Driveway	0.11-0.35	Topsoil	Clayey Silt: low liquid limit, brown with trace of gravel, dry
	0.35-0.70	Natural	(CH) Silty Clay: high plasticity, red brown, dry to moist
7	0.00-0.80	Fill	Gravelly Clayey Silt: low liquid limit, brown with a metal pipe, dry
	0.80-1.20	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and brown, dry
8	0.00-1.00	Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	1.00-1.50	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and brown, dry
9	0.00-0.25	Topsoil	Clayey Silt: low liquid limit, brown, dry
	0.25-0.70	Natural	(CH) Silty Clay: high plasticity, red brown, dry to moist
10	0.00-0.25	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.25-0.60	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and grey brown, dry
11	0.00-0.30	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.30-0.60	Natural	(CI) Silty Clay: medium plasticity, brown and grey red, dry

Note:

PP = Pocket Penetrometer

MC = Moisture Content

PL = Plastic Limit

TABLE 1 (Page 1 of 3)SUMMARY OF SOIL PROFILE

JDH Architects St Francis Catholic College Jardine Drive Edmondson Park

Test Pit	Depth	Profile	Description
Number	(m)	Туре	
12	0.00-0.40	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.40-0.70	Natural	(CI) Silty Clay: medium plasticity, red grey, dry
13	0.00-0.55	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown with sandstone cobble, dry
	0.55-0.90	Natural	(CI) Silty Clay: medium plasticity, red and brown, dry
14	0.00-0.15	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.15-0.60	Natural	(CI) Silty Clay: medium plasticity, red grey, dry
15	0.00-0.40	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and brown, dry
16	0.00-0.25	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.25-0.60	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and grey brown, dry
17	0.00-0.30	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.30-0.55	Natural	(CI-CH) Silty Clay: medium to high plasticity, red and grey brown, dry
18	0.00-0.25	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.25-0.60	Natural	(CH) Silty Clay: high plasticity, red grey, dry
19	0.00-0.20	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.20-0.50	Natural	(CH) Silty Clay: high plasticity, red brown, dry
20	0.00-0.25	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.25-0.60	Natural	(CH) Silty Clay: high plasticity, red brown, dry
21	0.00-0.20	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.20-0.40	Fill	Gravelly Silty Clay: low to medium plasticity, brown ,dry
	0.40-0.70	Natural	(CH) Silty Clay: high plasticity, red brown, dry
22	0.00-0.10	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.10-0.60	Fill	Gravelly Silty Clay: low to medium plasticity, brown ,dry
	0.60-0.80	Topsoil	Clayey Silt: low liquid limit, brown, dry
	0.80-1.00	Natural	(CH) Silty Clay: high plasticity, red brown, dry

Note:

PP = Pocket Penetrometer

MC = Moisture Content

PL = Plastic Limit

TABLE 1 (Page 2 of 3)SUMMARY OF SOIL PROFILE

JDH Architects St Francis Catholic College Jardine Drive Edmondson Park

Test Pit	Depth	Profile	Description
Number	(m)	Туре	
23	0.00-0.15	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.15-0.70	Fill	Gravelly Silty Clay: low to medium plasticity, brown ,dry
	0.70-0.90	Natural	(CH) Silty Clay: high plasticity, red brown, dry
24	0.00-0.30	Topsoil/Fill	Gravelly Clayey Silt: low liquid limit, brown, dry
	0.30-0.70	Fill	Gravelly Silty Clay: low to medium plasticity, brown ,dry
	0.70-1.00	Natural	(CI-CH) Silty Clay: medium to high plasticity, grey and brown, dry
Note:			
			GeoEnviro TABLE 1 (Page 3 of 3)
PP = Pocket P	enetrometer		GeoEnviro TABLE 1 (Page 3 of 3)

MC = Moisture Content

PL = Plastic Limit

GeoEnviro **Consultancy**

TABLE 1 (Page 3 of 3) **SUMMARY OF SOIL PROFILE**

JDH Architects St Francis Catholic College Jardine Drive Edmondson Park

Sample	Depths	Sample	Sample								Ana	lysis						
	(m)	Date	Туре	pН				Heavy	Metals				OCP	PCB	TRH	BTEX	PAH	Asbestos
					As	Cd	Cr	Cu	Pb	Hg	Ni	Zn						
TP 1	0-0.1	29/10/2019	Soil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 2	0.0-0.1	29/10/2019	Soil												0	0	0	
TP 3	0.1-0.2	29/10/2019	Soil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 4	0.2-0.3	29/10/2019	Soil		0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 5	0.1-0.2	29/10/2019	Soil		0	0	0	0	0	0	0	0	0	0				
TP 7	0.0-0.1	29/10/2019	Soil		0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 8	0.5-0.6	29/10/2019	Soil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 10	0.1-0.2	29/10/2019	Soil		0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 11	0.0-0.1	29/10/2019	Soil		0	0	0	0	0	0	0	0	0	0				
TP 12	0.2-0.3	29/10/2019	Soil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 13	0.4-0.5	29/10/2019	Soil												0	0	0	
TP 14	0.0-0.1	29/10/2019	Soil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 16	0.1-0.2	29/10/2019	Soil		0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 17	0.0-0.1	29/10/2019	Soil		0	0	0	0	0	0	0	0	0	0				
TP 18	0.0-0.1	29/10/2019	Soil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 20	0.0-0.1	29/10/2019	Soil		0	0	0	0	0	0	0	0	0	0				
TP 21	0.2-0.3	29/10/2019	Soil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 22	0.1-0.2	29/10/2019	Soil												0	0	0	
TP 23	0.6-0.7	29/10/2019	Soil	0	0	0	0	0	о	0	0	о	0	о	о	0	0	0
TP 24	0.2-0.3	29/10/2019	Soil		0	0	0	0	о	0	0	о	0	о	о	0	0	0
DUP A	-	29/10/2019	Soil		0	0	0	0	о	0	0	0	0	0	0	0	0	
DUP B	-	29/10/2019	Soil		о	0	0	0	о	0	0	о	0	о	о	0	0	
	-	23/10/2013	5011		0	0	U	0	Ŭ	0	0	0				0	0	

Note: O denotes tested

TABLE 2

Analytical Program

JDH Architects St Francis Catholic College Jardine Drive Edmondson Park

Sample	Depths	pН	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
	(m)									
TP 1	0-0.1	9.2	5	< 0.4	9	23	19	< 0.1	10	48
TP 3	0.1-0.2	6.5	8	< 0.4	12	10	25	0.2	8	36
TP 4	0.2-0.3		5	< 0.4	11	20	21	< 0.1	9	44
TP 5	0.1-0.2		<4	< 0.4	11	16	8	< 0.1	6	24
TP 7	0.0-0.1		8	< 0.4	16	23	21	< 0.1	8	71
TP 8	0.5-0.6	6	8	< 0.4	16	20	20	< 0.1	8	45
TP 10	0.1-0.2		6	< 0.4	11	15	13	< 0.1	5	26
TP 11	0.0-0.1		5	< 0.4	10	13	15	< 0.1	5	25
TP 12	0.2-0.3	5.5	6	< 0.4	13	16	18	< 0.1	6	28
TP 14	0.0-0.1	6.1	5	< 0.4	15	15	14	< 0.1	7	25
TP 16	0.1-0.2		6	< 0.4	13	17	18	< 0.1	7	30
TP 17	0.0-0.1		6	< 0.4	12	16	15	< 0.1	6	30
TP 18	0.0-0.1	6.1	6	< 0.4	11	25	15	< 0.1	7	49
TP 20	0.0-0.1		8	< 0.4	21	25	23	< 0.1	10	59
TP 21	0.2-0.3	6.6	6	< 0.4	12	28	18	< 0.1	10	63
TP 23	0.6-0.7	6.1	6	< 0.4	12	23	16	< 0.1	7	31
TP 24	0.2-0.3		7	< 0.4	21	24	20	< 0.1	12	42
DUP A	-		<4	< 0.4	7	32	13	< 0.1	7	37
DUP B	-		5	<0.4	10	13	15	< 0.1	5	24
HBILs 'A' Criteria			100	20	100 (VI)	6000	300	40	400	7400
HBILs 'C' Criteria			300	90	300 (VI)	17000	600	80	1200	30000
EIL Criteria [*]			106	NA	263	210	1117	NA	38	269

EIL Derivation

ABC ⁴	6	NA	13	20	17	NA	8	39
ACL ⁵	100	NA	250	190	1100	NA	30	230

Notes

1) All results are expressed as mg/kg and pH (units).

2) Figures in bold italics exceed the EIL Criteria

3) Figures in bold italics and underlined exceed the HBIL 'A' Criteria

4) Ambient Background Concentrations

5) Added Contaminant Limits

* EIL = ABC+ACL

GeoEnviro Consultancy

TABLE 3 Summary of Analytical Results - Heavy Metals

JDH Architects

St Francis Catholic College

Jardine Drive Edmondson Park

Sample	Depths (m)	HCB	alpha-BHC	gamma-BHC	beta-BHC	Heptachlor	delta-BHC	Aldrin	Heptachlor Epoxide	gamma-Chlordane	alpha-chlordane	Endosulfan I	pp-DDE	Dieldrin	Endrin	pp-DDD	Endosulfan II	pp-DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor	Total OCP
TP 1	0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 3	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 4	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 5	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 7	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 8	0.5-0.6	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 10	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 11	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 12	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 14	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 16	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 17	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 18	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 20	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 21	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 23	0.6-0.7	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 24	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
DUP A	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
DUP B	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
HBILs 'A' Criteria		10				6		6			0	270	240	6	10	240		240			300	
HBILs 'C' Criteria		10				10		10		7	0	340	400	10	20	400		400			400	

1) All results are expressed as mg/kg and pH (units).

2) Figures in bold italics exceed the HBILs 'A' Criteria

GeoEnviro Consultancy

TABLE 4

Summary of Analytical Results - OCP

JDH Architects

St Francis Catholic College Jardine Drive Edmondson Park

Sample	Depths (m)	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Total PCB
TP 1	0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 3	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 4	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 5	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 7	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 8	0.5-0.6	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 10	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 11	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 12	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 14	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 16	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 17	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 18	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 20	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 21	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 23	0.6-0.7	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TP 24	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
DUP A	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
DUP B	-	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1
HBILs 'A' Criteria									1
HBILs 'C' Criteria									1

1) All results are expressed as mg/kg and pH (units).

2) Figures in bold italics exceed the HBILs 'A' Criteria

TABLE 5Summary of Analytical Results- PCB

JDH Architects St Francis Catholic College Jardine Drive Edmondson Park

Sample	Depths	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	C ₁₀ -C ₃₆	F1 ⁽⁴⁾	F2 ⁽⁵⁾	F3	F4		Volat	ile Organic Comp	ounds (VOC)		
	(m)						C ₆ -C ₁₀	>C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene
TP 1	0-0.1	<25	<50	<100	<100	<250	<25	<50	<100	<100	<0.2	< 0.5	<1	<2	<1	<1
TP 2	0.0-0.1	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 3	0.1-0.2	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 4	0.2-0.3	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 7	0.0-0.1	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 8	0.5-0.6	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 10	0.1-0.2	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 12	0.2-0.3	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 13	0.4-0.5	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 14	0.0-0.1	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 16	0.1-0.2	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 18	0.0-0.1	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 21	0.2-0.3	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 22	0.1-0.2	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 23	0.6-0.7	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
TP 24	0.2-0.3	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
DUP A	-	<25	<50	<100	<100	<250	<25	<50	<100	<100	< 0.2	< 0.5	<1	<2	<1	<1
DUP B	-	<25	<50	<100	<100	<250	<25	<50	<100	<100	<0.2	< 0.5	<1	<2	<1	<1
HSLs 'A and B'	Criteria															
(CLAY)	0m to <1m						50	280			0.7	480	480	11	10	5
	1m to <2m						90				1			31	10	
	2m to < 4m						150				2					
	4m+						290				3					
ESL Criteria							180	120	1300	5600	65	105	125	4	5	

1) All results are expressed as mg/kg unless otherwise specified

2) Figures in bold exceed the NSW DEC criteria

3) ND Not detected

4) F1 is C_6 - C_{10} minus the sum of the BTEX concentrations

5) F2 is >C10-C16 Minus Napthalene

6) Figures in bold italics exceed the ESL Criteria

7) Figures in bold italics that have been underlined exceed the HSLs 'A and B' Criteria

TABLE 6

Summary of Analytical Results - TRH and VOC

JDH Architects St Francis Catholic College Jardine Drive Edmondson Park

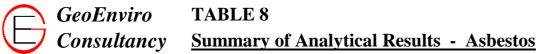
Sample	Depths (m)	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthracene	Benzo(g,h,i)perylene	Benzo(a)pyrene TEQ	Total PAHs	
TP 1	0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 2	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 3	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 4	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 7	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 8	0.5-0.6	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 10	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 12	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 13	0.4-0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 14	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	0.1	
TP 16	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 18	0.0-0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 21	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 22	0.1-0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 23	0.6-0.7	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
TP 24	0.2-0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
DUP A	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
DUP B	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	< 0.1	< 0.5	< 0.05	
IBILs 'A' Criteria		3															3*	300	
HBILs 'C' Criteria																	3*	300	
SL Criteria													0.7						
otes							PAH	Species		TI	EF								
) All results are expressed as m	esults are expressed as mg/kg				Benzo(a)a	nthracene			0	.1	GeoEnviro TABLE 7								
) Figures in bold italics exceed	es in bold italics exceed the ESL Criteria			Benzo(a)p	yrene				1		Consu	ltancv	Summa	nry of A	<u>nalyt</u> ic	al Result	s - P/		
3) Figures in bold italics that have	es in bold italics that have been underlined exceed the HBIL 'A' Criteria			Benzo(b+j)fluoranthene			0.1				JDH Architects								
					Benzo(k)fluoranthene			0.1 St Francis Catholic College											
B(a)P TEQ is calculated by mu	TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample				Benzo(g,h,i)perylene			0.	0.01 Jardine Drive Edmondson Park										
y its B(a)P TEF, given below, a	EF, given below, and summing these products				Chrysene			0.	01	1									
										1		1							

Dibenzo(a,h)anthracene

Indeno(1,2,3-c,d)pyrene

1

0.1


Sample	Depths (m)	Asbestos
TP 1	0-0.1	ND
TP 3	0.1-0.2	ND
TP 4	0.2-0.3	ND
TP 7	0.0-0.1	ND
TP 8	0.5-0.6	ND
TP 10	0.1-0.2	ND
TP 12	0.2-0.3	ND
TP 14	0.0-0.1	ND
TP 16	0.1-0.2	ND
TP 18	0.0-0.1	ND
TP 21	0.2-0.3	ND
TP 23	0.6-0.7	ND
TP 24	0.2-0.3	ND
HBILs 'A' Cr	iteria	0.01% / 0.001% 1
HBILs 'C' Cr	riteria	0.02% / 0.001% 1

Note: ND = Not detected

Measured in %w/w

1) Bonded Asbestos Contaminaint Material / Fiberous Asbestos and Asbestos Fines

2) Figures in bold italics exceed the HBILs 'A' Criteria

JDH Architects St Francis Catholic College Jardine Drive Edmondson Park

Sample	Depths				Metals				
	(m)	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
TP 1	0-0.1	5	< 0.4	9	23	19	< 0.1	10	48
DUP A	-	<4	< 0.4	7	32	13	< 0.1	7	37
Relative Percentage Difference (RPD)		NA	NA	25.0	32.7	37.5	NA	35.3	25.9

Sample	Depths	OCP	PCB	TRH	BTEX	PAH
	(m)					
TP 1	0-0.1	ND	ND	ND	ND	ND
DUP A	-	ND	ND	ND	ND	ND
Relative Percentage Difference (RPD)		NA	NA	NA	NA	NA

Sample	Depths				Metals				
	(m)	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
TP 10	0.1-0.2	6	< 0.4	11	15	13	< 0.1	5	26
DUP B	-	5	< 0.4	10	13	15	< 0.1	5	24
Relative Percentage Difference (RPD)		18.2	NA	9.5	14.3	14.3	NA	0.0	8.0

Sample	Depths	OCP	PCB	TRH	BTEX	PAH
	(m)					
TP 10	0.1-0.2	ND	ND	ND	ND	ND
DUP B	-	ND	ND	ND	ND	ND
Relative Percentage Difference (RPD)		NA	NA	NA	NA	NA

1) All results are expressed as mg/kg.

2) ND - Not Detected

3) NA - Not Applicable

TABLE 9Summary of Analytical Results- Quality Assurance

JDH Architects

St Francis Catholic College

Jardine Drive Edmondson Park

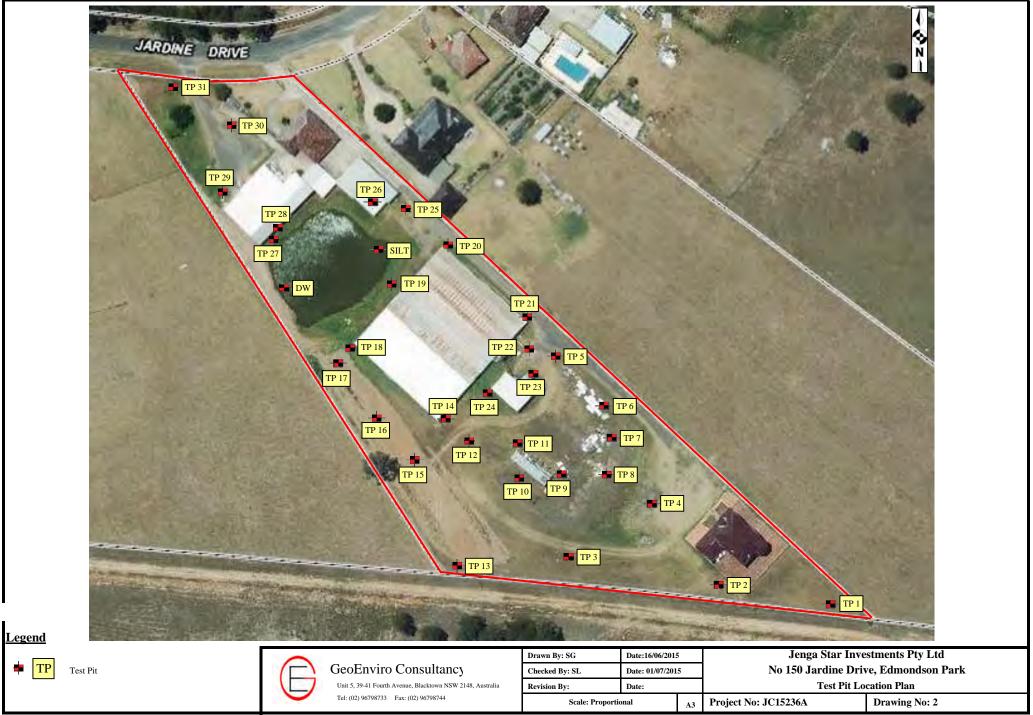
APPENDIX A

Extracts - "Contamination Assessment – Lot 21 in DP 29317, No 150 Jardine Drive, Edmondson Park, NSW" – GeoEnviro Consultancy Pty Ltd reference JC15236A-r1(rev) dated July 2015

GeoEnviro Consultancy Pty Ltd Unit 5, 39-41 Fourth Avenue, Blacktown, NSW 2148, Australia

PO Box 1543, Macquarie Centre. North Ryde, NSW 2113

ABN: 62 084 294 762 Tel: (02) 9679 8733 Fax: (02) 9679 8744 Email: geoenviro@exemail.com.au


Report

Contamination Assessment Proposed School Facilities Lot 21 in DP 29317, No 150 Jardine Drive, Edmondson Park, NSW

Prepared for Jenga Star Investments Pty Ltd and Trustee for the Wollongong Diocese Catholic School System PO Box 3250 NORTH STRATHFIELDB NSW 2137

Ref: JC15236A July 2015

		Site Feature	Description		
	ine of the second second	A		ay and parking area	
	Jaron	B	Dog kennel		
		C B	Concrete driv	eway nath	
Jardine Dr				eway paul nd plastic panel shed with concrete floo	ar
- and the Dr		E E	Metal item st		J1
		F	Concrete driv		
F F				eway path brick residential dwelling, tile roof	
		G H			
				nd metal shed on concrete floor	
		I	Dam 1	1	
		J		ck car garage on concrete floor	
		K		t, dirt floor, hydrocarbon staining, with	a tractor
		L		tal shed on concrete floor	
		M	Gravel drivev		
		N	Previous gard		
		0		coup on concrete floor	
	M	Р		ed on concrete floor	
	288m	Q		os for chicken feed	
		R		crete Pig styes	
		S		s building items	
	Bar Million Carlos	T	Sand, metal p	oles	
		U	Septic tanks		
	ALL VILLAND	V	Excavation ba		
		W	Double storey	brick and tile residential dwelling with	concrete patio surround
		\$			
<u>Legend</u> Site Feature	GeoEnviro Consultancy Init 5, 39-41 Fourth Avenue, Blacktown NSW 2148, Australia Te: (02) 96798733 Fax: (02) 96798744	Checked By: SL I	Date: 01/07/2015 Date: 01/07/2015 Date: 01/07/2015	No 150 Jardine Driv Site Locality and	estments Pty Ltd ve, Edmondson Park Site Features Plan Drawing No: 1
		Scale: Proportiona	al A:	rroject no: JU15230A	Drawing No: 1

Test Pit	Depth	Profile	Description
Number	(m)	Туре	
1	0-0.35	Topsoil	Clayey Silt, low liquid limit, brown, dry to moist
	0.35-0.6	Natural	(CH) Silty Clay, high plasticity, red brown, with trace ironstone gravel, moist, hard (PP=410kPa)
	0.6-0.8	Natural	(CI) Gravelly Silty Clay, medium plasticity, brown grey, with tree root, moist
	0.8-1.0	Natural	(CI) Shaley Clay, medium plasticity, grey, with distinctly weathered shale
	1.0-1.2	Rock	Shale: grey brown, low strength, distinctly weathered, with iron staining
2	0-0.3	Topsoil	Clayey Silt, low liquid limit, brown, dry to moist
	0.3-0.5	Natural	(CH) Silty Clay, high plasticity, red brown, moist
3	0-0.35	Topsoil	Clayey Silt, low liquid limit, brown, dry to moist
	0.35-0.7	Natural	(CH) Silty Clay, high plasticity, red brown, with trace ironstone gravel, moist, very stiff (PP=300kPa)
	0.7-1.1	Natural	(CI-CH) Silty Clay, medium to high plasticity, grey mottled red, moist, hard (PP=420kPa)
	1.1-2.7	Natural	(CI) Silty Clay, medium plasticity, grey, with trace gravel, dry to moist
	2.7-3.0	Natural	(CI) Gravelly Silty Clay, medium plasticity, grey, dry to moist
4	0-0.25	Fill	Crushed rock, with brick
	0.25-0.35	Topsoil	Clayey Silt, low liquid limit, brown
	0.35-0.65	Natural	(CH) Silty Clay, high plasticity, red brown, moist
5	0-0.3	Fill	Crushed rock
	0.3-0.5	Natural	(CI-CH) Silty Clay, medium to high plasticity, red mottled grey, moist
6	0-0.3	Natural	(CI) Silty Clay, medium plasticity, brown, moist to wet
	0.3-0.45	Rock	Shale: dark grey, low to medium strength, distinctly weathered
7	0-0.3	Fill	Crushed rock
	0.3-0.4	Natural	(CI) Silty Clay, medium plasticity, brown, moist to wet
	0.4-0.6	Natural	(CI) Silty Clay, medium plasticity, grey mottled brown, moist
8	0-0.4	Fill	Clayey Silt, with debris (foam, bricks and nets)
(mound)	0.4-0.5	Rock	Shale: dark grey, low to medium strength, distinctly weathered
9	0-0.15	Natural	(CI) Silty Clay, medium plasticity, brown, moist to wet
	0.15-0.35	Natural	(CI) Silty Clay, medium plasticity, grey, moist
10	0-0.2	Natural	(CI) Silty Clay, medium plasticity, brown, wet
	0.2-0.4	Natural	(CI) Silty Clay, medium plasticity, grey, moist to wet
1			

Note:

PP = Pocket Penetrometer

MC = Moisture Content

PL = Plastic Limit

TABLE 1 (Page 1 of 4)SUMMARY OF SOIL PROFILE

Test Pit	Depth	Profile	Description
Number	(m)	Туре	
11	0-0.2	Natural	(CI) Silty Clay, medium plasticity, brown, wet
	0.2-0.4	Natural	(CH) Silty Clay, high plasticity, red brown, moist
12	0-0.7	Fill	Silty Clay / Clayey Silt, brown
	0.7-0.85	Natural	(CI) Silty Clay, medium plasticity, grey mottled brown
13	0-0.35	Topsoil	Clayey Silt, low liquid limit, brown, moist
	0.35-0.6	Natural	(CH) Silty Clay, high plasticity, red brown, moist, very stiff (PP=380kPa)
	0.6-1.0	Natural	(CI) Silty Clay, medium plasticity, grey, wet, very stiff (PP=300kPa)
	1.0-1.3	Natural	(CI) Silty Clay, medium plasticity, grey, with gravel, dry to moist
	1.3-1.6	Natural	(CI) Gravelly Silty Clay, medium plasticity, grey, dry to moist
	1.6-1.8	Rock	Shale: grey brown, low strength, distinctly weathered
14	0-0.2	Topsoil	Clayey Silt, low liquid limit, brown, wet
	0.2-0.4	Natural	(CI) Silty Clay, medium plasticity, grey red, wet
15	0-0.25	Topsoil	Clayey Silt, low liquid limit, brown, dry to moist
	0.25-0.5	Natural	(CI-CH) Silty Clay, medium to high plasticity, red grey, moist
16	0-0.25	Topsoil	Clayey Silt, low liquid limit, brown, moist
	0.25-0.5	Natural	(CH) Silty Clay, high plasticity, red brown, moist
17	0-0.6	Topsoil	Clayey Silt, low liquid limit, brown, dry
	0.6-1.1	Natural	(CH) Silty Clay, high plasticity, red brown, moist, very stiff (PP=300kPa)
	1.1-2.0	Natural	(CI) Silty Clay, medium plasticity, grey, moist, very stiff (PP=280kPa)
	2.0-2.5	Natural	(CI) Silty Clay, medium plasticity, grey, with gravel, dry to moist
	2.5-2.9	Natural	(CI) Gravelly Silty Clay, medium plasticity, grey, dry
18	0-0.6	Fill	Silty Clay, low to medium plasticity, brown, moist to wet
	0.6-0.8	Topsoil	Clayey Silt, low liquid limit, grey brown, moist to wet
	0.8-1.2	Natural	(CH) Silty Clay, high plasticity, red brown, moist
19	0-0.25	Fill	Crushed rock / road base / asphalt
	0.25-1.8	Fill	Silty Clay, medium plasticity, brown, moist
	1.8-2.2	Topsoil	Clayey Silt, low liquid limit, brown, wet
	2.2-2.5	Natural	(CI) Silty Clay, medium plasticity, brown, moist to wet

Note:

PP = Pocket Penetrometer

MC = Moisture Content

PL = Plastic Limit

GeoEnviro TABLE 1 (Page 2 of 4) SUMMARY OF SOIL PROFILE

Test Pit	Depth	Profile	Description
Number	(m)	Туре	
20	0-0.6	Topsoil	Clayey Silt, low liquid limit, brown, with boulders and concrete, moist
	0.6-0.9	Natural	(CI) Silty Clay, medium plasticity, grey mottled brown, moist
21	0-0.2	Topsoil	Clayey Silt, low liquid limit, brown, with trace gravel, dry to moist
	0.2-0.4	Natural	(CH) Silty Clay, high plasticity, red brown, moist
22	0-0.4	Fill	Crushed rock / road base / coarse sand
	0.4-0.6	Fill	Silty Clay, low to medium plasticity, brown, dry to moist
	0.6-0.7	Topsoil	Clayey Silt, low liquid limit, brown, with trace gravel, dry to moist
	0.7-1.2	Natural	(CH) Silty Clay, high plasticity, red brown, moist, very stiff (PP=380kPa)
	1.2-1.45	Natural	(CI) Silty Clay, medium plasticity, grey red, with gravel, dry to moist
	1.45-1.8	Natural	(CI) Gravelly Silty Clay, medium plasticity, grey, dry
	1.8-2.0	Rock	Shale: grey brown, low strength, distinctly weathered
23	0-0.3	Fill	Crushed rock / road base
	0.3-0.5	Fill	Silty Clay, medium plasticity, brown, moist
	0.5-0.8	Topsoil	Clayey Silt, low liquid limit, brown, moist
	0.8-1.1	Natural	(CH) Silty Clay, high plasticity, red brown, moist
24	0-0.4	Fill	Silty Clay, medium plasticity, brown grey, dry to moist
	0.4-0.7	Topsoil	Clayey Silt, low liquid limit, brown, moist to wet
	0.7-1.1	Natural	(CI) Silty Clay, medium plasticity, grey, wet
	1.1-1.4	Natural	(CH) Silty Clay, high plasticity, red brown, moist
25	0-0.5	Topsoil	Clayey Silt, low liquid limit, brown, with gravel, dry to moist
	0.5-0.8	Natural	(CH) Silty Clay, high plasticity, red brown, moist
26	0-0.1	Fill	Crushed rock, hydrocarbon stained area (Bobcat parking area)
27	0-0.15	Fill	Topsoil/Fill: Clayey Silt, low liquid limit, brown, moist
	0.15-0.8	Fill	Silty Clay, medium plasticity, grey brown, moist
28	0-0.9	Fill	Silty Clay, medium plasticity, grey brown, moist
	0.9-1.1	Natural	(CI) Silty Clay, medium plasticity, grey red, moist
29	0-1.4	Fill	Gravelly Clayey Silt / Silty Clay, brown, with bricks and concrete, dry to moist
	1.4-1.7	Natural	(CI) Silty Clay, medium plasticity, brown, wet

Note:

PP = Pocket Penetrometer

MC = Moisture Content

PL = Plastic Limit

GeoEnviro Consultancy

TABLE 1 (Page 3 of 4) <u>SUMMARY OF SOIL PROFILE</u>

Test Pit	Depth	Profile	Description
Number	(m)	Туре	
30	0-0.4 0.4-0.7 0.7-0.9 0.9-1.1	Fill Fill Topsoil Natural	Crushed rock / brick Silty Clay, medium plasticity, brown, with gravel, with brick Clayey Silt, low liquid limit, brown, wet (CI) Silty Clay, medium plasticity, grey red, moist
31	0-0.4 0.4-0.7 0.7-1.05 1.05-1.15	Fill Natural Nock	Topsoil/Fill: Clayey Silt, low liquid limit, brown, with gravel, with brick, dry to moist (CH) Silty Clay, high plasticity, red brown, moist, very stiff (PP=320kPa) (CI) Silty Clay, medium plasticity, grey red, moist, very stiff (PP=200kPa) Shale: grey brown, low strength, distinctly weathered
Note:			

PP = Pocket Penetrometer

MC = Moisture Content

PL = Plastic Limit

GeoEnviroTABLE 1 (Page 4 of 4)ConsultancySUMMARY OF SOIL PROFILE

Sample	Depths	Sample	Sample			Con	posite Schedule										Analyte	s					
	(m)	Date	Туре				Depths (m)		ſ				Heavy	Metals				OCP	PCB	TRH	BTEX	PAH	Asbestos
										As	Cd	Cr	Cu	Pb	Hg	Ni	Zn						
C1	0.0-0.1	11/06/2015	Soil	TP	2 (0.0-0.1)	TP	3 (0.0-0.1)	TP 13 (0	0.0-0.1)	0	0	0	0	0	0	0	0	0	0				
C2	0.0-0.1	11/06/2015	Soil	TP	9 (0.0-0.1)	TP	10 (0.0-0.1)	TP 11 (0	0.0-0.1)	0	0	0	0	0	0	0	0	0	0				
C3	0.0-0.1	11/06/2015	Soil	TP	15 (0.0-0.1)	TP	16 (0.0-0.1)	TP 17 (0	0.0-0.1)	0	0	0	0	0	0	0	0	0	0				
C4	0.0-0.1	11/06/2015	Soil	TP	14 (0.0-0.1)	TP	18 (0.0-0.1)	TP 21 (0	0.0-0.1)	0	0	0	0	0	0	0	0	0	0				
TP 1	0.0-0.1	11/06/2015	Soil																				
TP 1	0.0-0.1	11/06/2015	Soil							0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 19	0.0-0.1	11/06/2015	Soil							0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 19 TP 22	0.3-0.4		Soil							0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 22 TP 26	0.0-0.1	11/06/2015 11/06/2015	Soil							0	0	0	0	0	0	0	0	0	0	0	0	0	0
TP 20 TP 29	0.0-0.1	11/06/2015	Soil							0	0	0	0	0	0	0	0	0	0	0	0	0	0
										0	0	0	0	0	0	0	0	0	0	0	0	0	0
Duplicate A	-	11/06/2015	Soil							0	0	0	0	0	0	0	0	0	0	0	0	0	
Silt	-	11/06/2015	Soil							0	0	0	0	0	0	0	0	0	0	0	0	0	0
DW	-	11/06/2015	Water							0	0	0	0	0	0	0	0	о	о	0	0	0	
TP 15	0.0-0.1	11/06/2015	Soil														0						
TP 16	0.0-0.1	11/06/2015	Soil														0						
TP 17	0.0-0.1	11/06/2015	Soil														0						
TP 14	0.0-0.1	11/06/2015	Soil														0						
TP 18	0.0-0.1	11/06/2015	Soil														0						
TP 21	0.0-0.1	11/06/2015	Soil														0						

Note: O denotes tested

GeoEnviro Consultancy

TABLE 2

Analytical Program

Composite Sample

Sample	Depths	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
	(m)								
C1	0.0-0.1	7	<0.4	16	19	23	<0.1	11	57
C2	0.0-0.1	9	< 0.4	13	30	18	<0.1	9	110
C3	0.0-0.1	9	< 0.4	16	32	23	<0.1	13	150
C4	0.0-0.1	7	<0.4	14	38	24	<0.1	15	140
Iodified HBILs 'A' C	riteria	33	7	33 (VI)	200	100	13	133	2467
Iodified EIL Criteria	*	36		88	53	374		61	128

Individual Samples

Sample	Depths	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
	(m)								
TP 1	0.0-0.1	6	<0.4	13	9	20	<0.1	5	31
TP 8	0.0-0.1	6	<0.4	7	44	39	<0.1	13	620
TP 19	0.3-0.4	7	<0.4	8	27	15	<0.1	4	35
TP 22	0.0-0.1	<4	<0.4	4	22	19	<0.1	8	47
TP 26	0.0-0.1	< 4	<0.4	5	66	13	<0.1	6	77
TP 29	0.0-0.1	13	0.4	44	58	53	<0.1	34	260
Duplicate A	-	6	< 0.4	14	10	19	<0.1	5	33
Silt	-	9	<0.4	16	25	18	<0.1	9	37
TP 15	0.0-0.1								18
TP 16	0.0-0.1								18
TP 17	0.0-0.1								16
TP 14	0.0-0.1								31
TP 18	0.0-0.1								28
TP 21	0.0-0.1								14
HBILs 'A' Criteria		100	20	100 (VI)	600	300	40	400	7400
EIL Criteria [*]		108	NA	265	159	1122	NA	182	385

EIL Derivation

ABC^{3}	8	NA	15	29	22	NA	12	115
ACL ⁴	100	NA	250	130	1100	NA	170	270

Notes

1) All results are expressed as mg/kg and pH (units).

2) Figures in bold italics that are underlined exceed the modified HBILs 'A' or HBIL 'A' Criteria

3) Figures in bold italics exceed the modified EIL or EIL Criteria

3) Ambient Background Concentrations

4) Added Contaminant Limits

GeoEnviro Consultancy

 TABLE 3

 Summary of Analytical Results
 - Heavy Metals

Composite Sampl	e	Sampl	osite	Comp
-----------------	---	-------	-------	------

Sample	Depths (m)	HCB	alpha-BHC	gamma-BHC	beta-BHC	Heptachlor	delta-BHC	Aldrin	Heptachlor Epoxide	gamma-Chlordane	alpha-chlordane	Endosulfan I	pp-DDE	Dieldrin	Endrin	pp-DDD	Endosulfan II	pp-DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor	Total OCP
C1	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
C2	0.0-0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
C3	0.0-0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
C4	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
Modified HBILs 'A' C	Triteria	3				2		2		1	7	90	80	2	3	80		80			100	

Individual Sample

Duplicate A Silt	-	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	N
	-	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1							<0.1	< 0.1	<0.1		IN IN
					0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	N
TP 29	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N
TP 26	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Ν
TP 22	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1
TP 19	0.3-0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1]
TP 8	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	l
TP 1	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1
Sample	Depths (m)	HCB	alpha-BHC	gamma-BHC	beta-BHC	Heptachlor	delta-BHC	Aldrin	Heptachlor Epoxide	gamma-Chlordane	alpha-chlordane	Endosulfan I	pp-DDE	Dieldrin	Endrin	DDD-qq	Endosulfan II	pp-DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor	

Summary of Analytical Results - OCP Jenga Star Investments Pty Ltd Proposed School Facilities

No 150 Jardine Drive, Edmondson Park

Composite 3	Sample
-------------	--------

Sample	Depths (m)	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Total PCB
C1	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
C2	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
C3	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
C4	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
Modified HBILs 'A' Crit	teria								0.3

Individual Sample

Sample	Depths (m)	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Total PCB
TP 1	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
TP 8	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1
TP 19	0.3-0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
TP 22	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
TP 26	0.0-0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
TP 29	0.0-0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
Duplicate A	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
Silt	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND
BILs 'A' Criteria	<u>.</u>								1

Notes

1) All results are expressed as mg/kg and pH (units).

2) Figures in bold italics exceed the modified HBILs 'A' or HBIL 'A' Criteria

TABLE 5 Summary of Analytical Results - PCB

Sample	Depths	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	C ₁₀ -C ₃₆	F1 ⁽⁴⁾	F2 ⁽⁵⁾	F3	F4		Volat	ile Organic Com	oounds (VOC)		
	(m)						C ₆ -C ₁₀	>C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene
TP 1 TP 8	0.0-0.1	<25	<50	<100	<100	<250	<25	<50	<100	<100	<0.2 <0.2	< 0.5	<1	<2	<1 <1	<1
TP 19	0.0-0.1 0.3-0.4	<25 <25	<50 <50	<100 <100	<100 <100	<250 <250	<25 <25	<50 <50	<100 <100	<100 <100	<0.2	<0.5 <0.5	<1 <1	<2 <2	<1	<1 <1
TP 22 TP 26	0.0-0.1 0.0-0.1	<25 <25	< 50 2100	<100 47000	<100 1200	<250 50300	<25 <25	<50 <u>12000</u>	<100 <i>38000</i>	<100 670	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
TP 29 Duplicate A	0.0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<250 <250	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
Silt	-	<25	<50	<100	<100	<250	<25	<50	<100	<100	<0.2	< 0.5	<1	<2	<1	<1
NSW I	DEC (1994)	65				1000					1	1.4	3.1	1	4	
HSLs 'A and B' (CLAY)	Criteria 0m to <1m 1m to <2m 2m to < 4m 4m+						50 90 150 290	280			0.7 1 2 3	480	480	11 31	0	5
ESL Criteria							180	120	1300	5600	65	105	125	4.	5	

1) All results are expressed as mg/kg unless otherwise specified

2) Figures in bold exceed the NSW DEC criteria

3) ND Not detected

4) F1 is C6-C10 minus the sum of the BTEX concentrations

5) F2 is >C10-C16 Minus Napthalene

6) Figures in bold italics that have been underlined exceed the HSLs 'A and B' Criteria

7) Figures in bold italics exceed the ESL Criteria

GeoEnviro Consultancy

TABLE 6

Summary of Analytical Results - TRH and VOC

Sample	Depths (m)	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Diben zo(a,h)anthracene	Benzo(g.h.i)perylene	Benzo(a)pyrene TEQ	Total PAHs
TP 1	0.0-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.5	< 0.8
TP 8	0.0-0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.5	< 0.8
TP 19	0.3-0.4	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.5	< 0.8
TP 22	0.0-0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.5	0.25
TP 26	0.0-0.1	<1	1.2	3.7	11	15	12	7.3	130	<1	1.4	<2	<0.5	<1	< 1	<1	<0.6	180
TP 29	0.0-0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.5	< 0.8
Duplicate A	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.5	<0.8
Silt	-	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.5	<0.8
BILs 'A' Criteria		3															3*	300
SL Criteria													0.7					
es							PAH S	pecies		T	EF	(

1) All results are expressed as mg/kg

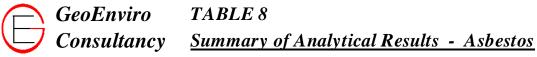
2) Figures in bold italics that have been underlined exceed the HBILs 'A' Criteria

3) Figures in bold italic exceed the ESL Criteria

 * B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products

Benzo(a)anthracene 0.1 Benzo(a)pyrene 1 Benzo(b+j)fluoranthene 0.1 Benzo(k)fluoranthene 0.1 Benzo(g,h,i)perylene 0.01 0.01 Chrysene Dibenzo(a,h)anthracene 1 Indeno(1,2,3-c,d)pyrene 0.1

GeoEnviro TABLE 7 Consultancy <u>Summary of Analytical Results - PAH</u>


Sample	Depths (m)	Asbestos
TP 1 TP 8	0.0-0.1 0.0-0.1	ND ND
TP 19 TP 22 TP 26	0.3-0.4 0.0-0.1 0.0-0.1	ND ND
TP 29	0.0-0.1	ND
Silt	-	ND
HBILs 'A' C	riteria	0.01% / 0.001% 1

Note: ND = Not detected

Measured in %w/w

1) Bonded Asbestos Contaminaint Material / Fiberous Asbestos and Asbestos Fines

2) Figures in bold italics exceed the HBILs 'A' Criteria

Sample	Depths (m)				Metals				
		Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
TP 1	0.00-0.10	6	<0.4	13	9	20	<0.1	5	31
Duplicate A		6	<0.4	14	10	19	<0.1	5	33
Relative Percentage Difference (RPD)		0.0	NA	7.4	10.5	5.1	NA	0.0	6.3

Sample	Depths (m)	OCP	PCB	TRH	BTEX	РАН
TP 1	0.00-0.10	ND	ND	ND	ND	ND
Duplicate A		ND	ND	ND	ND	ND
Relative Percentage Difference (RPD)		NA	NA	NA	NA	NA

1) All results are expressed as mg/kg .

2) ND - Not Detected

3) NA - Not Applicable

TABLE 9 y Summary of Analytical Results - Quality Assurance

Jenga Star Investments Pty Ltd

Proposed School Facilities

No 150 Jardine Drive, Edmondson Park

Sample	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
DW	<1	0.4	<1	7	<1	<0.05	2	8
ANZECC Water Quality Guidelines-2000	24/13 ³	0.2	1^4		3.4	0.6	11	8

1) All results are expressed as μ g/L.

2) Figures in bold exceeds ANZECC Guidelines for Water Quality 2000 for protection of 95% of species

3) As III/As V

4) Cr VI

GeoEnviro TABLE 10 Consultancy <u>Summary o</u>

Summary of Analytical Results (Dam water) - Heavy Metals

Sample			00	CP					0	PP			PCB
	Heptachlor	Endrin	gamma-Chlordane	alpha-Chlordane	DDT	Others	Dimethoate	Diazinon	Fenitronthion	Malathion	Chlorphyriphos	Others	
DW	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
ANZECC Water Quality Guidelines-2000	0.09	0.02	0.	08	0.01	ID	0.15	0.01	0.2	0.05	0.01	ID	0.6/0.03 ³

1) All results are expressed as µg/L.

2) Figures in bold exceeds ANZECC Guidelines for Water Quality 2000 for protection of 95% of species

3) Aroclor 1242/Aroclor 1254

TABLE 11

Summary of Analytical Results (Dam water) - OCP/ OPP/ PCB

Sample			BTEX							PAH
	Benzene	Toluene	EthylBenzene	m+p-Xylene	o-Xylene	C_6-C_9	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	
DW	<1	<1	<1	<2	<1	<10	<50	<100	<100	<1
ANZECC Water Quality Guidelines-2000	950	ID	ID	350	200					16 ³

1) All results are expressed as µg/L.

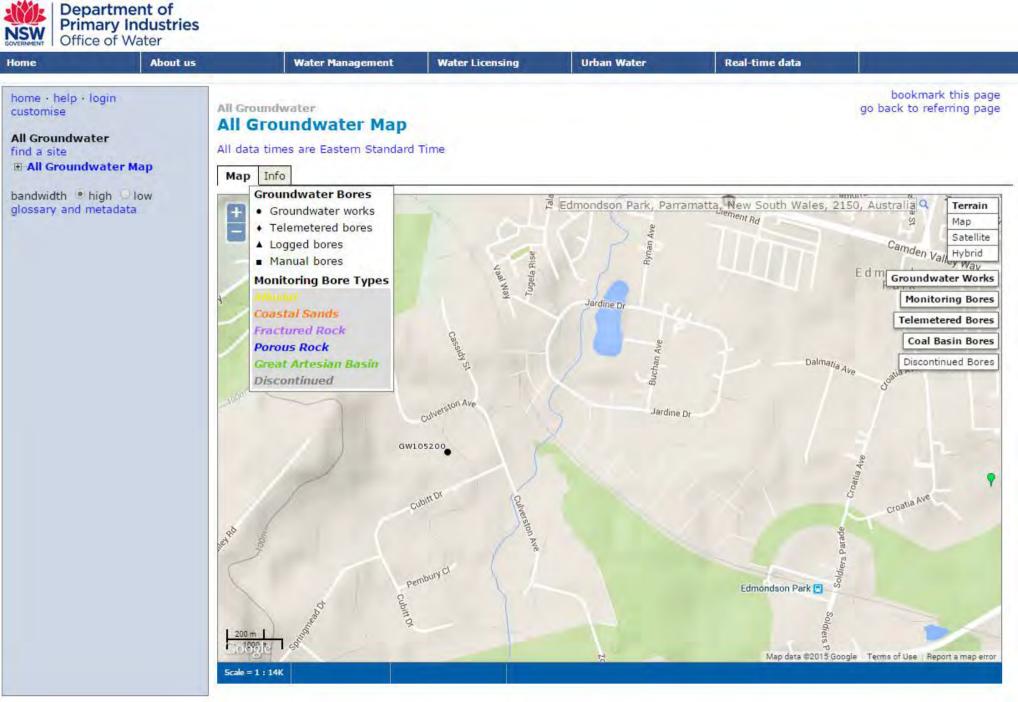
2) Figures in bold exceeds ANZECC Guidelines for Water Quality 2000 for protection of 95% of species

3) Naphathelene

GeoEnviro TABLE 12 Consultancy <u>Summary of Analytical Results (Dam water) - BTEX/TRH/PAH</u> Jenga Star Investments Pty Ltd

Proposed School Facilities No 150 Jardine Drive, Edmondson Park

Sample	Total	Turbidity	Cl	SO4	Nitrate	Total	TKN	Ec
	Dissolve Solids (mg/L)	(NTU)	(mg/L)	(mg/L)	(mg/L)	Phosphorus	(mg/L)	(uS/cm)
DW	460	52	30	25	42	0.2	5.9	630
ANZECC Water Quality Guidelines-2000					700	50		2200


1) All results are expressed as µg/L.

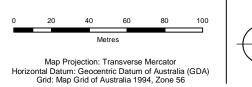
2) Figures in bold exceeds ANZECC Guidelines for Water Quality 2000 for protection of 95% of species

TABLE 13

Summary of Analytical Results (Dam water) - Indicator Parameters

5	Healthy Environment, Healthy Community, Healthy Busines							
E P A	fome	Protecting your environment	For business and industry	About the NSW EPA	Media and information	Contact us		
Contaminated land	<u>Home</u> > <u>Conta</u>	minated land > <u>Record o</u>	f notices					
- Management of contaminated land	Search re	esults						
+ Consultants and site auditor scheme	Your search for:	Your search for: Text: Contaminated Land Management Act 1997 LGA: Liverpool City Council						
+ Underground petroleum storage systems	did not find any	Date from: 01 Jan 1997 Search / did not find any records in our database.						
Guidelines under the CLM Act	dia nocima any	Search TIP						
NEPM amendment	If a site does not	To search for a specific						
- Further guidance	Contamination	site, search by LGA (local government area) and						
- Record of notices		Land management of the Entremanaly indeated of one interest.						
About the record	 The EPA ma the Environm 	carefully review all sites listed.						
Search the record	Contaminatio	more search tips						
Search tips						Inore search ups		
Disclaimer	More information	n about particular sites n	nay be available from:					
List of NSW contaminated sites notified to EPA	The <u>POEO p</u> The appropri		or example, on a plann	ing certificate issued by the	e local council und	er section 149 of the		
Frequently asked questions		al Planning and Assess						
Forms	Cas What's is th		to the record					
	See whats in th	e record and What's not	in the record.					

+ Other contamination issues


Healthy Environment, Healthy Community, Healthy Business

EPA	Home	Protecting your environment	For business and industry	About the NSW EPA	Media and information	Contact us	
Contaminated land	<u>Home</u> > <u>Contar</u>	minated land > Record o	f notices				
Management of contaminated land	Search re	sults					
Consultants and site auditor scheme	Your search for:	LGA: Liverpool City		ils Act 1985			
Underground petroleum storage systems	did pot fied only	Date from: 01 Jan 1	212		Search	Again Refine Search	
Guidelines under the CLM Act	ulu not initi any i	did not find any records in our database. If a site does not appear on the record it may still be affected by contamination. For example:					
VEPM amendment	If a site does not						
Further guidance		 Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985. The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act). 					
Record of notices About the record							
Search the record	 Contamination at the site may be being managed under the <u>planning process</u>. 					more search tips	
Search tips							
Disclaimer	More information	n about particular sites n	nay be available from:				
List of NSW contaminated sites notified to EPA	The POEO pu The appropriate the poeoprime of the		or example on a planni	ng certificate issued by the	e local council und	er section 149 of the	
Frequently asked questions		al Planning and Assessi					
Forms	On a Marketter to the		to the beautiful				
	See whats in the	e record and What's not	in the record.				

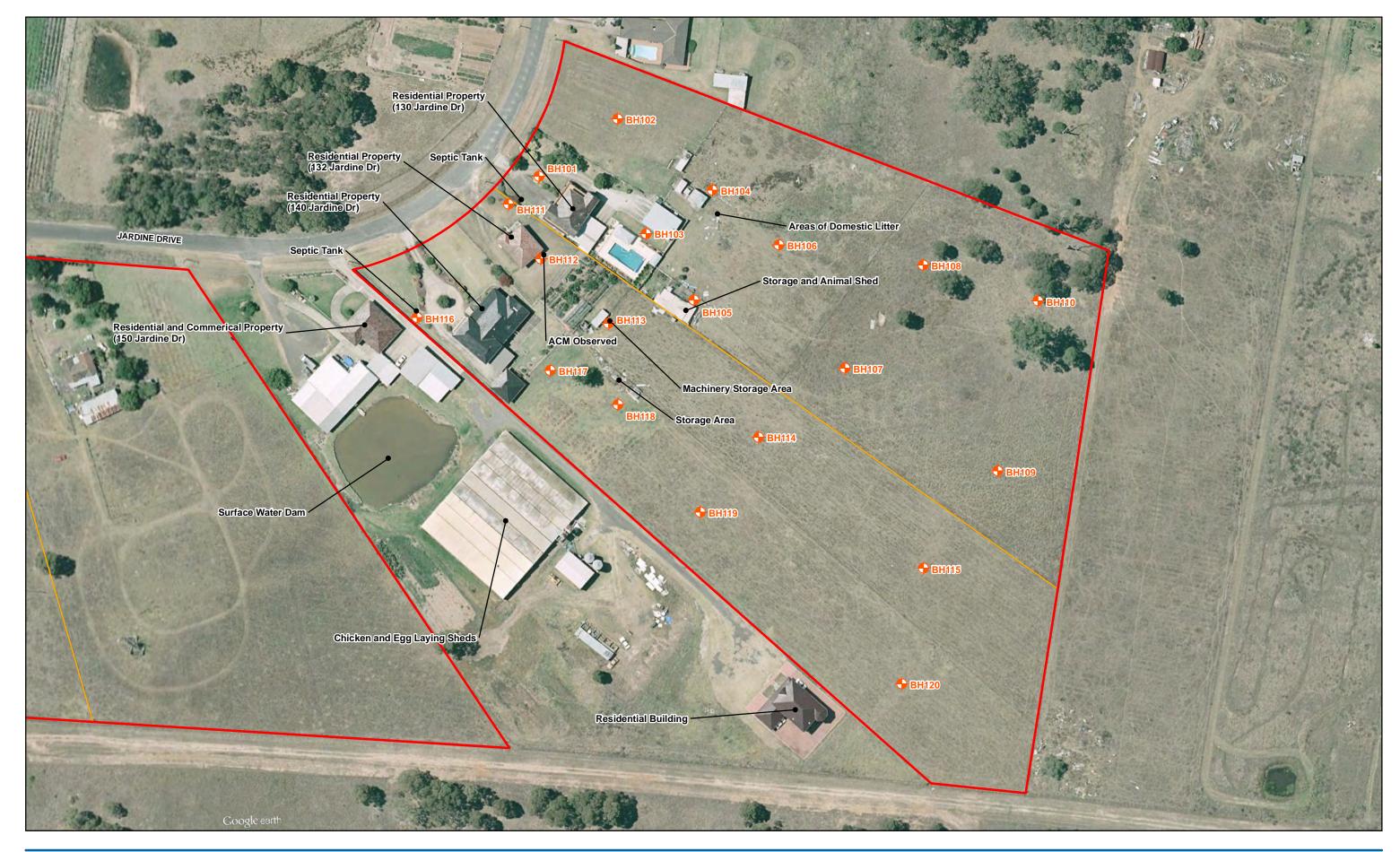
APPENDIX B

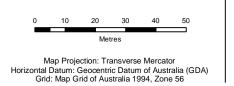
"Preliminary Site Investigation – 130, 132, 160 and 170 Jardine Drive Edmondson Park" – GHD reference 21/23862 dated April 2015

Site Boundary (Approximate) Cadastre / Lot Boundaries

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com.au W www.ghd.com.au

G-121123862/GISWaps/Deliverables/21_23862_Z001_EDMONDSON_SiteLocationPlan.mxd © 2010. While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN, make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN, cannot accept liability of any kind (whether in contract, tord ro therwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data Source: NSW Department of Lands: Cadastre - Jan 2011; Geoscience Australia: 250k Data - Jan 2011, Imagery - Google Earth Pro 2012 (Retrieved 19-08-2014). Created by: thham


Catholic Education Office - Diocese of Wollongong Job Number | 21-23862 Limited Phase 2 Environmental Investigation Lots 130, 132, 160 and 170 Jardine Drive, Edmondson Park, NSW


Revision Date

Α 22 Aug 2014

Site Location Plan

Site Boundary (Approximate) Cadastre / Lot Boundaries

Soil Borehole Location (GHD, 2014)

Catholic Education Office - Diocese of Wollongong Limited Phase 2 Environmental Investigation Lots 130, 132, 160 and 170 Jardine Drive, Edmondson Park, NSW

G-\21\23862\GIS\Maps\Deliverables\\21_23862_Z002_EDMONDSON_SiteLayoutPlan_Site1.mxd © 2010. While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN, make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN, cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data Source: NSW Department of Lands: Cadastre - Jan 2011; Geoscience Australia: 250k Data - Jan 2011, Imagery - Google Earth Pro 2012 (Retrieved 19-08-2014). Created by: thham

Job Number | 21-23862 Revision Date

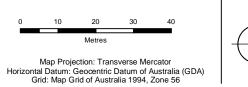

Α 17 Sep 2014

Figure 2

Site Layout and Sampling Location Plan - Site 1

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com.au W www.ghd.com.au

Site Boundary (Approximate) Cadastre / Lot Boundaries

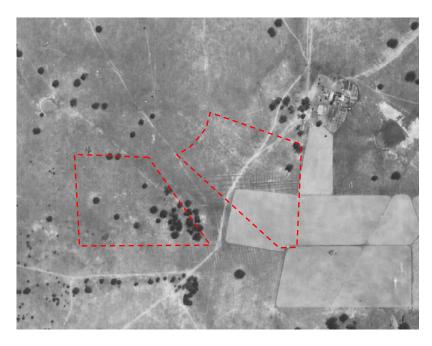
Soil Borehole Location (GHD, 2014)

Catholic Education Office - Diocese of Wollongong Limited Phase 2 Environmental Investigation Lots 130, 132, 160 and 170 Jardine Drive, Edmondson Park, NSW

Figure 3 Site Layout and Sampling Location Plan - Site 2

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com.au W www.ghd.com.au

G-121/23862/GISIMaps/Deliverables/21_23862_Z003_EDMONDSON_SiteLayoutPlan_Site2.mxd © 2010. While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN, make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN, cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data Source: NSW Department of Lands: Cadastre - Jan 2011; Geoscience Australia: 250k Data - Jan 2011, Imagery - Google Earth Pro 2012 (Retrieved 19-08-2014). Created by: thham


Job Number 21-23862 Revision Date

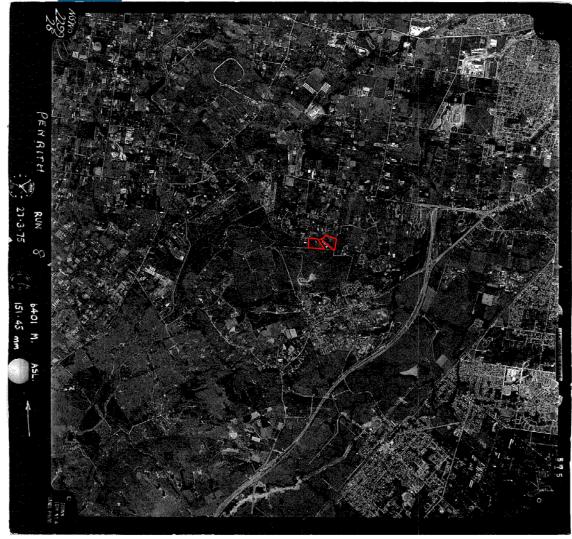
Α 17 Sep 2014

Estimated site location _____

Right: full photograph provided. Above: close up of site

Estimated site location

____.


Right: full photograph provided. Above: close up of site

Left: full photograph provided. Above: close up of site

Left: full photograph provided. Above: close up of site

Left: full photograph provided. Above: close up of site

North

Approximate site location -----

Left: full photograph provided. Above: close up of site

Left: full photograph provided. Above: close up of site

Left: full photograph provided. Above: close up of site

ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 943 842) ABN 82 147 943 842

P.O. Box 149

Yagoona NSW 2199

Telephone: +612 9664 1679 Mobile: 0412 169 809 Facsimile: +612 8076 3026 Email: alsearch@optusnet.com.au

15th August, 2014

GHD

Level 15, 133 Castlereagh Street, SYDNEY NSW 2000

Attention: Amy Dodson,

RE:

130, 132, 160 & 170 Jardine Drive, Edmondson Park Reference 2123862

Note 1:	Lot 19 DP 29317	(page 1)
Note 2:	Lot 20 DP 29317	(page 4)
Note 3:	Lot 22 DP 29317	(page 7)
Note 4:	Lot 23 DP 29317	(page 9)

Note 1:

Current Search

Folio Identifier 19/29317 (title attached) DP 29317 (plan attached) Dated 12th August, 2014 Registered Proprietor: **THE TRUSTEES OF THE ROMAN CATHOLIC CHURCH FOR THE ARCHDIOCESE OF SYDNEY**

Title Tree Lot 19 DP 29317

Folio Identifier 19/29317

Certificate of Title Volume 12929 Folio 167

IVA 17533

Conveyance Book 3198 No. 848

Conveyance Book 2997 No. 910

Conveyance Book 2425 No. 667

Conveyance Book 2417 No. 498

Conveyance Book 2266 No. 160

Conveyance Book 1969 No. 998

Conveyance Book 1801 No. 581

Summary of proprietor(s) Lot 19 DP 29317

Year

Proprietor

	(Lot 19 DP 29317)
2013 – todate	The Trustees of the Roman Catholic Church for the Archdiocese of Sydney
2011 - 2013	Anna Teresa Testore
1988 - 2011	Pietro Testore
	Anne Teresa Testore
	(Lot 19 DP 29317 – CTVol 12929 Fol 167)
1976 – 1988	Pietro Testore, farmer
	Anne Teresa Testore
1975 – 1976	John Peter Testore, mechanic
	(Lot 19 DP 29317 Parish of Minto – Area 4 Acres 3 Roods 23 Perches -
	Conv Bk 3198 No. 848)
1975 – 1975	John Peter Testore, mechanic
1972 – 1975	Laurence Arthur Southion, builder / executor
	Laurel Iris Southion, estate
	(Lot 19 DP 29317 Parish of Minto – Area 4 Acres 3 Roods 23 Perches
	– Conv Bk 2997 No. 910)
1965 – 1972	Laurel Iris Southion, married woman
	(Part Lot 2 DP 155829 – Area 236 Acres 0 Roods 38 Perches –
	Conv Bk 2425 No. 667)
1957 – 1965	East Australia Construction Company Pty Limited
	(Part Lot 2 DP 155829 – Area 236 Acres 0 Roods 38 Perches –
	Conv Bk 2417 No. 498)
1957 – 1957	Norman Rutherford Lenehan
	(Part Lot 2 DP 155829 – Area 264 Acres 3 Roods 12 ³ / ₄ Perches –
	Conv Bk 2266 No. 160)
1953 – 1957	Vincent Fazzari, dairyman
	Ralph Nicholas Fazzari, dairyman
	John Joseph Fazzari, dairyman
	Julius Carmel Fazzari, dairyman
	(Part Portion 63, Parish of Minto – Area 400 Acres 0 Roods 1 Perch
1015 1050	- Conv Bk 1969 No. 998)
1945 - 1953	Harold Alfred Swane, market gardener
	(Portion 63 Parish of Minto, – Area 840 Acres – Conv Bk 1801 No.
1007 1045	581)
1937 - 1945	Annie Shepherd, wife of farmer
1932 – 1937	Charles Henry Thorsby, grazier / executor
1054 1022	Charles Thorsby, estate
1854 - 1932	Charles Henry Thorsby, grazier / executor
	Archer Broughton Thorsby, grazier / executor
	Charles Thorsby, estate

Note 2:

Current Search

-4-

Folio Identifier 20/29317 (title attached) DP 29317 (plan attached) Dated 12th August, 2014 Registered Proprietor: THE TRUSTEES OF THE ROMAN CATHOLIC CHURCH FOR THE ARCHDIOCESE **OF SYDNEY**

Title Tree Lot 20 DP 29317

Folio Identifier 20/29317

Certificate of Title Volume 11905 Folio 91

IVA 10124

Conveyance Book 3049 No. 540

Conveyance Book 2931 No. 355

Conveyance Book 2865 No. 465

Conveyance Book 2775 No. 959

Conveyance Book 2467 No. 698

Conveyance Book 2425 No. 667

Conveyance Book 2417 No. 498

Conveyance Book 2266 No. 160

Conveyance Book 1969 No. 998

Conveyance Book 1801 No. 581

-5-

Summary of proprietor(s) Lot 20 DP 29317

Year

Proprietor

	(Lot 20 DP 29317)
2013 – todate	The Trustees of the Roman Catholic Church for the Archdiocese of Sydney
2011 - 2013	Anna Teresa Testore
1988 - 2011	Pietro Testore
	Anne Teresa Testore
	(Lot 20 DP 29317 – CTVol 11905 Fol 91)
1972 – 1988	Pietro Testore, market gardener
	Anne Teresa Testore
	(Lot 20 DP 29317 – Area 4 Acres 3 Roods 37 Perches – Conv Bk 3049
	No 540)
1972 – 1972	Pietro Testore, market gardener
	Anne Teresa Testore
	(Lot 20 DP 29317 – Area 4 Acres 3 Roods 37 Perches – Conv Bk 2931
	No 355)
1969 – 1972	Luigi Varacalli, labourer / farmer
	(Lot 20 DP 29317 – Area 4 Acres 3 Roods 37 Perches – Conv Bk 2865
	No 465)
1967 – 1969	Dino Giusti, labourer
	(Lot 20 DP 29317 – Area 4 Acres 3 Roods 37 Perches – Conv Bk 2775
	No 959)
1964 – 1967	Lajos Csik, floor layer
	(Lot 20 DP 29317 – Area 4 Acres 3 Roods 37 Perches – Conv Bk 2467
	No 698)
1961 – 1964	Terenty Sachnav, driver
	Anna Sachnav
	(Part Lot 2 DP 155829 – Area 236 Acres 0 Roods 38 Perches –
	Conv Bk 2425 No. 667)
1957 – 1961	East Australia Construction Company Pty Limited
	(Part Lot 2 DP 155829 – Area 236 Acres 0 Roods 38 Perches –
	Conv Bk 2417 No. 498)
1957 – 1957	Norman Rutherford Lenehan

Cont.

Cont.

	(Part Lot 2 DP 155829 – Area 264 Acres 3 Roods 12 ³ / ₄ Perches –
	Conv Bk 2266 No. 160)
1953 – 1957	Vincent Fazzari, dairyman
	Ralph Nicholas Fazzari, dairyman
	John Joseph Fazzari, dairyman
	Julius Carmel Fazzari, dairyman
	(Part Portion 63, Parish of Minto – Area 400 Acres 0 Roods 1 Perch
	– Conv Bk 1969 No. 998)
1945 – 1953	Harold Alfred Swane, market gardener
	(Portion 63 Parish of Minto, – Area 840 Acres – Conv Bk 1801 No.
	581)
1937 – 1945	Annie Shepherd, wife of farmer
1932 – 1937	Charles Henry Thorsby, grazier / executor
	Charles Thorsby, estate
1854 - 1932	Charles Henry Thorsby, grazier / executor
	Archer Broughton Thorsby, grazier / executor
	Charles Thorsby, estate

Note 3:

Current Search

Folio Identifier 22/29317 (title attached) DP 29317 (plan attached) Dated 12th August, 2014 Registered Proprietor: **ISIDORO RUSSO LEONARDA RUSSO**

Title Tree Lot 22 DP 29317

Folio Identifier 22/29317

Certificate of Title Volume 13405 Folio 124

IVA 40578

Conveyance Book 2606 No. 956

Conveyance Book 2425 No. 667

Conveyance Book 2417 No 498

Conveyance Book 2266 No. 160

Conveyance Book 1969 No. 998

Conveyance Book 1801 No. 581

Summary of proprietor(s) Lot 22 DP 29317

Year

Proprietor

	(Lot 22 DP 29317)
1988 – todate	Isidoro Russo
	Leonarda Russo
	(Lot 22 DP 29317 – CTVol 13405 Fol 124)
1986 – 1988	Isidoro Russo
	Leonarda Russo
1984 – 1986	Francesco Mezzasalma
	Maria D'Amico
	Salvatore Mezzasalma
	Giuseppe Mezzasalma
1977 – 1984	Commonwealth Trading Bank of Australia
	Alfredo Mezzasalma, process worker
	(Lot 22 DP 29317, Parish of Minto – Area 5 Acres) Roods 4 ³ / ₄
	Perches – Conv Bk 2606 No. 956)
1962 – 1977	Alfredo Mezzasalma, process worker
	(Part Lot 2 DP 155829 – Area 236 Acres 0 Roods 38 Perches –
	Conv Bk 2425 No. 667)
1957 – 1962	East Australia Construction Company Pty Limited
	(Part Lot 2 DP 155829 – Area 236 Acres 0 Roods 38 Perches –
	Conv Bk 2417 No. 498)
1957 – 1957	Norman Rutherford Lenehan
	(Part Lot 2 DP 155829 – Area 264 Acres 3 Roods 12 ³ / ₄ Perches –
	Conv Bk 2266 No. 160)
1953 – 1957	Vincent Fazzari, dairyman
	Ralph Nicholas Fazzari, dairyman
	John Joseph Fazzari, dairyman
	Julius Carmel Fazzari, dairyman
	(Part Portion 63, Parish of Minto – Area 400 Acres 0 Roods 1 Perch
	– Conv Bk 1969 No. 998)
1945 – 1953	Harold Alfred Swane, market gardener
	(Portion 63 Parish of Minto, – Area 840 Acres – Conv Bk 1801 No.
	581)
1937 – 1945	Annie Shepherd, wife of farmer
1932 – 1937	Charles Henry Thorsby, grazier / executor
	Charles Thorsby, estate
1854 - 1932	Charles Henry Thorsby, grazier / executor
	Archer Broughton Thorsby, grazier / executor
	Charles Thorsby, estate

Note 4:

Current Search

Folio Identifier 23/29317 (title attached) DP 29317 (plan attached) Dated 12th August, 2014 Registered Proprietor: **TONY FRANK MOSCA MARIA GIUSEPPINA MOSCA**

Title Tree Lot 23 DP 29317

Folio Identifier 23/29317

Certificate of Title Volume 13422 Folio 118

IVA 24953

Conveyance Book 3280 No. 358

Acknowledgment Book 3228 No. 320

Conveyance Book 2606 No. 932

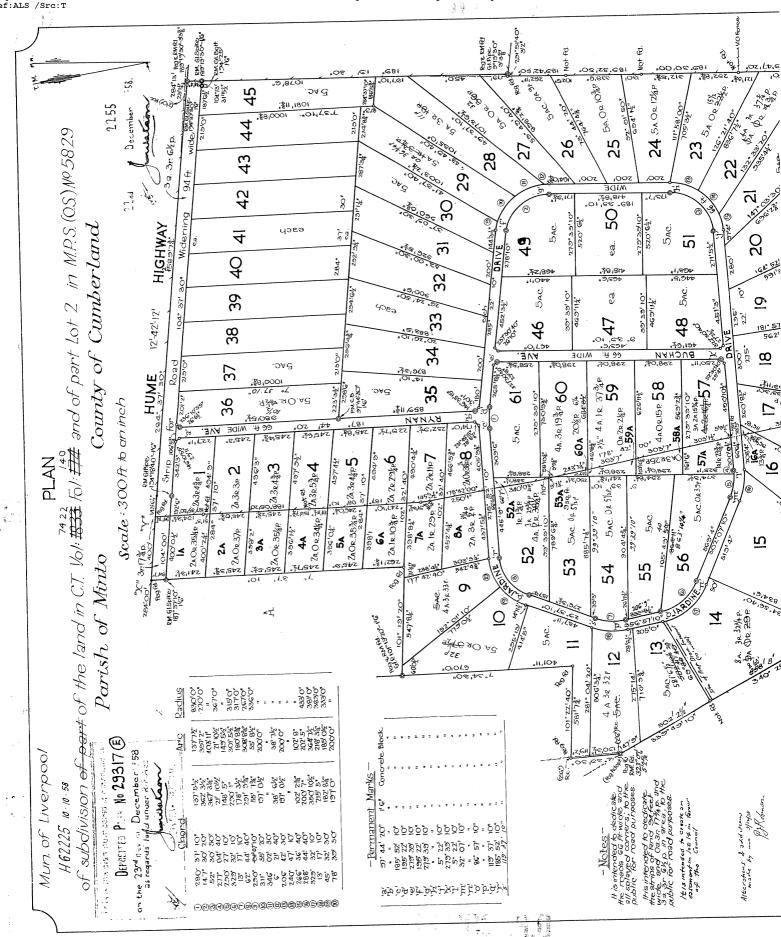
Conveyance Book 2425 No. 667

Conveyance Book 2417 No. 498

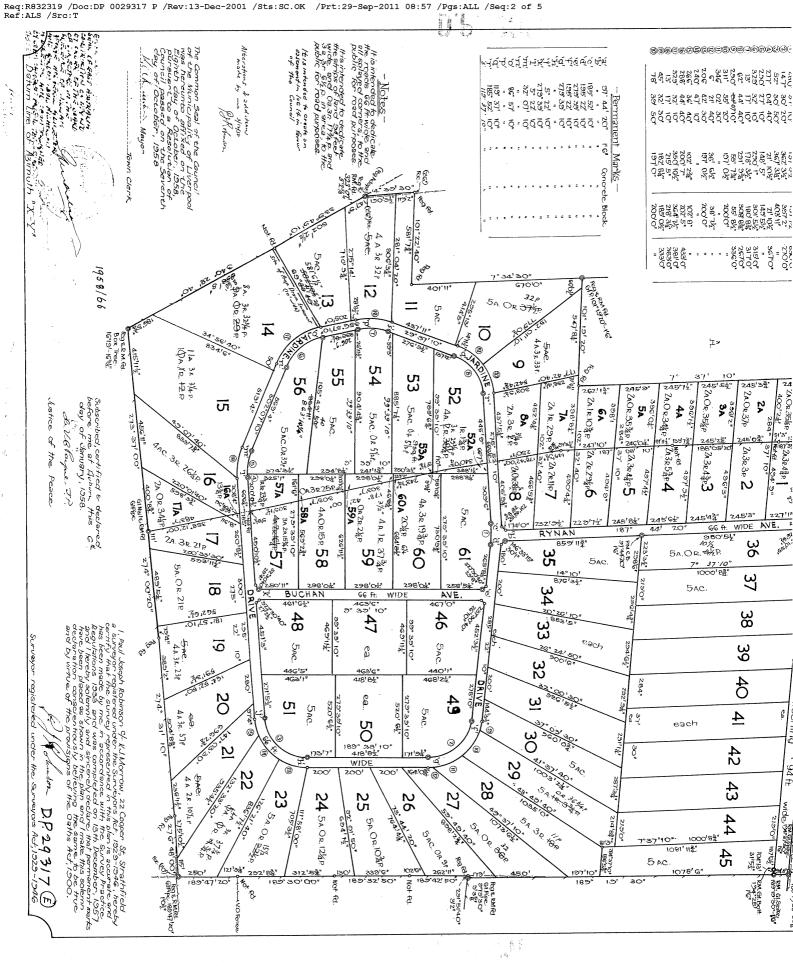
Conveyance Book 2266 No. 160

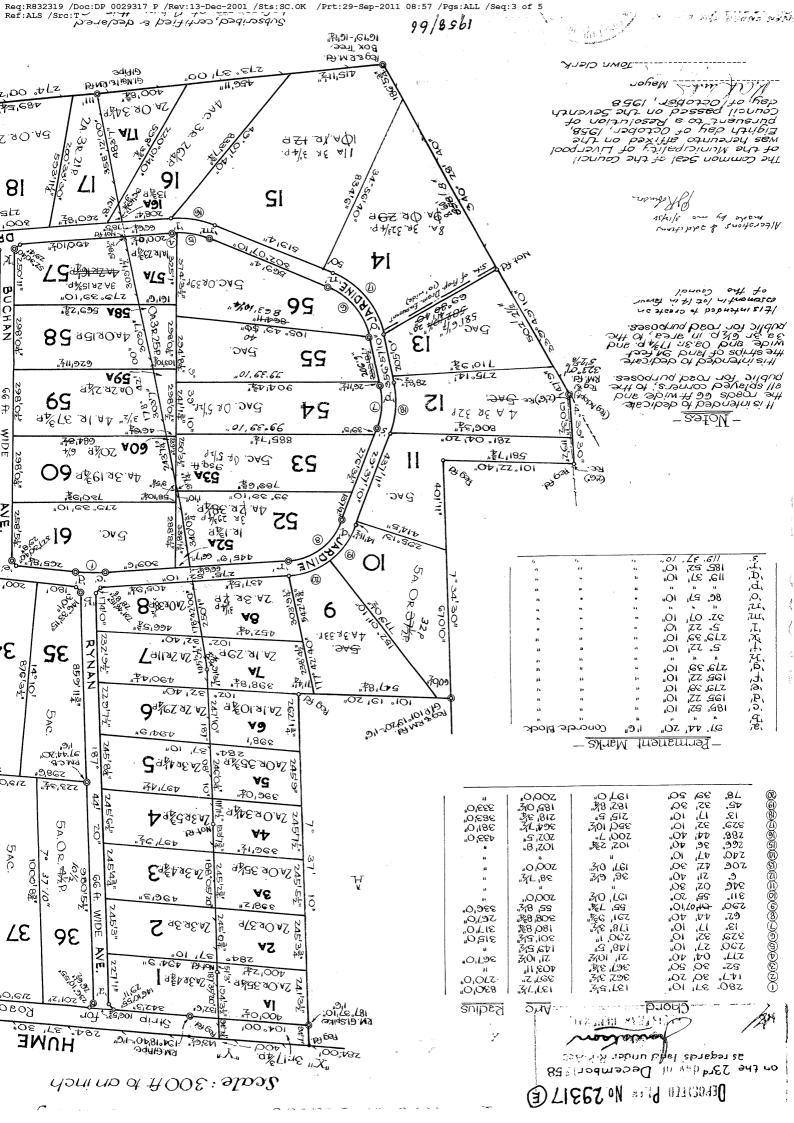
Conveyance Book 1969 No. 998

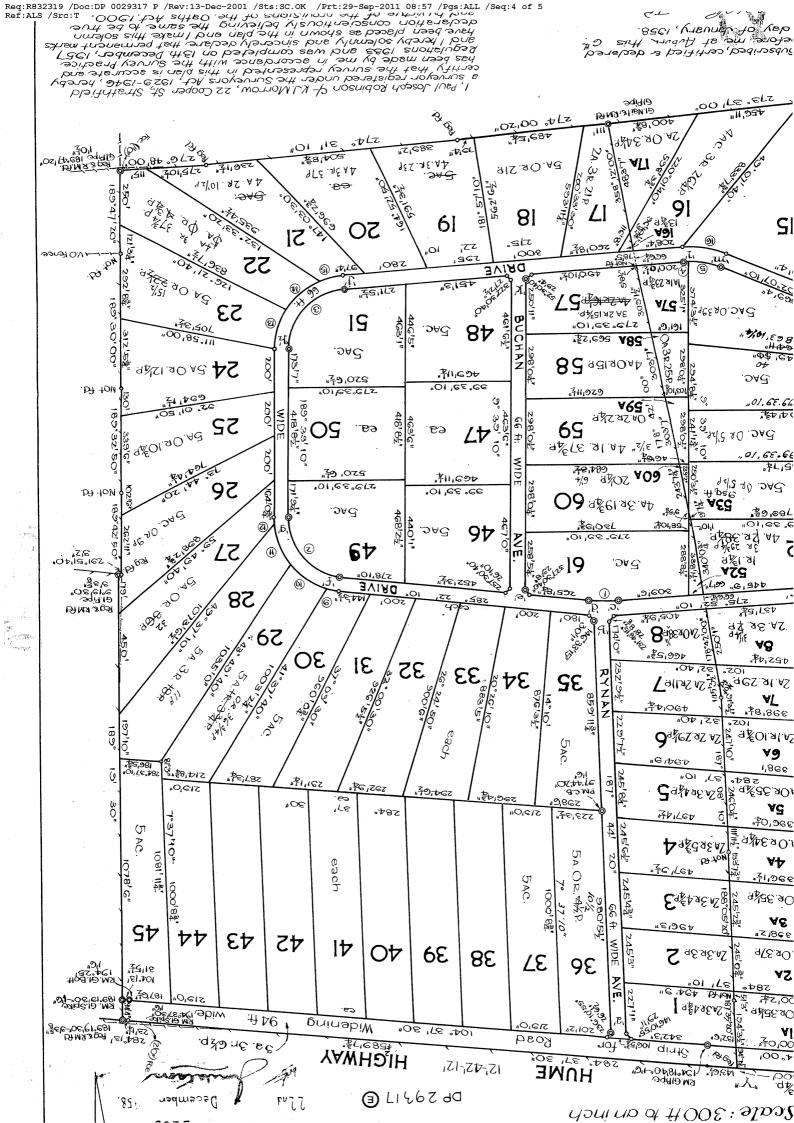
Conveyance Book 1801 No. 581

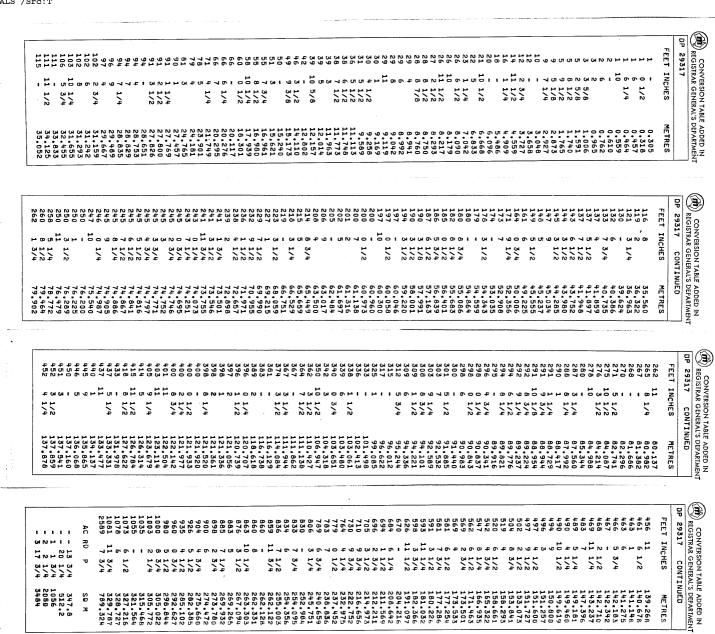

-10-

Summary of proprietor(s) Lot 23 DP 29317


Year


Proprietor


	(Lot 23 DP 29317)
1988 – todate	Tony Frank Mosca
	Maia Giuseppina Mosca
	(Lot 23 DP 29317 – CTVol 13422 Fol 118)
1981 – 1988	Tony Frank Mosca, dental surgeon
	Maia Giuseppina Mosca
1977 – 1980	The Commercial Banking Company of Sydney Limited
	Tedros Nader, service station proprietor
	Noele Nader
	(Lot 23 DP 29317 , Parish of Minto – Area 5 Acres 0 Roods 22 1/2
	Perches – Conv Bk 3280 No. 358)
1977 – 1977	Tedros Nader, service station proprietor
	Noele Nader
	(Lot 23 DP 29317, Parish of Minto – Area 5 Acres 0 Roods 22 1/2
	Perches – Ackn Bk 3228 No 320)
1976 – 1977	Mary Alchin, married woman
	Steve Balla, engineer
	(Part Lot 2 DP 155829 – Area 236 Acres 0 Roods 38 Perches –
	Conv Bk 2425 No. 667)
1957 – 1976	East Australia Construction Company Pty Limited
	(Part Lot 2 DP 155829 – Area 236 Acres 0 Roods 38 Perches –
	Conv Bk 2417 No. 498)
1957 – 1957	Norman Rutherford Lenehan
	(Part Lot 2 DP 155829 – Area 264 Acres 3 Roods 12 ³ / ₄ Perches –
	Conv Bk 2266 No. 160)
1953 – 1957	Vincent Fazzari, dairyman
	Ralph Nicholas Fazzari, dairyman
	John Joseph Fazzari, dairyman
	Julius Carmel Fazzari, dairyman
	(Part Portion 63, Parish of Minto – Area 400 Acres 0 Roods 1 Perch
	– Conv Bk 1969 No. 998)
1945 - 1953	Harold Alfred Swane, market gardener
	(Portion 63 Parish of Minto, – Area 840 Acres – Conv Bk 1801 No.
	581)
1937 – 1945	Annie Shepherd, wife of farmer
1932 – 1937	Charles Henry Thorsby, grazier / executor
	Charles Thorsby, estate
1854 - 1932	Charles Henry Thorsby, grazier / executor
	Archer Broughton Thorsby, grazier / executor
	Charles Thorsby, estate



Req:R832319 /Doc:DP Ref:ALS /Src:T /Pgs:ALL /Seq:1 of 5 08:57

CONTINUED 9 H 9 H 9 139,266 1410,678 1411,148 1411,148 1412,215 1422,216 1422,216 151,650 1512,257 151,650 1512,257 1551,650 1551,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,550 1552,5 347.8 512.2 1056 2080 3484 SD 19 METRES

anne and the second						
ڡ	sa ft		5	2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 4 1 2 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	AC RD P	DP 29317 CONT:
	3	4.763 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.017 2.018 2.016 2.017 2.018 2.017 2.018 2.018 2.019 2.016 2.017 2.017 2.018 2.017		3667 5655 8965 8985 8985 9030 9037 9037 9037 9037 90377	SQ M	INUED

Healthy Environment, Healthy Community, Healthy Business

Home > Contaminated land > Record of notices

Search results

Your search for:LGA: Liverpool City Council

		relating to	2 sites.
		Sea	arch Again
		R	efine Search
Suburb	Address	Site Name	Notices related to this site
Chipping Norton	85-107 Alfred Road	Australian Chemical Refiners	3 current
Moorebank	Bapaume Road	<u>ABB Australia</u>	1 current and 8 former

Page 1 of 1

22 August 2014

Matched 12 notices

Connect

Feedback

Contact

Government

About

NSW Government jobs.nsw Accessibility Disclaimer Privacy Copyright

Web support Public consultation Contact us Offices Report pollution

Healthy Environment, Healthy Community, Healthy Business

<u>Home</u> > <u>Environment protection licences</u> > <u>POEO Public Register</u> > <u>Search for licences, applications and notices</u>

Search results

Your search for: General Search with the following criteria

Suburb - EDMONDSON PARK

returned 0 result

Search Again

Connect

Feedback

Contact

Government

About

NSW Government jobs.nsw

Accessibility Disclaimer Privacy Copyright

Web support Public consultation Contact us Offices Report pollution

	ient:					e of Wollongong HOLE	No	. B	SH109
	oject:			k Environr dmondson			SHEE	-т	1 OF 1
	osition:			ation plan		Surface RL:			Processed: RC
		of Explor		Hand a	auger	Hole Size: L: 75mm x W:	75m	m	Checked: VW
	ate:	01/09/1				Logged by: TN			Date: 18/09/14
(m)	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments Observations
	GNO				CL	CLAY, brown, low plasticity (natural).	SM		PID 0.6 ppm
						From 0.2m, becoming red-brown, low to medium plasticity.			PID 0.4 ppm
			0.30		CL- CI	Sandy CLAY, orange-grey, low to medium plasticity fine grained sand, trace weathered shale fragments (natural).	SM		
			0.50			Hand auger terminated at 0.5m.			PID 0.3 ppm
		ard sheet abbreviat	s for ions	GHD	57 Her	GEOTECHNICS bert Street, Artarmon NSW 2064 Australia 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com		Job	No. 2123862

	E	ST P	IT LOG SHEET							
	Cli	ent	: Catholic	c Educati	on Office,	Diocese	of Wollongong HOLE	Na	P	LI110
F	Pro	ojeo	ct: Edmon	dson Par	k Environi	mental In	vestigation	UVI	. D	VIIIV
I	_0	cat	ion: Jardine	Drive, E	dmondsor	Park, N	SW	SHEI	ET	1 OF 1
F	0	siti	on: Refer to	o test loca	ation plan		Surface RL:			Processed: RCP
I	Иe	tho	d of Explora	ation:	Hand a	auger	Hole Size: L: 75mm x W:	75m	m	Checked: VW
	Da	te:	01/09/14	4			Logged by: TN			Date: 18/09/14
Scale (m)		Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments Observations
GEO_TEST PIT EDMONSON PK_LOGS.GPJ_GHD_GEO_TEMPLATE.GDT_18/9/14		SNO		0.10		CL	Sandy CLAY, low plasticity (natural). Hand auger terminated at 0.1m.			PID 0.8 ppm
	let	ails	andard sheets of abbreviations of descriptions	ons	GHD	57 Herl T: 61 2	GEOTECHNICS bert Street, Artarmon NSW 2064 Australia 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com JLTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS		Job	No. 2123862

Т	EST	PIT LOG	SHEET							
c	lie	nt:	Catholic E	ducatio	on Office,	Diocese	of Wollongong		П	
P	roj	ect:	Edmondso	on Park	< Environi	mental In	vestigation HOLE	ΟΝΙ	. в	GLID
L	oc	ation:	Jardine Dr	rive, Ec	dmondsor	n Park, N	SW	SHEE	ЕΤ	1 OF 1
		ition:	Refer to te				Surface RL:			Processed: RCP
			Explorati		Hand a		Hole Size: L: 75mm x W:	75m	m	Checked: VW
	ate		01/09/14	011.		luger	Logged by: TN	7011		Date: 18/09/14
F	au	7.	01/09/14				Logged by.			Date: 10/03/14
Scale (m)	Water	Samples	& Tests	Ueptn / (КL) metres	Graphic Log	USC Symbol	Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments Observations
	GN	0		0.10			CLAY, red-brown, medium plasticity (fill). Hand auger terminated at 0.1m.	SM		Located at drainage of old cultivation row. Grass at surface. PID 0.1 ppm
	eta	ils of abl	I sheets fo	is 🕻	GHD	57 Herl T: 61 2	GEOTECHNICS pert Street, Artarmon NSW 2064 Australia 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com		Job	No.
b 8			previation	s (GHD	57 Herl T: 61 2 CONSI	pert Street, Artarmon NSW 2064 Australia 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com JLTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS			2123862

	ient:					of Wollongong HOLE	No	. B	H120
	oject:			k Environi dmondsor		vestigation	SHE		1 OF 1
	osition			ation plan		Surface RL:			Processed: RC
		of Exploi		Hand a		Hole Size: L: 75mm x W	· 75m	m	Checked: VW
	ate:	01/09/1			augei	Logged by: TN	. 7011		Date: 18/09/14
		01/00/1							
Scale (m)	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments Observations
	GNO					CLAY, brown, low plasticity (fill).	SM		PID 0.2 ppm
			0.20		CL	CLAY, red-orange, low to medium plasticity (natural).	SM		PID 0.3 ppm
						From 0.4m, becoming orange, medium plasticity.			PID 0.4 ppm
			0.50			Hand auger terminated at 0.5m.			
1									
Se	e stanc	dard sheet	s for	\sim	GHD	GEOTECHNICS		Job	No.
		abbreviat	ions	GHD	57 Her	oert Street, Artarmon NSW 2064 Australia 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com		-	2123862

	EST	r Pit log s	HEET						
0	lie	nt: C	atholic Educ	ation Office	, Diocese	of Wollongong		D	
P	roj	j ect: ⊨	dmondson P	ark Environ	mental In	vestigation HOLE	UV.	. D	
L	.oc	ation: J	ardine Drive,	Edmondso	n Park, N	SW	SHEE	т	1 OF 1
P	os	ition: F	Refer to test l	ocation plan		Surface RL:			Processed: RCP
Ν	let	hod of Ex	ploration	Hand	auger	Hole Size: L: 75mm x W:	75m	m	Checked: VW
C)ate	e: 02	2/09/14			Logged by: TN			Date: 18/09/14
Scale (m)	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol		Moisture Condition	Consistency / Density Index	Comments Observations
GEO_TEST PIT EDMONSON PK LOGS.GPJ GHD_GEO_TEMPLATE.GDT 18/9/14	GN		O			CLAY, brown, medium plasticity (fill). Hand auger terminated at 0.1m.	SM		Located on ag plot drainage line. PID < 0.1 ppm
D C TEST PIL EUMUN	eta	standard s	eviations	GHD	57 Her T: 61 2	GEOTECHNICS bert Street, Artarmon NSW 2064 Australia 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com		Job	No. 2123862
Ľ	. nq	sis of des			CONS	JLTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS			

	EST	PIT LOG SHEET	-						
c	lier	nt: Catholi	c Educati	on Office	Diocese	of Wollongong		D	U200
P	roj	ect: Edmon	dson Par	k Environ	mental In	vestigation HOLE	UFI	. 0	01203
L	оса	tion: Jardine	Drive, E	dmondsor	n Park, N	SW	SHEI	ЕΤ	1 OF 1
Р	osi	tion: Refer to	o test loc	ation plan		Surface RL:			Processed: RCP
N	leth	od of Explor	ation:	Hand a	auger	Hole Size: L: 75mm x W:	75m	m	Checked: VW
D	ate	: 02/09/14	4			Logged by: TN			Date: 18/09/14
Scale (m)	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments Observations
GEO_TEST PIT_EDMONSON PK_LOGS.GPJ_GEO_TEMPLATE.GDT_18/9/14			0.10			CLAY, brown, medium plasticity (fill). Hand auger terminated at 0.1m.	SM		PID 0.1 ppm
		tondord character			СНО	GEOTECHNICS		Joh	No.
den lest	etai	tandard sheets Is of abbreviations and the scriptions	ons	GHD	57 Her T: 61 2	bert Street, Artarmon NSW 2064 Australia 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com JLTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS		500	2123862

	ent:					of Wollongong	No). B	3H210
	oject:						SHE	ст	1 OF 1
	cation sition:			dmondson ation plan	Park, N	SVV Surface RL:	SHE		Processed: RC
		of Explor		Hand a	Nugor	Hole Size: L: 75mm x W	· 75m		Checked: VW
Da		02/09/14		T Idilu d	augei	Logged by: TN	. 751		Date: 18/09/14
		02/03/1	Ŧ						Bute: 10,00,14
Scale (m)	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Material Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture	Consistency / Density Index	Comments Observations
G	SNO		0.20		CL	CLAY, brown, low plasticity (fill). CLAY, red-orange, low plasticity (natural).	SM		PID 0.1 ppm PID 0.2 ppm
			0.50			From 0.4m, becoming orange and grey, medium plasticity.			
						Hand auger terminated at 0.5m.			PID 0.2 ppm
det	ails of	ard sheets abbreviati descriptic	ons	GHD	57 Her T: 61 2	GEOTECHNICS bert Street, Artarmon NSW 2064 Australia 2 9462 4700 F: 61 2 9462 4710 E: atnmail@ghd.com ULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS		Job	No. 2123862

GHD

Appendix F Table F1 Health Environmental Risk Screening - Soil

											He	alth	Envire				Scre	ening																				
				<u> </u>	1		Met	als					T	RH - NE	PM 201	3			TPH	- NEPM 1	999			ВТ	EX & M/	чн	_										PA	н
				Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	TRH F1 (TRH C6-C10 minus BTEX)	TRH C6 - C10 Fraction	TRH F2 (TRH C10-C16 minus Naphthalene)	TRH >C10 - C16 Fraction	TRH >C16 - C34 Fraction (F3)	TRH >C34 - C40 Fraction (F4)	C6 - C 9 Fraction	C10 - C14 Fraction	C15 - C28 Fraction	- C36 Fraction	C10 - C36 (Sum of Total) - Lab calc	Benzene		curyidencene Xviene (A)		Xylene Total	Benzo(a)pyrene TEQ (half LOR) - Lab Calc	Benzo(a)pyrene TEQ (LOR) - Lab Calc	Benzo(a)pyrene TEQ (zero) - Lab Calc	Benzo[b+]]fluoranthene	PAHs (Sum of total) - Lab calc	Pyrene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene
						mg/kg									mg/kg		mg/kg		mg/kg		ng/kg m	ng/kg i	mg/kg mg										mg/kg m					
LOR									0.05			20	20	50	50	100	100	20	20	50	50	50	0.1 0	.1 0	.1 0.	1 0.2	0.3	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		n Residential- Public Open Space		107		414	220	1117		277	733	100			100	200	2000						50	<u> </u>	0		405											0.7
NEPM 2013 ESL Urba NEPM 2013 HIL Resid		and public open space, Coarse S	UII	100	20		6000	300	40	400	7400	180			120	300	2800						50 8	5 7	0		105					300						0.7
THE FIN 2013 FIL RESIG	ontial A 30ll			100	20		0000	300	40	400	7400																					- 300						
Field ID	LocCode	Sample Depth Range	Sampled Date-Time																																			
BH101_0-0.1	BH101	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	<u> </u>	- <u> </u>	- <u> </u>	-			- T	-
BH102_0-0.1	BH102	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-
BH103_0-0.1	BH103	0-0.1	1/09/2014	2.7		11	9.8	20	< 0.05	7.1	29	<20	<20	<50	<50	<100	<100	<20	<20	<50	<50	<50	<0.1 <).1 <().1 <0	.1 <0.2	2 <0.3	0.6	1.2	< 0.5	<0.5	<0.5	<0.5 <	<0.5	<0.5	<0.5	<0.5	<0.5
BH104_0-0.1	BH104	0-0.1	1/09/2014	4		11	12	22	< 0.05	7.1	64	-	-	-	-	-	-	-	-	-	-	•	-	-		-	-	-	-	-	<u> </u>			-	-	·	-	-
BH105_0-0.1	BH105	0-0.1	1/09/2014	4.7		12	14	17	<0.05	6.9	36	<20	<20	<50	<50	<100	<100	<20	<20	<50		<50).1 <0			-		<0.5	< 0.5	<0.5	<0.5 <		<0.5	<0.5 <	<0.5	<0.5
BH106_0-0.1 BH107_0-0.1	BH106 BH107	0-0.1	1/09/2014 1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	_	-	-	-	+ - +		<u> </u>	-	-+			-
BH108_0.4-0.5	BH108	0.4-0.5	1/09/2014				-	-	-	-			-	-	-	-	-	-	-		-	-	-			_		- ·	-	-	++		<u> </u>	-+	<u> </u>	<u> </u>		
BH108_0-0.1	BH108	0-0.1	1/09/2014	6.6	<0.4	14	15	17	< 0.05	7.7	32	-	-	-	-	-	-	-	-	-	-		-	-		-	-	· ·	-	-	+ - +	<u> </u>	·	-		-	-	-
BH109_0.2-0.3	BH109	0.2-0.3	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	· ·	-	-		- 1	· · ·	-	-	-	-	-
BH110_0-0.1	BH110	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	- L	-	-	-	-	-
BH111_0.2-0.3	BH111	0.2-0.3	1/09/2014	4.8	<0.4	16	20	18	< 0.05	8.9	36	<20	<20	<50	<50	<100	<100	<20	<20	<50	<50	<50	<0.1 <).1 <().1 <0	.1 <0.2	2 <0.3	0.6	1.2	<0.5	<0.5	<0.5	<0.5 <	<0.5	<0.5	<0.5 <	<0.5	<0.5
BH112 Fragement	BH112	Surface	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	<u> </u>	<u> </u>		-	-	-	-	-
BH112_0-0.1	BH112	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	· ·	-	-	<u> </u>			-	-	-	-	-
BH113_0-0.1	BH113	0-0.1	1/09/2014	3.5			12	14	< 0.05	6.3	24	<20	<20	<50	<50	<100	<100	<20	<20	<50	<50	<50).1 <().1 <0			0.6	1.2	< 0.5	<0.5	<0.5	<0.5 <	<0.5	<0.5	<0.5 <	<0.5	<0.5
BH114_0.4-0.5 BH115 0-0.1	BH114 BH115	0.4-0.5	1/09/2014 1/09/2014	- 6.5		- 13	- 21	- 15	-	- 5.5	- 27	-	-	-	-	-	-	-	-	-	-	·	-	-		-	_	<u> </u>	-	-	<u> </u>	<u>⊢ -</u>				<u> </u>		-
BH115_0-0.1 BH116_0.1-0.2	BH115 BH116	0.1-0.2	1/09/2014	6.9			31	25	<0.05	5.5 17	72	<20	<20	<50	<50	<100	<100	<20	<20			<50).1 <0			0.6	- 1.2	< 0.5	< 0.5	< 0.5	< 0.5 <	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BH117_0.2-0.3	BH117	0.2-0.3	1/09/2014	9.7	-		19	110	<0.05	12	58	<20	<20	<50	<50	<100		<20	<20			<50			0.1 <0					< 0.5		<0.5					<0.5	<0.5
BH118_0.2-0.3	BH118	0.2-0.3	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-
BH119_0.2-0.3	BH119	0.2-0.3	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	- 1	-	-	-	-	-	-	-
BH119_0-0.1	BH119	0-0.1	1/09/2014	10	<0.4	15	24	20	< 0.05	8.5	41	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	- 1]	-	-	-	-	-	-
BH201_0-0.1	BH201	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	<u> </u>	<u> </u>		-	-	-	-	-
BH202 Fragement	BH202	Surface	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					_	-	-	-	-	-	-	-	-	-	-	-
BH202_0-0.1	BH202 BH203	0-0.1	1/09/2014	5	<0.4		9.9	11	<0.05	<5	19 31	<20	<20	<50	<50	<100	<100	<20	<20	<50	<50	<50	<0.1 <).1 <().1 <0			- 0.6	1.2	<0.5		<0.5		<0.5	<0.5	<0.5 <	<0.5	<0.5
BH203_0.4-0.5 BH204_0-0.1	BH203	0.4-0.5	1/09/2014 1/09/2014	14 7.2		23 16	21 9.5	15 21	<0.05	5.9 5	75	<20	<20	<50	<50	<100	<100	<20	<20	- <50		<50).1 <().1 <0			0.6		< 0.5		< 0.5		<0.5	<0.5	<0.5	< 0.5	< 0.5
BH205_0-0.1	BH204	0-0.1	2/09/2014	6.9			15	21	<0.05	7.9	46	- 20	~20			-	<100	-20	-20				-	-		.1 <0.2	- <0.3				<0.5	<0.5		-	-	-	-	-
BH206_0-0.1	BH206	0-0.1	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-		-	-	-	-	·	-		-	-	-
BH207_0.2-0.3	BH207	0.2-0.3	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-		-	-	-	-	-	- 1	-		-	-	-	-	-
BH208 Fragement	BH208	Surface	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-
BH208_0-0.1	BH208	0-0.1	2/09/2014	7	<0.4	14	25	48	< 0.05	10	280	<20	<20	<50	<50	<100	<100	<20	<20	<50	<50	<50	<0.1 <).1 <().1 <0	.1 <0.2	2 <0.3	0.6	1.2	< 0.5	<0.5	< 0.5	<0.5 <	<0.5	< 0.5	<0.5 <	<0.5	<0.5
BH209_0-0.1	BH209	0-0.1	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -		-	· ·	-	-	-	-		-	-	-	-	-
BH210_0.4-0.5	BH210	0.4-0.5	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	· ·	-	-	-	<u>⊢ - </u>					-	-
BH211_0-0.1 BH212_0-0.1	BH211 BH212	0-0.1	2/09/2014 2/09/2014	7.7 6.9		18 14	76 29	38	<0.05	8.8	130	-		- 50	-50	-	<100	- 20	-	-	-		-	-		-		-	-	-		-0.5	-0.5		< 0.5		< 0.5	< 0.5
BH212_0-0.1 BH213 0-0.1	BH212 BH213	0-0.1	2/09/2014	0.9	<0.4	- 14	- 29	20	<0.05	8.3	- 64	<20	<20	<50	<50	<100	<100	<20	<20	<50	<50	<50).1 <0			0.6	1.2	<0.5	< 0.5	<0.5	<0.5 <	<0.5	<u></u>	<0.5 <	<0.0	<0.0
BH213_0-0.1 BH214_0-0.1	BH213	0-0.1	2/09/2014	9.2		- 19	36	23	< 0.05	- 8.9	- 56	<u> </u>		-	-	-		-	-	-	-	-	-			_	_		-	-	-	-		-				
BH215_0-0.1	BH215	0-0.1	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	- +	-	-			_	-	-	-	-	-	<u> </u>	-+	- +	-	-+	
BH216_0-0.1	BH216	0-0.1	2/09/2014	5.5	<0.4	13	23	23	< 0.05	7.4	110	<20	<20	<50	<50	<100	<100	<20	<20	<50		63).1 <(0.1 <0		2 <0.3	0.6	1.2	< 0.5	1	< 0.5	<0.5 <	<0.5	<0.5	<0.5 <	<0.5	<0.5
BH217_0.2-0.3	BH217	0.2-0.3	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	· ·	-	-	-	-	-	-	-	-	-	-
BH218_0-0.1	BH218	0-0.1	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
BH219_0.4-0.5	BH219	0.4-0.5	2/09/2014	9.1	<0.4	6.7	12	8.5	<0.05	<5	14	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	- [-	<u> </u>	-]

Catholic Diocese of Wollongong Jardine Drive Phase 1 and Limited Phase 2

GHD

Appendix F Table F1

Health Environmental Risk Screening - Soil

										пеа	iun Ei	IVITOTIT	ienta		k Screeni	ng - 3	5011											
													P	aramete	ers/Inorg	ganics										OC I	Pesticid	les
_				Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Cation Exchange Capacity	На	Moisture	Asbestos	4,4 DDD	4,4 DDE	4,4 DDT	a-BHC	Aldrin	b-BHC	chlordane	d-BHC	Dieldrin	Endosulfan I	Endosulfan II	Endoenkan eninhata
D				mg/kg 0.5			<u>mg/кg</u> 0.5	тд/кд 0.5	тд/кд 0.5	тд/кд 0.5	тд/кд 0.5	тд/кд 0.5	cmolc/kg 0.05		% 0.1								mg/кg 0.1			mg/kg 0.05		
IN 2013 Sito Spo	ocific Ell Jurban	Residential- Public Open Space	20	0.5	0.5	0.5	0.5	0.5	0.5	0.5	170	0.5	0.05		0.1		0.05	0.05	180	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.
		nd public open space, Coarse									170								160									-
PM 2013 ESL 01		nu public open space, coarse	3011																				50					_
	Sideritial A Soli																						30					_
eld ID	LocCode	Sample Depth Range	Sampled Date-Time																									
101_0-0.1	BH101	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	19						<0.05	<0.05						
102_0-0.1	BH102	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	23		< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	<0.05	<0

											mou			Parameter		anics									OC F	esticio	des									
				zo(k)fluoranthene	enzo(g,h,i)perylene	e	(a,h)anthracene	anthene	٥	(1,2,3-c,d)pyrene	alene	threne	Exchange Capacity		ø	8						це			lfan I	lfan II	lifan sulphate		aldehyde	ketone	(Lindane)	hlor	hlor epoxide	chlorobenzene	ychlor	ene
				3enzo(3enzo(Chryse	Dibenz(luoran	Iuoren	ndeno(1	Vaphth	henan	Cation	- E	Moisture	Asbest	4,4 DDD 4,4 DDE	4,4 DDT	a-BHC	Aldrin	-BHC	chlorda	4-BHC	Dieldrir	Endosu	Endosu	Endosu	Endrin	Endrin	Endrin	g-BHC	Heptac	leptachlor	lexach	Methox	[oxaph
						mg/kg									%		mg/kg mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r	mg/kg r	mg/kg r	mg/kg
LOR	. Ell Lisk av I			0.5	0.5	0.5	0.5	0.5	0.5	0.5			0.05		0.1		0.05 0.05			0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	1
		Residential- Public Open Space nd public open space, Coarse Sc	li		-						170							180	-	-																
NEPM 2013 HIL Reside	ntial A Soil		511																			50						10				6		10	300	20
Field ID BH101 0-0.1	LocCode BH101	Sample Depth Range	Sampled Date-Time	1		1 -	-			-	-	-			19		<0.05 <0.05	5 <0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	1
BH102_0-0.1	BH102	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	23		<0.05 <0.05	5 < 0.05			< 0.05	<0.1	< 0.05	<0.05		< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05				<0.2	<1
BH103_0-0.1	BH103	0-0.1	1/09/2014	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	-	-	24		<0.05 <0.0	5 < 0.05	< 0.05	< 0.05	<0.05	<0.1	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05 <	< 0.05	<0.2	<1
BH104_0-0.1	BH104	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	31	None	<0.05 <0.0			< 0.05	< 0.05	<0.1	< 0.05	<0.05		<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		<0.05 <		<0.2	<1
BH105_0-0.1	BH105	0-0.1	1/09/2014	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	-	-	21	None		5 <0.05		40.00	< 0.05	<0.1	< 0.05	40.00		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	10100	40.00	40.00	1012	<1
	BH106 BH107	0-0.1	1/09/2014 1/09/2014	-	-	-	-	-	-	-	-	-	-	-	22 17		<0.05 <0.05 <0.05	5 <0.05	<0.05		<0.05	<0.1	<0.05			<0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.00	10100		4012	<1
BH107_0-0.1 BH108_0.4-0.5	BH107	0.4-0.5	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	19		<0.05 <0.03	5 < 0.05	< 0.05		< 0.05	<0.1	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05				<1
	BH108	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	20			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH109_0.2-0.3	BH109	0.2-0.3	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	22		<0.05 <0.0	5 <0.05	< 0.05	< 0.05	<0.05	<0.1	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05 <	<0.05	<0.2	<1
BH110_0-0.1	BH110	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	13		<0.05 <0.03	5 <0.05	< 0.05	< 0.05	<0.05	<0.1	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <	<0.05	<0.2	<1
	BH111	0.2-0.3	1/09/2014	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5		< 0.5		-	-	20		<0.05 <0.05	5 < 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05 <	<0.05	<0.2	<1
	BH112	Surface	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	17	Detected	<0.05 <0.03	-	<0.05	-	-	-	- <0.05	-	- <0.05	- <0.05	-	-	- <0.05	-	- <0.05	- <0.05	-	-	-	-
BH112_0-0.1 BH113_0-0.1	BH112 BH113	0-0.1	1/09/2014 1/09/2014	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	- <0.5	-	-	17 13	None None	<0.05 <0.03			<0.05	<0.05 <0.05	<0.1	<0.05	<0.05	40100	<0.05	<0.05 <0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	10100	10.00	<0.2	<1
BH114_0.4-0.5	BH114	0.4-0.5	1/09/2014						-					-	18	NUTIE	<0.05 <0.05				< 0.05	<0.1	< 0.05			< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05					<1
BH115_0-0.1	BH115	0-0.1	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	18		<0.05 0.08				< 0.05	<0.1	< 0.05			<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					<1
	BH116	0.1-0.2	1/09/2014	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	18	7.6	13		<0.05 <0.0	5 <0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05 <	< 0.05	<0.2	<1
BH117_0.2-0.3	BH117	0.2-0.3	1/09/2014	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	-	-	20		<0.05 <0.0	5 <0.05	< 0.05	40.00	< 0.05	<0.1	< 0.05	<0.05	40.00	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05 <		1012	<1
	BH118	0.2-0.3	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	19	None	<0.05 <0.0				< 0.05	0.1	< 0.05	40.00	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				<1
BH119_0.2-0.3 BH119_0-0.1	BH119 BH119	0.2-0.3	1/09/2014 1/09/2014	-	-	-	-	-	-	-	-	-	-	-	21 18		<0.05 <0.08				<0.05	<0.1	<0.05			<0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				<1
BH201_0-0.1	BH201	0-0.1	1/09/2014		_		-	-	-	-	-	-		-	15		<0.05 0.06					<0.1				< 0.05		< 0.05	< 0.05	<0.05	<0.05					<1
	BH202	Surface	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	17	Detected		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH202_0-0.1	BH202	0-0.1	1/09/2014	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	11	None	<0.05 <0.05	5 <0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05 <	<0.05	<0.2	<1
BH203_0.4-0.5	BH203	0.4-0.5	1/09/2014	-	-	-	-	-	-	-	-	-	-	-	24		<0.05 <0.0				<0.05	<0.1	< 0.05			<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05					<1
BH204_0-0.1	BH204 BH205	0-0.1	1/09/2014 2/09/2014	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	-	-	13	None		0.16		< 0.05	< 0.05	<0.1	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05			<0.2	<1
BH205_0-0.1 BH206_0-0.1	BH205	0-0.1	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	16 23		<0.05 0.31	<0.05			<0.05	<0.1	<0.05			<0.05 <0.05	<0.05	<0.05	<0.05	<0.05 <0.05	<0.05					<1
BH207 0.2-0.3	BH207	0.2-0.3	2/09/2014	-			-	-	-	-	-	-		-	19		<0.05 <0.0				< 0.05	<0.1	<0.05			<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05					<1
	BH208	Surface	2/09/2014	-	- 1	-	-	-	-	-	-	-	-	-	17	Detected		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH208_0-0.1	BH208	0-0.1	2/09/2014	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	24	6	21	None	<0.05 <0.05	5 <0.05	< 0.05	< 0.05	<0.05	<0.1	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05 <	< 0.05	<0.2	<1
BH209_0-0.1	BH209	0-0.1	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	19		<0.05 0.13	_			<0.05	<0.1	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				<1
BH210_0.4-0.5	BH210	0.4-0.5	2/09/2014	-		-	-	-	-	-	-	-	-	-	17			5 <0.05		< 0.05	< 0.05	<0.1				< 0.05		< 0.05	<0.05	< 0.05	<0.05					<1
BH211_0-0.1 BH212 0-0.1	BH211 BH212	0-0.1	2/09/2014 2/09/2014	- <0.5		<0.5	- <0.5	< 0.5	<0.5	- <0.5	- <0.5	- <0.5	-	-	21 20	None	<0.05 0.06			<0.05	<0.05	<0.1	<0.05	<0.05		<0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.2	<1
BH212_0-0.1 BH213_0-0.1	BH212	0-0.1	2/09/2014	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-		19	INVIIC		5 < 0.05			< 0.05	<0.1	< 0.05			< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05					<1
BH214_0-0.1	BH214	0-0.1	2/09/2014	-	- 1	- 1	-	-	-	-	-	-	-	-	17			< 0.05		< 0.05	< 0.05	<0.1	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05				<1
BH215_0-0.1	BH215	0-0.1	2/09/2014	-	-	-	-	-	-	-	-	-	-	-	18			< 0.05			<0.05	<0.1	< 0.05			<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					<1
BH216_0-0.1		0.04	2/09/2014	<0 E	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5		-	-	22	None	<0.05 <0.0					<0.1	< 0.05			<0.05			<0.05	<0.05					1012	<1
	BH216	0-0.1		< 0.5	<0.5	<0.0														1 0.05															0.0	<1
	BH217	0.2-0.3	2/09/2014	-		-	-	-	-	-	-	-	-	-	20			5 <0.05			< 0.05	<0.1				< 0.05			< 0.05	< 0.05						
BH218_0-0.1					-	-		-	-	-	-	-	-	-	20 17 18		<0.05 <0.03 <0.05 <0.03 <0.05 <0.03	5 < 0.05	< 0.05	< 0.05	<0.05	<0.1	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<1

Copper Lead Mercury Nickel Zinc OC Pesticides 4,4 DDD 4,4 DDT 4,4 DDT a-BHC Aldrin b-BHC chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endrin ald Endrin kett g-BHC (Lir Heptachlor Heptachlor Heptachlor Hexachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(b+j] PAHS (Sur Pyrene Acenaphth Anthracene Benzo(a) p Benzo(a) p Benzo(b+j] Benzo(b+j) Benzo(b+j) Benzo(b+j) Benz(b+j) Benz(b+j) Benz(b+j) Benz(b+j) Benz(b+j) Benz(b+j) Benz(b+j) Benz(b+j) Benz(b+j) Ben	e] <= #12 Sep 2014#	Field_ID Sampled	_Date-Time	9/02/2014 BH102_0-0.1 1/09/2014	9/02/2014 QA01 1/09/2014	RPD	9/02/2014 BH206_0-0.1 2/09/2014	9/02/2014 QA02 2/09/2014	RPD
TolueneEthylbenzeXylene (o)Xylene TotNorganicsMoistureMetalsArsenicCadmiumChromiumCopperLeadMercuryNickelZincOC Pesticides4,4 DDD4,4 DDE4,4 DDTa-BHCAldrinb-BHCChlordaned-BHCDieldrinEndosulfarEndosulfarEndosulfarEndosulfarEndrin kettg-BHC (LirHeptachlorHeptachlorHeptachlorHeptachlorHentoxychToxaphenePAHBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pChryseneDibenz(a,frFluorantheFluorantheFluorantheFluorantheFluoranthePAHBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(brij)PAHAcenaphthAcenaphthAcenaphthAcenaphthAcenaphthAcenaphthAcenaphthAcenaphthAcenaphthAcenaphthAcenaphthAcenaphthAcenaphth <t< th=""><th>Name</th><th>Units</th><th>LOR</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Name	Units	LOR						
Ethylbenze Xylene (o) Xylene Tol Xylene Tol Metals Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Xickel Zinc OC Pesticides 4,4 DDD 4,4 DDD 4,4 DDT 4,4 DDT 4,4 DDT 4,4 DDT 6-BHC Chlordane d-BHC Chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar OC Pesticides Chlordane d-BHC Dieldrin Methosych Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Chrysene Accenaphth Anthracen Benzo(a) p Benzo(a) p Benzo(b)fil Benzo(a) p Benzo(a) p Benzo(b)fil Benzo(a) p Benzo(b)fil Benzo(a) p Benzo(b)fil Benzo(a) p Benzo(b)fil Benzo(b)fil Benzo(b)fil Benzo(c) p Benzo(b)fil Benzo(c) p Benzo(c)		mg/kg	0.1						
Xylene (o)Xylene TotXylene TotXylene TotInorganicsMoistureMetalsArsenicCadmiumChromiumCopperLeadMercuryNickelZincOC Pesticides4,4 DDD4,4 DDE4,4 DDTa-BHCAldrinb-BHCchlordaned-BHCDieldrinEndosulfarEndosulfarEndosulfarEndosulfarEndrin aldeEndrin keteg-BHC (LirHeptachlorHeptachlorHeptachlorHeptachlorBenzo(a)pBenzo(b)filBenzo(a)pBenzo(a)pBenzo(b)filAcenaphthAcenaphthAnthraceneBenzo(b)filBenzo(a)pBenzo(a)pBenzo(b)filBenzo(b)filBenzo(c)pBenzo(c)pBenzo(c)pBenzo(c)pBenzo(c)pBenzo(c)p <t< td=""><td></td><td>mg/kg</td><td>0.1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		mg/kg	0.1						
Xylene (mXylene TotInorganicsMoistureMetalsArsenicCadmiumChromiumCopperLeadLeadMercuryNickelZincOC Pesticides4,4 DDD4,4 DDE4,4 DDTa-BHCAldrinb-BHCChlordaned-BHCDieldrinEndosulfarEndosulfarEndosulfarEndosulfarEndosulfarEndrin ketag-BHC (LirHeptachlorHeptachlorHestachloraHeptachlorHeptachloraAcenaphthAcenaphthAcenaphthAnthracenaBenzo(a)pBenzo(a)pBenzo(a) pBenzo(a) pBenzo(b/filBenzo(g, hChryseneDibenz(a, hFluoreneIndeno(1,2)NaphthaleNaphthalePhenanthrC6 - C 9 FC10 - C14C14		mg/kg	0.1						
Xylene TotInorganicsMoistureMetalsArsenicCadmiumChromiumCopperLeadMercuryNickelZincZincOC Pesticides4,4 DDD4,4 DDE4,4 DDTa-BHCAldrinb-BHCchlordaned-BHCDieldrinEndosulfarEndosulfarEndosulfarEndosulfarEndrin aldeEndrin keteg-BHC (LirHeptachloreMethoxychToxaphenePAHBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pChryseneDibenz(a,hrFluoranteFluorantePAHBenzo(a)pBenzo(a)pBenzo(a)pChryseneDibenz(a,hrNaphthalePhenanthrTPH - NEPM 1999C6 - C 9 FC10 - C14ChryseneC10 - C14Chrysene		mg/kg	0.1	-					
Inorganics Moisture Metals Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc OC Pesticides 4,4 DDD 4,4 DDT 4,4 DDT 4,4 DDT A-BHC Chlordane d-BHC Chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Sendosulfar Endrin alde Endrin kete g-BHC (Lir Heptachlor Heptachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(b+j] PAHS (Sur Pyrene Accenaphth Anthracene Benzo(a)p Benzo(a)p Benzo(b+j] PAHS (Sur Pyrene Accenaphth Anthracene Benzo(a)p Benzo(b+j] PAHS (Sur Pyrene Accenaphth Anthracene Benzo(a)p Benzo(b+j] PAHS (Sur Pyrene Accenaphth Anthracene Benzo(b+j] Benzo(b+j] PAHS (Sur Pyrene Accenaphth Anthracene Benzo(b+j] Benzo(b+j] Benzo(c)p Benzo(b+j] Benzo(c)p Benzo(b+j] Benzo(b+j] Benzo(b+j] Benzo(b+j] Benzo(b+j] Benzo(b+j] Benzo(b+j] Benzo(c)p Benzo(b+j] Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(b+j) Benz		mg/kg mg/kg	0.2 0.3						
Cadmium Chromium Copper Lead Mercury Nickel Zinc OC Pesticides 4,4 DDD 4,4 DDD 4,4 DDT a-BHC Aldrin b-BHC Chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endrin ald Endrin Endrin ald Green ald Endrin Heptachlor Heptachlor Heptachlor Heptachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a) f Benzo(a) f Benzo(b+j] Dibenz(a, f Fluorente Indeno(1,2 Naphthale Naphthale Phenanthr		%	0.1	23.0	22.0	4	23.0	19.0	19
Cadmium Chromium Copper Lead Mercury Nickel Zinc OC Pesticides 4,4 DDD 4,4 DDD 4,4 DDT a-BHC Aldrin b-BHC Chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endrin ald Endrin Endrin ald Methoxych Heptachlor Heptachlor Heptachlor Heptachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Naphthale Naphthale Phenanthr		mg/kg	2						
Copper Lead Mercury Nickel Zinc OC Pesticides 4,4 DDD 4,4 DDD 4,4 DDT a-BHC Aldrin b-BHC Chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endrin ald Endrin kett g-BHC (Lir Heptachlor Heptachlor Heptachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Anthracene Benzo(a) fil Benzo(a) fil Benzo(b,fil Benzo(a) fil Benzo(a) fil Benzo(b,fil Benzo(a) fil Benzo(b,fil Benzo(a) fil Benzo(a) fil Benzo(b,fil Benzo(a) fil Benzo(b,fil Benzo(c) fil Benzo(c) fil Be		mg/kg	0.4						
Lead Mercury Nickel Zinc OC Pesticides 4,4 DDD 4,4 DDT a-BHC Aldrin b-BHC Chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endrin alda Endrin keta g-BHC (Lir Heptachlor Heptachlor Heptachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Anthracene Benz(a)an Benzo(a) f Benzo(a) f Benzo(b,fil Benzo(a) f Benzo(a) f Benzo(b,fil Benzo(b,fil Benzo(c) f Benzo(c) f	nium (III+VI)	mg/kg	5						
Mercury Nickel Zinc OC Pesticides 4,4 DDD 4,4 DDT a-BHC Aldrin b-BHC chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Sendosulfar Endosulfar Endosulfar Endosulfar Endosulfar Sendosulfar End	۲ <u>۲</u>	mg/kg	5						
NickelZincOC Pesticides4,4 DDD4,4 DDTa-BHC4,4 DDTa-BHCAldrinb-BHCchlordaned-BHCDieldrinEndosulfarEndosulfarEndosulfarEndrin aldeEndrin keteg-BHC (LirHeptachlorHeptachlorHeptachlorHestachlorePAHBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(b+jj)PAHs (SurPyreneAcenaphthAnthraceneBenzo(a) pBenzo(a) pBenzo(a) pBenzo(a) pBenzo(a) pBenzo(a) pBenzo(b) pBenzo(c) pBenzo(c) pBenzo(c) pBenzo(c) pBenzo(a) pBenzo(b) pBenzo(c)		mg/kg	5						
Zinc OC Pesticides 4,4 DDD 4,4 DDT a-BHC Aldrin b-BHC chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endrin alde Endrin kete g-BHC (Lir Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Benzo(a)p Benzo(a)f Benzo(a)f Benzo(a) f Benzo(a) f Benzo(a) f Benzo(a) f Benzo(a) f Benzo(a) f Benzo(a) f Benzo(a) f Benzo(b+j] PAHS (Sur Pyrene Acenaphth Acenaphth Anthracene Benzo(a) f Benzo(b+j) Benzo(b+j) PAHS (Sur Pyrene Acenaphth Acenaphth Anthracene Benzo(b+j) Benzo(c) f Benzo(c) f B	ry	mg/kg	0.05						
OC Pesticides 4,4 DDD 4,4 DDE 4,4 DDT a-BHC Aldrin b-BHC chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endosulfar Endrin alda Endrin alda Endrin keta g-BHC (Lir Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Anthracene Benzo(a) p Benzo(a) p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Anthracene Benzo(a) p Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(b+j) Benzo(c) p Benzo(b+j) Benzo(c) p Benzo(c) p		mg/kg	5						
4,4 DDE 4,4 DDT a-BHC Aldrin b-BHC chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endrin alde Endrin kete g-BHC (Lir Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHS (Sur Pyrene Acenaphth Anthracene Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(b+j] PAHS (Sur Pyrene Acenaphth Anthracene Benzo(a) fil Benzo(b,fil Benzo(c) fil Benzo(c) fil Ben		mg/kg	5						
4,4 DDT a-BHC Aldrin b-BHC chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endrin alda Endrin keta g-BHC (Lir Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHS (Sur Pyrene Acenaphth Anthracene Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(c) fil Be		mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0
a-BHC Aldrin b-BHC chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endrin alda Endrin keta g-BHC (Lir Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAH Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Anthracene Benz(a)an Benzo(a) p Benzo(a) p Benzo(b+j] Dibenz(a,r Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Naphthale		mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	0.05	0
Aldrinb-BHCchlordaned-BHCDieldrinEndosulfarEndosulfarEndosulfarEndosulfarEndrinEndrin aldrEndrin ketrog-BHC (LirHeptachlorHeptachlorHeptachlorHestachlorMethoxychToxaphenePAHBenzo(a)pBenzo(a)pBenzo(a)pBenzo(a)pBenzo(b+j)PAHs (SurPyreneAcenaphthAcenaphthAnthracenoBenzo(a) pBenzo(a) pBenzo(b) pBenzo(c) p		mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0
b-BHC chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endrin alde Endrin alde Endrin kete g-BHC (Lir Heptachlor Heptachlor Hethachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Acenaphth Acenaphth Acenaphth Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F	·	mg/kg	0.05	< 0.05	<0.05	0	<0.05	< 0.05	0
chlordane d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endosulfar Endrin ald Endrin ald Endrin kete g-BHC (Lir Heptachlor Heptachlor Heptachlor Heptachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Acenaphth Anthracene Benz(a)an Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(c) fi		mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
d-BHC Dieldrin Endosulfar Endosulfar Endosulfar Endrin Endrin alde Endrin kete g-BHC (Lir Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAH (Sur Pyrene Acenaphth Actenaphth Anthracene Benz(a)an Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(c) fil Benzo		mg/kg	0.03	<0.03	<0.0	0	<0.1	<0.03	0
Dieldrin Endosulfar Endosulfar Endosulfar Endrin Endrin Endrin aldo Endrin keto g-BHC (Lir Heptachlor Heptachlor Heptachlor Hexachlord Heptachlor Hexachlord Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Actenaphth Anthracene Benz(a)an Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(c)		mg/kg	0.05	<0.05	< 0.05	0	<0.05	<0.05	0
Endosulfar Endosulfar Endrin Endrin Endrin alde Endrin kete g-BHC (Lir Heptachlor Heptac		mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0
Endosulfar Endrin Endrin ald Endrin keta g-BHC (Lir Heptachlor Heptachlor Hetachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Acenaphth Acenaphth Benzo(a) p Benzo(a) p Benzo(b) fill Benzo(a) p Benzo(b) fill Benzo(c) p Benzo(c) p	ulfan I	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0
Endrin Endrin ald Endrin kete g-BHC (Lir Heptachloo Heptachloo Hexachlore Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Acenaphth Acenaphth Benz(a)an Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(c)	ulfan II	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0
Endrin alde Endrin kete g-BHC (Lir Heptachlor Heptachlor Hexachlore Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Actenaphth Actenaphth Benzo(a) p Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(c) fil Benzo	ulfan sulphate	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0
Endrin keta g-BHC (Lir Heptachlor Heptachlor Hexachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Actenaphth Anthracene Benz(a)an Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(c) fil Benzo(c		mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0
g-BHC (Lir Heptachlor Heptachlor Hexachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Actenaphth Anthracene Benz(a)an Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(b) fil Benzo(c) fil Benzo		mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0
Heptachlor Heptachlor Hexachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo[b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Acenaphth Acenaphth Benz(a)an Benzo(a) p Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(b) fil Benzo(b) fil Benzo(b) fil Benzo(c) fil Benzo(c		mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
Heptachlor Hexachlor Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Acenaphth Acenaphth Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) fil Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Phenanthr		mg/kg	0.05	<0.05	<0.05	0	<0.05	< 0.05	0
Hexachlord Methoxych Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Actenaphth Actenaphth Actenaphth Benz(a)an Benzo(a) p Benzo(a) p Benzo(a) fil Benzo(a) fil Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F	chlor epoxide	mg/kg	0.05	< 0.05	< 0.05	0	<0.05	<0.05	0
Toxaphene PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo[b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Acenaphth Acenaphth Acenaphth Benzo(a) p Benz(a)an Benzo(a) p Benzo(a) p Benzo(a) p Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14	hlorobenzene	mg/kg	0.05	<0.05	< 0.05	0	< 0.05	<0.05	0
PAH Benzo(a)p Benzo(a)p Benzo(a)p Benzo(a)p Benzo[b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Anthracene Benz(a)an Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) fil Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F		mg/kg	0.2	<0.2	<0.2	0	<0.2	<0.2	0
Benzo(a)p Benzo(a)p Benzo[b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Anthracen Benz(a)an Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) flu Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F	hene	mg/kg	1	<1.0	<1.0	0	<1.0	<1.0	0
Benzo(a)p Benzo(a)p Benzo[b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Anthracen Benz(a)an Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) p Benzo(a) flu Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr	(a) average TEQ (half LOD) Lab Cala		0.5						
Benzo(a)p Benzo[b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Anthracen Benz(a)an Benzo(a) p Benzo(a) p Benzo(a) p Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F	(a)pyrene TEQ (half LOR) - Lab Calc (a)pyrene TEQ (LOR) - Lab Calc	mg/kg mg/kg	0.5 0.5						
Benzo[b+j] PAHs (Sur Pyrene Acenaphth Acenaphth Anthracen Benz(a)an Benzo(a) p Benzo(a) p Benzo(k)fli Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14	(a)pyrene TEQ (Zero) - Lab Calc	mg/kg	0.5						
PAHs (Sur Pyrene Acenaphth Acenaphth Acenaphth Anthracene Benz(a)an Benzo(a) p Benzo(a) p Benzo(k)flu Benzo(g,h Chrysene Dibenz(a,h Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14	[b+j]fluoranthene	mg/kg	0.5						
Acenaphth Acenaphth Anthracen Benz(a)an Benzo(a) p Benzo(a) p Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F	(Sum of total) - Lab calc	mg/kg	0.5						
Acenaphth Anthracen Benz(a)an Benzo(a) p Benzo(a) p Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14	3	mg/kg	0.5						
Anthracen Benz(a)an Benzo(a) p Benzo(a) p Benzo(k)fl Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14	•	mg/kg	0.5						
Benz(a)an Benzo(a) p Benzo(k)fli Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14		mg/kg	0.5						
Benzo(a) p Benzo(k)fli Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14		mg/kg	0.5	-					
Benzo(k)fli Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14		mg/kg	0.5 0.5						
Benzo(g,h Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14	(a) pyrene (k)fluoranthene	mg/kg mg/kg	0.5						
Chrysene Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14	(g,h,i)perylene	mg/kg	0.5	1					
Dibenz(a,h Fluoranthe Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14		mg/kg	0.5						
Fluorene Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14	z(a,h)anthracene	mg/kg	0.5						
Indeno(1,2 Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14		mg/kg	0.5						
Naphthale Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14		mg/kg	0.5						
Naphthale Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14	o(1,2,3-c,d)pyrene	mg/kg	0.5				ļ		
Phenanthr TPH - NEPM 1999 C6 - C 9 F C10 - C14		mg/kg mg/kg	0.5 0.5						\vdash
TPH - NEPM 1999 C6 - C 9 F C10 - C14		mg/kg	0.5	1			ļ		
C10 - C14									
		mg/kg	20	-					
		mg/kg	20						
	C28 Fraction C36 Fraction	mg/kg	50 50						
	C36 Fraction C36 (Sum of Total) - Lab calc	mg/kg mg/kg	50 50						
	· · ·	<u>ə</u> ə							
TRH - NEPM 2013 TRH F1 (T		mg/kg	20						
TRH C6 - 0	C6 - C10 Fraction	mg/kg	20						
\	2 (TRH C10-C16 minus Naphthalene)	mg/kg	50						
	C10 - C16 Fraction	mg/kg	50						
	C16 - C34 Fraction (F3) C34 - C40 Fraction (F4)	mg/kg mg/kg	100 100						

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **High RPDs are in bold (Acceptable RPDs for each LOR multiplier range are: 50 (1-5 x LOR); 50 (5-30 x LOR); 50 (> 30 x LOR)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the prime

Filter: [Sampled_Date-Time] <= #12 Sep 2014#

Field Duplicates (S0 Filter: [Sampled_Da	DIL) ate-Time] <= #12 Sep 2014#	SDG Field_ID		9/02/2014 BH208_0-0.1	9/02/2014 QA03	RP
		Sampled_	Date-Time	2/09/2014	2/09/2014	
		111.24				
Chem_Group	ChemName	Units	LOR			
BTEX	Benzene	mg/kg	0.1	<0.1	<0.1	0
	Toluene	mg/kg	0.1	<0.1	<0.1	0
	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	0
	Xylene (o)	mg/kg	0.1	<0.1	<0.1	0
	Xylene (m & p)	mg/kg	0.2	<0.2	<0.2	C
	Xylene Total	mg/kg	0.3	<0.3	<0.3	0
norganico	Mojatura	%	0.1	17.0	17.0	0
norganics	Moisture	70	0.1	17.0	17.0	
Vetals	Arsenic	mg/kg	2	7.0	5.3	28
vielais	Cadmium		0.4	<0.4	<0.4	20
	Chromium (III+VI)	mg/kg	0.4 5	<u><0.4</u> 14.0	<0.4 12.0	1
		mg/kg	5 5	25.0	12.0	2
	Copper Lead	mg/kg	5 5	48.0	32.0	4
	Mercury	mg/kg	0.05	<0.05	<0.05	40
		mg/kg				
		mg/kg	5	10.0 280.0	9.4	6 5
	Zinc	mg/kg	5	280.0	160.0	5
DC Pesticides	4,4 DDD	malka	0.05	< 0.05	< 0.05	C
	4,4 DDD 4,4 DDE	mg/kg	0.05	<0.05	<0.05	
		mg/kg	0.05	<0.05	<0.05	
	4,4 DDT a-BHC	mg/kg	0.05	<0.05	<0.05	
		mg/kg				-
	Aldrin	mg/kg	0.05	< 0.05	< 0.05	0
	b-BHC	mg/kg	0.05	< 0.05	< 0.05	0
	chlordane	mg/kg	0.1	<0.1	<0.1	0
	d-BHC	mg/kg	0.05	< 0.05	< 0.05	(
	Dieldrin	mg/kg	0.05	< 0.05	< 0.05	(
	Endosulfan I	mg/kg	0.05	< 0.05	< 0.05	(
	Endosulfan II	mg/kg	0.05	< 0.05	< 0.05	(
	Endosulfan sulphate	mg/kg	0.05	< 0.05	< 0.05	(
	Endrin	mg/kg	0.05	< 0.05	< 0.05	(
	Endrin aldehyde	mg/kg	0.05	< 0.05	< 0.05	(
	Endrin ketone	mg/kg	0.05	< 0.05	< 0.05	(
	g-BHC (Lindane)	mg/kg	0.05	<0.05	<0.05	(
	Heptachlor	mg/kg	0.05	< 0.05	< 0.05	C
	Heptachlor epoxide	mg/kg	0.05	<0.05	<0.05	C
	Hexachlorobenzene	mg/kg	0.05	<0.05	<0.05	C
	Methoxychlor	mg/kg	0.2	<0.2	<0.2	C
	Toxaphene	mg/kg	1	<1.0	<1.0	(
PAH	Benzo(a)pyrene TEQ (half LOR) - Lab Calc	mg/kg	0.5	0.6	0.6	C
	Benzo(a)pyrene TEQ (LOR) - Lab Calc	mg/kg	0.5	1.2	1.2	C
	Benzo(a)pyrene TEQ (zero) - Lab Calc	mg/kg	0.5	<0.5	< 0.5	C
	Benzo[b+j]fluoranthene	mg/kg	0.5	<0.5	< 0.5	C
	PAHs (Sum of total) - Lab calc	mg/kg	0.5	<0.5	< 0.5	0
	Pyrene	mg/kg	0.5	<0.5	< 0.5	(
	Acenaphthene	mg/kg	0.5	<0.5	< 0.5	(
	Acenaphthylene	mg/kg	0.5	<0.5	<0.5	(
	Anthracene	mg/kg	0.5	<0.5	<0.5	(
	Benz(a)anthracene	mg/kg	0.5	<0.5	< 0.5	(
	Benzo(a) pyrene	mg/kg	0.5	<0.5	< 0.5	(
	Benzo(k)fluoranthene	mg/kg	0.5	<0.5	<0.5	(
	Benzo(g,h,i)perylene	mg/kg	0.5	<0.5	<0.5	(
	Chrysene	mg/kg	0.5	<0.5	<0.5	(
	Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	(
	Fluoranthene	mg/kg	0.5	<0.5	<0.5	(
	Fluorene	mg/kg	0.5	<0.5	<0.5	(
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.5	<0.5	(
	Naphthalene	mg/kg	0.5	<0.5	<0.5	(
	Naphthalene	mg/kg	0.5	<0.5	<0.5	(
	Phenanthrene	mg/kg	0.5	<0.5	<0.5	(
PH - NEPM 1999	C6 - C 9 Fraction	mg/kg	20	<20.0	<20.0	(
		<u> </u>	00			1

		ing/itg	20	~20.0	~20.0	0
	C10 - C14 Fraction	mg/kg	20	<20.0	<20.0	0
	C15 - C28 Fraction	mg/kg	50	<50.0	<50.0	0
	C29 - C36 Fraction	mg/kg	50	<50.0	<50.0	0
	C10 - C36 (Sum of Total) - Lab calc	mg/kg	50	<50.0	<50.0	0
TRH - NEPM 2013	TRH F1 (TRH C6-C10 minus BTEX)	mg/kg	20	<20.0	<20.0	0
	TRH C6 - C10 Fraction	mg/kg	20	<20.0	<20.0	0
	TRH F2 (TRH C10-C16 minus Naphthalene)	mg/kg	50	<50.0	<50.0	0
	TRH >C10 - C16 Fraction	mg/kg	50	<50.0	<50.0	0
	TRH >C16 - C34 Fraction (F3)	mg/kg	100	<100.0	<100.0	0
	TRH >C34 - C40 Fraction (F4)	mg/kg	100	<100.0	<100.0	0

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **High RPDs are in bold (Acceptable RPDs for each LOR multiplier range are: 50 (1-5 x LOR); 5 ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratoary laboratory

Filter: [Sampled_Date-Time] <= #12 Sep 2014#

APPENDIX C

Quality Assurance and Control Plan

QUALITY ASSURANCE AND CONTROL

A detailed Quality Assurance/Quality Control (QA/QC) assessment, including the collection and analysis of quality control samples, was completed for the data arising from the analysis of soil samples, in order to determine the suitability of the data for use in the assessment of site conditions. This included the collection of lab duplicates

Field Investigation Procedure

All fieldwork was conducted in general accordance with GeoEnviro's Standard Field Operating Procedures (FOP), which are aimed at collecting environmental samples using uniform and systematic methods, as required by GeoEnviro's Quality Assurance system. Key requirements of these procedures are as follows:

- Field staff all field investigations were conducted by staff with sufficient and appropriate site specific training with the experience to assess and document field conditions and undertake the investigation tasks in accordance with relevant procedures. Soil types shall be recorded in accordance with the geotechnical classifications detailed in AS1726-1993 Geotechnical Site Investigations. A field log shall record the following but not limited to the following information;
 - ➢ Profile type − fill, natural, bedrock etc
 - Depths of profile type
 - Soil classification including composition, properties and characteristics.
 - ➢ Groundwater conditions.
 - Depths of samples collected.
 - > Unusual or unexpected conditions including odour, colour etc.
- Field Documentation included photographs, a field logbook to record an account of daily works and events including works start/end time, weather, presence of odours and/or dust, calibration results and checks and sample details.
- A visual and olfactory assessment was made on samples for the potential presence of contamination indicators or asbestos. Field screened for volatile organic compounds may also undertaken using a Photo-Ionisation Detector (PID).

- Notes are collected included the location and extent of fill and features such as seepage, moisture, water bearing zones, depth of groundwater tables, discolouration, staining, odours and other indications of contamination. This information was recorded on the field borehole logs.
- Decontamination procedures included the use of new disposable gloves for the collection of each sample, decontamination of the sampling equipment between each sampling location (using DECON90 where required) and the use of dedicated sampling containers provided by the laboratory.
- Sample procedures collected samples were immediately transferred into laboratory supplied jars of appropriate composition and preservation for the required analysis. The sample containers were transferred to a chilled cooler for sample preservation prior to and during shipment to the testing laboratory.
- Duplicate samples were collected included blind duplicates. These were coded duplicate samples submitted to the primary laboratory for analysis as individual samples without any indication to the laboratory that they have been duplicated.
- Each sample was assigned an individual sample identification number that began with a location code and site number designation for the specific sample type and sample location number. The sampling depth or interval indicates the discrete depth or interval at which the sample was taken below the surface to the nearest 0.1 metre.

Sample Custody

A Laboratory Test Request & Chain of Custody (COC) form shall be completed for each sample set collected. The form is maintained as a record of sample collection, transfer, shipment and receipt by the laboratory. When physical possession of samples is transferred, both the individual relinquishing the samples and the individual receiving them shall sign, date and record the time on the COC.

Any samples damage shall be reported to the field personnel so that resampling could take place.

Laboratory Program

The contracted laboratory used their internal procedures and NATA accredited methods in accordance with their quality assurance system. GeoEnviro reviewed the laboratory reports to ensure that the laboratory analytical methods and limits of reporting are acceptable for the analysis required. Laboratory quality control procedures used during the project include:

- Laboratory duplicate samples: Duplicate sub samples collected by the laboratory from one sample submitted for analytical testing at a rate equivalent to one in twenty samples per analytical batch, or one sample per batch if less than twenty samples are analysed in a batch. A laboratory duplicate provides data on the analytical precision and reproducibility of the test result.
- Certified reference standards: A reference standard of known (certified) concentration is analysed along with a batch of samples. The Certified Reference Standard (CRS) or Laboratory Control Spike provides an indication of the analytical accuracy and the precision of the test method and is used for inorganic analyses.
- Spiked samples: An authentic field sample is spiked by adding an aliquot of known concentration of the target analyte(s) prior to sample extraction and analysis. A spike documents the effect of the sample matrix on the extraction and analytical techniques. Spiked samples will be analysed for each batch where samples are analysed for organic chemicals of concern.
- Surrogate standard/spikes: These are organic compounds which are similar to the analyte of interest in terms of chemical composition, extractability, and chromatographic conditions (retention time), but which are not normally found in environmental samples. These surrogate compounds are spiked into blanks, standards and samples submitted for organic analyses by gas-chromatographic techniques prior to sample extraction. Surrogate Standard/Spikes provide a means of checking that no gross errors have occurred during any stage of the test method leading to significant analyte loss.

Laboratory blank: Usually an organic or aqueous solution that is as free as possible of analytes of interest to which is added all the reagents, in the same volume, as used in the preparation and subsequent analysis of the samples. The reagent blank is carried through the complete sample preparation procedure and contains the same reagent concentrations in the final solution as in the sample solution used for analysis. The reagent blank is used to correct for possible contamination resulting from the preparation or processing of the sample.

The contracted laboratory conducted an assessment of the laboratory QC program internally; however, the results were independently reviewed and assessed by GeoEnviro.

APPENDIX D

Laboratory Test Certificates

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 229691

Client Details	
Client	Geoenviro Consultancy Pty Ltd
Attention	Steven Goss
Address	PO Box 1543, Macquarie Centre, North Ryde, NSW, 2113

Sample Details	
Your Reference	<u>JC16261F-r1</u>
Number of Samples	22 Soil
Date samples received	30/10/2019
Date completed instructions received	30/10/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 06/11/2019

 Date of Issue
 05/11/2019

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Lucy Zhu, Senior Asbestos Analyst Nancy Zhang, Laboratory Manager, Sydney Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		229691-1	229691-2	229691-3	229691-4	229691-6
Your Reference	UNITS	TP 1	TP 2	TP 3	TP 4	TP 7
Depth		0-0.1	0.0-0.1	0.1-0.2	0.2-0.3	0.0-0.1
Date Sampled		04/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	89	82	93	80	89
vTRH(C6-C10)/BTEXN in Soil						
		229691-7	229691-8	229691-10	229691-11	229691-12
vTRH(C6-C10)/BTEXN in Soil	UNITS	229691-7 TP 8	229691-8 TP 10	229691-10 TP 12	229691-11 TP 13	229691-12 TP 14
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS					
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	TP 8	TP 10	TP 12	TP 13	TP 14
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	TP 8 0.5-0.6	TP 10 0.1-0.2	TP 12 0.2-0.3	TP 13 0.4-0.5	TP 14 0.0-0.1
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS -	TP 8 0.5-0.6 29/10/2019	TP 10 0.1-0.2 29/10/2019	TP 12 0.2-0.3 29/10/2019	TP 13 0.4-0.5 29/10/2019	TP 14 0.0-0.1 29/10/2019
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	TP 8 0.5-0.6 29/10/2019 Soil	TP 10 0.1-0.2 29/10/2019 Soil	TP 12 0.2-0.3 29/10/2019 Soil	TP 13 0.4-0.5 29/10/2019 Soil	TP 14 0.0-0.1 29/10/2019 Soil
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019 01/11/2019	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019 01/11/2019	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019 01/11/2019 <25	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 <25	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019 01/11/2019 <25	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 <25	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	- - mg/kg mg/kg	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <25 <0.2	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <25 <0.2	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 (1/11/2019 <25 <25 <25 <25 <0.2	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019 (1/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019 (1/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 (1/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.2	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019 (1/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 (1/11/2019) <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP 8 0.5-0.6 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	TP 10 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	TP 12 0.2-0.3 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		229691-13	229691-15	229691-17	229691-18	229691-19
Your Reference	UNITS	TP 16	TP 18	TP 21	TP 22	TP 23
Depth		0.1-0.2	0.0-0.1	0.2-0.3	0.1-0.2	0.6-0.7
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	84	85	83	83	107

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		229691-20	229691-21	229691-22
Your Reference	UNITS	TP 24	DUP A	DUP B
Depth		0.2-0.3	-	-
Date Sampled		29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	85	88	89

svTRH (C10-C40) in Soil						
Our Reference		229691-1	229691-2	229691-3	229691-4	229691-6
Your Reference	UNITS	TP 1	TP 2	TP 3	TP 4	TP 7
Depth		0-0.1	0.0-0.1	0.1-0.2	0.2-0.3	0.0-0.1
Date Sampled		04/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	91	94	94	81	93
svTRH (C10-C40) in Soil		·			•	·
Our Reference		229691-7	229691-8	229691-10	229691-11	229691-12
Your Reference	UNITS	TP 8	TP 10	TP 12	TP 13	TP 14

Our Reference		229691-7	229691-8	229691-10	229691-11	229691-12
Your Reference	UNITS	TP 8	TP 10	TP 12	TP 13	TP 14
Depth		0.5-0.6	0.1-0.2	0.2-0.3	0.4-0.5	0.0-0.1
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	80	93	93	92	81

svTRH (C10-C40) in Soil						
Our Reference		229691-13	229691-15	229691-17	229691-18	229691-19
Your Reference	UNITS	TP 16	TP 18	TP 21	TP 22	TP 23
Depth		0.1-0.2	0.0-0.1	0.2-0.3	0.1-0.2	0.6-0.7
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	79	94	92	78	93

svTRH (C10-C40) in Soil				
Our Reference		229691-20	229691-21	229691-22
Your Reference	UNITS	TP 24	DUP A	DUP B
Depth		0.2-0.3	-	-
Date Sampled		29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C29 - C36	mg/kg	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	78	92	92

PAHs in Soil						
Our Reference		229691-1	229691-2	229691-3	229691-4	229691-6
Your Reference	UNITS	TP 1	TP 2	TP 3	TP 4	TP 7
Depth		0-0.1	0.0-0.1	0.1-0.2	0.2-0.3	0.0-0.1
Date Sampled		04/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	103	103	103	104	102

PAHs in Soil						
Our Reference		229691-7	229691-8	229691-10	229691-11	229691-12
Your Reference	UNITS	TP 8	TP 10	TP 12	TP 13	TP 14
Depth		0.5-0.6	0.1-0.2	0.2-0.3	0.4-0.5	0.0-0.1
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	98	103	91	109

PAHs in Soil						
Our Reference		229691-13	229691-15	229691-17	229691-18	229691-19
Your Reference	UNITS	TP 16	TP 18	TP 21	TP 22	TP 23
Depth		0.1-0.2	0.0-0.1	0.2-0.3	0.1-0.2	0.6-0.7
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	104	98	99	99

PAHs in Soil				
Our Reference		229691-20	229691-21	229691-22
Your Reference	UNITS	TP 24	DUP A	DUP B
Depth		0.2-0.3	-	-
Date Sampled		29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	104	100

Organochlorine Pesticides in soil						
Our Reference		229691-1	229691-3	229691-4	229691-5	229691-6
Your Reference	UNITS	TP 1	TP 3	TP 4	TP 5	TP 7
Depth		0-0.1	0.1-0.2	0.2-0.3	0.1-0.2	0.0-0.1
Date Sampled		04/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	95	96	93	97

Organochlorine Pesticides in soil						
Our Reference		229691-7	229691-8	229691-9	229691-10	229691-12
Your Reference	UNITS	TP 8	TP 10	TP 11	TP 12	TP 14
Depth		0.5-0.6	0.1-0.2	0.0-0.1	0.2-0.3	0.0-0.1
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	93	93	97	101

Organochlorine Pesticides in soil				_	_	
Our Reference		229691-13	229691-14	229691-15	229691-16	229691-17
Your Reference	UNITS	TP 16	TP 17	TP 18	TP 20	TP 21
Depth		0.1-0.2	0.0-0.1	0.0-0.1	0.0-0.1	0.2-0.3
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	96	98	94	92

Organochlorine Pesticides in soil					
Our Reference		229691-19	229691-20	229691-21	229691-22
Your Reference	UNITS	TP 23	TP 24	DUP A	DUP B
Depth		0.6-0.7	0.2-0.3	-	-
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	93	97	95

PCBs in Soil						
Our Reference		229691-1	229691-3	229691-4	229691-5	229691-6
Your Reference	UNITS	TP 1	TP 3	TP 4	TP 5	TP 7
Depth		0-0.1	0.1-0.2	0.2-0.3	0.1-0.2	0.0-0.1
Date Sampled		04/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	95	96	93	97

PCBs in Soil						
Our Reference		229691-7	229691-8	229691-9	229691-10	229691-12
Your Reference	UNITS	TP 8	TP 10	TP 11	TP 12	TP 14
Depth		0.5-0.6	0.1-0.2	0.0-0.1	0.2-0.3	0.0-0.1
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	93	93	97	101

PCBs in Soil						
Our Reference		229691-13	229691-14	229691-15	229691-16	229691-17
Your Reference	UNITS	TP 16	TP 17	TP 18	TP 20	TP 21
Depth		0.1-0.2	0.0-0.1	0.0-0.1	0.0-0.1	0.2-0.3
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	96	98	94	92

PCBs in Soil					
Our Reference		229691-19	229691-20	229691-21	229691-22
Your Reference	UNITS	TP 23	TP 24	DUP A	DUP B
Depth		0.6-0.7	0.2-0.3	-	-
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	93	97	95

Acid Extractable metals in soil						
Our Reference		229691-1	229691-3	229691-4	229691-5	229691-6
Your Reference	UNITS	TP 1	TP 3	TP 4	TP 5	TP 7
Depth		0-0.1	0.1-0.2	0.2-0.3	0.1-0.2	0.0-0.1
Date Sampled		04/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Arsenic	mg/kg	5	8	5	<4	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	12	11	11	16
Copper	mg/kg	23	10	20	16	23
Lead	mg/kg	19	25	21	8	21
Mercury	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	10	8	9	6	8
Zinc	mg/kg	48	36	44	24	71

Acid Extractable metals in soil						
Our Reference		229691-7	229691-8	229691-9	229691-10	229691-12
Your Reference	UNITS	TP 8	TP 10	TP 11	TP 12	TP 14
Depth		0.5-0.6	0.1-0.2	0.0-0.1	0.2-0.3	0.0-0.1
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Arsenic	mg/kg	8	6	5	6	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	11	10	13	15
Copper	mg/kg	20	15	13	16	15
Lead	mg/kg	20	13	15	18	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	5	5	6	7
Zinc	mg/kg	45	26	25	28	25

Acid Extractable metals in soil						
Our Reference		229691-13	229691-14	229691-15	229691-16	229691-17
Your Reference	UNITS	TP 16	TP 17	TP 18	TP 20	TP 21
Depth		0.1-0.2	0.0-0.1	0.0-0.1	0.0-0.1	0.2-0.3
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Arsenic	mg/kg	6	6	6	8	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	12	11	21	12
Copper	mg/kg	17	16	25	25	28
Lead	mg/kg	18	15	15	23	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	6	7	10	10
Zinc	mg/kg	30	30	49	59	63

Acid Extractable metals in soil					
Our Reference		229691-19	229691-20	229691-21	229691-22
Your Reference	UNITS	TP 23	TP 24	DUP A	DUP B
Depth		0.6-0.7	0.2-0.3	-	-
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Arsenic	mg/kg	6	7	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	12	21	7	10
Copper	mg/kg	23	24	32	13
Lead	mg/kg	16	20	13	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	12	7	5
Zinc	mg/kg	31	42	37	24

Moisture						
Our Reference		229691-1	229691-2	229691-3	229691-4	229691-5
Your Reference	UNITS	TP 1	TP 2	TP 3	TP 4	TP 5
Depth		0-0.1	0.0-0.1	0.1-0.2	0.2-0.3	0.1-0.2
Date Sampled		04/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Moisture	%	6.0	7.3	6.5	9.3	2.5
Moisture Our Reference		229691-6	229691-7	229691-8	229691-9	229691-10
Your Reference	UNITS	TP 7	TP 8	TP 10	TP 11	TP 12
Depth		0.0-0.1	0.5-0.6	0.1-0.2	0.0-0.1	0.2-0.3
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Moisture	%	9.5	9.0	9.0	5.8	6.0
Moisture	1			1		
Moisture Our Reference		229691-11	229691-12	229691-13	229691-14	229691-15
	UNITS	229691-11 TP 13	229691-12 TP 14	229691-13 TP 16	229691-14 TP 17	229691-15 TP 18
Our Reference	UNITS					
Our Reference Your Reference	UNITS	TP 13	TP 14	TP 16	TP 17	TP 18
Our Reference Your Reference Depth	UNITS	TP 13 0.4-0.5	TP 14 0.0-0.1	TP 16 0.1-0.2	TP 17 0.0-0.1	TP 18 0.0-0.1
Our Reference Your Reference Depth Date Sampled	UNITS -	TP 13 0.4-0.5 29/10/2019	TP 14 0.0-0.1 29/10/2019	TP 16 0.1-0.2 29/10/2019	TP 17 0.0-0.1 29/10/2019	TP 18 0.0-0.1 29/10/2019
Our Reference Your Reference Depth Date Sampled Type of sample		TP 13 0.4-0.5 29/10/2019 Soil	TP 14 0.0-0.1 29/10/2019 Soil	TP 16 0.1-0.2 29/10/2019 Soil	TP 17 0.0-0.1 29/10/2019 Soil	TP 18 0.0-0.1 29/10/2019 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared		TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019	TP 16 0.1-0.2 29/10/2019 Soil 31/10/2019	TP 17 0.0-0.1 29/10/2019 Soil 31/10/2019	TP 18 0.0-0.1 29/10/2019 Soil 31/10/2019
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed	-	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019	TP 16 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019	TP 17 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019	TP 18 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture	-	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019	TP 16 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019	TP 17 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019	TP 18 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture	-	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 4.9	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 2.3	TP 16 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 6.6	TP 17 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 8.1	TP 18 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 3.6
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference	- - %	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 4.9 229691-16	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 2.3 229691-17	TP 16 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 6.6 229691-18	TP 17 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 8.1 229691-19	TP 18 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 3.6 229691-20
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference	- - %	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 4.9 229691-16 TP 20	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 2.3 229691-17 TP 21	TP 16 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 6.6 229691-18 TP 22	TP 17 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 8.1 229691-19 TP 23	TP 18 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 3.6 229691-20 TP 24
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth	- - %	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 4.9 229691-16 TP 20 0.0-0.1	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 2.3 229691-17 TP 21 0.2-0.3	TP 16 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 6.6 229691-18 TP 22 0.1-0.2	TP 17 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 8.1 229691-19 TP 23 0.6-0.7	TP 18 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 3.6 229691-20 TP 24 0.2-0.3
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled	- - %	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 4.9 229691-16 TP 20 0.0-0.1 29/10/2019	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 2.3 229691-17 TP 21 0.2-0.3 29/10/2019	TP 16 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 6.6 229691-18 TP 22 0.1-0.2 29/10/2019	TP 17 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 8.1 229691-19 TP 23 0.6-0.7 29/10/2019	TP 18 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 3.6 229691-20 TP 24 0.2-0.3 29/10/2019
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled Type of sample	- - %	TP 13 0.4-0.5 29/10/2019 Soil 31/10/2019 01/11/2019 4.9 229691-16 TP 20 0.0-0.1 29/10/2019 Soil	TP 14 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 2.3 229691-17 TP 21 0.2-0.3 29/10/2019 Soil	TP 16 0.1-0.2 29/10/2019 Soil 31/10/2019 01/11/2019 6.6 229691-18 TP 22 0.1-0.2 29/10/2019 Soil	TP 17 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 8.1 229691-19 TP 23 0.6-0.7 29/10/2019 Soil	TP 18 0.0-0.1 29/10/2019 Soil 31/10/2019 01/11/2019 3.6 229691-20 TP 24 0.2-0.3 29/10/2019 Soil

Moisture			
Our Reference		229691-21	229691-22
Your Reference	UNITS	DUP A	DUP B
Depth		-	-
Date Sampled		29/10/2019	29/10/2019
Type of sample		Soil	Soil
Date prepared	-	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019
Moisture	%	5.7	8.5

Asbestos ID - soils						
Our Reference		229691-1	229691-3	229691-4	229691-6	229691-7
Your Reference	UNITS	TP 1	TP 3	TP 4	TP 7	TP 8
Depth		0-0.1	0.1-0.2	0.2-0.3	0.0-0.1	0.5-0.6
Date Sampled		04/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Sample mass tested	g	Approx. 30g				
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils						
Our Reference		229691-8	229691-10	229691-12	229691-13	229691-15
Your Reference	UNITS	TP 10	TP 12	TP 14	TP 16	TP 18
Depth		0.1-0.2	0.2-0.3	0.0-0.1	0.1-0.2	0.0-0.1
Date Sampled		29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Sample mass tested	g	Approx. 40g	Approx. 35g	Approx. 35g	Approx. 35g	Approx. 25g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Asbestos ID - soils						
Our Reference		229691-17	229691-19	229691-20		
Your Reference	UNITS	TP 21	TP 23	TP 24		
Depth		0.2-0.3	0.6-0.7	0.2-0.3		
Date Sampled		29/10/2019	29/10/2019	29/10/2019		
Type of sample		Soil	Soil	Soil		
Date analysed	-	01/11/2019	01/11/2019	01/11/2019		
Sample mass tested	g	Approx. 30g	Approx. 30g	Approx. 30g		
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks		
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected		
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected		

Misc Inorg - Soil						
Our Reference		229691-1	229691-3	229691-7	229691-10	229691-12
Your Reference	UNITS	TP 1	TP 3	TP 8	TP 12	TP 14
Depth		0-0.1	0.1-0.2	0.5-0.6	0.2-0.3	0.0-0.1
Date Sampled		04/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
pH 1:5 soil:water	pH Units	9.2	6.5	6.0	5.5	6.1
Misc Inorg - Soil						
Our Reference		229691-15	229691-17	229691-19		
Your Reference	UNITS	TP 18	TP 21	TP 23		
Depth		0.0-0.1	0.2-0.3	0.6-0.7		
Date Sampled		29/10/2019	29/10/2019	29/10/2019		
Type of sample		Soil	Soil	Soil		

01/11/2019

01/11/2019

6.1

.

_

pH Units

01/11/2019

01/11/2019

6.6

01/11/2019

01/11/2019

6.1

Date prepared

Date analysed

pH 1:5 soil:water

CEC				
Our Reference		229691-1	229691-7	229691-12
Your Reference	UNITS	TP 1	TP 8	TP 14
Depth		0-0.1	0.5-0.6	0.0-0.1
Date Sampled		04/10/2019	29/10/2019	29/10/2019
Type of sample		Soil	Soil	Soil
Date prepared	-	04/11/2019	04/11/2019	04/11/2019
Date analysed	-	04/11/2019	04/11/2019	04/11/2019
Exchangeable Ca	meq/100g	37	9.7	5.6
Exchangeable K	meq/100g	0.5	0.9	0.9
Exchangeable Mg	meq/100g	4.6	3.5	3.4
Exchangeable Na	meq/100g	0.12	<0.1	<0.1
Cation Exchange Capacity	meq/100g	42	14	10

ESP/CEC		
Our Reference		229691-17
Your Reference	UNITS	TP 21
Depth		0.2-0.3
Date Sampled		29/10/2019
Type of sample		Soil
Date prepared	-	04/11/2019
Date analysed	-	04/11/2019
Exchangeable Ca	meq/100g	4.4
Exchangeable K	meq/100g	0.2
Exchangeable Mg	meq/100g	5.1
Exchangeable Na	meq/100g	0.70
Cation Exchange Capacity	meq/100g	10
ESP	%	7

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
• • • •	
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	229691-3
Date extracted	-			31/10/2019	1	31/10/2019	31/10/2019		31/10/2019	31/10/2019
Date analysed	-			01/11/2019	1	01/11/2019	01/11/2019		01/11/2019	01/11/2019
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	91	97
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	91	97
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	76	79
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	94	98
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	97	104
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	95	102
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	96	106
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	75	1	89	89	0	95	87

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	12	31/10/2019	31/10/2019			[NT]
Date analysed	-			[NT]	12	01/11/2019	01/11/2019			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	12	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	12	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-016	[NT]	12	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-016	[NT]	12	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-016	[NT]	12	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-016	[NT]	12	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-016	[NT]	12	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-014	[NT]	12	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	12	89	90	1		[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	229691-3
Date extracted	-			31/10/2019	1	31/10/2019	31/10/2019		31/10/2019	31/10/2019
Date analysed	-			01/11/2019	1	01/11/2019	01/11/2019		01/11/2019	01/11/2019
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	130	130
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	126	111
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	123	71
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	130	130
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	126	111
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	123	71
Surrogate o-Terphenyl	%		Org-003	79	1	91	94	3	118	94

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	12	31/10/2019	31/10/2019			
Date analysed	-			[NT]	12	01/11/2019	01/11/2019			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	12	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	12	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	12	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	12	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	12	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	12	<100	<100	0		
Surrogate o-Terphenyl	%		Org-003	[NT]	12	81	78	4	[NT]	[NT]

QUALITY CONTROL: PAHs in Soil						Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	229691-3	
Date extracted	-			31/10/2019	1	31/10/2019	31/10/2019		31/10/2019	31/10/2019	
Date analysed	-			01/11/2019	1	01/11/2019	01/11/2019		01/11/2019	01/11/2019	
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	108	101	
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	98	
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	108	101	
Anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	108	99	
Pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	101	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	96	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	1	<0.05	<0.05	0	100	87	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	102	1	103	102	1	109	101	

QUALI	TY CONTRC	L: PAHs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	12	31/10/2019	31/10/2019			[NT]
Date analysed	-			[NT]	12	01/11/2019	01/11/2019			[NT]
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	12	0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	12	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	12	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	12	109	105	4		[NT]

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	229691-3	
Date extracted	-			31/10/2019	1	31/10/2019	31/10/2019		31/10/2019	31/10/2019	
Date analysed	-			01/11/2019	1	01/11/2019	01/11/2019		01/11/2019	01/11/2019	
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	114	112	
НСВ	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	98	92	
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	94	
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	103	
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	98	
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	99	
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	124	106	
Endrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	99	
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	96	
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	94	
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	95	1	94	97	3	98	94	

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	12	31/10/2019	31/10/2019			[NT]	
Date analysed	-			[NT]	12	01/11/2019	01/11/2019			[NT]	
alpha-BHC	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
НСВ	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
beta-BHC	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
gamma-BHC	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Heptachlor	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
delta-BHC	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Aldrin	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
gamma-Chlordane	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
pp-DDE	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Dieldrin	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Endrin	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Endosulfan II	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
pp-DDD	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
pp-DDT	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Methoxychlor	mg/kg	0.1	Org-012/017	[NT]	12	<0.1	<0.1	0		[NT]	
Surrogate TCMX	%		Org-012/017	[NT]	12	101	98	3		[NT]	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	229691-3
Date extracted	-			31/10/2019	1	31/10/2019	31/10/2019		31/10/2019	31/10/2019
Date analysed	-			01/11/2019	1	01/11/2019	01/11/2019		01/11/2019	01/11/2019
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	111	105
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	95	1	94	97	3	98	94

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	12	31/10/2019	31/10/2019			
Date analysed	-			[NT]	12	01/11/2019	01/11/2019			
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	12	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	12	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	12	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	12	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	12	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	12	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	12	<0.1	<0.1	0		
Surrogate TCMX	%		Org-006	[NT]	12	101	98	3		

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	229691-3
Date prepared	-			31/10/2019	1	31/10/2019	31/10/2019		31/10/2019	31/10/2019
Date analysed	-			31/10/2019	1	31/10/2019	31/10/2019		31/10/2019	31/10/2019
Arsenic	mg/kg	4	Metals-020	<4	1	5	5	0	107	85
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	108	85
Chromium	mg/kg	1	Metals-020	<1	1	9	10	11	111	85
Copper	mg/kg	1	Metals-020	<1	1	23	23	0	109	101
Lead	mg/kg	1	Metals-020	<1	1	19	17	11	112	88
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	106	108
Nickel	mg/kg	1	Metals-020	<1	1	10	9	11	109	89
Zinc	mg/kg	1	Metals-020	<1	1	48	48	0	110	78

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	12	31/10/2019	31/10/2019			[NT]
Date analysed	-			[NT]	12	31/10/2019	31/10/2019			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	12	5	5	0		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	12	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	12	15	14	7		[NT]
Copper	mg/kg	1	Metals-020	[NT]	12	15	15	0		[NT]
Lead	mg/kg	1	Metals-020	[NT]	12	14	16	13		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	12	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	12	7	8	13		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	12	25	27	8	[NT]	[NT]

QUALITY	QUALITY CONTROL: Misc Inorg - Soil							Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]		
Date prepared	-			01/11/2019	7	01/11/2019	01/11/2019		01/11/2019	[NT]		
Date analysed	-			01/11/2019	7	01/11/2019	01/11/2019		01/11/2019	[NT]		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	7	6.0	6.0	0	102	[NT]		

QU	ALITY CONT	ROL: CE	C			Duj	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			04/11/2019	[NT]		[NT]	[NT]	04/11/2019	
Date analysed	-			04/11/2019	[NT]		[NT]	[NT]	04/11/2019	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	106	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	107	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	98	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	98	

QUAL	ITY CONTR	OL: ESP/	CEC			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			04/11/2019	[NT]		[NT]	[NT]	04/11/2019	
Date analysed	-			04/11/2019	[NT]		[NT]	[NT]	04/11/2019	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	106	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	107	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	98	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	98	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sam When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Report Comments

Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample.

Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples requested for asbestos testing were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Geoenviro Consultancy Pty Ltd
Attention	Steven Goss

Sample Login Details		
Your reference	JC16261F-r1	
Envirolab Reference	229691	
Date Sample Received	30/10/2019	
Date Instructions Received	30/10/2019	
Date Results Expected to be Reported	06/11/2019	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	22 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	21.4
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	Misc Inorg - Soil	CEC	ESP/CEC
TP 1-0-0.1	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓	
TP 2-0.0-0.1	\checkmark	✓	✓							
TP 3-0.1-0.2	✓	✓	✓	✓	✓	✓	✓	✓		
TP 4-0.2-0.3	\checkmark	\checkmark	✓	✓	✓	\checkmark	\checkmark			
TP 5-0.1-0.2				\checkmark	\checkmark	\checkmark				
TP 7-0.0-0.1	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	✓			
TP 8 -0.5-0.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	
TP 10-0.1-0.2	\checkmark	✓	✓	\checkmark	✓	\checkmark	✓			
TP 11-0.0-0.1				\checkmark	✓	✓				
TP 12-0.2-0.3	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓		
TP 13-0.4-0.5	 ✓ 	✓	✓							
TP 14-0.0-0.1	 ✓ 	\checkmark	✓	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	
TP 16 -0.1-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
TP 17 -0.0-0.1				\checkmark	\checkmark	✓				
TP 18 -0.0-0.1	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	✓	\checkmark		
TP 20 -0.0-0.1				\checkmark	\checkmark	\checkmark				
TP 21 -0.2-0.3	✓	✓	✓	✓	✓	✓	✓	✓		✓
TP 22 -0.1-0.2	✓	✓	✓							
TP 23 -0.6-0.7	✓	✓	✓	\checkmark	✓	✓	✓	✓		
TP 24 -0.2-0.3	✓	\checkmark	✓	\checkmark	\checkmark	✓	✓			
DUP A	✓	✓	✓	✓	✓	✓				
DUP B	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓				

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

¢

Laboratory Test Request/Chain of Custody Record

Job Details Job Number: JC16261F-r1				Samp	ole Da	ate: 2	9/10/2	2019								abora name				rvice	s Pty	Ltd			
Client:	•			Samp												2 Ash					•				
Project: Proposed Landscaping Developmen	t			Proje			er: SL								swood										
Location: St Francis Catholic College, Jardin	e Drive,	Edmon	dson Park	Store										Conta	act: T	ania N	lotar	is							
Sampling Details			Sample Type			Test	Requi	ired (\)										Test	: Perf	forme	d(X)		_	
Location	Depth	(m)	Soil Water					T			<u> </u>				r			_							
				Metals (As Cd Cr Cu Pb Zn Ni Hg)	OCP / PCB	Combination 12a	Combination 5a	Combination 5	TRH/PAH/BTEX		Hq	EC	CEC	CI / SO4	Resistivity										Keep Sample
	From	То		Meta]																	Keé
1 TP 1	0.00	0.10	DG					I					\angle												
7 TP 2	0.10	0.20	DG						\land									$\left(\right)$		Ба	virolat	L Con			
3 TP 3	0.20	0.30	DG		-								T				Er	VIROL	he		12	Ashle	y 5t -		
Ч ТР 4	0.10	0.20	DG												-			a) '	1	Chais	wood : : (02) :	NSW 2 9910 F	067 :200		
TP 5	0.00	0.10	DG						_								Jo	b No	÷ 2	191	olui				
6 TP 7	0.50	0.60	DG				\triangleleft	I												1.21		110			
	0.70	0.80	DG			_							\land				Da Tu	ne Re	reive		- 0	11 1			
8 TP 10	0.10	0.20	DG				\square	I									Re	sceive	Hby:	(m)	•	1			
୍ ୩ TP 11	0.00	0.10	DG																	pbier					-
10 TP 12	0.20	0.30	DG														00	beiing		cepac	ĸ				
(/ TP 13	0.40	0.50	DG														- 56	сипту			ken/N				
	0.00	0.10	DG																		1				
 TP 16	0.10	0.20	DG																						
(4 TP 17	0.00	0.10	DG																					Τ	
1) TP 18	0.00	0.10	DG	r f														-						Т	
Relinquished by	_			Rece						enuh															
Laboratory Name	Signatu	ire	Date	Labo	ratory	1 K	n	MUN	<u>١Щ</u>			_			Name	e 				Sig	natur	e	Da		
GeoEnviro Consultancy Steven Goss	Žт,	on_	30/10/2019				_								$(\mathcal{L}$	<u>a (n</u>		<u> </u>	10		۱Y		13	<u>4</u> 1	214
																M	MU	201	<u>M</u>	+	Mil	ŧт		ऽ५ि)
			L									-								<u></u> '			<u> </u>		
Legend - DB Disturbed Sample (Bulk, Plastic bag) DS Disturbed Sample (Small, Plastic bag) DG Disturbed Sample (Glass Jar) STP Standard Penetration Test Sample	U75 Und WG Wate	isturbed Se er Sample,	ample, 50mm Tube ample, 75mm Tube Amber Glass Jar Plastic Bottle													o Sample ard Sam									

c:\\Lab\worksheet\w019-1

Page 1 of 2

5

Laboratory Test Request/Chain of Custody Record

229691.

Job Details Job Number: JC16261						Samr	le Da	ate: 2	9/10/2	2019										Detai		vices	Ptv [1	rd			
Client:				Sample Date: 29/10/2019 Laboratory name: Envirolab Services Pty Ltd Sampled By: SG Address: 12 Ashley Street																							
Project: Proposed Lan	dscaping Developmen	t				Proje											swood										
Location: St Francis C	atholic College, Jardin	e Drive,	Edmon	dson Pa	ark	Store										Cont	act: Ta	ania N	lotari	s							
Sampling Details				Samp	le Type			Test	Requ	ired ()									-	Test	Perfo	rmed(X)		_	
Location		Depth	(m)	Soil	Water											_											
						4B)										-											i
				1		Ĩ		2a	g.	ъ С	×.																l
				1		Cu Pb Zn Nị Hg)	/ PCB	Combination 12a	Combination 5a	Combination 5	TRH/PAH/BTEX		.,		ц.	4	ξ										l
						õ	ď.	atio	atio	nati	Ξ		Hq	ы	- S	S	stiv		Ì								<u>B</u>
						0 8	ОСР	pin	Ē	iđ	ğ		÷	"	CEC/ESP	CI / SO4	Resistivity										ag a
						(As (0	E C	5	Ğ	臣				Ŭ		"									1	ŝ
		F			1	Metals (As Cd Cr		0						1													Keep Sample
i/		From	To		1	M														_							×
<u>i6</u> TP		0.00	0.10	DG								+					_				_				{		
<u> 1</u> TP		0.20	0.30	DG																							
	22	0.10	0.20	DG	ļ																						
	23	0.60	0.70	DG																							⊢
10TP	24	0.20	0.30	DG																							
1 DU	PA	-	-	DG																	_	•					
77. DU	P B	-	-	DG																							
														_													1
																-							1				
	<u> </u>																				-					_	
	<u> </u>																										
Relinquished by						Rece	ived	By (TIME	1 1	nui	u					_				1				1		
	Name	Signatu		Date			ratory		1 10	il n	'n						Name	Э				Signa	ature		Date		
	Steven Goss	8MG	on_	30/10	0/2019									ΛI					111	44		30	101	9			
		8								_					_				Mr A	Ich	2	Uy.				<u>1, </u>	· ·
									_										r (\overline{U}		/_	ŴŰ	1	<u>[</u> 5	भूर	. 1
Legend																											
	DB Disturbed Sample (Bulk, Plastic bag) U50 Undisturbed Sample, 50mm Tube Y Keep Sample																										
DS Disturbed Sample (Small, Pl		U75 Und															N Disc	ard Sam	ple								
DG Disturbed Sample (Glass Ja		WG Wat																									
STP Standard Penetration Test S	sample	WP Wate	er Sample,	Plastic Bo	we		_									-											

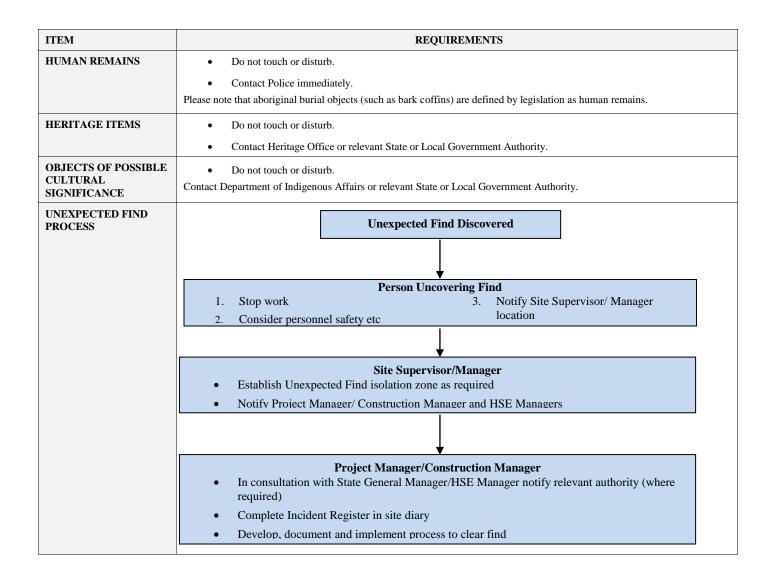
c:\\Lab\worksheet\w019-1

Page 2 of 2

APPENDIX E

Unexpected Finds Protocol

GeoEnviro Consultancy Pty Ltd Unit 5, 39-41 Fourth Avenue, Blacktown, NSW 2148, Australia


PO Box 1543, Macquarie Centre. North Ryde, NSW 2113

ABN 62 084 294 762 Tel: (02) 9679 8733 Fax : (02) 9679 8744

UNEXPECTED FINDS PROTOCOL

REQUIREMENTS

ITEM	REQUIR	EMENTS									
DEFINITION	An unexpected find may be identified as a result of site activi site including preparatory site works.	ty, for example through earthworks and movement of plant on									
SITE SUPERVISOR	On being notified of an Unexpected Find, the Principal Contra	ctor must:									
	• Stop work & notify the site manager/HSE coordinate	or as soon as practically possible.									
	• Ensure the find is not further disturbed.										
	• Ensure all personnel are removed from the area with the exception of personnel required to isolate or make safe the area.										
		quired to prevent or minimise exposure risks for site personnel, Persons are not to expose themselves to further risk whilst									
	Assess the requirement to evacuate areas or the entir	e site.									
	 Co-ordinate site or area evacuation as assessed. Note as to the safety of personnel or the environment. 	e: It is preferable to evacuate the whole site if there is any doubt									
	 As soon as the safety of personnel, environment & the site is secured the Site Manager/Supervisor their relevant HSE Manager, Project Manager & Construction Manager. 										
	• As soon as practically possible record the events asso	ociated with the unexpected find.									
PROJECT MANAGER	The Project Manager and/or HSE Manager in consultation with the relevant General Manager notify regulatory authorit required.										
	Establish a risk based process for managing clearance of the unexpected find & establishing incident investigation.										
	The Project Manager or HSE Manager must also ensure that the find is reported to the Principal.										
	This may be by verbal communication.										
UNEXPLODED	Do not touch or disturb.										
ORDNANCE	Contact Police immediately.										
UNEXPECTED	• This may include power, gas or fuel.										
SERVICES	• Do not touch or further disturb.										
(LIVE OR DISUSED)	• The area must be immediately designated a non-smo	king and "no naked flames" area.									
	• All nearby machinery should be turned off.										
	• Contact relevant governing authority.										
	• Contact appropriate trade supervisor.										
ASBESTOS OR OTHER CONTAMINANTS	Products made from asbestos cement not only include fibro sh and flue pipes, roofing shingles and gutters.	eeting (flat and corrugated), but items such as water, drainage									
	• Do not touch or further disturb.										
	• Isolate area (10 metre isolation zone required for asb	estos).									
	Contact hygienist.										
	Implement hygienist's recommendations.										
	If persons have been exposed arrange medical advice	ec/consultation i.e. possible asbestos fibre exposure will require more specifically to friable type asbestos rather than non friable									
	asbestos containing material however if any doubt exists treat as friable.										
	• Obtain clearance from hygienist prior to re-entering	area.									
	Non-Friable Asbestos	Friable Asbestos									
	Over 97% of the products in Australia were non-friable material in which the Asbestos fibres were bonded by cement, vinyl, resin or other similar material.										

APPENDIX F

Important Information about your Environmental Site Assessment Explanatory Notes

GeoEnviro Consultancy Pty Ltd

Unit 5, 39-41 Fourth Avenue, Blacktown, NSW 2148, Australia PO Box 1543, Macquarie Centre. North Ryde, NSW 2113

IMPORTANT INFORMATION REGARDING YOUR ENVIRONMENTAL SITE ASSESSMENT

This Environmental Assessment Report was performed in general conformance with our understanding of the guidelines by the Australian and New Zealand Conservation Council (ANZECC), the Office of Environment and Heritage (OEH) and the National Environmental Protection (Assessment of Site Contamination) Measure 1999 (amended 2013).

These accompanying notes have been prepared by GeoEnviro Consultancy Pty Ltd, using guidelines prepared by ASFE; The Association of Engineering Firms Practising in the Geosciences. The notes are offered as an aid in the interpretation of your environmental site assessment report.

REASONS FOR AN ENVIRONMENTAL SITE ASSESSMENT

Environmental site assessments are typically, though not exclusively, performed in the following circumstances:

- As a pre- acquisition assessment on behalf of either a purchaser or a vendor, when a property is to be sold
- As a pre-development assessment, when a property or area of land is to be redeveloped, or the land use has change, eg from a factory to a residential subdivision
- As a pre-development assessment of greenfield sites, to establish baseline conditions and assess environmental, geological and hydrological constraints to the development of, eg, a landfill
- As an audit of the environmental effects of previous and present site usage

Each circumstance requires a specific approach to the assessment of soil and groundwater contamination. In all cases the objective is to identify and if possible, quantify the risks which unrecognised contamination poses to the ongoing or proposed activity. Such risk may be both financial (clean-up costs or limitations in site use) and physical (health risks to site users or the public).

ENVIRONMENTAL SITE ASSESSMENT LIMITATIONS

Although information provided by an environmental site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment may not detect all contamination within a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which did not show signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur, only the most likely contaminants are screened.

AN ENVIRONMANTAL SITE ASSESSMENT REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

Your environmental assessment report should not be used;

- When the nature of the proposed development is changed, eg, if a residential development is proposed, rather than a commercial development
- When the size or configuration of the proposed development is altered, eg, if a basement is added
- When the location or orientation of the proposed structure is modified
- When there is a change of land ownership, or
- For application to an adjacent site

In order to avoid costly problems, you should ask your consultant to assess any changes in the project since the assessment and the implications, if any, to recommendations made in the assessment.

ENVIRONMENTAL SITE ASSESSMENT FINDINGS ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual sub-surface conditions only at those points where samples are taken, when they are taken. Data obtained from the sampling and subsequent laboratory analyses are interpreted by geologists, engineers or scientist and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on any proposed development and appropriate remediation measures. Actual conditions may differ from those inferred, because no professional, no matter how qualified and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, however, steps can be taken to help minimise the impact. For this reason, site owner should retain the services of their consultants throughout the development stage of the project in order to identify variances, conduct additional tests which may be necessary and to recommend solutions to problems encountered on site.

Soil and groundwater contamination is a field in which legislation and interpretation of legislation by government departments is changing rapidly. Whilst every attempt is made by GeoEnviro Consultancy Pty Ltd to be familiar with current policy, our interpretation of the investigation findings should not be taken to be that of the relevant authority. When approval from a statutory authority is required for a project, that approval should be directly sought.

STABILITY OF SUB-SURFACE CONDITIONS

Sub-surface conditions can change by natural processes and site activities. As an environmental site assessment is based on conditions existing at the time of the investigation, project decisions should not be based on environmental site assessment data which may have been affected by time. The consultant should be requested to advise if additional tests are required.

ENVIRONMENTAL SITE ASSESSMENTS ARE PERFORMED FOR SPECIFIC PURPOSES AND CLIENTS

Environmental site assessments are prepared in response to a specific scope of work required to meet the specific needs or specific individuals. An assessment prepared for a consulting civil engineer may not be adequate to a construction contractor or another civil engineer.

An assessment should not be used by other persons for any purpose, or by the client for a different purposes. No individual, other than the client, should apply an assessment, even for its intended purposes, without first conferring with the consultant. No person should apply an assessment for any purposes other than that originally contemplated, without first conferring with the consultant.

MISINTERPRETATION OF ENVIRONMENTAL SITE ASSESSMENTS

Costly problems can occur when design professionals develop plans based on misinterpretation of an environmental site assessment. In order to minimise problems, the environmental consultant should be retained to work with appropriate design professionals, to explain relevant findings and to review the adequacy of plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FORM THE REPORT

Borehole and test pit logs are prepared by environmental scientists, engineers or geologist, based upon interpretation of field conditions and laboratory evaluation of field samples. Field logs normally provided in our reports and these should not be redrawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however, contractors can still misinterpret the logs during bid preparation if separated from the test of the assessment. Should this occur, delays and disputes , or unanticipated costs may result.

To reduce the likelihood of boreholes and test pit logs misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of sub-surface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations, such as contractors.

READ RESPONSIBILITY CLAUSES CLOSELY

An environmental site assessment is based extensively on judgement and opinion, therefore, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claim being lodged against consultants. In order to aid in prevention of this problem, model clauses have been developed for use in written transmittals. These are definitive clauses, designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment and you are encouraged to read them closely. Your consultant will be happy to give full and frank answers to any questions you may have.

GeoEnviro Consultancy Pty Ltd

EXPLANATORY NOTES

Introduction

These notes have been provided to amplify the geotechnical report with regard to investigation procedures, classification methods and certain matters relating to the Discussion and Comments sections. Not all notes are necessarily relevant to all reports.

Geotechnical reports are based on information gained from finite sub-surface probing, excavation, boring, sampling or other means of investigation, supplemented by experience and knowledge of local geology. For this reason they must be regarded as interpretative rather than factual documents, limited to some extent by the scope of information on which they rely.

Description and Classification Methods

The methods the description and classification of soils and rocks used in this report are based on Australian standard 1726, the SSA Site investigation Code, in general descriptions cover the following properties - strength or density, colour, structure, soil or rock type and inclusions. Identification and classification of soil and rock involves to a large extent, judgement within the acceptable level commonly adopted by current geotechnical practices.

Soil types are described according to the

predominating particle size, qualified by the grading or other particles present (eg sandy clay) on the following bases:

Soil Classification	Particle Size
Clay	Less than 0.002mm
Silt	0.002 to 0.6mm
Sand	0.6 to 2.00mm
Gravel	2.00m to 60.00mm

Soil Classification	Particle size
Clay	less than 0.002mm
Silt	0.002 to 0.06mm
Sand	0.06 to 2.00mm
Gravel	2.00mm to 60.00mm

Cohesive soils are classified on the basis of strength, either by laboratory testing or engineering examination. The strength terms are defined as follows:

Classification	Undrained Shear Strength kPa
Very Soft	Less than 12
Soft	12 - 25
Firm	25 - 50
Stiff	50 - 100
Very Stiff	100 - 200
Hard	Greater than 200

Non-cohesive soils are classified on the basis of relative density, generally from the results of standard penetration tests (SPT) or Dutch cone penetrometer test (CPT), as below:

Relative Dense	SPT 'N' Value	CPT Cone
	(blows/300mm)	Value (q _c -Mpa)
Very Loose	Less than 5	Less than 2
Loose	5 - 10	2 - 5
Medium Dense	10 - 30	5 - 15
Dense	30 - 50	15 - 25
Very Dense	> 50	> 25

Rock types are classified by their geological names, together with descriptive terms on degrees of weathering strength, defects and other minor components. Where relevant, further information regarding rock classification, is given on the following sheet.

Sampling

Sampling is carried out during drilling to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provided information on plasticity, grained size, colour, type, moisture content, inclusions and depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thin walled sample tube (normally know as U_{50}) into the soil and withdrawing a sample of the soil in a relatively undisturbed state. Such Samples yield information on structure and strength and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils. Details of the type and method of sampling are given in the report.

Field Investigation Methods

The following is a brief summary of investigation methods currently carried out by this company and comments on their use and application.

Hand Auger Drilling

The borehole is advanced by manually operated equipment. The diameter of the borehole ranges from 50mm to 100mm. Penetration depth of hand augered boreholes may be limited by premature refusal on a variety of materials, such as hard clay, gravels or ironstone.

Test Pits

These are excavated with a tractor-mounted backhoe or a tracked excavator, allowing close examination of the insitu soils if it is safe to descend into the pit. The depth of penetration is limited to about 3.0m for a backhoe and up to 6.0m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Care must be taken if construction is to be carried out near, or within the test pit locations, to either adequately recompact the backfill during construction, or to design the structure or accommodate the poorly compacted backfill.

Large Diameter Auger (eg Pengo)

The hole is advanced by a rotating plate or short spiral auger generally 300mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 05m) and are disturbed, but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers and is usually supplemented by occasional undisturbed tube sampling.

Continuous Spiral Flight Augers

The hole is advanced by using 90mm - 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling or insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the augers flights, but they are very disturbed and may be highly mixed with soil of other stratum.

Information from the drilling (as distinct from specific sampling by SPT or undisturbed samples) is of relatively low reliability due to remoulding, mixing or softening of samples by ground water, resulting in uncertainties of the original sample depth.

Continuous Spiral Flight Augers (continued)

The spiral augers are usually advanced by using a V - bit through the soil profile refusal, followed by Tungsten Carbide (TC) bit, to penetrate into bedrock. The quality and continuity of the bedrock may be assessed by examination of the recovered rock fragments and through observation of the drilling penetration resistance.

Non - core Rotary Drilling (Wash Boring)

The hole is advanced by a rotary bit, with water being pumped down the drill rod and returned up the annulus, carrying the cuttings, together with some information from the "feel" and rate of penetration.

Rotary Mud Stabilised Drilling

This is similar to rotary drilling, but uses drilling mud as a circulating fluid, which may consist of a range of products, from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg SPT and U_{50} samples).

Continuous Core Drilling

A continuous core sample is obtained using a diamond tipped core barrel. Providing full core recovery is achieved (which is not always possible in very weak rock and granular soils) this technique provides a very reliable (but relatively expensive) method of investigation. In rocks an NMLC triple tube core barrel which gives a core of about 50mm diameter, is usually used with water flush.

Portable Proline Drilling

This is manually operated equipment and is only used in sites which require bedrock core sampling and there is restricted site access to truck mounted drill rigs. The boreholes are usually advanced initially using a tricone roller bit and water circulation to penetrate the upper soil profile. In some instances a hand auger may be used to penetrate the soil profile. Subsequent drilling into bedrock involves the use of NMLC triple tube equipment, using water as a lubricant.

Standard Penetration Tests

Standard penetration tests are used mainly in non-cohesive soils, but occasionally also in cohesive soils, as a means of determining density or strength and of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289 "Methods of testing Soils for Engineering Purpose"- Test F31.

The test is carried out in a borehole by driving a 50mm diameter split sample tube under the impact of a 63Kg hammer with a free fall of 769mm. It is normal for the tube to be driven in three successive 150mm increments and the "N" value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rocks, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

In a case where full penetration is obtained with successive blows counts for each 150mm of, say 4, 6, and 7 blows.

In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm.

as 15,30/40mm

The results of the tests can be related empirically to the engineering properties of the soil. Occasionally the test

methods is used to obtain samples in 50mm diameter thin walled samples tubes in clays. In these circumstances, the best results are shown on the bore logs in brackets.

Dynamic Cone Penetration Test

A modification to the SPT test is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The cone can be continuously driven into the borehole and is normally used in areas with thick layers of soft clays or loose sand. The results of this test are shown as 'N_c' on the bore logs, together with the number of blows per 150mm penetration.

Cone Penetrometer Testing and Interpretation

Cone penetrometer testing (sometimes referred to as Dutch Cone-CPT) described in this report, has been carried out using an electrical friction cone penetrometer and the test is described in Australian Standard 1289 test F5.1.

In the test, a 35mm diameter rod with cone tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig, which is fitted with a hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130mm long sleeve, immediately behind the cone. Transducer in the tip of the assembly are connected by electrical wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20mm per second) the information is output on continuous chart recorders. The plotted results in this report have been traced from the original records. The information provided on the charts comprises:

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone, expressed in Mpa.
- Sleeve friction the frictional force on the sleeve divided by the surface area, expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed in percentage.

There are two scales available for measurement of cone resistance. The lower "A" scale (0-5Mpa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main "B" scale (0-50Mpa) is less sensitive and is shown as a full line.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative frictions in clays than in sands. Friction ratios of 1% to 2% are commonly encountered in sands and very soft clays, rising to 4% to 10% in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:

 q_c (Mpa) = (0.4 to 0.6) N (blows per 300mm)

In clays the relationship between undrained shear strength and cone resistance is commonly in the range:

$$q_c = (12 \text{ to} 18) C_u$$

Interpretation of CPT values can also be made to allow estimate of modulus or compressibility values to allow calculation of foundation settlements. Inferred stratification, as shown on the attached report, is assessed from the cone and friction traces, from experience and information from nearby boreholes etc.

Cone Penetrometer Testing and Interpretation continued

This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties and where precise information or soil classification is required, direct drilling and sampling may be preferable.

Portable Dynamic Cone Penetrometer (AS1289)

Portable dynamic cone penetrometer tests are carried out by driving a rod in to the ground with a falling weight hammer and measuring the blows per successive 100mm increments of penetration.

There are two similar tests, Cone Penetrometer (commonly known as Scala Penetrometer) and the Perth Sand Penetrometer. Scala Penetrometer is commonly adopted by this company and consists of a 16mm rod with a 20mm diameter cone end, driven with a 9kg hammer, dropping 510mm (AS 1289 Test F3.2).

Laboratory Testing

Laboratory testing is carried out in accordance with Australian Standard 1289 "Methods of Testing Soil for Engineering Purposes". Details of the test procedures are given on the individual report forms.

Engineering Logs

The engineering logs presented herein are an engineering and/or geological interpretation of the sub-surface conditions and their reliability will depend to some extent on frequency of sampling and the method of drilling. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, however, this is not always practicable or possible to justify economically. As it is, the boreholes represent only a small sample of the total sub-surface profile. Interpretation of the information and its application to design and construction should take into account the spacing of boreholes, frequency of sampling and the possibility of other than "straight line" variations between the boreholes.

Ground water

Where ground water levels are measured in boreholes, there are several potential problems:

- In low permeability soils, ground water although present, may enter the hole slowly, or perhaps not at all, during the investigation period.
- ➤ A localised perched water table may lead to a erroneous indication of the true water table.
- Water table levels will vary from time to time, due to the seasons or recent weather changes. They may not be the same at the time of construction as indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole if any water observations are to be made.

More reliable measurements can be made by installing stand pipes, which are read at intervals over several days, or weeks for low permeability soils. Piezometers sealed in a particular stratum may be interference from a perched water table or surface water.

Engineering Reports

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal is changed, say to a twenty storey building. If this occurs, the company will be pleased to review the report and sufficiency of the investigation work. Every care is taken with the report as it relates to interpretation of sub-surface conditions, discussions of geotechnical aspects and recommendations or suggestions for design and construction. However, the company cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on bore spacing and sampling frequency.
- Changes in policy or interpretation of policy by statutory authorities.
- The actions of contractors responding to commercial pressures.

If these occur, the company will be pleased to assist with investigation or advice to resolve the matter.

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the company request immediate notification. Most problems are much more readily resolved when conditions are exposed than at some later stage, well after the event.

Reproduction of Information for Contractual Purposes Attention is drawn to the document "Guidelines for the Provision of Geotechnical Information trader Documents", published by the Institute of Engineers Australia. Where information obtained for this investigation is provided for tender purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would be pleased to assist in this regard and/or make additional copies of the report available for contract purpose, at a nominal charge.

Site Inspection

The Company will always be pleased to provide engineering inspection services for geotechnical aspect of work to which this report is related. This could range from a site visit to confirm that the conditions exposed are as expected, to full time engineering presence on site

Review of Design

Where major civil or structural developments are proposed, or where only a limited investigation has been completed, or where the geotechnical conditions are complex, it is prudent to have the design reviewed by a Senior Geotechnical Engineer.