APPENDIX 'C'

LABORATORY TEST CERTIFICATES

Unit 1, 5 Brendan Drive (PO Box 2011), Nerang Q 4211 Q (07) 5596 1599 F (07) 5527 2027

ABN 51 009 878 899

www.morrisongeo.com.au

Quality of Materials Report

Client : WOOD & GRIEVE ENGINEERS Report Number:

Address:

Project Name : GEOTECHNICAL INVESTIGATION

Project Number: GE18/144

Location: TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF

Report Number: **GE18-144.1/1**Report Date: **15/08/2018**

Order Number :

Test Method : AS1289.3.6.1

Page 1 of 1

Sample Number: 245179

Sampling Method : -

Sampled By: LEIGH BEXLEY
Date Sampled: 3/08/2018
Date Tested: 13/08/2018

Material Type : DISTURBED SAMPLE

Material Source : INSITU

Remarks:

SAMPLE LOCATION
BH 3

1.5 - 2.5 DISTURBED

SAMPLE

Test Number :

Lot Number:

Specification Number:

AS Sieve Size(mm)	Percent Passing	Specification Limits							
100			100 FINE SAND	SAND MEDUM SAND	COARSE SAND	FINE GRAVEL	GRAVEL MEDIUM GRAVEL	COARSE GRAVEL	COBBLES
75.0							/		
63.0			90				p p		
53.0			80						
37.5			00				8		
26.5	100		70						
19.0	96								
16.0			Percent Passing(%)						
13.2	88		g 50						
9.5	80		cent						
6.7	75		₫ 40						
4.75	71		30						
2.36	66								
1.18	63		20						
0.600	60								
0.425	58		10						
0.300	56		0 = 6	E E E	E É E	E E	E .	E E	E E E
0.150	52		. 0.150 mm	0.200 mm- 0.300 mm-	1.18 mm.	2.30 mm 4.75 mm	8 S mm	97.6 mm	76 mm 160 mm
0.075	50					AS Sieve Size(mm)			
	*	•	Test	Method	Results				

		Test Method	Results		
Liquid Limit (%):		AS1289.3.1.2	47	Shrinkage Comments :	cracking and curling
Plastic Limit (%):		AS1289.3.2.1	33	Mould Length (mm) :	250.4
Plasticity Index (%):		AS1289.3.3.1	14	Sample History	
Linear Shrinkage (%):		AS1289.3.4.1	8.5		
Soil Description :	•		•	•	

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

IAN MASMAN - MANAGER NATA Accreditation Number 1169

Unit 1, 5 Brendan Drive (PO Box 2011), Nerang Q 4211, R (07) 5596 1599 F (07) 5527 2027 ABN 51 009 878 899

www.morrisongeo.com.au

Quality of Materials Report

Client : **WOOD & GRIEVE ENGINEERS** Report Number:

Address: Project Name :

GEOTECHNICAL INVESTIGATION

Project Number : GE18/144

TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF Location:

GE18-144.2/1 Report Date: 15/08/2018

Order Number:

Test Method: AS1289.3.6.1

Page 1 of 1

Sample Number: 245181

Sampling Method :

Sampled By: LEIGH BEXLEY Date Sampled : 3/08/2018 Date Tested: 13/08/2018 Material Type: DISTURBED Material Source: INSITU

Remarks:

SAMPLE LOCATION

BH 7 0.1 - 0.5**DISTURBED**

SAMPLE

Test Number:

Lot Number:

Specification Number:

AS Sieve Size(mm)	Percent Passing	Specification Limits													
100			100	FINE SAND	MEDIU	SAND M SAND	COARSE SAND		FINE GRAVEL		GRAVEL MEDIUM GRAVEL	COARSE	GRAVEL	COB	ILES
75.0								-							
63.0			90												
53.0			80												
37.5			00												
26.5			70						1						
19.0															
16.0			%)Buj												
13.2	100		S S SO												
9.5	99		Percent Passing(%)												
6.7	99		₫ 40												
4.75	99		30												
2.36	98														
1.18	97		20												
0.600	95		40												
0.425	94		10												
0.300	92		0	E	E E	E E	Ė	E E		E E	É	E	E E	E	E E
0.150	89		0.076 mm	0.150 mm	0.300 mm	0.426 mm 0.600 mm	1.10	2 mm 2 200 mm	4.76 mm	e e	8.5 mm	19.0 mm	37.5 mm 97.5 mm	76 mm	160 mm-
0.075	88							,	AS Sieve Size(mm)					

	Test Method	Results		
Liquid Limit (%):	AS1289.3.1.2	42	Shrinkage Comments :	cracking and curling
Plastic Limit (%):	AS1289.3.2.1	27	Mould Length (mm) :	250.1
Plasticity Index (%):	AS1289.3.3.1	15	Sample History	
Linear Shrinkage (%) :	AS1289.3.4.1	10		
Soil Description :	·	•	•	

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

IAN MASMAN - MANAGER NATA Accreditation Number 1169

Unit 1, 5 Brendan Drive (PO Box 2011), Nerang Q 4211, R (07) 5596 1599 F (07) 5527 2027 ABN 51 009 878 899

www.morrisongeo.com.au

Quality of Materials Report

Client : **WOOD & GRIEVE ENGINEERS** Report Number:

Address:

Project Name : Project Number : GE18/144

GEOTECHNICAL INVESTIGATION

TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF Location:

GE18-144.3/1 Report Date: 15/08/2018

Order Number:

Test Method: AS1289.3.6.1

Page 1 of 1

Sample Number: 245183

Sampling Method :

Sampled By: LEIGH BEXLEY Date Sampled : 3/08/2018 Date Tested : 13/08/2018 Material Type: BULK SAMPLE

Material Source : INSITU

Remarks:

SAMPLE L	OCATION						
BH 10							
1.0 - 1.5							
BU	JLK						
SAMPLE							
Test Number :							

Specification Number:

Lot Number:

AS Sieve Size(mm)	Percent Passing	Specification Limits							
100			100-	FINE SA	40		SAN MEDUM SAN		
75.0									
63.0			90-	<u> </u>	_	-	<u> </u>	_	0-
53.0			80-						
37.5									
26.5			70-						-
19.0			•						
16.0			Percent Passing(%)						
13.2	100		Pass 20						
9.5	99		rcent						
6.7	97		₫ 40						
4.75	96		30-						
2.36	94								
1.18	93		20-						
0.600	92		40						
0.425	91		10						
0.300	90		0-	£	E	E	E	Ę	Ę
0.150	88		0		0.150 mm	D.200 mm	0.300 mm	0.425 mm	0.600 mm
0.075	87								

		SAND			GRAVEL		COBBLES
	FINE SAND	MEDIUM SAND	COARSE SAND	FINE GRAVEL	MEDIUM GRAVEL	COARSE GRAVEL	
				1	1		
				TY			
_							
_							
-							
_							
-							
-							
	0.160 mm	0.300 mm - 0.300 mm - 0.426 mm -	1.18 mm	2.36 mm -	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	97.6 mm	25 EE 87 EE 87
	3	0.300 mm 0.300 mm	8 5	" 8		8	8 8
		0 0 0	0				

	Test Method	Results		
Liquid Limit (%):	AS1289.3.1.2	46	Shrinkage Comments :	cracking and curling
Plastic Limit (%):	AS1289.3.2.1	29	Mould Length (mm) :	250.1
Plasticity Index (%) :	AS1289.3.3.1	17	Sample History	
Linear Shrinkage (%) :	AS1289.3.4.1	12		
Soil Description :				

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

IAN MASMAN - MANAGER NATA Accreditation Number 1169

Unit 1, 5 Brendan Drive (PO Box 2011), Nerang Q 4211, R (07) 5596 1599 F (07) 5527 2027 ABN 51 009 878 899

www.morrisongeo.com.au

Quality of Materials Report

Client : **WOOD & GRIEVE ENGINEERS**

Address:

Project Name : **GEOTECHNICAL INVESTIGATION**

Project Number : GE18/144

Location: TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF Report Number:

GE18-144.4/1 15/08/2018

Report Date: Order Number:

Test Method: AS1289 3.6.1

Page 1 of 1

SAMPLE LOCATION

Sample Number: 245185

Sampling Method :

Sampled By: LEIGH BEXLEY Date Sampled : 3/08/2018 Date Tested: 13/08/2018 Material Type: **BULK SAMPLE** Material Source: INSITU

Remarks:

BH 17 0.3 - 1.0 **BULK** SAMPLE

Test Number: Lot Number:

Specification Number:

AS Sieve	Percent	Specification
Size(mm)	Passing	Limits
100		

100 75.0 63.0 53.0 37.5 26.5 19.0 16.0 13.2 100 9.5 99 6.7 99 4.75 97 2.36 87

77

65

59

52

41

36

Percent Passing(%)

AS Sieve Size(mm)

	Test Method	Results		
Liquid Limit (%):	AS1289.3.1.2	40	Shrinkage Comments :	cracking and curling
Plastic Limit (%):	AS1289.3.2.1	32	Mould Length (mm) :	250.4
Plasticity Index (%):	AS1289.3.3.1	8	Sample History	
Linear Shrinkage (%):	AS1289.3.4.1	5.5		
	-		•	

Soil Description:

1.18

0.600

0.425

0.300

0.150

0.075

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

IAN MASMAN - MANAGER NATA Accreditation Number 1169

Report Number: GE18/144-1A

Issue Number:

30/11/2018 Date Issued:

Client: **WOOD & GRIEVE ENGINEERS**

LEVEL 2, 232 St PAULS TERRACE, FORTITUDE VALLEY

QLD 4006

Project Number: GE18/144

Project Name: GEOTECHNICAL INVESTIGATION

Project Location: TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF

Work Request: Sample Number: G18-64A Date Sampled: 26/11/2018

Sample Location: BH 40 RL 23.00 (0.4 - 0.8)

Brisbane | Gold Coast | Maroochydore

Morrison Geotechnic Pty Ltd

ABN: 51 009 878 899

Gold Coast Laboratory

Unit 1, 5 Brendan Drive Nerang QLD 4211

Phone: (07) 5596 1599

Email: goldcoastlab@morrisongeo.com.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Ian Masman

Branch Manager

NATA Accredited Laboratory Number: 1169

Particle Distri	bution (AS128	39 3.6.1)			
Sieve	Passed %	Passin Limits	ıg	Retained %	Retain Limits	ed
19 mm	100			0		
13.2 mm	97			3		
9.5 mm	92			5		
6.7 mm	89			3		
4.75 mm	86			3		
2.36 mm	83			3		
1.18 mm	81			2		
0.6 mm	80			1		
0.425 mm	80			0		
0.3 mm	79			1		·
0.15 mm	77			2		·
0.075 mm	76			1		

Atterberg Limit (AS1289 3.1.2 & 3.2	Min	Max	
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	50		
Plastic Limit (%)	34		
Plasticity Index (%)	16		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	11.5		
Cracking Crumbling Curling	Cracking & Curling		

Report Number: GE18/144-1A Page 1 of 2

Report Number: GE18/144-1A

Issue Number:

Date Issued: 30/11/2018

Client: WOOD & GRIEVE ENGINEERS

LEVEL 2, 232 St PAULS TERRACE, FORTITUDE VALLEY

QLD 4006

Project Number: GE18/144

Project Name: GEOTECHNICAL INVESTIGATION

Project Location: TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF

Work Request: 64
Sample Number: G18-64B
Date Sampled: 26/11/2018

Sample Location: BH 28 RL 17.88 (0.5 - 0.9)

Brisbane | Gold Coast | Maroochydore

Morrison Geotechnic Pty Ltd

ABN: 51 009 878 899

Gold Coast Laboratory

Unit 1, 5 Brendan Drive Nerang QLD 4211

Phone: (07) 5596 1599

Email: goldcoastlab@morrisongeo.com.au

NATA
WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Ian Masman

Branch Manager

Accredited for compliance with ISO/IEC 17025 - Testing

NATA Accredited Laboratory Number: 1169

Particle Distri	bution (AS12	89 3.6.1)			
Sieve	Passed %	Passing Limits	Retained %	Retained Limits	
19 mm	100		0		
13.2 mm	100		0		
9.5 mm	98		1		
6.7 mm	97		1		
4.75 mm	96		1		
2.36 mm	94		2		
1.18 mm	92		2		
0.6 mm	91		1		
0.425 mm	90		1		
0.3 mm	89		1		
0.15 mm	87		2		
0.075 mm	86		1		

Atterberg Limit (AS1289 3.1.2 & 3.2	Min	Max	
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	56		
Plastic Limit (%)	41		
Plasticity Index (%)	15		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	7.0		
Cracking Crumbling Curling	None		

Report Number: GE18/144-1A Page 2 of 2

Report Number: GE18/144-1B

Issue Number:

Date Issued: 03/12/2018

Client: WOOD & GRIEVE ENGINEERS

LEVEL 2, 232 St PAULS TERRACE, FORTITUDE VALLEY

QLD 4006

Project Number: GE18/144

Project Name: GEOTECHNICAL INVESTIGATION

Project Location: TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF

Work Request: 64
Sample Number: G18-64A
Date Sampled: 26/11/2018

Sample Location: BH 40 RL 23.00 (0.4 - 0.8)

California Bearing Ratio (AS 1289 6.1.1	l & 2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	8		
Method of Compactive Effort	Standa	ard	
Method used to Determine MDD	AS 1289 5.1	.1 & 2.1	.1
Method used to Determine Plasticity	visua	al	
Maximum Dry Density (t/m ³)	1.36		
Optimum Moisture Content (%)	35.0		
Laboratory Density Ratio (%)	99.0		
Laboratory Moisture Ratio (%)	100.0		
Dry Density after Soaking (t/m ³)	1.35		
Field Moisture Content (%)	36.1		
Moisture Content at Placement (%)	35.0		
Moisture Content Top 30mm (%)	43.2		
Moisture Content Rest of Sample (%)	40.6		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	24		
Swell (%)	0.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Distribution (AS1289 3.6.1)							
Sieve	Passed %			Retained %	Retain Limits	ed	
19 mm	100			0			
13.2 mm	97			3			
9.5 mm	92			5			
6.7 mm	89			3			
4.75 mm	86			3			
2.36 mm	83			3			
1.18 mm	81			2			
0.6 mm	80			1			
0.425 mm	80			0			
0.3 mm	79			1			
0.15 mm	77			2			
0.075 mm	76			1			

Atterberg Limit (AS1289 3.1.2 & 3.2	Min	Max	
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	50		
Plastic Limit (%)	34		
Plasticity Index (%)	16		

Brisbane | Gold Coast | Maroochydore

Morrison Geotechnic Pty Ltd

ABN: 51 009 878 899

Gold Coast Laboratory

Unit 1, 5 Brendan Drive Nerang QLD 4211 Phone: (07) 5596 1599

Email: goldcoastlab@morrisongeo.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Ian Masman

Branch Manager

NATA Accredited Laboratory Number: 1169

	1	Cali				-			-		1	1	
2 -		1				+ -							•
11		1			*								
Applied Eddd (KN)													
	1					1		1		1	1		
	*	1	1	-			1	1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
0	1	2	3	4	5	6	7	8	9	10	11	12	

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	11.5		
Cracking Crumbling Curling	Cracking & Curling		
3 3 3	3	3	

Report Number: GE18/144-1B Page 1 of 2

Report Number: GE18/144-1B

Issue Number:

Date Issued: 03/12/2018

Client: WOOD & GRIEVE ENGINEERS

LEVEL 2, 232 St PAULS TERRACE, FORTITUDE VALLEY

QLD 4006

Project Number: GE18/144

Project Name: GEOTECHNICAL INVESTIGATION

Project Location: TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF

Work Request: 64
Sample Number: G18-64B
Date Sampled: 26/11/2018

Sample Location: BH 28 RL 17.88 (0.5 - 0.9)

California Bearing Ratio (AS 1289 6.1.1	& 2.1.1)	Min	Max
CBR taken at	5 mm		
CBR %	2.5	100	100
Method of Compactive Effort	Standa	ard	
Method used to Determine MDD	AS 1289 5.1	.1 & 2.1	.1
Method used to Determine Plasticity	Visual T	actile	
Maximum Dry Density (t/m ³)	1.27		
Optimum Moisture Content (%)	40.0		
Laboratory Density Ratio (%)	100.0		
Laboratory Moisture Ratio (%)	99.5		
Dry Density after Soaking (t/m ³)	1.27		
Field Moisture Content (%)	32.8		
Moisture Content at Placement (%)	39.7		
Moisture Content Top 30mm (%)	40.4		
Moisture Content Rest of Sample (%)	38.9		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	24		
Swell (%)	0.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Distribution (AS1289 3.6.1)							
Sieve	Passed %	Passing Limits				ed	
19 mm	100			0			
13.2 mm	100			0			
9.5 mm	98			1			
6.7 mm	97			1			
4.75 mm	96			1			
2.36 mm	94			2			
1.18 mm	92			2			
0.6 mm	91			1			
0.425 mm	90			1			
0.3 mm	89			1			
0.15 mm	87			2			
0.075 mm	86			1			

Atterberg Limit (AS1289 3.1.2 & 3.2	Min	Max	
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	56		
Plastic Limit (%)	41		
Plasticity Index (%)	15		

Brisbane | Gold Coast | Maroochydore

Morrison Geotechnic Pty Ltd

ABN: 51 009 878 899

Gold Coast Laboratory

Unit 1, 5 Brendan Drive Nerang QLD 4211

Phone: (07) 5596 1599

Email: goldcoastlab@morrisongeo.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Ian Masman Branch Manager

NATA Accredited Laboratory Number: 1169

1		Jan	1011	IIa	Беа	ring	, No	1110	-	-	-	-	
0.9 -							1						-
0.8													•
0.7 -													
0.6 -													-
0.5						/							-
0.4 -					1								-
0.3 -													
0.2		×											
0.1 -													
		1	-										
0	1	2	3	4	5 Pen	6 etrati	7 ion (8 mm'	9	10	11	12	

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	7.0		
Cracking Crumbling Curling	None		

Results $2.5 \div 5$

Report Number: GE18/144-1B Page 2 of 2

Unit 1, 5 Brendan Drive (PO Box 2011), Nerang Q 4211 Q (07) 5596 1599 F (07) 5527 2027

ABN 51 009 878 899

www.morrisongeo.com.au

15/08/2018

Shrink Swell Index Report

Client: WOOD & GRIEVE ENGINEERS Report Number: GE18-144.5/1

Address: Report Date:
Project Name: GEOTECHNICAL INVESTIGATION Order Number:

Accredited for compliance with ISO/IEC 17025 - Testing.

Project Number: GE18/144 Test Method: AS1289.7.1.1

TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF Page 1 of 1

Sample Number :	245178	245180	245184	245186
Test Number :				
Sampling Method :	-	-	-	-
Sampled By :	LEIGH BEXLEY	LEIGH BEXLEY	LEIGH BEXLEY	LEIGH BEXLEY
Date Sampled :	3/08/2018	3/08/2018	3/08/2018	3/08/2018
Date Tested :	7/08/2018	7/08/2018	7/08/2018	7/08/2018
Material Type :	UNDISTURBED SAMPLE	UNDISTURBED SAMPLE	UNDISTURBED SAMPLE	UNDISTURBED SAMPLE
Material Source :	INSITU	INSITU	INSITU	INSITU
Sample Location :	BH 2	BH 4	BH 12	BH 18
	0.15 - 0.24	0.1 - 0.29	0.5 - 0.76	0.5 - 0.7
	U50	U50	U50	U50
Inert Material Estimate (%) :	0	0	0	0
PP before (kPa):				
PP after (kPa) :				
Shrinkage Moisture Content (%):	28.6	28	33.6	37
Shrinkage (%):	2.3	2.5	2.2	6.3
Swell Moisture Content Before (%):	29.3	27.2	34.9	32.4
Swell Moisture Content After (%):	31.4	30.6	37.1	37.7
Swell (%):	0	0	0	0
Unit Weight (t/m³) :	1.69	1.62	1.83	1.76
Shrink Swell Index Iss (%):	1.3	1.4	1.2	3.5
Visual Classification :	Silty Clay - Brown			
Cracking:	Y	Y	Y	Y
Crumbling:	Y	Υ	Y	Y
Remarks :				

NATA
WORLD RECOGNISED
ACCREDITATION

Location:

APPROVED SIGNATORY

IAN MASMAN - MANAGER NATA Accreditation Number 1169

Report Number: GE18/144-1

Issue Number: 2 - This version supersedes all previous issues

Date Issued: 30/11/2018

Client: WOOD & GRIEVE ENGINEERS

LEVEL 2, 232 St PAULS TERRACE, FORTITUDE VALLEY

QLD 4006

Project Number: GE18/144

Project Name: GEOTECHNICAL INVESTIGATION

Project Location: TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF

Work Request: 64

MORRISON GEOTECHNIC

Brisbane | Gold Coast | Maroochydore

Morrison Geotechnic Pty Ltd

ABN: 51 009 878 899

Gold Coast Laboratory

Unit 1, 5 Brendan Drive Nerang QLD 4211

Phone: (07) 5596 1599

Email: goldcoastlab@morrisongeo.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

NATA / Man

WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Ian Masman

Branch Manager

NATA Accredited Laboratory Number: 1169

Shrink Swell Index AS 1289 7.1.1 & 2.1.1		
Sample Number	G18-64C	G18-64D
Sampling Method	AS1289 1.3.1	AS1289 1.3.1
Date Sampled	26/11/2018	26/11/2018
Date Tested	26/11/2018	26/11/2018
Material Source	Insitu	Insitu
Sample Location	BH 26 RL 19.69 (0.5 - 0.8)	BH 28 RL 17.88 (0.5 - 0.85)
Inert Material Estimate (%)	0	0
Pocket Penetrometer before (kPa)	**	**
Pocket Penetrometer after (kPa)	**	**
Shrinkage Moisture Content (%)	32.2	32.7
Shrinkage (%)	2.6	3.6
Swell Moisture Content Before (%)	28.6	29.9
Swell Moisture Content After (%)	30.9	31.2
Swell (%)	0.0	0.0
Shrink Swell Index Iss (%)	1.4	2.0
Visual Description	Sandy Gravelly Clay, red/brown	Sandy Gravelly Clay, red/brown
Cracking	Moderately Cracked	Moderately Cracked
Crumbling	No	No
Remarks	**	**

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

NATA Accreditation does not cover the performance of pocket penetrometer readings.

Report Number: GE18/144-1 Page 1 of 1

Unit 1, 5 Brendan Drive (PO Box 2011), Nerang Q 4211, P (07) 5596 1599 F (07) 5527 2027 ABN 51 009 878 899

www.morrisongeo.com.au

California Bearing Ratio Report (1 Point)

WOOD & GRIEVE ENGINEERS Client : Report Number: GE18-144.6/1

Address:

GE18/144

Project Number:

Project Name: **GEOTECHNICAL INVESTIGATION**

Location: TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF

Report Date: 15/08/2018

Order Number: Test Method: AS1289.6.1.1

Page 1 of 1

Sample Number : 245182 Date Sampled: 3/08/2018

Date Tested: 10/08/2018 Sampled By: LEIGH BEXLEY

Sampling Method:

Material Source: INSITU

Material Type: **BULK SAMPLE**

Remarks :

Moisture Method :	AS 1289.2.1.1
Maximum Dry Density (t/m³) :	1.579
Optimum Moisture Content (%):	25.5
Compactive Effort :	Standard
Nominated Percentage of MDD :	100
Nominated Percentage of OMC :	100
Achieved Percentage of MDD:	99
Achieved Percentage of OMC :	100.0
Dry Density Before Soak (t/m³) :	1.571
Dry Density After Soak (t/m³) :	1.568
Moisture Content Before Soak (%):	25.6
Moisture Content After Soak (%) :	29.0
Density Ratio After Soak (%):	99
Field Moisture Content (%):	28.0
Top Moisture Content - After Penetration (%):	29.9
Total Moisture Content - After Penetration (%):	27.0
Soak Condition :	Soaked
Soak Period (days) :	4
Swell (%):	0.0
CBR Surcharge (kg) :	4.5
Oversize (%) :	

SAMPLE LOCATION BH 8 0.1 - 1.1 BULK SAMPLE Lot Number:

Test Number:

Site Selection: Soil Description:

CBR 2.5mm (%): 12 CBR 5.0mm (%): **10**

CBR Value (%): 12

Oversize Material Replaced (%):

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

IAN MASMAN - MANAGER NATA Accreditation Number:

1169 Document Code RFO39-12

Unit 1, 5 Brendan Drive (PO Box 2011), Nerang Q 4211, P (07) 5596 1599 F (07) 5527 2027 ABN 51 009 878 899

Report Date:

Test Method:

BH 10

1.0 - 1.5 BULK

SAMPLE

Lot Number:

Test Number:

Order Number:

www.morrisongeo.com.au

15/08/2018

AS1289.6.1.1

California Bearing Ratio Report (1 Point)

Client : **WOOD & GRIEVE ENGINEERS** Report Number: GE18-144.7/1

Address:

Project Number:

GE18/144

Project Name: **GEOTECHNICAL INVESTIGATION**

Location:

Page 1 of 1 TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF

Sample Number : 245183 SAMPLE LOCATION

Date Sampled: 3/08/2018 Date Tested : 10/08/2018 Sampled By: LEIGH BEXLEY

Sampling Method:

Material Source: INSITU

Material Type: **BULK SAMPLE**

Remarks:

Moisture Method :	AS 1289.2.1.1	_
Maximum Dry Density (t/m³) :	1.358	
Optimum Moisture Content (%) :	36.7	
Compactive Effort :	Standard	
Nominated Percentage of MDD :	100	
Nominated Percentage of OMC :	100	
Achieved Percentage of MDD :	100	
Achieved Percentage of OMC :	100.0	_
Dry Density Before Soak (t/m³) :	1.358	-
Dry Density After Soak (t/m³) :	1.359	- 2
Moisture Content Before Soak (%) :	36.7	
Moisture Content After Soak (%) :	38.0	_
Density Ratio After Soak (%):	100	
Field Moisture Content (%):	38.2	_
Top Moisture Content - After Penetration (%):	38.5	_
Total Moisture Content - After Penetration (%):	36.6	_
Soak Condition :	Soaked	
Soak Period (days) :	4	_
Swell (%):	0.0	_
CBR Surcharge (kg) :	4.5	
Oversize (%):		

												CBF Force	1 Point G	raph ration													
	_	T						T -	T	17					1	Ť		1	7		-	_	-			-	
10										1/							1			7							
50		-		-		_		_	+	1	\pm				_	+	_	_	+-	-	+	-	_				1
10	-	+		-		-	_	+	1	4	+	_		-	-	-	1	+	+	1	+	\rightarrow	-		-		1
0	_	+	-	₩.		_	-	-	1		-	_		-	-	-	+	+	-	+	+	_	_				_
0									/													_					
0								3	X												1						
								1																			
0								1			\neg								+-		_	\neg					
0	_	+	-	\vdash		-	_	1	+	+	+			-	+				+-	+	+	\rightarrow					
-	-	+	-	-		_		1	-	+	-	_	-	-	-	/		-	+	+	-	\rightarrow	_	-			-
-		_		_			1	4	_	\perp	_			\perp	/	20.00					_	\rightarrow					_
-							1							/	1												
							1						/				Į.										
0						,	V	Т								1		1	1								Т
+	_	+	-	-		-	1	+	+-	+	1	-	-	-	+	+-	+	+	+-	+	+	\rightarrow	-				<u> </u>
-	_	+		-		1	-	+	1	*	-	-		-	+	+	+	+	+	+	+	-		_	-		+
-		+		_		1			1		_			-	-	-	-	_	+	1	4	\rightarrow					_
-						/		/)														
1					/		1	1 -				Ī									- [T					1
				=	1		/										1			1							
				-	/	7	1			-	$^{-}$										\pm		$\overline{}$				
+	_	+		-	/	/		1	-	+	-	_		-			+		+	-	+	-	-				-
-	-	+	-	1	1		-	+	-	+	-	_	_	-	+	-	+	+	+-	+	+	\rightarrow	_	-	-		-
-				/	1					_	_										_	_					
0				/																							
				1/																							İ
0			1	1/																							
1			1	/							_										_						
+	_	+	11			_	_	-	+	+	+	_		-	-	_	+	-	+	+	+	\rightarrow	-		-		-
1	-	+	11	-			-	-	+-	+	+	_	_	-	+	+	+	+	+	+	+	\rightarrow	_	-			-
-		- 8	1/																								
		1/	*														4			4							
+		1//								Т	Т										Т						
+		1//																		1							
	100	X						_			-						_				+	\rightarrow					-
\vdash	+	7		\vdash		-	-	+	+	+	+	_	-		+	+	+	-	+	4	+	\rightarrow	-				+
1	\perp	-		_			_	+-	-	-	-			-	-	-	-	+-	+	-	-	_					_
_	/	_					_	_	1	\perp	_			_	1		4			4	_						1
E	1							_																			_
	/										Т										Т						
1	(4)										$^{-}$																
1				-				1		+	_				1			+	+		+	\rightarrow	_				_
<u></u>	-	+		1			 	+	+	+				1	+	+	_	+	+-	1	+	-	-	-	-	-	+
	0.5	1	15	2 2	5 3		1.5	4	4.5	5	55			i.5 dan (mm)	7	75					10					4	25
	С	BR	2.5	īmr	n (%)	:	6																			
	С	BR	5.0)mr	n (%)	: [6																			

Site Selection :	
Soil Description :	

CBR Value (%): 6

Oversize Material Replaced (%):

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

IAN MASMAN - MANAGER NATA Accreditation Number: 1169

Document Code RFO39-12

Unit 1, 5 Brendan Drive (PO Box 2011), Nerang Q 4211 P (07) 5596 1599 F (07) 5527 2027 ABN 51 009 878 899

0.3 - 1.0

BULK

www.morrisongeo.com.au

California Bearing Ratio Report (1 Point)

WOOD & GRIEVE ENGINEERS Client : Report Number: GE18-144.8/1

Address:

GE18/144

Project Number:

Project Name: **GEOTECHNICAL INVESTIGATION**

Location: TWEED VALLEY HOSPITAL, CUDGEN ROAD, KINGSCLIFF

Report Date: 15/08/2018

Order Number:

Test Method: AS1289.6.1.1

Page 1 of 1

Sample Number :	245185	SAMPLE LOCATION
Date Sampled :	3/08/2018	BH 17

Date Sampled: 3/08/2018 10/08/2018 Date Tested: Sampled By: LEIGH BEXLEY

Sampling Method:

Material Source: INSITU

Material Type: **BULK SAMPLE**

Remarks :

Moisture Method :	AS 1289.2.1.1
Maximum Dry Density (t/m³) :	1.401
Optimum Moisture Content (%) :	34.8
Compactive Effort :	Standard
Nominated Percentage of MDD :	100
Nominated Percentage of OMC :	100
Achieved Percentage of MDD :	99
Achieved Percentage of OMC :	100.0
Dry Density Before Soak (t/m³) :	1.393
Dry Density After Soak (t/m³) :	1.395
Moisture Content Before Soak (%) :	34.7
Moisture Content After Soak (%) :	34.0
Density Ratio After Soak (%):	100
Field Moisture Content (%):	33.5
Top Moisture Content - After Penetration (%):	37.5
Total Moisture Content - After Penetration (%):	32.7
Soak Condition :	Soaked
Soak Period (days) :	4
Swell (%):	0.0
CBR Surcharge (kg) :	4.5
Oversize (%):	

				SAI	MPL	Æ												
				Lot	Nu	ımb	er	:										
				Tes	t N	lum	be	r:										
				-				1 Point Grapi										
- F			1	-77			Aires	1	7.5	-	1	-		-			-	
1,650								/					\neg					-
1,800								/									1	
1,550							1						\neg					
1,500							1							1				
1,450																		
1,400													\times	+		+		
1,350						/												
1,300					1	1										+		
1,250					1											\top		
1,200					/				_		f	-	\pm	_		+		-
1,150				1					-	1		-	\pm			+		
1,100			_	1					1	+		_	+	_	+	+		-
1,050				/		\vdash		1	-	-	<u> </u>	-	+	+	+	+		
1,000				/				-					-	-	1			
950			+	-					_	-	-	-	+	-	+	+	-	-
900	-	_	1	+					-	-	-	-	+	-	+	+		
850			1/	-	/					15			-	-	+	+		-
900 - 850 - 800 -			/	1	*				-	-	-	-	-	-	+	+	-	_
750	\rightarrow		1	/					-		_		_	-	+	+		
700		1	1		-					-			_	-	+	+		_
650	\perp	\perp	1						_	-	_	_	_		_	-		

Soak Period (days) :	4	85 1 15 2 25 3 35 4 45 5 55 6 65 7 75 10 125 Feetballot (mt)
Swell (%):	0.0	
CBR Surcharge (kg) :	4.5	CBR 2.5mm (%): 4.0
Oversize (%):		CBR 5.0mm (%) : 4.5
Oversize Material Replaced (%) :		CBR Value (%): 4.5

Site Selection: Soil Description:

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

IAN MASMAN - MANAGER NATA Accreditation Number:

1169 Document Code RFO39-12

		POINT	LOAD	TES	T R	EPOR	Γ	
Client:		Wood & Grieve	Engineers			Report No:	GE18/1	44.1
Client Address:	Lev	rel 2, 232 St Pauls Terrace, F	ortitude Valle	Report Date:	08.07	.18		
Job No:		GE18/14	Sample Date:	03.08	.18			
Project:	Geote	chnical Investigation - Prop	osed Tweed V	alley Hospi	tal	Order No:		
Location:		Lot 102 on DP870722, Cud	Test Method:	AS4133	3 4.1			
								Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term
634	08.07.2018	Borehole BH1	2.00	Core	7.95	7.84	Diametral	VH
635	08.07.2018	Borehole BH1	3.40	Core	0.98	0.98	Diametral	М - Н
636	08.07.2018	Borehole BH1	5.30	Core	6.17	6.01	Diametral	#VH
637	08.07.2018	Borehole BH1	6.20	Core	11.30	10.78	Diametral	EH
638	08.07.2018	Borehole BH1	7.20	Core	9.75	9.40	Diametral	VH
639	08.07.2018	Borehole BH1	10.00	Core	0.63	0.63	Diametral	М
640	08.07.2018	Borehole BH1	14.60	Core	8.18	8.03	Diametral	VH
641	08.07.2018	Borehole BH1	16.30	Core	10.10	10.00	Diametral	VH - EH
642	08.07.2018	Borehole BH1	17.20	Core	8.96	8.63	Diametral	VH

Remarks:

Samples are Basalt which are slightly weathered to fresh (SW-Fr).

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Accredited for compliance with ISO/IEC 17025.

Approved Signatory

Sieu A

Liam McDowall - Laboratory Manager
(Brisbane)

NATA Accreditation Number

1162 / 1169

Form Number

Form Number

[#] Denotes sample failed along defect plane

Geotech			y QLD 4006		Report Date:	08.08.			
		44		Level 2, 232 St Pauls Terrace, Fortitude Valley QLD 4006					
	nical Investigation - Pror		GE18/144						
		osed Tweed V	Order No:						
L	ot 102 on DP870722, Cuc	Test Method:	AS4133 4.1						
							Page 1 of 1		
Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term		
7.08.2018	Borehole BH2	3.73	Core	9.31	9.14	Diametral	VH		
7.08.2018	Borehole BH2	4.80	Core	10.43	10.24	Diametral	VH - EH		
7.08.2018	Borehole BH2	5.55	Core	12.99	12.51	Diametral	EH		
7.08.2018	Borehole BH2	6.55	Core	11.88	11.55	Diametral	EH		
7.08.2018	Borehole BH2	8.30	Core	7.59	7.45	Diametral	VH		
7.08.2018	Borehole BH2	9.25	Core	11.15	10.85	Diametral	EH		
07	7.08.2018 7.08.2018 7.08.2018 7.08.2018 7.08.2018	Test Location 7.08.2018 Borehole BH2 Test Location Depth (m) 7.08.2018 Borehole BH2 3.73 7.08.2018 Borehole BH2 4.80 7.08.2018 Borehole BH2 5.55 7.08.2018 Borehole BH2 6.55 7.08.2018 Borehole BH2 8.30	Test Location Depth (m) Type 7.08.2018 Borehole BH2 3.73 Core 7.08.2018 Borehole BH2 4.80 Core 7.08.2018 Borehole BH2 5.55 Core 7.08.2018 Borehole BH2 6.55 Core 7.08.2018 Borehole BH2 8.30 Core	Test Location Depth (m) Type Is (MPa) 7.08.2018 Borehole BH2 3.73 Core 9.31 7.08.2018 Borehole BH2 4.80 Core 10.43 7.08.2018 Borehole BH2 5.55 Core 12.99 7.08.2018 Borehole BH2 6.55 Core 11.88 7.08.2018 Borehole BH2 8.30 Core 7.59	Test Location Depth (m) Type Is (MPa) Is (50) (MPa) 7.08.2018 Borehole BH2 3.73 Core 9.31 9.14 7.08.2018 Borehole BH2 4.80 Core 10.43 10.24 7.08.2018 Borehole BH2 5.55 Core 12.99 12.51 7.08.2018 Borehole BH2 6.55 Core 11.88 11.55 7.08.2018 Borehole BH2 8.30 Core 7.59 7.45	Test Location Depth (m) Type Is (MPa) Is (50) (MPa) Loading Direction 7.08.2018 Borehole BH2 3.73 Core 9.31 9.14 Diametral 7.08.2018 Borehole BH2 4.80 Core 10.43 10.24 Diametral 7.08.2018 Borehole BH2 5.55 Core 12.99 12.51 Diametral 7.08.2018 Borehole BH2 6.55 Core 11.88 11.55 Diametral 7.08.2018 Borehole BH2 8.30 Core 7.59 7.45 Diametral			

Remarks:

Samples are Basalt which are slightly weathered to fresh (SW-Fr).

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Accredited for compliance with ISO/IEC 17025.

[#] Denotes sample failed along defect plane

Client:		Wood & Griev	e Engineers			Report No:	GE18/1	44.3
Client Address:	Leve	I 2, 232 St Pauls Terrace	, Fortitude Valle	y QLD 4006		Report Date:	08.08.18	
Job No:		GE18	/144	Sample Date:	31.07	08		
Project:	Geotecl	hnical Investigation - Pro	oposed Tweed V	Order No:				
Location:	ı	Lot 102 on DP870722, Cu	udgen Road, Kin	Test Method:	od: AS4133 4.1			
								Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term
649	07.08.2018	Borehole BH4	1.20	Core	8.22	8.22	Diametral	VH
650	07.08.2018	Borehole BH4	3.40	Core	8.53	8.14	Diametral	VH
651	07.08.2018	Borehole BH4	4.95	Core	10.30	10.11	Diametral	VH - EH
652	07.08.2018	Borehole BH4	6.45	Core	12.13	11.80	Diametral	EH
653	07.08.2018	Borehole BH4	6.95	Core	11.97	11.97	Diametral	EH
654	07.08.2018	Borehole BH4	7.90	Core	11.71	11.71	Diametral	EH
655	07.08.2018	Borehole BH4	8.50	Core	14.17	14.04	Diametral	EH
656	07.08.2018	Borehole BH4	9.80	Core	10.39	10.21	Diametral	VH - EH

Remarks:

Samples are Basalt which are slightly weathered to fresh (SW-Fr).

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Accredited for compliance with ISO/IEC 17025.

[#] Denotes sample failed along defect plane

		POINT	LOAD	TES	T RI	EPOR	Γ	
Client:		Wood & Griev	e Engineers			Report No:	GE18/1	44.4
Client Address:	Lev	vel 2, 232 St Pauls Terrace	, Fortitude Valle	y QLD 4006		Report Date:	08.08	.18
Job No:		GE18	/144	Sample Date:	30.07	.08		
Project:	Geote	echnical Investigation - Pro	oposed Tweed V	Order No:				
Location:		Lot 102 on DP870722, Cu	udgen Road, Kin	Test Method:	AS4133 4.1			
								Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term
657	06.08.2018	Borehole BH5	1.35	Core	8.26	8.11	Diametral	VH
658	06.08.2018	Borehole BH5	3.35	Core	12.73	12.49	Diametral	EH
659	06.08.2018	Borehole BH5	4.95	Core	5.30	5.30	Axial	VH
660	06.08.2018	Borehole BH5	6.40	Core	9.64	9.46	Diametral	VH

Remarks:

Samples are Basalt which are slightly weathered to fresh (SW-Fr).

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Accredited for compliance with ISO/IEC 17025.

[#] Denotes sample failed along defect plane

lient:		Wood & Griev	ve Engineers			Report No:	GE18/1	44.5
lient Address:	Leve	I 2, 232 St Pauls Terrace	e, Fortitude Valle	y QLD 4006		Report Date:	08.08	.18
ob No:		GE18	3/144	Sample Date:	30.07	.08		
roject:	Geotecl	hnical Investigation - Pr	oposed Tweed V	Order No:				
ocation:	ı	Lot 102 on DP870722, C	udgen Road, Kin	Test Method:	AS4133 4.1			
								Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term
661	06.08.2018	Borehole BH6	8.40	Core	7.34	7.21	Diametral	VH
662	06.08.2018	Borehole BH6	9.37	Core	11.23	10.92	Diametral	EH
663	06.08.2018	Borehole BH6	12.70	Core	0.29	0.29	Diametral	[#] L-M
664	06.08.2018	Borehole BH6	14.00	Core	0.27	0.27	Diametral	[#] L-M
665	06.08.2018	Borehole BH6	14.45	Core	0.39	0.39	Diametral	#M
			1			Ī		

Remarks:

Samples are Basalt which are distrinctly weathered to fresh (DW-Fr).

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Accredited for compliance with ISO/IEC 17025.

[#] Denotes sample failed along defect plane

	T	POINT		1	1 1			
Client:		Wood & Grieve	Engineers			Report No:	GE18/1	44.6
Client Address:	Leve	el 2, 232 St Pauls Terrace,	Fortitude Valle	Report Date:	08.08	.18		
Job No:		GE18/1	44			Sample Date:	30.07	.08
Project:	Geotec	hnical Investigation - Prop	osed Tweed V	alley Hospi	tal	Order No:		
Location:		Lot 102 on DP870722, Cuc	Test Method:	AS4133 4.1				
								Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term
666	06.08.2018	Borehole BH7	2.20	Core	6.51	6.51	Diametral	VH
667	06.08.2018	Borehole BH7	3.75	Core	2.56	2.56	Diametral	н
668	06.08.2018	Borehole BH7	6.25	Core	6.48	6.36	Diametral	VH
669	06.08.2018	Borehole BH7	8.95	Core	9.85	9.58	Diametral	VH
670	06.08.2018	Borehole BH7	10.30	Core	10.93	10.83	Diametral	EH
671	06.08.2018	Borehole BH7	13.15	Core	0.15	0.16	Diametral	#L
672	06.08.2018	Borehole BH7	17.65	Core	8.21	8.29	Diametral	VH
673	06.08.2018	Borehole BH7	18.50	Core	10.81	10.91	Diametral	EH
674	06.08.2018	Borehole BH7	18.85	Core	4.95	4.90	Diametral	VH

Remarks:

Samples are Basalt which are distinctly weathered to fresh (DW-Fr).

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Accredited for compliance with ISO/IEC 17025.

Approved Signatory

Sieu A

Liam McDowall - Laboratory Manager
(Brisbane)

NATA Accreditation Number

1162 / 1169

Form Number

Form Number

[#] Denotes sample failed along defect plane

		POINT	LOAD	TES	ST R	EPOR ¹	Γ	
Client:		Wood & Grieve	e Engineers			Report No:	GE18/1	44.7
Client Address:	Lev	vel 2, 232 St Pauls Terrace,	Fortitude Valle	y QLD 4006	i	Report Date:	08.08	18
Job No:		GE18/	144			Sample Date:	03.08	18
Project:	Geote	chnical Investigation - Pro	posed Tweed V	alley Hospi	ital	Order No:		
Location:		Lot 102 on DP870722, Cu	dgen Road, Kin	Test Method:	AS4133	3 4.1		
								Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term
675	06.08.2018	Borehole BH25	1.60	Core	8.82	8.66	Diametral	VH
676	06.08.2018	Borehole BH25	2.90	Core	9.74	9.38	Diametral	VH
677	06.08.2018	Borehole BH25	3.70	Core	10.17	9.80	Diametral	VH
678	06.08.2018	Borehole BH25	11.80	Core	16.36	15.60	Diametral	EH
679	06.08.2018	Borehole BH25	14.35	Core	0.17	0.17	Diametral	L
680	06.08.2018	Borehole BH25	17.80	Core	7.95	7.81	Diametral	VH
681	06.08.2018	Borehole BH25	18.65	Core	1.38	1.37	Diametral	Н
682	06.08.2018	Borehole BH25	19.70	Core	7.95	7.87	Diametral	VH
683	06.08.2018	Borehole BH25	21.20	Core	6.58	6.42	Diametral	VH

Remarks:

Samples are Basalt which are slighlty weathered to fresh (SW-Fr).

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Accredited for compliance with ISO/IEC 17025.

[#] Denotes sample failed along defect plane

Client:		Wood & Griev	e Engineers			Report No:	GE18/1	44.8	
Client Address:	Leve	el 2, 232 St Pauls Terrace	, Fortitude Valle	y QLD 4006		Report Date:	28.11	.18	
Job No:		GE18	/144			Sample Date:	BH29: 16.11.18 / BH43: 5.11.18		
Project:	Geoted	chnical Investigation - Pro	posed Tweed V	tal	Order No:				
Location:		Lot 102 on DP870722, Cu	udgen Road, Kin	Test Method:	AS413	3 4.1			
						•		Page 1 of 1	
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term	
724	23.11.18	Borehole BH29	16.90	Core	15.57	15.29	Diametral	EH	
725	23.11.19	Borehole BH29	18.10	Core	0.49	0.48	Diametral	М	
726	23.11.20	Borehole BH29	18.95	Core	7.85	7.70	Diametral	VH	
727	23.11.21	Borehole BH29	19.41	Core	5.20	5.11	Diametral	VH	
728	23.11.22	Borehole BH29	20.60	Core	1.00	0.98	Diametral	М	
729	23.11.23	Borehole BH29	21.20	Core	0.40	0.39	Diametral	М	
730	23.11.24	Borehole BH29	22.98	Core	0.31	0.31	Diametral	М	
731	23.11.25	Borehole BH43	1.55	Core	10.87	10.67	Diametral	EH	
732	23.11.26	Borehole BH43	3.31	Core	7.47	7.33	Diametral	VH	
733	23.11.27	Borehole BH43	5.12	Core	10.15	9.96	Diametral	VH	
734	23.11.18	Borehole BH43	6.34	Core	0.47	0.46	Diametral	М	
735	23.11.19	Borehole BH43	9.30	Core	11.94	11.73	Diametral	EH	
736	23.11.20	Borehole BH43	15.20	Core	5.91	5.80	Diametral	VH	
737	23.11.21	Borehole BH43	16.41	Core	8.77	8.61	Diametral	VH	
738	23.11.22	Borehole BH43	18.74	Core	9.38	9.20	Diametral	VH	

All samples are basalt rock.

Accredited for compliance with ISO/IEC 17025.

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Approved Signatory

Sieu A

Liam McDowall - Laboratory Manager
(Brisbane)

NATA Accreditation Number

1162 / 1169

Form Number

Form Number

Client:		Wood & Griev	e Engineers			Report No:	GE18/1	44.9	
Client Address:	Lev	rel 2, 232 St Pauls Terrace	, Fortitude Valle	y QLD 4006		Report Date:	28.11.18		
Job No:		GE18	/144			Sample Date:	BH43: 5.11.18 / BH44: 21.11.18 / BH45: 9.11		
Project:	Geote	chnical Investigation - Pro	pposed Tweed V	Order No:					
Location:		Lot 102 on DP870722, Cu	udgen Road, Kin	Test Method:	AS4133 4.1				
								Page 1 of 1	
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term	
739	23.11.23	Borehole BH44	1.20	Core	10.07	9.89	Diametral	VH	
740	23.11.24	Borehole BH44	2.95	Core	10.94	10.74	Diametral	EH	
741	23.11.25	Borehole BH44	5.38	Core	12.24	12.02	Diametral	EH	
742	23.11.26	Borehole BH44	7.12	Core	10.84	10.64	Diametral	EH	
743	23.11.27	Borehole BH44	8.25	Core	11.29	11.09	Diametral	EH	
744	23.11.18	Borehole BH45	1.50	Core	9.13	8.97	Diametral	VH	
745	23.11.19	Borehole BH45	4.23	Core	11.84	11.62	Diametral	EH	
746	23.11.20	Borehole BH45	5.76	Core	0.87	0.85	Diametral	М	
747	23.11.21	Borehole BH45	6.00	Core	12.03	11.81	Diametral	EH	
748	23.11.22	Borehole BH45	7.06	Core	10.49	10.30	Diametral	EH	
749	23.11.23	Borehole BH45	8.20	Core	9.48	9.31	Diametral	VH	
750	23.11.24	Borehole BH45	9.00	Core	11.04	10.84	Diametral	EH	
751	23.11.25	Borehole BH45	9.35	Core	0.16	0.15	Diametral	L	
752	23.11.26	Borehole BH45	10.50	Core	0.15	0.15	Diametral	L	
753	23.11.27	Borehole BH45	11.52	Core	0.14	0.14	Diametral	L	

All samples are basalt rock.

Accredited for compliance with ISO/IEC 17025.

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Approved Signatory

Sieu A

Liam McDowall - Laboratory Manager
(Brisbane)

NATA Accreditation Number

1162 / 1169

Form Number

Form Number

Client:		Wood & Grieve	e Engineers			Report No:	GE18/14	1 4.11		
Client Address:	Leve	el 2, 232 St Pauls Terrace,	Fortitude Valle	y QLD 4006		Report Date:	28.11.18			
Job No:		GE18/	144	Sample Date:	BH45: 9.11.18 / BH46: 6.11.18					
Project:	Geotec	chnical Investigation - Pro	posed Tweed V	Order No:						
Location:	Lot 102 on DP870722, Cudgen Road, Kingscliff						AS4133	3 4.1		
							Page 1 of 1			
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term		
754	23.11.18	Borehole BH45	12.96	Core	0.13	0.13	Diametral	L		
755	23.11.19	Borehole BH45	14.84	Core	0.24	0.24	Diametral	L		
756	23.11.20	Borehole BH45	15.54	Core	2.48	2.44	Diametral	Н		
757	23.11.21	Borehole BH45	16.40	Core	8.63	8.47	Diametral	VH		
758	23.11.22	Borehole BH45	16.80	Core	3.30	3.24	Diametral	VH		
759	23.11.23	Borehole BH45	17.60	Core	9.79	9.61	Diametral	VH		
760	23.11.24	Borehole BH45	18.40	Core	9.53	9.36	Diametral	VH		
761	23.11.25	Borehole BH45	20.10	Core	6.13	6.02	Diametral	VH		
762	23.11.26	Borehole BH46	2.05	Core	8.02	7.87	Diametral	VH		
763	23.11.27	Borehole BH46	3.35	Core	11.65	11.44	Diametral	EH		
764	23.11.18	Borehole BH46	7.06	Core	8.18	8.03	Diametral	VH		
765	23.11.19	Borehole BH46	7.45	Core	5.59	5.49	Diametral	VH		
766	23.11.20	Borehole BH46	8.85	Core	8.92	8.76	Diametral	VH		
767	23.11.21	Borehole BH46	13.16	Core	7.49	7.35	Diametral	VH		
768	23.11.22	Borehole BH46	15.73	Core	6.55	6.43	Diametral	VH		
769	23.11.23	Borehole BH46	17.35	Core	12.00	11.78	Diametral	EH		

Accredited for compliance with ISO/IEC 17025.

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Approved Signatory	Form Number
Sien A	
MUDWALL	
Liam McDowall - Laboratory Manager	
(Brisbane)	
NATA Accreditation Number	ER0033
1162 / 1169	

Client:		Wood & Griev	e Engineers			Report No:	GE18/14	14.12
Client Address:	Leve	el 2, 232 St Pauls Terrace	, Fortitude Valle	y QLD 4006		Report Date:	28.11.18	
Job No:		GE18/	/144			Sample Date:	BH47: 19.11.18 / BH48: 7.	11.18 / BH49: 19.11.18
Project:	Geoted	chnical Investigation - Pro	posed Tweed V	alley Hospi	tal	Order No:		
Location:		Lot 102 on DP870722, Cu	udgen Road, Kin	gscliff		Test Method:	AS4133	3 4.1
						•		Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Tern
770	23.11.24	Borehole BH47	8.62	Core	12.76	12.53	Diametral	EH
771	23.11.25	Borehole BH47	11.80	Core	11.48	11.27	Diametral	EH
772	23.11.26	Borehole BH47	13.90	Core	12.07	11.85	Diametral	EH
773	23.11.27	Borehole BH47	15.90	Core	6.73	6.60	Diametral	VH
774	23.11.18	Borehole BH48	2.65	Core	11.94	11.72	Diametral	EH
775	23.11.19	Borehole BH48	5.45	Core	11.72	11.51	Diametral	EH
776	23.11.20	Borehole BH48	8.27	Core	0.26	0.26	Diametral	L
777	23.11.21	Borehole BH48	10.30	Core	0.17	0.17	Diametral	L
778	23.11.22	Borehole BH48	13.35	Core	8.99	8.83	Diametral	VH
779	23.11.23	Borehole BH48	14.10	Core	7.90	7.76	Diametral	VH
780	23.11.24	Borehole BH48	17.70	Core	7.18	7.05	Diametral	VH
781	23.11.25	Borehole BH49	1.25	Core	9.90	9.72	Diametral	VH
782	23.11.26	Borehole BH49	2.64	Core	10.68	10.48	Diametral	EH
783	23.11.27	Borehole BH49	10.00	Core	10.78	10.59	Diametral	EH
784	23.11.18	Borehole BH49	12.30	Core	10.54	10.35	Diametral	EH
785	23.11.19	Borehole BH49	14.25	Core	3.17	3.11	Diametral	VH

Accredited for compliance with ISO/IEC 17025.

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Approved Signatory

Sieu A

Liam McDowall - Laboratory Manager
(Brisbane)

NATA Accreditation Number

1162 / 1169

Form Number

Form Number

Form Number

Form Number

Form Number

Form Number

Client:		Wood & Griev	e Engineers			Report No:	GE18/14	14.14
Client Address:	Leve	el 2, 232 St Pauls Terrace	, Fortitude Valle	y QLD 4006		Report Date:	28.11.18	
Job No:		GE18	/144			Sample Date:	BH50: 8.11.18 / BH51 13.1	11.18 / BH52: 23.11.18
Project:	Geotec	chnical Investigation - Pro	posed Tweed V	alley Hospi	tal	Order No:		
Location:		Lot 102 on DP870722, Cu	udgen Road, Kin	gscliff		Test Method:	AS4133	3 4.1
								Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Tern
786	23.11.20	Borehole BH50	15.27	Core	6.34	6.22	Diametral	VH
787	23.11.21	Borehole BH50	16.82	Core	11.59	11.38	Diametral	EH
788	23.11.22	Borehole BH50	18.08	Core	13.48	13.24	Diametral	EH
789	23.11.23	Borehole BH50	20.15	Core	3.99	3.92	Diametral	VH
790	23.11.24	Borehole BH51	10.82	Core	10.16	9.97	Diametral	VH
791	23.11.25	Borehole BH51	14.10	Core	0.17	0.17	Diametral	L
792	23.11.26	Borehole BH51	15.70	Core	6.47	6.35	Diametral	VH
793	23.11.27	Borehole BH51	17.85	Core	9.07	8.91	Diametral	VH
794	23.11.18	Borehole BH51	19.00	Core	6.86	6.73	Diametral	VH
795	23.11.19	Borehole BH51	19.90	Core	3.65	3.58	Diametral	VH
796	23.11.20	Borehole BH52	4.27	Core	9.56	9.38	Diametral	VH
797	23.11.21	Borehole BH52	8.10	Core	9.38	9.20	Diametral	VH
798	23.11.22	Borehole BH52	9.68	Core	9.33	9.16	Diametral	VH
799	23.11.23	Borehole BH52	12.31	Core	0.14	0.14	Diametral	L
800	23.11.24	Borehole BH52	15.70	Core	0.30	0.30	Diametral	L-M
801	23.11.25	Borehole BH52	20.70	Core	7.42	7.29	Diametral	VH

Accredited for compliance with ISO/IEC 17025.

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Approved Signatory

Sieu A

Liam McDowall - Laboratory Manager
(Brisbane)

NATA Accreditation Number

1162 / 1169

Form Number

Form Number

	_	POINT	LOAD	IES	i R			
Client:		Wood & Griev	e Engineers			Report No:	GE18/14	44.15
Client Address:	Le	evel 2, 232 St Pauls Terrace	, Fortitude Valle	y QLD 4006		Report Date:	28.11.18	
Job No:		GE18/144 Sample Dat			Sample Date:	BH52: 13.11.18 / BH53: 21	.11.18 / BH54: 20/11/18	
Project:	Geot	echnical Investigation - Pro	posed Tweed V	alley Hospi	tal	Order No:		
Location:		Lot 102 on DP870722, Cu	ıdgen Road, Kir	gscliff		Test Method:	AS4133	3 4.1
								Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Term
802	23.11.26	Borehole BH52	21.80	Core	9.55	9.37	Diametral	VH
803	23.11.27	Borehole BH52	23.00	Core	12.15	11.93	Diametral	EH
804	23.11.18	Borehole BH53	4.83	Core	3.30	3.24	Diametral	VH
805	23.11.19	Borehole BH53	7.22	Core	3.04	2.98	Diametral	Н
806	23.11.20	Borehole BH53	13.70	Core	11.37	11.16	Diametral	EH
807	23.11.21	Borehole BH53	16.20	Core	7.13	7.06	Diametral	VH
808	23.11.22	Borehole BH53	17.83	Core	1.27	1.24	Diametral	Н
809	23.11.23	Borehole BH53	19.10	Core	0.61	0.60	Diametral	М
810	23.11.24	Borehole BH53	21.32	Core	8.03	7.88	Diametral	VH
811	23.11.25	Borehole BH53	23.50	Core	11.04	10.84	Diametral	EH
812	23.11.26	Borehole BH53	24.54	Core	10.20	10.01	Diametral	EH
813	23.11.27	Borehole BH54	5.35	Core	9.50	9.32	Diametral	VH
814	23.11.18	Borehole BH54	13.90	Core	6.89	6.77	Diametral	VH
815	23.11.19	Borehole BH54	16.05	Core	8.26	8.11	Diametral	VH
816	23.11.20	Borehole BH54	17.90	Core	3.97	3.90	Diametral	VH
817	23.11.21	Borehole BH54	18.75	Core	9.68	9.50	Diametral	VH

Accredited for compliance with ISO/IEC 17025.

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Approved Signatory

Form Number

Liam McDowall - Laboratory Manager
(Brisbane)

NATA Accreditation Number

1162 / 1169

Form Number

Form Number

Client:		Wood & Grieve B	Engineers			Report No:	GE18/14	14.17
Client Address:	Le	vel 2, 232 St Pauls Terrace, F	ortitude Valle	y QLD 4006		Report Date:	28.11.	.18
lob No:		GE18/14	4			Sample Date:	BH55: 15	.11.18
Project:	Geote	Geotechnical Investigation - Proposed Tweed Valley Hospital Order No:			Order No:			
ocation:		Lot 102 on DP870722, Cudgen Road, Kingscliff Test Method		Test Method:	AS4133	3 4.1		
	-							Page 1 of 1
Sample Number	Date of Test	Location	Depth (m)	Sample Type	Is (MPa)	Is (50) (MPa)	Loading Direction	Descriptive Terr
818	23.11.22	Borehole BH55	15.23	Core	6.25	6.14	Diametral	VH
819	23.11.23	Borehole BH55	16.60	Core	10.07	9.89	Diametral	VH
820	23.11.24	Borehole BH55	18.44	Core	9.13	8.97	Diametral	VH
821	23.11.25	Borehole BH55	19.90	Core	8.94	8.78	Diametral	EH

Remarks:

All sample are basalt rock.

Accredited for compliance with ISO/IEC 17025.

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Brisbane 346A Bilsen Road, Geebung QLD 4034 Ph: +61 7 3265 5656 Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

					_	
	PERMEABII Test Method AS 1289 6.7.2		LING HEAD T n K H Head (1988) Manu			
Client	Morrison Geotechnic Pty Lt	td		Report No. 18		1-FHPT
				Workorder No	.0005126	;
Address	Address PO Box 2011 Nerang QLD 4211			Test Date	14/11/18	-21/11/18
				Report Date	21/11/20	18
Project	GE18/216 - Tweed Valley Hospital - Lot 102 Cudgen Rd, Kingscliff					
Client ID	BH7			Depth (m)	0.20-0.80	0
Description	Description Silty CLAY-red			Sample Type	led Soil n	
		RESULTS	S OF TESTING			
Compaction Me	thod	AS1289.5.1.1 - S	tandard Compaction			
Maximum Dry D	Pensity (t/m ³)	1.31	Hydraulic Gradient	Hydraulic Gradient		9.4
Optimum Moistu	ure Content (%)	31.5	Surcharge (kPa)			3.0
Placement Moisture Content (%) 31.			Head Pressure Applied (kPa)			10.79
Moisture Ratio (%)	99.5	Water Type			Deaerated
Placement Wet	Density (t/m³)	1.69	Percentage Material F	Percentage Material Retained/Sieve Size (mm)		

PERMEABILITY

Density Ratio (%)

 $k_{(20)} =$

98.2

1.6 x 10 ⁻⁰⁹

Sample Height and Diameter (mm)

(m/sec)

116.63 / 101.14 mm

Remarks: The above specimen was remoulded at 98% Standard Dry Density and at Optimum Moisture Content as advised by the client

 Page: 1 of 1

REP06301

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Park

Authorised Signatory

NATA
ACCREDITED FOR
TECHNICAL

Tested at Trilab Brisbane Laboratory.

Laboratory No. 9926

Brisbane 346A Bilsen Road, Geebung QLD 4034 Ph: +61 7 3265 5656 Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	PERMEAB	ILITY BY FA	ALLING HEAD T	EST REPOR	Т	
	Test Method AS 1289 6.7	.2, 5.1.1 , KH2 (Base	d on K H Head (1988) Manu	al of Laboratory Testi	ng,10.7)	
Client	Morrison Geotechnic Pty I	_td		Report No. 18110282-FHPT		
				Workorder No	.0005126	
Address PO Box 2011 Nerang Q		LD 4211		Test Date	14/11/20	18
				Report Date	20/11/20	18
Project	GE18/216 - Tweed Valley	Hospital - Lot 10	02 Cudgen Rd, Kingso	liff		
Client ID	BH10			Depth (m)	0.20-0.80	
Description	SILTY CLAY-red brown			Sample Type	Remould Specime	
		RESU	LTS OF TESTING			
Compaction Met	thod	AS1289.5.1.1	- Standard Compaction			
Maximum Dry D	ensity (t/m³)	1.41	Hydraulic Gradient	Hydraulic Gradient		9.4
Optimum Moistu	re Content (%)	31.5	Surcharge (kPa)	Surcharge (kPa)		
Placement Moisture Content (%) 31.2 Head Pressure Applied (kP				ed (kPa)		10.79

Water Type

PERMEABILITY

Moisture Ratio (%)

Density Ratio (%)

Placement Wet Density (t/m3)

 $k_{(20)} =$

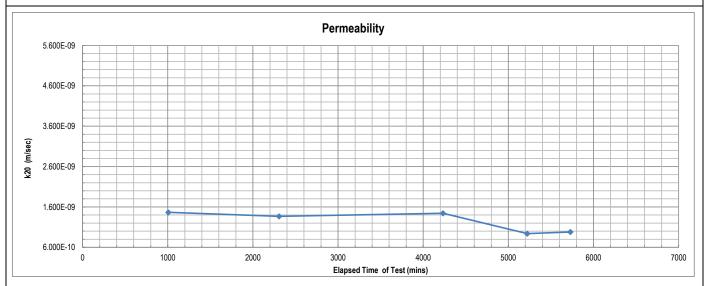
99.2

1.82

98.2

9.6 x 10^{-10}

Sample Height and Diameter (mm)


Percentage Material Retained/Sieve Size (mm)

(m/sec)

De-ionized

0 % /9.5 mm

116.41 / 100.58 mm

Remarks: The above specimen was remoulded to a target of 98% of Standard Dry Density and at 100% of Optimum Moisture Content.

 Page: 1 of 1

REP06301

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

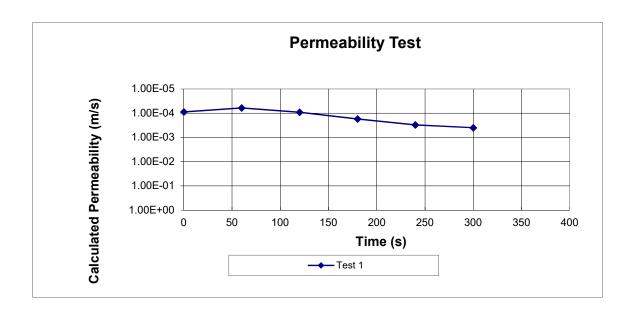
Tested at Trilab Brisbane Laboratory.

C. Channon

Authorised Signatory

ACCREDITED FOR TECHNICAL

Laboratory No. 9926

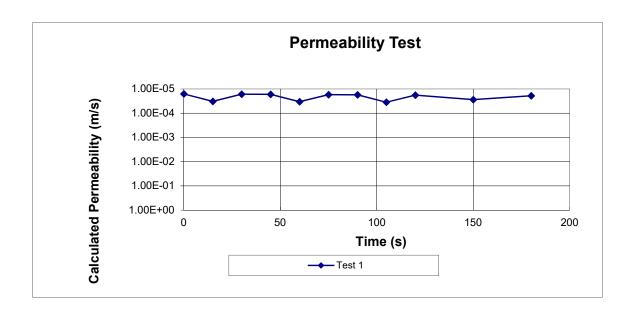

PERMEABILITY - Percolation Test

Project	Tweed Valley Hospital			
Project Number	Test 1		Date	3/08/2018
Test Location	BH22		Tester	BE
Depth of Hole		500 mm		
Diameter of Hole	<u></u>	100 mm		
Length of Test Section	on	400 mm		

Date	Time		Depth of water from	Δt	Δd	Permeability
		of test (t) (s)	Reference level (d) (mm)			(P) (m/s)
3/8/18	12:00:00	0	340	0	0	, , ,
	12:01:00	60	270	60	70	8.87E-05
	12:02:00	120	230	60	40	6.07E-05
	12:03:00	180	180	60	50	9.09E-05
	12:04:00	240	110	60	70	1.74E-04
	12:05:00	300	40	60	70	3.05E-04
	12:06:00	360	0	60	40	3.98E-04

Time	for	25mm	drop	

Permeability (m/s)	1.9E-04
mm/hr	670.3

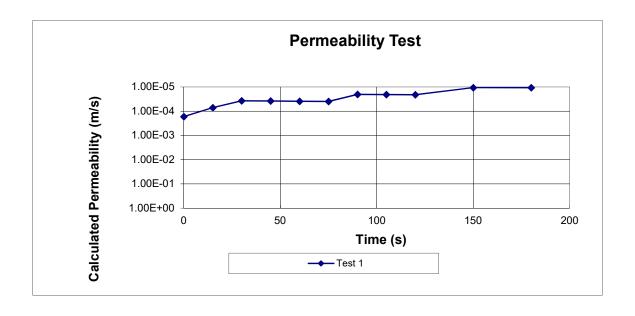

PERMEABILITY - Percolation Test

Project	Tweed Valley Hospital			
Project Number	Test 2		Date	24/10/2018
Test Location	BH22		Tester	CL
Depth of Hole		500 mm		
Diameter of Hole		100 mm		
Length of Test Section	<u></u>	400 mm		

Date	Time	Time since start	Depth of water from	Δt	Δd	Permeability
_ 3.0		of test (t) (s)	Reference level (d) (mm)			(P) (m/s)
24/10/18	11:45:00	0	500	0	0	(1) (11#5)
	11:45:15		495		5	1.59E-05
	11:45:30		485		10	3.24E-05
	11:45:45		480	15	5	1.64E-05
	11:46:00		475	15	5	1.66E-05
	11:46:15	75	465	15	10	3.37E-05
	11:46:30	90	460	15	5	1.71E-05
	11:46:45	105	455		5	1.73E-05
	11:47:00		445			3.51E-05
	11:47:30	150	435			1.79E-05
	11:48:00	180	420	30		2.76E-05
	11:48:30	210	410	30	10	1.89E-05
	11:49:00	240	395			2.92E-05
	11:49:30	270	385			2.01E-05
	11:50:00	300	375			2.06E-05
	11:50:30	330	365		10	2.11E-05
	11:51:00	360	350	30	15	3.27E-05
	11:51:30	390	340	30	10	2.25E-05
	11:52:10	420	330	40	10	2.31E-05

Time	for	25mm	drop	
		_ • · · · · · · ·	• P	

Permeability (m/s)	2.3E-05		
mm/hr	83.5		

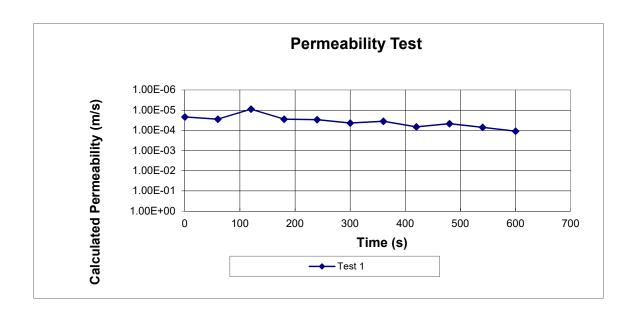

PERMEABILITY - Percolation Test

Project	Tweed Valley Hospital			
Project Number	Test 3		Date	24/10/2018
Test Location	BH22		Tester	CL
Depth of Hole		500 mm		
Diameter of Hole	·	100 mm		
Length of Test Section	<u></u>	400 mm		

Date	Time	Time since start	Depth of water from	Δt	∆d	Permeability
		of test (t) (s)	Reference level (d) (mm)			(P) (m/s)
24/10/18	11:45:00	0	500	0	0	, , ,
	11:45:15	15	450	15	50	1.67E-04
	11:45:30	30	430	15	20	7.17E-05
	11:45:45	45	420	15	10	3.70E-05
	11:46:00	60	410	15	10	3.79E-05
	11:46:15	75	400	15	10	3.88E-05
	11:46:30	90	390	15	10	3.97E-05
	11:46:45	105	385	15	5	2.02E-05
	11:47:00	120	380	15	5	2.05E-05
	11:47:30	150	370	30	10	2.08E-05
	11:48:00	180	365	30		1.06E-05
	11:48:30	210	360			1.08E-05
	11:49:00	240	350	30	10	2.19E-05
	11:49:30	270	335			3.40E-05
	11:50:00	300	320			3.55E-05
	11:50:30	330	310	30	10	2.45E-05
	11:51:00	360	300	30		2.53E-05
	11:51:30	390	290	30	_	2.60E-05
	11:52:10	420	270	40	20	5.47E-05

 Permeability (m/s)
 4.1E-05

 mm/hr
 149.0


PERMEABILITY - Percolation Test

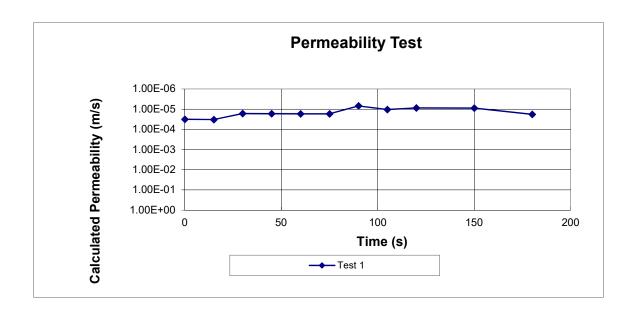
Project	Tweed Valley Hospital			
Project Number	Test 1		Date	3/08/2018
Test Location	BH23		Tester	BE
Depth of Hole		500 mm		
Diameter of Hole	<u></u>	100 mm		
Langth of Tast Saction	\n	400 mm		

Date	Time	Time since start	Depth of water from	Δt	Δd	Permeability
_ 3.0		of test (t) (s)	Reference level (d) (mm)	-		(P) (m/s)
3/8/18	11:45:00	0	510	0	0	(1) (111/0)
3,3,10	11:46:00	60	483		27	2.16E-05
	11:47:00	120	450	60	33	
	11:48:00	180	440	60	10	
	11:49:00	240	410		30	2.78E-05
	11:50:00	300			30	2.98E-05
	11:51:00	360	340	60	40	4.33E-05
	11:52:00	420	310	60	30	3.57E-05
	11:53:00	480	260	60	50	6.74E-05
	11:54:00	540	230	60	30	4.63E-05
	11:55:00	600	190	60	40	7.11E-05
	11:56:00	660	140	60	50	1.10E-04
	11:57:00	720	80	60	60	1.88E-04

Time	for	25mm	drop	

Permeability (m/s)	5.7E-05
mm/hr	203.5

PERMEABILITY - Percolation Test

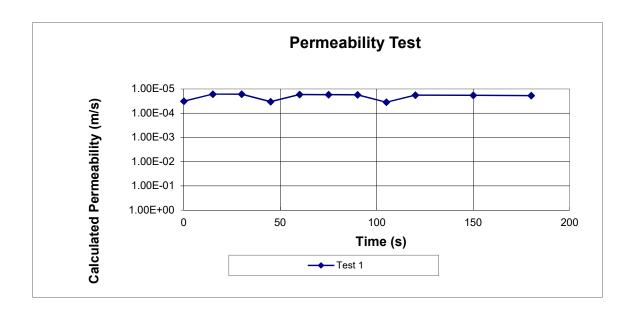

Project	Tweed Valley Hospital			
Project Number	Test 2		Date	24/10/2018
Test Location	BH23		Tester	CL
Depth of Hole		500 mm		
Diameter of Hole		100 mm		
Length of Test Section	on	400 mm		

Date	Time	Time since start	Depth of water from	Δt	∆d	Permeability
		of test (t) (s)	Reference level (d) (mm)			(P) (m/s)
24/10/18	11:45:00	0	500	0	0	, , ,
	11:45:15	15	490	15	10	3.21E-05
	11:45:30	30	480	15	10	3.27E-05
	11:45:45	45	475	15	5	1.66E-05
	11:46:00	60	470	15	5	1.68E-05
	11:46:15	75	465	15	5	1.69E-0
	11:46:30	90	460	15	5	1.71E-0
	11:46:45	105	458	15	2	6.89E-06
	11:47:00	120	455	15	3	1.04E-0
	11:47:30	150	450	30	5	8.73E-06
	11:48:00	180	445	30	5	8.82E-06
	11:48:30	210	435	30	10	1.79E-0
	11:49:00	240	425	30	10	1.83E-0
	11:49:30	270	420	30	5	9.31E-0
	11:50:00	300	410	30	10	1.89E-0
	11:50:30	330	405	30	5	9.63E-0
	11:51:00	360	395	30	10	1.96E-0
	11:51:30	390	390	30	5	9.98E-0
	11:52:10	420	380	40	10	2.03E-0

	drop	25mm	for	Time
--	------	------	-----	------

 Permeability (m/s)
 1.7E-05

 mm/hr
 60.9


PERMEABILITY - Percolation Test

Project	Tweed Valley Hospital			
Project Number	Test 3		Date	24/10/2018
Test Location	BH23		Tester	CL
Depth of Hole		500 mm		
Diameter of Hole		100 mm		
Length of Test Section	n	400 mm		

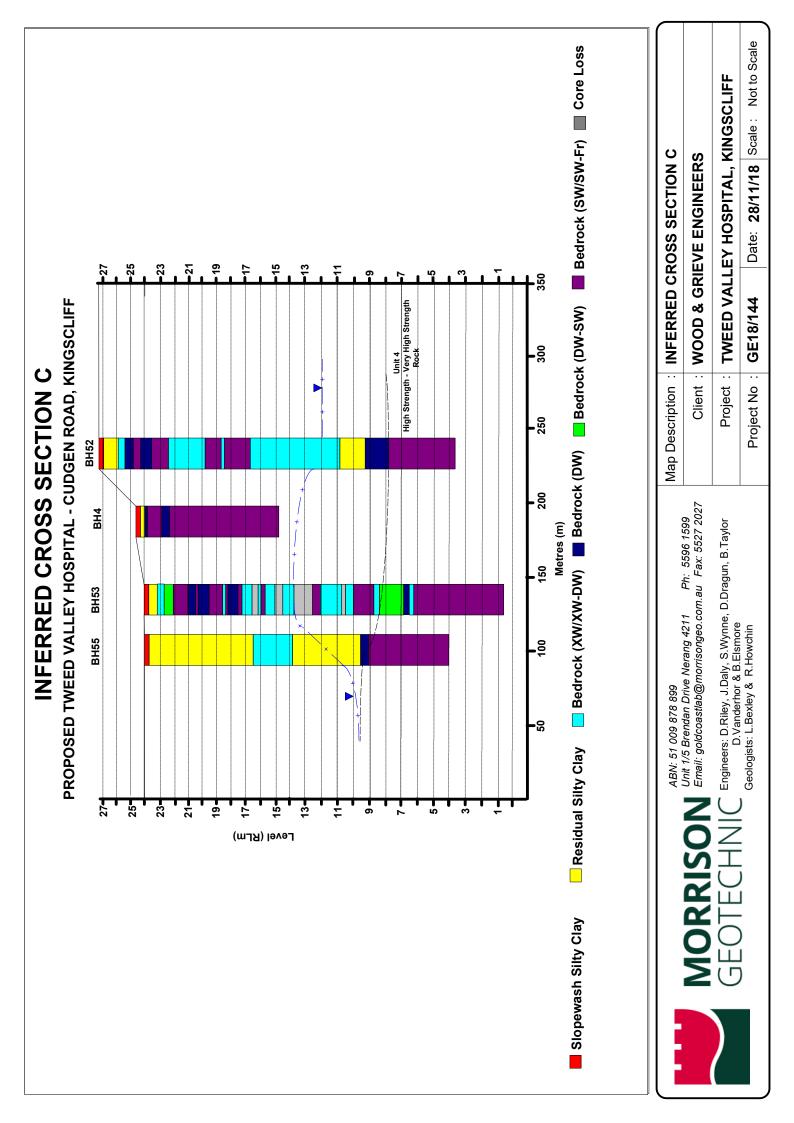
Date	Time	Time since start	Depth of water from	Δt	∆d	Permeability
		of test (t) (s)	Reference level (d) (mm)			(P) (m/s)
24/10/18	0:45:00	0	500	0	0	, , ,
	0:45:15	15	490	15	10	3.21E-05
	0:45:30	30	485	15	5	1.63E-05
	0:45:45	45	480	15	5	1.64E-05
	0:46:00	60	470	15	10	3.33E-05
	0:46:15	75	465	15	5	1.69E-05
	0:46:30	90	460	15	5	1.71E-05
	0:46:45	105	455	15	5	1.73E-05
	0:47:00	120	445	15	10	3.51E-05
	0:47:30	150	435	30	10	1.79E-05
	0:48:00	180	425	30	10	1.83E-05
	0:48:30	210	415	30	10	1.87E-05
	0:49:00	240	405	30	10	1.92E-05
	0:49:30	270	395	30	10	1.96E-05
	0:50:00	300	385		10	2.01E-05
	0:50:30	330	375	30	10	2.06E-05
	0:51:00	360	360	30	15	3.19E-05
	0:51:30	390	350	30	10	2.19E-05
	0:52:10	420	340	40	10	2.25E-05

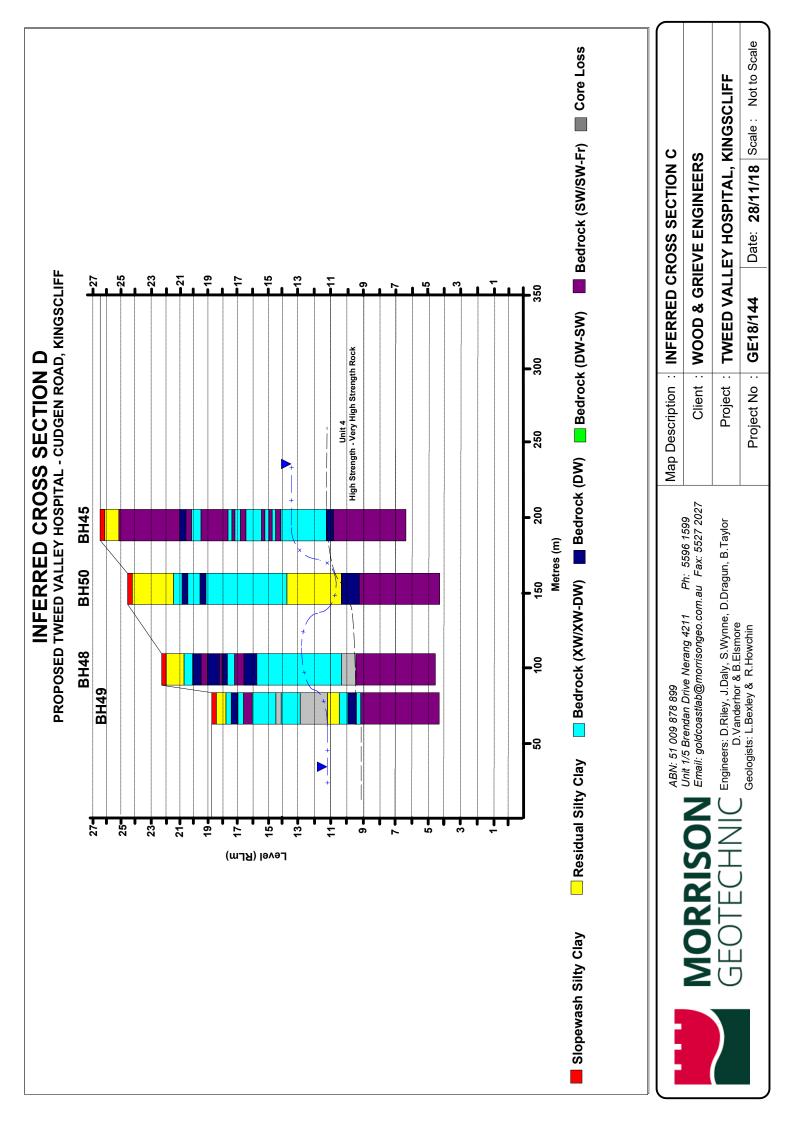
Time for	25mm	drop	

Permeability (m/s)	2.2E-05
mm/hr	77.6


APPENDIX 'D'


CROSS SECTIONS OF BOREHOLES – SECTIONS A, B, C AND D)



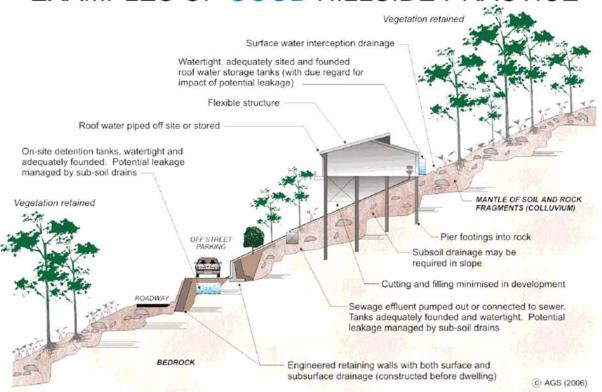


APPENDIX 'E'

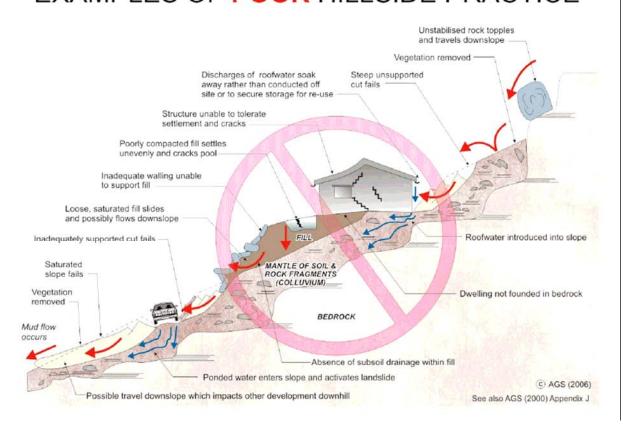
GUIDELINES FOR HILLSIDE CONSTRUCTION

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

SOME GUIDELINES FOR HILLSIDE CONSTRUCTION


GOOD ENGINEERING PRACTICE

ADVICE


POOR ENGINEERING PRACTICE

ADVICE		
GEOTECHNICAL ASSESSMENT	Obtain advice from a qualified, experienced geotechnical practitioner at early stage of planning and before site works.	Prepare detailed plan and start site works before geotechnical advice.
PLANNING		
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind.	Plan development without regard for the Risk.
DESIGN AND CONS	STRUCTION	
HOUSE DESIGN	Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding. Consider use of split levels.	Floor plans which require extensive cutting and filling. Movement intolerant structures.
CUTE OF EADING	Use decks for recreational areas where appropriate.	Y d' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
SITE CLEARING	Retain natural vegetation wherever practicable.	Indiscriminately clear the site.
ACCESS & DRIVEWAYS	Satisfy requirements below for cuts, fills, retaining walls and drainage. Council specifications for grades may need to be modified. Driveways and parking areas may need to be fully supported on piers.	Excavate and fill for site access before geotechnical advice.
EARTHWORKS	Retain natural contours wherever possible.	Indiscriminatory bulk earthworks.
Cuts	Minimise depth. Support with engineered retaining walls or batter to appropriate slope. Provide drainage measures and erosion control.	Large scale cuts and benching. Unsupported cuts. Ignore drainage requirements
FILLS	Minimise height. Strip vegetation and topsoil and key into natural slopes prior to filling. Use clean fill materials and compact to engineering standards. Batter to appropriate slope or support with engineered retaining wall. Provide surface drainage and appropriate subsurface drainage.	Loose or poorly compacted fill, which if it fails, may flow a considerable distance including onto property below. Block natural drainage lines. Fill over existing vegetation and topsoil. Include stumps, trees, vegetation, topsoil, boulders, building rubble etc in fill.
ROCK OUTCROPS & BOULDERS	Remove or stabilise boulders which may have unacceptable risk. Support rock faces where necessary.	Disturb or undercut detached blocks or boulders.
RETAINING WALLS	Engineer design to resist applied soil and water forces. Found on rock where practicable. Provide subsurface drainage within wall backfill and surface drainage on slope above. Construct wall as soon as possible after cut/fill operation.	Construct a structurally inadequate wall such as sandstone flagging, brick or unreinforced blockwork. Lack of subsurface drains and weepholes.
FOOTINGS	Found within rock where practicable. Use rows of piers or strip footings oriented up and down slope. Design for lateral creep pressures if necessary. Backfill footing excavations to exclude ingress of surface water.	Found on topsoil, loose fill, detached boulders or undercut cliffs.
SWIMMING POOLS	Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no lateral support on downhill side.	
DRAINAGE	*	
Surface	Provide at tops of cut and fill slopes. Discharge to street drainage or natural water courses. Provide general falls to prevent blockage by siltation and incorporate silt traps. Line to minimise infiltration and make flexible where possible. Special structures to dissipate energy at changes of slope and/or direction.	Discharge at top of fills and cuts. Allow water to pond on bench areas.
SUBSURFACE	Provide filter around subsurface drain. Provide drain behind retaining walls. Use flexible pipelines with access for maintenance. Prevent inflow of surface water.	Discharge roof runoff into absorption trenches.
SEPTIC & SULLAGE	Usually requires pump-out or mains sewer systems; absorption trenches may be possible in some areas if risk is acceptable. Storage tanks should be water-tight and adequately founded.	Discharge sullage directly onto and into slopes. Use absorption trenches without consideration of landslide risk.
EROSION CONTROL & LANDSCAPING	Control erosion as this may lead to instability. Revegetate cleared area.	Failure to observe earthworks and drainage recommendations when landscaping.
	ITE VISITS DURING CONSTRUCTION	
DRAWINGS	Building Application drawings should be viewed by geotechnical consultant	
SITE VISITS	Site Visits by consultant may be appropriate during construction/	
	MAINTENANCE BY OWNER	l
OWNER'S RESPONSIBILITY	Clean drainage systems; repair broken joints in drains and leaks in supply pipes.	
	Where structural distress is evident see advice. If seepage observed, determine causes or seek advice on consequences.	

EXAMPLES OF GOOD HILLSIDE PRACTICE

EXAMPLES OF **POOR** HILLSIDE PRACTICE

Important Information about Your

Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one — not even you —* should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- · not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are *Not* Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize* that separating logs from the report can elevate risk.

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geotechnical mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures*. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else*.

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveved in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/The Best People on Earth exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.