

Dewatering Management Plan

Qantas Flight Training Centre

297 King Street and 65 Kent Road Mascot NSW

Prepared for APP Pty Ltd 16 August 2019 Version 1

reditusconsulting.com

Dewatering Management Plan 297 King Street and 65 Kent Road, Mascot NSW

Prepared for APP Pty Ltd

This report has been prepared for Prepared for APP Pty Ltd in accordance with the terms and conditions of appointment for proposal P19130 dated 5 August 2019.

Reditus Consulting Pty Ltd (ABN 34 631 168 502) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Report No:	19130RP01
Report Date:	16 August 2019
Revision Text:	Version 1

Table of Contents

Execu	utive Summary	i
1. Int	roduction	1
1.1.	Objectives	2
1.2.	Scope of Works	3
1.3.	Roles and Responsibilities	4
1.4.	Limitations	4
2. Do	cument Review	5
3. Pr	oposed Development	6
3.1.	Development Details	6
3.2.	Construction Methodology	7
3.3.	Dewatering Extraction Rate and Duration	7
3.4.	Discharge Methods	8
4. Sit	te Characterisation	9
4.1.	Summary of Geological Setting	9
4.2.	Summary of Hydrogeological Setting10	0
5. Gr	oundwater Take and Drawdown Estimates18	8
5.1.	Summary of Geology and Hydrogeology18	8
5.2.	Conceptual Flow Model	8
5.3.	Summary of Aquifer Parameters20	0
5.4.	Analytical Model Equations20	0
5.5.	Analytical Assumptions and Input Parameters23	3
5.6.	Summary of Model Results2	5
6. Le	gislation, Regulation and Relevant Endorsed Guidelines28	8
6.1.	Environmental Planning and Assessment Act 197928	8
6.2.	Protection of the Environment Operations (POEO) Act 199728	8
6.3.	Bayside Council – Dewatering Discharge Approval / Permit	8

6.4.	Water Act 1912 and Water Management Act 2000	29
6.5.	NSW Aquifer Interference Policy 2012	31
6.6.	Relevant National and NSW EPA Endorsed Guidelines	32
7. Gr	oundwater Impact Assessment	33
7.1.	Minimal Impact Considerations	33
7.2.	WSP Rules for Water Access Approval	35
8. Dr	aft Water Quality Objectives	38
8.1.	Receiving Environment	
8.2.	Adopted Discharge Water Quality Guidelines	
8.3.	Draft Water Quality Objectives - DGVs	42
9. Pc	otential Dewatering Impacts	46
9.1.	Receiving Water Quality	
9.2.	Settlement of Unconsolidated Soils	
9.3.	Acid Sulfate Soils	
9.4.	Impact to Water Supply Works and GDEs	
9.5.	Noise, Vibration and Odour	40
/.0.		
	Vanagement of Potential Impacts	
	Management of Potential Impacts	50
10. N	Management of Potential Impacts	50 50
10. 1 10.1.	Management of Potential Impacts Drawdown Discharge of Groundwater	50 50 50
10. 1 0.1. 10.2.	Management of Potential Impacts Drawdown Discharge of Groundwater Water Treatment – Reverse Osmosis Unit	50 50 51
10. N 10.1. 10.2. 10.3.	Management of Potential Impacts Drawdown Discharge of Groundwater Water Treatment – Reverse Osmosis Unit Noise and Vibration	50 50 51 53
10. N 10.1. 10.2. 10.3. 10.4. 10.5.	Management of Potential Impacts Drawdown Discharge of Groundwater Water Treatment – Reverse Osmosis Unit Noise and Vibration	50 50 51 53 53
10. N 10.1. 10.2. 10.3. 10.4. 10.5.	Management of Potential Impacts Drawdown Discharge of Groundwater Water Treatment – Reverse Osmosis Unit Noise and Vibration Odour Monitoring Program	50 50 51 53 53 53
 10. N 10.1. 10.2. 10.3. 10.4. 10.5. 11. N 	Management of Potential Impacts Drawdown Discharge of Groundwater Water Treatment – Reverse Osmosis Unit Noise and Vibration Odour Monitoring Program Monitoring Frequency and Analysis	50 50 51 53 53 54
 10. N 10.1. 10.2. 10.3. 10.4. 10.5. 11. N 11.1. 	Management of Potential Impacts Drawdown. Discharge of Groundwater Water Treatment – Reverse Osmosis Unit Noise and Vibration Odour. Monitoring Program Monitoring Frequency and Analysis. Monitoring Locations	50 50 51 53 53 54 54 56
 10. N 10.1. 10.2. 10.3. 10.4. 10.5. 11. N 11.1. 11.2. 	Management of Potential Impacts Drawdown Discharge of Groundwater Water Treatment – Reverse Osmosis Unit Noise and Vibration Odour Monitoring Program Monitoring Frequency and Analysis Monitoring Locations Water Sample Collection	50 50 51 53 53 53 54 54 54 56 57
 10. I 10.1. 10.2. 10.3. 10.4. 10.5. 11. I 11.1. 11.2. 11.3. 	Management of Potential Impacts Drawdown. Discharge of Groundwater	50 50 51 53 53 54 54 54 56 57 lown .58
 10. I 10.1. 10.2. 10.3. 10.4. 10.5. 11. I 11.2. 11.3. 11.4. 11.5. 	Management of Potential Impacts Drawdown. Discharge of Groundwater Water Treatment – Reverse Osmosis Unit Noise and Vibration Odour. Monitoring Program Monitoring Frequency and Analysis Monitoring Locations Water Sample Collection Monitoring of Discharge Flow Rate and Groundwater Drawd	

14.	Limitations			62
-----	-------------	--	--	----

Appendix A - Figures

- Appendix B Development Application Drawings
- Appendix C Summary of Groundwater Analytical Results

Appendix D - Groundwater Monitoring Well Construction Logs

Executive Summary

Reditus Consulting Pty Ltd (Reditus) were commissioned by APP Pty Ltd to prepare a Dewatering Management Plan (DMP) for the proposed Qantas Flight Training Facility (QFTF) development located at 297 King St and 65 Kent Road, Mascot NSW (the site).

The DMP provides details on the hydrogeological setting, construction design, predictions of groundwater extraction volumes, and assessment of potential dewatering impacts. The DMP also provides management strategies to minimise adverse environmental impacts including environmental control procedures, monitoring program, performance criteria and compliance reporting requirements.

Four (4) main excavations are proposed to facilitate construction of the development, including a pool and three (3) lift shafts. These will be constructed as 'fully tanked', preventing any groundwater inflow or water outflow following completion of the construction works.

Of the four (4) excavations, the Eastern and the Western Carpark Lift Shafts were determined to extend below the groundwater table. These two excavations will require dewatering during the construction period. The Pool and Training Building Lift Shafts were determined not to extend below the groundwater table, therefore do not require dewatering.

Groundwater take estimates were predicted, incorporating both groundwater inflows and matrix removal through excavation. The groundwater inflow was predicted using a steady-state analytical method developed by Marinelli and Niccoli (2000). The following most likely groundwater take estimates were predicted during construction:

Dewatering Area	Predict Inflow Take (ML)	Predicted Matrix Take (ML)	Total Groundwater Take (ML)
Car Park Lift Shaft West	0.443	0.007	0.449
Car Park Lift Shaft East	0.791	0.014	0.805
		Total	1.254

Given that groundwater will be intercepted and require dewatering during construction of the two (2) car park lift shafts, the proposed development is considered to be an aquifer inference activity requiring assessment and authorisation (if required) from the WaterNSW under the Water Management Act 2000. As such, WaterNSW requires an application to be submitted for "Approval for Water Supply Works and/or Water Use" (previously known as a Temporary Dewatering Licence).

The purpose of this DMP is to facilitate an application for an "Approval for Water Supply Works and/or Water Use" (previously known as a Temporary Dewatering Licence)' to be submitted to WaterNSW under the Water Management Act 2000. Following assessment of the DMP, WaterNSW will determine if the groundwater take is considered significant enough to warrant approval and issue of a Water Access Licence (WAL) under the Water Management Act 2000. In most cases, WaterNSW will generally not require issue of a WAL for dewatering activities estimated be less than <3ML/yr.

Reditus note that if approval is granted, typically an application for a "new water access licence with a zero share component" will need to be completed and a suitable groundwater entitlement will also need to be obtained from the market to account for the groundwater take. This entitlement must be obtained from within the same groundwater source. This will typically need to be obtained within three months of granting of the Zero Access Licence.

To assist the WaterNSW assessment, the following required information required to support the "Approval for Water Supply Works and/or Water Use" application is listed in the table below.

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

19130RP01

Checklist Item	Required Information Description	DMP Findings	Relevant Page No:
5.1	Current groundwater levels, preferably based on at least three repeat measurements from at least three monitoring bores and should be used to develop a watertable map for the site and its near environs, be accompanied by an interpretation of the groundwater flow direction from these data, and an assessment of the likely level to which groundwater might naturally rise during the life of the building.	Onsite groundwater elevations have been obtained from 15 onsite monitoring wells and 24 CTP boreholes, on multiple occasions between 7 and 24 January 2019. Groundwater flow direction was inferred to be towards the east, towards Alexandra Canal. Standing groundwater levels measured from monitoring wells ranged between RL 1.31m and RL 3.18m. Levels measured from CTP boreholes ranged between RL 1.4m and RL 3.8m below ground level. The following groundwater levels were reported in the areas of the proposed excavations: • Pool: RL 2.06m to RL 2.4m • Training Building Lift: RL 2.1m to RL 3.18m • Car Park Lift West: RL 2.2m to RL 3.05m It is the professional experience of Reditus that the groundwater levels in alluvial and aeolian aquifers in the Sydney region (such as the BSA) can vary naturally by ±1m or more during prolonged periods of dry or wet weather.	Pg. 11-15 Section 4.
5.2	Predictions of total volume of groundwater to be extracted at the property – the method of calculation and the basis for parameter estimates and any assumptions used to derive the volume are to be clearly documented.	An analytical steady state model was used to predict groundwater extraction volumes, including both that contained in the excavation matrix and inflow during construction. The total groundwater take volume over the excavation and construction period was predicted to be 1.254 ML . This includes the matrix volume of groundwater and inflow during construction. No ongoing inflows are predicted as the pool and lift shafts will be "fully tanked". No other underground structures are proposed.	Pg. 18-27 Section 5.
5.3	Predicted duration of dewatering at the property, noting that temporary dewatering licences are generally issued for no more than 12 months.	The duration of temporary dewatering during construction is expected to be less than 1 month.	Pg. 7-8
5.4	Details of how dewatering volumes are to be measured, e.g. by calibrated flow meter or other suitable method, and of the maximum depth of the proposed dewatering system.	 Groundwater extraction volumes are to be measured using a calibrated flow meter (inline Magflow meter). The two (2) excavation areas proposed to be dewatered are to the following depths: Car Park Lift West: RL 1.630m (0.87m below groundwater table) Car Park Lift East: RL 1.630m (1.42m below groundwater table) 	Pg. 6 & 54
5.5	Details of any predicted impacts or particular issues, e.g. proximity of groundwater dependent ecosystems springs; or water supply losses by neighbouring groundwater user's, potential subsidence impacts on nearby structures or infrastructure.	The closest GDE is located approximately 1.5km southeast (Botany Wetlands), which is hydraulically cross-gradient from the site. The closest water supply works bore (GW027248) was located approximately 220m to the north of the site. Given the predicted drawdown at 60m from the excavation boundary is <0.1m (temporary only), the dewatering works are unlikely to cause a detrimental impact GDEs or water supply works. Groundwater drawdown of <1m is predicted within 2.5m from the site boundary. A temporary drop in the water table of 1m or less is considered unlikely to result in off-site geotechnical settlement impacts. A drawdown monitoring program and contingency recommendation are provided.	Pg. 10-11, 16-17, 34-35

\bigcirc

5.6	Details of monitoring proposed during the dewatering program. These should be designed to inform and facilitate the protection of any identified potential impacts.	The requirements for monitoring, management and compliance reporting of potential impacts (including drawdown/settlement, noise, vibration and odour) are detailed in Section 11 of this DMP.	Pg. 54-58
5.7	Details of ambient groundwater quality conditions beneath the property and of any proposed treatment to be applied to pumped water prior to disposal – at a minimum, treatment must be undertaken to remove contaminants, manage pH, reduce suspended solids and turbidity to acceptable levels and ensure that dissolved oxygen levels are compatible with ambient quality requirements in receiving waters. Groundwater cannot be reinjected into an aquifer without the specific approval of, and licensing by, WaterNSW.	Groundwater sampling has been completed on the site (Section 4.2.3). The most recent groundwater sampling and laboratory data from MW01 and MW02 (located within the car park development area) reported concentrations potential contaminants of concern below the adopted ANZG (2018) 95% marine water quality guidelines, with the exception of the following: • Arsenic of 27ug/L • Zinc of 1.18mg/L Reditus note that PFOS was detected at 0.03ug/L, which above the laboratory limit of reporting but below the NEMP 2018 Interim marine guideline of 0.13ug/L. Based on the above concentrations, water treatment will be required. A small commercial grade reverse osmosis (RO) treatment system is recommended to achieve stormwater discharge criteria or onsite reuse. Water treatment (Section 10.3) and water quality objectives (Section 8) are provided in the DMP. Groundwater re-injection is not currently proposed, however, is recommended as a contingency should offsite drawdown approach specified limits or required under an Acid Sulfate Soil Management Plan.	Pg. 15-16, 51-53
5.8	Details of how reporting will occur during and following the dewatering program, to confirm that predicted quantities and quality objectives were met; and that upon completion, the surrounding groundwater levels have recovered.	Weekly dewatering reports summarising water level monitoring are recommended. A "Completion Report" detailing the volume of water taken and groundwater condition post dewatering activities, will be provided to the WaterNSW.	Pg. 60
5.9	Description of the method of dewatering and related construction including any proposal to use temporary piling or support walls and the relative depths thereof.	The proposed construction of the pool and lift shafts will be "fully tanked" and water tight, preventing any ongoing groundwater take. It is anticipated that dewatering will commence following the competition of sheet pile walls (or equivalent temporary sheet walls) around the excavation perimeter. Groundwater is proposed to be extracted using a series of spearpoints installed around the perimeter of the excavation, to approximately 0.5m below the depth of the proposed excavation of R11.630m. Each of the spearpoints will be connected to a header main around the site perimeter, with water extracted via a vacuum pump to ensure a groundwater head at RL 1.630m.	Pg. 6-10

1. Introduction

Reditus Consulting Pty Lty (Reditus) were commissioned by APP Pty Ltd to prepare a Dewatering Management Plan (DMP) for the proposed Qantas Flight Training Facility (QFTF) development located at 297 King St and 65 Kent Road, Mascot NSW (the site). The proposed development involves the construction of the following:

- 297 King Street Mascot (Lot 4 DP234489):
 - Flight Training Centre (FTC) Building, including four (4) levels of commercial space, a Hall Room and Pool.
 - The major below ground excavations include the Pool and one Lift Shaft within the FTC Building.
- 65 Kent Road Mascot (Lot 133 DP659434 & Lot B DP164829):
 - Above ground Car Park of 12 levels.
 - The major below ground excavations include two (2) Lift Shafts, identified as the Eastern Lift Shaft and the Western Lift Shaft.

Figure 1, **Appendix A**, identifies the site location and surrounding features, and Figure 2, **Appendix A** details the proposed development site layout. The site details are summarised in Table 1-1 below.

Table 1-1: Site Identification	on Details
--------------------------------	------------

Site Characteristics	Details	
Street Address	297 King St and 65 Kent Road, Mascot NSW	
Lot & Deposited Plan	 Lot 133 DP 659434; Lot B DP 164829; Lot 1 DP 202747; Lot 4 DP 234489; and Lots 2-5 DP 234489 	
LGA	Bayside Council	
Zoning	IN1 – General Industrial under the Botany Bay Local Environmental Plan 2013	
Site Coordinates to the approximate centre of the site (GDA94-MGA55)	Easting: 332273 Northing: 6244521	
Site Area	Total: 5.417 ha Development Footprint: 2.807 ha	
Excavation Areas	Pool: 200m ² Training Building Lift Shaft: 21m ² Car Park Lift Shaft West: 30.7m ² Car Park Lift Shaft East: 40m ²	

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

Four (4) main excavations are proposed to facilitate construction of the development, including a pool and three (3) lift shafts. These will be constructed as 'fully tanked', preventing any groundwater inflow or water outflow following completion of the construction works.

Of the four (4) excavations, the Eastern and the Western Carpark Lift Shafts were determined to extend below the groundwater table. These two excavations will require dewatering during the construction period. The Pool and Training Building Lift Shafts were determined not to extend below the groundwater table, therefore do not require dewatering for construction.

Given that groundwater will be intercepted and dewatered during construction, the proposed development is considered to be an aquifer inference activity requiring authorisation from the WaterNSW under the Water Management Act 2000.

Reditus notes that the WaterNSW requires an application to be submitted for all dewatering activities, including those estimated be less than <3ML/yr (which was a former threshold for application requirement up to Dec 2015). Following WaterNSW's review and assessment of the application, a Temporary Dewatering Licence or Water Access Licence (WAL) will not generally required if the total groundwater take is <3ML/year.

In order to submit an application for "Approval for Water Supply Works and/or Water Use" (previously known as a Temporary Dewatering Licence), mandatory information is required to be provided to the WaterNSW for assessment in the form of a Dewatering Management Plan (DMP), including those estimated be less than <3ML/yr. This mandatory information has been summarised within the WaterNSW "Mandatory Assessment Requirements for Groundwater Approval (Dewatering)" checklist, which is summarised in the executive summary of this DMP.

Reditus note that if approval is granted and a WAL issued, typically an application for a "new water access licence with a zero share component" will need to be completed and a suitable groundwater entitlement will also need to be obtained from the market to account for the groundwater take. This entitlement must be obtained from within the same groundwater source. This will typically need to be obtained within three months of granting of the Zero Access Licence.

1.1. Objectives

Dewatering activities have the potential to impact the surrounding environment, primarily associated with:

- Potential settlement issues as a result of groundwater drawdown outside the site.
- Potential groundwater drawdown impacts on surrounding water supply works (e.g. domestic bores) or environmental groundwater uses.
- Potential issues with groundwater drawdown in acid sulfate soil environments.
- Potential mobilisation and migration of contamination from offsite sources.

The primary objectives of the DMP are to:

- Provide details on the hydrogeological setting of the site and a summary of key environmental factors relevant to dewatering with specific focus on water quality at the site;
- Provide details of the proposed development layout, construction design and dewatering methods;
- Predict dewatering extraction volumes required for the development works during construction;
- Determine the potential impacts of the dewatering activity to groundwater dependent ecosystems (GDEs), springs, water supply works and potential for subsidence impacts on nearby structures or infrastructure;
- Provide management strategies to minimise adverse environmental impacts; and
- Establish environmental control procedures, monitoring program, performance criteria and compliance reporting to assess the potential impacts of extracted groundwater on the receiving environment and the effectiveness of implemented controls.

1.2. Scope of Works

To meet the above objectives, the following scope of work was undertaken:

- A desktop site assessment, including review of previous reports where available;
- A review of relevant policy, regulations and guidelines;
- Review of construction proposal details relevant to dewatering and proposed dewatering methodology;
- Development of groundwater elevation contour plan, interpretation of groundwater flow direction and assessment of the likely level fluctuations during the life of the building;
- Develop conceptual flow model to replicate the proposed excavation activity. This will be a steady state model and will predict groundwater inflow volumes at the proposed basement excavation level during excavation:
 - Completion of analytical equations to derive groundwater extraction volumes using a range of representative aquifer parameters from published literature values and site specific data; and
 - Estimate volume of groundwater required to be removed during the dewatering process and assess the likely impacts of the dewatering activities on other groundwater users.
- Specify the discharge water quality criteria, anticipated treatment requirements, sampling frequency and compliance reporting requirements; and
- Preparation of this Dewatering Management Plan.

1.3. Roles and Responsibilities

The Principal Contractor will be responsible for implementing the appropriate management of dewatered groundwater as detailed in this document. It must be noted that the DMP is not inclusive of all conditions of consent in relation to dewatering and groundwater management, and that the Principal Contractor is responsible for making itself aware of, and complying with, all relevant conditions of the permits, licenses and approvals referred to in Section 6.

1.4. Limitations

A detailed statement of limitations for this report is provided in Section 14.

This report is based on the Scope of Work outlined in Section 1.2. Reditus prepared this report in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment profession.

This report relates only to the objectives stated and does not relate to any other work undertaken for the Client (APP Pty Ltd). It is a report based on the information reported in previous environmental assessments by others, and data made available to Reditus. These conditions stated in this report may change with time and space.

All conclusions regarding the property area are the professional opinions of Reditus, subject to the qualifications in the report. Whilst normal assessments of data reliability have been made, Reditus assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of Reditus, or developments resulting from situations outside the scope of this project. The client acknowledges that this report is for the exclusive use of the client.

2. Document Review

The following documents specific to the site were provided to Reditus for preparation of this DMP:

- Noxongiffen (29 May 2019) Qantas Group Flight Training Centre & Carpark Preliminary Architectural Drawings;
- Arcadis (7 June 2019) Environmental Site Assessment, Qantas Flight Training Centre and Carpark, 297 King Street Mascot NSW (ref: 10026436RP01);
- Douglas Partners (8 February 2019) Report on Geotechnical Investigation Proposed Flight Training Centre (ref: 85777.15 R.001);
- Norman Disney & Young (20 May 2019) Qantas Group Flight Training Centre Hydraulic Services Plans;
- Enstruct Group (20 May 2019) Qantas Group Flight training Centre Structural, Stormwater & Pile Plans; and
- Land Partners (5 June 2019) Detail Survey of Qantas Catering Facility Carpark Area (ref: SY074560.00; rev: F)

\bigcirc

3. Proposed Development

3.1. Development Details

Based on the supplied drawings, the proposed development involves the construction of the following:

- 297 King Street Mascot (Lot 4 DP234489):
 - Flight Training Centre (FTC) Building, including four (4) levels of commercial space, a Hall Room and Pool.
 - The major below ground excavations include the Pool and one Lift Shaft within the FTC Building.
- 65 Kent Road Mascot (Lot 133 DP659434 & Lot B DP164829):
 - Above ground Car Park of 12 levels.
 - The major below ground excavations include two (2) Lift Shafts, identified as the Eastern Lift Shaft and the Western Lift Shaft.

Four (4) main excavations are proposed to facilitate construction of the development, including a pool and three (3) lift shafts. These will be constructed as 'fully tanked', preventing any groundwater inflow or water outflow following completion of the construction works. Some minor localised footing excavation and capping beam excavation will be required, however, it is not expected to intercept groundwater.

Of the four (4) excavations, the Eastern and the Western Carpark Lift Shafts were determined to extend below the groundwater table. These two excavations will require dewatering during the construction period. The Pool and Training Building Lift Shafts were determined not to extend below the groundwater table, therefore do not require dewatering for construction.

In order to provide a stable working surface and to allow localised deeper excavations, any water table will need to be lowered by a minimum of 0.25m below the bulk excavation level (BEL).

The surface elevations, finished floor levels (FFL) and BEL are provided in Table 3-1 below.

Descriptions	Pool	Training Building Lift Shaft	Carpark Lift Shaft West	Carpark Lift Shaft East
Excavation Footprint Area (m2)	20	21	30.7	40
Site Surface Elevation (RLm AHD)	5.7	5.7	5.83	5.83
Basement Finished Floor Level (RLm AHD)	3.5	3.5	2.49	2.49
Estimated Bulk Excavation Level (RLm AHD)	3.2	3.2	1.63	1.63

Table 3-1: Summary of Proposed Excavation Parameters

The proposed excavation footprint is provided in Figure 2, **Appendix A**. Copies of the architectural drawings are provided in **Appendix B**.

3.2. Construction Methodology

The proposed construction is of a "fully tanked" water tight structure (including the pool and lift shafts).

The excavation are likely to be shored using 4mm steel sheet piles around the excavation perimeter (or equivalent sheet shoring), extending approximately 2.0m below the BEL. While the shoring will also serve to minimise the ingress of groundwater it does not necessarily provide a 'water tight excavation', as water entry will still occurs though sheet joints and the excavation base.

Dewatering is proposed to commence following the competition of shoring walls. Groundwater is proposed to be extracted using a series of spearpoints around the permitter of the excavation.

Each of the spearpoints will be connected to a header main around the site perimeter. The header line is then connected to a settlement tank and treatment system prior to proposed dewatering. Reinjection is currently not proposed.

From an environmental perspective, the proposed tanked construction method is strongly recommended as it is effective in:

- Mitigating the risk of environmental impacts associated with drawdown of the water table, and the potential settlement of unconsolidated soils;
- Reducing the volume of extracted groundwater to be discharged (typically) off-site, which often requires treatment and has the potential to adversely impact the receiving environment.

Irrespective of the method, the dewatering depth shall be minimised to the extent practicable to reduce the volume of water to be extracted and to limit groundwater drawdown.

Dewatering is likely to be required to operate 24 hours a day / seven days a week to maintain the water table at operational levels during the construction works.

3.3. Dewatering Extraction Rate and Duration

The uncertainty around the final dewatering methods prevent absolute quantitative assessment of the pumping rates and project volumes. The many variables involved in dewatering make predicting flow rates problematic. These variables include variations in recharge rates, effects of varying geology on hydraulic conductivity and soil porosity, and natural and built hydraulic barriers and recharge zones (including Alexandria Canal, Mill Stream, Lachlan Ponds and Botany Bay).

The approximate duration to complete the necessary excavation works and tanked construction is 2 weeks for each excavation area and construction component.

Dewatering is likely to be required continuously until the lift shafts are constructed and watertight and there is sufficient built loading to neutralise hydrostatic pressure. To minimise interruptions to the project and unnecessary expenditure, it is recommended that extraction pumps that can cater for low to high flow rates rather

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

19130RP01

than mobilising multiple pumps that may not be required if lower flows are encountered.

The predicted dewatering extraction rate is provided in Section 5 below. In summary, the steady-state groundwater extraction rate is predicted to be approximately 1L/s (totalling 1.23ML over the construction period).

3.4. Discharge Methods

3.4.1. Option 1 – Discharge to Stormwater

Approval shall be obtained from Bayside Council (Council) to direct dewatered and treated groundwater to the stormwater network. Dewatered groundwater is expected to be directed to the stormwater drain entry point along King Street, located directly in front of the site. Direct connection to stormwater is a preferred option however the presence of underground stormwater channels for direct connection adjacent to the site is unknown.

Treatment of extracted groundwater will be required during the proposed dewatering program to improve the water quality and minimise potential impacts to the receiving waters relevant details are provided in Section 10. The water quality of the extracted groundwater shall be assessed prior to discharge to the stormwater network, and then weekly thereafter during its release to monitor the waters suitability for continuous discharge. This monitoring will guide the initial type and level of treatment required to minimise environmental risks associated with the waters release, and reassessment of the treatment measures during the dewatering program.

3.4.2. Option 2 – Onsite Reuse

Alternatively, treated groundwater may potentially be used for onsite construction purposes (i.e. dust suppression, washing) following treatment. Treatment of extracted groundwater will be required to improve the water quality and minimise potential impacts to the potential receptors. The water quality of the extracted groundwater shall be assessed prior to reuse. This monitoring will guide the initial type and level of treatment required to minimise environmental risks associated with the waters release, and reassessment of the treatment measures during the dewatering program.

3.4.3. Option 3 – Reinjection

Reinjection of groundwater may be required to control drawdown effects, to mitigate potential Acid Sulfate Soil generation effects and/or settlement effects.

Treatment of extracted groundwater will be required to improve the water quality and minimise potential impacts to the potential receptors prior to re-injection.

4. Site Characterisation

Previous geotechnical and environmental investigations have been completed at the site which provide an understanding of the site geology and hydrogeology. A summary of the geological and hydrogeological setting is provided in Sections 4.1 and 4.2 below.

4.1. Summary of Geological Setting

The site is situated on Quaternary estuarine deposits comprising silty to peaty quartz sand, silt and clay. The site is underlain by Botany Sand which is known to be highly permeable to groundwater.

Review of the Sydney Geological Map Sheet 9130, 1:100 000 Edition 1, 1983 (Dept of Mineral Resources, 1983) indicated that the Site is underlain by Quaternary aged dune deposits of the Botany Sands. These typically comprise medium to fine grained 'marine' sand with podzols.

The thickness of the sediments ranges from approximately 10m around the perimeter of the basin to greater than about 60 m in parts. The thickness of sediments in the area of the site is estimated to be of the order of 20 to 30m.

Typically the Botany Sand formation overlies the Hawkesbury Sandstone, which comprises medium to coarse grained quartz sandstone, very minor shale and laminite lenses.

The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9130 ('SCS, 9130') indicates that the Aeolian landscape at the site likely comprises the Tuggerah soil landscape. The Tuggerah landscape typically comprises gently undulating to coastal dune fields, with slope gradients between 1-10%, with deep podsols on dunes and podsol/humus intergrades on swales. These soils are noted to present a wind erosion hazard, salinity, strongly acidic, localised water logging and generally non-cohesive soils.

4.1.1. Site Specific Geology

Arcadis (2019) described the site as fill material varied in thickness. The depth of fill across the site ranged from 1.20m to 3.5m in depth and generally consisted of the following layers:

- Asphalt or concrete hardstand surface;
- Road base consisting of sandy gravels, high compaction, poorly sorted and dry;
- Reworked silty sand, light brown to grey, coarse grained, poorly sorted, some angular gravels. Foreign inclusions including glass fragments, scrap metal, brick fragments, terracotta fragments, woodchips, were evident at some locations; and
- Isolated ash layers were observed in the southernmost carpark in the northeast and northwest corners.

The natural material consisted of silty Sand, silty Clay, clayey Sand, sandy Silt and peat. Generally described as light grey to brown colour.

4.1.2. Acid Sulfate Soils

Acid sulfate soils (ASS) occur predominantly on coastal land with elevations generally below 5m Australian Height Datum (AHD). These soils also occur further inland in saline seepage areas, rivers, lake beds and irrigation channels. Where present, draw-down of the local water table can expose ASS to oxidising conditions creating acidity and mobilising metals at potentially harmful concentrations.

Review of the Botany Bay Acid Sulfate Soil Risk Map (Murphy, 1997) shows the site to be located in an area of X4 disturbed terrain. A review of the Atlas of Australia Acid Sulfate Soils (ASS) map shows the site is situated in a Class B category with a low probability of occurrence (60-70% chance of occurrence) with occurrence across the site.

The Botany Bay Local Environmental Plan 2013 indicated that the site is located in a Soil Class 2 Acid Sulfate Soils area. The description of a Soil Class 2 area is 'works below natural ground surface present an environmental risk and works likely to lower the water table present an environmental risk'.

An ASS investigation was completed by Arcadis (2019) and was summarised as follows:

- 48 samples were analysed and 37 were classified as PASS;
- PASS was generally identified near the fill/natural horizon and likely to be present within undisturbed natural layers of soil;
- ASS was not identified, however, excavation or disturbance of the soils where PAA was identified is likely to encounter ASS; and
- Recommendation for an ASSMP to be developed for the site.

Excavations >1.0m below ground level were determined to potentially encounter PASS. Under Section 6.10 of the LEP, an acid sulfate soil management plan (ASSMP) will be required for these works

4.2. Summary of Hydrogeological Setting

The site is located within the southern portion of the Botany Sand Beds (BSB) and associated Botany Sand Aquifer (BSA) (DLWC 2000). There are two main systems operating within the BSB: the shallow unconfined to semi-confined groundwater system within the shallow unconsolidated Quaternary sediments of the BSB and the deeper, confined groundwater system of the Triassic rock formation (Hawkesbury Sandstone) underlying the BSB.

Groundwater immediately underlying the site is anticipated to occur within sand and/or silty sand sediments in the vicinity of the site. Localised layers of low permeability (e.g. clay, peat and layers of localised iron-cemented sand) may act local confining layers. The aquifer is bounded by thick clay deposits in the west, and numerous rock outcrops in the east. Unconsolidated sediments include significant

sand deposits, coffee rock and peat, and are increasingly silty and clayey in the western part of the basin. Paleochannels within these sediments are important groundwater flow conduits, however, depth and channel morphology in some areas are subject to some uncertainty. The inflows, outflows and storage of the BSB define the water balance. Recharge is predominantly through rainfall infiltration.

The maximum aquifer depth is commonly reported as 80 m, with detailed work by Woodward Clyde (1996)¹ indicating the actual paleochannel depth near Botany Bay is approximately 65 m. The thickness of sediments in the area of the site is estimated to be of the order of 20 to 30m.

Based on Reditus' experience of the natural groundwater dynamics in the Botany Sands, the natural variation in groundwater levels varies rapidly in response to climatic conditions and fluctuations of up to 1m are common. Accordingly, a temporary drop in the water table of 1m or less is considered unlikely to result in offsite geotechnical impacts.

It is noted that the BSA is designated as Groundwater Management Area (GMA) by the NSW Office of Water (currently identified as NSW DoPIE-Water). A temporary water restrictions order for the Botany Sands groundwater source has been gazetted (2018) under the Waste Management Act 2000. The taking of water from the water source specified in Schedule 1 is prohibited as specified in Schedules 2 and 3 of the Order.

The site is located within Area 2 of the gazetted prohibition areas. Under Schedule 3, the taking of water from those parts of the Botany Sands Groundwater Source within Area 2 is prohibited for any of the following purposes:

- a) human consumption;
- b) consumption by animals;
- c) domestic purposes;
- d) any other purpose

The prohibition (d) does not apply to the taking of water for remediation, temporary construction dewatering, testing or monitoring purposes.

4.2.1. Site Groundwater Elevations and Inferred Flow Direction

A total of 15 groundwater monitoring wells have been installed and monitored across the site. In addition, 24 Cone Penetrometer Test (CPT) have been completed which have interpreted groundwater water table levels. Locations are provided on Figures 3 & 4, **Appendix A**.

Groundwater monitoring and level measurements have been collected on multiple occasions, between 7 and 24 January 2019.

¹ Woodward-Clyde, 1996, ICI Botany Groundwater Stage 2 Survey. Contract S2/C3 Water / Soil Phase 2. Final Report 3390R1-D for ICI Engineering Australia Pty Ltd. August 1996.

A summary of groundwater monitoring wells, CPTs, standing groundwater levels and measurement dates are provided in Table 4-1 below.

Monitoring Well / CPT Hole	Measurement Date	Standing Water Level (mbgl)	Standing Water Level (RLm AHD)
MW01	8/01/19	0.975	3.05
MW02	8/01/19	1.418	2.23
MW03	8/01/19	3.497	1.31
MW04	8/01/19	2.244	2.61
MW05	8/01/19	3.553	2.06
MW06	8/01/19	1.896	3.18
MW07	8/01/19	3.340	2.30
MW1	8/01/19	2.55	-
MW2	8/01/19	2.390	-
MW3	8/01/19	2.341	-
MW4	8/01/19	2.375	-
BH1	24/1/19	3.3	2.31
BH6	24/1/19	3.2	1.64
BH8	24/1/19	2.5	2.44
BH12	24/1/19	1.2	2.83
CPT101	7/01/19	3.2	2.4
CPT102	10/01/19	-	-
CPT103	7/01/19	3.0	2.2
CPT104	7/01/19	2.9	2.1
CPT105	8/01/19	2.4	2.5
CPT106	9/01/19	3.4	1.4
CPT107	11/01/19	-	-
CPT108	24/01/19	2.4	2.5
CPT109	9/01/19	-	-
CPT110	9/01/19	1.0	3.0
CPT111	10/01/19	-	-
CPT112	11/01/19	1.0	3.0
CPT113	8/01/19	2.6	2.7
CPT114	11/01/19	2.7	2.4
CPT115	10/01/19	3.5	1.6
CPT116	7/01/19	3.0	2.0
CPT117	8/01/19	2.7	2.2
CPT118	14/01/19	1.2	3.8
CPT119	8/01/19	-	-
CPT120	9/01/19	1.1	2.5
CPT121	9/01/19	1.6	2.2
CPT122	10/01/19	0.7	2.9
CPT123	10/01/19	0.9	3.0
CPT124	21/01/19	1.0	2.7

Table 4-1: Summary of Standing Groundwater Measurements

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

Groundwater elevation contours and inferred flow direction have been previously reported flowing in easterly direction towards Alexandria Canal and Botany Bay (Arcadis 2019). Copies of the groundwater elevation contours and inferred flow direction is presented in Figure 5, **Appendix A**.

4.2.2. Excavation Area Specific Groundwater Level Conditions

The following sections provide groundwater elevation details within the general region of the four (4) proposed excavation areas.

4.2.2.1. Pool Excavation

The proposed pool excavation and construction is proposed in the southwestern section of the site. The groundwater conditions in this area are represented by the wells and CPTs listed in Table 4-2 below

Monitoring Well / CPT Hole	Measurement Date	Standing Water Level (mbgl)	Standing Water Level (RLm AHD)
MW05	8/01/19	3.553	2.06
MW07	8/01/19	3.340	2.30
BH1	24/1/19	3.3	2.31
CPT101	7/01/19	3.2	2.4
	Base	of Pool Excavation	3.20

Based on the above groundwater level measurements, the base of the pool excavation is approximately 0.8m above the maximum groundwater level reported in the area.

As such, groundwater is unlikely to be encountered during excavation of the pool and will therefore not require dewatering for construction.

4.2.2.1. Training Building Lift Shaft

The proposed Training Building Lift Shaft excavation and construction is proposed in the southwestern section of the site. The groundwater conditions in this area are represented by the wells and CPTs listed in Table 4-2 below.

Monitoring Well / CPT Hole	Measurement Date	Standing Water Level (mbgl)	Standing Water Level (RLm AHD)
MW04	8/01/19	2.244	2.61
MW06	8/01/19	1.896	3.18
BH8	24/1/19	2.5	2.44
CPT104	7/01/19	2.9	2.1
CPT105	8/01/19	2.4	2.5
CPT108	24/01/19	2.4	2.5
CPT117	8/01/19	2.7	2.2
	3.20		

Table 4-3: Representative Groundwater Levels at the Training Building Lift Shaft Excavation

Based on the above groundwater level measurements, the base of the Training Building Lift Shaft excavation is approximately 0.02m above the maximum groundwater level reported in the area (noting that MW06 is located 30m upgradient from the proposed lift shaft excavation area). CPT104 is the closest borehole to the Training Building Lift Shaft, which suggests that the groundwater is most likely going to be 1.1m below the base of the excavation

As such, groundwater is unlikely to be encountered during excavation of the pool and will therefore not require dewatering for construction.

4.2.2.1. Carpark Lift Shaft West

The proposed Carpark Lift Shaft West excavation and construction is proposed in the southwestern section of the site. The groundwater conditions in this area are represented by the wells and CPTs listed in Table 4-4 below.

Monitoring Well / CPT Hole	Measurement Date	Standing Water Level (mbgl)	Standing Water Level (RLm AHD)
MW02	8/01/19	1.418	2.23
CPT120	9/01/19	1.1	2.5
CPT121	9/01/19	1.6	2.2
	1.63		

Table 4-4: Representative Groundwater Levels at the Carpark Lift Shaft West Excavation

Based on the above groundwater level measurements, the base of the Carpark Lift Shaft West excavation is approximately 0.87m below the maximum groundwater level reported in the area.

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

As such, groundwater will be encountered during excavation of the Carpark Lift Shaft West and will therefore require dewatering for construction.

4.2.2.1. Carpark Lift Shaft East

The proposed Carpark Lift Shaft East excavation and construction is proposed in the southwestern section of the site. The groundwater conditions in this area are represented by the wells and CPTs listed in Table 4-5 below.

Monitoring Well / CPT Hole	Measurement Date	Standing Water Level (mbgl)	Standing Water Level (RLm AHD)
MW01	8/01/19	0.975	3.05
MW02	8/01/19	1.418	2.23
CPT110	9/01/19	1.0	3.0
CPT120	9/01/19	1.1	2.5
	1.63		

Table 4-5: Representative Groundwater Levels at the Carpark Lift Shaft East Excavation

Based on the above groundwater level measurements, the base of the Carpark Lift Shaft East excavation is approximately 1.37m below the maximum groundwater level reported in the area.

As such, groundwater will be encountered during excavation of the Carpark Lift Shaft East and will therefore require dewatering for construction.

4.2.3. Groundwater Quality Sampling Results

Collection and analysis of groundwater samples from 11 onsite monitoring wells has been completed by Arcadis (2019). The locations of groundwater monitoring wells are presented in Figure 3 & 4, **Appendix A**. Copies of the result summary tables are provided in **Appendix C**.

Based on the above proposed excavation areas which intercept groundwater, only samples from groundwater monitoring wells MW01 & MW02 are considered representative of the groundwater to be extracted.

Groundwater physicochemical measurements (including pH, dissolved oxygen (DO), electrical conductivity (EC), oxidative reduction potential (ORP) and temperature were reported during purging of monitoring wells during the most recent 2019 sampling event. A summary of the physicochemical measurements for MW01 and MW02 are provided in Table 4-6 below.

Table 4-6: Groundwater Physicochemical Results

Monitoring Well	Date	рН	DO	EC	TDS	ORP*
			mg/L	µ\$/cm	mg/L	mV
MW01	24/01/2019	6.7	0.06	459.5	308	195.7
MW02	24/01/2019	6.1	0	337.8	226	27.8

All samples collected from onsite monitoring wells (MW01 and MW02) during 2019 reported concentrations of TRH, BTEX, PAHs, PCBs, OCPs, VOCs and Phenols below the laboratory limit of reporting.

Concentrations of heavy metals were reported below the ANZECC (2000) 95% Marine Water Quality Guidelines with the exception of the following:

- Arsenic of 27ug/L
- Zin of 1,1180ug/L

Concentrations of PFAS were reported below the NEMP 2018 95% interim marine water quality guidelines. Reditus note that PFOS was detected above the laboratory limit of reporting, at 0.03ug/L in both MW01 and MW02. This concentration is below the NEMP 2018 95% interim marine water quality guideline of 0.13ug/L.

4.2.4. Registered Groundwater Bore Search

A search of the Australian Government Bureau of Meteorology – Australian Groundwater Explorer was completed by Arcadis. A total of 132 registered groundwater bores were identified within 1km of the site, of which 13 were for water supply purposes (including commercial/industrial and water supply) and the remainder used for either monitoring, exploration or 'other' purposes.

The closest water supply works bore (GW027248) was located approximately 220m to the north of the site. The depths of the registered water supply groundwater bores ranged between 3m and 14.9m below ground level (bgl).

4.2.5. Groundwater Dependant Ecosystems (GDE) Search

Groundwater dependent ecosystems (GDEs) are a diverse and important component of biological diversity. The term GDE takes into account ecosystems that use groundwater as part of their survival strategies. GDEs can potentially include wetlands, vegetation, mound springs, river base flows, cave ecosystems, playa lakes and saline discharges, springs, mangroves, river pools, billabongs and hanging swamps and near-shore marine ecosystems.

The groundwater dependence of ecosystems can range from complete to partial reliance on groundwater, such as might occur during droughts. The degree and nature of groundwater dependence will influence the extent to which they are affected by changes to the groundwater system, both in quality and quantity.

Many land and water use activities within a catchment can affect groundwater dependent ecosystem function and viability. It is important to manage these land and water use activities within a regulatory and licensing framework. Risk assessment guidelines for groundwater dependent ecosystems have been developed to operate within the regulatory and licensing framework provided by the Water Management Act 2000 and Water Sharing Plans (WSPs). The guidelines are based on an assessment of various ecological and risk factors that are important to decisions on allowing a proposed activity or development.

Water Sharing Plans (WSPs) have been developed for groundwater systems in NSW to preserve water resources by establishing rules for sharing water between different types of water uses. The site is located within the following WSP:

 Water Sharing Plan for the Greater Metropolitan Region Groundwater Sources (2011) – Botany Sands Groundwater Source.

Based on a review of the WSP, there are two (2) high priority Groundwater Dependent Ecosystems (GDEs) within the Botany Groundwater source including:

- Botany Wetlands (Estuarine Wetland located on the northern shore of Botany Bay from Gardeners Road Mascot to the bay; including Lachlan swamps, Mill Pond, Mill Stream and Engine Pond); and
- Lachlan Swamps (Floodplain Wetland Mill Pond, Mill Stream and Engine Pond).

These GDEs are located approximately 1.5km to the southeast, which is hydraulically cross-gradient / up-gradient of the site (as the local inferred groundwater flow direction at the site was towards the west).

Furthermore, a review of The National Atlas of Groundwater Dependent Ecosystems (Commonwealth of Australia Bureau of Meteorology, 2017) indicated that there may be several potential GDEs between within 1-2km of the site along Mill Stream including:

• Eastern Suburbs Banksia Scrub; and

• Estuarine Fringe Forest (included in above high priority GDEs as Botany Wetlands).

5. Groundwater Take and Drawdown Estimates

5.1. Summary of Geology and Hydrogeology

The generalised subsurface profile was comprised of fill to an approximate depth of 1.2-3.5m bgl, overlying Botany Sand Beds.

Standing groundwater levels measured onsite at the Eastern and Western Carpark Lift Shafts were reported to range between RL 2.23m AHD and RL 3.05mAHD.

For conservatism, the maximum onsite groundwater elevations of RL 2.5mAHD (Western Lift Shaft) and RL 3.05mAHD (Eastern Lift Shaft) were used in the prediction of groundwater take. These values were adopted in the analytical model to predict groundwater take and extent of groundwater drawdown.

Based on a proposed Target Dewatering Level (TDL) of RL 1.38mAHD and a maximum standing water level of RL 2.5mAHD (Western Lift Shaft) and RL 3.05mAHD (Eastern Lift Shaft), there was up to 0.87m (Western Lift Shaft) and 1.42 (Eastern Lift Shaft) of groundwater requiring to be dewatered to ensure that the excavation surfaces are workable.

5.2. Conceptual Flow Model

A conceptual model is a description of the site, site works and groundwater systems presented both as text and graphically. This description is then approximated using an analytical solution to allow prediction of groundwater behaviour.

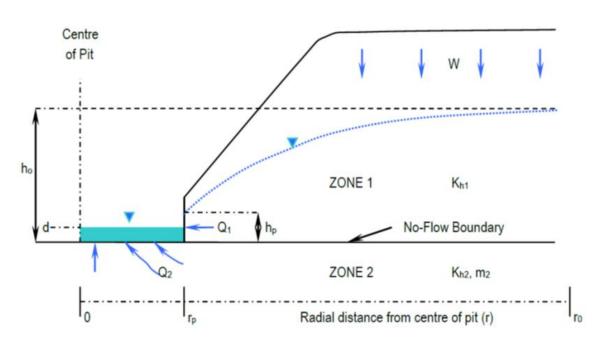
The groundwater extraction estimate comprises two key components to be considered:

- 1. The component of groundwater present within the aquifer matrix, which will be removed as part of the excavation process (pore water); and
- 2. The component of inflow into the excavation from the surrounding aquifer (walls and base) during the dewatering activity.

The conceptual flow model developed for this assessment was a "steady state" model – a snapshot in time representing average conditions. This snapshot was completed based on conservative assumptions of the excavation depth and proposed shoring wall designs, which estimate the greatest groundwater inflow. Note that more detailed analysis can be provided through a three dimensional flow model (beyond the scope of the current assessment).

To estimate the groundwater extracted present within the aquifer matrix, which will be removed as part of the excavation process, the porosity of the matrix is multiplied by the saturated excavation volume.

The saturated excavation volume was calculated by determining the difference between the conservative standing groundwater level and the BEL, multiplied by the approximate excavation area.



To estimate the groundwater inflow volumes, Reditus used the Marinelli and Niccoli (2000)² steady-state analytical solution. This solution provides a convenient means for estimating groundwater inflows into excavations, and is considered applicable to use as a conservative assessment for the ongoing groundwater seepage into the proposed drained basement design.

The analytical method of Marinelli and Niccoli (2000) requires a simplification of the hydrogeological environment and was used to provide a broad range of potential drawdown and groundwater inflow. The equations calculate groundwater inflow from the aquifer based on the conceptual model.

The conceptual flow model was approximated by analytical models, which are divided into two zones separated by a conceptual no-flow boundary where horizontal flow will occur level with the excavation base:

- **Zone 1** exists above the base of the excavation and represents lateral flow to the excavation via the surrounding walls.
- **Zone 2** extends from the bottom of the excavation downward and considers vertical upward groundwater inflow to the excavation bottom into the void.

Figure 1: Conceptual Model of Analytical Solution

The analytical solution for Zone 1 considered steady state, unconfined, horizontal radial flow, with uniformly distributed recharge at the water table. This represents the volume of water laterally flowing into the excavation from behind the sheet pile

² Marinelli, F, and Niccoli, W.L. (2000) *Simple analytical equations for estimating ground water inflow to a mine pit*: Groundwater, v. 38, no.2, p. 311-314

walls. Whilst the sheet piles may inhibit lateral groundwater inflow to some degree, they are not considered sufficiently impermeable to ignore the inflow from this zone.

The analytical solution for Zone 2 is based on steady-state flow to one side of a circular disk sink of constant and uniform drawdown. The circular disk sink represents the volume of water needing to be removed to dewater the site to the target dewatering level of RL 1.38m.

For the development of the conceptual flow model for the proposed excavation, the circular disk sink was assumed to encompass the approximate area of the excavation footprint. The total excavation is approximated as a single large well and as such the circular disk sink was assigned a radius of based on the footprint of the proposed excavation.

Monthly rainfall data was obtained from the Australian Government Bureau of Meteorology (Station 66037: Sydney Airport AMO NSW), from a weather station approximately <1km from the site. The data set from Sydney Airport AMO weather station extends back to 1929, which provided 90 years of rainfall data encompassing longer term climatic trends. The mean annual rainfall (based on monthly observations) from a period between 1929 and 2019 was 1081.1mm. This converted to an assumed average daily rainfall of 0.00296m/day.

5.3. Summary of Aquifer Parameters

The hydraulic conductivity of the Botany Sands varies depending on the grain size and degree of sorting, but is generally high and has been measured at over 50 m/day in parts of the aquifer. In the absence of site specific test data, a default "most likely" value of 5 m/day has been assumed. This is anticipated to be a conservative realistic value and Reditus' experience in the area has identified hydraulic conductivity values of 1 – 10 m/day.

For the purposes of the dewatering assessment, the Botany Sands Aquifer was assumed to be anisotropic, with the horizontal permeability greater than the vertical permeability due to the grain shape and orientation of the aeolian sand particles. Vertical hydraulic conductivity (Kz) was assumed to be one tenth of the lateral hydraulic conductivity throughout the model (a reasonable assumption as vertical hydraulic conductivity in alluvial environments is commonly around 0.1 times the lateral conductivity).

Site specific porosity values were not measured. As such, representative porosity values were adopted from literature sources. A porosity value 0.25 was assumed for the Aeolian Sand.

5.4. Analytical Model Equations

All analytical models include some degree of uncertainty in their predictions as they are, by necessity, simplifications of complex real world systems. Whilst every effort is made to ensure that the primary model reflects the best understanding of site conditions, and therefore the "most likely" case, this cannot be guaranteed and any model result presented as a single number should be viewed with a degree of caution.

Factors which affect the dewatering rate, groundwater take and extent of drawdown within the steady state model include the hydraulic conductivity, thickness of saturated water bearing zone, excavation depth, porosity and recharge. It is considered impractical to determine these factors by pumping tests and further analytical assessment, based on the relatively small scale of the development (two lift shaft excavations) and the likely relatively low risk of impact to groundwater in the shallow water bearing zone. Typical representative values were used in the model. Assessment of the range of typical values and their effects on the model predictions were made to allow sound management decisions using best case, worst case and most likely scenarios.

5.4.1. Groundwater Take Volume within the Excavation Matrix

The following equation was utilised to estimate the groundwater volume present in the aquifer matrix directly removed through excavation:

$$V = \phi \times m \tag{1}$$

$$m = (H_0 - BEL) \times A \tag{2}$$

where:

V = groundwater volume present in the aquifer matrix directly removed through excavation (m^3) .

 ϕ = matrix porosity

m = volume of saturated aquifer matrix to be excavated

 H_0 = initial water table elevation (RLm)

BEL = basement excavation level (RLm)

A = area of excavation

5.4.2. Groundwater Inflow Take Volume Estimate

The steady state inflow rate into the disk sink is given by the following equations²: **Zone 1**:

$$Q_1 = W\pi (r_o^2 - r_p^2)$$
(3)

$$h_o = \sqrt{h_p^2 + \frac{W}{K_{h1}} \left[r_0^2 ln\left(\frac{r_o}{r_p}\right) - \frac{\left(r_0^2 - r_p^2\right)}{2} \right]}$$
(4)

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

21

\bigcirc

Zone 2:

$$Q_2 = 4r_p \left(\frac{K_{h2}}{m_2}\right)(h_0 - d)$$
(5)

$$m_2 = \sqrt{\frac{K_{h2}}{K_{\nu 2}}} \tag{6}$$

where:

Q = groundwater flux (m³/day)

 K_{h1} = horizontal hydraulic conductivity (m/day) at Zone 1

K_{h2} = horizontal hydraulic conductivity (m/day) at Zone 2

 K_{v2} = vertical hydraulic conductivity (m/day) at Zone 2

m₂ = vertical hydraulic conductivity anisotropy parameter

d = depth of water (above target dewatering level) within final excavation (m) *(assumed to be 0 at final excavation depth)*

 r_p = radius from centre of excavation (circular disk sink) (m)

r_o = drawdown radius from centre of excavation (iterative calculation)

h₀ = initial saturated thickness above base of excavation (m)

 h_{p} = saturated thickness above the base of excavation at the excavation wall ($r_{\text{p}}),$ which is assumed 0m

W = rainfall recharge rate (assumed % of the mean daily rainfall)

5.4.3. Groundwater Drawdown Extent

The following equations were used to calculated the groundwater drawdown resulting from the groundwater take into the excavation²:

$$H_{1(r)} = H_0 - h_0 + \sqrt{h_p^2 + \frac{W}{K_{h1}} \left[r_o^2 \ln\left(\frac{r}{r_p}\right) - \frac{\left(r^2 - r_p^2\right)}{2} \right]}$$
(7)

where:

 $H_{1(r)}$ = hydraulic head elevation (m) at a radial distance (r) from excavation centre

 H_0 = initial groundwater elevation (mRL)

 h_0 = initial saturated thickness above base of excavation (m)

r = radial distance from excavation centre (m)

- z = vertical depth below the excavation bottom (assumed to be 0m)
- W = rainfall recharge rate (assumed % of the mean daily rainfall)

K_{h1} = horizontal hydraulic conductivity (m/day) at Zone 1

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

19130RP01

5.5. Analytical Assumptions and Input Parameters

5.5.1. Assumptions

The analytical solution was based on the following assumptions, after Marinelli and Niccoli (2000):

- Steady state, unconfined, horizontal radial flow, with uniformly distributed recharge at the water table.
- The excavation walls are approximated as a circular cylinder.
- Groundwater flow is horizontal. The Dupuit-Forchheimer approximation (McWhorter and Sunada 1977) is used to account for changes in saturated thickness due to depression of the water table.
- The static (pre-excavation) water table is approximately horizontal.
- Uniform distributed recharge occurs across the site as a result of surface infiltration. All recharge within the radius of influence (cone of depression) of the pit assumed to be captured by the excavation.
- Groundwater flow toward the pit is axially symmetric.
- Hydraulic head is initially uniform (hydrostatic) throughout Zone 2. Initial head is equal to the elevation of the initial water table in Zone 1.
- The disk sink has a constant hydraulic head equal to the elevation of the "pit lake water surface". If the pit is completely dewatered, the disk sink head is equal to the elevation of the pit bottom – in this case the target dewatering level.
- Flow to the disk sink is three dimensional and axially symmetric.
- Materials within Zone 2 are anisotropic, and the principal coordinate directions for hydraulic conductivity are horizontal and vertical.

5.5.2. Parameters

The parameters used to estimate the groundwater removal (excavation and inflow) within the analytical solution are provided in Table 5-1 below.

Table 5-1: Groundwater Analytical Model Input Parameters

Parameter	Unit	Best Case	Most Likely	Worst Case
Excavation Matrix	Storage			
Effective Porosity (þ)	-	0.20	0.25	0.30
Bulk Excavation Level (BEL)	RL m	1.63	1.63	1.63

A	m²	30.72 (West)	30.72 (West)	30.72 (West)
A	111-	40 (East)	40 (East)	40 (East)
Zone 1				
r	~	3.13 (West)	3.13 (West)	3.13 (West)
ſp	m	3.57 (East)	3.57 (East)	3.57 (East)
r	~	44.36 (West)	86.58 (West)	116.52 (West)
ro	m	63 (East)	124.2 (East)	167.6 (East)
		2.96x10-4	2.96x10-4	2.96x10-4
W m/day	m/day	(10% of average annual rainfall)	(10% of average annual rainfall)	(10% of average annual rainfall)
h ₀ *	~	1.12 (West)	1.12 (West)	1.12 (West)
	m	1.67 (East)	1.67 (East)	1.67 (East)
h _p **	m	0	0	0
K _{h1}	m/day	1	5	10
Zone 2				
Kh2	m/day	1	5	10
K _{v2}	m/day	0.1	0.5	1
d	RL m	0	0	0

5.6. Summary of Model Results

5.6.1. Estimate of Groundwater Volume Removed within Excavations

The groundwater matrix removal was estimated using equation 1 and equation 2, with predictions provided in Table 5-2 below.

Table 5-2: Prediction of Groundwater Volume Removed within the Excavation Matrix

Groundwater Volume Removed (ML)	Best Case	Most Likely	Worst Case
Western Carpark Lift Shaft	0.005	0.007	0.008
Eastern Carpark Lift Shaft	0.011	0.014	0.017

5.6.2. Prediction of Groundwater Inflow During Construction Period

The groundwater inflow was estimated using equation 3, 4, 5 & 6, with predictions provided in Table 5-3 below assuming a 0.5 month dewatering program.

Table 5-3: Prediction of Groundwater Inflows over the Construction Dewatering Period

Groundwater Inflow	Best Case	Most Likely	Worst Case
Western Carpark Lift Shaft Zone 1 (ML)	0.03	0.11	0.19
Western Carpark Lift Shaft Zone 2 (ML)	0.07	0.34	0.67
Eastern Carpark Lift Shaft Zone 1 (ML)	0.06	0.22	0.4
Eastern Carpark Lift Shaft Zone 2 (ML)	0.11	0.57	1.15
Total (ML)	0.27	1.24	2.41

5.6.3. Summary of 'Most Likely' Total Predicted Groundwater Take

Based on the anticipated 0.5 month dewatering program (including both the initial matrix storage removed via excavation, and the groundwater inflow) the following total groundwater extraction volumes were predicted as presented in Table 5-4 below:

Dewatering Area	Predict Inflow Take (ML)	Predicted Matrix Take (ML)	Total Groundwater Take (ML)
Car Park Lift Shaft West	0.443	0.007	0.449
Car Park Lift Shaft East	0.791	0.014	0.805
		Total	1.254

Table 5-4: Most Likely Predicted Groundwater Take

5.6.4. Prediction of Drawdown Distance

As part of the dewatering assessment, the extent of groundwater drawdown was estimated at regular distance intervals from the edge of the circular disk sink (approximate excavation edge) and at the nearest neighbouring building (approximately 10m from the proposed excavation perimeter). The estimated drawdown with distance has been provided in Table 5-5 below.

Distance from Excavation Boundary (m)	Prediction of Groundwater Drawdown (m) Car Park Lift Shaft West	Prediction of Groundwater Drawdown (m) Car Park Lift Shaft East
1	0.77	1.20
2.5	0.61	0.97
5	0.47	0.78
10	0.32	0.57
25	0.14	0.30
50	<0.1	0.12
60	<0.1	<0.1

It is the professional experience of Reditus that the groundwater levels in alluvial and aeolian aquifers in the Sydney region (such as the BSA) can vary naturally by ±1m or more during prolonged periods of dry or wet weather. Accordingly, a temporary drop in the water table of 1m or less is considered unlikely to result in off-site geotechnical settlement impacts. As a guide, for a 2m lowering if the groundwater level, settlements of less than 10mm are expected, depending on the thickness and composition of the underlying soils.

There is potential that drawdown outside the site may be sufficient to induce settlement in overlying buildings unless an appropriate DMP is implemented. A suitability qualified geotechnical consultant will be required to determine the potential settlement impacts caused by the potential drawdown as a result of the proposed dewatering activities. Detailed geotechnical considerations are beyond the scope of this assessment.

If drawdown approaching 1.0m is identified in the monitoring points outside the excavation or shoring walls, consideration should be given to control of the off-site water table depression. This is likely to have in implication on the costs of the project but is recommended in order to reduce the risk of damage to adjacent buildings and roadways (refer to Section 9 and 10).

The closest high priority GDE (Botany Wetlands) is located 1.5km southeast, which is hydraulically cross-gradient from the site. Given the predicted drawdown at 60m from the excavation boundary is <0.1m (temporary only), the dewatering works are unlikely to cause a detrimental impact to these receptors as it's within levels of natural fluctuations.

The closest registered groundwater supply bore (GW027248) was located 220m to the north of the site. Given the predicted drawdown at 60m from the site boundary is <0.1m (temporary only), the dewatering works are unlikely to cause a detrimental impact to registered water supplies.

Whilst every effort has been made to make accurate predictions in the dewatering volumes and off-site effects, it is strongly recommended that water levels be monitored regularly in the dewatered area and in surrounding properties (refer to Section 10 and 11) to ensure that local variations in hydraulic properties in the aquifer do not result in unacceptable groundwater table depression.

6. Legislation, Regulation and Relevant Endorsed Guidelines

To facilitate the temporary construction dewatering, in relation to impacts of groundwater resources and the surrounding environment, the following statutory requirements need to be achieved to address the WaterNSW / NRAR regulations.

The majority of NSW groundwater is covered by statutory water sharing plans (WSP) and the NSW Aquifer Interference Policy (AIP).

Given that groundwater will be incepted and dewatered during construction, the proposed development is considered to be an aquifer inference activity requiring authorisation from WaterNSW under the Water Management Act 2000.

6.1. Environmental Planning and Assessment Act 1979

Conditions of consent in relation to dewatering are likely to be prescribed by the Council in the Development Consent and NSW DoPIE for the works issued under the Environmental Planning and Assessment Act (1979). A copy of the approval must be kept on location at all times.

6.2. Protection of the Environment Operations (POEO) Act 1997

The POEO Act 1997 and its associated schedules and regulations are directly relevant to dewatering operations. In particular, the Act includes requirements prohibiting the pollution of waters, preventing or minimising air and noise pollution, regarding maintenance and operation plant in a proper and efficient condition/manner, and for minimising and managing wastes.

The Act also requires notification to the NSW Environmental Protection Authority (EPA), when a pollution incident occurs that causes or threatens material harm to the environment.

6.3. Bayside Council – Dewatering Discharge Approval / Permit

Council typically requires that the Principal Contractor must provide a copy of the DMP to Council prior to commencing discharge of groundwater from site. Council are required to provide 'written approval' (usually in the form of a permit) as part of "Application for approval for water supply works, and/or water use" with the WaterNSW prior to discharge of the treated groundwater to the stormwater network.

There are typically several conditions within the Development Application (DA) consent conditions for the site which also must be achieved prior to discharge of the treated groundwater to the stormwater network.

6.4. Water Act 1912 and Water Management Act 2000

Temporary dewatering for construction purposes is classified as an aquifer interference activity under the NSW Aquifer Interference Policy 2012. WaterNSW and NRAR (formerly known as NSW Office of Water) enforces the provisions of the Water Management Act 2000 (WMA) which includes regulation of all aquifer interference activities.

While minor aquifer interference activities works are generally exempt from the full extent of the WMA, an application for "Approval for Water Supply Works and/or Water Use" (previously known as a Temporary Dewatering Licence) is required, regardless if the total volume of groundwater extracted is expected to exceed <3 ML per year. A Water Access License (WAL), or written approval from WaterNSW/NRAR if no licence is required, must be obtained prior to commencement.

The following information must be provided in support of the "Approval for Water Supply Works and/or Water Use" application:

- A copy of a valid planning consent for the project;
- A copy of the written authorisation for the disposal of the extracted groundwater;
- A report, or group of reports, which clearly and concisely set out:
 - Current groundwater levels, preferably based on at least three repeat measurements from at least three monitoring bores predictions of total volume of groundwater to be extracted at the property - the method of calculation and the basis for parameter estimates and any assumptions used to derive the volume are to be clearly documented
 - Predicted duration of dewatering at the property, noting that temporary dewatering licences are generally issued for no more than 12 months
 - Details of how dewatering volumes are to be measured, and of the maximum depth of the proposed dewatering system
 - Details of any predicted impacts or particular issues, for e.g. proximity of groundwater dependent ecosystems or water supply losses by neighbouring groundwater users
 - Details of any monitoring proposed during the dewatering program
 - Details of ambient groundwater quality conditions and of any proposed treatment to be applied to pumped water prior to disposal
 - Details of how reporting will occur during and following the dewatering program, to confirm that predicted quantities and quality objectives were met.

Further information on the aquifer interference policy and licencing requirements are available from the WaterNSW website.

Reditus note that if/once approval has been provided, an application for a "new water access licence with a zero share component" may be required to be completed and a suitable groundwater entitlement may also need to be obtained from the market to account for the groundwater take within the same groundwater

source (in this case, Sydney Basin Central Groundwater Source – Botany Sands). This will need to be obtained within three months of granting of the Zero Access Licence.

6.4.1. Water Sharing Plans (WSPs)

WSPs are being progressively developed for rivers and groundwater systems across NSW following the introduction of the Water Management Act 2000. WSPs made under the WMA are being prepared as Minister's plans under Section 50 of the Act. These plans protect the health of our rivers and groundwater while also providing water users with perpetual access licences, equitable conditions, and increased opportunities to trade water through separation of land and water.

WSPs provide a legislative basis for sharing water between the environment and consumptive purposes. Under the WMA, a plan for the sharing of water must protect each water source and its dependent ecosystems and must protect basic landholder rights.

The Project Site is located within the following WSP:

 Water Sharing Plan for the Greater Metropolitan Region Groundwater Sources (2011) – Botany Sands Groundwater Source

6.4.1.1. Water Sharing Plan for the Greater Metropolitan Region Groundwater Sources (2011) – Botany Sands Groundwater Source

The Botany Sands Groundwater Source consists of the aeolian sand deposits that envelope Botany Bay and covers an area of 91.12 km². The groundwater is mostly low in salinity and high-yielding, and has been an important source of water supply for Sydney's industry and community for over 100 years.

The NSW Government has been actively managing the extraction of groundwater in the Botany area. In August 2003, an embargo under section 113A of the WA 1912 was made in the northern part of the aquifer because available water was depleted by plumes of contamination. This embargo prevented any new applications to extract groundwater being made. In August 2006 an order prohibiting the use of existing domestic bores was made for four zones within the northern Botany Sands Aquifer under Section 323 of the WMA 2000 (now section 324). The ban on domestic use was made in the interest of public health and the zones were based on current and historical land use activity and therefore the potential for contamination.

In June 2007 the remaining parts of the Botany Sands Groundwater Source were embargoed under the WA 1912 to prevent any additional commercial extraction. The aquifer is still used mainly for industrial purposes, along with domestic use in residential areas outside the restricted areas. Reditus notes that the embargo does not apply for licences of works for the dewatering of construction sites.

In 2018, temporary water restrictions Order for the Botany Sands groundwater source has been gazetted (2018) under the Waste Management Act 2000, repealing the 2006/2007 embargo. The taking of water from the water source specified in Schedule 1 is prohibited as specified in Schedules 2 and 3 of the Order.

The site is located within Area 2 of the gazetted prohibition areas. Under Schedule 3, the taking of water from those parts of the Botany Sands Groundwater Source within Area 2 is prohibited for any of the following purposes:

- a) human consumption;
- b) consumption by animals;
- c) domestic purposes;
- d) any other purpose

The prohibition (d) does not apply to the taking of water for remediation, temporary construction dewatering, testing or monitoring purposes.

Based on a review of the WSP, there are two (2) high priority Groundwater Dependent Ecosystems (GDEs) within the Botany Groundwater source including:

- Botany Wetlands (Estuarine Wetland located on the northern shore of Botany Bay from Gardeners Road Mascot to the bay; including Lachlan swamps, Mill Pond, Mill Stream and Engine Pond)
- Lachlan Swamps (Floodplain Wetland Mill Pond, Mill Stream and Engine Pond)

These GDEs are located approximately 1.5m to the southeast, which is hydraulically cross-gradient of the site (as the local inferred groundwater flow direction at the site was towards the southwest).

6.5. NSW Aquifer Interference Policy 2012

The purpose of the NSW Aquifer Interference Policy 2012 is to explain the role and requirements of the Minister administering the WMA in the water licensing and assessment processes for aquifer interference activities under the WMA and other relevant legislative frameworks. The NSW Aquifer Interference Policy 2012:

- 1. clarifies the requirements for obtaining water licences for aquifer interference activities under NSW water legislation; and
- 2. establishes and objectively defines considerations in assessing and providing advice on whether more than minimal impacts might occur to a key water-dependent asset.

The proposed development will result in aquifer interference under the NSW Aquifer Interference Policy (2012) as groundwater will be removed from at least one aquifer. Accordingly, groundwater licensing may be required.

6.5.1. Licensing of Water Taken Through Aquifer Interference

A water licence is required under the WMA (unless an exemption applies or water is being taken under a basic landholder right) where any act by a person carrying out an aquifer interference activity causes:

- the removal of water from a water source; or
- the movement of water from one part of an aquifer to another part of an aquifer; or

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

19130RP01

- the movement of water from one water source to another water source, such as:
 - from an aquifer to an adjacent aquifer; or
 - from an aquifer to a river/lake; or
 - from a river/lake to an aquifer.

A licence for the removal of water from a water source may be required for the development.

6.6. Relevant National and NSW EPA Endorsed Guidelines

Approval for the disposal of groundwater to stormwater will be regulated by Council.

The adopted water quality guidelines for discharge waters are the:

- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018);
- ANZECC/ARMCANZ (2000) Default Trigger Values (TVs) for Physical and Chemical Stressors (used in the absence of ANZG 2018); and
- Guidelines for Managing Risks in recreational Water (NHMRC 2008) / Drinking Water Criteria (NHMRC 2017).

Use of the 95% protection level (for the ANZG 2018 Guidelines) is based on an assumption that the surrounding watercourses are moderately disturbed ecosystems (as receiving road and stormwater runoff from adjacent highly urbanised environment). In the absence of ANZG (2018) DGVs, the ANZECC (2000) trigger values (TVs) were adopted.

It is noted that the ANZG (2018) are currently pending adoption by Federal and State agencies. It is also noted that the ANZG(2018) DGVs are currently consistent with the ANZECC (2000) TVs. Additional and/or revised DGVs will be incorporated into the ANZG (2018) over time as new guidelines values have been established.

This DMP will need to be revised in there is any material change once the ANZG (2018) have been approved by relevant Federal and State authorities, and/or if changes to the DGVs occur. If this change occurs during the current proposed dewatering period, this is to be reflected in a revised DMP.

There are currently no endorsed water quality guideline values in NSW for secondary contact which may occur during recreational activities. Reditus notes that the health-based drinking water guidelines criteria (NHMRC 2017) were derived based on the long-term consumption of 2L/day of the water. Incidental ingestion of water from Alexandra Canal & Botany Bay (which are saline) during recreational activities unlikely to exceed more than 50mL/day, which is equivalent to approximately two mouthfuls of water. For conservatism, the greater of the health-based drinking water criteria or the aesthetic criteria (NHMRC 2017) multiplied by ten (10) has been chosen to address the secondary contact recreational uses of water. This factor of ten (10) is considered conservative as it is equivalent to long-term ingestion of 200mL/day of water.

7. Groundwater Impact Assessment

7.1. Minimal Impact Considerations

The WMA 2000 includes the concept of ensuring "no more than minimal harm" for both the granting of water access licences and the granting of aquifer interference approvals.

The Aquifer Interference Policy includes a set of minimal impact considerations for assessing the impacts of all aquifer interference activities, including those regulated under the WMA 2000, the Water Act 1912 and those decided under other legislation.

Aquifer interference approvals are not to be granted unless the Minister is satisfied that adequate arrangements are in force to ensure that no more than minimal harm will be done to any water source, or its dependent ecosystems, as a consequence of its being interfered with in the course of the activities to which the approval relates.

Whilst aquifer interference approvals are not required to be granted, the minimal harm test under the WMA is not activated for the assessment of impacts. Therefore, this Policy establishes and objectively defines minimal impact considerations as they relate to water-dependent assets and these considerations will be used as the basis for providing advice to the Minister.

All NSW groundwater sources have been categorised as being either highly productive or less productive, based on the general character of the water source meeting or not meeting the criteria of 1500 mg/L total dissolved solids and a bore yield rate of greater than 5 L/s. This categorisation applies to a whole groundwater source as it is defined in a water sharing plan, not to the specific groundwater conditions at a particular location. The minimal impact considerations for the highly productive groundwater sources are different to those for the less productive groundwater sources.

Thresholds for minimal impact considerations have been developed for each groundwater source in NSW. Within the WMA, Table 1 – Minimal Impact Considerations for Aquifer Interference Activities are categorised into type of groundwater sources and are presented in Table 7-1 below. The thresholds relate to impacts on groundwater table and pressure, and to groundwater and surface water quality.

Table 7-1: Highly and Less Productive Groundwater Source Types

Highly Productive	Less Productive
 Alluvial; 	 Alluvial;
 Coastal Sands; 	 Porous Rock; and
 Porous Rock; 	 Fractured Rock.
 Great Artesian Basin - Eastern Recharge and Southern Recharge; 	
 Great Artesian Basin – Surat, Warrego and Central; 	
 other porous rock; and 	
 Fractured Rock. 	

The proposed development is considered to be located in a Highly Productive groundwater source based on the coastal sands of the Botany Sands Aquifer, non-saline (<1500mg/L) and known yields of greater than 5L/s. An assessment of the 'Minimal Impact Considerations' is provided in Table 7-2 below.

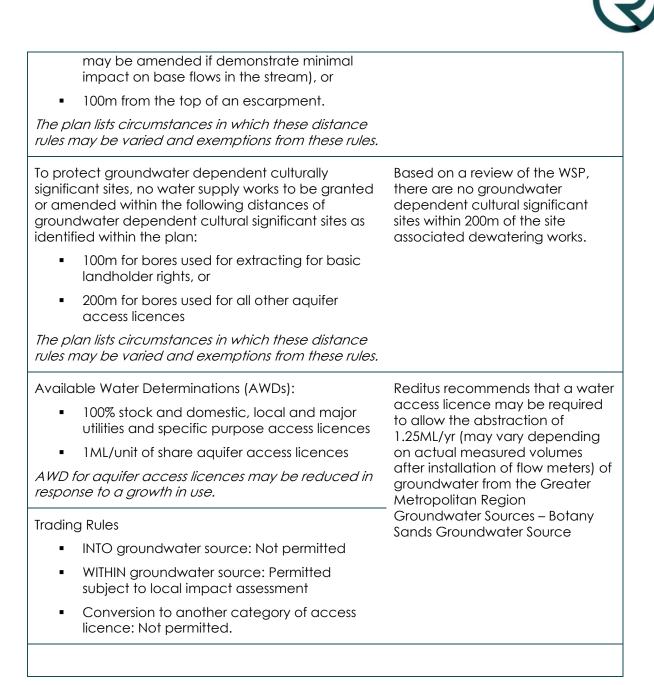
Table 7-2: Minimal Impac	Considerations under the	Aquifer Interference Policy
--------------------------	--------------------------	-----------------------------

Aquifer	Coastal Sands (Botany Sands Groundwater Source)		
Category	Highly Productive		
Level 1 Minimal Impact Consideration		Assessment	
Water Table Less than or equal to 10%		The closest GDE is located 1.5m southeast, which is hydraulically cross-gradient from the site.	
cumulative variation in the water table, allowing for	The closest water supply works bore (GW027248) was located approximately 220m to the northwest of the site.		
typical climatic "post-water sharing plan" variations, 40m from any:		Given the predicted drawdown at 60m from the excavation boundary is <0.1m (temporary only), the dewatering works are unlikely to cause a detrimental	
	prity groundwater ecosystem; or	impact to these receptors as it's <10% of natural fluctuations.	
(b) high prio significant s	ority culturally ite;	Based on the above, the proposed dewatering works will not result in water table decline of more than 2m at any	
listed in the so relevant wate	hedule of the er sharing plan.	water supply work.	
A maximum c cumulatively supply work.	of a 2m decline at any water		

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

Water Pressure A cumulative pressure head	The closest water supply works bore (GW027248) was located approximately 220m to the northwest of the site.	
decline of not more than a 2 metre decline, at any water supply work.	Given the predicted drawdown at 60m from the excavation boundary is <0.1m (temporary only), the proposed dewatering works will not result in water table decline of more than 2m at any water supply work.	
Water Quality	The proposed development and tanked design is not	
Any change in the groundwater quality should not lower the beneficial use category of the groundwater source beyond 40 metres from the activity.	expected to change the groundwater quality.	

Based on the above assessment, the temporary dewatering activities are considered to be of Minimal Impact under the NSW DPI (2012) AIP and WMA 2000.


7.2. WSP Rules for Water Access Approval

A summary of the water sharing rules for granting of access licences (as detailed within the WSP – Botany Sands Groundwater Source), compared against the results of the above assessment, are presented Table 7-3 below. Reditus note that the following rules are used as a guide only and actual licence conditions are granted at the discretion of the NSW DPI Water.

Relevant WSP Rule	Assessment	
Granting of access licences may be considered for the following:	The dewatering works during development may be considered	
 Commercial access licences under a controlled allocation order made in relation to any unassigned water in this water source. 	as under a Commercial access licence conditions.	
To minimise interference between neighbouring water supply works, no water supply works to be	The closest registered bore is located over 220m from the site.	
granted or amended within the following distances of existing bores:	Written consent may be required from neighbouring properties as the dewatering will occur adjoining the site boundary.	
 200m from an aquifer access licence bore on another landholding, or 		
 50m from a basic landholder rights bore on another landholding, or 		
 50m from a property boundary (unless written consent from neighbour), or 		

-	300m from a local or major water utility bore, or	
	200m from a NSW Office of Water monitoring bore (unless written consent from NSW Office of Water).	
	n lists circumstances in which these distance ay be varied and exemptions from these rules.	
water supply works are to be granted or amended		Based on the modelled groundwater conditions, with <0.1m drawdown within 60m from
	250m of contamination as identified within the plan, or	the site boundary, the temporary dewatering works is unlikely to have significant influence at this
	250m to 500m of contamination as identified within the plan unless no drawdown of water will occur within 250m of the contamination source,	location.
	a distance greater than 500m of contamination as identified within the plan if necessary to protect the water source, the environment or public health and safety.	
	n lists circumstances in which these distance ay be varied and exemptions from these rules.	
To protect bores located near sensitive environmental areas, no water supply works to be granted or amended within the following distances of high priority Groundwater Dependent Ecosystems (GDEs) (non Karst) as identified within the plan:		Based on a review of the WSP, there are no high priority Groundwater Dependent Ecosystems (GDEs) within 1.5km of the site (including springs,
-	100m for bores used solely for extracting basic landholder rights, or	geothermal springs, wetlands an karst).
 200m for bores used for all other access licences. 		The site is located approximately 1.5m from Mill Stream.
	er supply works to be granted or amended he following distances from these identified s:	
•	500m of high priority karst environment GDEs, or	
	a distance greater than 500m of a high priority karst environment GDE if the Minister is satisfied that the work is likely to cause drawdown at the perimeter of the high priority karst GDE, or	
	40m of a river or stream or lagoon (3rd order or above),	
	40m of a 1st or 2nd order stream, unless drilled into underlying parent material and slotted intervals commence deeper than 30m (30m	

Based on the above, the proposed dewatering works complies with the general rules for granting of a water access licence under the WSP for the Greater Metropolitan Region Groundwater Sources – Botany Sands Groundwater Source.

8. Draft Water Quality Objectives

8.1. Receiving Environment

The site is situated within a mixed commercial/industrial and residential area. The extracted groundwater will be treated and discharged to the stormwater network via connection to an approved location by Council (dewatering contractor to confirm exact location).

The receiving waters of the stormwater network are understood to be Alexandria Canal and Botany Bay, located to the west of the site.

The Alexandria Canal and Botany Bay is considered a moderately disturbed ecosystem, which receives water from a highly urbanised environment, including multiple waste streams. Use of the 95% protection level for ecological receptors has been adopted on this basis.

8.2. Adopted Discharge Water Quality Guidelines

The Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) provide detailed approaches and advice on identifying appropriate guideline values for the protection of environmental receptors. These guideline values help to ensure that agreed community values and their management goals are protected.

The ANZG (2018) have been recently endorsed by the NSW EPA, which supersede the previous ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Applying the ANZECC (2000) guidelines to the range of community values relied largely on a single line of evidence (chemical assessment) to determine whether or not a guideline value was exceeded. The ANZG (2018) Water Quality Guidelines improve confidence in our assessments by:

- introducing a systematic approach to assessing a number of lines of evidence along the pressure-stressor-ecosystem receptors pathway
- promoting decisions on the basis of the integrated weight of evidence.

For the protection of aquatic ecosystems, locally derived guideline values are most appropriate. In the absence of locally derived guideline values or other jurisdictionally-legislated requirements (as in this case), the ANZG (2018) provide default guideline values (DGVs) for assessing the impacts of physio-chemical parameters and potential toxicants on aquatic ecosystems, as well as advice on tailoring DGVs to suit the local region. Where DGVs are not available within the ANZG (2018), the ANZECC (2000) guidelines trigger values (TVs) are adopted

It is specifically noted in the ANZG (2018) guidelines that "the Water Quality Guidelines are not intended to directly apply to contaminant concentrations in industrial discharges or stormwater quality (unless stormwater systems are regarded as having relevant community value)".

The ANZG (2018) provides guidance on assessing a waste discharge. The ANZG (2018) Water Quality Management Framework and associated monitoring data can be used to assess compliance or potential impacts of a waste discharge on water

quality. Assessing a waste discharge in this way aims to ensure that it complies with the conditions of approval and is not causing environmental harm. The Water Quality Management Framework provides a step-by-step approach to protect the community values of waterways.

8.2.1. Water Quality Management Framework

The Water Quality Management Frameworks has the following steps which are adopted as part of this CEMP:

- Step 1: Examine current understanding
 - Use current understanding to develop or refine a conceptual model of key waterway processes and how the waste discharge could affect local waterways.
 - Site-specific information on the operation and receiving environment (e.g. current water quality and temporal and spatial release characteristics of the discharge, mixing zones and regulatory compliance points, water quality and ecology of the receiving environment).
 - As further monitoring data become available, update and refine the current understanding.
- Step 2: Define community values and management goals
 - Establish or refine community values and more specific management goals (including level of protection) for the relevant waterways at stakeholder involvement workshops.
 - The relevant values adopted are the 95% protection level of marine ecosystems and recreational use.
- Step 3: Define relevant indicators
 - Select indicators for relevant pressures identified for the system, the associated stressors and the anticipated ecosystem receptors.
 - Based on previous groundwater quality information, the analytical suite detailed in Section 4.2.3 has been adopted as primary indicators. Other indicators include visual inspection at the discharge point of the stormwater into Alexandria Canal for any signs of potential adverse effects (e.g. turbidity, increased algae presence, discolouration).

• Step 4: Determine water quality guideline values

- Determine the water quality guideline values for each of the relevant the biological, chemical and physical indicators required to provide the desired level of protection for the management goals of relevant waterways.
- The DMP adopts the ANZG (2018) DGVs and the ANZECC (2000) TVs in the absence of DGVs. Results of monitoring data from the stormwater drain and Alexandria Canal will also be used for the assessment to determine if adverse environmental impact are occurring from temporary groundwater discharge.

- Step 5: Define draft water quality objectives
 - Use the guideline values or narrative statements chosen for each selected indicator as draft water quality objectives to ensure the protection of all identified community values and their management goals.
- Step 6: Assess if draft water quality objectives are met
 - Use measurements from monitoring of each relevant indicator to assess whether current water quality meets the draft water quality objectives.
 - This includes comparison of the water quality monitoring data for each relevant indicator with the water quality objectives, together with the evidence from any additional lines of evidence (such as results from at the edge of the mixing zone).
 - The weight-of-evidence process evaluates results from multiple lines of evidence across the pressures, stressors and ecosystem receptors relevant to the waste discharge. It is the key process by which the protection of community values is assessed. Multiple potential outcomes are possible from a weight-of-evidence evaluation. The resulting evaluation of water quality results will be used to determine if adverse trends are evident as a result of the temporary discharge of groundwater to stormwater.
 - If the Water Quality Objectives are met, then management should focus on maintaining discharge quality. If Water Quality Objectives are not met and potential adverse trends are evident, the following options will be considered:
 - formulate, assess and prioritise management strategies to improve existing water quality associated with the waste discharge (Steps 8 to 10), and/or
 - reassess the appropriateness of the water quality guideline values (Step 7), and/or
 - consider selection of additional or alternative indicators or lines of evidence (Step 7).
- Step 7: Consider additional indicators or refine water quality objectives
 - Assess the need to revise or add to the lines of evidence or indicators and the water quality guideline values.
- Step 8: Consider alternative management strategies
 - Evaluate the effectiveness of current management strategies to address the identified water quality issues and recommend possible improvements. Improved or alternative management strategies are formulated, assessed and prioritised.
- Step 9: Assess if water quality objectives are achievable
 - Use information gained from Steps 6 to 8 to assess whether the water quality objectives are achievable.
- Step 10: Implement agreed management strategy

 Document and implement agreed management strategies, including, in some cases, a suitable and agreed adaptive management framework.

This DMP details the current management strategy to be implemented.

8.2.2. ANZG (2018) Physical and Chemical Stressor Details

As noted above, there are two types of physical and chemical stressors that directly affect aquatic ecosystems that can be distinguished: those that are directly toxic to biota, and those that, while not directly toxic, can result in adverse changes to the ecosystem (e.g. algae blooms). In the absence of site specific guideline values, the following DGVs were adopted as water quality assessment criteria in order to assess this situation:

- ANZECC (2000)¹ Default trigger values for physical and chemical stressors for south-east Australia for slightly disturbed ecosystems in Estuaries. These trigger values do not represent direct toxicity to biota, but can potentially result in non-toxic impacts to the ecosystem. ANZG (2018) do not currently provide DGV for physical and chemical stressors, therefore the ANZECC (2000) trigger values have been adopted; and
- ANZG (2018) DGVs & ANZECC (2000)² Australian and New Zealand Guidelines for Water Quality. Trigger values for Marine Water under the 95% protection levels. These trigger values represent toxicity to biota.

The adopted DGV criteria are protective of receptors at the point of exposure (i.e. stormwater drain and Alexandria Canal), and are overly conservative for the assessment of direct discharge water quality in areas where ecological receptors are not present (i.e. Site discharge into Stormwater drains). On this basis, the Alexandria Canal waters are considered the only receiving environment requiring protection. Reditus notes that the use of the DGVs is conservative and may not represent the Alexandria Canal and Botany Bay local system.

Since the publication of ANZECC (2000), an Errata document has been issued which details that Nitrate values in Table 3.4.1 (page 3.4-5) are deleted and replaced with "Under Review"

(http://www.agriculture.gov.au/SiteCollectionDocuments/water/nwqms-guidelines-4-vol1-errata.pdf). Furthermore, Nitrate guidelines values in ANZECC 2000 have been reviewed and recalculated (http://www.mfe.govt.nz/publications/freshwater/anzecc-nitrate-correction-sep02). The recalculated trigger values for 95% level of protection was 31.9mg/L for Nitrate and 7.2mg/L for Nitrate-N.

It is important to note that the Draft Water Quality Objectives (WQO) listed below are specific to aquatic ecosystems only and are not intended as discharge water quality criteria. The adopted guidelines contain information on the comparison of test data with guideline DGVs & TVs. It emphasises that exceedances of the DGVs and TVs are an early warning mechanism to alert managers of a potential problem and are not intended to be an instrument to assess compliance and should not be used in this capacity.

The guidelines recognise that the environmental values and unique conditions of a site and specific behaviour of contaminants in different environments are important considerations when applying the guidelines. Factors relevant to assessing point

source discharges include the flow rote of the discharge, receiving water flows and/or intensity of tidal exchange, and the levels of risk that vary from acute to chronic exposure.

Mixing zones are a tool for responsible management of the environment. As detailed within the ANZG (2018), mixing zone are described as an explicitly defined area around an effluent discharge where some, or all, water quality objectives may not be met. It is a generally accepted practice to apply the concept of a mixing zone for waste water discharges (such as stormwater). As a consequence, some community values of the water body may not be protected. The responsibility lies with the discharger to minimise this impact by keeping the mixing zone as small as practicable. They are designed to limit the impact to the environment that would otherwise occur if discharges were allowed to flow unchecked into waterways.

Critical to assessing the impact of an effluent discharge on beneficial uses and values is understanding the dilution and dispersion of the effluent. For discharges to marine environments, characteristics such as tidal and current movements, density and temperature differences, depth of water and rate of flow need to be considered to assess the dilution capabilities of the waterbody under various scenarios.

8.2.3. Recreational Water Quality (NHMRC 2012 & 2017)

The greater of the health based drinking water criteria (NHMRC 2012) multiplied by ten or the aesthetic criteria have been chosen to address the secondary contact recreational uses of water.

8.3. Draft Water Quality Objectives - DGVs

A summary of the discharge water quality criteria is provided in below for the water quality parameters and chemical of concern, which have been selected on the basis of site operational history, regional setting and site groundwater quality.

It is important to note that the Water Quality Objectives (WQO) listed in below are specific to aquatic ecosystems only and are not intended as discharge water quality criteria. The ANZG (2018) framework emphasises that comparison of test data with guideline DGVs that 'exceedances of the DGVs are an "early warning" mechanism to alert managers of a potential problem and are not intended to be an instrument to assess "compliance", and should not be used in this capacity.

ANZG (2018) recognises that the environmental values and unique conditions of a site and specific behaviour of contaminants in different environments are important considerations when applying the guidelines. Factors relevant to assessing point source discharges include the flow rote of the discharge, receiving water flows and/or intensity of tidal exchange, and the levels of risk that vary from acute to chronic exposure.

Table 8-1: Water Quality Objectives - DGVs

Analyte Group	Analyte	ANZG (2018) Marine Water Quality Guidelines (µg/L)	Recreational Water Quality Criteria.
BTEX	Benzene	500	1,000
	Ethylbenzene	5	3,000
	Toluene	180	8,000
	Xylene (m)	75	
	Xylene (p)	200	6,000
	Xylene (o)	350	_
Heavy Metals	Arsenic	24	50
	Cadmium	0.7	5
	Chromium	27.4	50
	Copper	1.3	1,000
	Nickel	7	200
	Lead	4.4	50
	Zinc	15	5,000
	Mercury	0.1	10
PAHs	Phenanthrene	0.6	-
	Anthracene	0.1	-
	Flouranthane	1	-
	Benzo(a)Pyrene	0.1	0.1
	Naphthalene	70	-
Pesticides	Atrazine	13	200
	Carbofuran	0.06	100
	Chlorodane	0.03	20
	Chlorpyrifos	0.009	100
	2,4-D	280	300
	DDT	0.006	90
	Diazinon	0.01	40
	Dimethoate	0.15	70
	Diquat	1.4	70
	Endosulfan	0.005	200
	Endrin	0.04	
	Fenitrothion	0.2	70
	Glyphosate	370	1,000
	Heptachlor	0.01	-
	Lindane	0.2	100
	Malathion	0.05	700
	Methomyl	3.5	200
	Molinate	3.4	40
	Parathion	0.004	200
	Simazine	3.2	200
	2,4,5-T	36	1,000
	Tebuthiuron	2.2	-
	Temephos	0.05	4,000
	101100103	2.8	400

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

Thiram 0.01 70 Toxafene 0.1 -Trifluralin 2.6 900 PCBs Aroclor 1242 0.3 -0.01 Aroclor 1254 _ VOCs 1,1-DCA 90 -1,2-DCA 1,900 30 1,1,1-TCA 270 -1,1,2-TCA 1,900 _ 1,1,2,2-TCA 400 _ PCA 80 _ 4,000 DCM 40 Chloroform 370 30 Carbon 240 30 Tetrachloride Vinyl Chloride 100 3 DCE 600 700 TCE 330 _ PCE 70 500 СВ 55 100 1,2-DCB 160 10 1,3-DCB 260 200 3 1,4-DCB 60 3 1,2,3-TCB 1,2,4-TCB 20 50 1,3,4-TCB 8 2 1,2,3,4-PCB 3 1,2,3,5-PCB -1,2,4,5-PCB 5 _ PCB 1.5 -**Total Petroleum** TPH/TRH 2 (mg/L) a _ Hydrocarbons Total Nitrogen Total Nitrogen 300 b Nitrate Nitrate 7200 c 500,000 30 b Total Phosphorus Total Phosphorus _ Ammonia Ammonia 910 (pH dependant) 5,000 рΗ 7.0-8.5 b pН 6.5-8.5 Total Suspended TSS -50,000 Solids Turbidity Turbidity 10 NTU 5 NTU Temperature Temperature 15-30°C -Sheens/Odours Sheens/Odours No Observable Sheen or Odour _ PFAS PFOS 0.13^d 0.7d PFOA 220d 5.6d

a - Recommended water quality criteria (NSW EPA).

b - ANZECC (2000) Default trigger values for physical and chemical stressors for south-east Australia for slightly disturbed ecosystems for Estuaries (Table 3.3.2 Chapter 3 Aquatic Ecosystems).

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

19130RP01

c - Errata document has been issued which details that Nitrate values in Table 3.4.1 (page 3.4-5) are deleted and replaced with "Under Review"

(http://www.agriculture.gov.au/SiteCollectionDocuments/water/nwqms-guidelines-4-vol1-errata.pdf). The Nitrate guidelines values in ANZECC 2000 have been reviewed and recalculated (http://www.mfe.govt.nz/publications/fresh-water/anzecc-nitrate-correction-sep02). With values for 95% level of protection reported at 31.9mg/L for Nitrate and 7.2mg/L for Nitrate-N.

d – NEMP (2018) PFAS National Environmental Management Plan

Analytes such as Total Suspended Solids (TSS) and other easily observable aspects from the dewatering process will need to monitored closely as adverse public interest in this site is a foreseeable possibility

- Total suspended solids (TSS) < 50 mg/L
- No observable sheen or odour
- Turbidity < 10 NTU
- Temperature < 30°C

9. Potential Dewatering Impacts

Dewatering operations have the potential to impact receptors and the surrounding environment if not managed appropriately. This section outlines key areas of concern with respect to dewatering and potential environmental impacts.

Procedures for the management of potential environmental impacts are detailed in Section 10.

9.1. Receiving Water Quality

Typically, large volume and/or well flushed water bodies have a capacity to buffer the discharge of potential contaminants depending on the flow rate and duration of discharge. While the receiving waters are subject to the influences of an urbanised catchment, dewatering activities must not contribute to or cause significant decreases in receiving waters quality. Potential impacts associated with releasing dewatered groundwater to receiving waters (via the stormwater network) are summarised below.

9.1.1. Physicochemical Parameters

Changes to natural pH levels in a receiving waterway can be directly or indirectly detrimental to aquatic biota as particular species can be intolerant to specific conditions caused by dewatering processes.

Acidifying the receiving waters can cause metals bound to sediment and organic matter to be liberated, increasing toxicity and enhancing the bioavailability of background metals. Oxidation of dissolved metals can also strip oxygen from the receiving waters resulting in fish kills, however this is less likely in medium to high flow systems such as Botany Bay.

Turbidity and suspended solids impact on a receiving environment include siltation, reduction of the euphotic zone affecting photosynthetic organisms by limiting light transmission through the water column this has a flow on effect as the food chain is disrupted affecting benthic organisms and higher level organisms.

9.1.2. Nutrients

Streams/rivers, canals and coastal lakes environments have the ability to assimilate and export nutrients (such as nitrogen and phosphorus) through a variety of pathways including flushing, bacterial conversion and permanent accumulation in sediments. Under favourable conditions these cycles can help buffer the receiving environment from potentially deleterious effects of nutrient loading. These effects can include eutrophication, potentially toxic algal blooms, increased oxygen demand and ammonia toxicity.

While the buffering ability of the receiving environment should not be relied upon as a management strategy, the efficiency of a particular water body to process nutrients is an important consideration in assessing the potential impacts of eutrophication of a water body.

9.1.3. Heavy Metals

High concentrations of potentially harmful metals may be encountered in the groundwater depending on geology and historical uses of the site (and surrounding properties).

Whilst metals and associated compounds occur naturally in the environment and are essential for many organisms, the potential toxicity of metals to aquatic biota generally increases with concentration, particularly when in dissolved form. Furthermore, concentrations of dissolved metals may fluctuate throughout dewatering as water is drawn in from surrounding environments.

Metal toxicity also varies between different species of a particular metal, the physical and chemical characteristics of the receiving environment, and biological receptors. Thus, the size, tidal/mixing/flushing regime, and background concentrations of metals in the receiving waterway must be taken into account when assessing compliance.

Importantly, the total load and duration of metals discharged also needs to be considered when assessing potential chronic effects of metals on biota, though this is less crucial in deeper water with strong tidal interaction where the risk of accumulation is minimised.

9.1.4. Petroleum Hydrocarbons and Chlorinated Solvents

The site has been used for commercial/industrial purposes, with known use and storage of petroleum hydrocarbons. Research indicates that petroleum hydrocarbons toxicity is highly variable, as they contain many hydrocarbon chain compounds. Generally, petroleum hydrocarbon based compounds can naturally biodegrade given the right conditions and generally degrade to lesser toxic substances.

The chemical degradation products of the potential VOC contaminants in groundwater, specifically chlorinated hydrocarbons including tetrachloroethene (PCE) and degradation daughter products trichloroethene (TCE), dichloroethene (DCE) and vinyl chloride (VC) can be of greater ecological and human health risk than the parent compounds and are therefore are considered to be significant.

Concentrations of TPH were previous reported in several groundwater samples in other areas of the site, however, the most recent sampling results from wells MW01 and MW02 near the excavations were reported below the laboratory limit of reporting (LOR).

TRH and VOC compounds may require treatment prior to discharge, which can be achieved via several methods. The treatment system may consist of a single remediation method, such as air stripping or filtered through activated carbon (sorption) to remediate the water to a suitable standard for disposal or re-injection.

9.1.5. Other Contaminants

Other hydrocarbon contamination (PAHs and Phenols) and other common anthropogenic contaminants (PFAS, OCPs, OPPs and PCBs) have not been

identified exceeding the adopted ecological criteria within the localised groundwater.

Whilst these contaminants are not expected to be present at elevated concentrations during the dewatering process (based on the most recent groundwater quality data), historical use of pesticides and other chemicals are known in the surrounding area. As such, monitoring of these compounds (as identified in previous environmental investigations) is strongly recommended.

9.2. Settlement of Unconsolidated Soils

Dewatering has the potential to induce settlement in loose sands and soft sediments, possibly compromising the structural integrity of surrounding structures. This is likely to be lessor of an issue with water bearing rock aquifers.

There is potential that drawdown outside the site may be sufficient to induce settlement in overlying buildings unless an appropriate DMP is implemented. A suitability qualified geotechnical consultant will be required to determine the potential settlement impacts caused by the potential drawdown because of the proposed dewatering activities. Detailed geotechnical considerations are beyond the scope of this assessment.

A suitably qualified engineer is required to determine the risk of settlement, potential impacts on the integrity of adjacent structures (i.e. buildings, roads, pipelines, etc.), and appropriate management measures.

9.3. Acid Sulfate Soils

Acid sulfate soils (ASS) occur predominantly on coastal land with elevations generally below 5m Australian Height Datum (AHD). These soils also occur further inland in saline seepage areas, rivers, lake beds and irrigation channels. Where present, draw-down of the local water table can expose ASS to oxidising conditions creating acidity and mobilising metals at potentially harmful concentrations.

The Botany Bay Local Environmental Plan 2013 indicated that the site is located in a Soil Class 2 Acid Sulfate Soils area. The description of a Soil Class 2 area is 'works below natural ground surface present an environmental risk and works likely to lower the water table present an environmental risk'.

An ASS investigation was completed by Arcadis (2019) and was summarised as follows:

- 48 samples were analysed and 37 were classified as PASS;
- PASS was generally identified near the fill/natural horizon and likely to be present within undisturbed natural layers of soil;
- ASS was not identified, however, excavation or disturbance of the soils where PAA was identified is likely to encounter ASS; and
- Recommendation for an ASSMP to be developed for the site.

Excavations >1.0m below ground level were determined to potentially encounter PASS. Under Section 6.10 of the LEP, an acid sulfate soil management plan (ASSMP) will be required for these works. Management and monitoring during dewatering

works must be implemented to ensure no adverse impacts occur (either on or offsite) due to potential dewatering of potential ASS.

9.4. Impact to Water Supply Works and GDEs

As detailed in Section 7 above, the temporary dewatering works will not adversely impact on any water supply works, high priority GDEs, and is not expected to result in a change to water quality.

Based on the above assessment, the temporary dewatering and ongoing drained basement activities are considered to be of Minimal Impact under the NSW DPI (2012) AIP and WMA 2000.

9.5. Noise, Vibration and Odour

Noise and vibrations are generated by pumps, generators and treatment systems which typically operate 24 hours a day during dewatering operations. Offensive odours, such as hydrogen sulphide can also be liberated through excavation of sand and or soils with high organic content. Other odours from volatile organic compounds can occur from sites contaminated with petroleum hydrocarbons or solvents. It is also common for diesel fumes to emanate from dewatering pumps and generators where electric systems cannot be used.

Noise, vibrations and odour have the potential to cause a public nuisance, particularly in dense residential areas such as the is site, and may also impact on the natural movements or behaviour of wildlife.

10. Management of Potential Impacts

10.1. Drawdown

The depth of groundwater extraction infrastructure and the rate of extraction shall be limited to the minimum requirements set in the hydrogeological model to achieve the lowering of groundwater within the site to undertake construction works.

Dewatering shall be managed in consultation with a suitably qualified geotechnical engineer to ensure the structural integrity as built structures is not compromised.

Whilst effort has been made to make accurate predictions in the dewatering volumes and off-site effects, it is strongly recommended that water levels be monitored regularly in the dewatered area and in surrounding properties to ensure that local variations in hydraulic properties in the sands and clays do not result in unacceptable groundwater table depression or mounding.

Monitoring of groundwater levels outside the basement wall at a minimum of three locations is recommended on a daily basis (refer to Section 11). If drawdown approaching 1.0m is identified in the monitoring points outside the shoring wall or near existing buildings, consideration should be given to control of the off-site water table depression. This is likely to have in implication on the costs of the project but may be recommended in order to reduce the risk of damage to adjacent buildings and roadways. Control methods may include:

- Altering the proposed excavation shoring walls so that they are less permeable (e.g. extending the sheet piles into deeper less permeable strata such as clay or rock), minimising the volume and flow of groundwater into the excavation. This is a viable contingency option unless subsurface conditions differ from those identified in the geotechnical assessment.
- Reinjection of extracted water along the site boundary. This may require some injection points to be outside the site boundary, and may require a variation to the dewatering licence obtained from WaterNSW. Injection water quality would be required to be meet NSW EPA endorsed guideline criteria.

10.2. Discharge of Groundwater

Groundwater discharge shall be controlled in a manner which does not create a flooding hazard. During extreme rainfall/storm/tide events the local stormwater drainage system can become full or flooded. If combined stormwater and dewatering flows exceed the capacity of the stormwater drainage system, discharge shall be reduced or, if necessary, stopped until stormwater flows, and / or tidal inundation subsides. Routine inspections at the stormwater inlet will need to be conducted by the Site Manager or on appropriate delegate during storm events and greater than overage tides.

The flowing sections may be required during the dewatering process if deemed necessary by the licencing provider and Council.

10.2.1. Water Quality Testing Prior to Discharge

Prior to discharge of extracted groundwater, the groundwater is understood to be recirculated back into the open excavation/ or temporary onsite water storage to allow clearing of sediment from the dewatering system and allow water quality to stablised. Once conditions have stabilised, initial batch testing of extracted water will be completed and compared against the WQO listed in Table 8-1 above.

The treated groundwater will be tested for analytes specified in Section 11, following receipt of the test results, the Environmental Manager/Consultant, in consultation with Council (where required), shall determine the suitability for discharge to the stormwater network. Compliance with the WQO set out in Table 8-1 is required prior to discharge. Additional components to the water treatment process may be required if initial batch testing results do not meet the WQO.

Reditus note that the period between collecting the pre-start samples and discharging from site can exceed one week (more if test results are not favourable and retesting is required) and that this should be accounted for in the construction program.

10.3. Water Treatment – Reverse Osmosis Unit

The extracted groundwater will require treatment prior to discharge to stormwater, primarily due to the elevated concentrations of zinc (1.18mg/L) and arsenic (27ug/L). There are also reportable concentrations of PFAS compounds (as PFOS), whilst below relevant NEMP (2018) criteria, may require treatment from a precautionary perspective to non-detectable levels.

Traditional methods for the removal of dissolved zinc in water is via flocculation, pH correction and Direct Air Flotation (DAF). Given the relatively small scale of the groundwater extraction and short period, the capital costs and setup requirements for a DAF unit are considered prohibitive. Reditus also note that PFAS components would not be treated using this technology.

Furthermore, the waters may contain nutrients (nitrogen and phosphorus compounds) requiring treatment. There is currently no proven and cost-effective method for the removal of nutrients with the available retention times and available space on construction sites. However, medium to high flow conditions and natural aquatic processes in Alexandria Canal receiving waters are likely to mitigate possible impacts of nutrient loading.

If assessment of monitoring results indicate that unacceptable adverse environmental impacts are occurring at the receiving water beyond the mixing zone due to nutrient loading, water treatment should be completed using Reverse Osmosis (RO).

RO is a water purification technology that uses a semipermeable membrane to remove ions, molecules, and larger particles from water. The membrane is designed to allow only water to pass through while preventing the passage of solutes (such as potential groundwater contaminants). RO is proven technology capable of achieving the proposed water quality objectives DGVs.

Small portable commercial RO units are readily available and would suit this project dewatering demands.

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

19130RP01

Primary treatment through a settlement tank and sand filter is recommended, prior to RO treatment.

10.3.1. Dosing pH Buffer and Flocculant Alternative

The following treatment methods may be considered where required (treatment devices may be removed from site where consistent water quality results indicate devices are no longer necessary):

- Dosing with a buffering agent to achieve the target pH for the respective receiving environment and maximum metal precipitation/flocculation.
- Retention in a settlement tank(s), incorporating a silt separator (preferably a plate separator design).

The proposed method of pH treatment, and most effective, is an automated dosing system with retention of the treated water to allow for pH stabilisation, metal precipitation and settlement of solids. Maintaining the pH 7.0-8.5 units will minimise the potential for direct pH impacts on the receiving environment and promote conversion of dissolved metals into total form and subsequent settlement/flocculation.

Sufficient area shall be allocated for settlement tanks to increase the retention time of the water and provide an opportunity for the settlement of floc and/or suspended material.

Where the above procedures prove ineffective at decreasing concentrations of dissolved and/or total metals to appropriate levels, the inclusion of the following procedures in the treatment train are recommended:

- Dosing with a pre-treatment agent to promote chemical oxidation.
- Dosing with a flocculation agent.
- Air-stripping unit or Granulated Activated Carbon (GAC) unit to target any dissolved phase TPH/VOC contamination.

The role of the air strippers is to volatilise dissolved volatile contaminants, removing them from the groundwater influent stream. The vapour phase contaminants are captured and diverted through external GAC hoppers where they are sorbed. Treated groundwater influent then undergoes tertiary polishing treatment to remove any remaining dissolved phase hydrocarbons and reduce background heavy metals through particulate filtration. This is achieved via filtration of the groundwater influent through GAC and ion exchanging media filtration vessels via the process of adsorption and ion exchange.

Initial monitoring of discharge water quality shall provide the information required to optimise the water treatment regime.

Any addition of chemical agents must be managed by a suitably qualified environmental scientist and the chemicals approved for use by the NSW EPA. Intensive monitoring of treatment agent dose rates and discharge water quality must be untaken to optimise the water treatment regime specific to the site.

10.3.2. Maintenance of Water Treatment System

Routine maintenance of the treatment equipment will be required to ensure optimum performance. The discharge pipeline and any protective structures, such as driveway ramps/culverts, must be checked for leaks and damage on a regular basis. Retention structures must also be inspected regularly to ensure adequate performance and structural integrity.

Chemical treatment and settlement is likely to result in the retention of organic and/or inorganic material. Removal of the accumulated material will be required periodically to avoid re-suspension of accumulated sediment and reduction of treatment system capacity. Strategies to limit the volume of waste to be removed should be developed in consultation with the project environmental consultant.

10.4. Noise and Vibration

The following methods shall be employed to reduce noise emissions resulting from dewatering operations:

- Preference shall be given to electric powered dewatering pumps over diesel
 / fuel powered equipment (due to the sound generated being lower with
 electric pumps). The proposed pumps are noted to be electrical vacuum
 header pump.
- Installation and maintenance of high efficiency mufflers for all noise generating plant.
- Pump equipment and generators shall be located away from site boundaries where possible, with consideration to adjoining residences, Installation of acoustically baffled enclosures around and generators and pump is recommended to minimise noise issues or complaints.

10.5. Odour

Routine odour monitoring should be undertaken to identify offensive odours and avoid potential impacts on adjacent site users. Control measures, such as deodorants or passing the discharge through a carbon filter tank, shall be adopted in the event odours are considered unacceptable levels at the site boundary. Where odour controls prove ineffective, activities that cause an offensive odour shall cease until odour emissions are resolved.

11. Monitoring Program

Monitoring of the discharge water will be completed for the estimated 0.5-1 month duration of the dewatering activities in accordance with the monitoring schedules below. All monitoring of water quality will be completed by a suitably qualified person, using calibrated equipment to collect samples that are representative of the discharge.

Specifications set out in the dewatering and discharge licence will outline the specific frequency of assessment, an interim sampling and monitoring program is outlined below.

11.1. Monitoring Frequency and Analysis

Daily field monitoring of the following parameters from the inlet and outlet sides of the treatment system.

- pH
- Turbidity

Daily water samples will be collected from the dewatering discharge point and receiving water during the active dewatering for the first week of dewatering activities. Physico-chemical parameters will be measured using a calibrated water quality meter for the following parameters:

- pH
- Electrical conductivity(EC)
- Dissolved oxygen (DO);
- Redox Potential (mV)
- Temperature (°C)
- Turbidity

Water samples collected will be submitted for analysis to a NATA accredited laboratory for the following analytes:

- Total suspended solids (TSS);
- Nutrients (Ammonia, nitrates, total nitrogen and total phosphorous);
- Dissolved Metals (including arsenic, cadmium, chromium, copper, iron, lead, nickel, mercury and zinc)
- TRH, BTEX and PAHS;
- OPPS, OCPS and PCBs;
- VOCs;
- PFAS

Should laboratory results indicate discharge water consistent compliance with the WQO during the initial month of dewatering activities, the frequency of water sample collection for laboratory analysis may be reduced to weekly events.

Water sampling frequency, required analysis, parameter monitoring and locations are summarised in Table 11-1 below. Should unexpected exceedances of the receiving WQO occur in the discharge samples, an increase in the sampling frequency and/or number of monitoring locations should be completed as part of further investigations.

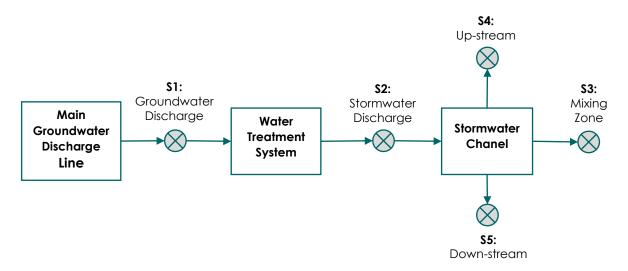

Parameter	Location	Frequency	
Visual sheens, oil and grease and hydrocarbon odours	Discharge	Daily	
	Discharge	Daily	
рН —	Receiving Waters	Daily	
Floatriage Conductivity	Discharge	Daily	
Electrical Conductivity –	Receiving Waters	Daily	
Dissolved Overson	Discharge	Daily	
Dissolved Oxygen –	Receiving Waters	Daily	
	Discharge	Daily	
Turbidity –	Receiving Waters	Daily	
Total Supported Solida	Discharge	Deily	
Total Suspended Solids –	Receiving Waters	Daily	
Ammonia, Nitrate, Total	Discharge		
Nitrogen & Total Phosphorus	Receiving Waters	Daily	
	Discharge	Dailuí	
Dissolved Heavy Metals –	Receiving Waters	Daily	
OPPe OCPe and PCPe	Discharge	Daily	
OPPs, OCPs and PCBs –	Receiving Waters		
TRH, BTEX, PAHs and VOCs	Discharge		
	Receiving Waters	Daily	
PFAS –	Discharge		
- FFA3 -	Receiving Waters	Daily	

Table 11-1: Monitoring Program for Stormwater Discharge

11.2. Monitoring Locations

Water quality samples will be collected from the following locations as presented in the flow chart below.

The following descriptions of the sampling locations are provided below:

- S1: Untreated Groundwater:
 - A sample of the groundwater discharge prior to water treatment.
- S2: Treated Water (Stormwater Discharge):
 - A sample of the treated water prior to its discharge into the Parramatta River.
- S3: Stormwater Mixing Zone:
 - A sample of the receiving waters at the mixing zone boundary.
- S4: Stormwater Up-stream:
 - A sample of the receiving waters at a location approximately 100m upstream from the stormwater discharge point.
- S5: Stormwater Down-stream:
 - A sample of the receiving waters at a location approximately 100m downstream from the stormwater discharge point.

Should analytical results of the treated waters indicate consistent water quality below the DGVs, sampling of the Stormwater Chanel (points S3, S4 & S5) may not be required.

\bigcirc

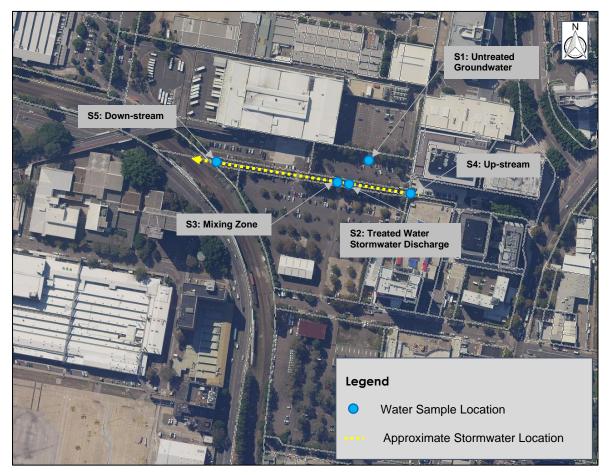


Figure 2: Proposed Monitoring Locations

11.3. Water Sample Collection

Discharge and receiving waters will be analysed in the field using a calibrated water quality meter to assess the EC, DO, pH, ORP and Temperature.

Water samples will be taken directly from the discharge line sample ports or using a surface water grab sampler for the remaining analytes mentioned in Section 11.1 above.

Samples are to be placed directly into appropriately preserved, laboratory supplied sampling containers, labelled with the project identification, sample name/location, sample date and who collected the sample. Samples for dissolved heavy metal analysis shall be field filtered using 0.45um disposable filters.

Once samples are obtained, they are to be stored and transported in an ice cooled Esky to the laboratory under a chain-of-custody (CoC).

11.4. Monitoring of Discharge Flow Rate and Groundwater Drawdown

Discharge flow rates, groundwater levels and groundwater pH outside the excavation shall be monitored in accordance with Table 11-2 below.

Table 11-2: Monitoring Programme for Discharge Flow Rates and Groundwater Levels

Parameter	Location	Frequency
Discharge Rates and Volumes	Calibrated flow meter (eg. inline Magflow meter) on discharge pipeline	Daily
Groundwater Level	From 3 groundwater monitoring wells located outside the excavation.	Daily during the dewatering and for a minimum of two months following the cessation of pumping.
Groundwater pH	From 3 groundwater monitoring wells located outside the excavation.	Daily during the dewatering and for a minimum of two months following the cessation of pumping.

Given the potential for acid sulfate soils to be dewatered at both onsite and offsite locations, at a minimum daily monitoring of offsite groundwater pH is required. Additional monitoring requirements may be required and should be specified in a standalone Acid Sulfate Soil Management Plan (to be prepared in accordance with ASSMAC (August 1998) guidelines series.

11.5. Contingencies

If drawdown approaching 1.0m is identified in the monitoring points outside the shoring wall, and/or if groundwater pH observed to be decreasing or has become more acidic than 'pre-dewatering' baseline conditions, consideration should be given to control of the off-site water table depression. This is likely to have in implication on the costs of the project but is recommended in order to reduce the risk of damage to adjacent buildings and roadways. Control methods may include:

- Extending the shoring walls to a greater depth and ideally keying them into a continuous low permeability soil horizon (e.g. clay). This is a viable contingency option unless subsurface conditions differ from those identified in the geotechnical assessment.
- Reinjection of extracted water along the site boundary. This may require some injection points to be outside the site boundary, and may require a variation to the dewatering licence obtained from the WaterNSW / NRAR.

If groundwater control is not viable for the management of ASS, injection of an acid neutralising agent such as calcium

If unexpected monitoring results indicate that the quality of the receiving water has changed (as a direct result of the dewatering activities), modification of management practices must be implemented, including up-scaling of the treatment measures.

Implementation/adjustment of physical and/or treatment processes and/or installation of larger retention structures should be completed as an initial procedure to mitigate unacceptable levels of chemical contaminants (e.g. dissolved heavy metals, petroleum hydrocarbons, VOCs or pesticides). Where increased dissolved oxygen of the discharge waters is required, an aerator should be installed within the treatment line.

Where implemented contingencies prove ineffective at mitigating risks to the receiving water way, ceasing dewatering may be the only options until such time that other management techniques can be applied. To avoid potential damage to the constructed basement in such a situation, consideration should be given to obtaining a permit to discharge to sewer with Sydney Water.

12. Records and Reporting

The Principal Contractor shall maintain a record of all water quality and groundwater level monitoring, along with details of corrective and preventative actions implemented in relation to the dewatering activity. The following reports shall be prepared:

- A weekly (interim) report issued upon receipt of laboratory analysis results that identifies potential compliance issues or water quality impacts that require immediate action, and other recommended preventive/corrective actions
- A monthly dewatering report summarising the water quality data and management strategies implemented during the entire works. The report shall include a summary of discharge and receiving waters quality results, a statistical appraisal of the data, control charts showing quality results, a compliance assessment, indications of potential environmental harm, and comments and/or corrective actions implemented during the works.

The following information must be maintained and may be required to be submitted to WaterNSW / NRAR on completion of dewatering as part of "Completion Report":

- Volume of groundwater pumped, the volume discharged offsite (and/or reinjected if applicable), the discharge / reinjection rate and the duration of pumping;
- Groundwater level monitoring data;
- All water quality monitoring data including results of pre-release water quality testing, within six months of completion of dewatering; and
- Location and construction of groundwater extraction works that are abandoned after dewatering has ceased.

A Water Access Licence (WAL) and Works Approval may be issued for the dewatering works. The WAL should be obtained to cover the predicted volume of groundwater to be abstracted from the Greater Metropolitan Region Groundwater Sources – Botany Sands Groundwater Source. Should volumes measured during construction dewatering exceed the predicted volumes, additional WAL should be obtained to ensure all groundwater take is accounted for.

13. References

ANZECC/ARMCANZ. 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Qualify, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand;

Australian and New Zealand Standard AS/NZS 5667 Water quality Sampling, Parts 1-11;

Fetter, C.W. (2001) Applied Hydrogeology, Fourth Edition. Prentice Hall;

Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice Hall;

Heath, R.C. (1983) Basic ground-water hydrology, U.S. Geological Survey Water-Supply Paper 2220, 86p;

NEPM. 2013. National Environment Protection Measure, Schedule B (1) investigation levels for soil and groundwater;

NSW government Office of Environment and Heritage, Acid Sulphate Risk Maps 2015 http://www.environment.nsw.gov.au/acidsulfatesoil/riskmaps.htm

14. Limitations

The report or document does not purport to provide legal advice and any conclusions or recommendations made should not be relied upon as a substitute for such advice.

The report does not constitute a recommendation by Reditus for the client (APP Pty Ltd) or any other party to engage in any commercial or financial transaction and any decision by the client or other party to engage in such activities is strictly a matter for the client.

The report relies upon data, surveys, measurements and results taken at or under the site at particular times and conditions specified herein. Any findings, conclusions or recommendations only apply to the aforementioned circumstances and no greater reliance should be assumed or drawn by the client. Furthermore, the report has been prepared solely for use by the client and Reditus accepts no responsibility for its use by other parties. The client agrees that Reditus' report or associated correspondence will not be used or reproduced in full or in part for promotional purposes and cannot be used or relied upon by any other individual, party, group or company in any prospectus or offering. Any individual, party, group or company seeking to rely this report cannot do so and should seek their own independent advice.

No warranties, express or implied, are made. Subject to the scope of work undertaken, Reditus assessment is limited strictly to identifying typical environmental conditions associated with the subject property based on the scope of work and testing undertaken and does not include and evaluation of the structural conditions of any buildings on the subject property or any other issues that relate to the operation of the site and operational compliance of the site with state or federal laws, guidelines, standards or other industry recommendations or best practice. Scope of work undertaken for assessments are agreed in advance with the client and may not necessarily comply with state or federal laws or industry guidelines for the type of assessment conducted.

Additionally, unless otherwise stated Reditus did not conduct soil, air or wastewater analyses including asbestos or perform contaminated sampling of any kind. Nor did Reditus investigate any waste material from the property that may have been disposed off the site, or undertake and assessment or review of related site waste management practices.

The results of this assessment are based upon (if undertaken as part of the scope work) a site inspection conducted by Reditus personnel and/or information from interviews with people who have knowledge of site conditions and/or information provided by regulatory agencies. All conclusions and recommendations regarding the property are the professional opinions of the Reditus personnel involved with the project, subject to the qualifications made above.

While normal assessments of data reliability have been made, Reditus assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of Reditus, or developments resulting from situations outside the scope of this project/assessment.

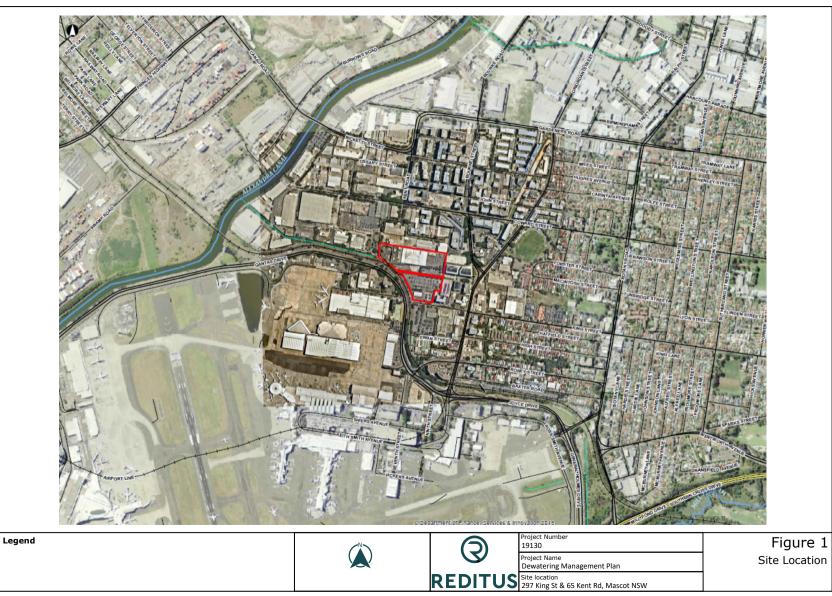
Reditus is not engaged in environmental auditing and/or reporting of any kind for the purpose of advertising sales promoting, or endorsement of any client's interests,

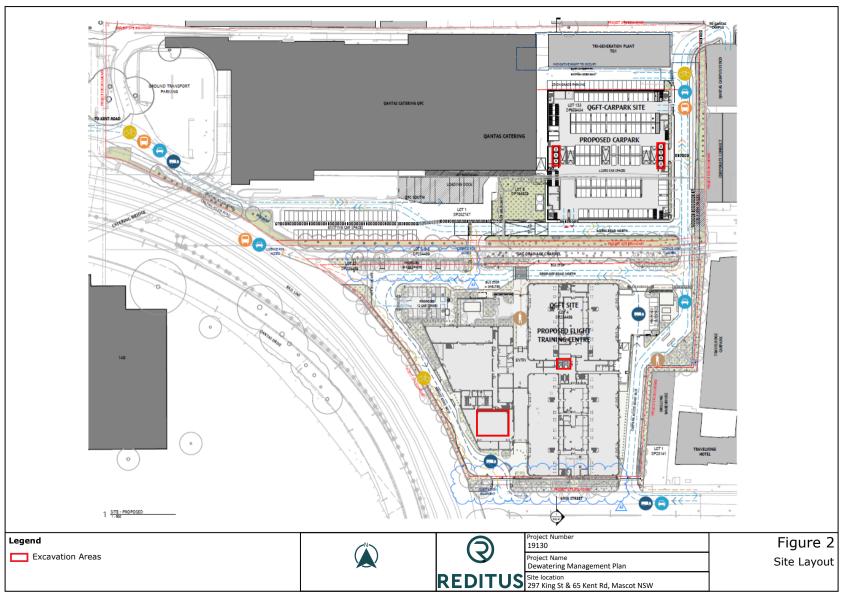
including raising investment capital, recommending investment decisions, or other publicity purposes. Reditus assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of Reditus, or developments resulting from situations outside the scope of this project.

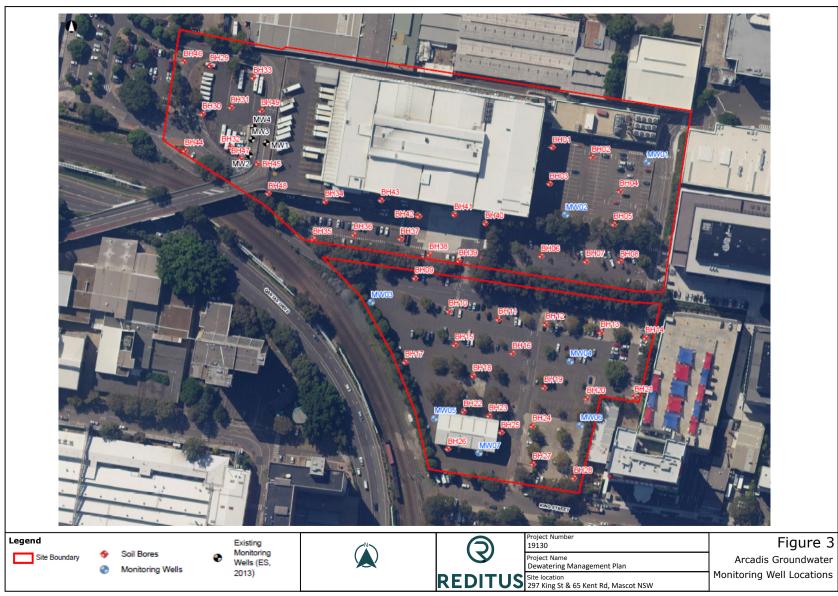
Information relating to soil, groundwater, waste, air or other matrix conditions in this document is considered to be accurate at the date of issue. Surface, subsurface and atmospheric conditions can vary across a particular site or region, which cannot be wholly defined by investigation. As a result, it is unlikely that the results and estimations presented in this report will represent the extremes of conditions within the site that may exist. Subsurface conditions including contaminant concentrations can change in a limited period of time and typically have a high level of spatial heterogeneity.

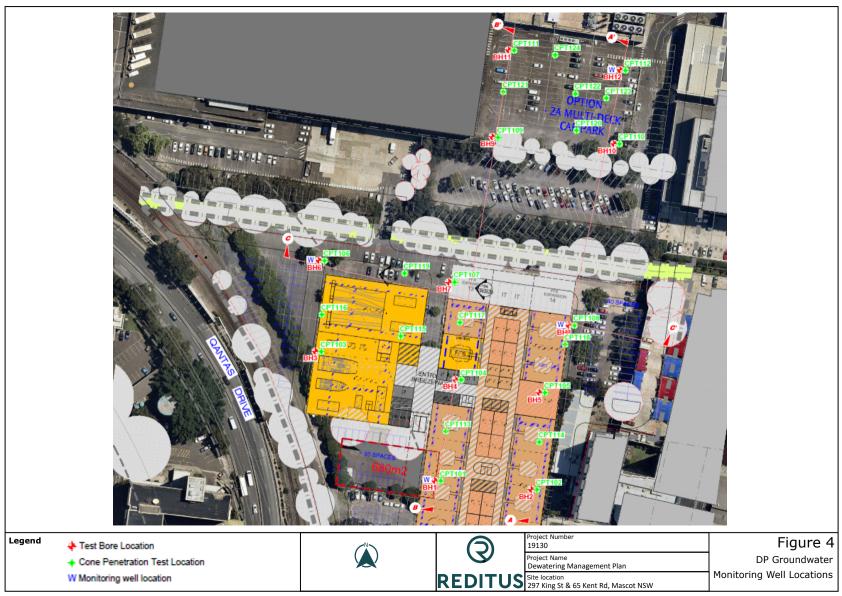
From a technical perspective, there is a high degree of uncertainty associated with the assessment of subsurface, aquatic and atmospheric environments. They are prone to be heterogeneous, complex environments, in which small subsurface features or changes in geologic conditions or other environmental anomalies can have substantial impact on water, air and chemical movement.

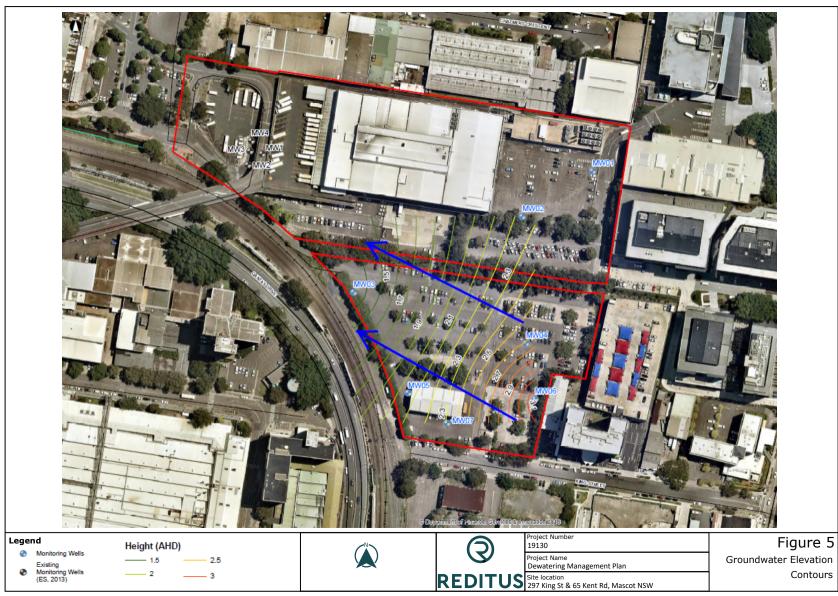
Major uncertainties can also occur with source characterisation, assessment of chemical fate and transport in the environment, assessment of exposure risks and health effects, and remedial action performance. These factors make uncertainty an inherent feature of potentially impacted sites. Technical uncertainties are characteristically several orders of magnitude greater at impacted sites than for other kinds of projects.


In relation the conduct of Asbestos inspections or the preparation of hazardous materials reports Reditus has conducted inspections and the identification of hazardous material within the constraints presented by the property. Whist efforts are made to access areas not normally accessed during normal use of the site to identify the presence of asbestos or other hazardous material, unless explicitly tested no guarantee can be provided that such material is or is not present.


Reditus' professional opinions are based upon its professional judgment, experience, and training. These opinions are also based upon data derived from the limited testing and analysis described in this report or reports reviewed. It is possible that additional testing and analysis might produce different results and/or different opinions or other opinions. Reditus has limited its investigation(s) to the scope agreed upon with its client. Reditus believes that its opinions are reasonably supported by the testing and analysis that has been undertaken (if any), and that those opinions have been developed according to the professional standard of care for the environmental consulting profession in this area at this time. Other opinions and interpretations may be possible. That standard of care may change and new methods and practices of exploration, testing and analysis may develop in the future, which might produce different results.




Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd


19130RP01

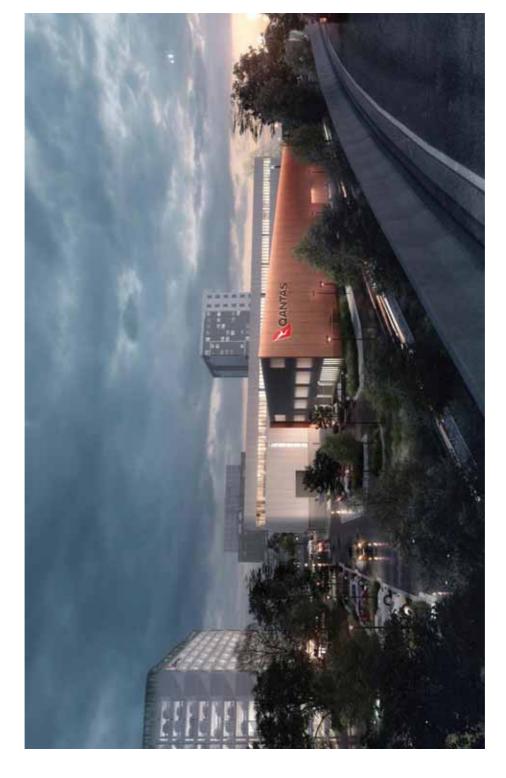
Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

19130RP01

QANTAS GROUP FLIGHT TRAINING CENTRE & CARPARK

297 KING STREET, MASCOT

P 23448	P 23448	DP 202747	P 16482	P 65943
LOT 2		LOT 1		LOT 133


COVER SHEET LEGEND AND NOTES OGFT MATERIALS & FINISHES	PLAN - LOCAULTY ANALYSIS PLAN - SITE ANALYSIS PLAN - GR - CGFT - PLAN - GR - CGFT - PLAN - GR - CGFT - PLAN - FROMOSED SHADOWS FIAGE - PLAN - PROMOSED SHADOWS FIAGE - PLAN - PROMOSED PLAN - PROMOSED PLAN - PROMOSED SECTION	PLAN - STIE & GROUND FLOOR PLAN - LEVEL 1 PLAN - LEVEL 2 PLAN - LEVEL 2 PLAN - LEVEL 2 PLAN - ROOF ELEVATIONS - LAST & WEST ELEVATIONS - LAST & WEST SECTIONS SECTIONS	SIGNAGE PLAN - STRE & GROUND FLOOR PLAN - FRET FLOOR PLAN - TOPPICAL FLOOR PLAN - ROOF STAGE 01 PLAN - ROOF STAGE 01 FLANTIONS - STAGE 01 FLENATIONS - STAGE 01 FLENATIONS - STAGE 02 FLENATIONS - STAGE 02 SECTIONS - STAGE 02 SECTIONS - STAGE 02 SECTIONS - STAGE 02
NOTES & SCHEDULES NOTES & SCHEDULES NOTES & SCHEDULES	ans ans ans ans ans ans ans ans ans ans	0551 - GENVBAL ARRANDENEN 0561 - GENVBAL ARRANDENEN 0561 - GENVBAL ARRANDENEN 0551 - GENVBAL ARRANDENEN	OGFT - DETAILS OGFT - CENUBAL ARRANGEMENT OGFT-C - GENUBAL ARRANGEMENT
DA1.01 DA1.02 DA1.10	DA2.01 DA2.02 DA2.15 DA2.15 DA2.17 DA2.21 DA2.21 DA2.31 DA2.31 DA2.31 DA2.31 DA2.31	DA3 01 DA3 02 DA3 03 DA3 03 DA3 10 DA3 21 DA3 25 DA3 25 DA3 25	DA3.40 DA4.01 DA4.02 DA4.10 DA4.10 DA4.11 DA4.21 DA4.22 DA4.22 DA4.23 DA4.23

SOUTH - KING STREET NORTH WEST - QANTAS DRIVE CARPARK

ARTISTS IMPRESSIONS ARTISTS IMPRESSIONS ARTISTS IMPRESSIONS ARTISTS IMPRESSIONS

DA5.01 DA5.02 DA5.03 DA5.04

- 0

 Description
 System
 End of the mean of the ABR NW 6214
 116.1 292.2 90.6
 Type of the mean of the mean of the ABR NW 6214
 Type of the mean of the ABR NW 6214
 Type of the ABR NW 6214
 <thType

2.0	0	E C WA-LN PT PARTITIO
		語くなるという。日本になって

		L LANDSCAPE & EXTERNAL WORKS	REFER ALSO DVIL & LANDSCAPE DOCUMENTATION.	L-FI FITTINGS L-FI-BO BOLLARDS	L-FI-BG BOOM GATES	L-FI-HR HANDRAIL	L-FN FENCING I EN DE DAMIEGADE ERMENDE		DOCUMENTATION HEIGHT 2400H, UNO		L-PA-CO CONCRETE -/D DRIVEWAY CROSSING		L-PA-LM LINE MARKINGS PAVEMENT MARKING PAINT	-/A ACCESSIBLE PARKING WITH LINE MARKINGS TO AS 2890.1	L-PA-KB KERB	IO CIVIL ENGINEER 2 UEMGN -/R KERB RAMP TO AS1428:1	L-PL- PLANTING L-PL-PL PLANTING	L-PL-SS TENSIONED MESH SYSTEM WITH PLANTING	FINISH STAINLESS STEEL	L-WA WALLS L-WA-BI BLOCKWORK WALL		L-WA-RW REFAINING WALL REFER D'VIL ENGINEERS DOCUMENTATION	S SERVICES	REFER ALSO SERVICES & CIVIL DOCUMENTATION.	S-EL ELECTRICAL S-EL-SS SUBSTATION KIOSK		S-FI-BT BREAK TANK COLOUR DARK	S-FI-HB HYDRANT BOOSTER S-FI-HY HYDRANT	_	
	JULES	MATERIALS	FLOOR FINISHES PAVING		WALL FINISHES BLOCKWORK	AN II GRAFHITI -/G GREY	COMPRESSED FIBRE CEMENT SHEET -/G GREY	ICRETE 1 GRAFFITI	-/G GREY	PRECAST CONCRETE ANTI GRAFFITI -/G GREY -/C COLOURED	CHAINWIRE MESH -/G GALVANISED	METAL DECK CLADDING	-/L LIGHT -/M MEDIUM	ROOFING DOWNPIPE	GUTTER	METAL DECK COLORBOND -/M MEDIUM	CONSTRUCTION	STRUCTURE STRUCTURAL CONCRETE	ANTI GRAFFITI	STRUCTURAL STEEL -/G GALVANISED	DOORS FLUSH DOOR	DARK ALUMINIUM FRAMED GLAZED DOOR		KULLEK SHUTTEK	WINDOWS ALUMINIUM FRAMED GLAZED WINDOW	-/D DARK	GLAZED RUOFLIGHT	METALWORKS Canopy Dark	FENCING, BALUSTRADE RODS DARK	
	4.0 SCHEDULES	×	M-FL M-FI-PA		M-WA M-WA-BL	FINISH	M-WA-CFC FINISH	M-WA-CO FINISH	COLOUR	M-WA-CP FINISH COLOUR	M-WA-CW FINISH	M-WA-MD	COLOUR	M-RF M-RF-DP	M-RF-GU	M-RF-MD FINISH COLOUR	U	C-ST C-ST-CO	FINISH	C-ST-ST FINISH	C-D0	COLOUR C-DO-AL FRAMF		C-D0-K2	C-WI C-WI-AL	FRAME	C-WI-KF	C-MW C-MW-CP COLOUR	C-MW-FN -/R COLOUR	
A D D D EVI A T IONS	ABBREVIALIONS	ADJACENT	ACCESS PANEL	CORPORATION AS TURNS OUT	BETWEEN	BLOCKWORK BRICKWORK	CENTRELINE CONTROL JOINT		CARPET	DIAMETER DOWNLIGHT DOWNPIPE DAMP PROOF MEMBRANE	ELECTRICAL DISTRIBUTION BOARD	EXPANSION JOINT ELECTRICAL			FLOOR FINISHED CEILING LEVEL	FINISHED FLOOK LEVEL FIRE EXTINGUISHER FIRE HOSE REEL FLOOR WASTE	GLAZING GENERAL PURPOSE OUTLET	HARDWOOD HARDWARE	INSULATION	LEVEL	MECH MOVEMENT JOINT MILD STEEL	NOMINAL NOT TO SCALE	OVERALL	PAINT	QANTAS GROUP FLIGHT TRAINING CENTRE	RADIUS RIDGE VENT	SIMILAR STAINLESS STEEL	SYDNEY WATER CORPORATION	TO BE CONFIRMED TELEPHONE TIMBER TYPICAL	
0 6	0.0	ADJ	AP			BLK BWK	505	CONC COL	CPT	DIA DP DPM	EDB	EIEC	EXH EXH		또 더 단	FE FE	6P0 6P0	HWD HWR	SNI	N	MECH MJ MS	NOM NTS	ΥO	Ы	QGFT	RAD RV	NIS SS	SWC	TBC TEL TIM TYP	

ELEVATION REFERNECE

WIND_W WINDOW NUMBER

DOOR NUMBER

DG01

CEILING HEIGHT

SPOT LEVEL EXIST PROPOSED

195.000

FLOOR HEIGHT

≝⊳ ⊲₹ SECTION REFERENCE

2019.04.11 I MIE

SSD A PPLICATION REMONFOR 59.4

14

LIGHTING EXTERNAL LIGHT

5-LI S-LI-EX

PROTECTION CRASH BARRIER GALVANISED

C-MW-PR -/Œ FINISH

F-SN SIGNAGE F-SN REFER DETAILS F FITOUT

HYDRAULIC GREASE ARRESTOR

S-HY S-HN-GA

LOUVRES, VERTICAL -/L LIGHT -/M MEDIUM

COLOUR COLOUR

UNO UNLESS NOTED OTHERWISE U/S UNDERSIDE VP VENT PIPE

EXISTING WALL - TO BE DEMOLISHED

NEW WALL

DETAIL REFERENCE

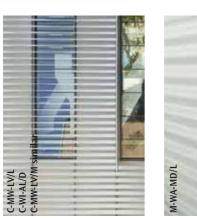
Room name ROOM NAME

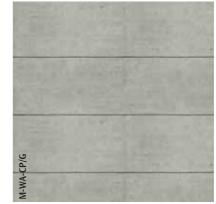
S-HY-WM WATER METER WATER TANK DARK

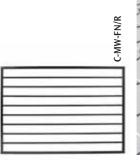
S-HY-WT COLOUR

LOUVRES, HORIZONTAL -/D DARK -/G GALVANISED -/M MEDIUM

C-MW-LH COLOUR







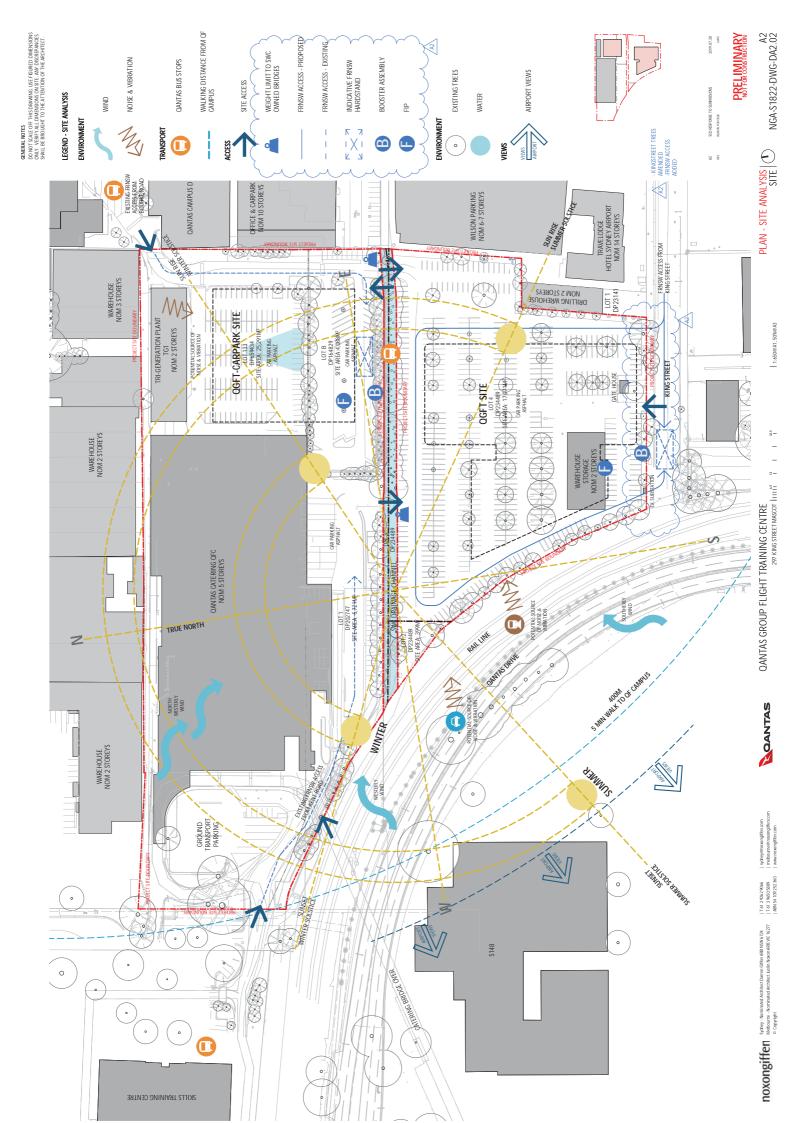
LEGEND - MATERIALS	RIALS	
REF.	DESCRIPTION	COLOUR
M-WA-BL/G	BLOCKWORK	GREY
M-WA-CFC	COMPRESSED FIBRE CEMENT	GRAY
M-WA-CO/G	CO NCRETE	GRAY
M-WA-CP/G	PRECAST CONCRETE	GRAY
M-WA-CP/C	PRECAST CONCRETE	COLOURED (RED)
M-WA-CW/G	CHAINWIRE MESH	GALVANISED
M-WA-MD/L	METAL DECK CLADDING	пент
M-RF-MD/M	METAL DECK ROOFING	MEDIUM
C-MW-FN/R	FENCING, METAL RODS	DARK
C-MW-LV/L	METAL WORKS, LOUVRES	UGHT
C-MW-LH/D	METAL WORKS, LOUVRES	DARK
C-MW-LH/G	METAL WORKS, LOUVRES	GALVANISED
C-MW-LH/M	METAL WORKS, LOUVRES	MEDIUM
C-MW-PR/CB	CRASH BARRIER	GALVANISED
C-ST-ST/G	STRUCTURAL STEEL	GALVANISED
C-WI-AL/D	ALUMINIUM FRAMED WINDOW SYSTEM	DARK
	and the second second second second	Constant and a constant
SC-14-1	PLANTING, LENSIONSED MESH	SIAINLESS SIEEL
L-WA-BL/R	LANDSCAPE BLOCKWORK WALL	RENDERED

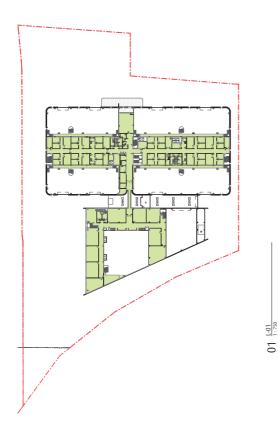
2019.04.11 0410 SSD APPLICATION REMOVEOR 59.0 N N

A1 NGA-S1822-DWG-DA1.10

PRELIMINARY NOT FOR CONSTRUCTION

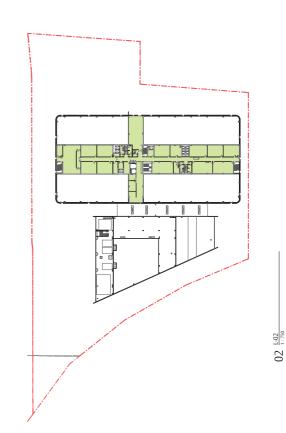

QGFT MATERIALS & FINISHES NOTES & SCHEDULES

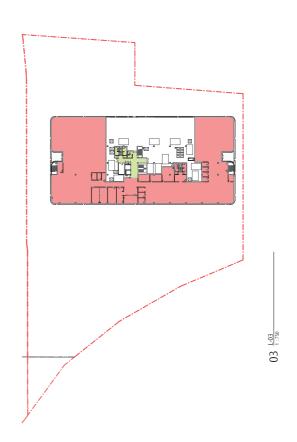

QANTAS GROUP FLIGHT TRAINING CENTRE 297 KING STREET MASCOT




| sydney@noxongiffen.com | melbour ne@noxongiffen.com | www.noxongiffen.com

Toxongiffen serve winated Architect Distrees Giffen ANB NSW 6724 11 61 23052 906 Toxon ABB NC 1627 11 61 33052 989 Coxyrelit 10 2027 980



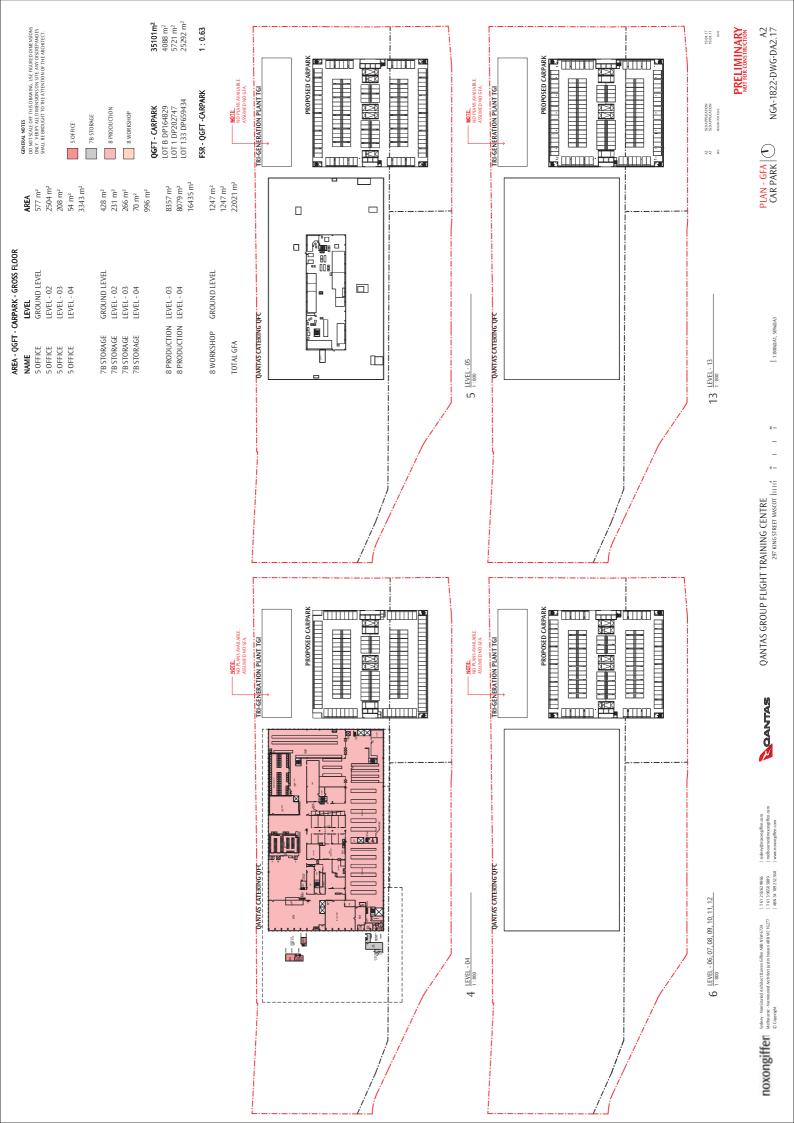


QANTAS GROUP FLIGHT TRAINING CENTRE

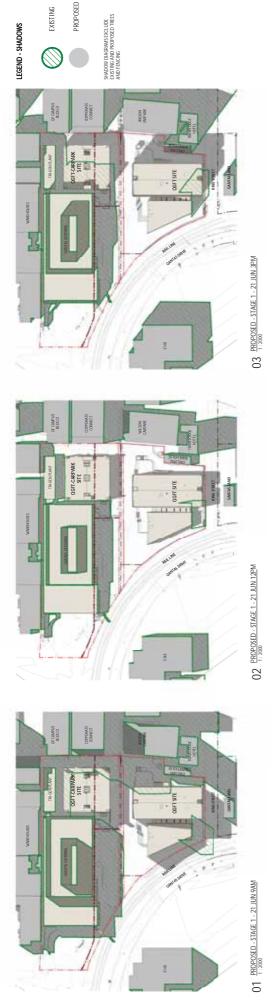
CANTAS

1:750@A1,50%@A3

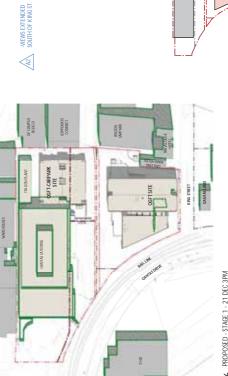
A2 NGA-S1822-DWG-DA2.15 PLAN - GFA - QGFT


PRELIMINARY NOT FOR CONSTRUCTION

2019.04.17 DMI


SSD APPLICATION RIASONFORISUE

57 V2



GENERAL NOTES DO NOT SCALE OFF THIS DRAWING, LEE FIGURED DIMENSIONS DO NOTY, VERENAL DIMASDRANING, LEE FIGURED DIMENSIONS SMALL BE BROUGHT TO THE, APTTENTION OF THE READULES SMALL BE BROUGHT TO THE, APTTENTION OF THE READULES

04 PROPOSED - STAGE 1 - 21 DEC 9AM

06 PROPOSED - STAGE 1 - 21 DEC 3PM 1:2000

noxongiffen Sytrey - Maniared Architect Darran Geffen ABB N596 6274 11 61 2 5922 9046 **noxongiffen** Sytrey - Maniared Architect Lashi Naron-ABB N516 2271 11 61 3 9502 959 Copyright

| sydney@no.xongliffen.com | melbourne@noxongliffen.com | www.noxonaliffen.com

CANTAS

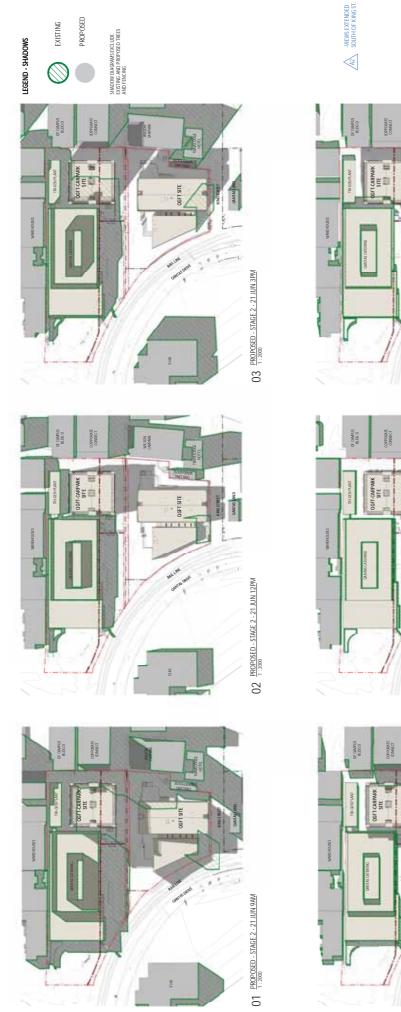
A2 NGA-S1822-DWG-DA2.20

PLAN - PROPOSED SHADOWS STAGE 1

1:2000@A1, 50%@A3

QANTAS GROUP FLIGHT TRAINING CENTRE

PRELIMINARY NOT FOR CONSTRUCTION


SSD RESP OVCE TO SUBMISSIONS REMORTORISSUE 42 V3

2019.07.30 DATE

Ļ

05 PROPOSED - STAGE 1 - 21 DEC 12PM 1: 2000

PRELIMINARY NOT FOR CONSTRUCTION

A2 NGA-S1822-DWG-DA2.21 PLAN - PROPOSED SHADOWS STAGE 2 | \bigcirc

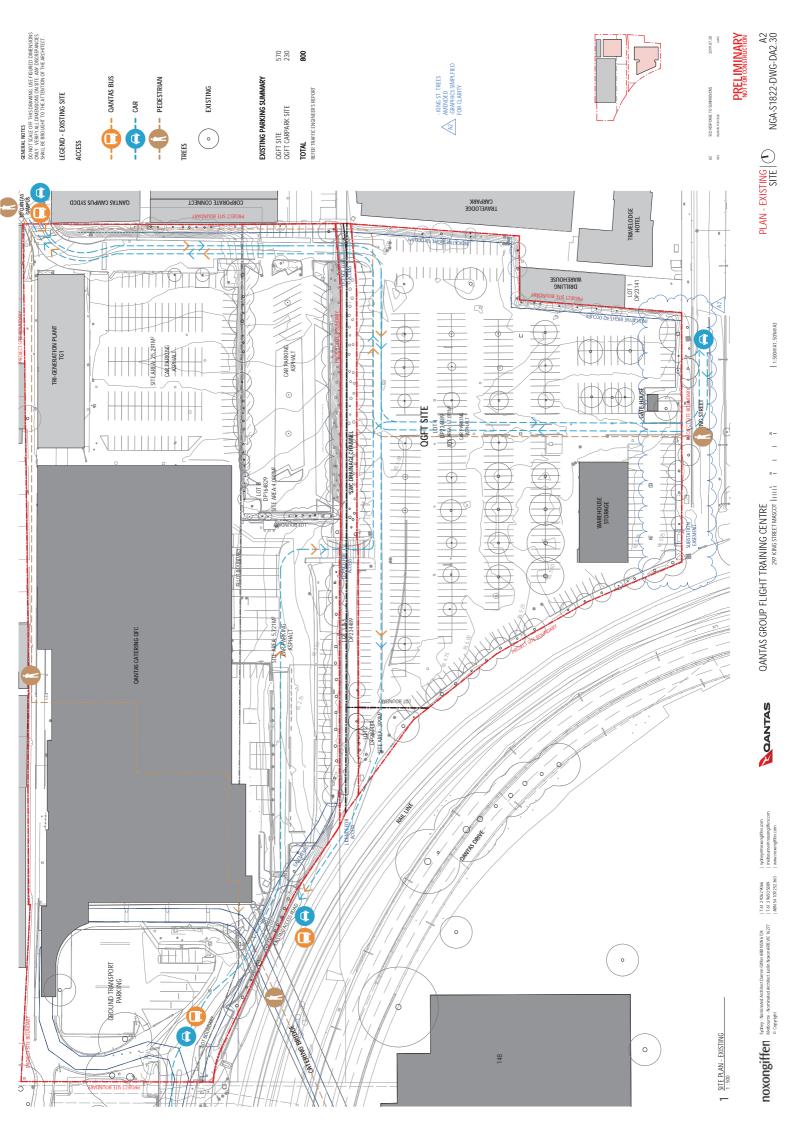
1:2000@A1, 50%@A3

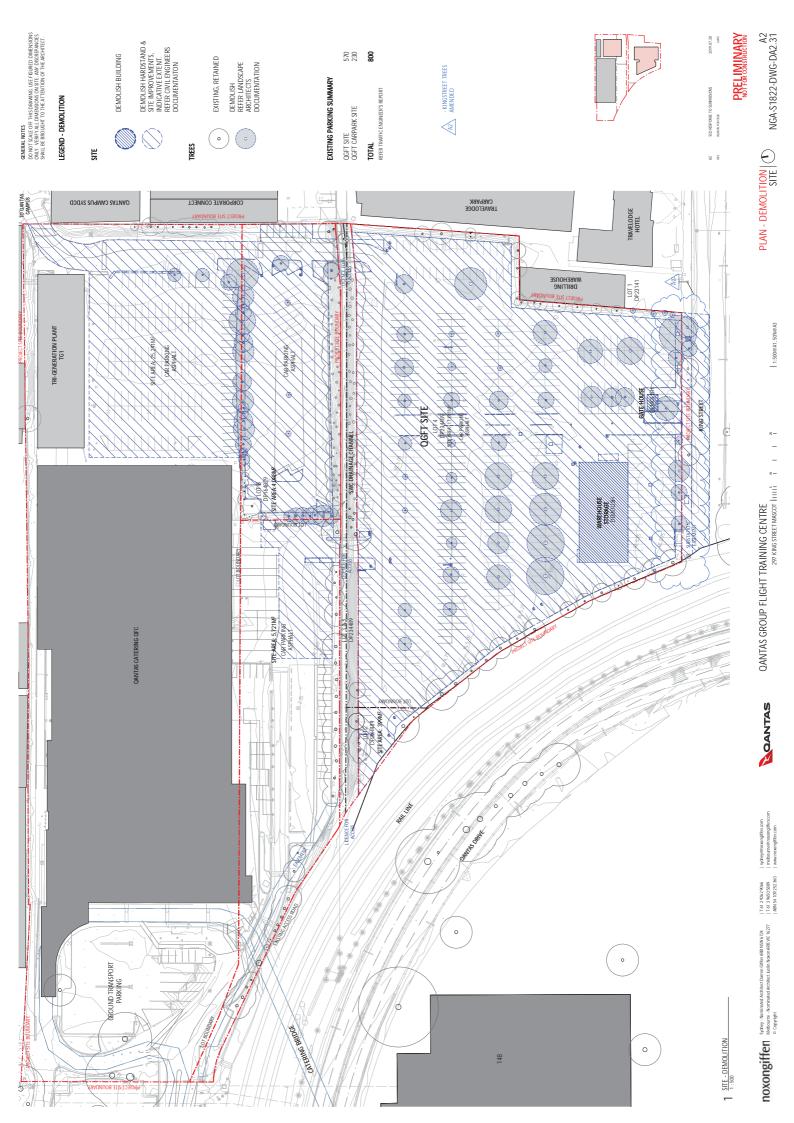
QANTAS GROUP FLIGHT TRAINING CENTRE

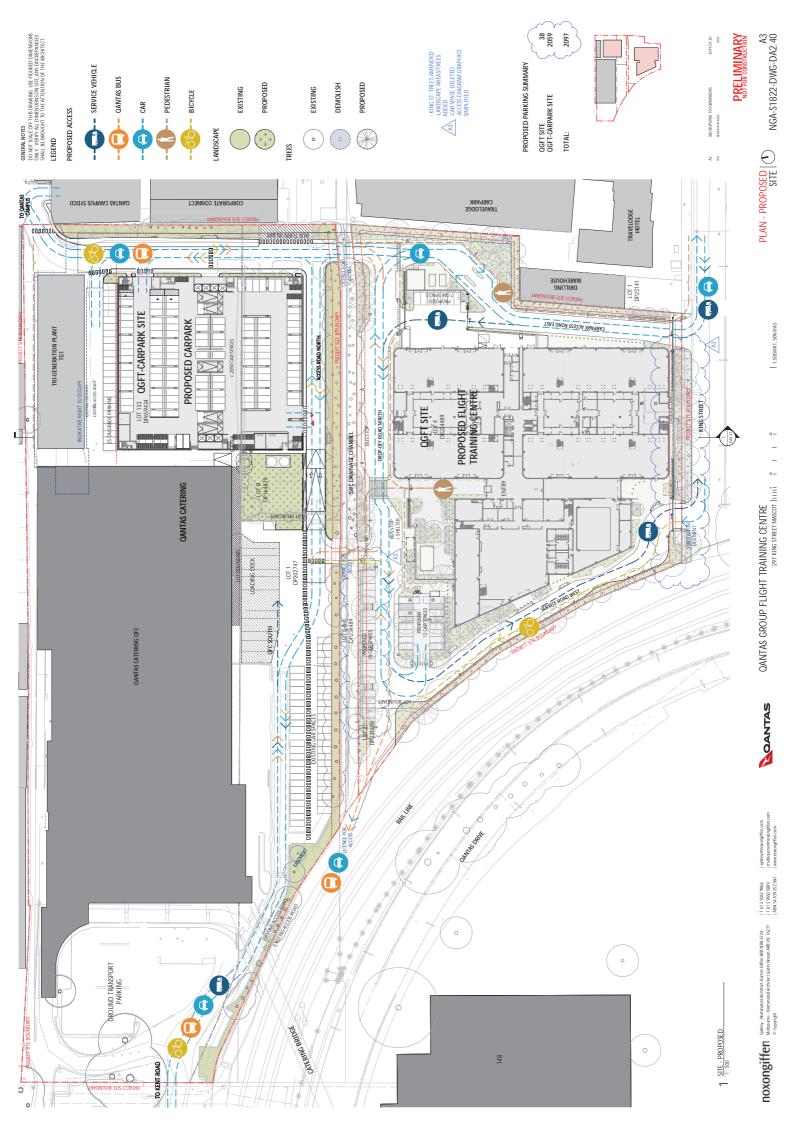
CANTAS

| sydney@no.xongliffen.com | melbourne@noxongliffen.com | www.noxonaliffen.com

SSD RESP OVEE TO SUBMISSIONS REMORTORISSUE 24 A2


2019.07.30 DATE


Ļ


05 PROPOSED - STAGE 2 - 21 DEC 12PM 1:2000

04 PROPOSED - STAGE 2 - 21 DEC 9AM

noxongiffen Setroy - Namina konine Darron Gifen Alla Niku 21, 2542-206 **noxongiffen** Setrom-Normanico Archine Lukin Nucon Alla Niku 21, 1613-2562-2589 Cogram

SECTION SITE

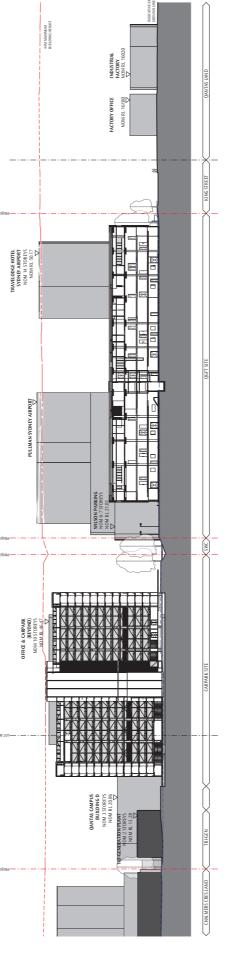
2019.04.11 IN

SSD A PPLICATION REMONFOR 59.4

LV AND

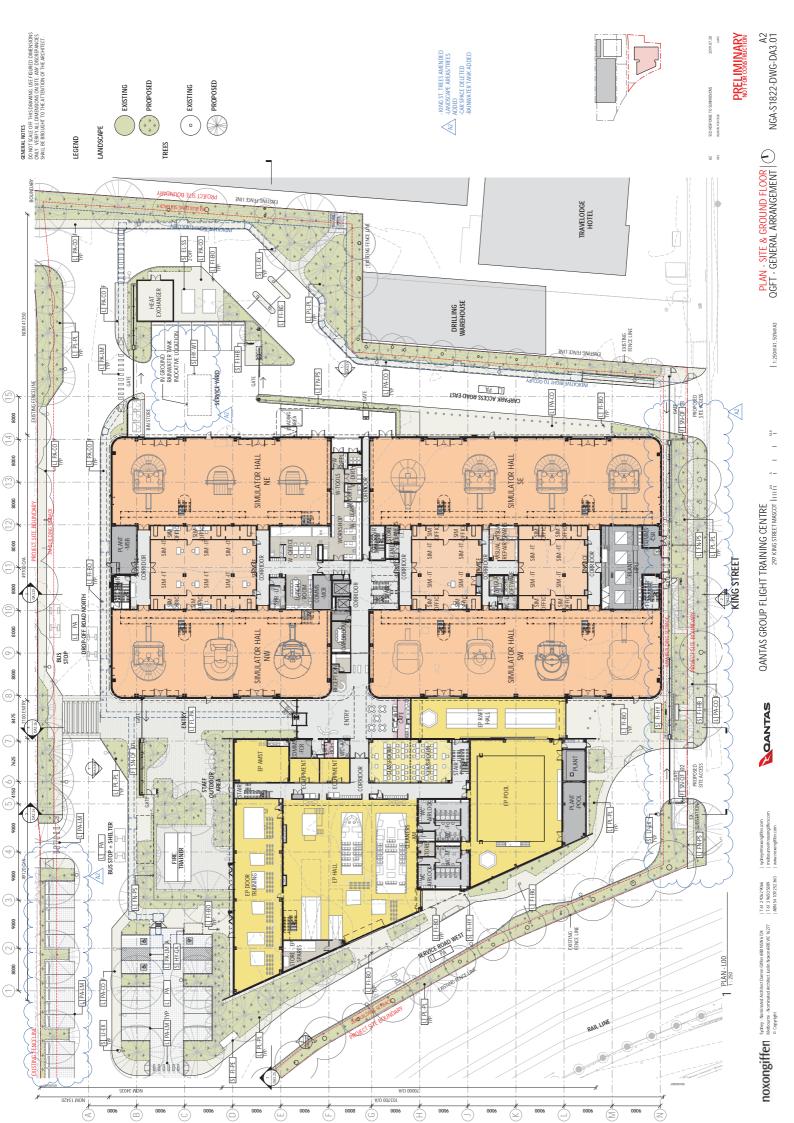
1:500@A1, 50%@A3

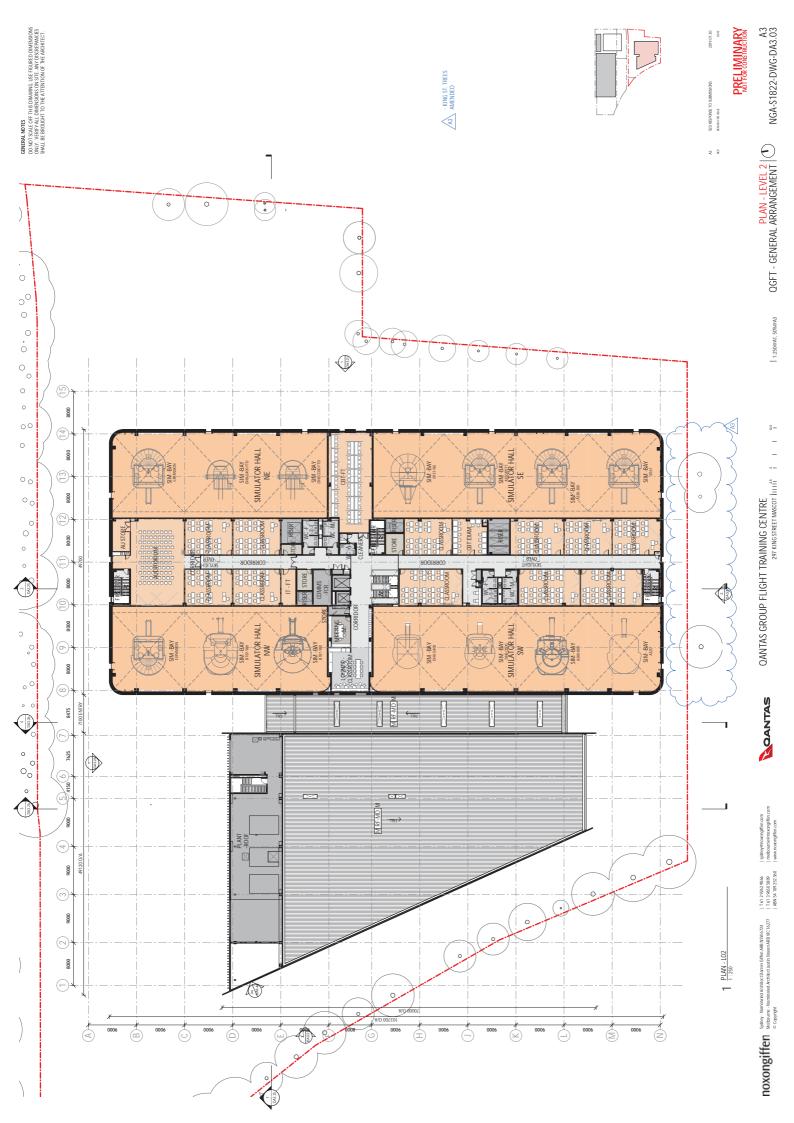
297 KING STREET MASCOT | I I I 1 1 1 QANTAS GROUP FLIGHT TRAINING CENTRE



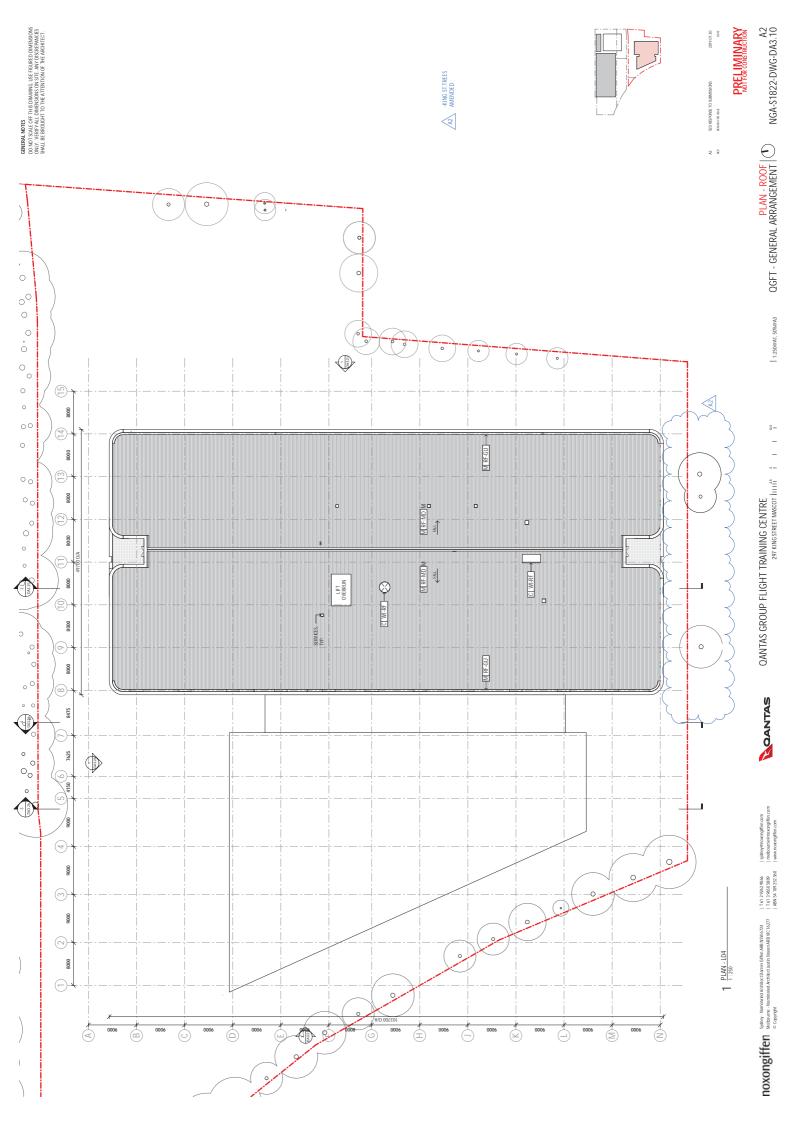
CANTAS

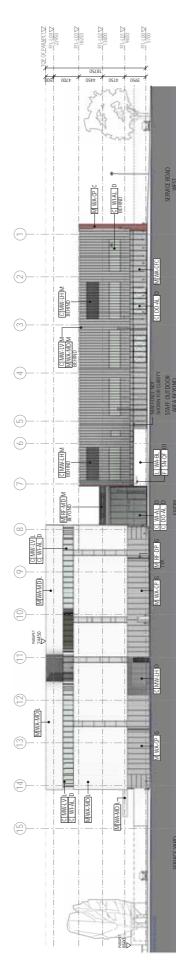
 Tocompilter
 March Mathematic Librer of the ABR NW 62M
 1161 2362 396
 Type Information and the analysis of the ABR NW 62M for the analysis of the ABR NW 62M for the ABR

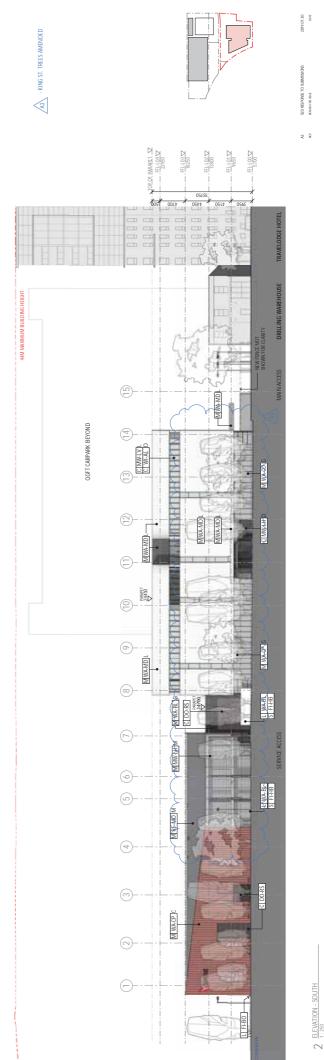




1 SECTION E - SITE SECTION 1:500


GENERA NOTES DO NOT SCALE DEFT THIS DRAWING. LISE FIGURED DIMENSIONS ONLY VERFYALL DIMENSIONS ON STITE. ANY DISCREPANCIES SHALL BE ERROUGHT TO THE ARTIFETION OF THE ARKHIECT.





GBNERAL NOTES DO NOT STALE OFT THIS DRAWING, LISE F.GURED DIMENSIONS ONLY. YERIYF ALL DIMENSIONS ON STIE. ANY DISCREPANCES SHALL BE BROUGHT TO THE ATTENTION OF THE ARCHTECT.

44M MAXIMUM BUILDING HEIGHT

1 ELEVATION - NORTH

Z 7: 250 EXISTING BOUNDARY FENCELINE NOT SHOWN FOR CLARITY

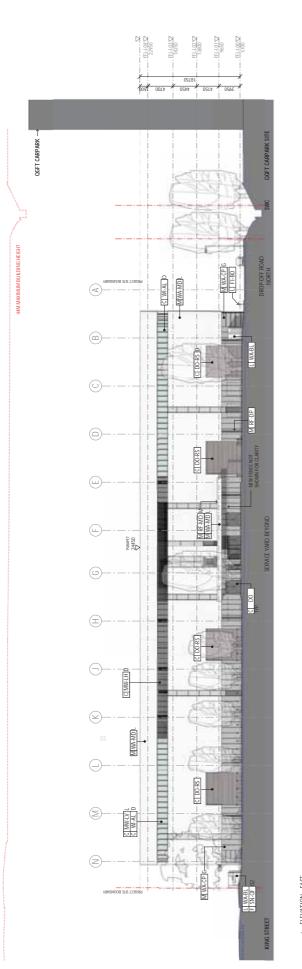
Svaheer - Nomina led Architeci ID arren Giffen A&B NSW 6724

noxongiffen serve Amineta Aminet Dama Ras Nave 274 116 2 2023 2006 noxongiffen deine Aminada Aminet Jusin Naon ABB VG 1427 116 13 9605 989 Grouppal

OANTAS GROUP FLIGHT TRAINING CENTRE

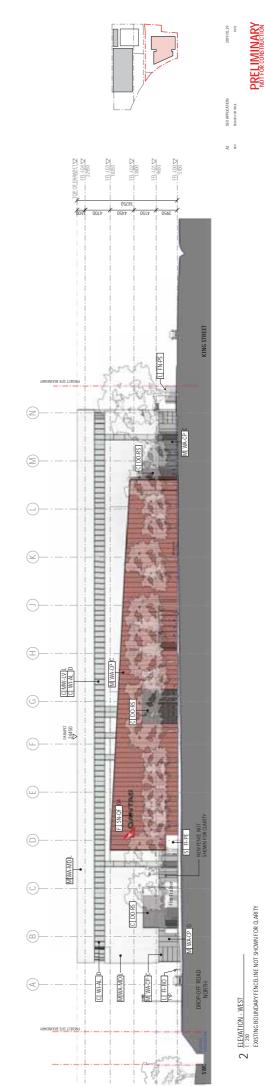
QANTAS

| sydney®nozongiffen.com | melbourne® noxongiffen.co | www.nozongiffen.com


A3 NGA-S1822-DWG-DA3.20

ELEVATIONS - NORTH & SOUTH | OGFT - GENERAL ARRANGEMENT |

1:250@A1, 50%@A3


PRELIMINARY NOT FOR CONSTRUCTION

EXISTING BOUNDARY FENCELINE NOT SHOWN FOR CLARITY 1 ELEVATION - EAST 1: 250

44M MAXIMUM BUILDING HEIGHT

noxongiffen serve Amineta Aminet Dama Ras Nave 274 116 2 2023 2006 noxongiffen deine Aminada Aminet Jusin Naon ABB VG 1427 116 13 9605 989 Grouppal

| sydney®noxongiffen.com | melbourne® noxongiffen.c | www.noxongiffen.com

QANTAS

A2 NGA-S1822-DWG-DA3.21

ELEVATIONS - EAST & WEST | OGFT - GENERAL ARRANGEMENT |

1:250@A1, 50%@A3

125

297 KING STREET MASCOT || || 1 125 1 1

QANTAS GROUP FLIGHT TRAINING CENTRE

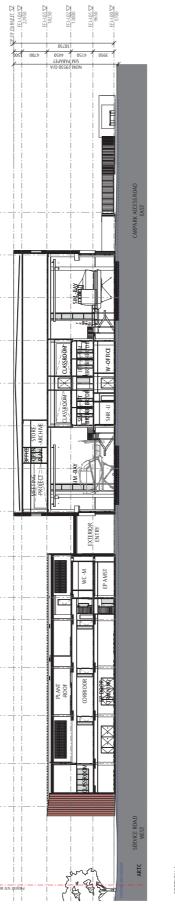
PRELIMINARY NOT FOR CONSTRUCTION A1 NGA-S1822-DWG-DA3.25

2019.04.11 0410

SECTIONS | 1:2508A1, 50%8A3 QGFT - GENERAL ARRANGEMENT |

QANTAS GROUP FLIGHT TRAINING CENTRE 297 KING STREET MASCOT HILITÄ

125


I sydrey@noongiller.com
 I melbour.ne@nacongilter.com
 I www.noongilter.com

 Incomplete
 Select-Neminated Architect turene office ARE NOV 6724
 11 61 2:205 2906
 19 denoise

 Incomment
 Neminate-Neminated Architect Justin Neuron AREV (NZ77
 11 2:305 2380
 11 medioun

 Constraint
 Constraint
 Constraint
 20 media
 20 media

SSD APPLICATION REMOVITOR 53.01 ч 86 <u>18250</u> . <u>FFL-L01</u> <u>HL-L02</u> <u>13800</u> - HL-LOOV PARAPET <u>72950</u> WI\$ F TTLY DROP-OFF ROAD \triangleleft () -IPT -BRADB NUDITORIUM Ы -PT BR/DB CLASSROOM LASSROO M PLANT - ROOM TORE OMMS -MCR FCR DMMS FCR FCR (Ξ) LANT (\cong) PLANT Ы IPT BR/DB Þ Ы (Ξ) \bigcirc 2 sh 7 FFF ٦ AF ALAN SA 2 SECTION B 1:250 **CING STREET**

1 SECTION A 1:250 AAXIMUM BUILDING HEIGHT

GNERAL MOTES DO NOT SCALE DFF THIS DRAWING, USE FIGURED DIMENSIONS ONLY, VERFY ALL DIMENSIONS ON SITE ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ARCHITECT.

ALIM BUILDING HEIGHT

 $(\frac{1}{4})$

 $(\overline{\mathbb{C}})$

 \bigcirc

Ð

0

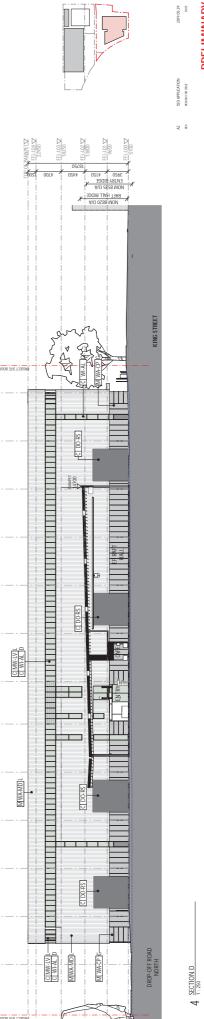
6

<u>____</u>

 \bigcirc

0

(4)


 \bigcirc

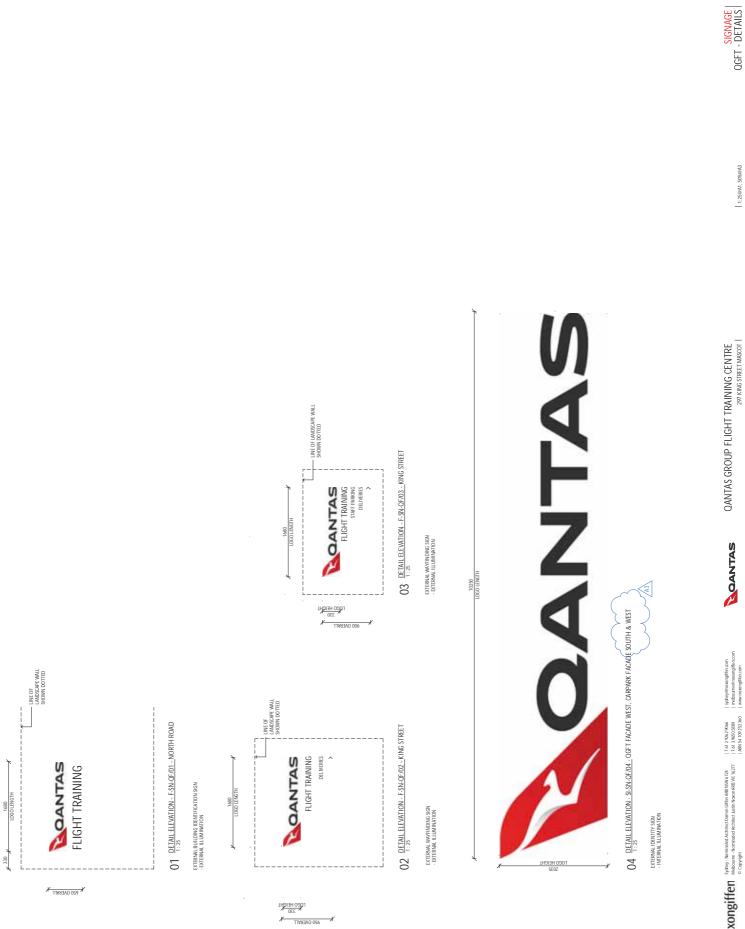
noxongiffen Sydrey-Nerrined ArchitectDarren Giffen Alla NSK 174 1612 5262 306 noxongiffen Statuen Skernesiste Architect Justin Nearon-688 W 5127 1 1613 9502399 Goografia

KING STREET

44M MAXIMUM BUILDING HEIGHT

Z

 (Ξ)


 $\$

 (Ξ)

2

3 SECTION C

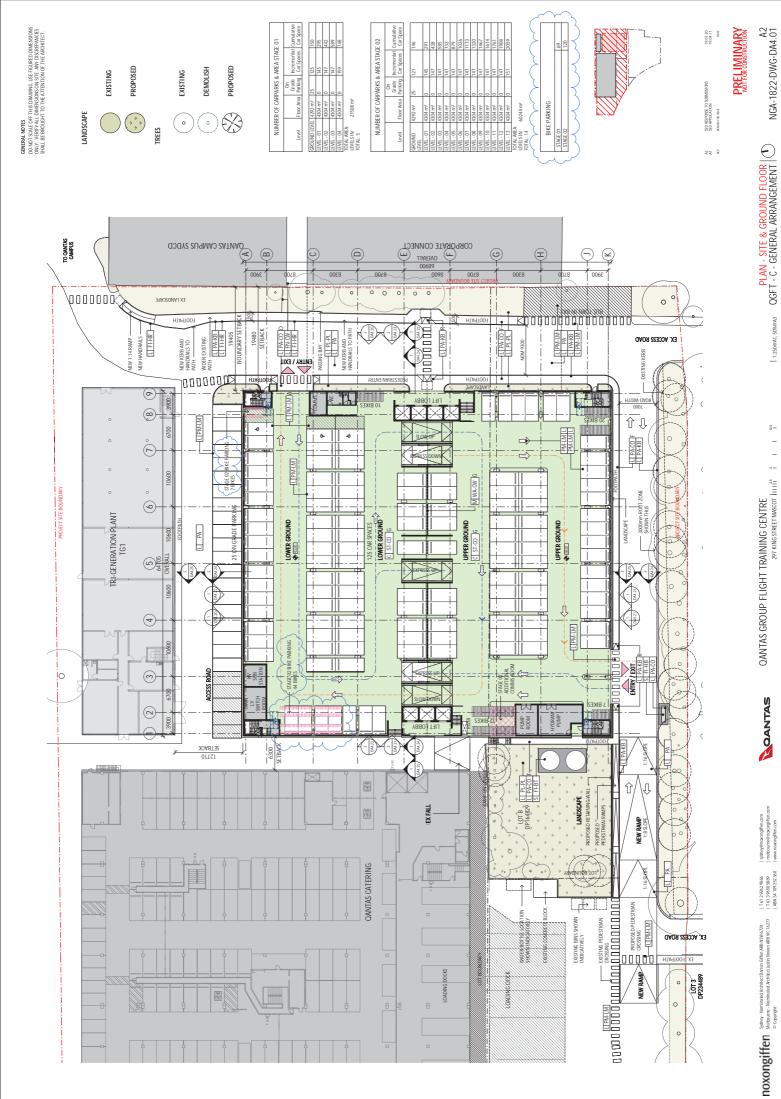
44M MAXIMUM BUILDING HEIGHT

- CARPARK SIGNAGE

A3 NGA-S1822-DWG-DA3.40 PRELIMINARY NOT FOR CONSTRUCTION

2019.07.30 DATE

SSD RESPONSE TO SUBMISSIONS REMOVERING


80 ¥3

1:25@A1, 50%@A3

QANTAS GROUP FLIGHT TRAINING CENTRE 297 KING STREET MASCOT

QANTAS

noxongiffen ¹⁹⁴⁹-I-Immand Achitect.Darm offen AB N814/521 [16] 2922-036 [spebseroorgifen ammony Achitect.Darm offen AB N814/521 [16] 2922-036 [spebseroorgifen ammony Achitect Lastin Nanovida Wei 2027 [16] 2530 [spectra Achitect Lastin Nanovida Wei 2027 [spectra Achitect Lastin Nanovida Achitect Lastin Nanovida Achitect Darm of the Achitect Lastin Nanovida Achitect Darm of the Achite

OANTAS GROUP FLIGHT TRAINING CENTRE 297 KINGSTREET MASCOT HILLI 1 1 1

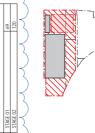
QANTAS

0 0

0

0 0

0 0


0

0

0

BROJECT SITE BOUNDARY

0

X

Ģ

. 0068

	GROUND	4292 m ²	25	121	146	
	LEVEL					
	LEVEL - 01	4304 m ²	0	145	291	
	LEVEL - 02	4304 m ²	0	147	438	
	LEVEL - 03	4304 m ²	0	147	585	
	LEVEL - 04	4304 m ²	0	147	732	
	LEVEL - 05	4304 m ²	0	147	879	
	LEVEL - 06	4304 m ²	0	147	1026	
	LEVEL - 07	4304 m ²	0	147	1173	
	LEVEL - 08	4304 m ²	0	147	1320	
	LEVEL - 09	4304 m ²	0	147	1467	
	LEVEL - 10	4304 m ²	0	147	1614	
	LEVEL - 11	4304 m ²	0	147	1761	
	LEVEL - 12	4304 m ²	0	147	1908	
	LEVEL - 13	4304 m ²	0	151	2059	
	TOTAL AREA:					
	LEVELS IN	60244 m ²				
	TOTAL: 14	((((1
ζ	2	3	ζ	2	2	
ىر	BIKE	BIKE PARKING				
	STAGE 01				69	
~	STAGE 02				120	

6

Ŧ

TOTAL AREA: LEVELS IN 21508 m² TOTAL: 5
TOTAL AREA: LEVELS IN 2150 TOTAL: 5

Level	On Grade Floor Area Parking	On Grade Parking	Incremental Car Spaces Car Space	Cumulative Car Space
GROUND LEVEL 4292 m ²	4292 m ²	25	125	150
LEVEL - 01	4304 m²	0	145	295
LEVEL - 02	4304 m²	0	147	442
LEVEL - 03	4304 m²	0	147	589
LEVEL - 04	4304 m²	0	159	748
TOTAL AREA: LEVELS IN TOTAL: 5	21508 m²			

NUMBE	ER OF CARI	PARKS &	NUMBER OF CARPARKS & AREA STAGE 01	01
		N		
		Grade	Incremental Cumulative	Cumulative
Level	Floor Area Parking	Parking		Car Space
GROUND LEVEL 4292 m ²	4292 m ²	25	125	150
LEVEL - 01	4304 m²	0	145	295
LEVEL - 02	4304 m²	0	147	442
LEVEL - 03	4304 m²	0	147	589
LEVEL - 04	4304 m²	0	159	748
TOTAL AREA:				
I FVELS IN	21508 m ²			

E 01	Incremental Cumulative Car Space	150	295	442	589	748
NUMBER OF CARPARKS & AREA STAGE 01		125	145	147	147	159
PARKS &	On Grade Parking	25	0	0	0	0
R OF CARI	Floor Area	4292 m ²	4304 m²	4304 m²	4304 m²	4304 m²
NUMBE	Level	GROUND LEVEL 4292 m ²	LEVEL - 01	LEVEL - 02	LEVEL - 03	LEVEL - 04

NUMBE	ER OF CARF	PARKS &	NUMBER OF CARPARKS & AREA STAGE 01	01
level	Floor Area	On Grade Parking	Incremental Car Spaces Car Sp	Cumula Car Spi
GROUND LEVEL 4292 m ²		25	125	150
LEVEL - 01	4304 m ²	0	145	295
LEVEL - 02	4304 m²	0	147	442
LEVEL - 03	4304 m²	0	147	589
LEVEL - 04	4304 m ²	0	159	748

NUMBE	R OF CARF	ARKS &	NUMBER OF CARPARKS & AREA STAGE 01	6
Level	On Grade Floor Area Parking	On Grade Parking	Incremental Cum Car Spaces Car	Cum
GROUND LEVEL 4292 m ²	4292 m ²	25	125	150
LEVEL - 01	4304 m²	0	145	295
LEVEL - 02	4304 m ²	0	147	442
LEVEL - 03	4304 m²	0	147	589
LEVEL - 04	4304 m²	0	159	748

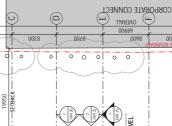
NUMBR OF CARPARS & AREA STAG	

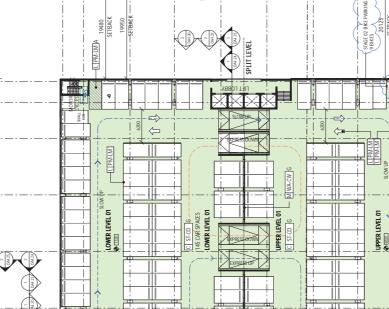
۲

A DANTAS CAMPUS SYDCD

NUMB	ER OF CARI	ARKS &	NUMBER OF CARPARKS & AREA STAGE 01	10
Level	On Grade Floor Area Parking	On Grade Parking	Incremental Cumu Car Spaces Car S	Cumu Car S
GROUND LEVEL 4292 m ²		25	125	150
LEVEL - 01	4304 m²	0	145	295
LEVEL - 02	4304 m²	0	147	442
I FVEL - 03	4304 m ²	0	147	5,80

NUMBER OF CARPARKS & AREA	Level Floor Area Parking Car Sr


	Incremer	Car Spac	125	145	147	147	159			
~	Grade	Parking	25	0	0	0	0			
		Floor Area	4292 m ²	4304 m²	4304 m²	4304 m²	4304 m²		21508 m ²	
		Level	GROUND LEVEL 4292 m ²	LEVEL - 01	LEVEL - 02	LEVEL - 03	LEVEL - 04	TOTAL AREA:	LEVELS IN	TOTAL


~	NUMBER OF CARP	NUMBE
	21508 m²	EVELS IN FOTAL: 5
		TOTAL AREA:
-	4304 m ²	EVEL - 04
~	4304 m²	EVEL - 03
<u> </u>	4304 m²	EVEL - 02
-	4304 m ²	EVEL - 01
-	ILL WAR IN AND ALL OCH	

1

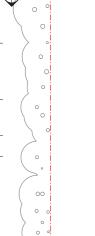
-8

-8-

7

OANTAS CATERING

6300 SETBACK


Û ()

PHRNOW

0

RADINUOS TOJ.

0 0 0

0

| sydney@nacongiffen.com | melbourne@nacongiffen.co | www.noxongiffen.com

GENERAL NOTES DO NOT SZALE OF THIS DRAWING. USE FEGURED DIMENSIONS DUNT, VERTP, ALL DIMENSIONS ON STITE. ANY DISCREPANCES SMALL BE BROUGHT TO THE ATTENTION OF THE ARENTEST.

0090 0 TRI-GENERATION PLANT TG1 64705 OVERAL 0090 4 0090 \bigcirc 700 \bigcirc 3900 E

PROJECT SITE BOUNDARY

6

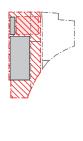
 \odot

 \bigcirc

006

DNNECT SUBJECT FHRVERD

ZETBACK 12710



DM12

(- m)

× Ģ

Ģ

E

UEVEL - 01 4304 m ²		0	145	295
LEVEL - 02	4304 m²	0	147	442
LEVEL - 03	4304 m²	0	147	589
LEVEL - 04	4304 m ²	0	159	748
TOTAL AREA: LEVELS IN TOTAL: 5	21508 m ²			
NUMBE	R OF CARI	PARKS &	NUMBER OF CARPARKS & AREA STAGE 02	02

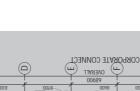
	or or o	0 0000	101101	
NUMBE	EK UF CAR	AKKS &	NUMBER UF CARPARKS & AREA STAGE UT	0
		N		
		Grade	Incremental	Incremental Cumulative
Level	Floor Area	Parking	Car Spaces	Car Space
GROUND LEVEL 4292 m ²	4292 m ²	25	125	150
LEVEL - 01	4304 m²	0	145	295
LEVEL - 02	4304 m ²	0	147	442
LEVEL - 03	4304 m²	0	147	589
LEVEL - 04	4304 m²	0	159	748
TOTAL AREA:				
I DADI CIMI	A11.00			

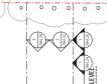
NUMBER OF CA Level Froc Are 360UND LEVEL 4292 m ² EVEL - 01 4304 m ² EVEL - 01 4304 m ² EVEL - 01 4304 m ²

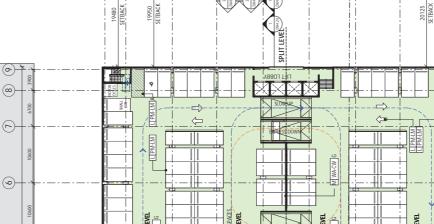
NUMBE	ER OF CAR	PARKS &	NUMBER OF CARPARKS & AREA STAGE 01	01
lava	Floor Aroa	On Grade Parkinn	On On Orecemental Cumulati Ever Area Parkinn CarSpace Car Search	Cumulati
1000	10.11.1001	2000		ndo inn
GROUND LEVEL 4292 m ²	4292 m ²	25	125	150
LEVEL - 01	4304 m ²	0	145	295

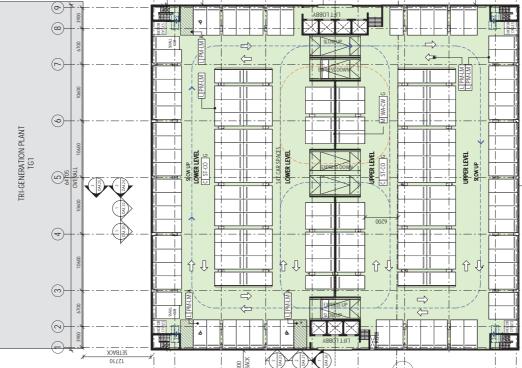
NUMBE	ER OF CAR	PARKS &	NUMBER OF CARPARKS & AREA STAGE 01	E 01
		On Grade	Incremental Cumu	Cumu
Level	Floor Area Parking	Parking	Car Spaces	Car
GROUND LEVEL 4292 m ²	4292 m ²	25	125	150
LEVEL - 01	4304 m²	0	145	295
1 1 1 1 0 0				•

		NUMBER OF CARPARKS & AREA STAGE 01


(

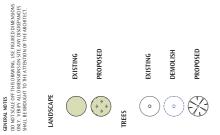

DANTAS CAMPUS SYDCD


NUME	NUMBER OF CARPARKS & AREA STA	PARKS &	AREA STA
		N	
		Grade	Increment
Level	Floor Area Parking	Parking	Car Space
GROUND LEVEL 4292 m ²	4292 m ²	25	125
LEVEL - 01	4304 m ²	0	145
LEVEL - 02	4304 m ²	0	147
LEVEL - 03	4304 m ²	0	147
LEVEL - 04	4304 m²	0	159
TOTAL AREA:			
LEVELS IN	21508 m ²		

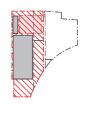


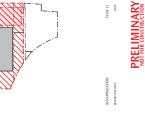
(z Ma (Internet

SETBACK

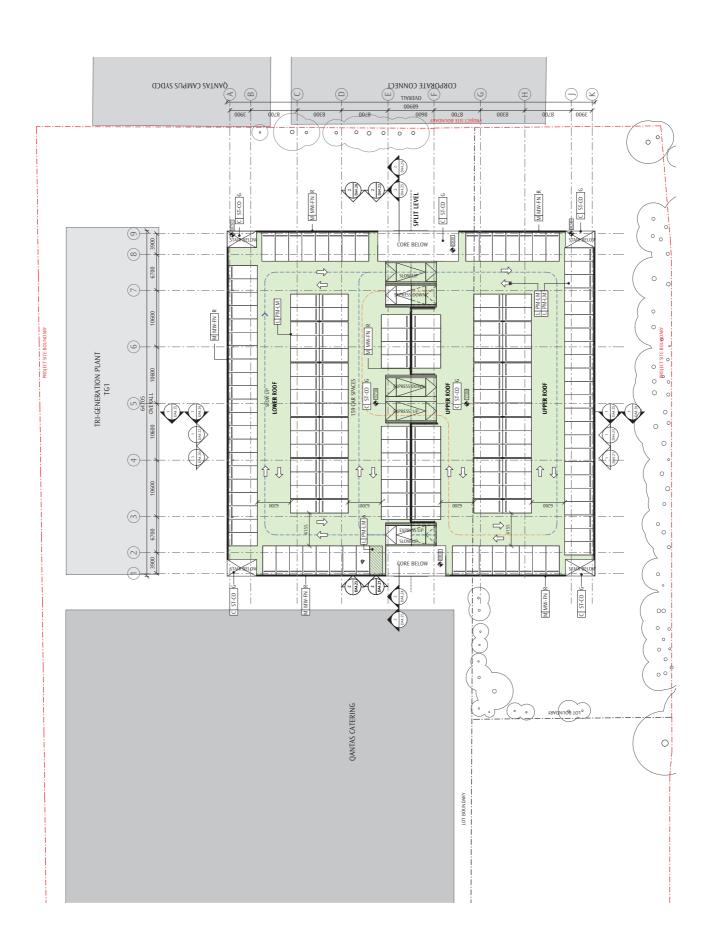

VAAQNUQ8 TO1.

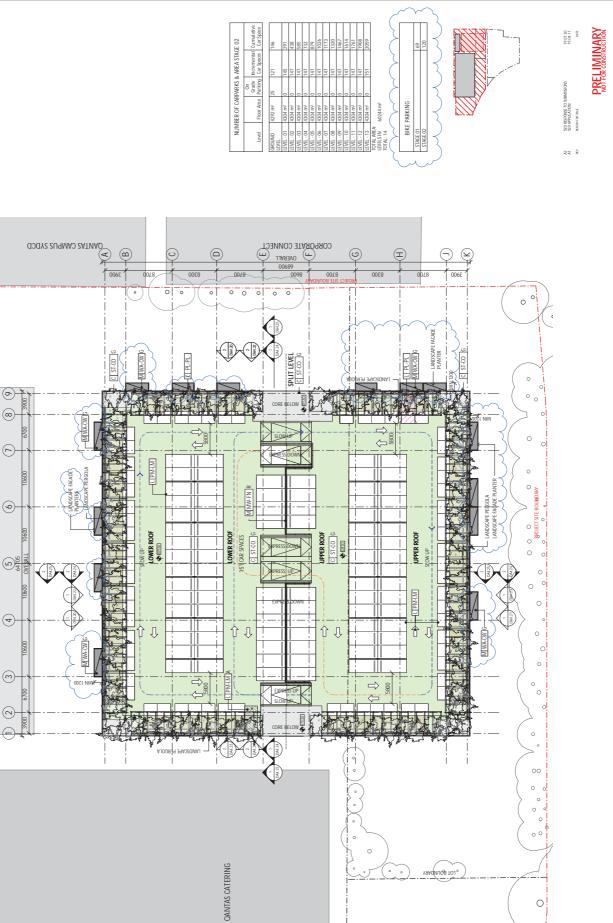
| sydney@nacongiffen.com | melbourne@nacongiffen.co | www.noxongiffen.com


PROJECT SITE BOUNDARY


12.5

QANTAS





A1 V38

A1 NGA-1822-DWG-DA4.10

LOT BOUNDARY

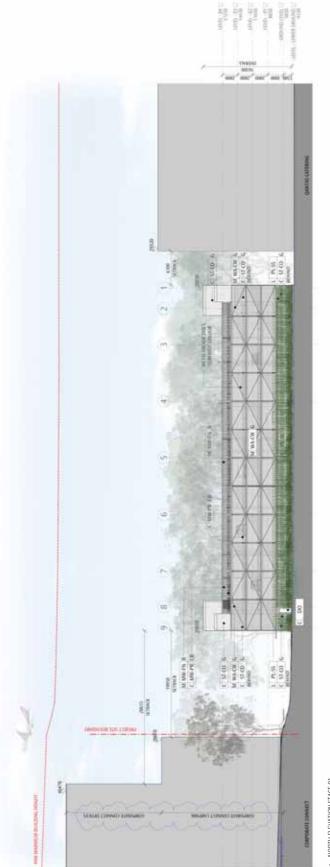
GENERAL NOTES DO NOT SZALE OF THIS DRAWING. USE FEGURED DIMENSIONS DUNT, VERTP, ALL DIMENSIONS ON STITE. ANY DISCREPANCES SMALL BE BROUGHT TO THE ATTENTION OF THE ARENTEST.

 \odot

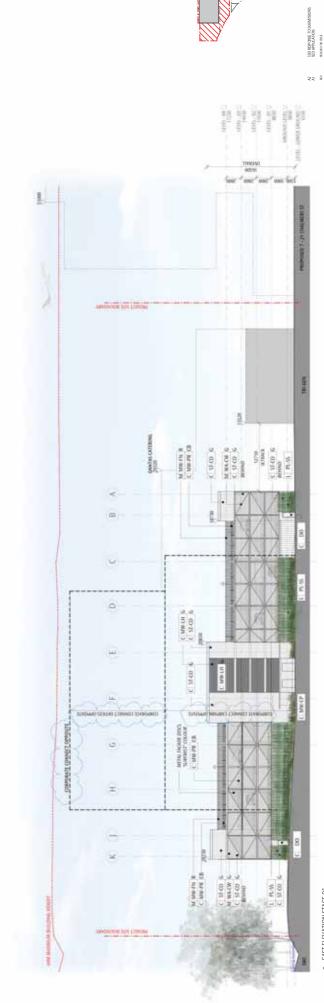
 \bigcirc

0

4


 \bigcirc

E


TRI-GENERATION PLANT TG1

PROJECT SITE BOUNDARY

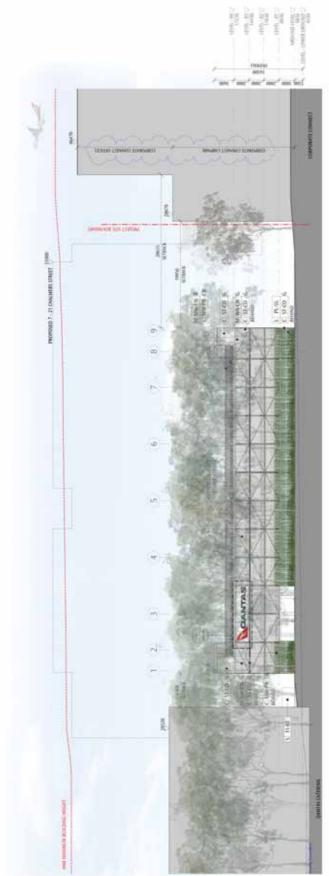
2 EAST ELEVATION STAGE 01 1:250

 noxongiffen
 Synty-Numerick Achitectorere offen AR N986.234
 1161.282.296.66
 1940-996-000-0966-000

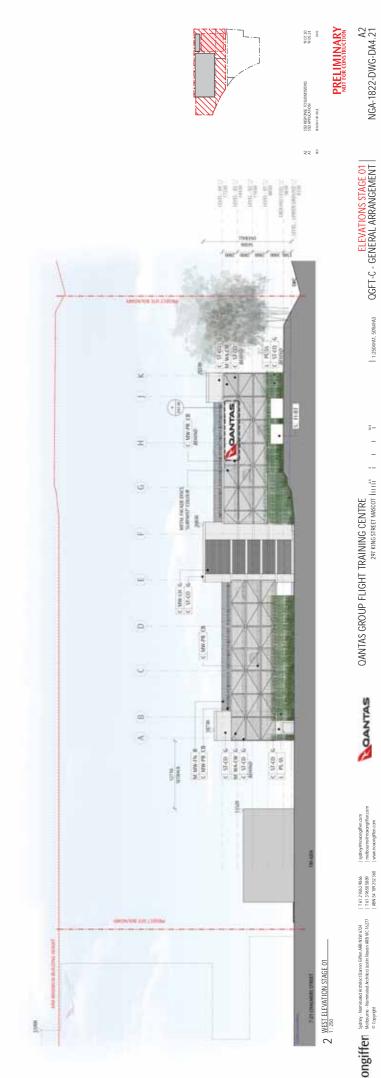
 noxongiffen
 November Achitectorere offen AR N886.234
 1161.282.296.1
 1060-000-0966-000

 copysin
 Copysin
 Copysin
 200.2
 200.2
 200.2

OANTAS GROUP FLIGHT TRAINING CENTRE 297 KINGSTREET MASCOT LILLIË 1 I T


ELEVATIONS STAGE 01 | 1250eA1, 50%eA3 OGFT-C - GENERAL ARRANGEMENT |

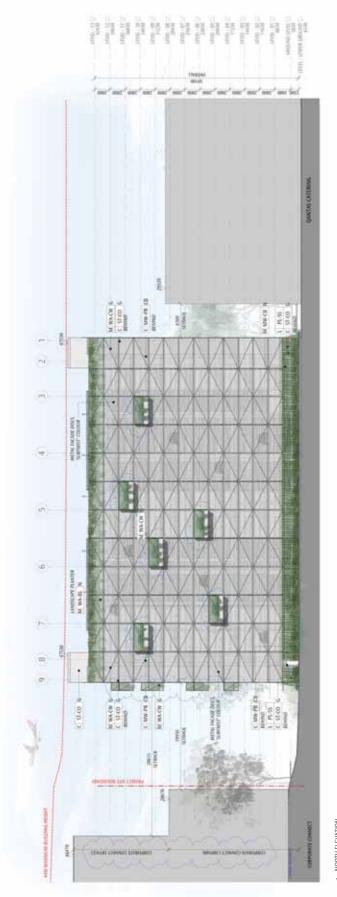
A2 NGA-1822-DWG-DA4.20


PRELIMINARY NOT FOR CONSTRUCTION

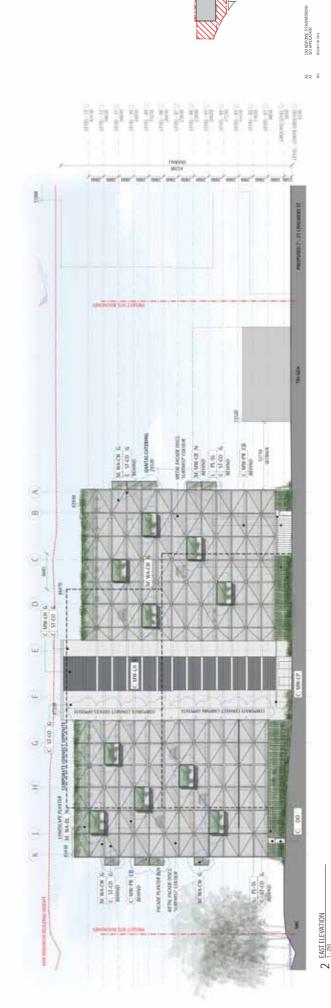
79.07.30 19.05.24 DMT

GENERAL NOTES GENERAL NOTES DO NOT SCALE OFF THIS DRAWING. USE FIGURED DIMENSIONS DOUV. VERFIN-VALI DIMENSIONS ON SITE. ANY DISCREPANCES SHALL BE BROUGHT TO THE ATTENTION OF THE ARCHITECT.

1 SOUTH ELEVATION STAGE 01


A2 NGA-1822-DWG-DA4.21

I 1:250@AI, 50%@A3 OGFT-C - GENERAL ARRANGEMENT


| sydney@noxongiffen.com | melbourne@noxongiffen.com | www.noxongiffen.com

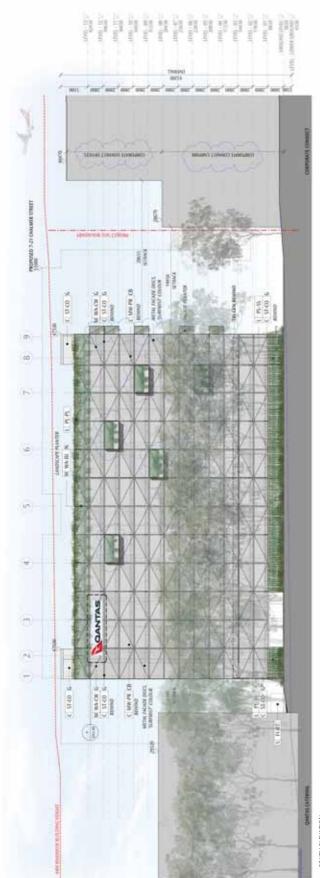
Development Spread of the Darrow Actine Darrow of the ABS NG1 424 1163 2992 906 DOCOMPTIENT Spread Actine Darrow ABS NC1 4277 1163 2992 989 © Copyright

GNERAL NOTES DO NOT SCALE OFF THIS DRAWING, USE FIGURED DIMENSIONS ONLY VERITY ALL DIMENSIONS ON SITE ARY DISCREPANCES SHALL BE BROUGHT TO THE ATTENTION OF THE ARCHITECT.

A2 NGA-1822-DWG-DA4.22

PRELIMINARY NOT FOR CONSTRUCTION

79.07.30 19.05.24 DMT


ELEVATIONS STAGE 02 | 1:250@A1.50%@A3 OGFT-C - GENERAL ARRANGEMENT |

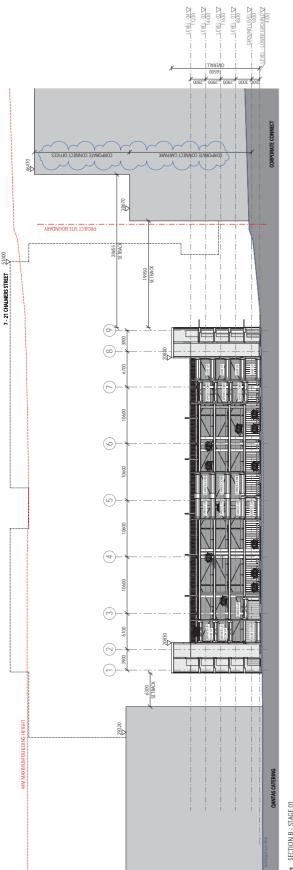
QANTAS GROUP FLIGHT TRAINING CENTRE 297 KINGSTREET MASCOT HILI

125

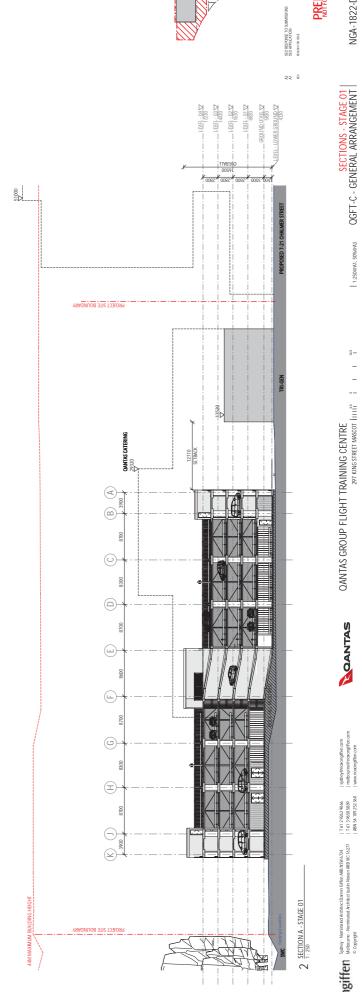
QANTAS

 GENERAL NOTES DO NOT SCALE DET THIS DRAWING USE FIGURED DIMENSIONS ONLY. YERRY ALL DIMENSIONS ON STRE, ANY DISCREMANCES SHALL BE BROUGHT TO THE ATTENTION OF THE ARCHITECT.

PRELIMINARY Not FOR CONSTRUCTION A2 NGA-1822-DWG-DA4.23


79.07.30 79.05.24 DMT

ELEVATIONS STAGE 02 | 1:250@A1.50%@A3 OGFT-C - GENERAL ARRANGEMENT |


QANTAS GROUP FLIGHT TRAINING CENTRE

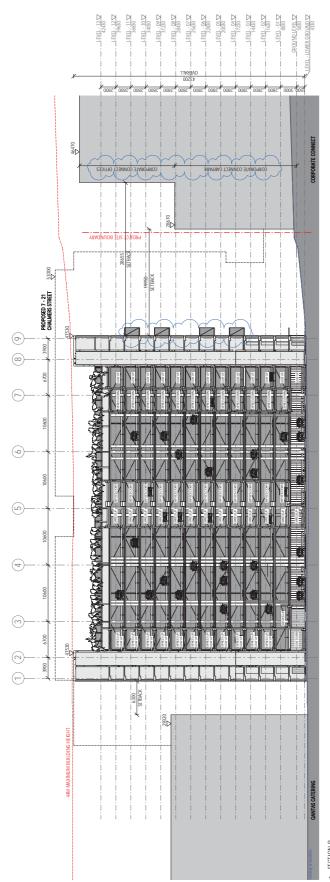
QANTAS

noxongiffen yare, winnak Arhitechtarin etika NBK 624 11.0.1 23, 2304 3. phoneinanghan am Maturar - Manuard Achitech Jarih Maon 489 45, 527 11.0.1 3 455 389 1. medoareananghacan o Capyah GENERAL NOTES DO NOT SZALE OF THIS DRAWING, USE FIGURED DIMENSIONS DUNT, VERIFY ALL DIMENSIONS ON STIE. ANY DISCREPANCES SHALL BE BROUGHT TO THE ATTRATION OF THE ARE'NTECT.

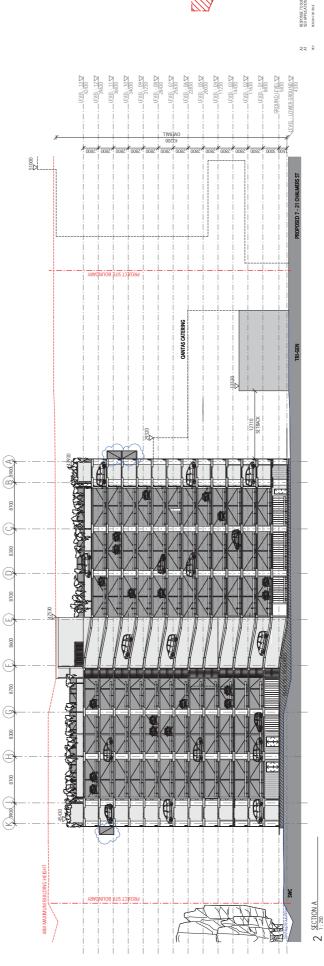
PRELIMINARY NOT FOR CONSTRUCTION

19.07.30 19.05.24 DMT

A2 NGA-1822-DWG-DA4.24


SECTIONS - STAGE 01 | 1:250@A1,50%@A3 OGFT-C - GENERAL ARRANGEMENT |

12.5

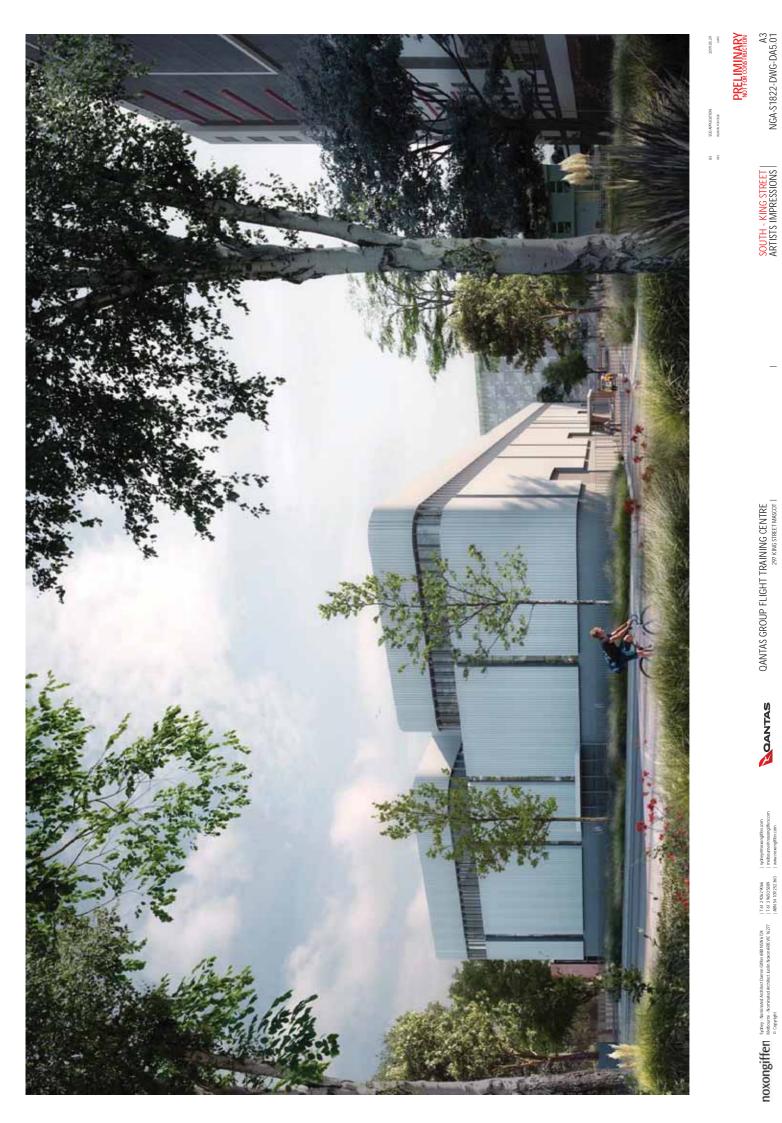

noxongiffen Sperge - Merrinska Architect Darren Giffen AR8 MSW 6724 1 61 2 7262 2066 **noxongiffen** Reduce - Aveninealed Architect Justin Nacon AB8 W 6 1277 1 161 3 9592 959 Coopyright

| sydney@nacongiffen.com | melbourne@nacongiffen.com | www.noxongiffen.com

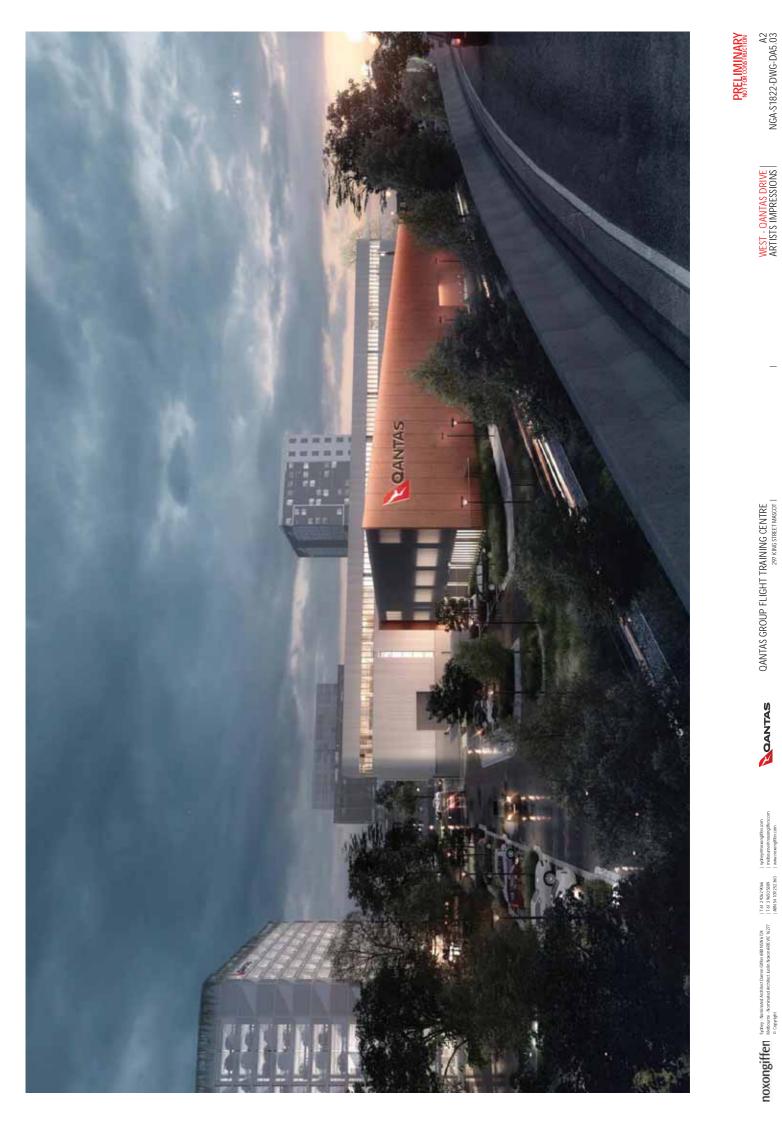
GENERAL NOTES DO MOT SALE OFF THIS DRAWING. USE FICURED DIMENSIONS ONLY. VEREY ALL DIMENSIONS ON STITE, ANY DISCREMANCES SHALL BE BROUGHT TO THE ATTENTION OF THE ARCHTECT.

REPORT TO A CONTRACTOR TO A CONTRACTOR AND A CONTRACT TO A CONTRACT A CONTRAC

A2 NGA-1822-DWG-DA4.25


> SECTIONS STAGE 02 I 122000A1, 5090A3 OGFT-C - GENERAL ARRANGEMENT


> > 12.5


QANTAS GROUP FLIGHT TRAINING CENTRE 201 KINGSTREET MAGOT II:117 1 1

9362 8066 | sydneyemaangiffen com 8 9650 5899 | melbourneem naaangiffen com 54 109 252 360 | www.novaangiffen .com

QANTAS

2019.05.29 DATE

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

19130RP01

Г	PAH/Phenols					_			SVOCs								Inorganic	s																PFOS/P	FOA											
-	Actophenone	2- (acetylamino) fluorene	3,3-Dichlorobenzidine		4-bromophenyl phenyl ether	4-chlorophenyl phenyl ether	4-Nitroquinoline-N-oxide	A 20 Derizene Bis(2-chloroethoxv) methane	her		Hexachloropropene	Methapyrilene	N-nitrosomorpholine	N-nitrosopipe ridin e	N-nitrosopyrroli dine	Phenacetin	Ammonia as N	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonicacid (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	N-Methyl perfluorooctane sulfonamide (NMeFOSA)	N-Methylperfluorooctanesulfonami doethanol (N-MeEOSE)		ethylpe rfluorooctane sulfonamidoacetic a	N-Ethyl perfluorooctane sulfonamide (NEtFOSA)	N-ethylperfiuorooctanesulfon amidoethanol (NEFOSE)	N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	Perfluorodecanesulfonic acid (PFDS)	Perfluoro octanes ulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	Perfuorohexane sulfonic acid (PFHxS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluoropentanoic acid (PFPeA)	Perfluoroheptane sulfonic acid (PFHpS)	efiliarohistanaic acid (BEBA)		Perfuorodecanoic acid (PFDA)	Perfluorobutane sulfonic acid (PFBS)	Perfluorodo decanoic acid (PFD oDA)	Perfluoroheptanoic acid (PFHpA)	Perfuorononanoic acid (PFNA)	Perfluorohexanoic acid (PFHxA)	Perfluorooctane sulfonamide (PFOSA)	Perfluorotetradecanoic acid (PFTeDA)	uorotridecanoic acid (PFTrDA)
	μg/L	μg/L	μg/L μ	ug/L μ	ıg/L μ	g/L µ	g/L щ	g/L μg	/L µg/	/L μg/	'L μg/I	L μg/L	µg/L	µg/L	µg/L	μg/L	mg/L	μg/L	. μg/l	L μg/	L μg/	L μg/	/L μg	g/L μ	ug/L	μg/L	µg/L	μg/L	μg/L	μg/L	µg/L	μg/l	. μg/	L μg/	և µց	;/L μ	ug/L ⊧	ug/L	μg/L	μg/L	µg/L	µg/L	μg/L	µg/L	և բք	g/L μg/L
EQL	2	2	2	2	2	2	2	2 2	2	2	2	2	2	2	4	2	0.01	0.05	0.05	5 0.05	5 0.05	5 0.0	5 0.0	05 0	0.02	0.05	0.05	0.02	0.02	0.01	0.01	0.02	0.0	2 0.0	2 0.	02 0	0.1 0	0.02	0.02	0.02	0.02	0.02	0.02	0.02	2 0.	05 0.02
ANZG (2018) Marine water 95% toxicant DGVs																	0.91																													
PFAS NEMP 2018 Table 5 Interim marine 95%																														0.13	220															
NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Int	trusion, Sand																																													
2-4m																																														
4-8m																																														
>8m			-																																			-								
NEPM 2013 Table 1C GILs, Marine Waters																	0.91										_	_										_	_							

MW01	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	0.01	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	5 <0.02	< 0.05	< 0.05	<0.02	<0.02	0.03	< 0.01	< 0.02	<0.02	<0.02	< 0.02	< 0.1	<0.02	< 0.02	< 0.02	. <0.02	<0.02	<0.02	< 0.02	< < 0.05)5 <0.0	2
MW02	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	0.43	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 <0.02	< 0.05	< 0.05	< 0.02	< 0.02	0.03		< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	2 <0.02	< 0.02	< 0.02	< 0.02	< < 0.05	15 <0.0	2
MW03	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	3.27	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	5 <0.02	< 0.05	<0.05	< 0.02	< 0.02	< 0.01	< 0.01	<0.02	<0.02	< 0.02	< 0.02	< 0.1	<0.02	< 0.02	< 0.02	. <0.02	< 0.02	<0.02	< 0.02	< 0.05	.5 <0.0	2
MW04	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	0.95	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 <0.02	< 0.05	< 0.05	< 0.02	< 0.02	0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	. <0.02	< 0.02	< 0.02	< 0.02	. <0.05	5 <0.0	-2
MW05	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 <0.02	< 0.05	< 0.05	< 0.02	< 0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	. <0.02	< 0.02	< 0.02	< 0.02	. <0.05	15 <0.0	2
MW06	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 <0.02	< 0.05	< 0.05	< 0.02	<0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	. <0.02	< 0.02	< 0.02	< 0.02	. <0.0!	.5 <0.0	2
MW07	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 <0.02	< 0.05	< 0.05	< 0.02	< 0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	. <0.05	5 <0.0	2
MW1	19-Feb-19	ES1905103	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	6.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 <0.02	< 0.05	< 0.05	< 0.02	< 0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.02	<0.02	< 0.1	< 0.02	< 0.02	< 0.02	2 <0.02	0.04	< 0.02	< 0.02	< 0.05	05 <0.0	2
MW2	19-Feb-19	ES1905103	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	3.9	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 <0.03	< 0.05	< 0.05	< 0.02	< 0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	2 <0.02	0.07	< 0.02	< 0.02	< < 0.05	15 <0.0	2
MW3	19-Feb-19	ES1905103	<2	<2	<2	<2	<2	<2	<2 <	2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	3.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 <0.02	< 0.05	< 0.05	< 0.02		0.02	0.01	< 0.02	< 0.02	< 0.02	<0.02	< 0.1	< 0.02	< 0.02	< 0.02	2 <0.02	0.08	<0.02	< 0.02	< 0.05		2
MW4	19-Feb-19	ES1905103	<2	<2	<2	<2	<2	<2	<2 <	:2 <	2 <2	<2	<2	<2	<2	<2	<4 <	2	9	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 <0.02	< 0.05	< 0.05	< 0.02	< 0.02	0.03	0.01	0.05	< 0.02	0.03	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.05	.5 <0.0	2

10026439 Qantas Flight Training Centre and Carpark 297 King St, Mascot NSW 2020

								M	tals						TPH						TRH						BT	ΈX							MAH															PAI
	Perfluoroundecanoic acid (PFUnDA)	Sum of PFHxS and PFOS	Sum of PFAS	Sum of PFAS (WA DER List)	Arse nic (Filtered)	Cadmium (Filtered)	Chromium (III+VI) (Filtered)	Copper (Filtered)	Lead (Filtered)	Mercury (Filtered)	Nickel (Filtered)	i z	C6-C9	C10-C14	C15-C28	C29-C36	C10-	C6-C10	>C6-C10 less BTEX (F1)	C10-C16	>C10-C16 less Naphthalene (F2)	C16-C34	C34-C40	>C10 - C40 (Sum of total)	Benzene	Toluene	Ethylbenzene Xviono (m.g. n)	Xylene (o)	Xylene	Total BTEX	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	Isopropylbenzene	n-butylbenzene	n-propylbenzene	p-i sopropyltoluene	sec-butylben zen e	Styrene	tert-butylbenzene	2-chloronaphthalene	2-methyl naphthalene	3-methyl cholanthrene	7,12-dimethylbenz(a) anthracene	Acenaphthene	A cen aphthylen e	Anthracene	Berz(a) anthrac ene	Benzo(a) pyrene	Benzo(a)p	Benzo (g, h,i) peryle ne
	µg/L			μg/L																	μg/L		µg/L	µg/L																										
λΓ	0.02	0.01	0.01	0.01	1	0.1			1		1		20	50	100	50	50	20	20	100	100	100	100	100	1	2	2	2 2	2	1	5	5	5	5	5	5	5	5	5	2	2	2	2	2	2	2	2	2	2	2
NZG (2018) Marine water 95% toxicant DGVs						5.5	4.4	1.3	4.4	0.4	70	15													700																									
FAS NEMP 2018 Table 5 Interim marine 95%																																																		
EPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour II	-																																																	
2-4m					-	-	<u> </u>		_	-		_			_	_		-	6000		NL			-	5000	NL	NI		NL	-					_			-	<u> </u>								_	_		
4-8m					-						-			-			_		6000		NL					NL			NL																			-		F
>8m				-		-					-					_			7000		NL					NL			NL													P		$ \rightarrow$			-	-		F
																			/000		INL				2000	INL	INL		INL	-												4 1								45

	Sampleu_Date_mme	Lab_Keport_Number																																																	
MW01	08-Jan-19	ES1900690	<0.02	0.03	0.03	0.0	3 <	1 <0.	.1 <1	L <:	1 <1	< 0.1	5	1180	<20	<50 .	<100	<50	<50	<20 <	20 <	100 <1	.00 <1	LOO <1	.00 <10	0 <1	<2	<2	<2	<2	<2	<1	<5	<5	<5 <	:5 <	5 <	5 <5	<5	<5	<2	<2	<2	<2	<2 .	<2 <	2 <2	. <2	<2	<2	<4
MW02	08-Jan-19	ES1900690	< 0.02	0.03	0.03	0.0	3 2	7 <0.	.1 <1	L <:	1 <1	< 0.1	2	20	<20	<50	<100	<50	<50	<20 <	20 <	100 <1	.00 <1	LOO <1	.00 <10	0 <1	<2	<2	<2	<2	<2	<1	<5	<5	<5 <	:5 <	5 <	5 <5	<5	<5	<2	<2	<2	<2	<2 ·	<2 <	2 <2	<2	<2	<2	<4
MW03	08-Jan-19	ES1900690	< 0.02		< 0.01	L <0.0	01 1	. <0.	.1 <1	L <	1 <1	< 0.1	2	<5	<20	<50	<100	<50	<50	<20 <	20 <	100 <1	.00 <1	LOO <1	.00 <10	0 <1	<2	<2	<2	<2	<2	<1	<5	<5	<5 <	5 <	5 <	5 <5	<5	<5	<2	<2	<2	<2	<2 .	<2 <	2 <2	. <2	<2	<2	<4
MW04	08-Jan-19	ES1900690	< 0.02	0.02	0.02	0.0	2 8	<0.	.1 <1	. <	1 <1	<0.1	1	23	<20	<50	<100	<50	<50 ·	<20 <	20 <	100 <1	.00 <1	100 <1	.00 <10	0 <1	<2	<2	<2	<2	<2	<1	<5	<5	<5 <	:5 <	5 <5	5 <5	<5	<5	<2	<2	<2	<2	<2 ·	<2 <	2 <2	<2	<2	<2	<4
MW05	08-Jan-19	ES1900690	< 0.02		< 0.01	L <0.0)1 4	0.1	7 <1	1	. 1	< 0.1	2	1550	<20	<50	<100	<50	<50	<20 <	20 <	100 <1	.00 <1	LOO <1	.00 <10	0 <1	<2	<2	<2	<2	<2	<1	<5	<5	<5 <	5 <	5 <	5 <5	<5	<5	<2	<2	<2	<2	<2 .	<2 <	2 <2	<2	<2	<2	<4
MW06	08-Jan-19	ES1900690	< 0.02	< 0.01	< 0.02	L <0.0)1 <	1 <0.	.1 <1	. 4	<1	<0.1	<1	304	<20	<50	<100	<50	<50 ·	<20 <	20 <	100 <1	.00 <1	100 <1	.00 <10	0 <1	<2	<2	<2	<2	<2	<1	<5	<5	<5 <	:5 <	5 <5	5 <5	<5	<5	<2	<2	<2	<2	<2 .	<2 <	2 <2	<2	<2	<2	<4
MW07	08-Jan-19	ES1900690	< 0.02	< 0.01	< 0.01	L <0.0)1 <	1 <0.	.1 <1	L <	1 <1	< 0.1	<1	1660	<20	<50	<100	<50	<50	<20 <	20 <	100 <1	.00 <1	LOO <1	.00 <10	0 <1	<2	<2	<2	<2	<2	<1	<5	<5	<5 <	5 <	5 <	5 <5	<5	<5	<2	<2	<2	<2	<2 .	<2 <	2 <2	<2	<2	<2	<4
MW1	19-Feb-19	ES1905103	< 0.02	< 0.01	0.04	<0.0)1 <	1 <0.	.1 <1	L <	1 <1	<0.1	<1	<5	<20	270	860	<50 1	130	<20 <	20 5	500 5	00 6	20 <1	.00 112	0 <1	<2	<2	<2	<2	<2	<1	<5	<5	<5 <	:5 <	5 <5	5 <5	<5	<5	<2	<2	<2	<2	<2 <	<2 <	2 <2	<2	<2	<2	<4
MW2	19-Feb-19	ES1905103	< 0.02	< 0.01	0.07	<0.0)1 <	1 <0.	1 1	<	1 <1	< 0.1	<1	6	<20	<50	<100	<50	<50	<20 <	20 <	100 <1	.00 <:	100 <1	.00 <10	0 1	<2	<2	<2	<2	<2	1	<5	<5	<5 <	5 <	5 <	5 <5	<5	<5	<2	<2	<2	<2	<2 .	<2 <	2 <2	<2	<2	<2	<4
MW3	19-Feb-19	ES1905103	<0.02	0.02	0.11	0.0	3 <	1 <0.	.1 1	1	. 2	<0.1	2	10	<20	<50	140	<50	140	<20 <	20 <	100 <1	.00 1	10 <1	00 11) <1	<2	<2	<2	<2	<2	<1	<5	<5	<5 <	:5 <	5 <5	5 <5	<5	<5	<2	<2	<2	<2	<2 .	<2 <	2 <2	<2	<2	<2	<4
MW4	19-Feb-19	ES1905103	< 0.02	0.08	0.15	0.1	5 4	<0.	.1 3	<	1 <1	< 0.1	2	<5	60	<50 ·	<100	<50	<50	60	50 <	100 <1	.00 <1	100 <1	.00 <10	0 <1	<2	<2	<2	<2	<2	<1	<5	<5	10 <	:5 <	5 <5	5 <5	<5	<5	<2	<2	<2	<2	<2 <	<2 <	2 <2	<2	<2	<2	<4

10026439 Qantas Flight Training Centre and Carpark 297 King St, Mascot NSW 2020

															Ph	enols																		Ch	lorina	ted Hy	drocar	bons															
	Chrysene	vibenz(a,h)an thracene	luoranthene	luorene	nde no(1,2,3-c,d)pyren e	la ph thaiene	henanthrene	yrene	AHs (Sum of total)	,4,5-trichl orophenol	,4,6-trichl orop henol	,4-dichlorophenol	,4-dimethylphenol	,6-dichl oro phenol	-chlorophenol	2-nitrophenol	-methyl phenol	&4-Methylphenol (m&p-cresol)	-chloro-3-methylphenol	e ntachior ophenol	henol	,1,2,2-tetrachloroethane	1,1,1,2-tetrachlor oethan e	,1,2-trichloroethane	,1,1-trichloroethane	ē	L, 1-dichl oroethene	, 1-dichl oro propene	, 2, 3- tricti of opropane 2- fihrom o- 3- chloromonane	,2-dichloroethane	,2-dichl oropropane	,3-dichloropropane	,2-dichl oro propane	: romodichloromethane	romoform	arbon tetrachloride	hlorodibromomethane	hloroethane	hloroform	hloromethane	is-1,2-di chloro ethene	is-1,3-di chloro propene	o ibromo methane	l exachlorocy d opent ad iene	lexachloroethane	l exachlorobu tadiene	ri chloro e thene	etrachloroethene	rans-1,2-dichloroethene	rans-1,3-dichloropropene	inyl chloride	-BHC	
	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	. μg/L	. μg/l	. μg/L	μg/L	µg/L	µg/L	µg/L	μg/L	. μg/l	. μg/l	μg/L	. μg/l	- µg/	L µg/I	. μg/l	μg/L	µg/L	μg/L	µg/L	µg/L	μg/L μ	ug/L μ	g/L µ	z/L μg	/L μg	/L µg/	/L μg/	Ľμg/	L µg/	L μg/	L μg/l	L μg/l	. μg/l	. μg/l	L μg/	L µg/I	L μg/	L μg/	'L μg/I	L μg/	L μg/l	L μg/l	μg/L	. μg/L	ί μg/l	L µg/	ζ/L
дL				2		2			2			2		2	2			4									5		5		5 5		5					50						10			5				50		
NZG (2018) Marine water 95% toxicant DGVs						70														22	400			1900																													
FAS NEMP 2018 Table 5 Interim marine 95%																																																					_
EPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Ir																																																					
2-4m						NL														-													-	-	-								-										f
4-8m						NL																													-								-	-		-							Ē
>8m				_		NL		-						-	-	-		-		-							-						-	-	+			-	-		-		-	-		+		-					f
NEPM 2013 Table 1C GILs, Marine Waters			_	_		50			-				-								400			1900		_								-	-								-	-		-							-

	Sampled_Date_Time	Lab_keport_Number																																																		
MW01	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2 4	:4 <	2 <4	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <5	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW02	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2 <	:4 <	2 <4	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW03	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2 4	:4 <	2 <4	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 18	3 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW04	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2 4	:4 <	2 <4	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <5	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW05	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2 4	:4 <	2 <4	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW06	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <	:4 <	2 <4	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <5	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW07	08-Jan-19	ES1900690	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2 4	:4 <	2 <4	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW1	19-Feb-19	ES1905103	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <	:4 <	2 <0	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <5	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW2	19-Feb-19	ES1905103	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2 4	:4 <	2 <4	- <2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <5	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW3	19-Feb-19	ES1905103	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <	:4 <	2 <0	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2
MW4	19-Feb-19	ES1905103	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <	:4 <	2 <4	<2	<5	<5	<5	<5	<5	<5	<5	<5 <	5 <5	<5	<5	<5	<5	<5	<5	<5 <	<50 <	<5 <5	50 <5	5 <5	<5	<10	<2	<2	<5	<5	<5	<5 <	<50 <	<2 <2

					Organ	nochlo	rine Pe	esticid	es									Orga	nopho	sphore	ous Pe	sticides	s			Pesticid	es He	erbicides		H	alogen	ated Hy	drocar	bons						Haloge	nated	d Benze	enes					Explo	osives	
	Dieldrin	Aldrin + Dieldrin	o-BHC	1-BHC	000	1,4 DDE	00T DAT-DAT-DAT-DAT-		Endosuran I Endosufan II		Endrin	3-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Chlorfen vinp hos	Chlorpyrifos	Chlorpyr i fos-meth yl	Diazinon	Dichlorvos	Dimethoate	Ethion	renthion	Malathion	Pi rimp hos-ethy l	Prothiofos	Chlorobenzilate Carbazole		Pronamide	1,2-dibromoethane	cis-1,4-Dichloro-2-butene	trans-1,4-Dichloro-2-butene	Pentachloroethane	o unio metriane Distanceditane		richloroftuoromethane	1,2,3-trichlorobenzene	1,2,4-trichl orobenzene	J,2-dichl orobenzene	J, 3-dichl orobenzene	1,4-dichl orobenzene	2-chlorotoluene	4-chlorotoluene	Bromobenzene	Chlorobenzene	Hexachlo robe nzen e	Pe ntachlor oben zen e	1,3,5-Trinitrobenzene	2,4-Dinitrotoluene	2,6-din it roto luene	Nitrobenzene
				ιg/L μ	g/L µ	g/L µ	g/L µg	g/L μ	g/L μg,	/L μg/	L μg/	L μg/			L μg/l	. μg/l	. ug/	′L μg/	/L μg/	Ľμg/	′L μg/	L μg/l	. μg/L	µg/L	μg/L	μg/L με	g/L	μg/L	μg/L	µg/L	μg/L	μg/L μ	g/L μ	g/L μ	g/L µg	/L μg		/L μg	/L μg/	L μg/	L μg/	/L μg/	L μg/'	μg/l			mg/L	μg/l	'L μg,	/L μg/
EQL	2	4	2	2	2	2	4 4	4	2 2	2 2			2	2	2	2		2	2	2	2	2	2	2	2	2	2	2	5	5	5	5	50 !	50	5 5	0 5	2		2	2	5	5	5	5	4	2	0.002	4	4	2
ANZG (2018) Marine water 95% toxicant DGVs											0.00	8				0.00	9																				80	2												
PFAS NEMP 2018 Table 5 Interim marine 95%																																																		
NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Ir	-																																																	
2-4m																																																		
4-8m																																																		
>8m			-								-			-	-			-		-	-	-									-							+		-	-							-	-	
NEPM 2013 Table 1C GILs, Marine Waters									_		0.00	_				0.00				_	_	_	_		_				_		_	_					20		_	-						_		_	_	

	Jampied_Date_min	e Lab_Keport_Number																																																
MW01	08-Jan-19	ES1900690	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <	. <2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2		<5	<5	<5	<5 .	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	<5 <	<5 </th <th>5 <4</th> <th>1 <2</th> <th><0.00</th> <th>02 <4</th> <th><4</th> <th><2</th>	5 <4	1 <2	<0.00	02 <4	<4	<2
MW02	08-Jan-19	ES1900690	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2	<2	<5	<5	<5	<5 <	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	-5 -	<5 <	5 <4	1 <2	<0.00	02 <4	<4	<2
MW03	08-Jan-19	ES1900690	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2		<5	<5	<5	<5 .	<50 <	50 <	5 <50	<5	<2	<2	<2	<2	<5 <	-5	<5 <	5 <4	1 <2	<0.00	02 <4	<4	<2
MW04	08-Jan-19	ES1900690	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	-5 <	<5 <	5 <4	1 <2	<0.00	02 <4	<4	<2
MW05	08-Jan-19	ES1900690	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2	<2	<5	<5	<5	<5 .	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	-5 -	<5 <	5 <4	1 <2	<0.00	02 <4	<4	<2
MW06	08-Jan-19	ES1900690	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <2	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	-5 <	<5 <	5 <4	1 <2	<0.00	02 <4	<4	<2
MW07	08-Jan-19	ES1900690	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2	<2	<5	<5	<5	<5 .	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	-5 -	<5 <	5 <4	1 <2	<0.00	02 <4	<4	<2
MW1	19-Feb-19	ES1905103	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	<5 <	<5 <	5 <4	1 <2	<0.00	02 <4	<4	<2
MW2	19-Feb-19	ES1905103	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2	<2	<5	<5	<5	<5 .	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	-5 -	<5 <	5 <4	1 <2	<0.00	02 <4	<4	<2
MW3	19-Feb-19	ES1905103	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	<5 <	<5 <	5 <4	1 <2	<0.00	02 <4	<4	<2
MW4	19-Feb-19	ES1905103	<2	<4	<2	<2	<2	<2	<4	<4	<2	<2 <	2 <	2 <2	2 <2	<2	<2	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<2	<2	<2	<2	<5	<5	<5	<5 <	<50 <	50 <5	5 <50	<5	<2	<2	<2	<2	<5 <	-5 <	<5 <	5 <4	1 <2	< 0.00)2 <4	<4	<2

				Phth	alates			A	mino A	liphat	ics	Amino A	romatics			Ani	ines			Nitr	oarom	natics			Solv	/ents		
		Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Diethylphthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	N-nitrosodieth ylamine	N-nitrosodi-n-butylamine	N-nitrosodi-n-propylamine	N-Nitr osomethyl eth ylamine	1-naphthylamine	N-Nitrosodiphenyi & Diphenylamine	2-nitroaniline	3-nitroaniline	4-chloroaniline	4-nitroaniline	2-methyl-5-nitroaniline	Anline	2-Picoline	4-amin obiphenyl	Pe ntachlor onitr oben zen e	Methyl Ethyl Ketone	2-he xan one (MBK)	4-Methyl-2-pentanone	Carbon disulfide	Isophorone	Vinyl acetate
		µg/L	μg/L					μg/L		µg/L		μg/L	μg/L	μg/L		μg/L			µg/L			μg/L	μg/L		μg/L		µg/L	
EQL		10	2	2	2	2	2	2	2	2	2	2	4	4	4	2	2	2	2	2	2	2	50	50	50	5	2	50
ANZG (2018) Marine water 95% toxicant DGVs																												
PFAS NEMP 2018 Table 5 Interim marine 95%																												
NEPM 2013 Table 1A(4) Comm/Ind HSL D GW 1	for Vapour Ir																											
2-4m																												
4-8m																												
>8m																												
NEPM 2013 Table 1C GILs, Marine Waters																												
														_						_			-					
Field_ID Sampled_Date_Time Lab_Report	_Number																											

MW01	08-Jan-19	ES1900690	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW02	08-Jan-19	ES1900690	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW03	08-Jan-19	ES1900690	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW04	08-Jan-19	ES1900690	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW05	08-Jan-19	ES1900690	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW06	08-Jan-19	ES1900690	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW07	08-Jan-19	ES1900690	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW1	19-Feb-19	ES1905103	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW2	19-Feb-19	ES1905103	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW3	19-Feb-19	ES1905103	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50
MW4	19-Feb-19	ES1905103	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<4	<4	<4	<2	<2	<2	<2	<2	<2	<2	<50	<50	<50	<5	<2	<50

Dewatering Management Plan Qantas Flight Training Facility 297 King St & 65 Kent Rd, Mascot NSW APP Pty Ltd

19130RP01

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 5.61 AHD **EASTING:** 332213 **NORTHING:** 6244341 **DIP/AZIMUTH:** 90°/-- BORE No: BH1 PROJECT No: 85777.15 DATE: 15/1/2019 SHEET 1 OF 4

	_		Description	We	ath	ee o Ierin			Stre	ock engt	h	5	Frac	cture	Di	iscon	ntinuities				In Situ Testing
뉟	De (n	pth	of				ER E J	<u>او</u>	Stre	E	- H L L	Vate		icing n)	B - Beo	dding	J - Joint	Se	e.	RQD %	Test Results
	(II	"	Strata	N N H	Š	s s	ق	- In		ligh I	ery H X Hig			0.50	S - She		F - Fault	Type	S S	as S	& Comments
+		0.05	ASPHALTIC CONCRETE: 50mm					$\overline{\mathbf{v}}$		2.1											Commonito
ţ			thick					$\widehat{\mathbf{A}}$										A			
2		0.4	FILLING: dark brown, gravelly, fine to medium sand filling, damp															A			
Ē			SAND: medium dense, pale brown, fine to medium sand, damp	ļ														A			
F	- 1																				
E																					
4		1.6	CAND dense brown fine to	ļ	ii					ii		l li	ii					-	1		5 14 10
Ē			SAND: dense, brown, fine to medium sand, moist					: : : :										S			5,14,19 N = 33
F	-2			li.	ij	İ		•	İİİ	ij		l li	ij	ij							
ţ																					
Ē				ļį	İİ	İ			İİİ	İ		l li	İİ	ij							
Ē								: .													
ŧ	- 3	3.0	SAND: medium dense, pale brown		ļļ														-		
Ē			fine to medium sand, wet															s			5,7,11 N = 18
þ																		-	-		11 - 10
٩ţ							.														
E	-4							 													
ŧ				l i	ii			:		ii		l li	ii								
ŧ																					
-[l i	ij	i			iii	ij		l li	ij	ij				s			5,7,13
ţ	_			l ¦								l li						3			N = 20
Ē	- 5			ļį.	İİ	İ			İİİ	İ		l li	İİ	ii							
ţ				l ¦				•••				l li									
-																					
E				l i			·			ii		i									
ł	-6																				
ŧ				i	ii	İ			iii	ii		i	ii	ii							
Ę																					
ļ				ļ	ij	i				i											
ŧ	-7	7.0	SAND: dense to very dense, pale																		
F			brown sand with some dark brown		ij																
ł			peaty layers																		
۲ ^۲					Ì																
Ę	- 8						¦														
ŧ																					
Ē																					
γŀ								÷													
F	. 0							· · · ·													
E	- 9																				
ŧ				ļ	ij	İ	i			İ											
4																					
F					ļļ	İ		÷				i									

RIG: Scout 4

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 9.0m, HQ to 28.0m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 28.0m, NMLC-coring to 31.08m

WATER OBSERVATIONS: Free ground water observed at 3.3m on 24 Jan 2019

	SAMF	PLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	Doublas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 5.61 AHD **EASTING:** 332213 **NORTHING:** 6244341 **DIP/AZIMUTH:** 90°/-- BORE No: BH1 PROJECT No: 85777.15 DATE: 15/1/2019 SHEET 2 OF 4

Π		Description	Degree of Weathering ﷺ ≩ ≩ ଛ ଝ ଝ	υ	Rock Strength _{້ອ}	Fracture	Discontinuities	Sa	mpli	ng &	In Situ Testing
님	Depth (m)	of	weathering	aphi -og	Strength Very Low Very Low Medium High Very High Kater	Spacing (m)	B - Bedding J - Joint		_	_	
	(11)	Strata	HW MW FS SW FR	ອ_			S - Shear F - Fault	Type	Re C	RQD %	& Comments
	-11	SAND: dense to very dense, pale brown sand with some dark brown peaty layers <i>(continued)</i>									
	- 12										
2	- 13										
	- 14										
-10	- 15 15.0	CLAY: stiff to very stiff clay with some sandy layers									
	- 16										
-12	- 17										
-13	- 18										
-14	- 19										

RIG: Scout 4

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 9.0m, HQ to 28.0m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 28.0m, NMLC-coring to 31.08m

WATER OBSERVATIONS: Free ground water observed at 3.3m on 24 Jan 2019

SAM	PLIN	G & IN SITU TESTING	LEG	END									
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		_		_	_	_	
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Doug	_					-
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test (\$(50) (MPa)									
C Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)									
D Disturbed sample	⊳	Water seep	S	Standard penetration test		/							
E Environmental sample	ž	Water level	V	Shear vane (kPa)			Geotechnics	; [Enviro	onme	ent I G	Ground	water

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 5.61 AHD **EASTING:** 332213 **NORTHING:** 6244341 **DIP/AZIMUTH:** 90°/-- BORE No: BH1 PROJECT No: 85777.15 DATE: 15/1/2019 SHEET 3 OF 4

	Darth	Description	Degree of Weathering	ie _	Rock Strength _{ត្រ}	Fracture Spacing	Discontinuities			_	In Situ Testing
뵈	Depth (m)	of	Degree of Weathering	Log	Exclow Very Low Low High High Kery High High Kery High Kery High Kery High Kery High Kery Low Very Low	(m)	B - Bedding J - Joint	Type	ore č. %	RQD %	Test Results &
		Strata	M H M S H M	0		0.05 0.10 1.00	S - Shear F - Fault	É.	ပမ္ရ	ц	Comments
-15		CLAY: stiff to very stiff clay with some sandy layers <i>(continued)</i>									
E	21										
	22										
	23	hard below 23m									
	24										
	25										
	26										
	27										
	28 28.0										
		LAMINITE: extremely and very low to low strength, highly weathered, fractured and slightly fractured, grey-brown laminite with approximately 20% fine sandstone laminations					28.15-28.29m: Ds, fe 28.30-28.33m: Cs 28.44m: Ds 28.61m: B 0°, pl, cly 9mm, fe				PL(A) = 0.23
	28.85 29 29.3	LAMINITE: very low to low strength, highly then slightly weathered, slightly fractured, pale grey to grey laminite with approximately 40% fine sandstone laminations					28.72-28.73m: Ds, fe 28.86m: J 30°, pl, cly 5mm, fe 28.93m: B 0°, pl, cly 5mm, fe 29.08m: B 5°, pl, cly vn 29.40-29.41m: Cs 29.65m: J 45°, pl, ro,	С	100	30	PL(A) = 0.91

RIG: Scout 4

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 9.0m, HQ to 28.0m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 28.0m, NMLC-coring to 31.08m

WATER OBSERVATIONS: Free ground water observed at 3.3m on 24 Jan 2019

	SAM	PLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
E	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
E	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	Douglas Partners
0	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
C	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 5.61 AHD **EASTING:** 332213 **NORTHING:** 6244341 **DIP/AZIMUTH:** 90°/-- BORE No: BH1 PROJECT No: 85777.15 DATE: 15/1/2019 SHEET 4 OF 4

		Description	Degree of Weathering .≅	Rock Strength ត្រ	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
R	Depth (m)	of Strata	Degree of Weathering	Very Low Very Low Medium High Ex High Ex High Ex High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	ROD %	Test Results &
26	⁻³¹ 31.08	LAMINITE: medium strength with several extremely low strength bands, slightly weathered, slightly fractured, pale grey to grey laminite with approximately 25% fine sandstone laminations and some clay bands <i>(continued)</i> LAMINITE: high then medium strength, slightly weathered then fresh, slightly fractured, pale grey to grey laminite with approximately 20% fine sandstone laminations				cln 29.81m: J 60°, ir, ro, cln 30.02-30.04m: Cs 30.14-30.15m: Cs 30.52-30.53m: Cs 30.67m: J 45°, pl, ro, cln 30.84-30.85m: Cs 31.06-31.08m: Cs 31.14m: B 5°, pl, cly 8mm 31.23-31.35m: J 30°-70°, st, cly 5mm 31.35m: B 0°, pl, cly 5mm 31.52m: B 0°, pl, cly	С	100	88	Comments PL(A) = 0.9 PL(A) = 2
-27	33					7mm 31.55-31.56m: Cs 31.91m: J 45°, pl, cly 3mm 32.3m: B 0°, pl, cly 4mm 32.47m: B 10°, pl, cly				PL(A) = 0.85
						2mm 32.62m: J 40°, pl, cln 33.27-33.28m: fg, 5mm 33.66m: J 70°-90°, cu, cln, ro	с	100	91	PL(A) = 0.9
-29	34 34.0	Bore discontinued at 34.0m				33.77m: J 0°-45°, cu, cln, ro 33.89m: J (x2) 45°, pl, partially he				
-30	35									
 	36									
	37									
32	38									
4	39									
-ở- 										

RIG: Scout 4

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 9.0m, HQ to 28.0m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 28.0m, NMLC-coring to 31.08m **WATER OBSERVATIONS:** Free ground water observed at 3.3m on 24 Jan 2019

WATER OBSERVATIONS: Free ground water observed at 5.5m off 24 Jan 2019

SAM	PLIN	G & IN SITU TESTING	LEG	END									
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		_		_	_	_	
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Doug	_					-
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test (\$(50) (MPa)									
C Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)									
D Disturbed sample	⊳	Water seep	S	Standard penetration test		/							
E Environmental sample	ž	Water level	V	Shear vane (kPa)			Geotechnics	; [Enviro	onme	ent I G	Ground	water

0.1.0.
2
Alt ball

ZA ZA EOB @ 34m	duo	- 134 00 m	Project No: 8 BH ID: BH 1 Depth: 32.00 Core Box No.:	
				3 @ 3 4 M
				35 35

SURFACE LEVEL: 5.08 AHD **EASTING:** 332258 **NORTHING:** 6244337 **DIP/AZIMUTH:** 90°/-- BORE No: BH2 PROJECT No: 85777.15 DATE: 14/1/2019 SHEET 1 OF 4

		Decesi, f	Degree of	Rock	Fracture	Discontinuities	Sampling 0	n Situ Tooting
	Depth	Description	Degree of Weathering	Very Low Very Low Needim Medium High ExcHigh E	Spacing			n Situ Testing Test Results
RL	(m)	of	Lo Lo		(m)	B - Bedding J - Joint S - Shear F - Fault	Type Core Rec.% RQD %	&
		Strata		Ex Low Very Very Very Ex Hi				Comments
2	0.15	CONCRETE PAVEMENT: 25mm aggregate, 8mm dia steel reinforcement FILLING: dark brown sand filling with some gravel, damp					A A B	
4	0.9 - 1	SAND: medium dense to dense, pale brown and dark brown, fine to medium sand with trace silt, damp					B	
-	-						S	8,11,19 N = 30
3.	-2							
2	- 3 - 3 						S	4,7,9 N = 16
	- 5	4.7m: dark brown clay band with rootlets					S	3,6,6 N = 12
	- 7 - 7 							
	- 8							
+		Some peaty layers between 8.5m and 11.5m						

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 23.2m

TYPE OF BORING:Diacore to 0.15m, solid flight auger to 5.5m, Rotary wash-bore to 23.25m, NMLC-coring to 32.25mWATER OBSERVATIONS:Free ground water observed at 2.1m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT102

	SAM	PLIN	3 & IN SITU TESTING													
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			_		_		_	_	_		
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Doug	_ /							
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test Is(50) (MPa)	41					5				er	5
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				, =							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	'									
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	- 1	En	virc	onn	nent	irou	ndwate	er

SURFACE LEVEL: 5.08 AHD **EASTING:** 332258 **NORTHING:** 6244337 **DIP/AZIMUTH:** 90°/--

BORE No: BH2 PROJECT No: 85777.15 DATE: 14/1/2019 SHEET 2 OF 4

П		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	υ	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	In Situ Testing
R	Depth (m)	of	weathering	aphi Log	Strength Nedium Medium High ExHigh Rater	Spacing (m)	B - Bedding J - Joint	e	e%	Ω.	Test Results
	(11)	Strata	F S W W F	<u>ق</u> _			S - Shear F - Fault	Type	Core Rec. %	RQ %	& Comments
	-11	SAND: medium dense to dense, pale brown and dark brown, fine to medium sand with trace silt, damp (continued)									
· · · · · · · · · · · · · · · · · · ·	- 12										
- φ - φ 	- 13										
	- 14 14.0 -	SILTY CLAY: stiff to very stiff, dark brown silty clay, low to medium plasticity									
-10	- 15										
	- 16	grey below 15.7m									
-12	- 17										
-13	- 18 - 18 										
-14	- 19										

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 23.2m

TYPE OF BORING: Diacore to 0.15m, solid flight auger to 5.5m, Rotary wash-bore to 23.25m, NMLC-coring to 32.25m **WATER OBSERVATIONS:** Free ground water observed at 2.1m (measured off SPT rod) **REMARKS:** Soil descriptions and strengths at depth based on CPT102

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 Plizon sample

 B
 Bulk sample
 Piston sample
 Plizon sample
 Plizon sample

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C Core drilling
 W
 Water sample
 P
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetrometer (kPa)

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 5.08 AHD **EASTING:** 332258 **NORTHING:** 6244337 **DIP/AZIMUTH:** 90°/-- BORE No: BH2 PROJECT No: 85777.15 DATE: 14/1/2019 SHEET 3 OF 4

		Description	Degree of Weathering	Rock	Fracture	Discontinuities	Sa	mplir	na & I	n Situ Testing
RL	Depth	of			Spacing	B - Bedding J - Joint				Test Results
Ľ	(m)	Strata	C C C C C C C C C C C C C C C C C C C	Ex Low Very Low Medium High Very High Ex High Wati	0.05 0.10 1.00 (W)	B - Bedding J - Joint S - Shear F - Fault	Type	Cor Sec.	RQD %	& Comments
-16	-21	SILTY CLAY: stiff to very stiff, dark brown silty clay, low to medium plasticity <i>(continued)</i>			-70 00 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11					
-12	- 22	hard below 22.8m								
-9-	-23									
-19	23.25	SILTY CLAY: very stiff to hard silty clay, with medium to high strength ironstone bands and ironstone gravel					С	100	0	pp = 200
ŧ	-									pp = 270
-21 -20	24.9 -25 -26 -26 -26 26 2	SILTSTONE: extremely low and very low strength, extremely and highly weathered, pale grey-brown siltstone				25.56m: B 0°, cly 3mm, \pl, fe 25.75m: B 0°, pl, cly 9mm, fe	С	100	0	pp = 600 pp = 700
-22	- 26.3 	LAMINITE: very low strength, highly weathered, slightly fractured, grey-brown laminite with approximately 20% fine sandstone laminations				26.46m: B 0°, pl, cly 5mm 26.67-26.78m: Ds, fe 26.78-26.92m: Ds, fe 27.10-27.50m: fg 10mm	С	100	0	PL(A) = 0.11
1	27.5	LAMINITE: low to medium strength with numerous extremely low strength bands, slightly weathered, fractured, pale grey and grey laminite with approximately 25% fine sandstone laminations				27.80-27.86m: J 60°, ir, ro, cln 28.05-28.06m: Cs 28.10-28.16m: J 60°-90°, ir, ro, cln, partially he 28.19-28.25m: J 65°, pl, ro, cln 28.30-28.34m: J 60°, pl,	С	100	57	PL(A) = 0.75 PL(A) = 0.91
-24	30.0					cly 5mm 28.55-28.57m: Ds 28.67-28.74m: J 60°-90°, st, cln 28.83-28.87m: J 70°, pl, cly 28.87-28.91m: Ds	с	100	20	PL(A) = 0.81

RIG: Explora 140

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 23.2m

TYPE OF BORING:Diacore to 0.15m, solid flight auger to 5.5m, Rotary wash-bore to 23.25m, NMLC-coring to 32.25mWATER OBSERVATIONS:Free ground water observed at 2.1m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT102

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation	ion detector (ppm)
B Bulk sample P Piston sample PL(A) Point load axia	ial test Is(50) (MPa) ametral test Is(50) (MPa) conneter (KPa) Douglas Partners
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load dia	ametral test is(50) (MPa)
C Core drilling W Water sample pp Pocket penetr	
D Disturbed sample D Water seep S Standard pere	netration test
E Environmental sample F Water level V Shear vane (k	Geotechnics Environment Groundwater

SURFACE LEVEL: 5.08 AHD **EASTING:** 332258 **NORTHING:** 6244337 **DIP/AZIMUTH:** 90°/-- BORE No: BH2 PROJECT No: 85777.15 DATE: 14/1/2019 SHEET 4 OF 4

Eff Of Strata <thstrata< th=""> Strada <thstrada< th=""></thstrada<></thstrata<>	Desc	Descri	otion	De We	gree of athering	. <u>e</u>	F Str	Rock rength	ŗ	Frac	ture	Discontinuities	Sa	mpli	ng &	In Situ Testing
58 LANINTE: medium to high approximately 20% fine sandstore immations 1						iraph Log			Nate	(r	n)		/pe	ore 3. %	åD %	Test Results &
1 strength, fresh, slightly fractured, laminte with approximately 20% fine sandstone laminations 1			ta	N N H	M N S I			Medi		0.01 0.05 0.10	0.50		F.	йğ	Ϋ́	Comments
132 32.25 Bore discontinued at 32.25m 1000	gth, fresh, s grey and gre oximately 20	n, fresh, slig ey and grey mately 20%	htly fractured, laminite with									cly vn 28.95-29.04m: Ds 28.97-28.48m: Cs 29.00-29.08m: fg 10mm 29.12m: J 60°, pl, cln 29.14-29.20m: fg, 10-20mm				PL(A) = 1.1
32.25 Bore discontinued at 32.25m 1 <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>29.52-29.54m: Cs 29.59-31.02m: J (x5) 45°-85°, cly vn, ir 31.62-31.70m: J (x2), pl, ro, partially he</td> <td></td> <td></td> <td></td> <td>PL(A) = 1.2</td>												29.52-29.54m: Cs 29.59-31.02m: J (x5) 45°-85°, cly vn, ir 31.62-31.70m: J (x2), pl, ro, partially he				PL(A) = 1.2
9 33 9 34 10 <td< td=""><td>discontinue</td><th>scontinued</th><td>at 32.25m</td><td></td><td></td><td>Ц<u>:</u></td><td></td><td></td><td></td><td></td><td></td><td>32.13m: J 45°, pl, ro, \cln</td><td></td><td></td><td></td><td>PL(A) = 1.2</td></td<>	discontinue	scontinued	at 32.25m			Ц <u>:</u>						32.13m: J 45°, pl, ro, \cln				PL(A) = 1.2
$ \left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[$																
$ \left[\frac{1}{\sqrt{2}} \right]_{36} = \left[\frac{36}{10} \right]_{1} \left[\frac{1}{\sqrt{1}} \left]_{1} \left[\frac{1}{\sqrt{1}} \right]_{1} \left[\frac{1}{\sqrt{1}} \left]_{1} \left[\frac{1}{\sqrt{1}} \right]_{1} \left[\frac{1}{\sqrt{1}} \left]_{1} \left[\frac$																
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $																
1 1																
$ \begin{bmatrix} 38 \\ -38 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -39 \\ -30 \\ -3$																
							l i i									

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 23.2m

TYPE OF BORING: Diacore to 0.15m, solid flight auger to 5.5m, Rotary wash-bore to 23.25m, NMLC-coring to 32.25m **WATER OBSERVATIONS:** Free ground water observed at 2.1m (measured off SPT rod) **REMARKS:** Soil descriptions and strengths at depth based on CPT102

	SAM	PLIN	3 & IN SITU TESTING	LEG	END						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			_	_		
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Doug				
BLł	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)				5 /		ners
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)			IUU			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	<u>. 17</u>					
E	Environmental sample	ž	Water level	V	Shear vane (kPa)		Geotechnics	Envi	ıronn	nent Gro	oundwater
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I ENV	ironn	nent I Gro	ounawatei

BORE: 2	Partners	Project No: 8577 BH ID: 6H 2 Depth: 26.00 - 3 Core Box No: 2	
	EOB	32.25m	
	28	.00 – 32.25m	

SURFACE LEVEL: 5.19 AHD **EASTING:** 332158 **NORTHING:** 6244401 **DIP/AZIMUTH:** 90°/-- BORE No: BH3 PROJECT No: 85777.15 DATE: 15/1/2019 SHEET 1 OF 4

				Deale			1	
	Denth	Description	Degree of Weathering Claphi Ca	Rock Strength ក្រ	Fracture Spacing	Discontinuities		In Situ Testing
님	Depth (m)	of	Loc	V High Att	(m)	B - Bedding J - Joint	Type Core Rec. % RQD	Test Results &
	()	Strata	G FR SW FR	Very High	0.05	S - Shear F - Fault		Comments
5.0	0.03	ASPHALTIC CONCRETE: 30mm /					A	
		FILLING: dark brown gravelly sand and gravelly clayey sand filling,	🔀					
-		with some clay and silt, damp					B	
F								
E	-1						A	
-4							в	
			! ! ! ! ! ! 🔀					
÷ I							s	5,7,4
E	-2							N = 11
t I	2.3	SANDY CLAY: soft dark brown						
F		sandy clay with some silt, saturated						
E		Suturated						
t l	-3							
-~							S	0,0,2 N = 2
E	3.4	SAND: medium dense to dense,						
		pale brown fine to medium sand, with some peaty layers						
1	-4							
÷ I							s	5,12,12
F								N = 24
	-5							
F								
E								
ţ.	-6							
-								
E								
t l								
	-7							
-9								
E								
Ē								
- m	-8				1 11 11			
[]	:							
ţ	. .				1 11 11			
E								
ţ	-9							
-4								
E					1 11 11			
ŧ								
Ł								

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.65m, HQ to 28.0m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 28.95m, NMLC-coring to 35.43m

WATER OBSERVATIONS: Free ground water observed at 3.2m

REMARKS: Soil descriptions and strengths at depth based on CPT103

	SAME	PLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
BLI	Bulk sample Sample	Ū.	Piston sample Tube sample (x mm dia.)		 Point load axial test Is(50) (MPa) Point load diametral test Is(50) (MPa) 		Douglas Partners
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)		B vagius i uniticis
E	Disturbed sample Environmental sample	₽	Water seep Water level	v	Standard penetration test Shear vane (kPa)	12	Geotechnics Environment Groundwater
<u> </u>		-		-		_	

SURFACE LEVEL: 5.19 AHD **EASTING:** 332158 **NORTHING:** 6244401 **DIP/AZIMUTH:** 90°/-- BORE No: BH3 PROJECT No: 85777.15 DATE: 15/1/2019 SHEET 2 OF 4

\square		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	ы	Rock Strength _{bo}	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
님	Depth (m)	of	weathening	aphi -og		Spacing (m)	B - Bedding J - Joint	e	e%	۵	Test Results
	(11)	Strata	HW MW SW FR	Ű	Strength Nedium Medium High ExHigh Rater		S - Shear F - Fault	Type	Core Rec. %	R0%	& Comments
	-11	SAND: medium dense to dense, pale brown fine to medium sand, with some peaty layers (continued)									
· · · · · · · · · · · · · · · · · · ·	- 12										
	- 13										
	- 14	SILTY CLAY: stiff to very stiff, light grey, silty clay									
-10	- 15										
	- 16										
-12	- 17										
	- 18										
- 1-	- 19										

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.65m, HQ to 28.0m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 28.95m, NMLC-coring to 35.43m

WATER OBSERVATIONS: Free ground water observed at 3.2m

 $\label{eq:REMARKS: Soil descriptions and strengths at depth based on CPT103$

	SAM	PLIN	3 & IN SITU TESTING	LEGEND]					
A	Auger sample	G	Gas sample	PID Photo ionisa	tion detector (ppm)			_	_		
В	Bulk sample	Р	Piston sample	PL(A) Point load a:	kial test Is(50) (MPa)						
BLł	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load di	ametral test Is(50) (MPa)		4 I . N			Partn	iers
C	Core drilling	Ŵ	Water sample	pp Pocket pene	trometer (kPa)				140		
D	Disturbed sample	⊳	Water seep	S Standard pe	netration test		` ' /	_			
E	Environmental sample	Ŧ	Water level	V Shear vane	(kPa)			Geotechnics	s Envir	onment Grou	indwater
-						-					

SURFACE LEVEL: 5.19 AHD **EASTING:** 332158 **NORTHING:** 6244401 **DIP/AZIMUTH:** 90°/-- BORE No: BH3 PROJECT No: 85777.15 DATE: 15/1/2019 SHEET 3 OF 4

\square		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	ic	Rock Strength ់ច	Fracture Spacing	Discontinuities				n Situ Testing
Ч	Depth (m)	of		Log	ExLow Very Low Medium High ExHigh ExHigh ExHigh ExHigh ExHigh	(m)	B - Bedding J - Joint	Type	Core Rec. %	aD %	Test Results &
		Strata	H M M M M M M M M M M M M M M M M M M M	U	Very Very Very Very ExHi 001		S - Shear F - Fault	Ļ	йğ	ж,	Comments
		SILTY CLAY: stiff to very stiff, light grey, silty clay <i>(continued)</i>									
	21										
	- 22										
	·23										
	-24	hard below 24m									
	· 25										
	- 26										
	- 27										
	-28										
-24	28.45 . ₂₉ 28.95	SILTY CLAY: very stiff, red-brown and grey silty clay with some medium to high strength ironstone bands and gravel, high plasticity					28.45m: CORE LOSS: 500mm	с	55	0	pp = 300 PL(A) = 0.65
	29.55			· ·				с	100	0	

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.65m, HQ to 28.0m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 28.95m, NMLC-coring to 35.43m

WATER OBSERVATIONS: Free ground water observed at 3.2m

REMARKS: Soil descriptions and strengths at depth based on CPT103

	SAM	PLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	Doubles Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 5.19 AHD **EASTING:** 332158 **NORTHING:** 6244401 **DIP/AZIMUTH:** 90°/-- BORE No: BH3 PROJECT No: 85777.15 DATE: 15/1/2019 SHEET 4 OF 4

$\left[\right]$	D "	Description	Degree of Weathering · 은	Rock Strength	Fracture Spacing	Discontinuities			_	n Situ Testing
R	Depth (m)	of Strata	Degree of Weathering	Very Low Medium High Ex High Water	0.01 0.05 0.100 (W) 0.500 (M)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-25		SILTSTONE: extremely then very low strength, extremely then highly weathered, pale grey-brown to grey-brown siltstone <i>(continued)</i>				30.64m: B 10°-20°, ir,cly 5mm, fe	с	100		
-27	-31 31.75 -32	LAMINITE: medium strength, slightly weathered then fresh, slightly fractured, pale grey and grey laminite with approximately 20% fine sandstone laminations				30.75-30.99m: B (x4) 0°, pl, cly (1-5mm), fe 31.33-31.34m: Cs 31.36m: B 0°, pl, cly 8mm 31.41-31.52m: Cs 31.62-31.64m: Ds 31.83-31.90m: J (x3) 80°-90°, ir, cly vn, practically healed 32.39m: B 0°, pl, cly vn, fe 32.65-32.69m: fg	С	100	50	PL(A) = 0.74
-28	- 33 33.0	LAMINITE: high strength, fresh, slightly fractured pale grey and grey laminite with approximately 20% fine sandstone laminations				32.16-32.25911. tg 32.76m: J 60°, pl, ly vn 33.16-33.25m: J 50°, pl, ro, cln 33.41m: B 0°, pl, cly 4mm 33.54m: B 0°, pl, cly 5mm				PL(A) = 0.94 PL(A) = 1.5
-3029	- 34	34.40-34.85m: increase in bedding angle to 40° 34.70-34.85m: shear zone				33.55m: J (x3) 60°, pl, cly vn 33.72-33.99m: J 60°, pl, cln 34.21m: J 30°, un, cln, sm 34.68-34.85m: Sz, fg, 1-10mm 34.95m: J 95°, pl, ro, cln	с	100	87	PL(A) = 2.4 PL(A) = 2.8
	35.43 - 36	Bore discontinued at 35.43m				35.05m: J 45°, ro, cln 35.16-35.26m: J (45°-60°), st, cln				PL(A) = 2.0
	- 37									
-33	- 38 - 38 									

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.65m, HQ to 28.0m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 28.95m, NMLC-coring to 35.43m

WATER OBSERVATIONS: Free ground water observed at 3.2m

REMARKS: Soil descriptions and strengths at depth based on CPT103

	SAM	PLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test (\$(50) (MPa)	1.1	Dollolas Partners
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

	Project No: 857 BH ID: 8H3 Depth: 33.00 - 3 Core Box No: 2	77-15 5·43 m	durin
	EOB 55.43		
			1 C
33.00	- 35.43m		

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 5.06 AHD **EASTING:** 332223 **NORTHING:** 6244388 **DIP/AZIMUTH:** 90°/-- BORE No: BH4 PROJECT No: 85777.15 DATE: 14/1/2019 SHEET 1 OF 4

			Description	Dearee of		Rock _	racture	Discontinuities	\$~	moling 8	In Situ Testing
	Dept	th	Description of	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	phic og	Rock Strength Medium Medium Net High Net High Net High S S O O O O O O	pacing				-
R	(m))	Strata		Gral		(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. % RQD %	&
-2	0	.04	ASPHALTIC CONCRETE /	H H S S H H S S H H S S H H S S H S S H S S H S S H S S H S S H S S H S	-	Ex Low Low Very Very 0.01				о <u>к</u> н	Comments
	-	0.3 -	FILLING: dark brown, fine to medium gravelly sand filling, damp/ FILLING: pale brown, fine to medium sand filling, moist						_A _A		
- 4	- - - 1 - - - -		0.9m: dark brown gravel, plastic fragments		\bigotimes				<u> </u>		
3					\bigotimes				S		2,3,4 N = 7
	- - -	2.5	SAND: medium dense to dense, brown, fine to medium sand, moist		$\left \right\rangle$						
2	-3 - - - -								S		13,24,24 N = 48
	- - - - - - -										
-	- - - - - - 5								S		5,10,12 N = 22
	- - - - -										
	- 6										
	- - - 7 - - - - - -										
-3	- 8 - 8 - 8										
- + +	- - - - - - - - - - - - - - - - - - -		several peaty layers between 8.5m and 11.5m								

RIG: Scout 4

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 5.5m, HQ to 34.92m

TYPE OF BORING:Solid flight auger to 5.5m, Rotary wash-bore to 26.6m, NMLC-coring to 34.92mWATER OBSERVATIONS:Free ground water observed at 2.7m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT104

	SAMF	LIN	3 & IN SITU TESTING	LEG	END									
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				_		_	_	_	
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)	- 1	_	Doug	▰▮◢					MO
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	11						2210		
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						_			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		•							
E	Environmental sample	ž	Water level	V	Shear vane (kPa)			Geotechnics	11	Envir	onr	ment	Ground	vater

SURFACE LEVEL: 5.06 AHD **EASTING:** 332223 **NORTHING:** 6244388 **DIP/AZIMUTH:** 90°/-- BORE No: BH4 PROJECT No: 85777.15 DATE: 14/1/2019 SHEET 2 OF 4

\square		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	<u>.0</u>	Rock Strength a Spa	ture	Discontinuities	Sa	mpli	ng &	In Situ Testing
님	Depth (m)	of		raph Log	Strength Neet Low Nee	cing n)	B - Bedding J - Joint	Type	sre . %	RQD %	Test Results &
	(,	Strata	H M M M M M M M M M M M M M M M M M M M	Ū	Exto Very Low Very High Very High 0.01 0.05		S - Shear F - Fault	Ty	ပိမ္ရွိ	R ~	∝ Comments
	-11	SAND: medium dense to dense, brown, fine to medium sand, moist (continued)									
	- 12										
- φ -	- 13										
	- 14 14.5 -	CLAY: stiff to very stiff clay									
-1-	- 15										
	- 16										
-12	- 17										
-13	- 18										
- 14	- 19										

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 5.5m, HQ to 34.92m

TYPE OF BORING:Solid flight auger to 5.5m, Rotary wash-bore to 26.6m, NMLC-coring to 34.92mWATER OBSERVATIONS:Free ground water observed at 2.7m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT104

	SAMF	PLIN	G & IN SITU TESTING	LEGI	END										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	_		_			_	_	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)			Doug							
BL	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	. .							Pari	ner	5
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)				1						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	` '									
E	Environmental sample	ž	Water level	V	Shear vane (kPa)			Geotechnics	S	1	Envii	ror	nment G	iroundwa	ater

SURFACE LEVEL: 5.06 AHD **EASTING:** 332223 **NORTHING:** 6244388 **DIP/AZIMUTH:** 90°/-- BORE No: BH4 PROJECT No: 85777.15 DATE: 14/1/2019 SHEET 3 OF 4

D	Description	Degree of Weathering	jic -	Rock Strength _{ັວ}	Fracture Spacing	Discontinuities				n Situ Testing
Dep (m	h of		Srapt Log	Strendth Medium High Extrow Medium	(m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
	Strata	M M M M M M M M M M M M M M M M M M M		Very Very Very ExH		S - Shear F - Fault	É.	ပမ္ရ	ж ⁻	Comments
2 	CLAY: stiff to very stiff clay (continued)									
- 22	hard below 22m									
<u>2</u> 23										
<u>-</u> 24										
- 25										
2 26 	 SILTY CLAY: hard, grey and brown silty clay with medium to high strength ironstone bands and gravel, high plasticity 					26.6m: CORE LOSS: 150mm				pp = 470 pp = 600
							С	95	4	pp = 570
⁺ 29 29 29						28.80-28.84m: Ds 28.94m: B 0°, pl, cly vn, fe 29.08-29.10m: Cs, fe 29.22m: B 0°, pl, cly				
29	55		· · · · · · · · ·			5mm, fe 29.22-29.35m: Ds 29.38m: J 0°&80°, st,	С	98	49	PL(A) = 0.29

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 5.5m, HQ to 34.92m

TYPE OF BORING:Solid flight auger to 5.5m, Rotary wash-bore to 26.6m, NMLC-coring to 34.92mWATER OBSERVATIONS:Free ground water observed at 2.7m (measured off SPT rod)REMARKS:Solid descriptions and strengths at depth based on CPT104

	SAMF	PLIN	3 & IN SITU TESTING	LEG	END							
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 		_	_			
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	- 1					Partnei	
B	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	11			IEC	5 /		rs.
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)				IUU	, ,		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		'					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	l Envi	iron	nment Groundw	ater
-												

SURFACE LEVEL: 5.06 AHD **EASTING:** 332223 **NORTHING:** 6244388 **DIP/AZIMUTH:** 90°/-- BORE No: BH4 PROJECT No: 85777.15 DATE: 14/1/2019 SHEET 4 OF 4

Π		Description	Degree of Weathering	Rock	Fracture	Discontinuities	Sa	ampli	na & I	In Situ Testing
R	Depth	of	Weathering ප් සු හි	Strength	Spacing			· · ·		
	(m)	Strata	Grade Contraction of the second secon	Strendth Medium High Very High Very High Kater	0.10 0.10 0.10 (m)	B - Bedding J - Joint S - Shear F - Fault	Type	S Core	RQD %	& Comments
-26	30.3	LAMINITE: very low to low strength, highly then slightly weathered, slightly fractured, pale grey and grey laminite with approximately 20% fine sandstone laminations <i>(continued)</i> LAMINITE: low to medium strength, fresh, slightly fractured, pale grey and grey laminite with approximately 20% fine sandstone laminations				cly vn, fe 29.5m: CORE LOSS: 50mm 29.86-29.94m: J 80°, pl, cly vn 30.71-30.72m: Cs 31.66-31.76m: J (x11) 60°-85°, pl, cln	с	98	49	PL(A) = 0.49 PL(A) = 0.85
	- 32 32.5 - 33	LAMINITE: medium to high strength, fresh, slightly fractured, grey laminite with approximately 20% fine sandstone laminations				31.94m: J 90°, cu, cln 32.08m: J 70°, pl, cln 32.33m: J 35°, pl, ro, cln 32.53m: J (x2) 30°-45°, pl, ro, cln 32.72m: J 30°, pl, ro, cln 32.96m: J 35°, pl, ro,				PL(A) = 0.9
	- 34					Cln 33.04m: J 50°, pl, ro, Cln 33.63m: J 45°, pl, ro, Cln 34.30-34.49m: J 65°, pl, ro, cln	С	100	87	PL(A) = 1.4
ŀ	34.92					∖ 34.87m: J 60°, pl, ro, <i>г</i>				PL(A) = 2.1
	- 35 - 36	Bore discontinued at 34.92m				\cin				
	- 37									
	- 38									
	- 39									

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 5.5m, HQ to 34.92m

TYPE OF BORING:Solid flight auger to 5.5m, Rotary wash-bore to 26.6m, NMLC-coring to 34.92mWATER OBSERVATIONS:Free ground water observed at 2.7m (measured off SPT rod)REMARKS:Solid descriptions and strengths at depth based on CPT104

SAM	PLIN	G & IN SITU TESTING	LEG	END												
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	_	_		-		_	_	_	_	
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				Doug	-							
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	1						5					
C Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)					2							/ U
D Disturbed sample	⊳	Water seep	S	Standard penetration test			/	_								
E Environmental sample	ž	Water level	V	Shear vane (kPa)				Geotechnics	s	I EI	nvire	onn	nent	1 G	iroun	dwater

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 4.94 AHD **EASTING:** 332262 **NORTHING:** 6244382 **DIP/AZIMUTH:** 90°/-- BORE No: BH5 PROJECT No: 85777.15 DATE: 17/1/2019 SHEET 1 OF 4

			Deer		Bool						
		Description	Degree of Weathering	ie _	Rock Strength ត្រ	Fracture Spacing	Discontinuities				n Situ Testing
Ч	Depth (m)	of		Log	Very Low Low High High Kery High Kater	(m)	B - Bedding J - Joint	Type	Core Rec. %	۵°	Test Results
	(,	Strata	HW HW SK SK	Ū		0.05 0.10 1.00	S - Shear F - Fault		ပိမ္မ	8~	& Comments
E	0.04	ASPHALTIC CONCRETE /		$\times \times$							
Ł	-	FILLING: dark brown gravelly sand		\bowtie							
ţ	-	filling with some clay, damp		\bigotimes				A			
ţ	0.7	SAND: loose to medium dense,		Ь¥,							
4	-1	pale brown, fine to medium sand						A			
ţ		with some peaty and clayey bands	iiiii			i ii ii			1		
F											
F	-							<u> </u>			
F	-							s			6,10,14 N = 24
-m	-2										
ł	-										
ł	-										
ţ	F										
ţ	[
F	-3							<u> </u>			
F	-							s			7,10,21 N = 31
E	-							<u> </u>			
Ł	-										
È.	-										
ŧ	-4										
ţ											
ŧ											
F	-							s			1,0,3 N = 3
-	-5								-		
E	-										
Ł	-		İİİİİ								
Ł	-										
ł	-										
-7	-6	Mostly medium dense to dense									
ŧ		below 6m									
F											
E											
Ę	- 										
ţ,	-7										
ţ											
ŧ				· · · ·							
ţ				· .⁺·.							
Ļώ	-8										
F	-										
E											
E	-										
ŧ	-										
-4	-9										
ţ											
ŧ											
ŧ											
F	-										
Ľ	L										

RIG: Scout 4

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 6m, HQ to 30.45m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 30.5m, NMLC-coring to 35.5m **WATER OBSERVATIONS:** Free ground water observed at 1.9m (measured off SPT rod) **REMARKS:** Soil descriptions and strengths at depth based on CPT105

	SAMP	LING	3 & IN SITU TESTING	LEGI	END								
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_			_			
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)			Doug	_			Doute	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)					EL	5		iers
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)	/							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	<u> </u>	/		-				
E	Environmental sample	ž	Water level	V	Shear vane (kPa)			Geotechnics	: I	Env	iro	nment Gro	undwater
-													

SURFACE LEVEL: 4.94 AHD **EASTING:** 332262 **NORTHING:** 6244382 **DIP/AZIMUTH:** 90°/-- BORE No: BH5 PROJECT No: 85777.15 DATE: 17/1/2019 SHEET 2 OF 4

		_	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰		Rock	Т	Freeture	D:	tio	0			
	Depth	Description	Weathering	ohic g	Rock Strength	fe	Fracture Spacing	Discor	ntinuities				n Situ Testing Test Results
RL	(m)	of		Grap	Strength	Na	(m)	B - Bedding S - Shear	J - Joint F - Fault	Type	Core	RQD %	&
			H M M M M M M M M M M M M M M M M M M M	•		0.0	0.05	3 - Shear	r - rauit	F	٥æ	œ	Comments
	- - - - - -	SAND: loose to medium dense, pale brown, fine to medium sand with some peaty and clayey bands (continued)											
9-	- 11												
	- 12												
- 8-	- 13												
- 6- 	- 14 - 14.2	CLAY: stiff to very stiff clay and sandy clay											
-10.	- 15												
	- 16												
-12 -	- 17						ii ii						
-13	- 18 												
	- 19												

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 6m, HQ to 30.45m

TYPE OF BORING:Solid flight auger to 5.0m, Rotary wash-bore to 30.5m, NMLC-coring to 35.5mWATER OBSERVATIONS:Free ground water observed at 1.9m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT105

	SAM	PLIN	3 & IN SITU TESTING	LEG	END											
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		_		_	_		_		
E	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Doug									-
E	LK Block sample	U,	Tube sample (x mm dia.)	PL(ľ	D) Point load diametral test Is(50) (MPa)	• I .				5				ΤΓ	1 (-	
0	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)			.								
E	Disturbed sample	⊳	Water seep	S	Standard penetration test	' ' '										
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	3	I E	nvir	onı	men	nt I	Gro	und	vater
-																

SURFACE LEVEL: 4.94 AHD **EASTING:** 332262 **NORTHING:** 6244382 **DIP/AZIMUTH:** 90°/-- BORE No: BH5 PROJECT No: 85777.15 DATE: 17/1/2019 SHEET 3 OF 4

		D	Degree of	Rock	Frontura	Discontinuition	6.	malia	a ° '	n Situ Taating
RL	Depth	Description of	Degree of Weathering	Rock Strength	Fracture Spacing	Discontinuities				n Situ Testing Test Results
R	(m)	Strata	C B C B	Ex Low Very Low Low Medium High Very High Xater	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	&
E		CLAY: stiff to very stiff clay and sandy clay (continued)	H H R S R H R M M M M M M M M M M M M M M M M M	High Extr	10 0.0			œ		Comments
-		sandy clay (continued)								
Ē										
- 9										
-16	-21									
-1-	-22									
-										
-										
-~-	-23	hard below 23m								
-19	- 24									
-										
-										
-5-	- 25									
È										
-5-	- 26									
F										
Ē										
-22	-27									
-23	- 28									
ţ										
					ii ii					
-5-	-29									
ŧ										
F										
-										

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 6m, HQ to 30.45m

TYPE OF BORING: Solid flight auger to 5.0m, Rotary wash-bore to 30.5m, NMLC-coring to 35.5m **WATER OBSERVATIONS:** Free ground water observed at 1.9m (measured off SPT rod) **REMARKS:** Soil descriptions and strengths at depth based on CPT105

	SAMP	LING	3 & IN SITU TESTING	LEG	END													
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	_		_			_		_			
В	Bulk sample	Ρ	Piston sample	PL(A) Point load axial test Is(50) (MPa)			Doug										
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	4 .												5
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				<i>.</i>									
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11		· · · ·			- ·							
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnic	s	1 E	Envir	on	птe	ent .	ΙG	roun	dwa	ter

SURFACE LEVEL: 4.94 AHD **EASTING:** 332262 **NORTHING:** 6244382 **DIP/AZIMUTH:** 90°/-- BORE No: BH5 PROJECT No: 85777.15 DATE: 17/1/2019 SHEET 4 OF 4

		Description	Degree of Weathering	Rock Strength ត្រ	Fracture	Discontinuities				In Situ Testing
Ч	Depth (m)	of		Vation Vation	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
		Strata	₩¥₹°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	Ex Low Very High Ex H	0.05 0.10 1.00	S - Shear F - Fault	ŕ	ReC	<u>ж</u> .	Comments
	-	CLAY: stiff to very stiff clay and sandy clay <i>(continued)</i>								
	30.5 	LAMINITE: medium to high strength, fresh, slightly fractured and unbroken, pale grey and grey laminite with approximately 20% fine sandstone laminations				30.50-30.53m: Ds 30.99m: J 50°, pl, ro, cln				PL(A) = 1.3
-27	-					31.48-31.60m: J (x5) 45°-70°, pl & cu, ro, cly vn				PL(A) = 1.1
-	- 32						С	100	85	PL(A) = 1.3
	- 33 - 33					32.64m: B 0°, pl, cly 2mm 32.74m: B 0°, pl, cly 4mm				PL(A) = 1.1
	- 	SILTSTONE: high strength, fresh, slightly fractured and unbroken,				33.58m: J 60°, ir, ro, cln 33.9m: J (45°&0°), st, ro, cln				
30	- 35	grey siltstone, with a trace of fine sandstone laminations				34.62m: J 80°, pl, ro, ti	с	100	96	PL(A) = 1.2
	-					35.08m: J 60°, pl, sm, cly vn				PL(A) = 1.5
	- 35.5 	Bore discontinued at 35.5m								
	- 									
	- 38									
	- 39									
-	-									

RIG: Scout 4

CLIENT:

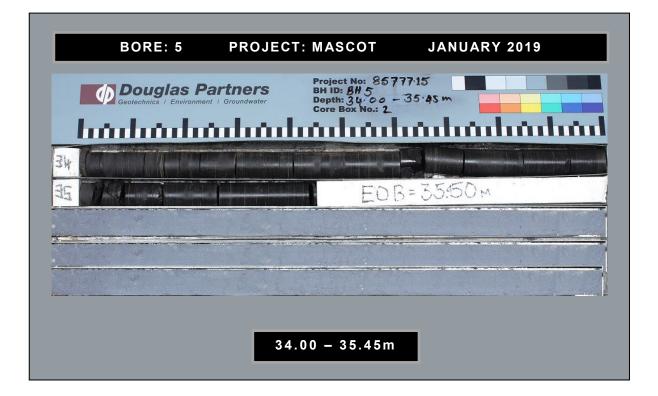
PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E


LOGGED: RB/SI

CASING: HW to 6m, HQ to 30.45m

TYPE OF BORING:Solid flight auger to 5.0m, Rotary wash-bore to 30.5m, NMLC-coring to 35.5mWATER OBSERVATIONS:Free ground water observed at 1.9m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT105

SAM	PLIN	G & IN SITU TESTING	LEG	END												
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	_			_		_	_		_		
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Doug	-							-	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)						5						
C Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)				1								U
D Disturbed sample	⊳	Water seep	S	Standard penetration test	<u> </u>		_									
E Environmental sample	ž	Water level	V	Shear vane (kPa)			Geotechnics	s	1 EI	าvire	onr	meni	t (Groui	าdwa	ater

Project No: 8577715 BH ID: 8H 5 Depth: 30.55 - 34.00 m Core Box No:: 1 MASENT BH5 MM 85777.15	019
MASEDT BH5 MM 85777.15 30.5 31 32 32	
	TART BUS
	X
30.50 - 34.00m	

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 4.84 AHD **EASTING:** 332160 **NORTHING:** 6244443 **DIP/AZIMUTH:** 90°/-- BORE No: BH6 PROJECT No: 85777.15 DATE: 23/1/2019 SHEET 1 OF 4

		Description	Degree of Weathering B B B C C C C C C C C C C C C C C C C	Rock	Fracture	Discontinuities	Sa	mplir	I & D	In Situ Testing
R	Depth	of	Weathering	Strength	Spacing			-	-	-
	(m)	Strata	Ca B Ca	Strength Nedy Low Very Low Very High High Very High Nedium Nedi	(m) ලසු ලසු	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQL %	&
H	0.04	ASPHALTIC CONCRETE: 40mm /	H H N N N N N N N N N N N N N N N N N N		0.05			- 22	_	Comments
Ē		thick					<u> </u>			
[FILLING: brown, gravelly sand filling with some clay, damp					A			Bulk samples taken from
1		ning with some day, damp								0.1-1.2m and
-4	-1						A			1.2-1.5m
E	1.2	FILLING: poorly compacted, grey								
1		sandy clay filling with some gravel,					A			
Ē		damp					s			1,1,1
-0							0			N = 2
ł	-2									
Ē					ii ii l					
	2.5	SILTY SANDY CLAY: very soft,								
-~		dark grey silty sandy clay with a trace of rootlets, moist								
Ē	- 3	····, ···								0.0.0
							S			0,0,0 N = 0
Ē										
ł	-4 4.0	SAND: medium dense to dense,								
		pale brown, fine to medium sand,								
Ē		saturated with some peaty and clayey bands								
1							s			9,5,10 N = 15
	-5				ii ii l					N = 13
Ē										
	-6									
Ē										
1										
-9										
[-7									
1										
Ē										
-										
[]	-8									
E										
<u> </u>										
-4	-9									
E	.									
ŀφ	.									
<u> </u>							· · · · · ·			

RIG: Explora 140

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 27.25m

TYPE OF BORING: Solid flight auger to 5.60m, Rotary wash-bore to 29.35m, NMLC-coring to 35.33m

WATER OBSERVATIONS: Free groundwater observed at 3.2m on 24 Jan 2019

	SAM	PLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
B	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa	Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 4.84 AHD **EASTING:** 332160 **NORTHING:** 6244443 **DIP/AZIMUTH:** 90°/-- BORE No: BH6 PROJECT No: 85777.15 DATE: 23/1/2019 SHEET 2 OF 4

Π		Description	Dearee of		Rock		Fracture	Discor	itinuities	60	molir	2 2 1	In Situ Testing
RL	Depth	Description of	Weathering	phic 20	Rock Strength	ater	Spacing						
	(m)	Strata	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	с д С	Ex Low Very Low Medium Very High Very High	Wa	0.105 0.50 (m)	B - Bedding S - Shear	J - Joint F - Fault	Type	Core Rec. %	RQC %	& Commonto
	- 11	SAND: medium dense to dense, pale brown, fine to medium sand, saturated with some peaty and clayey bands <i>(continued)</i>											Comments
	- 12												
	- 13												
	- 14												
	14.3	CLAY: stiff to very stiff, light grey clay											
	- 16												
-12	- 17												
	- 18												
-15	- 19												

RIG: Explora 140

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 27.25m

TYPE OF BORING: Solid flight auger to 5.60m, Rotary wash-bore to 29.35m, NMLC-coring to 35.33m

WATER OBSERVATIONS: Free groundwater observed at 3.2m on 24 Jan 2019

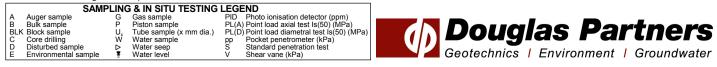
SAM	PLIN	G & IN SITU TESTING	LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		N Doublas Pariners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test	11	
E Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
 •				· · · ·		

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot


QANTAS Sydney Flight Training Centre

SURFACE LEVEL: 4.84 AHD **EASTING:** 332160 **NORTHING:** 6244443 **DIP/AZIMUTH:** 90°/-- BORE No: BH6 PROJECT No: 85777.15 DATE: 23/1/2019 SHEET 3 OF 4

	Description	Degree of Weathering	<u>i</u>	Rock Strength	Fracture	Discontinuities	Sa	mpli	ng &	In Situ Testin
Depth (m)	of	Degree of Weathering	Log	ExLow Very Low Medium High Very High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore : %	RQD %	Test Result &
()	Strata	M M M M M M M M M M M M M M M M M M M	G		0.05	S - Shear F - Fault	1	N N	R 0	Comments
	CLAY: stiff to very stiff, light grey clay (continued)		$\overline{/}$							
	ciay (continued)		\mathbb{Z}		i ii ii					
			\mathbb{V}							
			\langle / \rangle							
·21			\backslash							
			\langle / \rangle							
·22			K//							
			\mathbb{V}							
			\mathbb{V}							
			\mathbb{V}							
23 23.0	CLAY: very stiff to hard, brown	+	\vdash							
	and red-brown clay with some ironstone		\mathbb{V}							
			[//							
			\backslash							
24			\mathbb{Z}							
			\mathbb{V}							
			\mathbb{V}							
			\mathbb{V}							
25			\mathbb{V}							
			[//							
			\mathbb{V}							
			///							
26			\mathbb{V}							
			//							
			\mathbb{V}							
			\mathbb{V}							
27			\langle / \rangle							
			\mathbb{V}							
			<i>[//</i>							
			\mathbb{V}							
28			V/,							
			\mathbb{V}							
			//							
			\mathbb{V}							
29			\mathbb{V}							
			///							
20 55			\mathbb{Z}							
29.55						20.72m: 160° in alu	с	100	0	
			••••		┉╤┙╎╎	29.73m: J60°, ir, cly 2mm, fe stn		100		

TYPE OF BORING: Solid flight auger to 5.60m, Rotary wash-bore to 29.35m, NMLC-coring to 35.33m

WATER OBSERVATIONS: Free groundwater observed at 3.2m on 24 Jan 2019

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 4.84 AHD **EASTING:** 332160 **NORTHING:** 6244443 **DIP/AZIMUTH:** 90°/-- BORE No: BH6 PROJECT No: 85777.15 DATE: 23/1/2019 SHEET 4 OF 4

		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	Sa		-	In Situ Testing
님	Depth (m)	of	Degree of Weathering	Ex Low Very Low High Very High	Spacing (m)	B - Bedding J - Joint	Type	ore o.%	RQD %	Test Results &
		Strata		•••		S - Shear F - Fault ^L 29.79-29.82m: B(x4),	-		Ľ −	Comments
-26	- 30.58 - 31	very low to low strength, extremely to highly weathered, pale grey-brown laminite <i>(continued)</i> LAMINITE: high strength, fresh, slightly fractured and unbroken, pale grey to grey laminite with approximately 20% fine grained sandstone laminations 31.00-31.20m: fractured				0°, pl, cly vn, fe 29.89m: J(x2), 60°, pl, cly vn, fe 29.93m: B0°, pl, cly 3mm, fe 30.15m: B10°, pl, cly 5mm, fe 30.23m: B10°, pl, cly vn, fe 30.3m: B0°, pl, cly	c c	100		PL(A) = 1.3
-27	-					8mm, fe 30.44-30.48m: Cs, 40mm				PL(A) = 1.3
-28	- 32 - 32 - 33					30.52-30.53m: Cs, 10mm, fe 30.56m: J60-90°, cu, cly vn, fe 30.57-30.58m: Cs, 10mm, fe 30.66m: B5°, pl, cly 5mm, fe 30.72m: J30° & 70°, st, ro, cln 30.87m: J60°, ir, cly vn 30.93m: J60°, ir, cly vn 31.04-31.15m: J60°, ir,	с	100	100	PL(A) = 2.1
-29						cly vn 31.15m: J60°, ir, cly vn				PL(A) = 1.8
-30	- 34					31.25m: J80°, ir, ti 31.34m: J65°, pl, sm, cln 33.25-33.40m: J65°, pl, ro, cln	с	100	100	PL(A) = 1.6
	- - 35 -									PL(A) = 1.4
	35.33	Bore discontinued at 35.33m								1 L(A) - 1.4
	- 36									
	-37									
35	- 39									

RIG: Explora 140

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 27.25m

TYPE OF BORING: Solid flight auger to 5.60m, Rotary wash-bore to 29.35m, NMLC-coring to 35.33m

WATER OBSERVATIONS: Free groundwater observed at 3.2m on 24 Jan 2019

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
1	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
1	3 Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		Douglas Partners
1	3LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1.1	Doudlas Pariners
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test	'	
1	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
	E Environmental sample	Ŧ	water level	v	Sileal valle (KFa)		

B 5 777.15 MASCOT BH6 STAR 24-1-2019	
8577715 MASCOT BH6 STAR 24-1-2019	
2	

	Douglas Pa	artnore	Project No: 8577	7.15	
	Geotechnics / Environmen	t / Groundwater	BH ID: BH6 Depth: 34000-3 Core Box No.: 2	35·33 m	
hr	սհուհո	ներով	miliaid	ւուկուկուկ	Ű.
anti ana		35.	33 E0B		
	32			and the second statement of the second state statement of the	
		N 6 24 2			
		34.	00 – 35.33m		

SURFACE LEVEL: 4.90 AHD **EASTING:** 332220 **NORTHING:** 6244433 **DIP/AZIMUTH:** 90°/-- BORE No: BH7 PROJECT No: 85777.15 DATE: 18/1/2019 SHEET 1 OF 4

		Description	Degree of	Rock	Fracture	Discontinuities	Samel	ing & l	n Situ Testing
	Depth	Description of	Degree of Weathering Claphi Ca	Strength	Spacing				Test Results
Я	(m)	or Strata	Cat Cat	ExLow Very Low Low High High ExHigh ExHigh ExHigh ExHigh ExHigh	(m)	B - Bedding J - Joint S - Shear F - Fault	Type Core	RQD %	&
$\left \right $	0.05		M H M S S S S S S S S S S S S S S S S S	Ex Low Very Very Very 0.01	0.05				Comments
	0.1	thick	1 🏷		ii ii		_A_/		
		FILLING: dark brown gravelly sand filling (roadbase)					_ A _		
		FILLING: dark brown clayey sand							
-4	-1	filling with some gravel, damp					_A_		
Ē							S		1,1,2 N = 3
									N = 0
Ē		1.6m: becoming soft, sandy clay							
	-2	with trace gravel							
È									
	2.7	SANDY SILTY CLAY: soft, dark							
-~	-3	brown sandy silty clay, wet							
	3.15	SAND: mostly medium dense to					s		4,4,6 N = 10
		dense, pale brown, fine to medium sand with some clayey and peaty							N - 10
		layers							
	-4								
							s		3,5,7 N = 12
	-5				ii ii				N - 12
	-6								
Ē									
-9	- 7								
Ē									
- ~	- - - 8								
ŧ									
4									
E	-9								
Ļφ	:								

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 6.5m, HQ to 28.05m

TYPE OF BORING:Solid flight auger to 5.0m, Rotary wash-bore to 28.5m, NMLC-coring to 34.45mWATER OBSERVATIONS:Free ground water observed at 2.8m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT107

	SAM	PLINC	3 & IN SITU TESTING	LEG	END										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			_		_			_	_	
В	Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		_	Doug							40
BLł	Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	41	. 1						Pari	rne)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)										
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	'								
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	3	1	Envii	ror	nment (iroundw	vater
-															

SURFACE LEVEL: 4.90 AHD **EASTING:** 332220 **NORTHING:** 6244433 **DIP/AZIMUTH:** 90°/-- BORE No: BH7 PROJECT No: 85777.15 DATE: 18/1/2019 SHEET 2 OF 4

\square		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	ы	Rock Strength	ure Discontinuities	Sa	amplii	ng &	In Situ Testing
Ч	Depth (m)	of	weattering	raphi Log	Strength Near Strength Near Near Strength Near	ng B - Bedding J - Joint	эс	ere %	Q.,	Test Results
	(,	Strata	H M M M M M M M M M M M M M M M M M M M	ō	ExLo Very Low Mediu High Very F ExHig 0.01 0.05	Se S - Shear F - Fault	Type	Core Rec. %	R0%	& Comments
	- 11	SAND: mostly medium dense to dense, pale brown, fine to medium sand with some clayey and peaty layers <i>(continued)</i>								
· · · · · · · · · · · · · · · · · · ·	- 12									
	- 13									
	- 14 14.3 -	CLAY: stiff to hard clay								
	- 15									
	- 16									
	- 17									
	- 18									
-15	- 19									

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 6.5m, HQ to 28.05m

TYPE OF BORING:Solid flight auger to 5.0m, Rotary wash-bore to 28.5m, NMLC-coring to 34.45mWATER OBSERVATIONS:Free ground water observed at 2.8m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT107

	SAM	PLIN	3 & IN SITU TESTING	LEG								
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	_		_	_	_
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Doug	╶┛	00			
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	11.			as			
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	17						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	1	Envir	onn	ment G	Groundwater
-												

SURFACE LEVEL: 4.90 AHD **EASTING:** 332220 **NORTHING:** 6244433 **DIP/AZIMUTH:** 90°/-- BORE No: BH7 PROJECT No: 85777.15 DATE: 18/1/2019 SHEET 3 OF 4

_		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ײַ	2	Rock Strength ់ត្	Fracture	Discontinuities	Sa	mplir	ng & I	n Situ Testing
고 De (n	epth m)	of		Log	Very Low Very Low Medium Medium Medium KexHigh Ex High Ex High Mader	Spacing (m)	B - Bedding J - Joint	Type	c. %	RQD %	Test Results &
		Strata	M H M S S S H H S S S H K S S S S H H S S S S				S - Shear F - Fault	É.	ပမ္ရ	α_	Comments
-21		CLAY: stiff to hard clay (continued)									
- 22											
<u>~</u> -23		hard below 23m									
<u>م</u> - 24											
-25											
-26											
-27											
-29	20.1	SILTY CLAY: very stiff to hard, grey and brown silty clay with medium to high strength ironstone bands and gravel LAMINITE: extremely low strength, extremely weathered, pale grey-brown laminite					28.5m: CORE LOSS: 100mm 29.10-29.12m: Cs, fe 29.25m: B 0°, pl, cly 9mm	С	97	40	pp = 360 pp = 370 pp = 230
-25	29.9		Hiiii F	•••• ••••							

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 6.5m, HQ to 28.05m

TYPE OF BORING:Solid flight auger to 5.0m, Rotary wash-bore to 28.5m, NMLC-coring to 34.45mWATER OBSERVATIONS:Free ground water observed at 2.8m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT107

	SAM	PLINO	3 & IN SITU TESTING	LEG	END									
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			_	_	-	-		_	_
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				Doug	_ 6				
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)						25	5 /		
С	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)					, =	uu	-		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	l l	<u>`'''</u>							
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)				Geotechnics	1	Envir	ron	ment / C	Groundwate

SURFACE LEVEL: 4.90 AHD **EASTING:** 332220 **NORTHING:** 6244433 **DIP/AZIMUTH:** 90°/-- BORE No: BH7 PROJECT No: 85777.15 DATE: 18/1/2019 SHEET 4 OF 4

\prod		Description	Degree of Weathering B B B C C C C C C C C C C C C C C C C	Rock Strength	Fracture	Discontinuities	Sa	mpli	ng & I	In Situ Testing
님	Depth (m)	of	Log	ExLow Very Low Low High Very High ExHigh ExHigh	Spacing (m)	B - Bedding J - Joint	Type	re .%	° D	Test Results
	(,	Strata	G G	Very Low High Very High	0.01 0.10 1.00	S - Shear F - Fault	٦ _۲	ပိ ပိ	RQD %	& Comments
	30.4 - 31	LAMINITE: extremely low to very low strength, highly weathered, slightly fractured, grey laminite (continued) LAMINITE: medium then high strength, fresh, slightly fractured, pale grey and grey laminite with approximately 20% fine sandstone laminations				30.05-30.23m: Ds 30.24m: J 70°, pl, he 30.33-30.36m: Ds 30.38-30.92m: J (x2) 45°, pl, ro, cln 31.27m: J 45°, pl, ro, cly	с	97	40	PL(A) = 0.87 PL(A) = 1
-28	- 32					vn 31.48-31.77m: J (x5) 60°-80°, pl&ir, cly vn 32.12-32.26m: J 85°, un, ro, cln 32.26-32.47m: J 60°, pl, ro, cln	С	100	83	PL(A) = 1.7
	- 33					33.12m: J 70°-90°, st, ∖ro, cln 33.28m: J 35°, pl, ro, ∖ cln				PL(A) = 1.8
	- 34					^{33.55} m: J 70°-90°, st, ro, cln		100	92	PL(A) = 1.2
	34.45	Bore discontinued at 34.45m	<u> </u>							
	- 35									
	- 36									
32	- 37									
	- 38									
	- 39									
-35										

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 6.5m, HQ to 28.05m

TYPE OF BORING:Solid flight auger to 5.0m, Rotary wash-bore to 28.5m, NMLC-coring to 34.45mWATER OBSERVATIONS:Free ground water observed at 2.8m (measured off SPT rod)REMARKS:Solid descriptions and strengths at depth based on CPT107

	SAMF	PLIN	3 & IN SITU TESTING	LEG	END								
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			_	_		_		
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Doug	▰▰				
BI	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	11	. 1						ners.
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)								
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1	_	_					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	1	Envir	onn	ment Gro	oundwater

	BORE: 7	PROJECT:	MASCOT	JANUARY 2019
	Douglas Pai Geotechnics Environment		Project No: 85 BH ID: 8H 7 Depth: 28:50 Core Box No.: 1	77715 - 33.00 m
	BH:07 18-1-19		28.5 CL	
12 m	Trinsa			
		28.50	0 – 33.00m	

Douglas Partne	IS BH ID: BH 7 Depth: 33.00 - Core Box No.: 2	77·15 34·45 m
	34.45m	EOB
	14	

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: SURFACE LEVEL: 4.94 AHD **EASTING:** 332275 **NORTHING:** 6244413 **DIP/AZIMUTH:** 90°/--

BORE No: BH8 **PROJECT No: 85777.15 DATE:** 22/1/2019 SHEET 1 OF 4

					Deal						
	D. "	Description	Degree of Weathering	jc	Rock Strength ត្រ	Fracture	Discontinuities			-	n Situ Testing
님	Depth (m)	of		Log		Spacing (m)	B - Bedding J - Joint	be	sre %	Q.	Test Results
	()	Strata	H K K K K K K K K K K K K K K K K K K K	Q	Very Low Very Low Medium Medium Fx High Ex High Ex High	. ,	S - Shear F - Fault	Type	ပိုင်္ဂ	RQD %	& Comments
H	0.05										
ţ		CONCRETE SLAB: 20mm		A 4 A 1							
1	0.4	aggregate, metal plates up to		\boxtimes		i ii ii		<u> </u>			
ŧ		FILLING: brown and dark brown,		\bigotimes				В			
-4	0.9 -1	$_{\rm T}$ fine to medium sand and sandy $_{\rm C}$		\mathbf{F}				Α			
E		clay filling with a trace of gravel									
E		silty fine to medium sand with		ŀŀŀ				В			
ŀ	1.5	Some clay, damp									1,3,3
ļ		SAND: mostly medium dense, brown, fine to medium sand with						S			N = 6
-~	-2	some clayey lenses and peaty	i i i i i i								
Ē		sands									
E								В			
ţ											
-~	-3										
ŧ								ç			3,5,6
E								S			N = 11
E											
ţ											
-	-4										
ŧ !											
E									-		
ţ								s			2,7,11
-0	5										N = 18
ŧ	-5										
E	.										
E											
ţ											
	-6										
ŧ.											
E											
ł											
-9				.							
ŧ											
E											
ţ				1.1.1							
-?	-8										
ŧ											
Ē											
E											
4											
	-9										
ŧ											
ţ.											
E											
F			Liiii								

RIG: Explora 140

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 9.0m, HQ to 28.25m TYPE OF BORING: Diacore to 0.4m, solid flight auger to 5.0m, Rotary wash-bore to 28.25m, NMLC-coring to 32.23m

WATER OBSERVATIONS: Free ground water observed at 2.48 on 24 Jan 2019

SAM	PLIN	G & IN SITU TESTING	LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 _	
B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1.	1 Doudias Pariners
C Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test	17.	
E Environmental sample	ž	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 4.94 AHD **EASTING:** 332275 **NORTHING:** 6244413 **DIP/AZIMUTH:** 90°/-- BORE No: BH8 PROJECT No: 85777.15 DATE: 22/1/2019 SHEET 2 OF 4

Π		Description	Degree of Weathering	<u>io</u>	Rock Strength ត្រ	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
뉟	Depth (m)	of	ricalioning	raph Log	KEXLow Very Low High Kery High Kery High Kater	Spacing (m)	B - Bedding J - Joint	pe	ore c. %	RQD %	Test Results &
		Strata	HW HW FR SW MW		Very Very Very Ex High	0.10	S - Shear F - Fault	Ţ	с я	Ř.,	Comments
	- 11	SAND: mostly medium dense, brown, fine to medium sand with some clayey lenses and peaty sands <i>(continued)</i>									
· · · · · · · · · · · ·	- 12										
	- 13										
	- 14 14.2 -	CLAY: stiff to very stiff, light grey clay									
-10	- 15										
	- 16										
-12	- 17										
	- 18										
	- 19	19m: ironstone band									

RIG: Explora 140

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 9.0m, HQ to 28.25m

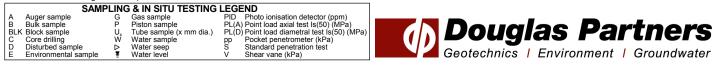
TYPE OF BORING: Diacore to 0.4m, solid flight auger to 5.0m, Rotary wash-bore to 28.25m, NMLC-coring to 32.23m **WATER OBSERVATIONS:** Free ground water observed at 2.48 on 24 Jan 2019

SAM	PLIN	G & IN SITU TESTING	LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 _	
B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1.	Douolas Pariners
C Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test	17	
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

CLIENT:

PROJECT:

Enstruct Group Pty Ltd


LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

SURFACE LEVEL: 4.94 AHD **EASTING:** 332275 **NORTHING:** 6244413 **DIP/AZIMUTH:** 90°/-- BORE No: BH8 PROJECT No: 85777.15 DATE: 22/1/2019 SHEET 3 OF 4

		Description	De	egree	e of erina	<u>ic</u>	s	Roc tren	gth	اير	Fracture		Discon	tinuities	Sa	amplii	ng & I	n Situ Testing
	Depth (m)	of				Graphic Log	Ex Low S	ן ד ובן	- High	Vate	Spacing (m)		B - Bedding	J - Joint	Type	ore :. %	RQD %	Test Result &
	, ,	Strata	N N	MW SW	E S S	U	Ex Lo Very	Medic	High Very		0.05	8	S - Shear	F - Fault	Ty	ပိမ္မ	Я С	Comments
-		CLAY: stiff to very stiff, light grey clay <i>(continued)</i>																
Ē		20.5m: ironstone band																
È,	21					\mathbb{V}												
ŧ.						\mathbb{Z}												
F			ļį	ii.	İİ	\bigvee	l i i	ii	ii									
Ē			ļ			\mathbb{Z}			İİ									
÷	22																	
ŀ						\mathbb{V}												
F						\mathbb{Z}												
Ē			ļ	İİ	İİ			İİ	İİ									
	23	very stiff to hard below 23m	ļį			\mathbb{Z}			ii									
ŀ																		
ŀ						\mathbb{V}												
Ę.	24					\mathbb{Z}												
Ē			ļ	İİ					İİ									
Ē		24.5m: ironstone band	ļį	ii		\mathbb{V}			İİ									
ł			ļ			\mathbb{Z}												
F	25					\bigvee					 							
Ē						\mathbb{Z}												
È																		
È.	26		ļį	İİ		\bigvee		İİ	İİ									
F	20		ļ			\mathbb{Z}	1 i i		ii									
Ē																		
È						\mathbb{Z}												
+	27																	
F			ļį	İİ		\mathbb{V}			İİ									
Ē			ļį	ii		\mathbb{Z}	1::		İİ									
ļ			ļ															
ŀ	28																	
ł	28.25	SILTSTONE: extremely to very low strength extremely to highly		 		[<u> </u>												
-		strength, extremely to highly weathered, slightly fractured, pale grey-brown and red-brown						 										
i,	29	siltstone with medium strength iron-cemented bands					ן					11:	fe)°, pl, cly vn,	С	100	0	
ŀ													28.8m: B 0° vn, fe	-20°, cu, cly				
ŀ	29.58		L										29.36-29.46 cly vn, fe	Sm: J 60°, pl,	<u> </u>			
F	29.58 29.8		∏					 				1	29.5m: COI 80mm	RE LOSS:	с	94	10	PL(A) = 0.2
t			Li					li i							1			$1 = (\pi) = 0.2$

WATER OBSERVATIONS: Free ground water observed at 2.48 on 24 Jan 2019

SURFACE LEVEL: 4.94 AHD **EASTING:** 332275 **NORTHING:** 6244413 **DIP/AZIMUTH:** 90°/--

BORE No: BH8 PROJECT No: 85777.15 DATE: 22/1/2019 SHEET 4 OF 4

$\left[\right]$		Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	mplii	ng & I	n Situ Testing
Я	Depth (m)	of		Srapt Log	Very Low Very Low Very Liow Very High Very High Kater	Spacing (m)	B - Bedding J - Joint	Type	c. %	RQD %	Test Results &
			M H M S H H M S H H M S		High High FX-F	0.05	S - Shear F - Fault 29.62-29.65m: Cs, fe	<u>⊢</u> `	с ¶	R	Comments
-26	-31 31.0	LAMINITE: low then medum strength, slightly weathered, fractured and slightly fractured pale grey and grey laminite with approximately 20 % fine sandstone laminations (continued)					29.68m: J 80°-90°, ir, cly vn, fe 29.70-29.73m: Cs, fe 29.78-29.85m: B (x3) 0°-10°, pl, cly 5-9mm, fe 30.1m: B 0°, pl, cly	с	94	10	PL(A) = 0.73
-27		LAMINITE: medium and high strength, fresh, fractured and slightly fractured, pale grey and grey laminite with approximately 20% fine sandstone laminations					9mm -30.14m: J 45°, pl, cly vn -30.18m: B 0°, pl, cly 8mm -30.27m: J 35°, cu, ro, cln -30.32-30.55m: J (x4) 45°, pl,cly vn	С	88	29	PL(A) = 1.4
	32.35	SILTSTONE: medium and high strength, fresh, slightly fractured					30.57-30.70m: J (45°-70°, ir, cly vn 30.83m: CORE LOSS: 170mm 131.12-31.25m: J (x4)				PL(A) = 0.39
	- 33	grey siltstone with approximately 5% fine sandstone laminations					45°, pl, cly vn, partially he 31.82-31.83m: J (x13) 40°-60°, pl, ro, cly vn 31.88m: B 15°, pl, cly 5mm 32.64m: J 45°, pl, he 33.22m: J 40°, ir, cly vn	с	100	78	PL(A) = 1.1
-29	- 34						¹ 33.47m: J 80° ⁻ 90°, ću, partially he '33.56m: J 60°, pl, ro, cln '33.57-33.73m: J 60°, pl, cly vn '33.85m: J 40°, pl, ro,	0		70	PL(A) = 0.72
-9-	- 35			· ·			cln '33.88m: J 60°, pl, ro, cln				
	35.23	Bore discontinued at 35.23m	┥┥┥	<u> </u>			-34.04m: J 60°-90°, ir, ro, cln				PL(A) = 0.86
	- 36						34.07m: J 30°-45°, st, ro, cln 34.5m: J (x2) 60°, pl, cly vn 35.12m: J 60°, pl, cly vn				
	- 37										
	- 38										
	- 39										

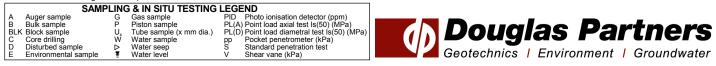
RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot


QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 9.0m, HQ to 28.25m TYPE OF BORING: Diacore to 0.4m, solid flight auger to 5.0m, Rotary wash-bore to 28.25m, NMLC-coring to 32.23m

WATER OBSERVATIONS: Free ground water observed at 2.48 on 24 Jan 2019

BORE: 8	PROJECT	T: MASCOT	JANUARY 2	019
		Project No: 8577 BH ID: 6H 8 Depth: 3300 - 3 Core Box No.: 2		0.1.0.
				and and a second second second second second second second second second second second second second second se
5				
	35.23 EOI	3		
	33.	00 – 35.23m		

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 3.81 AHD **EASTING:** 332240 **NORTHING:** 6244500 **DIP/AZIMUTH:** 90°/-- BORE No: BH9 PROJECT No: 85777.15 DATE: 16/1/2019 SHEET 1 OF 4

			Denne of		Rock			1	
	Depth	Description	Degree of Weathering	hic J	Strength 5	Fracture Spacing	Discontinuities		ng & In Situ Testing
뮡	(m)	n of		irap Loç	Very Low Very Low Medium High Very High Ex High Ex High OO1	(m)	B - Bedding J - Joint	Type Core	Test Results
		Strata	H M M M M M M M M M M M M M M M M M M M	0	Ex Low Very Lov Medium High Very Hig Ex High	0.05 0.10 1.00	S - Shear F - Fault	Re C 1	Comments
-	0.0	03 ASPHALTIC CONCRETE: 30mm		\bigotimes				A /	
	- 0.0	5.6 Sand filling with some sandstone gravel, damp		\bigotimes				A	
3	- - 1 -	SAND: medium dense, pale brown, fine to medium sand, moist						A	
	- 1.	1.5 CLAYEY SAND: soft, dark brown							0,1,4
-~	- 1.8	1.8 clayey sand, saturated						S	N = 5
	-2	SAND: loose to medium dense, pale brown fine sand with some clayey or peaty layers							
	-								
	-3								
	-							s	3,6,9 N = 15
	- -								
-0	-4								
	- - -								
-	-							s	4,6,7 N = 13
	-5-								
-	-								
-7-	-								
	-6	mostly medium dense to very dense below 6m							
-	-								
	-								
	-7								
	-								
-4	-								
E	- 8 - -								
Ē	-								
-φ -	-9								
ŧ	-								
	- -								
-φ -	-								

RIG: Scout 4

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 10.5m, HQ to 29.5m

TYPE OF BORING:Solid flight auger to 5.0m, Rotary wash-bore to 29.5m, NMLC-coring to 34.62mWATER OBSERVATIONS:Free ground water observed at 1.4m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT109

	SAM	PLIN	3 & IN SITU TESTING	LEGEND						
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)		_		_	_	_
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)				loo		rtners
B	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa	a)	11.2		IRS		r n ers
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	´			14 0		
D	Disturbed sample	⊳	Water seep	S Standard penetration test						
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)			Geotechnics	l Envi	ronment	Groundwater
					_					

SURFACE LEVEL: 3.81 AHD **EASTING:** 332240 **NORTHING:** 6244500 **DIP/AZIMUTH:** 90°/-- BORE No: BH9 PROJECT No: 85777.15 DATE: 16/1/2019 SHEET 2 OF 4

RL	Depth (m)	Description		0	Rock Strength ត្រ	Fracture	Discontinuities	58	ampili	ng & I	In Situ Testing
	· · /	of	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	raph Log	Strength Very Low Very Low Medium Medium High KxHigh	Fracture Spacing (m)	B - Bedding J - Joint	Type	ore S. %	RQD %	Test Results &
Ē		Strata	H M M M M M M M M M M M M M M M M M M M	G	Very Low Mediu ExHigh	0.05	S - Shear F - Fault	Ту	ပိမ္ရွိ	Я°	Comments
		SAND: loose to medium dense, pale brown fine sand with some clayey or peaty layers <i>(continued)</i>									
	·11										
	12										
	⁻¹³ 13.1 -	CLAY: firm to very stiff clay									
	14										
	15										
	· 16										
	17	very stiff to hard below 17m									
	18										
-16	19										

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 10.5m, HQ to 29.5m

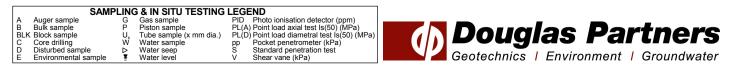
TYPE OF BORING:Solid flight auger to 5.0m, Rotary wash-bore to 29.5m, NMLC-coring to 34.62mWATER OBSERVATIONS:Free ground water observed at 1.4m (measured off SPT rod)REMARKS:Soil descriptions and strengths at depth based on CPT109

	SAM	PLINC	3 & IN SITU TESTING	LEG	END										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			_		_			_	_	
В	Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		_	Doug							40
BLł	Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	41	. 1						Pari	rne)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)										
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	'								
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	3	1	Envii	ror	nment (iroundw	vater
-															

SURFACE LEVEL: 3.81 AHD **EASTING:** 332240 **NORTHING:** 6244500 **DIP/AZIMUTH:** 90°/-- BORE No: BH9 PROJECT No: 85777.15 DATE: 16/1/2019 SHEET 3 OF 4

		Description	Degree of Weathering	ic	Rock Strength ভ	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
뷥	Depth (m)	of	Degree of Weathering	Graph Log	Strength Very Low Medium Medium Very High Vare V	Spacing (m)	B - Bedding J - Joint	Type	Sore 3c. %	RQD %	Test Results &
l		Strata CLAY: firm to very stiff clay	H H S S H H			0.01	S - Shear F - Fault	-	L R C		Comments
F		(continued)									
F				\mathbb{Z}							
ŀ											
ŀ	21										
2											
F	22			\mathbb{V}							
F				\mathbb{V}							
F				\mathbb{V}							
F				\mathbb{V}							
ŧ	23			\mathbb{V}							
ŧ				\mathbb{V}							
F	24			\mathbb{V}							
ŀ				\mathbb{V}							
ł											
i	25			\mathbb{V}							
E	20			\mathbb{V}							
f				1							
				\mathbb{V}							
F	26			\mathbb{V}							
ŧ				1							
				\mathbb{V}		, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,					
	27			\mathbb{V}							
ŀ				\mathbb{V}							
ŀ				\mathbb{V}							
				\mathbb{V}							
ŀ	28			\mathbb{V}							
E				\mathbb{V}							
				\mathbb{V}							
F	29			\mathbb{V}							
ŀ				1							
ŧ	29.5	LAMINITE: very low and low		<u> </u>			ן 29.57m: B 0°, pl, cly				
	29.9	strength,slightly weathered, fractured and slightly fractured,		· · · · · · · ·			29.57m B 0 , pl, cly 5mm 29.62m: B 0°, pl, cly	С	100	93	PL(A) = 0.14
-	G: Scout		LLER: Rhett I			GED: RB/SI	CASING: H	A/ 4.			to 00 5-

REMARKS: Soil descriptions and strengths at depth based on CPT109


Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT:

PROJECT:

SURFACE LEVEL: 3.81 AHD **EASTING:** 332240 **NORTHING:** 6244500 **DIP/AZIMUTH:** 90°/-- BORE No: BH9 PROJECT No: 85777.15 DATE: 16/1/2019 SHEET 4 OF 4

		Description	Degree of Weathering	Rock Strength ត្រ	Fracture	Discontinuities				n Situ Testing
묍	Depth (m)	of	l apt	Very Low Very Low Medium Very High Very High Very High Very High Very High Very Low Very Low Very Low Very Low	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
		Strata	M H M M M M M M M M M M M M M M M M M M	Ex Low Very Very Ex H		S - Shear F - Fault	F	ũễ	Ϋ́ Ϋ́	Comments
-28 -27	-31	grey laminite with approximately 20% fine sandstone laminations LAMINITE: medium then medium to high strength, fresh, slightly fractured and unbroken, pale grey and grey laminite with approximately 25% fine sandstone laminations <i>(continued)</i>				5mm 29.74m: B 0°, pl, cly 8mm 29.95m: J 45°, ti 30.04-30.16m: J (x2) 45°&70°, pl, ro, cln 31.58-31.68m: J 60°, pl, ro, cln 31.70-31.83m: J 60°, pl, ro, cln, partially he 31.80-31.95m: J 60°, pl, he	с	100		PL(A) = 0.93 PL(A) = 0.86 PL(A) = 1.1
		32.45-32.92m: fractured		•		^L 32.22m: B 0°, pl, cly, 9mm				
-29	-33 33.0	SILTSTONE: medium to high				^L 32.35-32.45m: J 45°-70°, pl, ir, ro, cln] 33.12m: B 0°, pl, cly				
		strength, slightly fractured, grey siltstone with approximately 10% fine sandstone laminations				5mm 33.121m: J 60°, pl, ro, cln	с	100	66	PL(A) = 0.66
-8	- 34					¹ 33.29m: B 0°, pl, cly 2mm 133.32m: J 30°, pl, ro,				
E			_			cln 33.35m: J 90°, st, ro,				
	34.62					cln				PL(A) = 1
-	54.02	Bore discontinued at 34.62m								
	- 35									
-32										
	- 36									
-33	- 37									
-24										
	- 38									
-35										
- F - F	- 39									
-36										

RIG: Scout 4

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: Rhett K-E

LOGGED: RB/SI

CASING: HW to 10.5m, HQ to 29.5m

TYPE OF BORING:Solid flight auger to 5.0m, Rotary wash-bore to 29.5m, NMLC-coring to 34.62mWATER OBSERVATIONS:Free ground water observed at 1.4m (measured off SPT rod)REMARKS:Solid descriptions and strengths at depth based on CPT109

SAM	PLIN	G & IN SITU TESTING	LEG	END									
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_			,	_			
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				Doug	- I			Dout	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	1	1				RE	5	Part	ners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)									
D Disturbed sample	⊳	Water seep	S	Standard penetration test		24	'		٠.	. –			
E Environmental sample	¥	Water level	V	Shear vane (kPa)				Geotechnics	;	Envi	iror	nment Gr	roundwater

BORE: 9	PROJECT:	MASCOT	JANUARY 2019	
		Project No: 857 BH ID: 8H 9 Depth: 29.50 Core Box No.: 1	77.15 33.00 m	
MASCOT 16-1-19 BH:9			START 29	-5
		己的		
ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL				
3				
32 (1) (1) (1)				
	29.5	- 33.00m		

SURFACE LEVEL: 3.98 AHD **EASTING:** 332297 **NORTHING:** 6244497 **DIP/AZIMUTH:** 90°/-- BORE No: BH10 PROJECT No: 85777.15 DATE: 16/1/2019 SHEET 1 OF 4

_													1			
		Description	De	gre athe	e of ering	Graphic Log	s	Roc tren	ck ath	<u> </u>	Fractu	ure	Discontinuities			In Situ Testing
님	Depth (m)	of		aun	onng	aph			<u> </u>	/ate	Spaci (m)		B - Bedding J - Joint	e	₽% O	Test Results
	(11)	Strata	N N H	23	്ഗമ	<u>ق</u> _	Ex Low S	lediu	ery H				S - Shear F - Fault	Type	Core Rec. % RQD	comments
H	0.03	ASPHALTIC CONCRETE /		≥ <i>u</i> 	<u>,</u>		ш'>'	י≤יב 				1		A		Commenta
1	. 0.3	FILLING: dark brown, clayey sand													1	
F		filling with some sandstone gravel, moist	li					ii						A		
F		SAND: loose to medium dense,														
		pale brown, fine to medium sand,												A	-	
	- 1	moist	i	İİ	ii		ii	ii	iii		iii	ii			1	
t I																
		1.5-1.95m: very soft, dark brown	li												-	
F		sandy silty clay band					·							S		1,0,1 N = 1
-~	-2						.								-	
E			İ	İ	İİ			ii				ij.				
1			i	İİ	i i		ii	ii	iii		i ii	ii.				
ţ	.															
Ē	-3							ii							1	4,5,9
E														S		N = 14
															1	
ţ							.									
	-4															
E												11				
E	-						·									
			İ	İ	İİ			jj				ii-		s		4,6,3
÷ I														3		N = 9
-7	-5		i	ii	ii			ii	iii		i ii	ii				
E	-						.									
	5.5	SAND: medium dense to very	l i i		İİ			ii			i ii	ii				
t I		dense, fine to medium sand with														
-9	-6	some clayey or peaty bands														
E																
E																
t I																
- "	-7		İ	İ	İİ			ii				ii -				
E																
ŧ			i					ii			i ii					
ţ							.									
-4	-8															
F	:						·									
[]							·									
ţ																
ŧ									 							
-'n-	-9				İİ			ļ								
E																
E			li		i i	[. · · ·		İ				11				
ţ							· 									
Ŀ	-		Li	ĹĹ	ii			ii				ii.				

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.55m, HQ to 26.9m

TYPE OF BORING: Solid flight auger to 5.55m, Rotary wash-bore to 26.9m, NMLC-coring to 33.75m **WATER OBSERVATIONS:** Free ground water observed at 0.85m (measured off SPT rod) **REMARKS:** Soil descriptions and strengths at depth based on CPT110

	SAM	PLIN	3 & IN SITU TESTING	LEGEND]				
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)				_	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)					Partners
BLł	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)					Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)				140	
D	Disturbed sample	⊳	Water seep	S Standard penetration test		<u>''''</u>			
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)			📕 Geotechnics	: I Envir	onment Groundwater

SURFACE LEVEL: 3.98 AHD **EASTING:** 332297 **NORTHING:** 6244497 **DIP/AZIMUTH:** 90°/-- BORE No: BH10 PROJECT No: 85777.15 DATE: 16/1/2019 SHEET 2 OF 4

Π		Description	Degree of Weathering Budges Bu	Rock Strength ត្រ	Fracture	Discontinuities	Sa	ampli	% na	In Situ Testing
R	Depth	of	Weathering	Strendth Very Low Very Low Medium Nedium Very High ExHigh ExHigh Medium Very Low Very Low Medium Very Low	Spacing				_	
Ľ	(m)	Strata	La Ga	Ex Low Very Lov Medium High Ex High	0.10 0.10 1.00 (u)	B - Bedding J - Joint S - Shear F - Fault	Type	CO.	RQD %	& Commonto
	-11	SAND: medium dense to very dense, fine to medium sand with some clayey or peaty bands (continued)								Comments
	- 12									
	- 13	CLAY: stiff to hard, red and brown clay and silty clay with some ironstone bands								
-10-	- 14									
	- 15									
-12	- 16									
	- 17									
	- 18									
-15	- 19									

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.55m, HQ to 26.9m

TYPE OF BORING: Solid flight auger to 5.55m, Rotary wash-bore to 26.9m, NMLC-coring to 33.75m **WATER OBSERVATIONS:** Free ground water observed at 0.85m (measured off SPT rod) **REMARKS:** Soil descriptions and strengths at depth based on CPT110

	SAM	PLIN	G & IN SITU TESTING	LEG	END							
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	_	_		_		
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)				_			Partners
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test (\$(50) (MPa)					EL	5	
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		/					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	; 	Env	iroi	onment Groundwate
-												

SURFACE LEVEL: 3.98 AHD **EASTING:** 332297 **NORTHING:** 6244497 **DIP/AZIMUTH:** 90°/-- BORE No: BH10 PROJECT No: 85777.15 DATE: 16/1/2019 SHEET 3 OF 4

Π		Description	Degree of Weathering	Rock	Fracture	Discontinuities	Sa	mplir	ng & I	n Situ Testing
님	Dept	h of	Weathering		Spacing (m)	B - Bedding J - Joint			-	
	(m)	Strata	ER SS SS F F SS SS F F SS SS F SS SS F SS SS			S - Shear F - Fault	Type	Rec.	RQD %	& Comments
	-21	CLAY: stiff to hard, red and brown clay and silty clay with some ironstone bands <i>(continued)</i> very stiff to hard below 20.9m								
	- 22									
	- 23									
21	- 24									
-22										
	-27 20	5.9 LAMINITE: very low strength, highly weathered, pale grey to								
-24	- 28	grey laminite with approximately 30% fine sandstone laminations				27.19m: B 0°, pl, cly 8mm 27.67-27.69m: Cs 27.93m: B 0°, pl, cly 5mm	С	100	46	PL(A) = 0.09
	-29	3.3 LAMINITE: medium strength with some extremely low strength bands, slightly weathered, fractured and slightly fractured, pale grey and grey laminite with approximately 20% fine sandstone laminations				28.36m: J 5°-70°, st, cly 6mm 28.48-28.70m: J 70°, pl, ro, ti 28.73-29.10m: J 85°-90°, pl, ro, cln 28.95m: J 45°, pl, sm 29.09-29.11m: Cs				PL(A) = 0.31 PL(A) = 0.62
	29	9.6				29.18-29.30m: Cs 29.30-29.36m: fr, 110mm -29.43-29.51m: J (x7)	С	100	66	PL(A) = 1.2

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.55m, HQ to 26.9m

TYPE OF BORING: Solid flight auger to 5.55m, Rotary wash-bore to 26.9m, NMLC-coring to 33.75m **WATER OBSERVATIONS:** Free ground water observed at 0.85m (measured off SPT rod) **REMARKS:** Soil descriptions and strengths at depth based on CPT110

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample

SURFACE LEVEL: 3.98 AHD **EASTING:** 332297 **NORTHING:** 6244497 **DIP/AZIMUTH:** 90°/-- BORE No: BH10 PROJECT No: 85777.15 DATE: 16/1/2019 SHEET 4 OF 4

\square		Description	Degree of Weathering	<u>io</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	n Situ Testing
님	Depth (m)	of		iraph Log	Very Low Very Low Medium High Ex High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore 2. %	RQD %	Test Results &
			HW W SW MW F FR S S A		Very Very Very Ex High	0.10	S - Shear F - Fault	Ļ	с я	Ř.,	Comments
-27	-31	LAMINITE: high strength, fresh, slightly fractured, pale grey to grey laminite with approximately 20% fine grained sandstone (continued)					55°, pl, cly vn 29.51m: B 0°, pl, cly 3mm 29.54m: J 55°, pl, ro, cln 29.63m: B 0°, pl, cly 7mm 29.69-29.75m: J 60°, pl,	с	100	66	PL(A) = 1
				· ·			ro, cln '30m: J 45°, pl, ro, cln '30.07m: J 45°, pl, ro, cln '30.39m: J 45°, pl, ro, cln				PL(A) = 1.8
	32.1	SILTSTONE: high strength, fresh, slightly fractured, grey siltstone with a trace of fine sandstone laminations					30.49m: J 50°, pl, ro, cln 30.94m: J 70°, ir, ro 31m: J 50°, pl, ro, cln 31.07-31.20m: J (x2) 60°, pl, ro, cln 31.82m: B 5°, pl, cly	с	100	90	PL(A) = 1.9
	- 33 33.75						2mm 31.96m: J 55°, pl, ro, cln 32.48m: J 60°, pl, ro, cln 32.54-32.64m: J 60°, pl, ro, cln				PL(A) = 1.5
		Bore discontinued at 33.75m					32.82m: J 60°, pl, he '33.03m: J 70°, pl, partially he '33.06-33.16m: J 60°, pl, cln, sm '33.5m: J 45°, pl, he '33.64-33.68: J (x2) 60°,				
31	- 35						pl, ro, cln				
32	- 36										
33 1 1	- 37										
	- 38										
	- 39										

RIG: Explora 140

CLIENT:

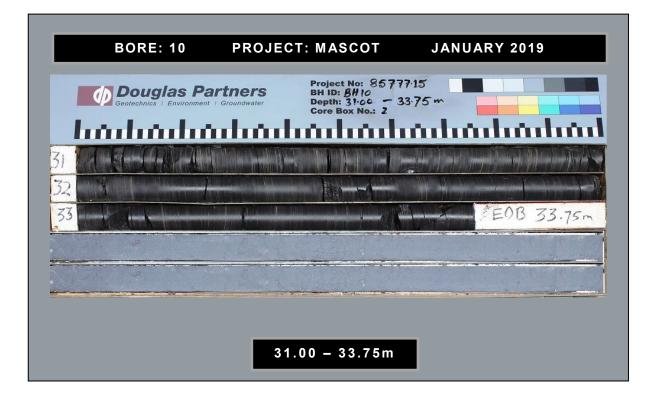
PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S


LOGGED: RB/SI

CASING: HW to 5.55m, HQ to 26.9m

TYPE OF BORING: Solid flight auger to 5.55m, Rotary wash-bore to 26.9m, NMLC-coring to 33.75m **WATER OBSERVATIONS:** Free ground water observed at 0.85m (measured off SPT rod) **REMARKS:** Soil descriptions and strengths at depth based on CPT110

	SAM	PLINC	3 & IN SITU TESTING	LEG								
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	_			-		
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				_			Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)					F L	5	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	<u>. I</u>	/		· .	_		
E	Environmental sample	ž	Water level	V	Shear vane (kPa)			Geotechnics	;	Env	'Iro	onment Groundwater

-	BORE: 10	PROJEC	CT: MASCOT	JANUARY 20	19
	Douglas Pa Geotechnics Environment		Project No: 8577 BH ID: 8H IO Depth: 26.90 - Core Box No.: 1	31.00m	
	MASCOT BHID 17			տետես	
27		and the second second	Walling a wall that	the all more so	
30 4 1					
		2 (6.9 – 31.0m	l	

SURFACE LEVEL: 3.79 AHD **EASTING:** 332247 **NORTHING:** 6244540 **DIP/AZIMUTH:** 90°/-- BORE No: BH11 PROJECT No: 85777.15 DATE: 18/1/2019 SHEET 1 OF 4

		1	Dearse	1	Pool			-	
	Depth	Description	Degree of Weathering ≞ ≩ ≩ ≶ ∞ ∰	hic	Rock Strength ਰੁ	Fracture Spacing	Discontinuities		g & In Situ Testing
RL	(m)	of		Loc	Very Low Low Medium High Very High Ex High Ex High	(m)	B - Bedding J - Joint	Type Core Rec. %	☐ Test Results
			M H M S H H S S H H S S H H S S H H S S H H S S H H S S H H S S H H S S H H S S H H S	0			S - Shear F - Fault	т о́	Comments
È	0.02		$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	\boxtimes				A/	
Ē	0.35	FILLING: dark brown, gravelly		<u> </u>				A	
	- 0.6	· · · · · · · · · · · · · · · · · · ·							
-	-1	SANDY SILTY CLAY: firm, dark brown sandy silty clay with some						A	
Ē	- 1.2	rootlets							
	- - -	SAND: medium dense to dense, pale brown, fine to medium sand with some clayey and peaty layers						s	1,3,5 N = 8
	-2								N - 0
ł	-								
F	-								
E	-								
	-								
Ē	-3								4,6,7
ł	L							S	N = 13
ŀ	-								
-0									
ŀ	-4								
ŀ	-								
Ē								┝─┤ │	
	-							s	4,9,12 N = 21
ŀ	- 5							\vdash	
Ē									
ŀ	-								
ŀ	-								
-7-									
ŀ	-								
ŀ	-								
Ē									
-9	[
ŀ	-7 -								
Ē									
E	[
-4	-								
Ē	- 8								
E	[
ţ	-								
Ē	-								
Ļφ	- 9					i ii ii			
ŀ	-								
ŀ	-								
Ē									
-φ									

RIG: Explora 140

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 27.8m

TYPE OF BORING:Solid flight auger to 5.50m, Rotary wash-bore to 27.80m, NMLC-coring to 33.82m**WATER OBSERVATIONS:**Free groundwater observed at 1.2m (measured off SPT rod)

REMARKS: Soil descriptions and strengths at depth based on CPT111

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT:

	SAM	PLIN	3 & IN SITU TESTING	LEGEND]
A B BL C	Auger sample Bulk sample K Block sample Core drilling Disturbed sample	G P U× W 2	Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep	PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MP pp Pocket penetrometer (kPa) S Standard penetration test	a)	Douglas Partners
Ē	Environmental sample	¥	Water level	V Shear vane (kPa)		Geotechnics Environment Groundwater

SURFACE LEVEL: 3.79 AHD **EASTING:** 332247 **NORTHING:** 6244540 **DIP/AZIMUTH:** 90°/-- BORE No: BH11 PROJECT No: 85777.15 DATE: 18/1/2019 SHEET 2 OF 4

П		Description	Degree of Weathering B B B B B B B B B B B B B B B B B B B	Rock Strength		Fracture	Discontinuities	Sa	ilam	na &	In Situ Testing
R	Depth	of	Weathering		ater	Spacing (m)	B - Bedding J - Joint		_		
	(m)	Strata	EW MW SSW GR	Strength Exclow High Kery High Kery High Kery High	N 10.0	0.05 0.100 1.00 1.00	S - Shear F - Fault	Type	Rec.	RQD %	& Comments
	- 11	SAND: medium dense to dense, pale brown, fine to medium sand with some clayey and peaty layers (continued)									
	- 12										
- ကု - - ကု - 	- 13										
-10	13.3	CLAY: stiff to very stiff clay									
	- 14										
	- 15										
-12	- 16										
-13	- 17										
	- 18										
-15	- 19										
-16											

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 27.8m

TYPE OF BORING: Solid flight auger to 5.50m, Rotary wash-bore to 27.80m, NMLC-coring to 33.82m **WATER OBSERVATIONS:** Free groundwater observed at 1.2m (measured off SPT rod)

REMARKS: Soil descriptions and strengths at depth based on CPT111

	SAM	PLINC	3 & IN SITU TESTING	LEGEND]
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	DOUDIAS Pariners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater
					-

SURFACE LEVEL: 3.79 AHD **EASTING:** 332247 **NORTHING:** 6244540 **DIP/AZIMUTH:** 90°/-- BORE No: BH11 PROJECT No: 85777.15 DATE: 18/1/2019 SHEET 3 OF 4

		Description	Degree of Weathering	<u>.</u>	Rock Strength _{ច្ប}	Fracture	Discontinuities	Sa	mplii	ng & I	In Situ Testing
Ч	Depth (m)	of		Log	Very Low Very Low Low Medium High Ex High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
			H M M M M M M M M M M M M M M M M M M M	U	ExLo Very Very ExHigh	0.05 0.10 1.00	S - Shear F - Fault	Ļ	с я	ж,	Comments
· · · · · · · · · · · · · · · · · · ·	21	CLAY: stiff to very stiff clay (continued) hard below 20m									
	22										
-19	23										
	24										
-21	25										
-22	26										
-23	27										
-24	27.8 28	LAMINITE: very low and very low		· · · · ·			ן 27.92m: J5° & 75°, st,	С	100	0	PL(A) = 0.1
 		to low strength, highly weathered, fractured and slightly fractured, pale grey and grey laminite with approximately 25% fine sandstone		· · · · · · · · · · · · · · ·			27.96-28.08m: J80-90°, ir, cly vn 28.11m: J70°, pl,				PL(A) = 0.18
-26	²⁹ 29.1	LAMINITE: medium strength with several very low strength bands, extremely and slightly weathered, pale grey and grey laminite with approximately 25% fine sandstone					28.11ff; 270°, pi, partially he 28.28-28.29m: Cs, 10mm 28.39-28.44m: fg, 10mm 28.56-28.66m: J70°, ir, ro, cln 28.73-28.84m; J65-80°, ir, cly vn	С	100	49	PL(A) = 0.42

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 27.8m

TYPE OF BORING:Solid flight auger to 5.50m, Rotary wash-bore to 27.80m, NMLC-coring to 33.82m**WATER OBSERVATIONS:**Free groundwater observed at 1.2m (measured off SPT rod)

REMARKS: Soil descriptions and strengths at depth based on CPT111

SAMPLING & IN SITU TESTING LEGEND A Auger sample G Gas sample Pliston sample B Bulk sample Piston sample Pliston sample Pliston sample C Core drilling W Water sample Plicton periodicate (kPa) D bisturbed sample P Water sample Plicton sample Bulk sample V Water sample Plicton sample Bulk sample V Water sample Plicton sample Bulk sample V Water sample Plicton sample V Water sample V S Standard penetration lest E Environmental sample Water level V Shear vane (kPa)

SURFACE LEVEL: 3.79 AHD **EASTING:** 332247 **NORTHING:** 6244540 **DIP/AZIMUTH:** 90°/--

BORE No: BH11 **PROJECT No: 85777.15 DATE:** 18/1/2019 SHEET 4 OF 4

\square		Description	Degree of Weathering ∰ ≩ ≩ § ∞ ∰	о	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	In Situ Testing
R	Depth (m)	of		ndg 9		Spacing (m)	B - Bedding J - Joint	ě	e %	0	Test Results
	(11)	Strata	H M M M M M M M M M M M M M M M M M M M	5-	Very Low Very Low High Ex High	0.01 0.105 0.50 1.00	S - Shear F - Fault	Type	C S	RQD %	& Comments
-27		LAMINITE: medium strength with several very low strength bands, extremely and slightly weathered, pale grey and grey laminite with approximately 25% fine sandstone laminations <i>(continued)</i>					29.2m: B10°, pl, cly 5mm 29.26-29.28m: Ds, 20mm 29.44m: B10°, pl, cly 5mm 20.57m: M5°, pl, co, clp	с	100		PL(A) = 0.42
	-31 31.0	LAMINITE: medium to high and high strength, fresh, slightly fractured, pale grey and grey laminite with approximately 20% fine sandstone laminations					29.57m: J45°, pl, ro, cln 29.64-29.66m: Ds, 20mm 29.89-29.96m: Ds, 70mm 29.97-30.11m: J60-90°, ir, cly vn				PL(A) = 1.8
	- 32						130.12-30.21m: Ds, 90mm 30.24m: J30°, cu, ti 3027-30.73m; J(x5), 45°, pl, ro, cly vn 30.99m: J45°, pl, cly vn	с	100	74	PL(A) = 0.98
	- 33						31.05m: J45°, pl, he 31.77m: J45°, pl, ro, cln 31.85m: J45°, pl, partially he 32.22m: J60-70°, cu, ro, cln 32.34m: J45°, pl, sm,				PL(A) = 1.3
-30	33.82 - 34	Bore discontinued at 33.82m	; ; ; ; ; •				cly vn 33.05m: J45°, ir, ro, cln 33.34-33.57m: J(x3), 45°, pl, sm, cln				
	- 35										
	- 36										
	- 37										
	- 38										
	- 39										
-36											

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 27.8m

TYPE OF BORING: Solid flight auger to 5.50m, Rotary wash-bore to 27.80m, NMLC-coring to 33.82m WATER OBSERVATIONS: Free groundwater observed at 1.2m (measured off SPT rod) **REMARKS:** Soil descriptions and strengths at depth based on CPT111

	SAM	PLINO	3 & IN SITU TESTING	LEGEND									
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)					_		_	_	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)				Doug					
BLI	< Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MP	a)								
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	·				7 - •				
D	Disturbed sample	⊳	Water seep	S Standard penetration test			•		- · ·	- ·	,		
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)				Geotechnic.	s /	Enviro	onment	Groun	dwater
					_	-							

Douglas Partners Geotechnics Environment Groundwater 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		80 - 32.00 m 0.: *1	and the second second second second second second second second second second second second second second second	
			and the second second second second second second second second second second second second second second second	
28- 1	AN ROSSING	- 21AB12+2	DOM DELTE	and the
the second second second second second second second second second second second second second second second se	AND THERE		Here He	PAN
31				
	27.80 - 32.00			

BORE: 11	PROJEC	T: MASCOT	JANUARY 2	019
Coolechnics Environment	rtners Groundwater	Project No: 85777 BH ID: 8H 11 Depth: 32000 - 3 Core Box No.: *2		
32			ji ji	
53 Me				3382-EOP
	14			
	a service to			
		0.0.00.00	-	
	32	.00 – 33.82m		

SURFACE LEVEL: 4.03 AHD **EASTING:** 332299 **NORTHING:** 6244531 **DIP/AZIMUTH:** 90°/--

BORE No: BH12 PROJECT No: 85777.15 DATE: 21/1/2019 SHEET 1 OF 4

		Description	Degree of Weathering	은 Rock Strength	, Fracture	Discontinuities	Sampling &	In Situ Testing
님	Depth	of	weathering	Graphic Graphic Crow Very Low Low Very High High Ex High Res High Ex High Crow	jag Spacing			
"	(m)	Strata	2 2 3 2	Gradina Contraction Contractio	Value (m) Value (m)	B - Bedding J - Joint S - Shear F - Fault	Type Core Rec. % RQD	& Commonto
-4	0.04		H M M M M M M M M M M M M M M M M M M M		0.005			Comments
	0.45	FILLING: brown and dark brown,						
	1	SAND: loose to medium dense, pale brown fine to medium grained sand, moist					<u> </u>	
	1.7 2 2.0	SILTY SANDY CLAY: soft, dark brown silty sandy clay					S	2,1,2 N = 3
	2 2.0	SAND: loose to medium dense, pale brown, fine to medium sand, saturated						
	3							421
							S	4,2,1 N = 3
	4							
	5						S	0,4,6 N = 10
. ' - 								
	5.8 6	SAND: medium dense to dense, pale brown, fine to medium sand with some clayey and peaty layers						
	7							
-4-	8							
· · · · · · · · · · · · · · · · · · ·	9							
-		ora 140 DRILL	ER: John S		OGGED: RB/SI	CASING: HW		

RIG: Explora 140

CLIENT:

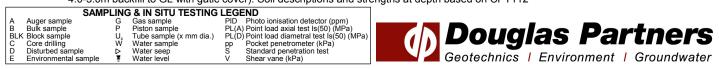
PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S


LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 24.1m

TYPE OF BORING: Solid flight auger to 5.5m, Rotary wash-bore to 24.1m, NMLC-coring to 31.95m

WATER OBSERVATIONS: Free ground water observed at 1.2m on 24 Jan 2019

REMARKS: Excess core (0.38m) was recovered during 27.04 - 29.35m run. Standpipe installed to 9.0m (screen 6.0-9.0m, gravel 5.0-9.0m, bentonite 4.0-5.0m backfill to GL with gatic cover). Soil descriptions and strengths at depth based on CPT112

BOREHOLE LOG

SURFACE LEVEL: 4.03 AHD **EASTING:** 332299 **NORTHING:** 6244531 **DIP/AZIMUTH:** 90°/--

BORE No: BH12 PROJECT No: 85777.15 DATE: 21/1/2019 SHEET 2 OF 4

			Rock	Freedow	Discontinuities	Sampling & In Situ Testing				
	Depth	Description	Degree of Weathering Cappi B B B Cappi Cap	Rock Strength	Fracture Spacing	Discontinuities				
R	(m)	of Strata	Grap Grap	Strendtum Medium Medium Kery High Ex High	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	%	l'est Results &
- 9 		SAND: medium dense to dense, pale brown, fine to medium sand with some clayey and peaty layers (continued)					<u> </u>	<u> </u>		Comments
	- 11									
	· 12									
	· 13 13.3 ·	CLAY: stiff to very stiff, light grey and brown clay								
	· 14									
	· 15									
	16									
		stiff to hard below 17m								
	. 19									

RIG: Explora 140

CLIENT:

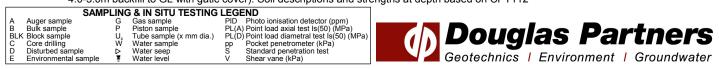
PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S


LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 24.1m

TYPE OF BORING: Solid flight auger to 5.5m, Rotary wash-bore to 24.1m, NMLC-coring to 31.95m

WATER OBSERVATIONS: Free ground water observed at 1.2m on 24 Jan 2019

REMARKS: Excess core (0.38m) was recovered during 27.04 - 29.35m run. Standpipe installed to 9.0m (screen 6.0-9.0m, gravel 5.0-9.0m, bentonite 4.0-5.0m backfill to GL with gatic cover). Soil descriptions and strengths at depth based on CPT112

BOREHOLE LOG

SURFACE LEVEL: 4.03 AHD **EASTING:** 332299 NORTHING: 6244531 DIP/AZIMUTH: 90°/--

BORE No: BH12 PROJECT No: 85777.15 DATE: 21/1/2019 SHEET 3 OF 4

		Description	Degree of Weathering of Degree of De		Rock Strength ត្រ	Fracture	Discontinuities				In Situ Testing	
RL	Depth (m)	of Strata	A H W MW S S W F R S S F S S S S S S S S S S S S S S S S S	Graph Log	Strendtum Meduum High Kery High Kery High Strend Meduum	Spacing (m) 5000 0001	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments	
	-21 -22 -23	CLAY: stiff to very stiff, light grey and brown clay <i>(continued)</i>										
-	- 24 - 24.1	SILTSTONE: very low strength, highly weathered, slightly fractured, grey siltstone					24.74m: B 0°, pl, cly 9mm, fe 24.85m: B 15°, ir, fe, cly 9mm 25.1m: J 45°, pl, cly vn,	С	100	0	PL(A) = 0.08	
-	-26	LAMINITE: low then medium					25.46m: B 10°, pl, cly vii, 25.46m: B 10°, pl, cly 2mm, fe 26.30-26.31m: Ds	с	100	15	PL(A) = 0.1 PL(A) = 0.14	
	- 27 - 28 28.0 - 28 28.0 - 29 - 29	strength with several extremely low strength bands, slightly weathered, slightly fractured grey laminite LAMINITE: medium to high strength, slightly weathered, slightly fractured grey laminite with approximately 30% fine sandstone laminations					27.07-27.08m: Cs 27.16-27.18m: Cs 27.22-27.23m: Cs 27.31-27.32m: Cs 27.40-27.65m: J 75°-90°, ir, ro, cln, partially he 27.55-27.58m: Cs 27.73-27.85m: B (x3) 0°-5°, pl, cly 7-9mm 28.19-28.69m: B (x8) 0°-10°, pl, cly 5-9mm 28.74m: J 30°&45°, st, ro, cln 29.03-29.36m: B (x4) 0°-5°, pl, cly 3-6mm	С	100	33	PL(A) = 0.27 PL(A) = 0.95 PL(A) = 1.4	
- - -	-			· · · · ·			29.7m: J 50°, pl, ro, cln 29.85m: J 40°, pl, cly vn	с	100	90		

RIG: Explora 140

CLIENT:

PROJECT:

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 24.1m

TYPE OF BORING: Solid flight auger to 5.5m, Rotary wash-bore to 24.1m, NMLC-coring to 31.95m

WATER OBSERVATIONS: Free ground water observed at 1.2m on 24 Jan 2019

REMARKS: Excess core (0.38m) was recovered during 27.04 - 29.35m run. Standpipe installed to 9.0m (screen 6.0-9.0m, gravel 5.0-9.0m, bentonite 4.0-5.0m backfill to GL with gatic cover). Soil descriptions and strengths at depth based on CPT112

BOREHOLE LOG

Enstruct Group Pty Ltd

LOCATION: 295-297 King Street Mascot

QANTAS Sydney Flight Training Centre

CLIENT: PROJECT: **SURFACE LEVEL:** 4.03 AHD **EASTING:** 332299 **NORTHING:** 6244531 **DIP/AZIMUTH:** 90°/-- BORE No: BH12 PROJECT No: 85777.15 DATE: 21/1/2019 SHEET 4 OF 4

Π		Description	Degree of Weathering	<u>.</u>	Rock Strength ់ត្	Fracture	Discontinuities	Sa	mplii	ng &	In Situ Testing
Ъ	Depth (m)	of		Log	Strength Very Low High Kery High Kery High Kery High Kery High Kery High Kery High Kery High Kery High Kery Low Ke	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
6		Strata	E N N N N N N N N N N N N N N N N N N N	U	Very Nedi Very Very 01	0.05 0.10 0.50 1.00	S - Shear F - Fault	ŕ	йğ	ж°.	Comments
-27	-31	LAMINITE: medium to high strength, slightly weathered, slightly fractured grey laminite with approximately 30% fine sandstone laminations <i>(continued)</i>					30.17-30.19m: B (x2) 30°, pl, cly 1-2mm 30.43m: J 70°, ir, ro, cln 30.87-30.98m: B (x3) 5°, pl, cly 1mm 31.10-31.94m: J (x6) 40°-50°,pl, ro, sm, cln&cly vn	С	100		PL(A) = 1.1
E	21.05			· · · ·							PL(A) = 1.1
-28	- ₃₂ 31.95	Bore discontinued at 31.95m									
	- - - -										
-29	- 33										
[
Ē	.										
E											
-3-	- 34										
Ē											
ŧ											
-											
- 67	- 35										
Ē											
-	- - 36										
- "											
E											
8	- 37										
Ē											
E											
E	- - -										
-9-	- 38				iiiiii						
E											
ŀ	-										
-35	- 39										
E	.										
E			I I I I I I								
ŀ						11 11					
ЕЦ											

RIG: Explora 140

DRILLER: John S

LOGGED: RB/SI

CASING: HW to 5.6m, HQ to 24.1m

TYPE OF BORING: Solid flight auger to 5.5m, Rotary wash-bore to 24.1m, NMLC-coring to 31.95m

WATER OBSERVATIONS: Free ground water observed at 1.2m on 24 Jan 2019

REMARKS: Excess core (0.38m) was recovered during 27.04 - 29.35m run. Standpipe installed to 9.0m (screen 6.0-9.0m, gravel 5.0-9.0m, bentonite 4.0-5.0m backfill to GL with gatic cover). Soil descriptions and strengths at depth based on CPT112

	SAME	PLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	1	Douolas Pariners
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

BORE: 12	PROJECT	: MASCOT	JANUARY 2019
		Project No: 85777-15 BH 10: 8H 12 Depth: 240-10 - 28 Core Box No.: -1	
85777.15 MAS(
24.1 m			M LANS
5			and the second second
6	H FARREN	A A DALE HAR	CARLES AND AND A CARLES
7	- M		
m Kat		0 – 28.00m	

Appendix D

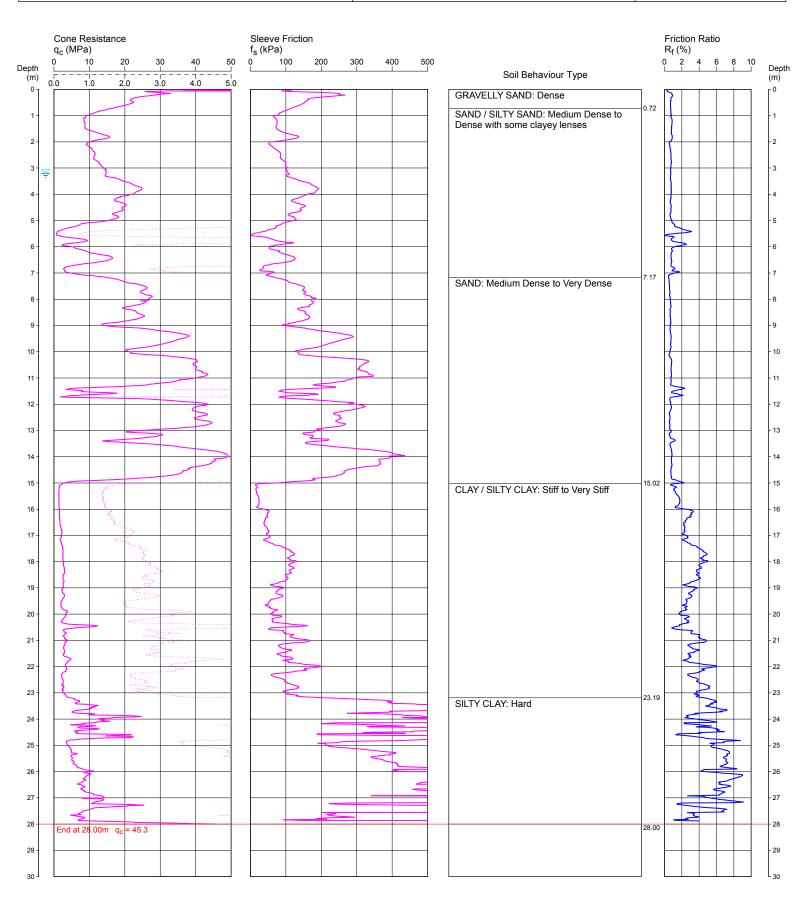
Cone Penetration Tests

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 5.61


COORDINATES: 332213E 6244341N

Douglas Partners Geotechnics | Environment | Groundwater

DATE 7/01/2019 PROJECT No: 85777.15

CPT101

Page 1 of 1

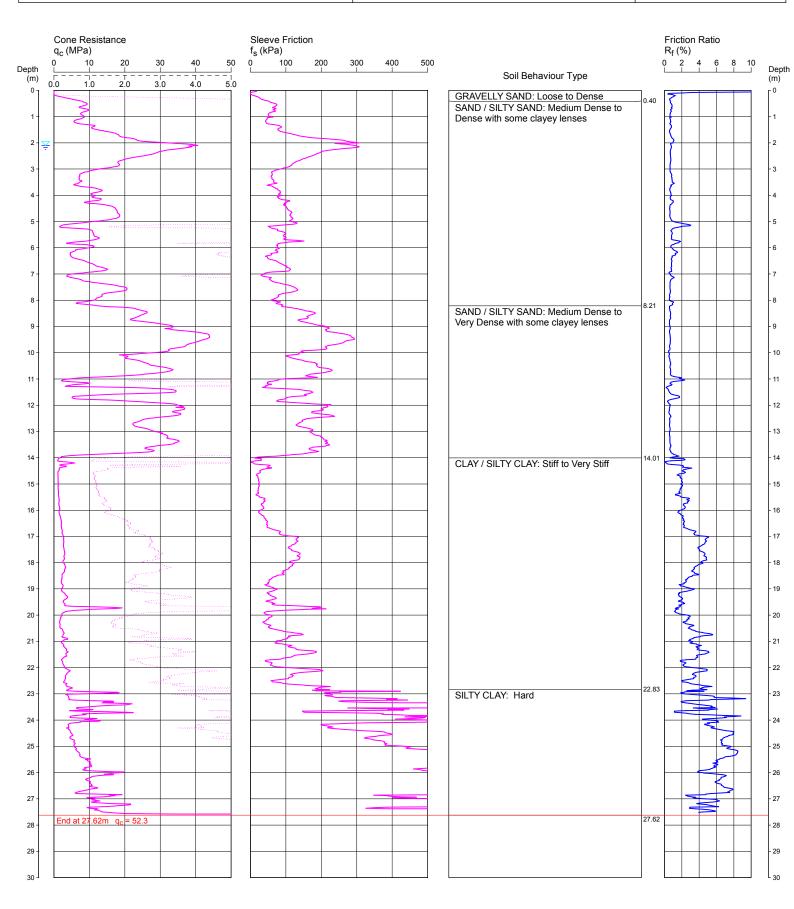
REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE ROD BOWING.

GROUNDWATER OBSERVED AT 3.2 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 3.20m depth (assumed)

File: P:\85777.15 - AIRPORT - QANTAS Filight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT101.CP5 Cone ID: 181002 Type: I-CFXY-10 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD


PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 5.08

COORDINATES: 332258E 6244337N

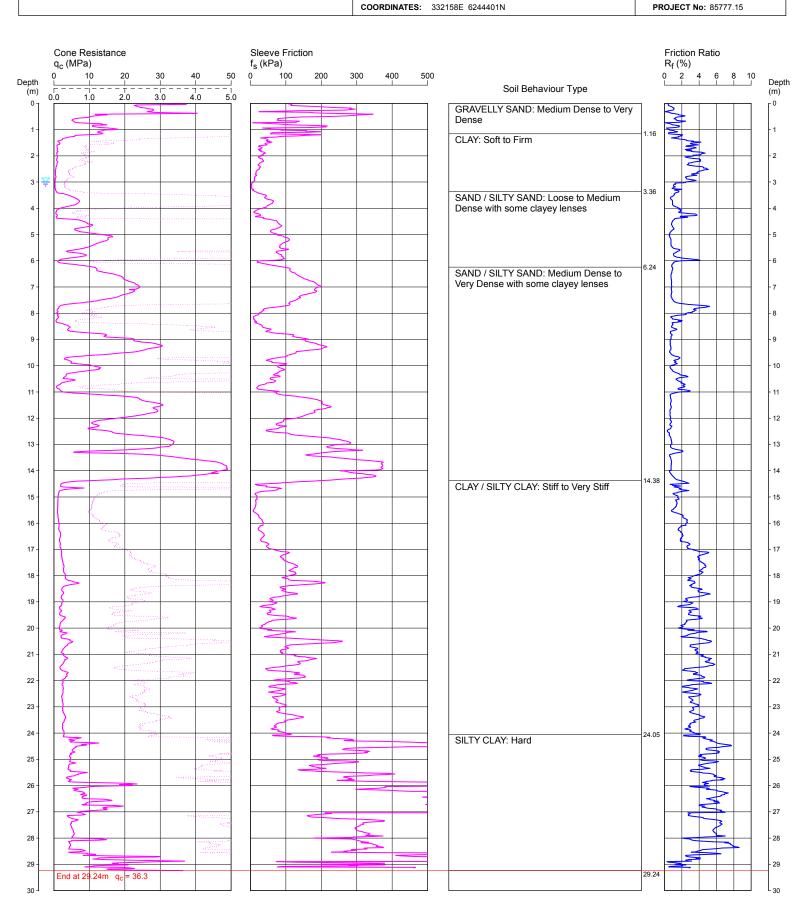
PROJECT No: 85777.15

REMARKS: CONCRETE CORE TO 0.2 m DEPTH. TEST DISCONTINUED DUE TO CONE TIP REFUSAL. HOLE COLLAPSE AT 0.8 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 2.10m depth (assumed)

File: P:\ds777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT102.CP5
Cone ID: 181002
Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD


PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 5.19

CPT103 Page 1 of 1 DATE 7/01/2019

PROJECT No: 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. GROUNDWATER OBSERVED AT 3.0 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 3.00m depth (assumed)

File: P:\85777.15 - AIRPORT - QANTAS Filight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT103.CP5 Cone ID: 181002 Type: I-CFXY-10 Type: I-CFXY-10

ConePlot Version 5.9.2 © 2003 Douglas Partners Pty Ltd **Douglas Partners** Geotechnics | Environment | Groundwater

CLIENT: ENSTRUCT GROUP PTY LTD

0.0

Depth

(m)

End at 28

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 5.06

CPT104 Page 1 of 1

> DATE 7/01/2019 PROJECT No: 85777.15

COORDINATES: 332223E 6244388N

Cone Resistance Sleeve Friction Friction Ratio q_c (MPa) f_s (kPa) R_{f} (%) Depth Soil Behaviour Type (m) 4.0 1.0 2.0 3.0 5.0 - 0 Dummy Cone used 1.21 SAND / SILTY SAND: Medium Dense to Very Dense with some clayey lenses 14.57 CLAY / SILTY CLAY: Stiff to Very Stiff Z 22.09 SILTY CLAY: Hard

REMARKS: DUMMY CONE FROM 0.74 TO 1.2 m TO PENETRATE FILLING. TEST DISCONTINUED DUE TO EXCESSIVE ROD BOWING. GROUNDWATER OBSERVED AT 2.9 m AFTER WITHDRAWAL OF RODS.

.20m q_c

= 14.2

File: P:\85777.15 - AIRPORT - QANTAS Filght Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT104.CP5 Cone ID: 181002 Type: I-CFXY-10 Type: I-CFXY-10

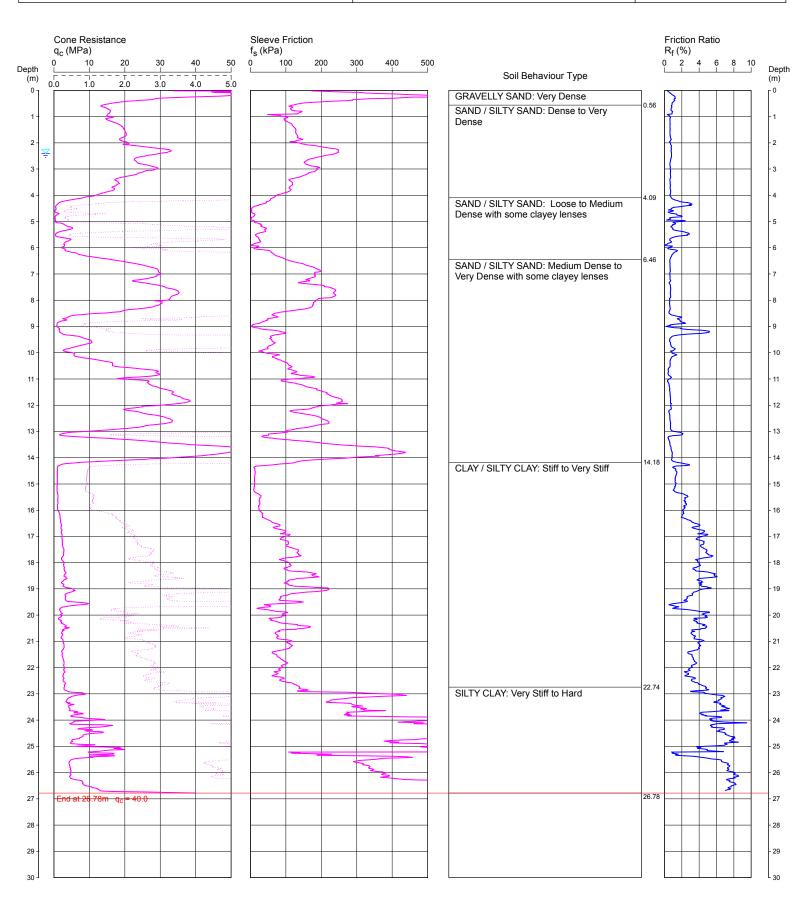
ConePlot Version 5.9.2 © 2003 Douglas Partners Pty Ltd

28.20

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT


REDUCED LEVEL: 4.94

CPT105 Page 1 of 1

Douglas Partners Geotechnics | Environment | Groundwater

COORDINATES: 332262E 6244382N

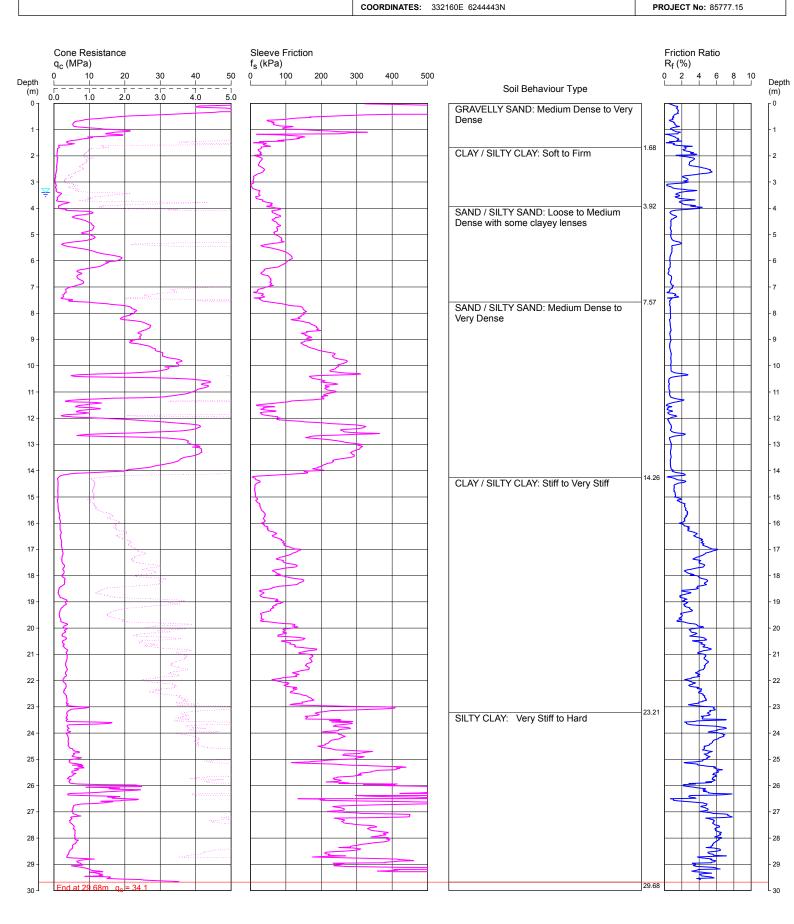
DATE 8/01/2019 PROJECT No: 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. GROUNDWATER OBSERVED AT 2.4 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 2.40m depth (assumed)

File: P\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT105.CP5 Cone ID: 181002 Type: I-CFXY-10 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD


PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 4.84

CPT106 Page 1 of 1 DATE 9/01/2019

PROJECT No: 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. GROUNDWATER OBSERVED AT 3.4 m AFTER WITHDRAWAL OF RODS.

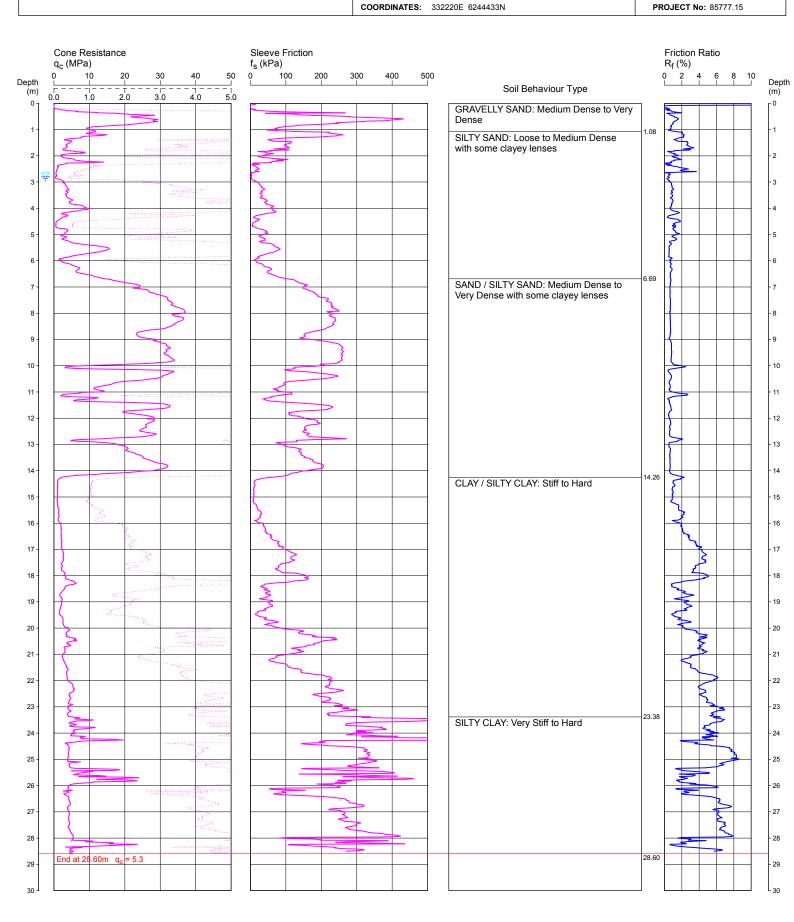
File: P\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT106.CP5 Cone ID: 181002 Type: I-CFXY-10 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 4.90


CPT107 Page 1 of 1

DATE

Douglas Partners Geotechnics | Environment | Groundwater

PROJECT No: 85777.15

11/01/2019

REMARKS: CONCRETE CORE TO 0.2 m DEPTH. TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. HOLE COLLAPSE AT 0.5 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 2.80m depth (assumed)

File: P:\85777.15 - AIRPORT - QANTAS Filight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT107.CP5 Cone ID: 181002 Type: I-CFXY-10 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 4.94

COORDINATES: 332275E 6244413N

CPT108 Page 1 of 1

DATE 24/01/2019

PROJECT No: 85777.15

Cone Resistance Sleeve Friction Friction Ratio q_c (MPa) f_s (kPa) R_{f} (%) Depth Depth Soil Behaviour Type (m) (m) 4.0 1.0 2.0 0.0 3.0 5.0 - 0 0.32 SAND / SILTY SAND: Loose to Medium Dense with some clayey lenses 6.29 SAND / SILTY SAND: Medium Dense to Dense with some clayey lenses 14.18 CLAY / SILTY CLAY: Stiff to Very Stiff with occasional sand lenses Ş 23.04 SILTY CLAY: Very Stiff to Hard = 18.2 29.40 End at 2 40m q

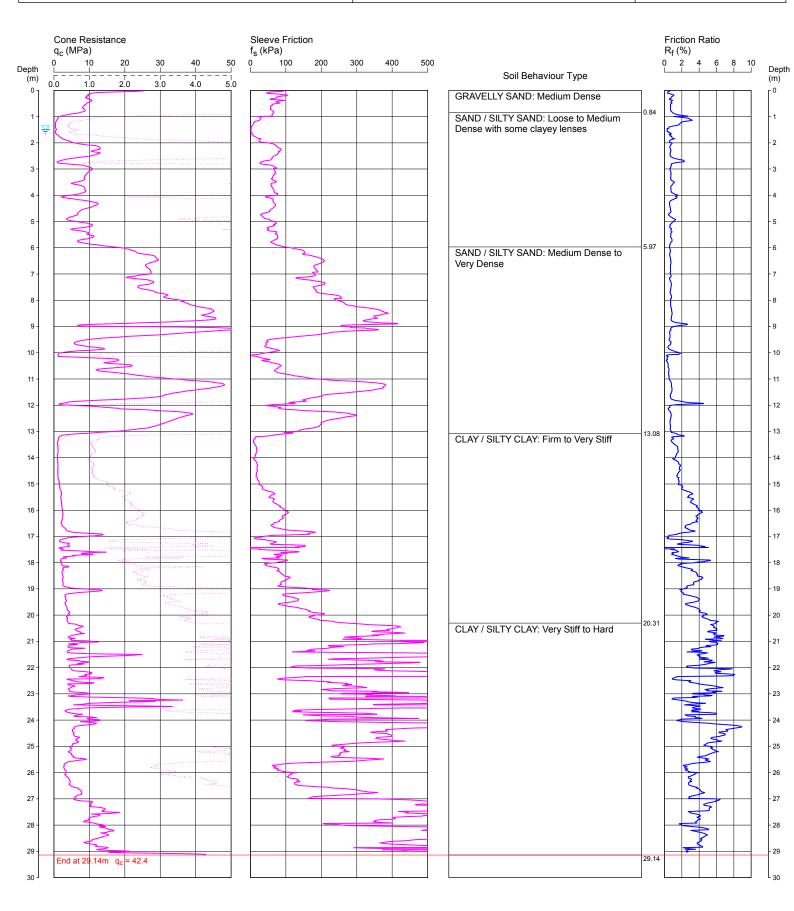
REMARKS: CONCRETE CORE TO 0.35 m DEPTH. TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. GROUNDWATER OBSERVED AT 2.4 m AFTER WITHDRAWAL OF RODS.

File: P:\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT108.CP5 Cone ID: 161225 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT


REDUCED LEVEL: 3.81

COORDINATES: 332240E 6244500N

CPT109 Page 1 of 1

 DATE
 9/01/2019

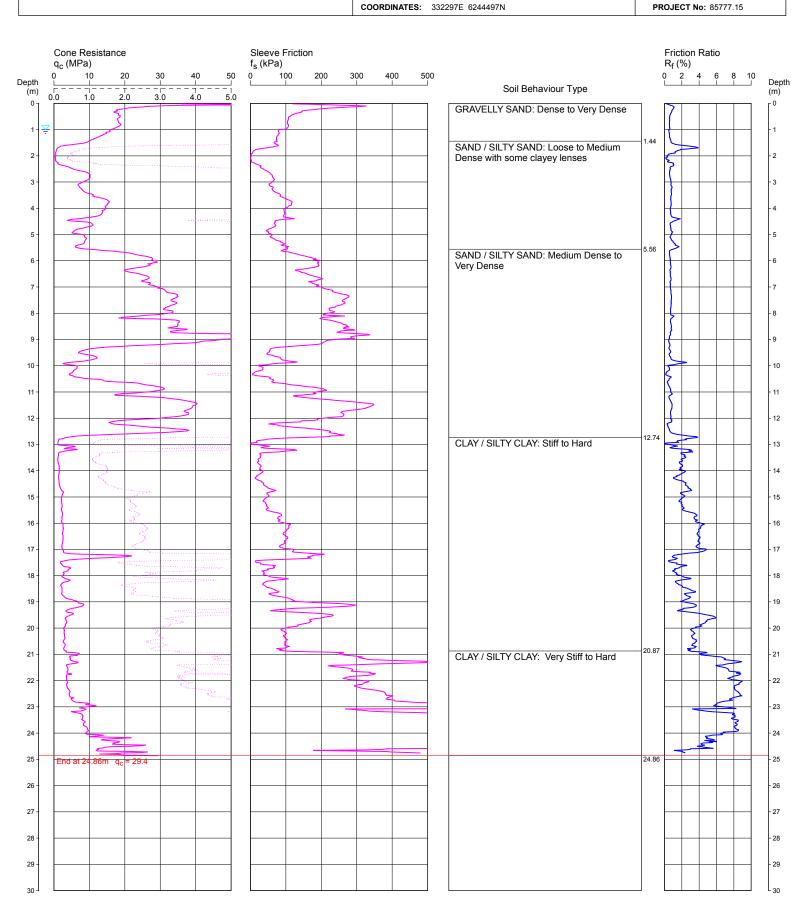
 PROJECT No:
 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. HOLE COLLAPSE AT 1.5 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 1.50m depth (assumed)

File: P:\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT109.CP5 Cone ID: 181002 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD


PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 3.98

PROJECT No: 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. GROUNDWATER OBSERVED AT 1.0 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 1.00m depth (assumed)

File: P:\85777.15 - AIRPORT - QANTAS Filight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT110.CP5 Cone ID: 181002 Type: I-CFXY-10 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 3.79

COORDINATES: 332247E 6244540N

CPT111 Page 1 of 1

 DATE
 10/01/2019

 PROJECT No:
 85777.15

Cone Resistance Sleeve Friction Friction Ratio q_c (MPa) f_s (kPa) R_{f} (%) Depth Depth Soil Behaviour Type (m) (m) 4.0 1.0 2.0 0.0 3.0 5.0 - 0 GRAVELLY SAND: Dense to Very Dense 0.64 SAND / SILTY SAND: Medium Dense with some clayey lenses 5.46 SAND / SILTY SAND: Medium Dense to Very Dense with some clayey layers 13.26 CLAY / SILTY CLAY: Stiff to Very Stiff 20.34 CLAY / SILTY CLAY: Hard 28.00 End at 28.00m q_c = 7.2

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE ROD BOWING. HOLE COLLAPSE AT 1.4 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 1.20m depth (assumed)

File: P:\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT111.CP5 Cone ID: 181002 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 4.03

COORDINATES: 332299E 6244531N

PROJECT No: 85777.15

Cone Resistance q _c (MPa)	Sleeve Friction f _s (kPa)			Friction Ratio R _f (%)
		20		
		Soil Behaviour Type	L	
		GRAVELLY SAND: Medium Dense		\geq
3			- 1.53	
	$\left\{ \begin{array}{c} \\ \end{array} \right\}$	SAND / SILTY SAND: Loose to Medium Dense		5
				$\left\{ \right\}$
				5
				}
				8
				\$
				§
		SAND / SILTY SAND: Medium Dense to Very Dense with some clay lenses		
				+ +
				$\left \right $
				$ \mathbf{y} $
5			13.28	2
		CLAY / SILTY CLAY: Stiff to Very Stiff		
	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			$\left \left \right\rangle \right $
	2 - -			
		CLAY / SILTY CLAY: Stiff to Hard	17.04	$\langle \langle \rangle$
				2
				$ \mathbf{A} $
Contraction of the second seco				
				4
End at 24.30m q _c = 6.1			24.30	

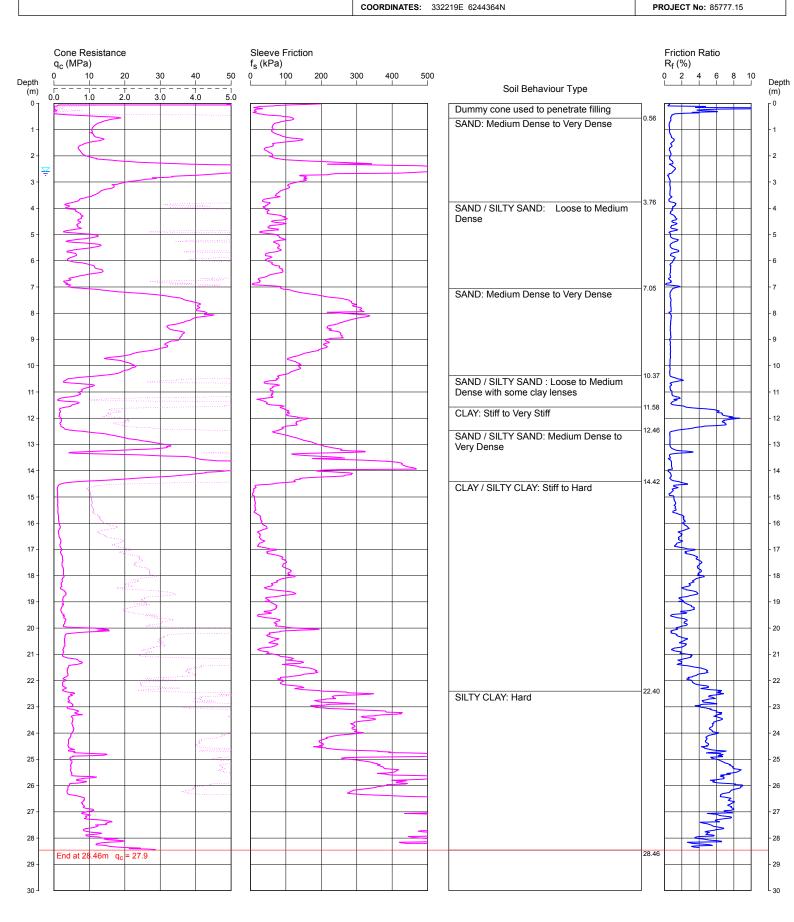
REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING.

GROUNDWATER OBSERVED AT 1.0 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 1.00m depth (assumed)

File: P\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT112.CP5
Cone ID: 181002
Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD


PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 5.30

CPT113 Page 1 of 1 DATE 8/01/2019

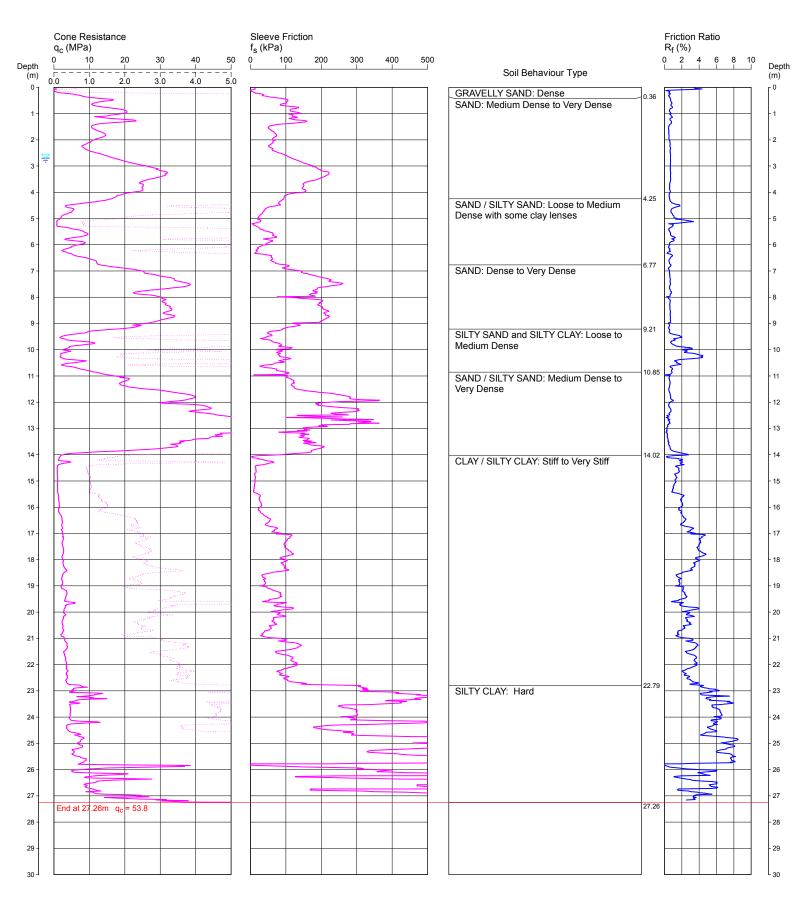
PROJECT No: 85777.15

REMARKS: DUMMY CONE FROM 0.04 TO 0.5 m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO EXCESSIVE ROD BOWING. HOLE COLLAPSE AT 2.6 m AFTER WITHDRAWAL OF RODS.

File: P:\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT113.CP5 Cone ID: 181002 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE


LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 5.07

COORDINATES: 332262E 6244359N

CPT114 Page 1 of 1 DATE 11/01/2019

PROJECT No: 85777.15

REMARKS: CONCRETE CORE TO 0.13 m DEPTH. TEST DISCONTINUED DUE TO CONE TIP REFUSAL. GROUNDWATER OBSERVED AT 2.7 m AFTER WITHDRAWAL OF RODS.

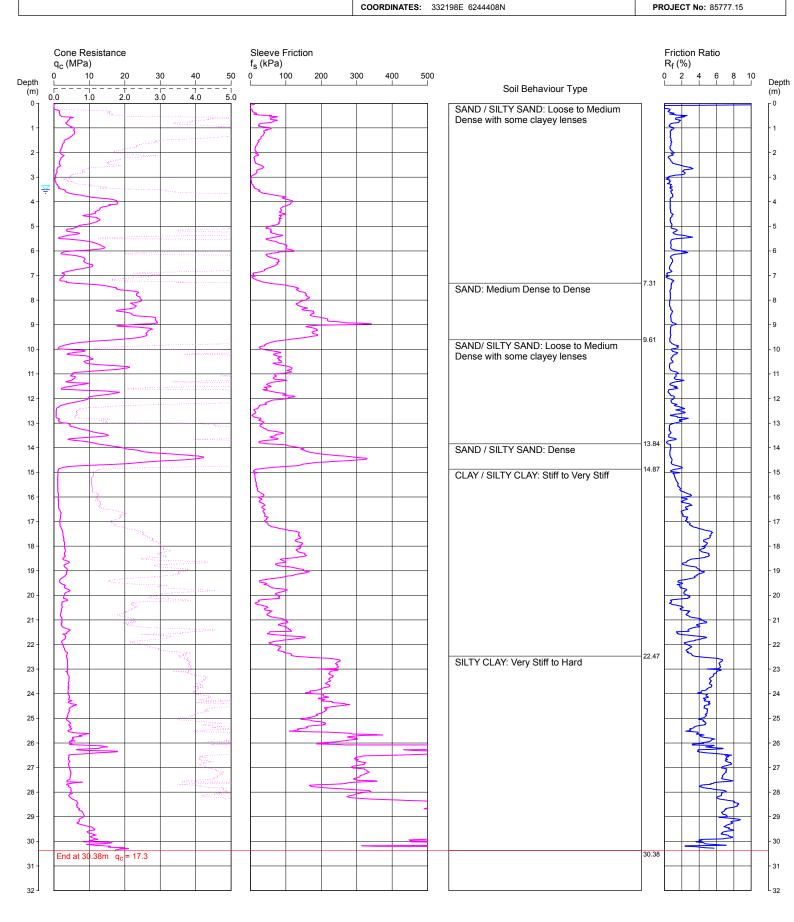
Water depth after test: 2.70m depth (assumed)

File: P:\8577.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT114.CP5 Cone ID: 181002 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT


REDUCED LEVEL: 5.09

CPT115

Page 1 of 1

 DATE
 10/01/2019

 PROJECT No:
 85777.15

REMARKS: CONCRETE CORE TO 0.2 m DEPTH. TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. GROUNDWATER OBSERVED AT 3.5 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 3.50m depth (assumed)

File: P:\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT115.CP5 Cone ID: 181002 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

Cone Resistance

1.0

q_c (MPa)

0.0

Depth

(m)

л

End at 3

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 5.02

Sleeve Friction

CPT116 Page 1 of 1 DATE 7/01/2019

PROJECT No: 85777.15

Friction Ratio

COORDINATES: 332161E 6244418N

f_s (kPa) R_{f} (%) Depth Soil Behaviour Type (m) 4.0 2.0 3.0 5.0 - 0 Dummy cone used to penetrate filling 1.32 SILTY SAND: Loose to Medium Dense 3.63 SAND / SILTY SAND: Medium Dense with some clayey lenses 7.94 SAND / SILTY SAND: Medium Dense to ئح Very Dense with some clayey lenses 14.41 CLAY / SILTY CLAY: Stiff to Very Stiff ζ

SILTY CLAY: Very Stiff to Hard

REMARKS: DUMMY CONE FROM 0.76 TO 1.3 m TO PENETRATE FILLING. TEST DISCONTINUED DUE TO SLEEVE REFUSAL. HOLE COLLAPSE AT 3.0 m AFTER WITHDRAWAL OF RODS.

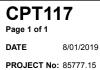
Water depth after test: 3.00m depth (assumed)

.24m q_c

= 19.4

File: P:\8577.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT116.CP5 Cone ID: 181002 Type: I-CFXY-10

23.06


31.24

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 4.91

COORDINATES: 332225E 6244414N

q _c (MPa) 0 10 20 30 40 50	f _s (kPa) 0 100 200 300 400 500		R _f (%) 0 2 4 6	8 10
0.0 1.0 2.0 3.0 4.0 5.0		Soil Behaviour Type		
		GRAVELLY SAND: Medium Dense to Very Dense	2	
5			1.40	++
		Dummy cone used to push through filling		
2		SAND / SILTY SAND: Medium Dense to	2.72	++
		Very Dense with minor clayey lenses		
				+
			5	
			$\left \right $	
			2	
				++
			+ + + + + + + + + + + + + + + + +	++
				\square
				+
				+
		CLAY / SILTY CLAY: Stiff to Very Stiff	14.30	
	$\left \begin{array}{c} \\ \\ \end{array} \right $		3	
				++
				+
and the second s				
	3		3	+
				+
Bernard Be				
			5	
		SILTY CLAY: Very Stiff to Hard	22.67	$\neg \uparrow$
				<u>`</u> +
				7
				2
End at 29.00m q _c = 18.8			29.00	++
210 at 29.0011 40 10.0				

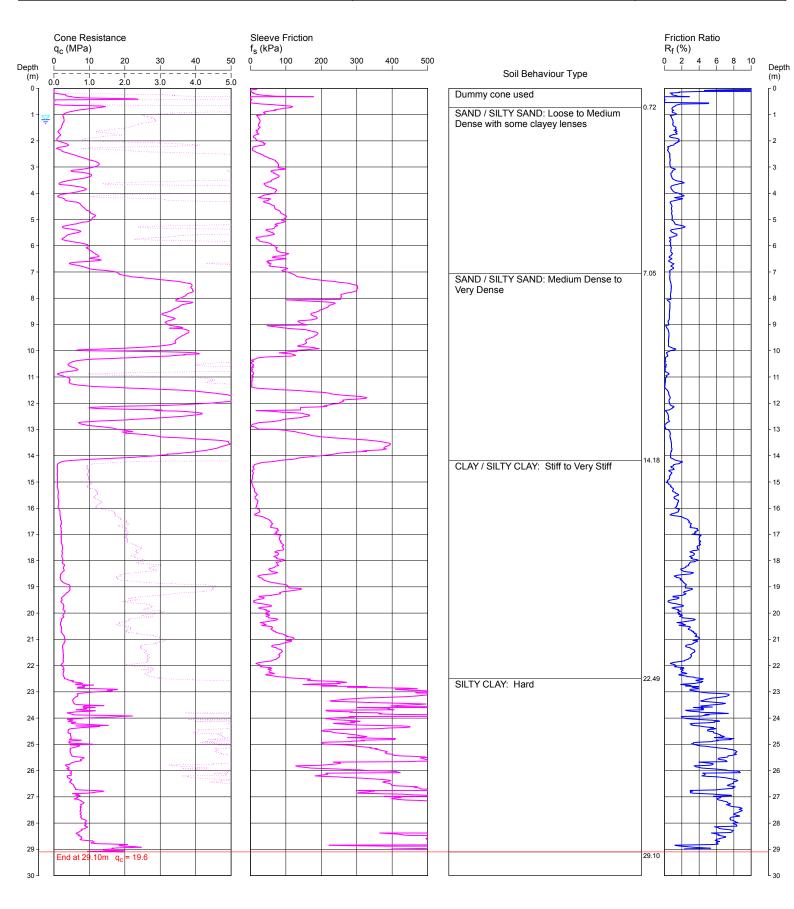
REMARKS: DUMMY CONE FROM 1.52 TO 2.0 m AND 2.26 TO 2.7 m TO PENETRATE FILLING.TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. GROUNDWATER OBSERVED AT 2.7 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 2.70m depth (assumed)

File: P\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT117.CP5
Cone ID: 181002
Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE


LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 4.97

COORDINATES: 332274E 6244404N

CPT118 Page 1 of 1 DATE 14/01/2019

PROJECT No: 85777.15

REMARKS: CONCRETE CORE TO 0.2 m DEPTH. DUMMY CONE FROM 0.42 TO 0.7 m DEPTH.

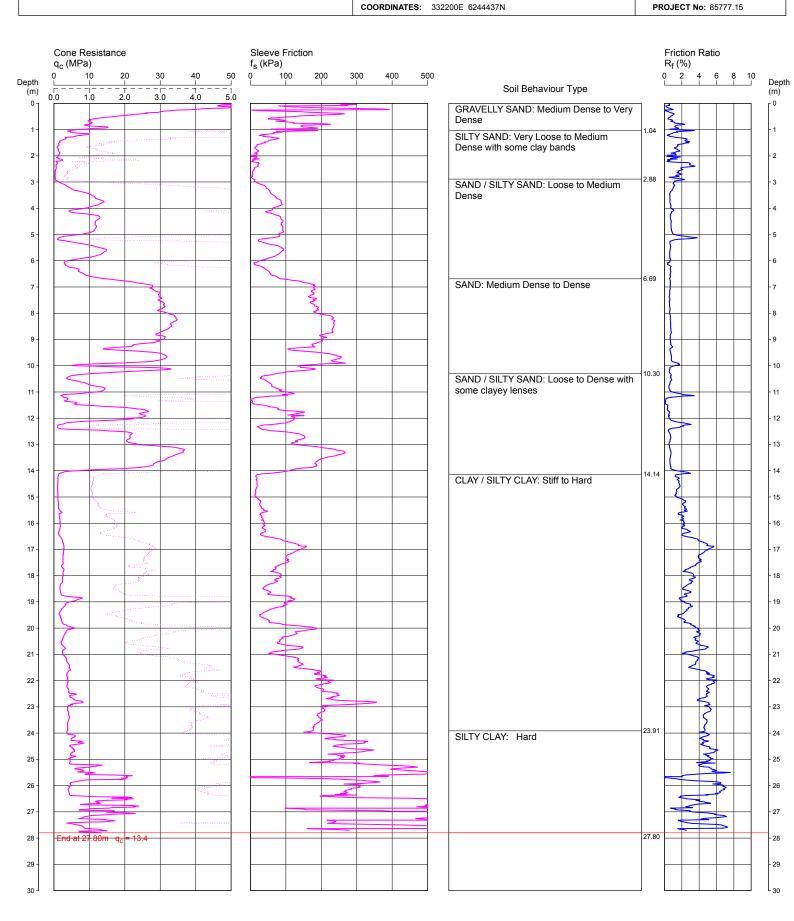
TEST DISCONTINUED DUE TO EXCESSIVE ROD BOWING. GROUNDWATER OBSERVED AT 1.2 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 1.20m depth (assumed)

File: P:\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT118.CP5 Cone ID: 181002 Type: I-CFXY-10

ConePlot Version 5.9.2 © 2003 Douglas Partners Pty Ltd **Douglas Partners** Geotechnics | Environment | Groundwater

CLIENT: ENSTRUCT GROUP PTY LTD


PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

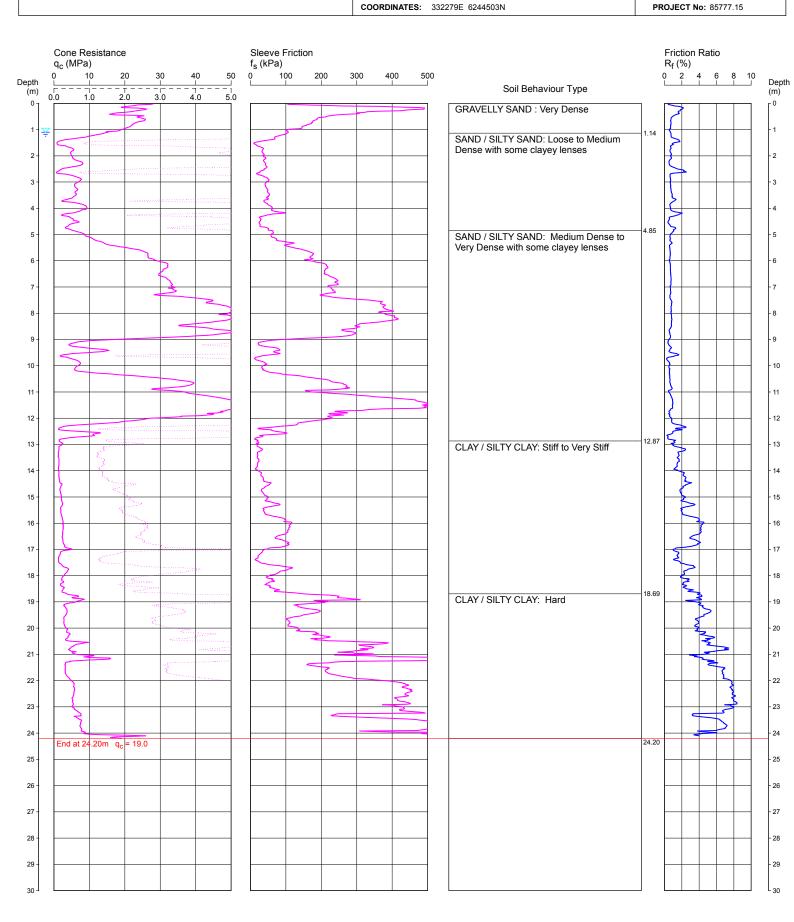
REDUCED LEVEL: 4.80

PROJECT No: 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. HOLE COLLAPSE AT 1.0 m AFTER WITHDRAWAL OF RODS.

File: P:\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT119.CP5 Cone ID: 181002 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD


PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 3.57

PROJECT No: 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. GROUNDWATER OBSERVED AT 1.1 m AFTER WITHDRAWAL OF RODS.

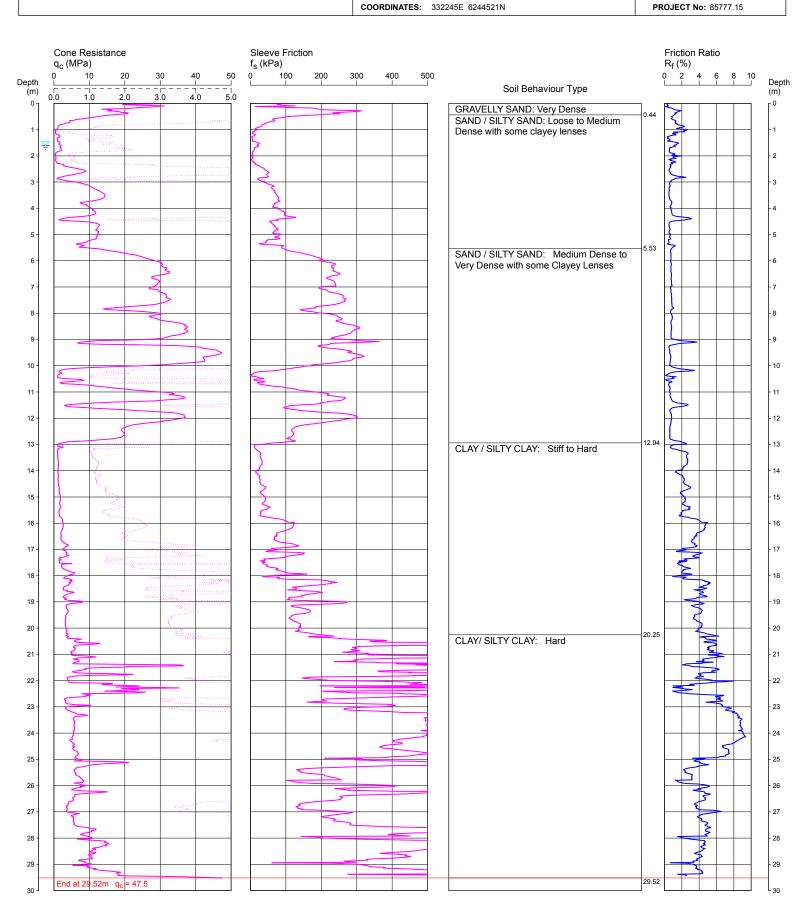
Water depth after test: 1.10m depth (assumed)

File: P\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT120.CP5 Cone ID: 181002 Type: I-CFXY-10 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT


REDUCED LEVEL: 3.81

от

CPT121 Page 1 of 1

 DATE
 9/01/2019

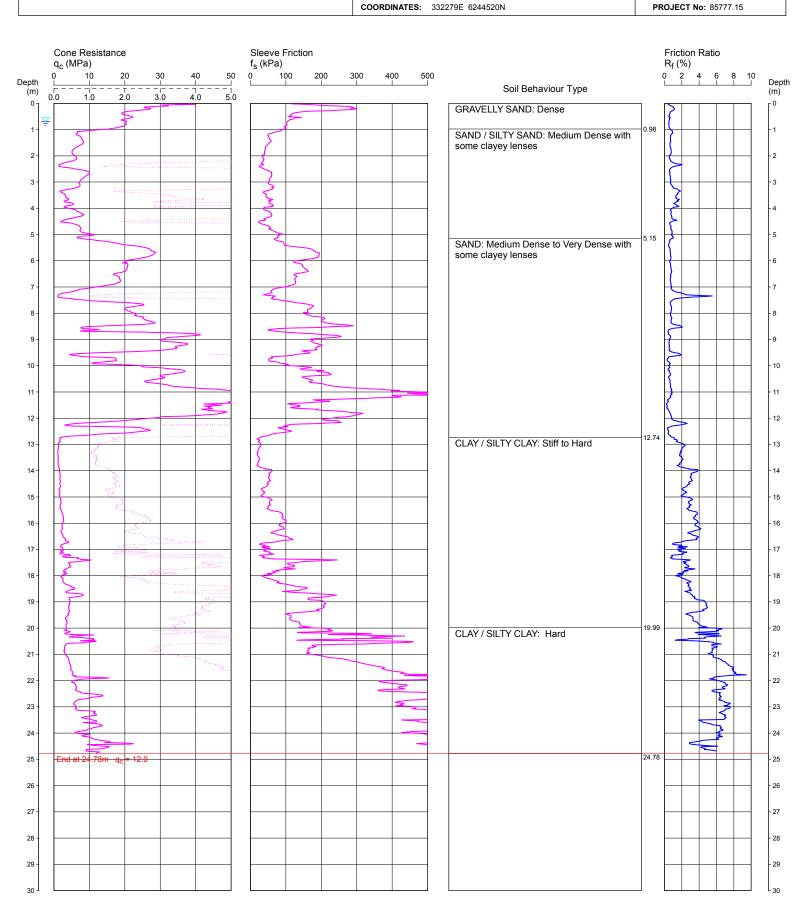
 PROJECT No:
 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE ROD BOWING. GROUNDWATER OBSERVED AT 1.6 m AFTER WITHDRAWAL OF RODS.

File: P:\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT121.CP5 Cone ID: 181002 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE


LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 3.61

CPT122 Page 1 of 1

 DATE
 10/01/2019

 PROJECT No:
 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE ROD BOWING.

GROUNDWATER OBSERVED AT 0.7 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 0.70m depth (assumed)

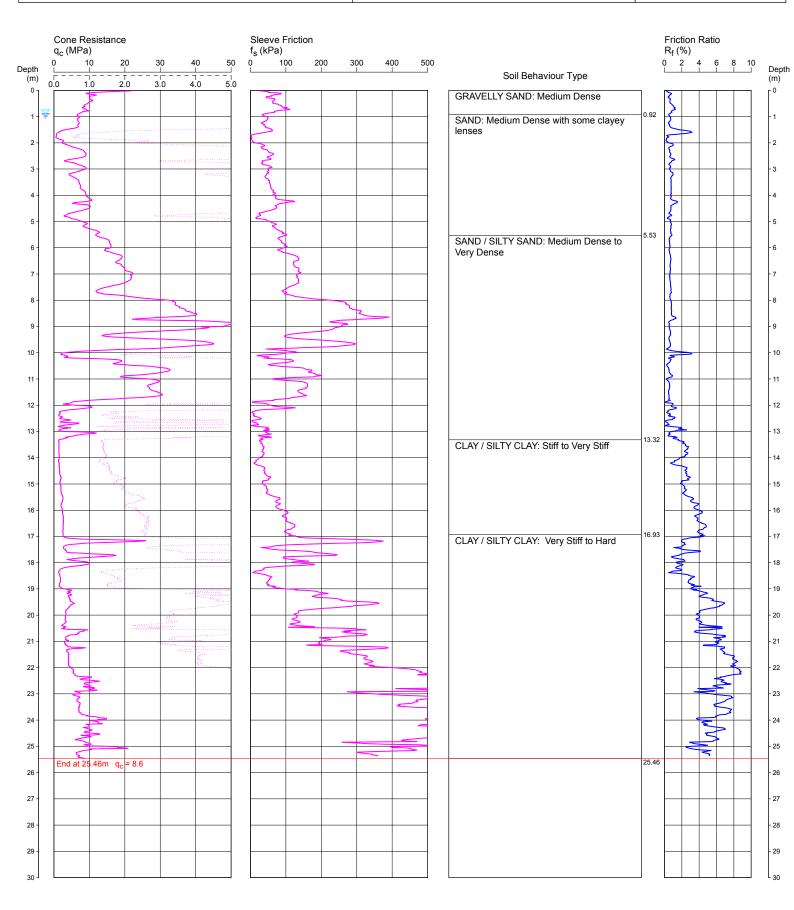
File: P\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT122.CP5 Cone ID: 181002 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 3.89


COORDINATES: 332293E 6244518N

CPT123 Page 1 of 1

Douglas Partners Geotechnics | Environment | Groundwater

 DATE
 10/01/2019

 PROJECT No:
 85777.15

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE ROD BOWING.

GROUNDWATER OBSERVED AT 0.9 m AFTER WITHDRAWAL OF RODS.

Water depth after test: 0.90m depth (assumed)

File: P\85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT123.CP5 Cone ID: 181002 Type: I-CFXY-10

CLIENT: ENSTRUCT GROUP PTY LTD

PROJECT: AIRPORT - QANTAS FLIGHT TRAINING CENTRE

LOCATION: 295 - 297 KING STREET, MASCOT

REDUCED LEVEL: 3.71

PROJECT No: 85777.15

REMARKS: TEST DISCONTINUED DUE TO BENDING NEAR REFUSAL

GROUNDWATER MEASURED AT 0.95 m DEPTH AFTER WITHDRAWAL OF RODS

Water depth after test: 0.95m depth (assumed)

 File:
 P:85777.15 - AIRPORT - QANTAS Flight Training Centre\4.0 Field Work\4.2 Testing\CPTs\CPT124.CP5

 Cone ID:
 181002
 Type: I-CFXY-10
 Type: I-CFXY-10

