

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

76695

Client: Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

Sample log in details:

Your Reference:	45153.02, Syd	ney (Olympic Park
No. of samples:	3 Waters		
Date samples received / completed instructions received	30/07/2012	/	30/07/2012

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 2/08/12
 / 31/07/12

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

A

Jeremy Faircloth Chemist

Envirolab Reference: 76695 Revision No: R 00

	1	1		
VOCs in water		70005 4	70005.0	70005 0
Our Reference: Your Reference	UNITS	76695-1 G1	76695-2 G4	76695-3 G5
Date Sampled		30/07/2012	G4 30/07/2012	30/07/2012
Type of sample		Water	Water	Water
Date extracted		30/07/2012	30/07/2012	30/07/2012
	-	31/07/2012	31/07/2012	31/07/2012
Date analysed	-			
Dichlorodifluoromethane	µg/L	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1
Chloroform	µg/L	<1	1	1
2,2-dichloropropane	µg/L	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1
Cyclohexane	µg/L	<1	13	<1
Carbon tetrachloride	µg/L	<1	<1	<1
Benzene	μg/L	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1
Trichloroethene	⊭g/L	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1
Toluene		<1	<1	<1
	μg/L			
1,3-dichloropropane	µg/L	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1
Bromoform	µg/L	<1	<1	<1
m+p-xylene	µg/L	<2	8	<2
Styrene	µg/L	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1
o-xylene	µg/L	<1	5	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1

VOCs in water				
Our Reference:	UNITS	76695-1	76695-2	76695-3
Your Reference		G1	G4	G5
Date Sampled		30/07/2012	30/07/2012	30/07/2012
Type of sample		Water	Water	Water
Isopropylbenzene	µg/L	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	6	<1
Tert-butyl benzene	µg/L	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	108	106	109
Surrogate toluene-d8	%	98	97	98
Surrogate 4-BFB	%	96	99	96

vTRH in Water (C6-C9)				
Our Reference:	UNITS	76695-1	76695-2	76695-3
Your Reference		G1	G4	G5
Date Sampled		30/07/2012	30/07/2012	30/07/2012
Type of sample		Water	Water	Water
Date extracted	-	30/07/2012	30/07/2012	30/07/2012
Date analysed	-	31/07/2012	31/07/2012	31/07/2012
TRHC6 - C9	µg/L	<10	110	<10
Surrogate Dibromofluoromethane	%	108	106	109
Surrogate toluene-d8	%	98	97	97
Surrogate 4-BFB	%	96	99	96

Client Reference: 45153.02, Sydney Olympic Park

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.

	1	-	nt Referenc	1		ney Olympic Park		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		
Date extracted	-			30/07/2 012	[NT]	[NT]	LCS-W1	30/07/2012
Date analysed	-			31/07/2 012	[NT]	[NT]	LCS-W1	31/07/2012
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	116%
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chloroform	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	110%
2,2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	98%
1,1,1-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	112%
1,1-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Cyclohexane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromomethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	106%
Bromodichloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	111%
trans-1,3- dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Toluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	108%
1,2-dibromoethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	105%
1,1,1,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromoform	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
m+p-xylene	µg/L	2	Org-013	~2	[NT]	[NT]	[NR]	[NR]
Styrene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
o-xylene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		,
1,2,3-trichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
lsopropylbenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-013	109	[NT]	[NT]	LCS-W1	108%
Surrogate toluene-d8	%		Org-013	99	[NT]	[NT]	LCS-W1	100%
Surrogate 4-BFB	%		Org-013	97	[NT]	[NT]	LCS-W1	97%

Client Reference: 45153.02, Sydney Olympic Park									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
vTRH in Water (C6-C9)						Base II Duplicate II % RPD			
Date extracted	-			30/07/2 012	[NT]	[NT]	LCS-W1	30/07/2012	
Date analysed	-			31/07/2 012	[NT]	[NT]	LCS-W1	31/07/2012	
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	135%	
<i>Surrogate</i> Dibromofluoromethane	%		Org-013	109	[NT]	[NT]	LCS-W1	108%	
Surrogate toluene-d8	%		Org-013	99	[NT]	[NT]	LCS-W1	97%	
Surrogate 4-BFB	%		Org-013	97	[NT]	[NT]	LCS-W1	99%	

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: N
NA: Test not required	RPD: Relative Percent Difference	NA: T
<: Less than	>: Greater than	LCS: I

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:		
Douglas Pa	rtners	
96 Hermitag	je Rd	
West Ryde	NSW	2114

ph: 02 9809 0666 Fax: 02 9809 4095

Attention: Peter Oitmaa

Sample log in details:

Your reference: Envirolab Reference: Date received: Date results expected to be reported: 45153.02, Sydney Olympic Park 76695 30/07/2012 2/08/12

Samples received in appropriate condition for analysis:	YES
No. of samples provided	3 Waters
Turnaround time requested:	72hr
Temperature on receipt	Cool
Cooling Method:	Ice Pack
Sampling Date Provided:	YES

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

CUSTODY	Envirolato Per Sahie, e Envirolato Per Sahie, e 12 Ashie, e Part Ross wood NSW 2067 Ph: (02) 9910 6200 Job No: 46 695 Date Reserved: 14:45	anno 1997 Ambient	security. Had/Broken/Nune										54:41	
CHAIN OF CUSTODY	10						-					 Phone: (02) 9809 0666 Eax (02) 9809 4095	ate &	Date & Time:
	To: 12 As Attn: Email	Analytes											14:00 Received By: Praticture	Received E
	ork B Hurneround		LRH VOC	<i>a</i>	¢ 9	Ċ						06 Hormittana Band Mart Buda 2114	Date & Time: 3°/7/12 14	
	Project Name: SJUND DIUNDIS Porject No: 45153.02 Sampler: 5B Project No: 45153.02 Sampler: 5B Project Mgr. RMD Mob. Phone: Sampler: 5B Email: polyer-21 And Mob. Phone: Date Required: Lab Quote No. 3 days through	Sample Type	S - soil W – water Container type	12 N Truch	• 5 3 5	* 2 3 *							Address.	Sinned:
Douglas Partners Geolocinics - Environment - Geolocinics - Environment - Groundwater	451 53.02 451 53.02 AND Mob. Phone: thata @douglasp ed: Lab Quote No.		Sampling Date	1)30/7/12	2) 10	ં્			-					
	Project Name: Project No: 451 Project Mgr: 8MD Email:peter - 21 thata Date Required: Lal		Sample Sample ID Depth	- 77 7	L 4	45 45						Lab Report No.	Belindulished hv	Relinquished by:

Form COC Rev0/November 2006

Page____ of ____

Appendix G

QA/QC Information

Quality Assurance/Quality Control Procedures and Results

Field QA/QC for Soil Samples

The field QA/QC procedures for sampling described in the Douglas Partners *Field Procedures Manual* were followed at all times during the field work. Soil sampling was undertaken using disposable equipment and hence rinsate collection was not undertaken.

Laboratory-prepared Trip Blank and Trip Spike soil samples were taken to site during the field work, stored in the same container used to store the field samples, and transported to the laboratory with the field samples selected for analysis. The purpose of the Trip Blank was to determine whether cross-contamination of the samples was likely to have occurred. The purpose of the Trip Spike was to determine whether significant loss of volatile contaminants may have occurred.

The results for the Trip Blank and Trip Spike soil samples are provided in Table G1.

Sample ID		Total Concentration (mg/kg) or % Recovery									
	Benzene	Toluene	Ethyl-benzene	Xylene	TRH C ₆ – C ₉						
ТВ	<0.2	<0.5	<1	<3	<25						
TS	100%	102%	99%	98%	NT						

Table G1: Trip Blank and Trip Spike QA/QC Results for Hydrocarbons in Soils

Notes: TRH = Total recoverable hydrocarbons; NT = Not tested; TB = Trip blank; TS = Trip spike

The concentrations of analytes in the Trip Blank were below the laboratory detection limits which indicates that cross-contamination is unlikely to have occurred. The recovery rates for the Trip Spike analytes were within an acceptable range which indicates that the significant loss of volatile contaminants is unlikely to have occurred. The field sampling protocols for soils are therefore considered appropriate.

Field QA/QC for Water Samples

The field QA/QC procedures for sampling described in the Douglas Partners *Field Procedures Manual* were followed at all times during the field work. Groundwater sampling was undertaken using a decontaminated low-flow pump and disposable tubing. A rinsate sample was collected during groundwater sampling by decontaminating the pump with Decon90 phosphate-free detergent and collecting a sample of demineralised water that had been washed through the pump. The sample was analysed for a range of volatile contaminants and heavy metals.

The results for the rinsate sample are provided in Tables G2 and G3.

Semale ID	Total Concentration (μg/L)								
Sample ID	Benzene	Toluene	Ethylbenzene	Xylene	TRH C ₆ – C ₉				
R1	<1	<1	<1	<3	<10				

Table G2: Rinsate QA/QC Results for Hydrocarbons in Water

Notes: TRH = Total recoverable hydrocarbons

Table G3: Rinsate QA/QC Results for Heavy Metals in Water

Sample		Total Concentration (μg/L)											
ID	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn					
R1	<1	<0.1	<1	<1	<1	<0.05	<1	<1					

Notes: As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead, Hg = Mercury; Ni = Nickel; Zn = Zinc

The concentrations of analytes in the rinsate sample were below the laboratory detection limits which indicates appropriate decontamination was undertaken during sampling. The field sampling protocols for groundwater are therefore considered appropriate.

Intra-Laboratory QA/QC Analysis on Soil Samples

Intra-laboratory analysis of duplicate soil samples was conducted as an internal check of the reproducibility of the results from the laboratories and as a measure of consistency of sampling techniques. The results are compared within the duplicate pairs to determine the relative percentage difference (RPD) between the samples. The RPD can then be used to determine whether unacceptable errors may be present in the sample data.

Selected comparative results of the analysis of the duplicate soil samples are summarised in Tables G4 to G6.

Sample ID		Total Concentration (mg/kg)											
Sample ID	Benzene	Toluene	Ethylbenzene	m + p xylene	o xylene								
C4/0.5	<0.2	<0.5	<1	<2	<1								
BD1	<0.2	<0.5	<1	<2	<1								
RPD	0%	0%	0%	0%	0%								
G3/0.5	<0.2	<0.5	<1	<2	<1								
BD2	<0.2	<0.5	<1	<2	<1								
RPD	0%	0%	0%	0%	0%								
T4/1.0	<0.2	<0.5	<1	<2	<1								
BD3	<0.5	<0.5	<0.5	<1	<0.5								
RPD	0%	0%	0%	0%	0%								

Table G4: Intra-Laboratory QA/QC Results for BTEX in Soil

Table G5: Intra-Laboratory QA/QC Results for TRH in Soil

Sample ID		Total Concentration (mg/kg)									
Sample ID	$C_{6} - C_{9}$	$C_{10} - C_{14}$	$C_{15} - C_{28}$	C ₂₉ – C ₃₆							
C4/0.5	4/0.5 <25 <50		<100	<100							
BD1	<25	<50	<100	<100							
RPD	0%	0%	0%	0%							
G3/0.5	<25	<50	<100	<100							
BD2	<25	<50	<100	<100							
RPD	0%	0%	0%	0%							
T4/1.0	<25	<50	<100	<100							
BD3	<25	<50	140	150							
RPD 0%		0%	33%	40%							

Table Go: Intra-I													
Sample ID		Total Concentration (mg/kg)											
Sample ID	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn					
C4/0.5	260	<0.5	20	21	38	<0.1	6	85					
BD1	170	<0.5	15	18	38	<0.1	5	71					
RPD	42%	0%	29%	15%	0%	0%	18%	19%					
G3/0.5	34	<0.5	15	23	34	<0.1	7	70					
BD2	24	<0.5	17	24	32	<0.1	6	59					
RPD	34%	0%	13%	4%	6%	0%	15%	17%					
T4/1.0	87	<0.5	19	28	130	<0.1	10	280					
BD3	64	<0.5	19	34	120	<0.1	7	270					
RPD	30%	0%	0%	19%	8%	0%	35%	4%					

Table G6: Intra-Laboratory QA/QC Results for Heavy Metals in Soil

Notes: As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead, Hg = Mercury; Ni = Nickel; Zn = Zinc

A RPD of \pm 30% is generally considered acceptable for inorganic analytes and a wider range may be acceptable for organic analytes. The RPD values outside the generally acceptable range of \pm 30% are indicated by yellow shading in the tables. These values are not considered significant due to the heterogenous nature of filling materials from which the samples were obtained.

It is therefore considered that the results indicate acceptable consistency between the duplicate soil samples, that suitable field sampling methodology was adopted and that adequate laboratory precision was achieved.

Intra-Laboratory QA/QC Analysis on Water Samples

Intra-laboratory analysis of a duplicate water sample was conducted as an internal check of the reproducibility of the results from the laboratory and as a measure of consistency of sampling techniques. The results are compared within the duplicate pair to determine the relative percentage difference (RPD) between the samples. The RPD can then be used to determine whether unacceptable errors may be present in the sample data.

Selected comparative results of the analysis of the duplicate water sample are summarised in Tables G7 to G9.

Semale ID	Total Concentration (μg/L)										
Sample ID	Benzene	Toluene	Ethylbenzene	m + p xylene	o xylene						
G5/10 Jul 2012	<1	1	1	10	5						
BD1	<1	1	1	12	6						
RPD	0%	0%	0%	18%	18%						

Table G7: Intra-Laboratory QA/QC Results for BTEX in Water

Table G8: Intra-Laboratory QA/QC Results for TRH in Water

Semale ID		Total Concentration (μg/L)								
Sample ID	$C_{6} - C_{9}$	$C_{10} - C_{14}$	$C_{15} - C_{28}$	$C_{29} - C_{36}$						
G5/10 Jul 2012	73	90	<100	<100						
BD1	110	<50	<100	<100						
RPD	40%	57%	0%	0%						

Table G9: Intra-Laboratory QA/QC Results for Heavy Metals in Water

Sample ID	Total Concentration (µg/L)										
Sample ID	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn			
G5/10 Jul 2012	1	0.3	<1	3	<1	<0.05	39	140			
BD1	1	0.3	<1	6	1	<0.05	43	180			
RPD	0%	0%	0%	67%	0%	0%	10%	25%			

Notes: As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead, Hg = Mercury; Ni = Nickel; Zn = Zinc

A RPD of \pm 30% is generally considered acceptable for inorganic analytes and a wider range may be acceptable for organic analytes. The RPD values outside the generally acceptable range of \pm 30% are indicated by yellow shading in the tables. These values are not considered significant due to the relatively small actual differences between the contaminant concentrations.

It is therefore considered that the results indicate acceptable consistency between the duplicate water samples, that suitable field sampling methodology was adopted and that adequate laboratory precision was achieved.

Laboratory QA/QC Procedures

Quality control procedures used during the analyses include:

Reagent Blank

A reagent blank sample is prepared and analysed at the beginning of every analytical run, following calibration of the analytical apparatus. The laboratory results for reagent blanks indicated that concentrations of all analytes were below respective laboratory practical quantitation limits.

Duplicate

This is the complete duplicate of a sample from the process batch. The results of the two samples are compared to laboratory acceptance criteria and exceedences highlighted. No exceedences were detected.

Matrix Spike

A portion of a sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and determine whether matrix interference exists. The matrix spike recovery is compared to laboratory acceptance criteria. No exceedences were noted.

Laboratory Control Sample

This is a standard reference sample or control matrix used to check the analytical process. The results were within acceptable limits.

Surrogate Spike

Surrogates are known additions of known compounds to each sample, blank, matrix spike and laboratory control sample. The surrogates are similar to the analyte of interest, however are not expected to be detected in real samples. The results were acceptable.

Appendix H

PID Calibration Certificate

ThermoFisher scientific

SERVICE OR REPAIR: MINIRAE2000 PID

COMPANY	Douglas Partners		
CONTACT	Narilee Edwards		
SERIAL NO.	110003382	LAMP TYPE	10.6eV
CALL NO.	96413	RECEIVED	03/01/2012

REQUEST/PROBLEM DESCRIPTION

Service & calibration.

This equipment has been calibrated to the manufacturer's specifications, using the standards shown below:

ISOBUTYLENE STANDARD (ppm)	TRACEABILITY LOT NO.	POST CALIBRATION READING (ppm)
0	-	0.0
97		97.6

Cleaned sensor assembly, sensor housing and metal filter Cleaned and checked lamp and lamp housing Cleaned pump Checked battery condition

COMMENTS/ADDITIONAL REPAIRS/SERVICES PERFORMED

The pump is due for rebuilding during the next service. The instrument is sent with the alkaline battery pack.

SERVICED BY	Milenko	COMPLETED	05/01/2012
SIGNATURE	Mitak		

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free Call) 13	00 735 295	Enviro	nmental Assessment Technolog	ies Fax: (Free	e Call) 1800 675 123
Melbourne Branch	Sydney Branch		Adelaide Branch	Brisbane Branch	Parth Branch
5 Caribbean Drive,	Level 1, 4 Talavara Road,		27 Beulah Road, Norwood,	Unit 2/5 Ross St	121 Beringarra Ave
Scoresby 3179	North Ryde 2113		South Australia 5067	Newstead 4006	Malaga WA 6090
Email: RentalsEnviroVIC@thermolisher.com	Email: RentalsEnviroNSW@thermo	fisher.com	Email: RentalsEnviroSA@thermolisher.com	Email: RentalsEnviroQLD@thermofisher.com	Email: RentalsEnviroWA@thermofisher.com
			-	_	_