



# Phase 2 Environmental Site Assessment

Hurstville Private Hospital 37 Gloucester Road Hurstville, NSW

Continuum Healthcare Group c/o Inspira Planning and Development

June 2011 JBS 41486 - 16764 JBS Environmental Pty Ltd



# **Table of Contents**

| Lis | List of Abbreviationsv      |                                                    |  |  |  |
|-----|-----------------------------|----------------------------------------------------|--|--|--|
| E×  | Executive Summary vii       |                                                    |  |  |  |
|     | Introduction and Background |                                                    |  |  |  |
|     | Scope of Works              |                                                    |  |  |  |
|     | Summ                        | nary of Assessmentvii                              |  |  |  |
|     | Conclu                      | usions and Recommendationsvii                      |  |  |  |
| 1   | Int                         | roduction1                                         |  |  |  |
|     | 1.1                         | Introduction and Background1                       |  |  |  |
|     | 1.2                         | Objectives1                                        |  |  |  |
|     | 1.3                         | Scope of Work1                                     |  |  |  |
| 2   | Sit                         | e Condition & Surrounding Environment3             |  |  |  |
|     | 2.1                         | Site Identification3                               |  |  |  |
|     | 2.2                         | Site Description3                                  |  |  |  |
|     | 2.3                         | Surrounding Landuse4                               |  |  |  |
|     | 2.4                         | Topography5                                        |  |  |  |
|     | 2.5                         | Hydrology5                                         |  |  |  |
|     | 2.6                         | Geology5                                           |  |  |  |
|     | 2.7                         | Hydrogeology5                                      |  |  |  |
| 3   | Sit                         | e History7                                         |  |  |  |
|     | 3.1                         | General History7                                   |  |  |  |
|     | 3.2                         | Aerial Photographs7                                |  |  |  |
|     | 3.3                         | Title Details                                      |  |  |  |
|     | 3.4                         | Council Records9                                   |  |  |  |
|     | 3.5                         | DECCW Records9                                     |  |  |  |
|     | 3.6                         | Australian and NSW Heritage Register10             |  |  |  |
|     | 3.7                         | WorkCover Dangerous Goods Licenses10               |  |  |  |
|     | 3.8                         | Anecdotal Evidence10                               |  |  |  |
|     | 3.9                         | Site History Summary11                             |  |  |  |
|     | 3.10                        | Integrity Assessment                               |  |  |  |
| 4   | Pre                         | evious Investigations12                            |  |  |  |
|     | 4.1                         | Environmental Site Assessment Phase 1 (JBS 2010)12 |  |  |  |
| 5   | Co                          | nceptual Site Model13                              |  |  |  |
|     | 5.1                         | Potential Areas of Environmental Concern13         |  |  |  |
|     | 5.2                         | Potentially Contaminated Media13                   |  |  |  |



|   | 5.3          | Pot    | ential for Migration                                  |
|---|--------------|--------|-------------------------------------------------------|
|   | 5.           | 3.1    | Potential Exposure Pathways14                         |
|   | 5.           | 3.2    | Potential Receptors14                                 |
| 6 | 6 Sampling a |        | ing and Analysis Plan15                               |
|   | 6.1          | Dat    | ta Quality Objectives15                               |
|   | 6.           | 1.1    | State the Problem                                     |
|   | 6.           | 1.2    | Identify the Decision15                               |
|   | 6.           | 1.3    | Identify Inputs to the Decision                       |
|   | 6.           | 1.4    | Define the Study Boundaries15                         |
|   | 6.           | 1.5    | Develop a Decision Rule15                             |
|   | 6.           | 1.6    | Specify Limits on Decision Errors17                   |
|   | 6.           | 1.7    | Optimise the Design for Obtaining Data18              |
|   | 6.2          | Soi    | il Sampling Methodology19                             |
|   | 6.3          | Gro    | oundwater Monitoring Well Installation and Sampling19 |
|   | 6.4          | Lat    | poratory Analyses                                     |
| 7 | Gu           | uideli | ines and Assessment Criteria21                        |
|   | 7.1          | Reg    | gulatory Guidelines21                                 |
|   | 7.2          | Soi    | il Criteria21                                         |
|   | 7.3          | Gro    | oundwater Criteria22                                  |
| 8 | Qı           | uality | Assurance / Quality Control                           |
|   | 8.1          | QA     | /QC Results24                                         |
|   | 8.2          | QA     | /QC Discussion24                                      |
|   | 8.           | 2.1    | Precision24                                           |
|   | 8.2          | 2.2    | Accuracy25                                            |
|   | 8.           | 2.3    | Representativeness                                    |
|   | 8.2          | 2.4    | Comparability                                         |
|   | 8.2          | 2.5    | Completeness                                          |
|   | 8.3          | Ass    | sessment of Decision Error                            |
| 9 | Fie          | eld a  | nd Analytical Results                                 |
|   | 9.1          | Soi    | Il Field Observations                                 |
|   | 9.2          | Soi    | il Analytical Results                                 |
|   | 9.2          | 2.1    | Heavy Metals                                          |
|   | 9.2          | 2.2    | TPH and BTEX                                          |
|   | 9.2          | 2.3    | PAHs                                                  |
|   | 9.3          | 2.4    | OCP, OPPs and PCBs                                    |



|     | 9.2.5 Asbestos                             |       |                                                              | 29 |  |
|-----|--------------------------------------------|-------|--------------------------------------------------------------|----|--|
| 9.3 | 3                                          | Gro   | roundwater Field Observations29                              |    |  |
|     | 9.3.1 Meteorology2                         |       |                                                              | 29 |  |
|     | 9.3                                        | .2    | Field Observations and Water Quality Parameters              | 30 |  |
| 9.4 | 4                                          | Gro   | oundwater Analytical Results                                 | 31 |  |
|     | 9.4                                        | .1    | Heavy Metals                                                 | 31 |  |
|     | 9.4                                        | .2    | TPH and BTEX                                                 | 31 |  |
|     | 9.4                                        | .3    | PAHs                                                         | 31 |  |
|     | 9.4                                        | .4    | OCP, OPPs and PCBs                                           | 31 |  |
| 10  | Site                                       | e Ch  | naracterisation                                              | 32 |  |
| 10  | .1                                         | Re    | porting in accordance with EPA requirements                  | 32 |  |
| 10  | .2                                         | Un    | acceptable risks to onsite future receptors from soils       | 32 |  |
| 10  | .3                                         | Un    | acceptable risks to onsite future receptors from groundwater | 32 |  |
| 10  | .4                                         | Loc   | cal background concentrations                                | 32 |  |
| 10  | .5                                         | Aes   | sthetic issues                                               | 32 |  |
| 10  | .6                                         | Ch    | emical Mixtures                                              | 32 |  |
| 10  | 10.7 Potential Migration of Contaminants33 |       |                                                              | 33 |  |
| 10  | 10.8 Site Management Strategy33            |       |                                                              | 33 |  |
| 11  | Cor                                        | nclu  | sions and Recommendations                                    | 34 |  |
| 11  | .1                                         | Co    | nclusions                                                    | 34 |  |
| 11  | .2                                         | Re    | commendations                                                | 34 |  |
| 12  | Lim                                        | nitat | ions                                                         | 35 |  |



#### Figures

Figure 1 – Site Location

Figure 2 – Detailed Site Layout

Figure 3 – Identified Areas of Environmental Concern

Figure 4 – Soil and Groundwater Sample Locations Figure 5 – Soil Location Exceedances **Tables** Table A – Soil Sample Register Table B – Soil Results – Heavy Metals and Asbestos Concentrations Table C – Soil Results – TPH, BTEX and PAH Concentrations Table D – Soil Results – OCP, OPP and PCB Concentrations Table E – Groundwater Sample Register Table F – Groundwater Gauging and Observations Table G – Groundwater Results – Heavy Metals Table H – Groundwater Results – TPH, BTEX and PAH Concentrations Table I – Groundwater Results – TPH, BTEX and PAH Concentrations

#### Appendices

- Appendix A Soil Field Documentation
- Appendix B Borehole Logs
- Appendix C UCL 95% Statistical Datasheets
- Appendix D GME Field Documentation
- Appendix E Laboratory Reports and Chain of Custody Documentation



# List of Abbreviations

| A list of the common abbreviations used throughout this report is provided below. |                                                                  |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| ACM                                                                               | Asbestos Containing Material                                     |  |  |
| AEC                                                                               | Areas of Environmental Concern                                   |  |  |
| AHD                                                                               | Australian Height Datum                                          |  |  |
| As                                                                                | Arsenic                                                          |  |  |
| bgs                                                                               | below ground surface                                             |  |  |
| BTEX                                                                              | Benzene, toluene, ethylbenzene and xylenes                       |  |  |
| B(a)P                                                                             | Benzo(a)pyrene                                                   |  |  |
| Cd                                                                                | Cadmium                                                          |  |  |
| COC                                                                               | Chain of Custody                                                 |  |  |
| COPC                                                                              | Constituents of Potential Concern                                |  |  |
| Cr                                                                                | Chromium                                                         |  |  |
| CSM                                                                               | Conceptual site model                                            |  |  |
| Cu                                                                                | Copper                                                           |  |  |
| DECC                                                                              | NSW Department of Environment and Climate Change (now the DECCW) |  |  |
| DECCW                                                                             | NSW Department of Environment, Climate Change and Water          |  |  |
| DMR                                                                               | NSW Department of Minerals Resources                             |  |  |
| DO                                                                                | Dissolved Oxygen                                                 |  |  |
| DoP                                                                               | NSW Department of Planning                                       |  |  |
| DQI                                                                               | Data Quality Indicator                                           |  |  |
| DQO                                                                               | Data Quality Objective                                           |  |  |
| DWE                                                                               | NSW Department of Water and Energy                               |  |  |
| EC                                                                                | Electrical Conductivity                                          |  |  |
| Eh                                                                                | Reduction-Oxidation Potential (Redox) Potential                  |  |  |
| EPA                                                                               | NSW Environment Protection Authority (now the DECCW)             |  |  |
| ESA                                                                               | Environmental Site Assessment                                    |  |  |
| GIL                                                                               | Groundwater Investigation Level                                  |  |  |
| GME                                                                               | Groundwater Monitoring Event                                     |  |  |
| На                                                                                | Hectare                                                          |  |  |
| Hg                                                                                | Mercury                                                          |  |  |
| HIL                                                                               | Health based investigation level                                 |  |  |
| JBS                                                                               | JBS Environmental Pty Ltd                                        |  |  |
| LEP                                                                               | Local Environment Plan                                           |  |  |
| LOR                                                                               | Limit of Reporting                                               |  |  |
| NATA                                                                              | National Association of Testing Authorities                      |  |  |
| Ni                                                                                | Nickel                                                           |  |  |
| NR                                                                                | Natural Resources                                                |  |  |
| NSW                                                                               | New South Wales                                                  |  |  |
| OCP                                                                               | Organochlorine Pesticides                                        |  |  |
| OPP                                                                               | Organophosphorous Pesticides                                     |  |  |
| PAHs                                                                              | Polycyclic aromatic hydrocarbons                                 |  |  |
| Pb                                                                                | Lead                                                             |  |  |
| PBIL                                                                              | Phytotoxicity Based Investigation Levels                         |  |  |

A list of the common abbreviations used throughout this report is provided below.



| PCB   | Polychlorinated Biphenyls                                              |
|-------|------------------------------------------------------------------------|
| pН    | Measurement of the acid or base content of a solution                  |
| QA/QC | Quality Assurance / Quality Control                                    |
| RPD   | Relative Percentage Difference                                         |
| SCID  | Stored Chemical Information Database                                   |
| TPH   | Total Petroleum Hydrocarbons ( $C_6$ - $C_9$ and $C_{10}$ - $C_{36}$ ) |
| WQC   | Water Quality Criteria                                                 |
| Zn    | Zinc                                                                   |



# **Executive Summary**

#### Introduction and Background

JBS Environmental Pty Ltd (JBS) was engaged by Inspira Developments Pty Ltd (Inspira) on behalf of Continuum Healthcare Group Pty Ltd to undertake a Phase 2 Environmental Site Assessment (ESA) on the Hurstville Private Hospital, located at 37 Gloucester Road, Hurstville, NSW. The site area is approximately 7700 m<sup>2</sup>, and consists of two areas: the hospital land and a car park located at 12 Millett Street.

It is understood that the owners of the site are considering redevelopment of the property to incorporate a mixed land use, comprising a redeveloped hospital and residential apartments with landscaped gardens. A Phase 2 ESA has been conducted as part of the development process requirements to determine whether the site is suitable for the proposed land use.

A previous Phase 1 assessment (JBS 2010) concluded that there were potential sources of contamination present resulting from the piecemeal absorption over time of individual Lots into the greater hospital site, and the former and current use of the site as a hospital.

#### Scope of Works

The scope of works undertaken included an intrusive soil sampling program including a total of 19 soil bores, the installation, development and sampling of 4 groundwater monitoring wells within the boundaries of the site, completion of a quality assurance / quality control program and production of a Phase 2 ESA report summarising both soil and groundwater issues on site.

#### Summary of Assessment

Concentrations in soil samples were below the site criteria for TPH, BTEX, OCP, OPP and PCB compound. Concentrations of heavy metals and PAHs in soil samples analysed were less than the adopted criteria for the adopted criteria with the exception of lead at two locations and PAH at one location. 95% upper confidence limit (UCL) statistics were conducted on the data sets in accordance with **Section 6**, and resulting UCL concentrations were reported below the site criteria.

Chrysotile and amosite asbestos were confirmed as present in ACM fragment sample F1, which was collected on the ground surface at BH03/MW03. Asbestos fibres were not identified in any soil sample analysed, either from samples collected directly beneath the fragments, or from surface samples across the general site area.

Concentrations in groundwater samples were below the site criteria for heavy metals, TPH, BTEX, PAHs, OCP, OPPs and PCBs

#### Conclusions and Recommendations

Based on the findings of this investigation and subject to the limitations in **Section 12**, conclusions are as follows:

- There were no unacceptable risks to onsite future receptors from soils;
- There were no unacceptable risks to onsite future receptors from groundwater;
- There were no odorous or stained soils observed on the site, and all aesthetic issues have been addressed;



- Based on the analysis of the soil and groundwater on the site, there are no background contaminant levels that require consideration;
- There are no unacceptable human health risks posed by potential chemical mixtures;
- There is no evidence of, or potential for, migration of contaminants from site; and
- Remediation or on-going management is not required.

The following action is recommended:

- Due to the working nature of the hospital, sample locations were placed around the perimeter of the building to minimise interference. Additional soil sample locations should be undertaken underneath the footprint of the building following demolition works to ensure no additional contamination is present. This particularly important given that the hospital has developed overtime by incorporating areas that may have previously been used for contaminating activities associated with the operation of the hospital in its earlier forms; and
- Prior to demolition of the buildings, a hazardous material survey should be undertaken to identify any buildings which may contain hazardous material (such as ACM or lead paint).



# 1 Introduction

### 1.1 Introduction and Background

JBS Environmental Pty Ltd (JBS) was engaged by Inspira Developments Pty Ltd (Inspira) on behalf of Continuum Healthcare Group Pty Ltd to undertake a Phase 2 Environmental Site Assessment (ESA) on the Hurstville Private Hospital, located at 37 Gloucester Road, Hurstville, NSW (the site) (**Figures 1** and **2**).

The site area is approximately 7700 m<sup>2</sup>, and consists of the following two areas: the hospital land (approximate area of 6680 m<sup>2</sup>); and a car park located at 12 Millett Street (approximate area of 980 m<sup>2</sup>).

It is understood that Hurstville Council is currently preparing a new Local Environmental Plan (LEP) which complies with the Department of Planning (DoP) template and guidelines for the new planning instrument. The currently adopted Council policy would see all Hospital owned land zoned low density residential. As such, the owners of the site are considering redevelopment of the property to incorporate a mixed land use, comprising a redeveloped hospital and residential apartments with landscaped gardens.

A rezoning application is being developed to present to Council to support the proposed development and part of the development process requires a Phase 2 ESA of the land to be undertaken to determine whether the site is suitable for the proposed land use.

A Phase 1 ESA (JBS 2010<sup>1</sup>) was undertaken as part of the development process to determine whether potential areas of contamination were present, and if additional assessment and/or remediation was required. The assessment concluded that there were potential sources of contamination present resulting from the piecemeal absorption over time of individual Lots into the greater hospital site, and the former and current use of the site as a hospital. An intrusive soil and groundwater assessment was recommended to identify any contamination associated with the historical and current use of the land.

The Phase 2 ESA was developed in general accordance with relevant guidelines made or approved by the NSW Department of Environment, Climate Change and Water (DECCW incorporating the EPA).

#### 1.2 Objectives

The objectives of the Phase 2 ESA were to collect soil and groundwater data from across the site (including targeted areas) to assess the suitability of the site for the proposed end landuse. Further, the outcome of the Phase 2 ESA was to be documented to support the redevelopment application, or to recommend any remediation or management that may be required to make the site suitable for the proposed end landuse.

#### 1.3 Scope of Work

The scope of works undertaken included:

 An intrusive soil sampling program, including a total of 19 soil bores extended into the underlying natural material using both hand tools and a small drill rig. Soil samples were analysed for constituents of potential concern (COPC), including heavy metals, total petroleum hydrocarbons (TPH), benzene, toluene,

<sup>&</sup>lt;sup>1</sup> Environmental Site Assessment Phase 1, Hurstville Private Hospital, 37 Gloucester Road, Hurstville, NSW, JBS Environmental Pty Ltd, JBS41390-15930, November 2010 (JBS 2010)



ethyl-benzene and xylenes (BTEX), petroleum aromatic hydrocarbons (PAHs), organochlorine pesticides (OCP), organophosphorous pesticides (OPP), polychlorinated biphenyls (PCB) and asbestos, as indicated by the results of the Phase 1 ESA;

- The installation and development of 4 groundwater monitoring wells within the boundaries of the site, and a subsequent groundwater monitoring event (GME) with groundwater samples analysed for heavy metals, TPH, BTEX, PAHs, OCPs, OPPs and PCBs;
- Completion of a quality assurance/quality control (QA/QC) program of sampling methods and laboratory analysis; and
- Production of a Phase 2 ESA report summarising both soil and groundwater issues (if any) on site.



# 2 Site Condition & Surrounding Environment

### 2.1 Site Identification

The location of the site is shown in **Figure 1**. The site details are summarised in **Table 2.1** and described in detail in the following sections.

| able 2.1 outminary one becaus |                                                                                                                                 |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Lot/DP                        | Lots A & B DP400487                                                                                                             |  |  |
|                               | Lots 2 & 5 DP16273                                                                                                              |  |  |
|                               | Lots C1 & C2 DP377900                                                                                                           |  |  |
|                               | Lots A & B DP375463                                                                                                             |  |  |
|                               | Lots 12 & 20, Section D DP1426                                                                                                  |  |  |
|                               | Lots 1 & 2 DP1045223                                                                                                            |  |  |
| Address                       | 37 Gloucester Road, Hurstville (Hospital)                                                                                       |  |  |
|                               | 12 Millett Street, Hurstville (Hospital owned car park)                                                                         |  |  |
| Co-ordinates (to approximate  | 33°57′ 44.43″S                                                                                                                  |  |  |
| centre of site                | 151° 05′ 44.61″E                                                                                                                |  |  |
| Local Council                 | Hurstville City Council                                                                                                         |  |  |
| County                        | Cumberland                                                                                                                      |  |  |
| Parish                        | St. George                                                                                                                      |  |  |
| Site Zoning                   | Zone 5(a) General Special Uses Zone (Hospital)                                                                                  |  |  |
|                               | Zone 2 Residential Zone (12 Millett Street)                                                                                     |  |  |
| Previous Use                  | The site was formerly low density residential before being used as a hospital                                                   |  |  |
| Current Use                   | Hospital – 37 Gloucester Road, Hurstville                                                                                       |  |  |
|                               | Car Park – 12 Millett Street, Hurstville                                                                                        |  |  |
| Proposed Use/s                | The site is proposed to be redeveloped to include medium to high density residential, with an area of open space and a hospital |  |  |
| Site Area                     | Approximately 7700 m <sup>2</sup>                                                                                               |  |  |

Table 2.1 Summary Site Details

#### 2.2 Site Description

The site is roughly 'U' shaped, comprising an overall rectangular area with three privately owned residential properties excised from the central west portion of the rectangle as shown in **Figure 2**, The site has an area of approximately 7700 m<sup>2</sup>. The site is bound to the south by Pearl Street, to the west by Millett Street and to the east by Gloucester Road. To the north, and beyond the south, east and west bounding roads are low and medium density residential properties.

At the time of the fieldworks the site contained one large building, however, it should be noted that this building comprised several styles of building of a range of ages. A sealed driveway traversed the front, Gloucester Road portion of the site, providing vehicle access to the front reception of the hospital. Minimal doctor's car parking was observed at the northern extremity of this driveway. Between the driveway and the footpath along Gloucester Road an electrical substation and gas and water mains were observed within their own locked compounds. The south eastern corner (corner of Pearl Street and Gloucester Road) was covered by a lawn, and several landscaped gardens were evident.

The front of the hospital contained a building of early 1900's origin, and comprised the administrative section of the hospital. The glass fronted entrance to the building was observed as quite modern construction, with a reception area, a doctor's lounge, a reception office, and a small cafeteria. The central portion of the site, directly behind the reception area contained a small courtyard, with glass doors into the reception area, and a door into the cafeteria. The courtyard was completely paved and contained a water feature and several raised garden beds / potted plants. From the courtyard the differing ages of the buildings were evident, giving the impression that the hospital was built over time around the central courtyard.

The northern portion of the hospital contained a four storey building, which housed the majority of wards within the hospital. A narrow sealed single lane drive was located along



the northern boundary, traversing the western boundary between the hospital and the three privately owned residential Lots before joining on to Millett Street.

The rear section of the hospital contained the birthing rooms, fluids store, kitchen and amenities blocks. 12 Millett Street comprised a bitumen covered car park, and was visible from the north western corner of the hospital building.

The southern portion of the hospital comprised a three storey building, with the two lower floors containing car parking. On the basement level a locked caged area was observed as the hazardous materials compound, and contained several bottles of gas at the time of the inspection.

The hospital frontage onto Pearl Street comprised a chemist, a medical centre, and the day surgery wing. The plans provided by Inspira showed a radiology unit and surgical theatres located on the second storey.

The site sloped generally from north east to south west, with the Gloucester Road frontage being approximately 0.5 m to 1 m above the road, and the parking facility and loading docks in the south western portion of the site being situated approximately 1.5 m to 2 m below the level of both Pearl and Millett Streets. This lowered carpark was observed to comprise of shotcrete covered embankments which raised the level back to the adjacent street level. 12 Millett Street, which comprised a sealed car park, was situated approximately 1.5 m below the hospital grounds, and sloped gently from the east to the west.

Vegetation on the site appeared healthy and well maintained, and no areas of surface staining were noted during the previous inspection.

It should be noted that the site inspection was undertaken on the hospital grounds, and the front and central portions of the hospital. A full inspection of the working sections of the hospital buildings was not undertaken as part of the ESA inspection.

#### 2.3 Surrounding Landuse

The current landuse of adjacent properties is shown in **Figure 2** and summarised below.

- North Across Gloucester Road is low density residential;
- South Across Pearl Street is low and medium density residential, followed by commercial industrial (including a smash repairs), and a school;
- East Across the intersection of Pearl Street and Gloucester Road is low and medium density residential, with Hurstville Oval located approximately 200 m from the site; and
- West Across Millett Street is low to medium density housing, followed by King Georges Road.

Based on review of the surrounding land uses by site inspection, surrounding residential properties are unlikely to be potential offsite sources. Due to the surrounding topographical features, it is considered unlikely that any of the nearby industrial / commercial premises are potential offsite sources of contamination.



#### 2.4 Topography

A review of the online topographic map provided by the NSW Natural Resources Atlas Home (NSW NR 2010<sup>2</sup>) indicates that the site has an elevation ranging between 55 and 65 m Australian Height Datum (AHD). The site slopes from the south eastern corner to the north western portion of the site, with the highest point coinciding with the south eastern site corner boundary.

Topographical features noted include:

- The site boundary along Gloucester Road was observed as 0.5 to 1 m higher than the road reserve;
- The car park located at 12 Millett Street slopes from the north eastern corner to the south west, with a decline in elevation of approximately 1.5 m; and
- The loading dock and underground car park located on the south western corner of the site is 2 metres below Millett Street.

#### 2.5 Hydrology

The closest surface water receptor is Poulton Creek, located approximately 1.25 km south of the site. Poulton Creek drains into Oatley Bay 700m further south, which ultimately drains into Botany Bay and the ocean. Hurstville falls within the boundary of the Georges River Catchment.

The majority of the rainfall at the site is expected to runoff the sealed surfaces in a general south to south westerly direction following the natural slope of the land where it will be diverted into the municipal storm water systems in Millett and Pearl Streets.

#### 2.6 Geology

A review of the regional Sydney geological map (DMR 1966<sup>3</sup>) indicates the site is underlain by the Triassic age Wianamatta Group, consisting of Ashfield and Bringelly Shale. Typical characteristics of this formation include the presence of shale with some sandstone beds present.

The soils within the area are defined by the Soil Landscapes of Sydney (DNR 2009<sup>4</sup>) as Red Podzolic Soil, which is described as blackish brown sandy loam, with angular, subangular and sub-rounded, fine particles, with some gravel inclusions. Underlying this is a clay loam, at an approximate depth of 0.3 m, which consists of slight plasticity, medium density, red and brown clays.

Based on a review of the Acid Soil Sulphate Risk Map (2009)<sup>5</sup>, the site has no occurrence of acid sulphate soil materials.

#### 2.7 Hydrogeology

Registered groundwater bore information from the Department of Water and Energy (DWE) is included in JBS 2010.

<sup>&</sup>lt;sup>2</sup> DNR (2009), NSW Natural Resource Atlas – <u>http://www.nratlas.nsw.gov.au</u> viewed on 8.11.2010

<sup>&</sup>lt;sup>3</sup> Department of Minerals Resources (1966). Sydney Geological Series Sheet (3<sup>rd</sup> Edition) SI/5605.

<sup>&</sup>lt;sup>4</sup> DNR (2009), NSW Natural Resource Atlas – <u>http://www.nratlas.nsw.gov.au</u> viewed on 9.11.2010

<sup>&</sup>lt;sup>5</sup> DNR (2009), NSW Natural Resource Atlas – <u>http://www.nratlas.nsw.gov.au</u> viewed on 9.11.2010



Based on the review of DWE information, there are no registered groundwater bores within a 1.5 km radius around the site. Registered bores located 2.5 km east of the site were recorded as containing no water bearing zones.

Based on previous JBS experience in the area the water-bearing zones are predicted to be approximately 5 m below ground surface (bgs).



# 3 Site History

The historical information for the site was reviewed as part of the Phase 1 assessment (JBS 2010), and a summary is provided in the following sections.

### 3.1 General History

### 3.2 Aerial Photographs

Aerial photographs from 1930, 1951, 1961, 1970, 1979, 1988, 1994 and 2005 were obtained from the Land and Property Information Centre. These photographs are provided in the Phase 1 ESA (JBS 2010) and the summarised historical information is as follows:

- In 1930, the site appeared to consist of two residences, joined by what appeared to be a covered walkway. A large arc shaped driveway was evident joining the site to Gloucester Road in the northern and southern portions of the original site. The surrounding area appeared to be predominantly low density residential, with some industrial / commercial properties evident to the south along King Georges Road.
- In 1951, the site and surrounding area appeared unchanged from the previous photograph with the exception of an extension between the two buildings, making one large building on the site.
- In 1961, the site appeared unchanged in comparison to the previous photograph. An area one block to the west had been changed from a large open space, to contain 7 low density residential blocks.
- In 1970, the site appeared similar to the previous photograph with two exceptions. The residence directly to the north along Gloucester Road was no longer present and the land had been developed into a sealed carpark. Also, three large trees on the eastern and southern boundary of the site had been removed. The surrounding area appeared similar to the previous photograph with the clearing of an area directly south, which previously consisted of low density housing.
- In 1979, the site had been extended to the north, the car park which was evident in the 1970 photograph located at the northern boundary had been replaced with the extension of the building facing Gloucester Road. Additionally, the rear building containing the kitchen and store rooms had been added to the hospital. The surrounding area looked predominantly the same as the previous photograph, with the development of an area to the south into a large high rise building.
- In 1988, the site had undergone a significant change, with the property located on the corner of Gloucester Road and Pearl Street containing two large buildings, twice as large as the previously evident buildings. These two buildings are currently part of the hospital. South of two blocks to the south west of the site was a triangular area of vacant land, which was identified as containing low density residential properties in the 1979 photograph. In addition, the aged care facility which is currently located to the north of the hospital (100 m north) was evident.
- In 1994, the site appeared similar to the previous photograph, with two exceptions. An additional storey had been added to the portion of hospital along the northern Gloucester Road boundary, made evident in the photograph by the



lighter red roofing. Also, the newer portion of the hospital had been added on the corner of Pearl and Millett Streets. The area to the south west of the site had been developed with high rise buildings evident within the business sector, where previously vacant land was observed.

• In 2005, the site appeared similar to the previous photograph, and similar to what was observed during the site inspection, with the exception of 12 Millett Street. In 2005, there remained a residential building on the property identified as 12 Millett Street, with no sign of the paved car park which is present today.

#### 3.3 Title Details

A historic title search was undertaken for the twelve Lots which make up the site. Results are included in JBS 2010 and summarised below.

Lots A & B in DP400487 – This parcel of land was originally one Lot, and was owned by a builder and a retired storekeeper between 1936 and 1957. Post 1957 the land was divided into 2 Lots. Both Lots were owned by private landowners (Lot A owners included a catering manager, widow, married woman, sales engineer, photoengraver and a technician. Lot B owners included a marine radio operator and a foreman rigger). Lot A was purchased by the Hurstville Community Co-Operative Hospital Ltd in 1990, and Lot B in 1993.

Lots 2 & 5 in DP16273 – Lot 2 was owned by a builder, the Australasian Catholic Assurance Company Ltd, and private landowners until 1992 when it was purchased by the Hurstville Community Co-Operative Hospital Ltd. Lot 5 was owned by a builder and a carpenter and joiner until 1972 when it was purchased by the Hurstville Community Co-Operative Hospital Ltd.

Lots 12, Sec D in DP1426 – Lot 12 was owned by private landowners (including a freeholder, a salesman, a paymaster and a widow) between 1887 and 1960. In 1960 the Lot was purchased by Hurstville Community Co-Operative Hospital Ltd.

Lot C1 and C2 in DP377900 – Lot C1 was owned by private landowners (spinsters) between 1927 and 1952, when it was purchased by the Goshen Co-Operative Community Hospital Limited. Lot C2 was owned by private landowners (including spinsters and a carpenter) between 1927 and 1958 when it was purchased by the Hurstville Community Co-Operative Hospital Ltd.

Lots A & B in DP375463 – This parcel of land was originally one Lot, and owned by spinsters, followed by a labourer until 1962. The land was subdivided into two separate Lots in 1962 with Lot A being owned by a motor mechanic, and an analyst programmer until 1977. Lot B was owned by a clerk until 1977. In 1977 both Lots were purchased by the Hurstville Community Co-Operative Hospital Ltd.

Lot 20, Sec D in DP1426– Lot 20 was owned by a carpenter, a commercial traveller, a railway clerk, a married woman, an iron moulder, a company director, and another party (occupation unknown) until 2005 when the property was purchased by Continuum Healthcare Property Pty Ltd.

Lots 1 & 2 in DP1045223 – Lot 1 was owned by a tinker yard manager, an engineer until 1987, and was purchased by the Hurstville Community Co-Operative Hospital Ltd in 1987. Lot 2 was owned by a delivery clerk, a foreman, an engineer, and was purchased by the Hurstville Community Co-Operative Hospital Ltd in 1987.



The Hurstville Community Co-Operative Hospital land has been owned by several groups throughout the last ten years, as summarised following:

- Hurstville Community Private Hospital Pty Ltd between 2000 and 2004;
- LCM Calvary Health Care Holdings Ltd between 2004 and 2007;
- Tuck Property Pty Ltd between 2007 and 2009; and
- Continuum Healthcare Property Pty Ltd since 2009.

#### 3.4 Council Records

Planning Certificates were obtained from Hurstville City Council for the Lots which make up the hospital owned site. Planning Certificates are included in JBS 2010, and the information is summarised as follows:

- The site is zoned 5(a) Special Use (37 Gloucester Road) and 2 Residential (12 Millett Street);
- The land is not affected by the operation of Section 38 or Section 39 of the Coastal Protection Act, 1979;
- The land is not in an area proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961;
- The land is not subject to the Unhealthy Building Land Policy under the provisions of the Environmental Planning and Assessment Act 1979;
- The land is not affected by any road widening or road realignment policies;
- The land is not subject to a property vegetation plan under the Native Vegetation Act 2003;
- The land is not affected by any policies that restrict development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk;
- The land is not subject to flood related development controls;
- The land is not affected by Part 7A of the Threatened Species Conservation Act 1995;
- The land is not identified as significantly contaminated land, is not subject to a management order or is not the subject of an approved voluntary management proposal within the meaning of the Contaminated Land Management Act 1997;
- In accordance with the Hurstville Local Environmental Plan 1994, a tree preservation order applies to land within Hurstville City Council jurisdiction; and
- The Council has developed a Policy for Potentially Contaminated Land which may restrict the development of this land. The policy is implemented when zoning or land use changes are proposed on lands which have previously been used for certain purposes.

#### 3.5 DECCW Records

A search of the DECCW's public register under the *Protection of the Environment Operations Act 1997* was undertaken, and results are included in JBS 2010. The search identified that, for the site, there were:

• No prevention, clean-up or prohibition notices; and



• One environment protection licence was reported as no longer in force.

The previously registered license was granted to the Hurstville Community Private Hospital Ltd and was active between December 2000 and February 2008. The license allowed the transportation of clinical and related waste from the hospital facility to a NSW based waste facility for disposal.

A search was also undertaken through the DECCW's public contaminated land register (JBS 2010). The search identified that there have been no notices issued under the *Contaminated Land Management Act 1997* for the site.

It should be noted that no license was ever applied for or registered to the hospital for radiation based chemicals.

### 3.6 Australian and NSW Heritage Register

A search of the Australian Heritage Trust database and the NSW Heritage Inventory was undertaken as part of JBS 2010. It should be noted that the NSW Heritage Register search returned the Fertility First clinic, which is located opposite the hospital, and located at 50 Gloucester Road.

There are no registered heritage items at the site, and no other registered items within a close proximity of the site.

### 3.7 WorkCover Dangerous Goods Licenses

A WorkCover search of the Stored Chemical Information Database (SCID) and the microfiche records held by WorkCover was conducted as part of the Phase 1 ESA (JBS 2010). The WorkCover search was reported to have found no records of dangerous goods being stored or registered for the site.

#### 3.8 Anecdotal Evidence

During the previous Phase 1 ESA (JBS 2010), an interview was undertaken with Mr Maurice Cattell who has been employed at the Hurstville Private hospital in the maintenance department. The following anecdotal information was ascertained from the interview:

- The hazardous material area is currently located in the lower car park, previous to this the location was unknown;
- The hazardous material compound consists of medical gases (*i.e.*, nitrous oxide, oxygen);
- No other hazardous materials have reportedly been stored within the site boundaries;
- There is a backup diesel generator on the site, however, this is situated on a sealed concrete slab, with ventilation and preventative maintenance which is undertaken every 6 weeks;
- All landscaping and grounds keeping on the site is undertaken by an independent contractor. No landscaping or gardening equipment is kept within the site (including lawnmowers and subsequent fuels); and



• The property located at 12 Millett Street was transformed into a carpark within the last 2 years. The building was demolished at least 6 months prior to this, and was reportedly a duplex residential property.

#### 3.9 Site History Summary

A summary of the site history is provided in Table 3.1.

#### Table 3.1 Summary Site History

| Period                                                                                                  | Activity                                                                                                                               | Source             |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1952                                                                                                    | Lot C1 DP377900 was purchased by the Hurstville Community Co-<br>Operative Hospital Ltd.                                               | Title Details      |
| 1958                                                                                                    | Lot C2 DP377900 was purchased by the Hurstville Community Co-<br>Operative Hospital Ltd.                                               | Title Details      |
| 1960                                                                                                    | Lot 12, Sec D DP1426 was purchased by the Hurstville Community Co-<br>Operative Hospital Ltd.                                          | Title Details      |
| 1960                                                                                                    | Lot 12, Sec D DP1426 was purchased by the Hurstville Community Co-<br>Operative Hospital Ltd.                                          | Title Details      |
| Pre 1970                                                                                                | Hospital site was extended to absorb the former residence located to the north along Gloucester Rd, which is being used as a car park. | Aerial Photographs |
| 1972                                                                                                    | Lot 5 DP16273 was purchased by the Hurstville Community Co-<br>Operative Hospital Ltd.                                                 | Title Details      |
| 1977                                                                                                    | Lots 12 A&B DP 375463 were purchased by the Hurstville Community Co-Operative Hospital Ltd.                                            | Title Details      |
| Pre 1979                                                                                                | Hospital buildings were extended north (rooms), and west (kitchen / amenities).                                                        | Aerial Photographs |
| 1987                                                                                                    | Lots 1 & 2 DP1045223 were purchased by the Hurstville Community Co-<br>Operative Hospital Ltd.                                         | Title Details      |
| Pre 1988                                                                                                | Hospital buildings were extended south to include the land located on the corner of Pearl St and Gloucester Rd. Aerial Photographs     |                    |
| 1990                                                                                                    | Lot A DP400487 was purchased by the Hurstville Community Co-<br>Operative Hospital Ltd. Title Details                                  |                    |
| 1992Lot 2 DP16273 was purchased by the Hurstville Community Co-<br>Operative Hospital Ltd.Title Details |                                                                                                                                        | Title Details      |
| 1993                                                                                                    | Lot B DP400487 was purchased by the Hurstville Community Co-<br>Operative Hospital Ltd.                                                |                    |
| Pre 1994                                                                                                | The hospital was extended by an additional storey within the northern                                                                  |                    |
| 2000                                                                                                    | The hospital lands were held by the Hurstville Community Private Hospital Pty Ltd.                                                     | Title Details      |
| 2000                                                                                                    | License to transport clinical and related waste from the hospital was granted.                                                         |                    |
| 2004                                                                                                    | The hospital land was held by LCM Calvary Health Care Holdings Ltd.                                                                    | Title Details      |
| 2005                                                                                                    | Lot 20, Sec D DP1426 was purchased by the Hurstville Community Co-<br>Operative Hospital Ltd.                                          | Title Details      |
| 2007                                                                                                    | The hospital lands were held by the Tuck Property Pty Ltd.                                                                             | Title Details      |
| 2008                                                                                                    | The license to transport clinical and related waste was no longer applicable.                                                          | DECCW Records      |
| 2000                                                                                                    | The land recently obtained on Millett St (Lot 12) was sealed into a car park                                                           | Anecdotal Evidence |
| 2009                                                                                                    | 2009 The hospital lands were held by the Continuum Healthcare Property Pty<br>Ltd. Title Details                                       |                    |

#### 3.10 Integrity Assessment

The information obtained from sources noted above was found to be in general agreement regarding the history of the site. Based on the range of sources providing information and the general consistency of this information, it was considered that the historical assessment has an acceptable level of accuracy.



# 4 **Previous Investigations**

### 4.1 Environmental Site Assessment Phase 1 (JBS 2010)

JBS was engaged by Inspira on behalf of Continuum Healthcare Group Pty Ltd to conduct a Phase 1 Environmental Site Assessment on the Hurstville Private Hospital located at 37 Gloucester Road, Hurstville, NSW.

The Phase 1 ESA was undertaken as part of the development process to determine whether there are any potential areas of contamination, and whether it required additional assessment and/or remediation in order to be rezoned or redeveloped.

The scope of works consisted of a desktop study, a detailed site inspection, preparation of a conceptual site model and the provision of a Phase 1 ESA Report.

Based on the review of published and historical information, as well as the site inspection, the areas of environmental concern identified were as follows:

- Fill material historically placed on the site;
- Former (unknown) and current location of the backup generator;
- Current and former car parking areas;
- Buildings and structures of various ages across the site; and
- Hazardous materials store.

Potentially contaminated media includes fill materials, natural soils and groundwater.

The conclusions are recommendations of the Phase 1 ESA were as follows:

- The site was formerly used for low density residential, was subsequently developed into the Private Hospital, and then added to piecemeal as the surrounding properties were absorbed into the larger hospital site;
- Due to the piecemeal absorption of each Lot into the larger site, and the lack of previous environmental reports, the unknown source of fill material across the site poses a potential contamination risk;
- Areas of the site have historically been used for car parking and vehicle access facilities;
- Areas of the site have been historically and/or currently used for hazardous materials storage, including medical gas and generator fuel stores;
- Areas of Environmental Concern (AECs) include the fill material across the site, the soils underlying the current and former car parking and vehicle access, the areas under the hazardous materials storage facilities; and
- The potentially contaminated media includes fill materials, natural underlying soils, and a minimal risk to groundwater.

Based on the results of the Phase 1 ESA, it was considered that there were potential sources of contamination present resulting from the piecemeal absorption over time of individual Lots into the greater hospital site, and the former and current use of the site as a hospital.

It was recommended that an intrusive soil and groundwater assessment, targeting the AECs identified, be undertaken to identify any contamination associated with the historical and current use of the site.



# 5 Conceptual Site Model

### 5.1 Potential Areas of Environmental Concern

Based on the Phase 1 ESA, the AECs have been identified and are presented in **Table 4.1**.

| Table 4.1 Areas of Environmental | Concern and Associated Constituent of Potential Concern |
|----------------------------------|---------------------------------------------------------|
| Table 4.1 Areas of Environmental | Concern and Associated Constituent of Potential Concern |

| Area of Environmental Concern                                 | Constituents of Potential Concern                      |
|---------------------------------------------------------------|--------------------------------------------------------|
| Fill historically placed on the site                          | Heavy metals, TPH/BTEX, PAHs, OCP/OPPs, PCBs, asbestos |
| Former (unknown) and current location of the backup generator | TPH, PAHs, lead                                        |
| Current and former car parking areas                          | TPH, PAHs, lead                                        |
| Buildings and structures of various ages across the site      | Heavy metals, PCBs, asbestos                           |
| Hazardous material stores                                     | Heavy metals, TPH/BTEX, PAHs, OCP/OPPs, PCBs, asbestos |

AECs on the site are identified on Figure 3.

#### 5.2 Potentially Contaminated Media

Potentially contaminated media present at the site include:

- Fill material;
- Natural soils; and
- Groundwater.

Due to the varying elevation of the site compared to surrounding properties, fill material is assumed to be present across the site. The source of fill material is unknown, however it is suggested that fill would have been used for levelling the site. As the fill material underlying the site has unknown origins it must be assumed to be a potentially contaminated medium.

Based on the potential leachability of the contaminants in the fill and the historical uses of the site, vertical migration of contaminants through the fill into the underlying natural soils may have occurred.

Groundwater is identified as a potentially contaminated medium due to the potential historic and current presence of hazardous material storage at the site (including fuels for back up generators), as well as current and historical site activities.

Surface water is not identified as a potentially contaminated medium based on the sealed nature of the site. Areas of surface water are substantially absent from the site.

#### 5.3 Potential for Migration

Contaminants generally migrate from site via a combination of rainwater infiltration, groundwater migration and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants identified as part of the site history review and site inspection includes liquids (*i.e.* petroleum products).



The entire site is generally paved with the exception of garden areas along the eastern boundary. The site pavement restricts the potential for windblown contaminants to migrate from the site.

The potential for contaminants to migrate via surface water runoff from the site is considered low, based on the sealed nature of the site.

Rainfall infiltration at the site is expected to be very low as a result of the site pavement. However, the potential presence of historical, and the known presence of a diesel generator at the site introduces a potential contamination risk. Based on the proximity of groundwater beneath the site, there is a potential for migration of hydrocarbon contaminants via groundwater flow within the underlying sandstone formation.

Manmade preferential pathways for the migration of COPCs are generally not present under the site apart from high permeability materials contained within fill material placed over the site, and utility and connected pipe work trenches within the site which may act as pathways for the migration of shallow seepage water. However, these services are present well above the predicted depth to groundwater.

Natural preferential pathways include seepage through unsealed surface cover, seepage from service pits and trenches into the natural soil profile, surface water runoff and groundwater passage beneath the site.

#### 5.3.1 Potential Exposure Pathways

The exposure pathways considered to be potentially complete include:

- Inhalation of COPC vapours migrating upwards from impacted soil or groundwater, either in indoor structures or outdoors; and/or
- Potential dermal and oral contact to soil or groundwater within excavations extending below the surface soils or into groundwater.

Given the historical and current presence of liquid COPCs on the site there is the potential for vapours to migrate both laterally and vertically into buildings and/or into nearby underground service pits and trenches. Potential receptors of vapours are users of the building and maintenance workers working on underground services.

As groundwater extraction has not been identified at or within the vicinity of the site (no registered wells within 1.5 km radius of the site), a complete exposure pathway to extracted groundwater (*i.e.* irrigation, potable supply) has not been identified.

#### 5.3.2 Potential Receptors

Potential receptors of groundwater or potential COPCs that may be present at the site include:

- Excavation/ construction/ maintenance workers conducting sub-surface investigations at or in the vicinity of the site, who may potentially be exposed to COPCs through inhalation of vapours or via direct dermal contact with impacted soil or groundwater via excavations;
- Site staff, site clients and neighbouring residents potentially exposed to COPCs though migration of vapours of COPCs to the surface; and/or
- The ecosystem surrounding Poulton Creek (located approximately 1.25 km south of the site), into which groundwater containing any COPCs may issue.



# 6 Sampling and Analysis Plan

### 6.1 Data Quality Objectives

Data Quality Objectives (DQOs) were developed for the Phase 2 ESA, as discussed in the following sections.

#### 6.1.1 State the Problem

The presence of potential contamination within the underlying soil and groundwater at the site required assessment to provide information on the suitability of the end land use for the proposed redevelopment.

#### 6.1.2 Identify the Decision

Based on the decision making process for assessing urban redevelopment sites detailed in DEC (2006) and modified to relate to the specific redevelopment requirements for this assessment, the following decisions were required to be made:

- Does the site assessment report follow the EPA 1997 Guidelines?
- Are there any unacceptable risks to likely future onsite receptors from soil or groundwater?
- Are there any issues relating to the local area background soil concentrations that exceed appropriate soil criteria?
- Have aesthetic issues at the site been addressed?
- Are there any impacts of chemical mixtures?
- Is there any evidence of, or potential for, widespread migration of contaminants from the site?
- Is a management or remediation strategy required for the site?

#### 6.1.3 Identify Inputs to the Decision

Inputs to the decisions included:

- Site condition information and site historical information; and
- Soil and groundwater analytical data.

#### 6.1.4 Define the Study Boundaries

The study area included the site as defined in **Section 2.1** and illustrated in **Figure 2**. The vertical extent of the investigation extended to 2 m below the depth of groundwater, or a maximum depth of 10.5 m bgs.

The timeframe for the Phase 2 ESA works was as follows:

- January 2011 SAQP and safety documents for client review;
- February 2011 Drilling (soil sampling and groundwater installation works);
- Feb/March 2011 Groundwater Monitoring Event; and
- March 2011 Production of a Phase 2 ESA report for client review.

#### 6.1.5 Develop a Decision Rule

Soil analytical data were assessed against DECCW endorsed criteria including:



- National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council, 1999 (NEPC 1999); and
- Contaminated Sites: Guidelines for Assessing Service Station Sites, NSW EPA, 1994 (EPA 1994).

The groundwater analytical data was compared against DECCW endorsed criteria, including:

- Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination, NSW DEC, March 2007 (DEC, 2007); and
- Australian and New Zealand guidelines for fresh and marine water quality, ANZECC/ARMCANZ. 2000 (ANZECC/ARMCANZ, 2000). (95% protection for marine water).

Details of selected criteria are provided in **Section 7**. The decision rules that were adopted to answer the decisions identified in **Section 6.1.2** are summarised in **Table 6.1**.

| Decision Required to be Made                                                                                                                     | Decision Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Are there any unacceptable<br>risks to onsite future receptors<br>from soils?                                                                 | Soil analytical data were compared against DECCW endorsed criteria.<br>Statistical analyses of the data in accordance with relevant guidance<br>documents analyses undertaken, if appropriate, to facilitate the<br>decisions. The following statistical criteria were adopted with respect to<br>soils:<br><u>Either</u> : the reported concentrations were all below the site criteria;<br><u>Or</u> : the average site concentration for each analyte was below the<br>adopted site criterion; no single analyte concentration exceeded 250%<br>of the adopted site criterion; and the standard deviation of the results<br>was less than 50% of the site criteria.<br><u>And</u> : the 95% upper confidence limit (UCL) of the average<br>concentration for each analyte was below the adopted site criterion <sup>6</sup> .<br>If the statistical criteria stated above were satisfied, the decision was<br>No. |
| 2. Are there any unacceptable<br>risks to onsite future receptors<br>from groundwater?                                                           | If the statistical criteria were not satisfied, the decision was Yes.<br>Groundwater analytical data were compared against DECCW endorsed<br>criteria. Consequent of the limited extent of data where maximum<br>levels of groundwater impact exceeded criteria, then further exposure<br>assessment will be undertaken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. Are there any issues relating to<br>the local area background soil or<br>groundwater concentrations that<br>exceed appropriate soil criteria? | <ul> <li>Where the exposure assessment indicated a potential unacceptable risk, the decision was Yes.</li> <li>Otherwise, the decision was No.</li> <li>If the 95% UCL of surface soils exceeded published background concentrations (NEPC 1999), the decision was Yes.</li> <li>Otherwise, the decision was No.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4. Are there any chemical mixtures?                                                                                                              | Were there more than one group of contaminants present which<br>increase the risk of harm?<br>If there were, the decision was Yes.<br>Otherwise, the decision was No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5. Are there any soil aesthetic issues?                                                                                                          | If there were any unacceptable odour, discolouration or aesthetic issues<br>within the media at the site, the decision was Yes.<br>Otherwise, the decision was No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6. Is there any evidence of, or<br>potential for, migration of<br>contaminants from the site?                                                    | Were contaminants present at concentrations exceeding published<br>background concentrations (NEPC 1999) <u>AND</u> have the same<br>contaminants been identified at concentrations exceeding DECCW<br>endorsed criteria in groundwater as associated with detections of soil<br>impact?<br>If yes, the decision was Yes.<br>Otherwise, the decision was No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ol> <li>Is a site management or<br/>remediation strategy required for<br/>the site?</li> </ol>                                                  | Was answer to any of the above decisions be Yes?<br>If yes, a site management strategy will be required.<br>If no, a site management strategy will not be required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Table 6.1 Summary of Decision Rules

Phase 2 ESA – Hurstville Private Hospital 37 Gloucester Rd, Hurstville, NSW © 2011 JBS Environmental Pty Ltd

<sup>&</sup>lt;sup>6</sup> Sampling Design Guidelines. (NSW EPA,1995)



#### 6.1.6 Specify Limits on Decision Errors

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW DECCW, NEPC (1999), ANZECC/ARMCANZ (2000), DEC (2007), appropriate indicators of data quality (DQIs used to assess quality assurance / quality control) and standard JBS Environmental procedures for field sampling and handling.

AS4482.1-2005<sup>7</sup> nominates two types of errors that require assessment:

a) Deciding that the site is acceptable when it actually is not; and

b) Deciding that the site is unacceptable when actually it is.

It is recommended in AS4482.1 that limits of 5% probability for type a) errors and 20% probability for type b) errors be set during environmental assessments. These recommendations have been adopted for this investigation.

The following relationship is provided to determine if sufficient soil samples have been collected during the investigation to meet the above limits of decision error:

 $n = 6.2 \sigma^2 / (C_s - \mu)^2$ 

where: n = number of samples needed

 $\sigma$  = estimated standard deviation of contaminant concentration in sampling area

 $C_s = acceptable limit (mg/kg)$ 

 $\mu$  = estimated average concentration in sampling area (mg/kg)

When n'<1, sufficient samples have been collected and analysed to achieve the stated limits on decision error.

To assess the usability of the data prior to making decisions, the data were assessed against pre-determined Data Quality Indicators (DQIs). The acceptable limit on decision error is 100% compliance with DQIs.

The pre-determined Data Quality Indicators (DQIs) established for the project are discussed below in relation to precision, accuracy, representativeness, comparability and completeness (PARCC parameters), and are shown in **Table 6.2**.

- Precision measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that are generated during this study is a measure of the closeness of the analytical results obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes and analyses against reference standards.

<sup>&</sup>lt;sup>7</sup> AS4432.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Nonvolatile and semi-volatile compounds.



- **Representativeness** –expresses the degree which sample data accurately and precisely represent a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- **Comparability** expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.

| Data Quality Indicator                                              | Frequency                        | Data Quality<br>Criteria      |
|---------------------------------------------------------------------|----------------------------------|-------------------------------|
| Precision                                                           |                                  |                               |
| Blind duplicates (soil intra laboratory)                            | 1 / 20 samples                   | <50% RPD                      |
| Blind duplicates (water intra laboratory)                           | 1 / 20 samples                   | <50% RPD                      |
| Split duplicates (soil inter laboratory)                            | 1 / 20 samples                   | <50% RPD                      |
| Split duplicates (water inter laboratory)                           | 1 / 20 samples                   | <50% RPD                      |
| Laboratory duplicates                                               | 1 / 20 samples                   | <50% RPD                      |
| Trip blank                                                          | 1 / media                        | <lor< td=""></lor<>           |
| Rinsate blank                                                       | 1 / day / equipment              | <lor< td=""></lor<>           |
| Trip spike                                                          | 1 / media                        | 70-130%                       |
| Accuracy                                                            |                                  |                               |
| Surrogate spikes                                                    | All organic samples              | 70-130%                       |
| Matrix spikes                                                       | 1 per lab batch or 20<br>samples | 70-130%                       |
| Laboratory control samples                                          | 1 per lab batch or 20<br>samples | 70-130%                       |
| Representativeness                                                  |                                  |                               |
| Sampling appropriate for media and analytes                         | -                                | -                             |
| Laboratory blanks                                                   | 1 per lab batch                  | <lor< td=""></lor<>           |
| Samples extracted and analysed within holding times.                | -                                | 14 days for principal COPC's. |
| Comparability                                                       |                                  |                               |
| Standard operating procedures for sample collection & handling      | All Samples                      | All samples                   |
| Standard analytical methods used for all analyses                   | All Samples                      | All samples                   |
| Consistent field conditions, sampling staff and laboratory analysis | All Samples                      | All samples                   |
| Limits of reporting appropriate and consistent                      | All Samples                      | All samples                   |
| Completeness                                                        |                                  |                               |
| Soil description and COCs completed and appropriate                 | All Samples                      | All samples                   |
| Appropriate documentation                                           | All Samples                      | All samples                   |
| Satisfactory frequency and result for QC samples                    | All QA/QC samples                | -                             |
| Data from critical samples is considered valid                      | -                                | Critical samples<br>valid     |

#### Table 6.2: Summary of Quality Assurance / Quality Control Program

(1) If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment will be made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

(2) Lower recoveries may be recorded for some semi-volatile organic analysis particularly including phenols.

#### 6.1.7 Optimise the Design for Obtaining Data

The purpose of this step is to identify a resource-effective field investigation sampling design that generates data that are expected to satisfy the site manager's decision performance criteria, as specified in the preceding steps of the DQO Process. The output of this step was the sampling design that guided the development of the field sampling and analysis plan. This step provided a general description of the activities necessary to generate and select data collection design that satisfied the decision performance criteria.



Based upon the available information from the areas of concern identified by the previous Phase 1 assessment, a targeted sampling pattern with infill targeted locations was considered most appropriate for the investigation.

Samples were collected from a total of 19 soil sampling locations across the site, as shown on **Figure 4**. Four groundwater monitoring wells were installed at targeted locations for the assessment of groundwater conditions. The sampling locations were selected to address the specific areas of concern identified during the JBS 2010 site history assessment and site inspection. Groundwater monitoring wells were installed to a maximum depth of 10.5 m or to 2 m below the encountered depth of groundwater.

#### 6.2 Soil Sampling Methodology

Soil samples were collected via both hand tools (hand auger and shovel) and solid flight augers off a geoprobe drill rig. Samples were collected from the surface (0-0.1 m), 0.3 m, 0.5 m and every 0.5 m thereafter until natural material (or prior refusal), to identify any impacted material from previous or current site uses.

Sufficient sample material was collected to allow both field observation and laboratory analysis. Additional samples were collected from any soil horizons, which exhibited staining, odours, or other physical evidence of potential contamination.

During the collection of soil samples, features such as seepage, discolouration, staining, odours and other indications of contamination were noted on field sheets. Collected soil samples were immediately transferred to laboratory supplied sample jars. The sample containers were transferred to an esky for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody (COC) form was completed and forwarded with the samples to the testing laboratory.

Not all soil samples collected were analysed. Samples were analysed in accordance with the analytical schedule (**Section 6.4**). All samples remained at the primary laboratory for a period of two months in case additional analysis was required following the receipt of sample results, and provided analysis of analytes was within holding times.

#### 6.3 Groundwater Monitoring Well Installation and Sampling

Four boreholes were drilled via solid flight auger in strategic locations and were converted into groundwater monitoring wells (MW01 – MW04). The wells targeted the potential water bearing zone underlying the site. All wells were constructed using Class 18 UPVC (50mm) screen and casing.

Wells were developed by bailing and surging prior to the placement of the bentonite seal within the well annulus. Following the completion of construction, the monitoring wells were purged to minimise the disturbance to the localised groundwater and remove any water added to the aquifer during the drilling process. The volume of water purged depended on the turbidity and observations of the extracted groundwater, however extraction ceased once groundwater was observed to be clear, or a total of two well volumes had been purged.

Prior to sampling, all accessible monitoring wells were gauged by the use of an interface probe. Noting potential target COPCs include volatile constituents, groundwater monitoring wells were sampled by a low flow method. A peristaltic pump with small diameter tubing was used for the sampling. It is noted in the Murray-Darling Basin Groundwater Sampling Guidelines as referenced in NEPC (1999) that air bubbles may potentially be formed in peristaltic pump tubing which cause volatilisation of volatile



constituents. The use of small diameter tubing during the sampling prevented this from occurring.

Monitoring wells were purged at the highest possible flow-rate while ensuring that minimal fluctuations in depth to water occur. A flow cell was used to continuously monitor water quality parameters of: Electrical conductivity (EC); Redox potential (Eh); pH; Dissolved oxygen (DO); Salinity; and Temperature during purging and sampling. The groundwater sample was collected where:

- Consecutive EC readings were within 3%;
- Consecutive Eh readings were within 10mV;
- Consecutive DO readings were within 10%; and
- Consecutive pH readings were within 0.5

As per the sampling guidance provided to Vic EPA (April 2000) 'Groundwater Sampling Guidelines Publication 669'.

#### 6.4 Laboratory Analyses

Soil and groundwater samples were submitted for laboratory analysis. The primary laboratory contracted was Envirolab Services Australia (Envirolab), with the secondary laboratories being Pickford and Rhyder (asbestos duplicates) and SGS Australia Pty Ltd (SGS). All laboratories are NATA accredited for the required analysis. In addition, the laboratories were required to meet the internal QA/QC requirements of JBS. Laboratory analyses of samples was conducted in accordance with **Table 6.3**.

| Area of Environmental<br>Concern (AEC) | Sampling Locations | Laboratory Analyses (incl QA.QC)                                                                                                                              |
|----------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil                                   | BH1 - BH19         | Heavy metals (As, Cd, Cr, Cu, Hg, Pb, Ni, Zn) – 22 samples<br>TPH/BTEX – 14 samples<br>PAHs – 14 samples<br>OCP/OPP/PCBs – 6 samples<br>Asbestos – 22 samples |
| Groundwater                            | MW1-MW4            | Metals – 6 samples<br>TPH/BTEX – 6 samples<br>PAHs – 6 samples<br>OCP/OPP/PCBs – 6 samples                                                                    |

#### Table 6.3: Summary of Design for Obtaining Data



# 7 Guidelines and Assessment Criteria

### 7.1 Regulatory Guidelines

The investigation was undertaken with consideration to aspects of the following guidelines, as relevant:

- Contaminated Sites: Guidelines for Assessing Service Station Sites, NSW EPA, 1994 (EPA 1994);
- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995 (EPA 1995);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, 1997 (EPA 1997);
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 2nd Edition, NSW EPA, 2006 (DEC 2006);
- National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council, 1999 (NEPC 1999);
- Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Australian and New Zealand Environment and Conservation Council and the National Health and Medical Research Council, 1992 (ANZECC/NHMRC 1992);
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Paper No 4, 2000 (ANZECC/ARMCANZ 2000);
- Australian Drinking Water Guidelines, National Health and Medical Research Council and Agriculture and Resource Management Council of Australia and New Zealand, 2004 (NHMRC/NRMMC 2004); and
- Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination, NSW DEC, March 2007 (DEC 2007).

# 7.2 Soil Criteria

Based on the site zoning and existing and proposed end land use, and in accordance with the decision process for assessment of urban redevelopment sites (DEC 2006), concentrations of contaminants in the soil were compared against investigation levels for residential with gardens and accessible soil (NEHF-A) (**Table 7.1**). As a requirement of DEC 2006, Provisional phytotoxicity based investigation levels (PBILs) also need to be addressed, and are provided in **Table 7.1**. However, due to the landscaping requirements of the proposed development, *in situ* soils are not expected to be used as growing media. Further, it is noted that the phytotoxicity depends on soil and species parameters in ways that are not fully understood" (DEC 2006). PBILs are considered not applicable to this investigation and are provided here as a reference only.

| •            | 0.0                           |                                                                                                       |                                                                    |  |  |  |
|--------------|-------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Constituents | Limit of Reporting<br>(mg/kg) | Health-Based Investigation<br>Level (residential with<br>accessible soils)<br>(NEHF – A) <sup>1</sup> | Phytotoxicity-Based<br>Investigation Level<br>(PBILs) <sup>3</sup> |  |  |  |
| Heavy Metals |                               |                                                                                                       |                                                                    |  |  |  |
| Arsenic      | 4.0                           | 100                                                                                                   | 20                                                                 |  |  |  |
| Cadmium      | 1.0                           | 20                                                                                                    | 3                                                                  |  |  |  |

#### Table 7.1 Soil Criteria (all units in mg/kg)



|                                            | -                   |                                                                                 |     |  |  |
|--------------------------------------------|---------------------|---------------------------------------------------------------------------------|-----|--|--|
| Chromium (VI)                              | 1.0                 | 100                                                                             | 1   |  |  |
| Copper                                     | 1.0                 | 1000                                                                            | 100 |  |  |
| Nickel                                     | 1.0                 | 600                                                                             | 60  |  |  |
| Lead                                       | 1.0                 | 300                                                                             | 600 |  |  |
| Zinc                                       | 1.0                 | 7000                                                                            | 200 |  |  |
| Mercury (inorganic)                        | 0.1                 | 15                                                                              | 1   |  |  |
|                                            | Total Petroleum H   | lydrocarbons (TPH)                                                              |     |  |  |
| C <sub>6</sub> – C <sub>9</sub> Fraction   | 25                  | 65 <sup>2</sup>                                                                 | -   |  |  |
| C <sub>10</sub> – C <sub>36</sub> Fraction | 250                 | 1000 <sup>2</sup>                                                               | -   |  |  |
|                                            | В                   | ТЕХ                                                                             |     |  |  |
| Benzene                                    | 1.0                 | 1 <sup>2</sup>                                                                  | -   |  |  |
| Toluene                                    | 1.0                 | 130 <sup>2</sup>                                                                | -   |  |  |
| Ethylbenzene                               | 1.0                 | 50 <sup>2</sup>                                                                 | -   |  |  |
| Total Xylenes                              | 3.0                 | 25 <sup>2</sup>                                                                 | -   |  |  |
|                                            | Polycyclic Aromatic | Hydrocarbons (PAH)                                                              |     |  |  |
| Benzo(a)pyrene                             | 0.05                | 1                                                                               | -   |  |  |
| Total PAHs                                 | 1.55                | 20                                                                              | -   |  |  |
| Pesticides (OCP/OPP)                       |                     |                                                                                 |     |  |  |
| Aldrin + Dieldrin                          | 0.2                 | 10                                                                              | -   |  |  |
| Chlordane                                  | 0.1                 | 50                                                                              | -   |  |  |
| DDT + DDD + DDE                            | 0.3                 | 200                                                                             | -   |  |  |
| Heptachlor                                 | 0.1                 | 10                                                                              | -   |  |  |
| Polychlorinated Biphenyls (PCBs)           |                     |                                                                                 |     |  |  |
| PCBs (total)                               | 0.9                 | 10                                                                              | -   |  |  |
| OTHER                                      |                     |                                                                                 |     |  |  |
| Asbestos                                   | Presence            | No fragments of ACM and No<br>fibres observed using NATA<br>accredited analysis | -   |  |  |

<sup>1</sup> Column 1 (NEHF - A), Health-based Investigation Levels (DEC 2006)

<sup>2</sup> Table 3 (EPA 1994)

<sup>3</sup> Column 5 (PBIL), Phytotoxicity-based Investigation Levels (DEC 2006)

#### 7.3 Groundwater Criteria

The limit on decision error for groundwater is sufficient data to characterise the upgradient and downgradient groundwater quality.

In accordance with the DEC 2007, groundwater data collected during the preliminary groundwater assessment were compared against existing generic groundwater investigation levels (GILs), which protect the following environmental values:

- Drinking water (NHMRC/NRMMC 2004); and
- Aquatic ecosystems (ANZECC/ARMCANZ 2000).

Adopted water quality criteria – taken from ANZECC/ARMCANZ 2000, and NHMRC/NRMMC 2004 – have been summarised in **Table 7.2**. The adopted water quality criteria (WQC) are in compliance with the GILs for 95% protection for the protection of aquatic ecosystems. There are two exceptions to this general rule:

- In the case where the laboratory LOR is less than the most sensitive criterion for an individual contaminant of concern, then the LOR has been used as the adopted WQC.
- 2. In the case where the adopted WQC is lower than natural background level of an individual contaminant of concern, then the natural background level has been used as the adopted WQC.

It is noted, as with soil guidelines, criteria are not readily available for all COPCs. Where detections of these constituents occur, international literature was reviewed to determine appropriate criteria.



| Table 7.2 –Adopted Water Quality Criteria (WQC) (all units in µg/L unless noted) |                       |                         |                                            |                                           |  |  |
|----------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------------------------------|-------------------------------------------|--|--|
| Constituents                                                                     | Limit of<br>Reporting | Laboratory Method       | Aquatic Ecosystem<br>Criteria <sup>1</sup> | Drinking Water<br>Guidelines <sup>2</sup> |  |  |
| Metals                                                                           |                       |                         |                                            |                                           |  |  |
| Arsenic (V)                                                                      | 1                     | ICP-MS (USEPA200.8)     | 24                                         | 7                                         |  |  |
| Cadmium                                                                          | 0.1                   | ICP-MS (USEPA200.8)     | 0.2                                        | 2                                         |  |  |
| Chromium (III)                                                                   | 1                     | ICP-MS (USEPA200.8)     | 3.3                                        | 50                                        |  |  |
| Copper                                                                           | 1                     | ICP-MS (USEPA200.8)     | 1.4                                        | 2000                                      |  |  |
| Lead                                                                             | 1                     | ICP-MS (USEPA200.8)     | 3.4                                        | 10                                        |  |  |
| Mercury                                                                          | 0.1                   | ICP-MS (USEPA200.8)     | 0.06                                       | 1                                         |  |  |
| Nickel                                                                           | 1                     | ICP-MS (USEPA200.8)     | 11                                         | 20                                        |  |  |
| Zinc                                                                             | 1                     | ICP-MS (USEPA200.8)     | 8                                          | -                                         |  |  |
| TPH/BTEX                                                                         |                       |                         |                                            |                                           |  |  |
| TPH C <sub>10</sub> -C <sub>36</sub>                                             | 260                   | GCFID (USEPA8000)       | 600 <sup>3</sup>                           | -                                         |  |  |
| TPH C <sub>6</sub> -C <sub>9</sub>                                               | 10                    | GCFID (USEPA8000)       | -                                          | -                                         |  |  |
| Benzene                                                                          | 1                     | Purge/trap (USEPA8020A) | 950                                        | 1                                         |  |  |
| Toluene                                                                          | 1                     | Purge/trap (USEPA8020A) | 180                                        | 800                                       |  |  |
| Ethylbenzene                                                                     | 1                     | Purge/trap (USEPA8020A) | 80                                         | 300                                       |  |  |
| Xylenes                                                                          | 3                     | Purge/trap (USEPA8020A) | 625                                        | 600                                       |  |  |
| PAHs                                                                             |                       |                         |                                            |                                           |  |  |
| Naphthalene                                                                      | 1                     | GCMS(USEPA8270)         | 16                                         | -                                         |  |  |
| Phenanthrene                                                                     | 1                     | GCMS(USEPA8270)         | 2                                          | -                                         |  |  |
| Anthracene                                                                       | 1                     | GCMS(USEPA8270)         | 0.4                                        | -                                         |  |  |
| Fluoranthene                                                                     | 1                     | GCMS(USEPA8270)         | 1.4                                        | -                                         |  |  |
| Benzo(a)pyrene                                                                   | 1                     | GCMS(USEPA8270)         | 0.2                                        | -                                         |  |  |

#### Table 7.2 – Adopted Water Quality Criteria (WQC) (all units in ug/L unless noted)

<sup>1</sup> (ANZECC (2000) Trigger values for the protection of 95% of aquatic ecosystems Fresh Water) <sup>2</sup> NHMRC/NRMMC (2004) Drinking Water Guidelines

<sup>3</sup> Insufficient data to derive a reliable trigger value. In these instances, reference has been made to low reliability trigger levels contained in ANZECC/ARMCANZ (2000).



# 8 Quality Assurance / Quality Control

#### 8.1 QA/QC Results

The QA/QC results for soil are summarised in **Table 8.1** and discussed in **Section 8.2** below. Detailed QA/QC results are included the laboratory reports in **Appendix D**.

| Data Quality Objective                                                                                       | Frequency               | Results                                                                                     | DQI met?             |
|--------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------|----------------------|
|                                                                                                              | (Soil)                  |                                                                                             |                      |
| Precision                                                                                                    |                         |                                                                                             |                      |
| Soil Blind duplicates (intra-laboratory)                                                                     | 1/20 - 5%               | RPD – 0 to 40%                                                                              | Yes                  |
| Soil Split duplicates (inter-laboratory)                                                                     | 1/20 - 5%               | RPD – 0 to 120%                                                                             | Partial <sup>1</sup> |
| GW Blind duplicates (intra-laboratory)                                                                       | 1/4 - 25%               | RPD – 0%                                                                                    | Yes                  |
| GW Split duplicates (inter-laboratory)                                                                       | 1/4 - 25%               | RPD – 0 to 23%                                                                              | Partial <sup>1</sup> |
| Laboratory Duplicates                                                                                        | 5/24 - 21%              | RPD – 0 to 114 %                                                                            | Partial <sup>1</sup> |
| Accuracy                                                                                                     |                         |                                                                                             |                      |
| Laboratory control samples                                                                                   | 10/24 - 42%             | 85 - 130%                                                                                   | Yes                  |
| Matrix spikes                                                                                                | 4/24 - 17%              | 71 – 139% recovery                                                                          | Partial <sup>1</sup> |
| Surrogate spikes                                                                                             | All organic<br>analyses | 75 – 109% recovery                                                                          | Yes                  |
| Soil Trip spike                                                                                              | 1/1 batch               | 96 – 112% recovery                                                                          | Yes                  |
| Soil Trip blank                                                                                              | 1/1 batch               | <lor< td=""><td>Yes</td></lor<>                                                             | Yes                  |
| Soil Rinsate blank                                                                                           | 1/1 batch               | <lor< td=""><td>Yes</td></lor<>                                                             | Yes                  |
| GW Trip spike                                                                                                | 1/1 batch               | 74 – 82% recovery                                                                           | Yes                  |
| GW Trip blank                                                                                                | 1/1 batch               | <lor< td=""><td>Yes</td></lor<>                                                             | Yes                  |
| GW Rinsate blank                                                                                             | 1/1 batch               | <lor< td=""><td>Yes</td></lor<>                                                             | Yes                  |
| Representativeness                                                                                           |                         |                                                                                             |                      |
| Sampling appropriate for media and analytes                                                                  | All samples             | All sampling conducted according to<br>JBS protocol, and appropriate for<br>media and COPCs | Yes                  |
| Samples extracted and analysed within holding times.                                                         | All samples             | All samples extracted and analysed<br>within holding times                                  | Yes                  |
| Comparability                                                                                                |                         |                                                                                             |                      |
| Standard operating procedures used<br>for sample collection and handling                                     | All samples             | Standard procedures for all sampling                                                        | Yes                  |
| Standard analytical methods used                                                                             | All samples             | Standard analytical methods                                                                 | Yes                  |
| Consistent field conditions, sampling staff and laboratory analysis                                          | All samples             | Consistent field staff and consistent<br>laboratory used                                    | Yes                  |
| Limits of reporting appropriate and<br>consistent                                                            | All samples             | LORs appropriate and generally<br>consistent                                                | Yes                  |
| Completeness                                                                                                 |                         |                                                                                             |                      |
| Soil descriptions and CoCs completed<br>and appropriate                                                      | All samples             | CoCs and field documentation<br>complete.                                                   | Yes                  |
| Appropriate documentation                                                                                    | All samples             | Documentation complete                                                                      | Yes                  |
| Satisfactory frequency and result for QC samples                                                             | All samples             | Frequency adequate                                                                          | Yes                  |
| Data from critical samples is considered valid                                                               | All samples             | Valid                                                                                       | Yes                  |
| Analytical methods and limits of<br>reporting appropriate for media and<br>adopted site assessment criteria. | All samples             | LOR is less than adopted investigation criteria                                             | Yes                  |

Table 8.1 - Soil QA/QC Results Summary

<sup>1</sup> See discussion of DQI exceedances below.

#### 8.2 QA/QC Discussion

#### 8.2.1 Precision

#### Laboratory Duplicates

The rate of laboratory duplicate sampling and analysis exceeded the DQI's (5%). All laboratory duplicates undertaken as part of the assessment were found to have acceptable RPDs with the exception of duplicate sample 52147-1, which returned PAH concentrations with corresponding RPDs ranging from 0 - 114 %.



The RPD exceedance is considered to be a result of the heterogeneous nature of the fill materials, and is not expected to change the accuracy of the data set.

#### 8.2.1.1 Soil

#### **Blind Duplicates**

The rates of blind duplicate sampling and analysis exceeded the DQI's for soil sampling (5%). RPDs have been found to be acceptable for all duplicate sample locations.

#### Split Duplicates

The rates of split duplicate sampling and analysis exceeded the DQI's for soil sampling (5%). RPDs have been found to be acceptable for soil duplicate samples with the exception of mercury and chrysene in QC1 and corresponding primary sample HA15 (0-0.1 m) which had RPDs of 120 % and 55%, respectively.

It should be noted that even though the RPDs exceeded the DQO's, the concentrations of both analytes were reported below the adopted site criteria. Furthermore, the RPDs are assumed to be a result of the heterogeneous nature of the fill materials on site and do not pose an issue for the accuracy of data attained during this investigation.

#### 8.2.1.2 Groundwater

#### Blind Duplicates

The rates of blind duplicate sampling and analysis exceeded the DQI's for groundwater sampling (5%). RPDs have been found to be acceptable for all duplicate sample locations.

#### Split Duplicates

The rates of split duplicate sampling and analysis exceeded the DQI's for groundwater sampling (5%). RPDs have been found to be acceptable for all duplicate sample locations.

#### 8.2.2 Accuracy

#### Surrogate Spikes

Surrogate spike results have been reported for analysis of all constituents. The surrogate spike sample recoveries were reported within the acceptable range of 70-130%.

#### Matrix Spikes

Matrix spike results have been reported for analysis of all constituents. The matrix spike recoveries were generally reported within the acceptable range of 70–130% with a few exceptions. The over recoveries of two OCP spikes are over the JBS adopted range, however, are still within the NATA accredited laboratory limits and therefore considered acceptable.

#### Laboratory Control Samples

Laboratory control sample results have been reported for analysis of all constituents. The laboratory control sample recoveries were reported within the acceptable range of 70–130%.

#### Soil Trip spike

Trip spikes were prepared and submitted for analysis with the soil samples. The trip spike recoveries were within the range of 70-130%.

#### Soil Trip blank



Trip blanks were prepared and submitted for analysis with the soil samples. All trip blank results were found to be acceptable.

#### GW Trip spike

Trip spikes were prepared and submitted for analysis with the groundwater samples. The trip spike recoveries were within the range of 70-130%.

### <u>GW Trip blank</u>

Trip blanks were prepared and submitted for analysis with the groundwater samples. All trip blank results were found to be acceptable.

### 8.2.3 Representativeness

### Sampling appropriate for media and analytes

Sampling was undertaken by recovery of soil and groundwater samples appropriate for the media, depths and COPCs. The designated sampling methods were considered appropriate for the collection of both soil and groundwater samples for the Phase 2 ESA at Hurstville.

#### Holding times

All analyses have been undertaken within holding times.

### 8.2.4 Comparability

The laboratories were NATA accredited for all methods. SGS asbestos analysis does not adhere to the same analytical methodologies and Australian Standards as the primary laboratory. Pickford and Rhyder adhere to the same Australian Standard and laboratory limit of reporting and were utilised as the secondary laboratory for asbestos analysis.

Experienced JBS personnel undertook all sampling in accordance with standard JBS sampling methods.

#### Limit of Reporting

The limits of reporting were appropriate to the analytes identified as COPCs.

# 8.2.5 Completeness

#### **Documentation**

All documentation is complete and correct. Chain of custody documentation is provided with laboratory report sheets in **Appendix E**.

#### Frequency for QC Samples

The frequency of analysis of all QC samples is considered appropriate.

#### Laboratory Method

All laboratory methods were appropriate to the analysis being undertaken and the objectives of the assessment.

#### 8.3 Assessment of Decision Error

A review of the results presented in **Section 8.2**, indicates that overall the results of the field and laboratory QA/QC program indicate that the data obtained from this investigation generally met the predetermined Data Quality Indicators (DQIs) or, where the DQIs were exceeded, did not indicate systematic sampling or analytical errors. As



such, the data are considered to be of adequate quality to be relied on for the purposes of assessing the environmental condition at the site.



## 9 Field and Analytical Results

## 9.1 Soil Field Observations

Observations made during field works are summarised below, sample locations are provided in **Figure 4**, soil field documentation is provided in **Appendix A**, and borelogs are provided in **Appendix B**.

Soil at the site was observed to comprise fill material, natural soils and underlying bedrock. The fill material was observed to depths ranging from 0.4 to 2.1 m bgs, and was observed as potentially re-worked natural material, consisting of orange, brown and grey silty clays, medium to high plasticity with inclusions of terracotta, organics, plastic, wood, concrete, metal, and glass.

The underlying natural soils were observed to consist of orange, brown and grey mottled medium to high plasticity clays and extended to a depth range of 0.5 to 1.6 m bgs.

The underlying bedrock comprises shales and sandstone and was observed at depths of 0.5 to 2.1 m bgs across the site.

Two fragments of suspected ACM were identified at sample locations BH03/MW03 and HA12.

There were no other visual or olfactory indications of contamination identified during the field works.

## 9.2 Soil Analytical Results

The soil sampling locations are shown on **Figure 4** and exceedances are provided on **Figure 5**. A sample register is provided as **Table A**, and summarised laboratory results in **Tables B** to **D**. Detailed laboratory reports and chain of custody documentation is provided in **Appendix E**.

The laboratory results are summarised in the following sections.

## 9.2.1 Heavy Metals

Concentrations of heavy metals in the samples analysed were less than the adopted criteria for the most sensitive land use with two exceptions. HA09 (0-0.1 m) and HA11 (0.8-0.9 m) exceeded the criterion of 300 mg/kg for lead, with concentrations of 430 and 480 mg/kg, respectively.

It should be noted that a deeper sample collected at HA09 (0.3-0.4 m) was submitted for analysis and returned a concentration for lead below the adopted criterion. Additionally, shallower samples from HA11 returned concentrations of lead below the adopted criterion.

Additionally, 95 % UCL statistical analysis was undertaken for lead concentrations across the site. The resulting UCL of 150 mg/kg was below the site criteria of 300 mg/kg. UCL statistical information is provided in **Appendix C**.

Based on this, heavy metals are considered not to pose a contamination issue on the site.

## 9.2.2 TPH and BTEX

Concentrations of BTEX were not reported above the laboratory limit of reporting (LOR) for any sample analysed. On this basis, BTEX compounds do not pose a contamination issue at the site and background concentrations do not need to be considered.

Concentration of TPH compounds were not reported above the site adopted criteria for any sample analysed. All samples analysed, with the exception of BH02/MW02 (0-0.1 m)



reported TPH concentrations below the LOR. On this basis, TPH compounds do not pose a contamination issue at the site.

## 9.2.3 PAHs

Concentrations of PAHs were reported below the site criteria for all samples analysed, with one exception. HA15 (0-0.1 m) reported a Benzo(a)pyrene concentration of 2.3 mg/kg, above the site criteria (1 mg/kg), and a total PAH concentration of 27.6 mg/kg, above the site criteria (20 mg/kg). Additional analysis was undertaken on a deeper sample collected at HA15 (0.3-0.4 m) and both B(a)P and total PAHs were below the site criteria.

95 % UCL statistical analysis was undertaken for both B(a)P and total PAH concentrations across the site. The resulting UCLs of 0.8 mg/kg and 10.2 mg/kg were below the site criteria of 1 mg/kg and 20 mg/kg for B(a)P and total PAHs, respectively. UCL statistical information is provided in **Appendix C**.

On this basis, PAH compounds do not pose a contamination issues at the site.

## 9.2.4 OCP, OPPs and PCBs

Concentrations of OCP, OPP and PCBs were not reported above the LOR in any sample analysed. On this basis, OCP, OPP and PCB compounds do not pose a contamination issue at the site.

## 9.2.5 Asbestos

Chrysotile and amosite asbestos were confirmed as present in ACM fragment sample F1 which was collected on the ground surface at BH03/MW03. Fragment F2 was confirmed to not contain ACM.

Asbestos fibres were not identified in any soil sample analysed, either from samples collected directly beneath the fragments, or from surface samples across the general site area.

Based on this, bonded asbestos within ACM poses a potential contamination issue at the site.

## 9.3 Groundwater Field Observations

## 9.3.1 Meteorology

The groundwater gauging and sampling was undertaken on the 4<sup>th</sup> March 2011. Observed meteorological readings prior and during the GME are summarised following in **Table 9.1**.

| Dete       | Maximum          | Minimum          | Rainfall | Evaporation | Sun     |
|------------|------------------|------------------|----------|-------------|---------|
| Date       | temperature (°C) | Temperature (°C) | (mm)     | (mm)        | (hours) |
| 18/02/2011 | 26.1             | 22.3             | 0        | 5.0         | 3.8     |
| 19/02/2011 | 32.5             | 22.4             | 0        | 4.4         | 7.8     |
| 20/02/2011 | 32.1             | 24.5             | 0        | 7.2         | 9.5     |
| 21/02/2011 | 25.1             | 19.6             | 0.2      | 8.2         | 4.3     |
| 22/02/2011 | 20.6             | 19.4             | 0        | 9.0         | 3.2     |
| 23/02/2011 | 23.5             | 16.9             | 0.4      | 4.2         | 7.3     |
| 24/02/2011 | 27.7             | 16.9             | 0        | 5.0         | 12.0    |
| 25/02/2011 | 29.5             | 18.5             | 0        | 7.4         | 7.6     |
| 26/02/2011 | 29.6             | 21.1             | 0        | 7.6         | 11.1    |
| 27/02/2011 | 32.2             | 21.1             | 0        | 8.0         | 1.4     |

| Table 9 1 Summary | y of Recent Meteorological Observations at Sydney Airport |
|-------------------|-----------------------------------------------------------|
|                   |                                                           |



| Date       | Maximum<br>temperature (°C) | Minimum<br>Temperature (°C) | Rainfall<br>(mm) | Evaporation<br>(mm) | Sun<br>(hours) |
|------------|-----------------------------|-----------------------------|------------------|---------------------|----------------|
| 28/02/2011 | 29.0                        | 22.1                        | 0.4              | 5.0                 | 2.4            |
| 1/03/2011  | 34.4                        | 22.2                        | 0.4              | 4.4                 | 1.9            |
| 2/03/2011  | 22.9                        | 18.6                        | 0.2              | 9.2                 | 0.0            |
| 3/03/2011  | 31.7                        | 17.6                        | 0                | 2.2                 | 10.5           |
| 4/03/2011  | 28.1                        | 19.1                        | 0                | 8.0                 | 9.4            |
| 5/03/2011  | 21.9                        | 17.8                        | 0.6              | 8.2                 | 0.6            |
| 6/03/2011  | 22.4                        | 18.1                        | 0.2              | 8.2                 | 2.9            |

From review of **Table 9.1**, rainfall in the 14 days leading up to the GME consisted of a total of 1.6 mm. Due to the minimal amount of rainfall within the 14 days prior, and the mean temperature and evaporation during this period, rainfall is not believed to have had a significant impact on groundwater quality during this sampling round.

## 9.3.2 Field Observations and Water Quality Parameters

Water quality parameters, consisting of electrical conductivity, total dissolved solids, pH, temperature and dissolved oxygen have been collected during groundwater sampling. The parameters are discussed in the following sections:

## 9.3.2.1 Salinity (Electrical Conductivity)

The salinity levels on the site were reported between 0.8 and 3.5 mS/cm, which is typical of low to moderate saline water. The wells located within the northern portion of the site, MW01 (north western) and MW02 (north eastern) were reported as low saline water. The wells located within the southern portion of the site MW03 (south eastern) and MW04 (south western) were reported to contain moderate saline water.

## 9.3.2.2 Turbidity (TDS)

The turbidity or 'muddiness' of water is caused by the presence of suspended particulate and colloidal matter consisting of suspending clay, silt, and detritus. The turbidity of the groundwater on site ranged from 400 to 2000 ppm, with the highest turbidity water being recorded at MW03 and MW04 on the southern portion of the site.

## 9.3.2.3 Dissolved Oxygen

The dissolved oxygen (DO) concentrations measured in a waterbody reflects the equilibrium between oxygen-consuming processes (*e.g.* respiration) and oxygen-releasing processes (*e.g.* photosynthesis). Furthermore, measurement of DO defines the living conditions for aerobic (oxygen requiring) organisms.

The recommended level of dissolved oxygen for freshwater and marine species water quality (ANNZECC 2000) is > 6 mg/L. Low levels of dissolved oxygen have been identified in all monitoring wells, with a range between 0.5 mg/L and 2.39 mg/L.

## 9.3.2.4 pH

Groundwater at the site in all four monitoring wells falls within the slightly acidic bracket with recorded pH of 4.9 to 5.8, outside the 'normal' pH range of 6.5 to 8.5. However, ANZECC 2000 does state that review of pH on biota indicate no acutely lethal effect of fish in the pH range of 5 to 9.

## 9.3.2.5 Temperature

Groundwater temperature recorded during the 2011 GME reported temperatures ranging between 20.9  $^\circ C$  and 24.4  $^\circ C.$ 



## 9.4 Groundwater Analytical Results

Groundwater monitoring locations are shown on **Figure 4**. A sample register is provided in **Tables E** and **F**, field forms are provided in **Appendix D** and laboratory results are presented in **Tables G** to **I**. Detailed laboratory reports and chain of custody documentation is provided in **Appendix E**.

The laboratory results are summarised in the following sections.

## 9.4.1 Heavy Metals

Heavy metals reported above the WQC included:

- A concentration of arsenic was reported above the Drinking water WQC (7  $\mu$ g/L), with a concentration of 14  $\mu$ g/L reported in MW04;
- Concentrations of copper were reported above the ANZECC 2000 95% protection WQC (1.4 µg/L) with concentrations of 5, 3 and 10 µg/L, respectively, in MW01, MW02 and MW03. However, all reported concentrations were below the drinking water criteria;
- Concentrations of nickel were reported above the ANZECC 2000 95% protection WQC (11  $\mu$ g/L) with concentrations of 20 and 29  $\mu$ g/L, respectively, reported in MW01 and MW04; and
- Concentrations of zinc were reported above the ANZECC 2000 95% protection WQC (8 µg/L) with concentrations of 72, 9, 48 and 58 µg/L, respectively, reported in MW01, MW02, MW03 and MW04.

All other analytes and locations were reported below the WQC. Due to the low concentrations of heavy metals observed, the lack of heavy metals within the soil profile and the presence of heavy metal concentrations in both the up and downgradient boundaries, the heavy metal exceedances are considered to be a result of offsite impact (such as stormwater or offsite runoff) rather than impact caused by on site activities.

Additionally, due to the fluctuation in concentrations of heavy metals, it is considered that background levels are not responsible for the exceedances.

Based on this, heavy metals do not pose a contamination issue at the site.

## 9.4.2 TPH and BTEX

Concentrations of TPH  $C_6$ - $C_9$ , TPH  $C_{10}$ - $C_{36}$  and BTEX were not reported above the WQC in any sample analysed. On this basis, TPH and BTEX compounds do not pose a contamination issue at the site and background concentrations do not need to be considered.

## 9.4.3 PAHs

Concentrations of PAHs were not reported above the WQC in any sample analysed. Based on this, PAH compounds do not pose a contamination issue at the site, and localised background concentrations do not need to be considered.

## 9.4.4 OCP, OPPs and PCBs

Concentrations of OCPs, OPPs and PCBs were not reported above the LOR in any sample analysed. On this basis, OCP, OPP and PCB compounds do not pose a contamination issue at the site, and localised background concentrations do not need to be considered.



## 10 Site Characterisation

Based on the decision making process for assessing urban redevelopment sites detailed in DEC (2006) and discussed in **Section 6.1.2**, the decisions requiring to be made are discussed below.

## 10.1 Reporting in accordance with EPA requirements

The report has been prepared with consideration of the requirements of, EPA 1997.

## 10.2 Unacceptable risks to onsite future receptors from soils

Three soil locations were identified to contain localised areas of impact. Two contained lead impact (MW09 and MW11), and one contained PAH impact (MW15). Additionally, one fragment of ACM was observed on the surface of the site. Given the low concentrations of the exceeding analytes, their localised impact which can be remediated through the earthworks phase of the development, and their respective UCL 95% statistics below the site criteria, no unacceptable risks to onsite future receptors from soils were identified. Notwithstanding that, it should be noted that areas of the site, mainly under existing buildings, could not be accessed during the present investigation. Investigation of these areas should be carried out given that the hospital building has developed over time encompassing and covering areas that have the potential to have been contaminated by hospital activities in the past.

## 10.3 Unacceptable risks to onsite future receptors from groundwater

Following the GME on the site, no unacceptable risks to onsite future receptors from groundwater have been identified.

## 10.4 Local background concentrations

During the Phase 2 ESA, soil and groundwater results indicated the chemical concentrations reported for sample locations within the site were either below the LOR and / or the site adopted criteria (with three localised soil exceptions). As such, there were no identified localised background soil or groundwater concentrations that needed to be considered as part of this investigation.

## 10.5 Aesthetic issues

Two fragments of suspected ACM were observed and collected for analysis. One fragment was identified as containing asbestos.

During the current investigation consideration was given to odours and soil discolouration during the site assessment process, as recorded in the site condition and field observation information provided within the report and detailed descriptions provided in the field notes. As such, aesthetic issues are considered to have been addressed.

## 10.6 Chemical Mixtures

Chemical mixtures were not identified in relation to the contaminants of concern assessed within each of the site sample locations.



## 10.7 Potential Migration of Contaminants

Based on the analytical results, the unidentified source of the localised contamination, as well as the geology of the site, the potential for migration of contaminants at the site is considered to be low.

## 10.8 Site Management Strategy

Based on the current investigation and subject to infill sampling being undertaken in the building footprints following demolition, the site is considered suitable for the proposed residential with accessible soils land use.



## 11 Conclusions and Recommendations

## 11.1 Conclusions

Based on the findings of this investigation and subject to the limitations in **Section 12**, conclusions are as follows:

- There were no unacceptable risks to onsite future receptors from soils sampled on the site;
- There were no unacceptable risks to onsite future receptors from groundwater sampled at the site;
- There were no odorous or stained soils observed on the site, and all aesthetic issues have been addressed as part of this ESA;
- Based on the analysis of the soil and groundwater on the site, there are no background contaminant levels that require consideration as part of the ESA Phase 2 assessment;
- There are no unacceptable human health risks posed by potential chemical mixtures identified on the site;
- There is no evidence of, or potential for, migration of contaminants from the site; and
- At this stage remediation is not required. However, further investigation of the footprints of the buildings following demolition is recommended so that full coverage of the site in accordance with DECCW guidelines can be achieved.

## 11.2 Recommendations

Based on the results of the Phase 2 ESA, and subject to the limitations in **Section 12**, the following remediation works are recommended:

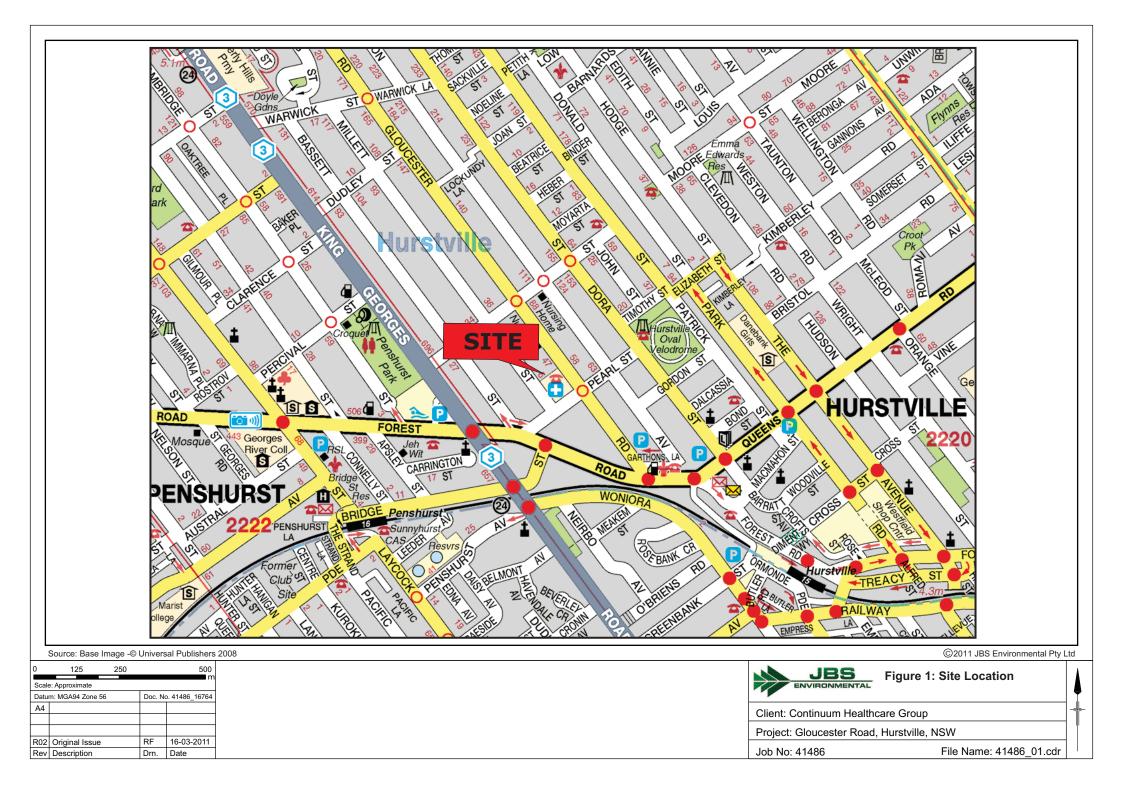
- Due to the working nature of the hospital, sample locations were placed around the perimeter of the building to minimise interference. Additional soil sample locations should be undertaken underneath the footprint of the building following demolition works to ensure no additional contamination is present; and
- Prior to demolition of the buildings, a hazardous material survey should be undertaken to identify any buildings which may contain hazardous material (such as ACM or lead paint).

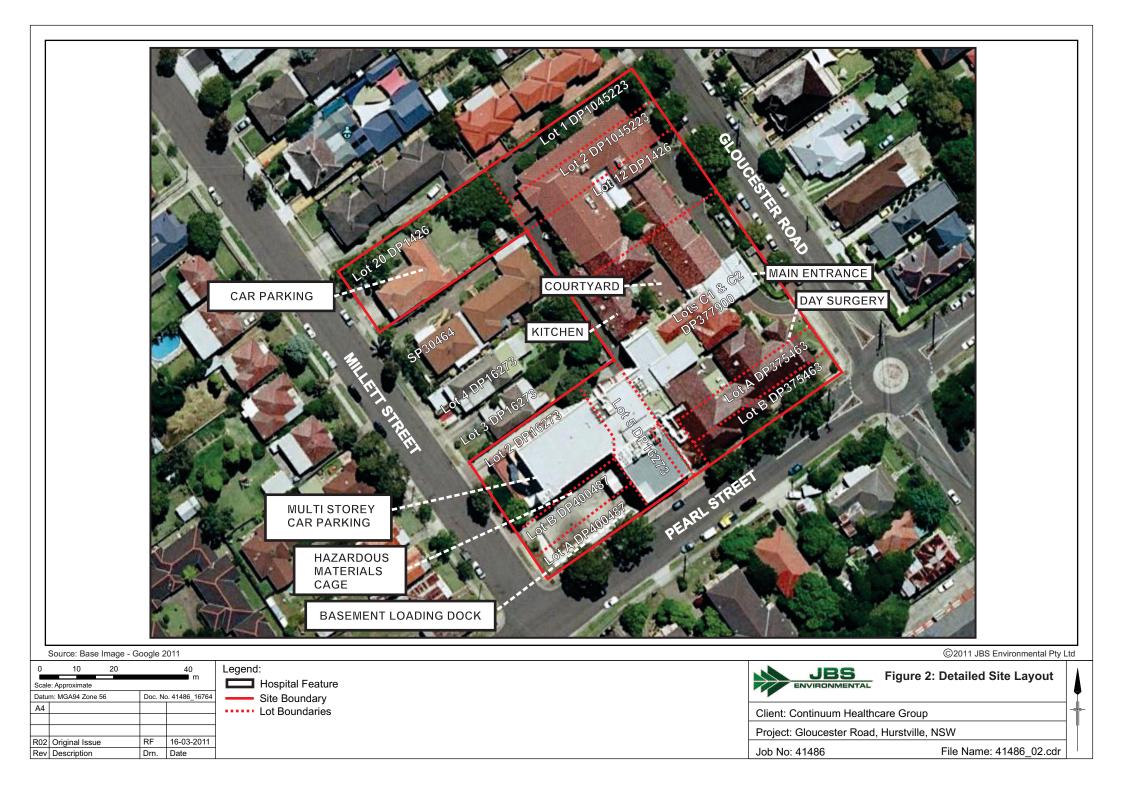


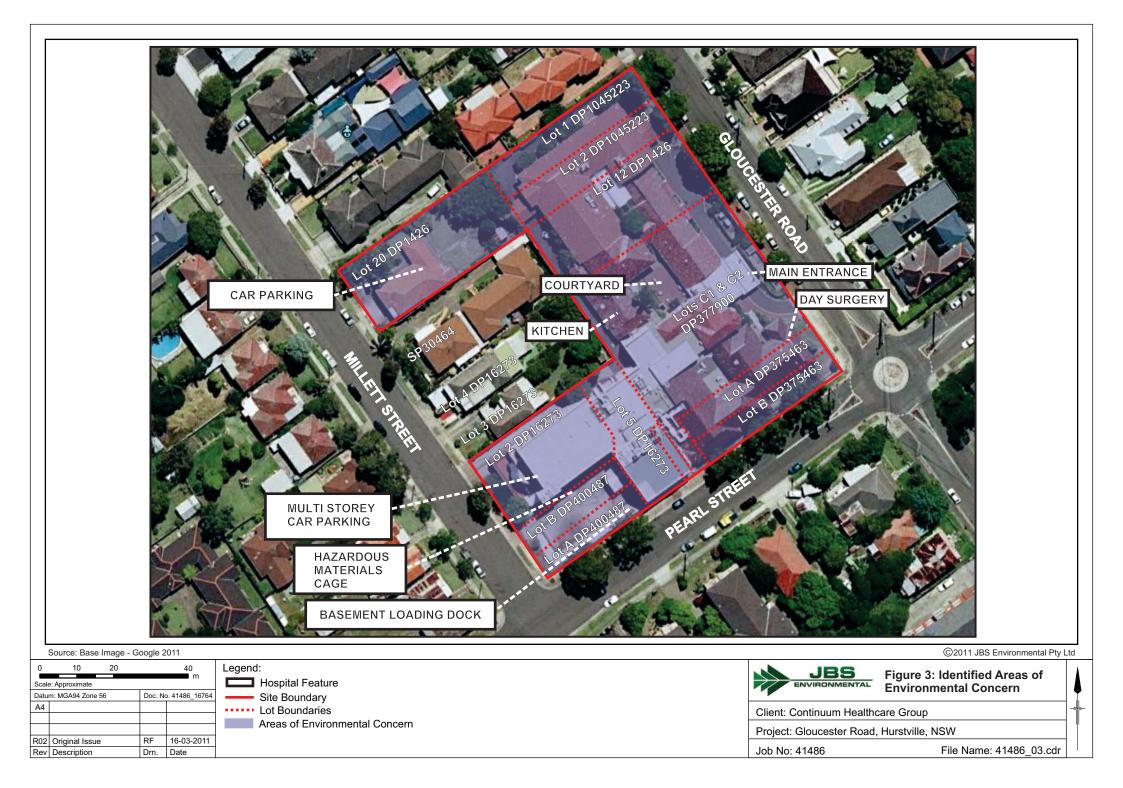
## 12 Limitations

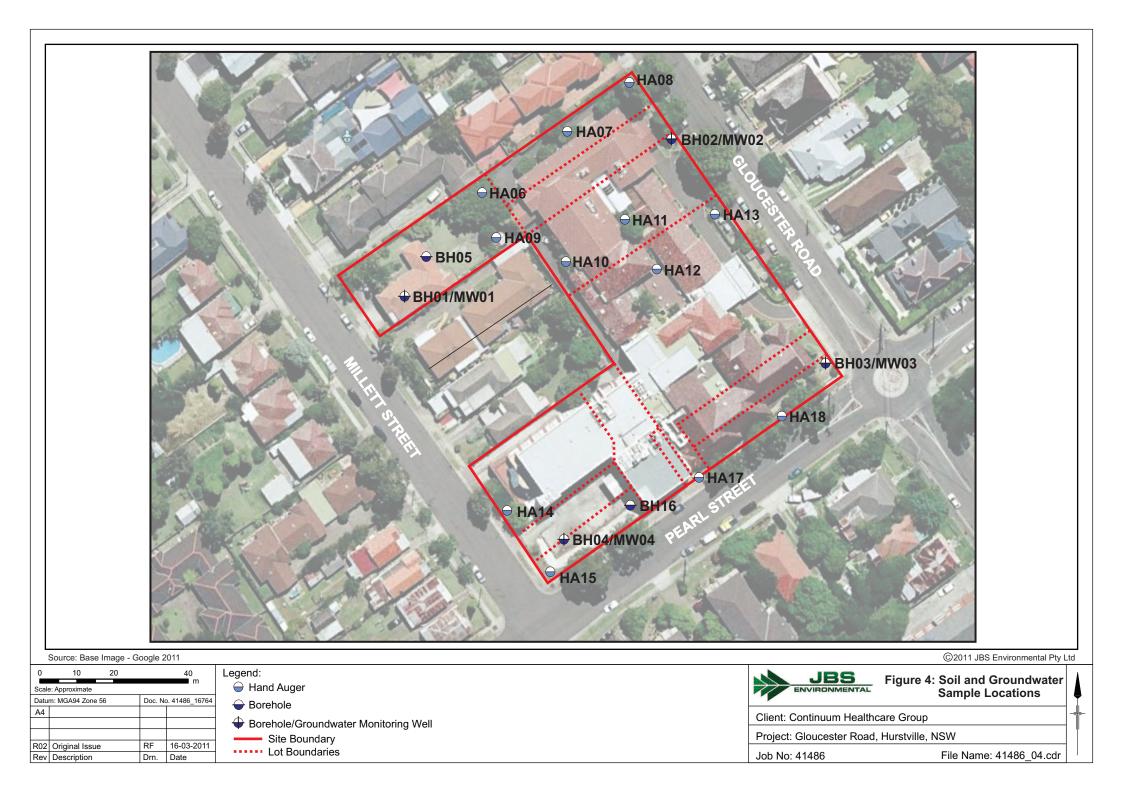
This report has been prepared for use by the client who commissioned the works in accordance with the project brief only and has been based in part on information obtained from other parties. The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

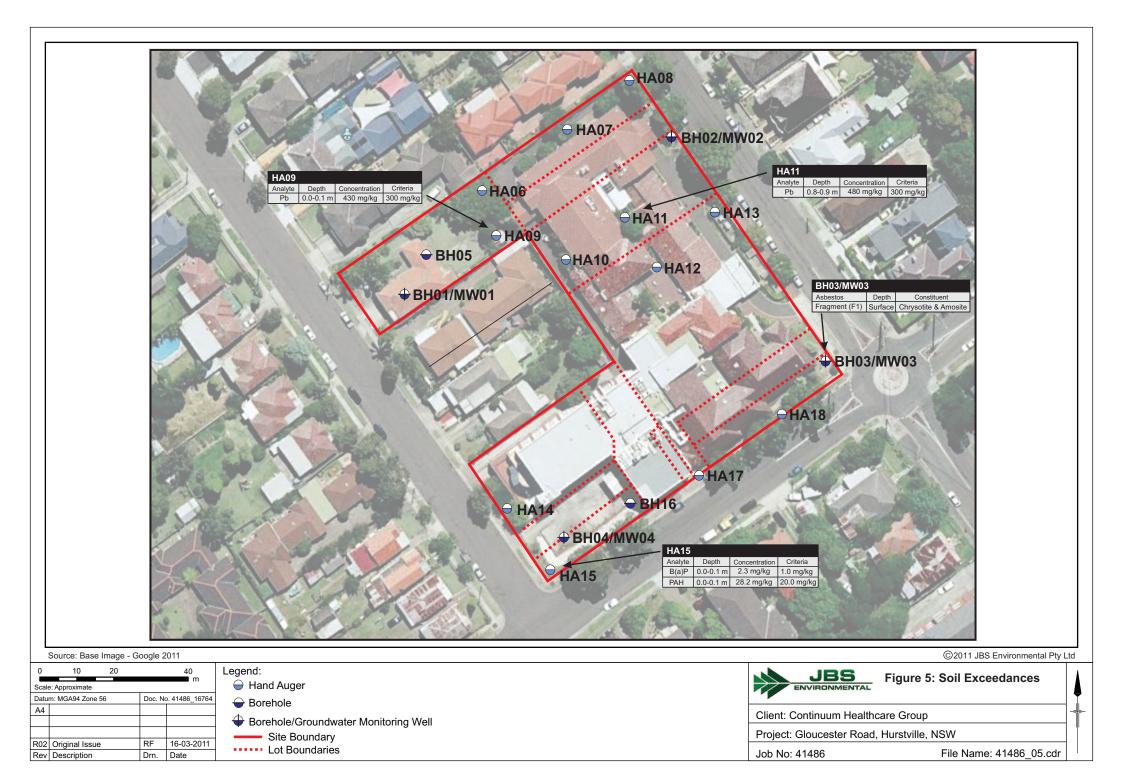
JBS Environmental Pty Ltd accepts no liability for use or interpretation by any person or body other than the client. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS Environmental Pty Ltd, and should not be relied upon by other parties, who should make their own enquires.


Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements and site history, not on sampling and analysis of all media at all locations for all potential contaminants.


Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.


This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS Environmental Pty Ltd reserves the right to review the report in the context of the additional information.





Figures













Tables

## Project Number: 41486 Hurstville Private Hospital Table A Soil Sample Register



| Location         | Sample ID    | Date                     | Sample Depth       | Analytes                                                | Report         |
|------------------|--------------|--------------------------|--------------------|---------------------------------------------------------|----------------|
|                  | BH01/MW01    | 22/02/2011               | 0.2-0.4            | Metals, TPH, BTEX, PAH, OCP/OPP/PCB                     | 52147          |
|                  | BH01/MW01    | 22/02/2011               | 0.8-1.0            | Asbestos Identification                                 | 52147          |
| BH01/MW01        | BH01/MW01    | 22/02/2011               | 2.5-2.7            | -                                                       | 52147          |
| Diricity million | BH01/MW01    | 22/02/2011               | 4.5-4.7            | -                                                       | 52147          |
|                  | BH01/MW01    | 22/02/2011               | 7.5-7.8            | -                                                       | 52147          |
|                  | BH01/MW01    | 22/02/2011               | 9.0-9.3            | -                                                       | 52147          |
|                  | BH02/MW02    | 22/02/2011               | 0.0-0.1            | Metals, TPH, BTEX, PAH, OCP/OPP/PCB                     | 52147          |
|                  | BH02/MW02    | 22/02/2011               | 0.3-0.5            | Metals, Asbestos                                        | 52147          |
| BH01/MW02        | BH02/MW02    | 22/02/2011               | 0.5-0.7            | -                                                       | 52147          |
| Dirio I/MINIOZ   | BH02/MW02    | 22/02/2011               | 1.0-1.2            | -                                                       | 52147          |
|                  | BH02/MW02    | 22/02/2011               | 2.0-3.5            | -                                                       | 52147          |
|                  | BH02/MW02    | 22/02/2011               | 9.8-10.0           | -                                                       | 52147          |
|                  | BH03/MW03    | 22/02/2011               | 0.0-0.1            | Metals, TPH, BTEX, PAH, OCP/OPP/PCB                     | 52147          |
|                  | BH03/MW03    | 22/02/2011               | 0.3-0.5            | -                                                       | 52147          |
| BH01/MW03        | BH03/MW03    | 22/02/2011               | 0.5-0.7            | -                                                       | 52147          |
| DITOT/WWW03      | BH03/MW03    | 22/02/2011               | 1.0-1.2            | -                                                       | 52147          |
|                  | BH03/MW03    | 22/02/2011               | 9.5-10.0           | -                                                       | 52147          |
|                  | BH03/MW03    | 22/02/2011               | 2.5-2.7            | -                                                       | 52147          |
|                  | BH04/MW04    | 22/02/2011               | 0.2-0.3            | Metals, TPH, BTEX, PAH, OCP/OPP/PCB                     | 52147          |
|                  | BH04/MW04    | 22/02/2011               | 0.5-0.7            | Metals, Asbestos                                        | 52147          |
|                  | BH04/MW04    | 22/02/2011               | 2.2-2.4            | -                                                       | 52147          |
| BH01/MW04        | BH04/MW04    | 22/02/2011               | 3.9-4.5            | -                                                       | 52147          |
|                  | BH04/MW04    | 22/02/2011               | 7.2-7.5            | -                                                       | 52147          |
|                  | BH04/MW04    | 22/02/2011               | 9.8-10.0           | -                                                       | 52147          |
|                  | BH05         | 22/02/2011               | 0.15-0.25          | Metals, TPH, PAH, Asbestos                              | 52147          |
| BH05             | BH05         | 22/02/2011               | 0.5-0.7            | -                                                       | 52147          |
|                  | BH05         | 22/02/2011               | 0.25-0.5           | -                                                       | 52147          |
|                  | HA06         | 22/02/2011               | 0.0-0.1            | -                                                       | 52147          |
| HA06             | HA06         | 22/02/0211               | 0.3-0.4            | -                                                       | 52147          |
| 1.1.00           | HA06         | 22/02/2011               | 0.6-0.7            | -                                                       | 52147          |
|                  | HA07         | 22/02/2011               | 0.0-0.1            | Metals, TPH, PAH, BTEX                                  | 52147          |
|                  | HA07         | 22/02/2011               | 0.2-0.3            | -                                                       | 52147          |
| HA07             | HA07         | 22/02/2011               | 0.5-0.6            | -                                                       | 52147          |
|                  | HA07         | 22/02/2011               | 0.8-0.9            | -                                                       | 52147          |
|                  | HA08         | 22/02/2011               | 0.0-0.1            | Metals, TPH, PAH, BTEX                                  | 52147          |
|                  | HA08         | 22/02/2011               | 0.3-0.4            | Metals, Asbestos                                        | 52147          |
| HA08             | HA08         | 22/02/2011               | 0.5-0.6            | -                                                       | 52147          |
|                  | HA08         | 22/02/2011               | 1.0-1.1            |                                                         | 52147          |
|                  | HA09         | 22/02/2011               | 0.0-0.1            | Metals, TPH, BTEX, PAH, OCP/OPP/PCB                     | 52147          |
| HA09             | HA09         | 22/02/2011               | 0.3-0.4            | -                                                       | 52147-         |
|                  | HA10         | 22/02/2011               | 0.0-0.1            | Metals, TPH, PAH, Asbestos                              | 52147          |
| HA10             | HA10         | 22/02/2011               | 0.3-0.4            |                                                         | 52147          |
| HATU             | HA10         | 22/02/2011               | 0.6-0.7            | -                                                       | 52147          |
|                  | HA11         | 22/02/2011               | 0.0-0.1            | Metals, TPH, BTEX, PAH, OCP/OPP/PCB                     | 52147          |
|                  | HA11         | 22/02/2011               | 0.3-0.4            | Metals, TPH, BTEX, PAH, OCP/OPP/PCB<br>Metals, Asbestos | 52147          |
|                  |              | 22/02/2011               | 0.5-0.4            | Metals, Aspesios                                        | 52147          |
| HA11             | HA11<br>HA11 |                          |                    | -                                                       |                |
|                  | HATT<br>HATT | 22/02/2011<br>22/02/2011 | 0.7-0.8<br>0.8-0.9 | -<br>Metals, Asbestos                                   | 52147<br>52147 |
|                  |              |                          |                    |                                                         |                |
|                  | HA12<br>HA12 | 22/02/2011               | 0.0-0.1            | -                                                       | 52147<br>52147 |
| HA12             | HA12<br>HA12 | 22/02/2011               |                    |                                                         |                |
|                  | HA12<br>HA12 | 22/02/2011<br>22/02/2011 | 0.5-0.6            | -                                                       | 52147<br>52147 |
|                  |              |                          |                    | -<br>Motolo Ashastas                                    |                |
| HA13             | HA13         | 22/02/2011               | 0.0-0.1            | Metals, Asbestos                                        | 52147          |
|                  | HA13         | 22/02/2011               | 0.2-0.3            | -                                                       | 52147          |
|                  | HA14         | 22/02/2011               | 0.0-0.1            | -                                                       | 52147          |
| HA14             | HA14         | 22/02/2011               | 0.2-0.4            | -                                                       | 52147          |
|                  | HA14         | 22/02/2011               | 0.5-0.6            | -                                                       | 52147          |
|                  | HA14         | 22/02/2011               | 1.0-1.1            |                                                         | 52147          |
|                  | HA15         | 22/02/2011               | 0.0-0.1            | Metals, TPH, PAH, BTEX                                  | 52147          |
| HA15             | HA15         | 22/02/2011               | 0.3-0.4            | -                                                       | 52147-         |
|                  | HA15         | 22/02/2011               | 0.5-0.6            | -                                                       | 52147          |
| BH16             | BH16         | 22/02/2011               | 0.2-0.3            | -                                                       | 52147          |
| 2.110            | BH16         | 22/02/2011               | 0.6-0.8            | -                                                       | 52147          |
|                  | HA17         | 22/02/2011               | 0.0-0.1            | -                                                       | 52147          |
| HA17             | HA17         | 22/02/2011               | 0.2-0.3            | -                                                       | 52147          |
|                  | HA17         | 22/02/2011               | 0.4-0.5            | -                                                       | 52147          |
|                  |              |                          |                    |                                                         |                |

## Project Number: 41486 Hurstville Private Hospital Table A Soil Sample Register



| Location   | Sample ID | Date       | Sample Depth | Analytes                | Report # |
|------------|-----------|------------|--------------|-------------------------|----------|
| HA18       | HA18      | 22/02/2011 | 0.3-0.4      | -                       | 52147    |
|            | HA18      | 22/02/2011 | 0.5-0.6      | -                       | 52147    |
| F1         | BH03/MW03 | 22/02/2011 |              | Asbestos Identification | 52147    |
| F2         | HA12      | 22/02/2011 |              | Asbestos Identification | 52147    |
|            |           |            | QA/QC        |                         |          |
| QA1        | HA15      | 22/02/2011 | 0.0-0.1      | Metals, TPH, PAH, BTEX  | 52147    |
| QC1        | HA15      | 22/02/2011 | 0.0-0.1      | Metals, TPH, PAH, BTEX  | SE100099 |
| QA2        | HA08      | 22/02/2011 | 0.0-0.1      | -                       | 52147    |
| QC2        | HA08      | 22/02/2011 | 0.0-0.1      | -                       | 52147    |
| Trip Spike |           | 22/02/2011 |              | BTEX                    | 52147    |
| Trip Blank |           | 22/02/2011 |              | BTEX                    | 52147    |
| Rinsate    |           | 22/02/2011 |              | Metals, TPH, PAH, BTEX  | 52147    |

Project Number: 41486 Hurstville Private Hospital Table B Soil Results - Heavy Metals and Asbestos Concentrations



|             |         |            |            |              |                   | Me         | tals       |              |            |            | Asbestos                                  |                         |                            |
|-------------|---------|------------|------------|--------------|-------------------|------------|------------|--------------|------------|------------|-------------------------------------------|-------------------------|----------------------------|
|             |         |            | Arsenic    | Cadmium      | Chromium (111+V1) | Copper     | Lead       | Mercury      | Nickel     | Zinc       | Asbestos ID                               | Asbestos Trace Analysis | Asbestos Respirable Fibres |
| EQL         |         |            | mg/kg<br>4 | mg/kg<br>0.5 | mg/kc<br>1        | mg/ko<br>1 | mg/ka<br>1 | mg/ko<br>0.1 | mg/kc<br>1 | mg/kg<br>1 |                                           | g/kg<br>0.1             | detect                     |
| NEPM 1999 H |         |            | 4<br>100   | <b>20</b>    |                   | 1000       | 300        | 15           |            | 7000       |                                           | 0.1                     | uelect                     |
| ID          | Depth   | Date       |            | ¥_           |                   |            | 000        |              | 000        | 1000       |                                           |                         |                            |
| BH01/MW01   | 0.2-0.4 | 21/02/2011 | < 4        | < 0.5        | 15                | 21         | 18         | < 0.1        | 7          | 34         | -                                         | <0.1                    | ND                         |
| BH01/MW01   | 0.8-1.0 | 21/02/2011 | -          | -            | -                 | -          | -          | -            | -          | -          | -                                         | < 0.1                   | ND                         |
| BH02/MW02   | 0 - 0.1 | 21/02/2011 | <4         | < 0.5        | 21                | 43         | 38         | < 0.1        | 21         | 100        | -                                         | <0.1                    | ND                         |
| BH02/MW02   | 0.3-0.5 | 21/02/2011 | <4         | < 0.5        | 25                | 37         | 34         | 0.2          | 57         | 59         | -                                         | < 0.1                   | ND                         |
| BH03/MW03   | 0 - 0.1 | 21/02/2011 | 4          | < 0.5        | 9                 | 15         | 100        | < 0.1        | 3          | 49         | -                                         | < 0.1                   | ND                         |
| BH04/MW04   | 0.2-0.3 | 22/02/2011 | 6          | < 0.5        | 8                 | 51         | 14         | < 0.1        | 6          | 49         | -                                         | <0.1                    | ND                         |
| BH04/MW04   | 0.5-0.7 | 22/02/2011 | 16         | < 0.5        | 8                 | 49         | 40         | < 0.1        | 11         | 44         | -                                         | <0.1                    | ND                         |
| BH05        | 0.25    | 21/02/2011 | 6          | < 0.5        | 17                | 52         | 110        | 0.1          | 6          | 180        | -                                         | <0.1                    | ND                         |
| HA07        | 0 - 0.1 | 22/02/2011 | 74         | < 0.5        | 3                 | 2          | 18         | 0.2          | 2          | 35         | -                                         | < 0.1                   | ND                         |
| HA08        | 0 - 0.1 | 22/02/2011 | < 4        | < 0.5        | 12                | 18         | 26         | < 0.1        | 31         | 49         | -                                         | < 0.1                   | ND                         |
| HA08        | 0.3-0.4 | 22/02/2011 | < 4        | < 0.5        | 18                | 20         | 33         | < 0.1        | 38         | 51         | -                                         | < 0.1                   | ND                         |
| HA09        | 0 - 0.1 | 22/02/2011 | 13         | 0.9          | 23                | 63         | 430        | 1            | 8          | 630        | -                                         | < 0.1                   | ND                         |
| HA09        | 0.3-0.4 | 22/02/2011 | 5          | < 0.5        | 17                | 8          | 44         | 0.3          | 4          | 200        | -                                         | -                       | -                          |
| HA10        | 0 - 0.1 | 22/02/2011 | < 4        | < 0.5        | 6                 | 6          | 8          | < 0.1        | 4          | 25         | -                                         | < 0.1                   | ND                         |
| HA11        | 0 - 0.1 | 22/02/2011 | < 4        | < 0.5        | 5                 | 19         | 21         | < 0.1        | 3          | 160        | -                                         | < 0.1                   | ND                         |
| HA11        | 0.3-0.4 | 22/02/2011 | 5          | < 0.5        | 11                | 12         | 69         | < 0.1        | 3          | 59         | -                                         | < 0.1                   | ND                         |
| HA11        | 0.8-0.9 | 22/02/2011 | 8          | < 0.5        | 31                | 23         | 480        | 0.3          | 13         | 180        | -                                         | < 0.1                   | ND                         |
| HA13        | 0 - 0.1 | 22/02/2011 | < 4        | < 0.5        | 33                | 9          | 11         | < 0.1        | 6          | 29         | -                                         | < 0.1                   | ND                         |
| HA15        | 0 - 0.1 | 22/02/2011 | 4          | < 0.5        | 11                | 27         | 180        | 0.2          | 5          | 100        | -                                         | <0.1                    | ND                         |
| F1          | 0.0-0.1 | 22/02/2011 | -          | -            | -                 | -          | -          | -            | -          | -          | Chrysotile & Amosite<br>asbestos detected | -                       | -                          |
| F2          | 0.0-0.1 | 22/02/2011 | -          | -            | -                 | -          | -          | -            | -          | -          | ND                                        | -                       | -                          |

Project Number: 41486 Hurstville Private Hospital Table C Soil Results - TPH, BTEX and PAH Concentrations

|                  |         |            |         |              | BT               | EX             |            |              |              |                |            |                    |                 |                          |                      | I        | PAH                    |              |          |                         |             |              |        |                  |             |               | TPH           |             |                              |
|------------------|---------|------------|---------|--------------|------------------|----------------|------------|--------------|--------------|----------------|------------|--------------------|-----------------|--------------------------|----------------------|----------|------------------------|--------------|----------|-------------------------|-------------|--------------|--------|------------------|-------------|---------------|---------------|-------------|------------------------------|
|                  |         |            | Benzene | Ethylbenzene | Toluene          | Xylene (m & p) | Xylene (o) | Xylene Total | Acenaphthene | Acenaphthylene | Anthracene | Benz(a) anthracene | Benzo(a) pyrene | Benzo(b)&(k)fluoranthene | Benzo(g,h,i)perylene | Chrysene | Dibenz(a,h) anthracene | Fluoranthene | Fluorene | Indeno(1,2,3-c,d)pyrene | Naphthalene | Phenanthrene | Pyrene | Total PAHs       | трн с6 - с9 | ТРН С10 - С14 | TPH C15 - C28 | трн с29-с36 | TPH+C10 - C36 (Sum of total) |
| 501              |         |            |         | mg/kc        | mg/kg            |                | mg/ko      | mg/ko        | mg/ka        | mg/ko          |            | mg/ko              | mg/kc           |                          |                      |          | mg/ka                  |              |          | mg/ko                   |             |              | mg/ko  |                  | mg/ka       |               |               | mg/ka       | ma/ka                        |
| EQL<br>NEPM 1999 |         |            | 0.5     | 130          | 0.5<br><b>50</b> | 2              | 1          | 25           | 0.1          | 0.1            | 0.1        | 0.1                | 0.05            | 0.2                      | 0.1                  | 0.1      | 0.1                    | 0.1          | 0.1      | 0.1                     | 0.1         | 0.1          | 0.1    | 0.1<br><b>20</b> | 25<br>65    | 50            | 100           | 100         | 1000                         |
|                  | Depth   | Date       |         | 130          | 50               |                |            | 25           |              |                |            |                    |                 |                          |                      |          |                        |              |          |                         |             |              |        | 20               | 00          |               |               |             | 1000                         |
|                  |         | 21/02/2011 | < 0.5   | <1           | < 0.5            | <2             | <1         | <3           | < 0.1        | <0.1           | 0.2        | 0.8                | 0.6             | 1.1                      | 0.4                  | 0.7      | < 0.1                  | 1.8          | <0.1     | 0.4                     | <0.1        | 1.1          | 1.6    | 8.95             | <25         | < 50          | < 100         | <100        | < 250                        |
|                  | 0 - 0.1 | 21/02/2011 | < 0.5   |              | < 0.5            | <2             | <1         | < 3          | < 0.1        |                | < 0.1      |                    | 0.2             | 0.3                      | 0.1                  | 0.1      | -                      |              | < 0.1    |                         |             | 0.1          | 0.3    | 1.63             | <25         |               |               | 400         | 675                          |
| BH02/MW02        | 0.3-0.5 | 21/02/2011 | -       | -            | -                | -              | -          | -            | -            | -              | -          | -                  | -               | -                        | -                    | -        | -                      | -            | -        | -                       | -           | -            | -      | -                | -           |               | -             | -           | -                            |
| BH03/MW03        | 0 - 0.1 | 21/02/2011 | < 0.5   | <1           | < 0.5            | <2             | <1         | <3           | < 0.1        | <0.1           | <0.1       | 0.2                | 0.2             | 0.3                      | 0.1                  | 0.1      | <0.1                   | 0.4          | <0.1     | 0.1                     | <0.1        | 0.2          | 0.4    | 2.30             | <25         | <50           | <100          | <100        | <250                         |
| BH04/MW04        | 0.2-0.3 | 22/02/2011 | < 0.5   | <1           | < 0.5            | <2             | <1         | <3           | < 0.1        | < 0.1          | < 0.1      | < 0.1              | < 0.05          |                          | < 0.1                | < 0.1    |                        | < 0.1        | < 0.1    | < 0.1                   | < 0.1       | < 0.1        | < 0.1  | <1.55            | <25         |               |               |             | <250                         |
| BH04/MW04        | 0.5-0.7 | 22/02/2011 | -       | -            | -                | -              | -          | -            | -            | -              | -          | -                  | -               | -                        | -                    | -        | -                      | -            | -        | -                       | -           | -            | -      | -                | -           | -             | -             | -           | -                            |
| BH05             | 0.25    | 21/02/2011 | -       | -            | -                | -              | -          | -            | < 0.1        | 0.1            | 0.2        | 0.7                | 0.7             | 1                        | 0.4                  | 0.6      | <0.1                   | 1.5          | <0.1     | 0.4                     | <0.1        | 1            | 1.4    | 8.20             | <25         | <50           | <100          | <100        | <250                         |
| HA07             | 0 - 0.1 | 22/02/2011 | < 0.5   | <1           | < 0.5            | <2             | <1         | <3           | < 0.1        | < 0.1          | < 0.1      | <0.1               | < 0.05          | < 0.2                    | < 0.1                | < 0.1    | < 0.1                  | < 0.1        | <0.1     | <0.1                    | <0.1        | < 0.1        | < 0.1  | <1.55            | <25         | <50           | <100          | <100        | <250                         |
| HA08             | 0 - 0.1 | 22/02/2011 | < 0.5   | <1           | < 0.5            | <2             | <1         | <3           | < 0.1        | <0.1           | < 0.1      | 0.1                | 0.2             | 0.3                      | 0.1                  | 0.2      | < 0.1                  | 0.5          | <0.1     | 0.1                     | <0.1        | 0.3          | 0.5    | 2.55             | <25         | <50           | <100          | <100        | <250                         |
| HA08             | 0.3-0.4 | 22/02/2011 | -       | -            | -                | -              | -          | -            | -            | -              | -          | -                  | -               | -                        | -                    | -        | -                      | -            | -        | -                       | -           | -            | -      | -                | -           | -             | -             | - 1         | -                            |
| HA09             | 0 - 0.1 | 22/02/2011 | <0.5    | <1           | < 0.5            | <2             | <1         | <3           | <0.1         | <0.1           | <0.1       | 0.4                | 0.5             | 0.8                      | 0.3                  | 0.4      | <0.1                   | 1            | <0.1     | 0.3                     | < 0.1       | 0.5          | 0.9    | 5.40             | <25         | <50           | <100          | <100        | <250                         |
| HA09             | 0.3-0.4 | 22/02/2011 | -       | -            | -                | -              | -          | -            | -            | -              | -          | -                  | -               | -                        | -                    | -        | -                      | -            | -        | -                       | -           | -            | -      | -                | -           | -             | -             | -           | -                            |
| HA10             | 0 - 0.1 | 22/02/2011 | -       | -            | -                | -              | -          | -            | <0.1         | <0.1           | <0.1       | <0.1               | < 0.05          | <0.2                     | <0.1                 | <0.1     | <0.1                   | < 0.1        | <0.1     | <0.1                    | <0.1        | <0.1         | < 0.1  | <1.55            | <25         | <50           |               |             | <250                         |
| HA11             | 0 - 0.1 | 22/02/2011 | < 0.5   | <1           | < 0.5            | <2             | <1         | <3           | <0.1         | <0.1           | < 0.1      | <0.1               | < 0.05          | <0.2                     | <0.1                 | <0.1     | < 0.1                  | <0.1         | <0.1     | <0.1                    | <0.1        | <0.1         | <0.1   | <1.55            | <25         | <50           | <100          | <100        | <250                         |
| HA11             | 0.3-0.4 | 22/02/2011 | -       | -            | -                | -              | -          | -            | -            | -              | -          | -                  | -               | -                        | -                    | -        | -                      | -            | -        | -                       | -           | -            | -      | -                | -           | -             | -             | -           | -                            |
| HA11             | 0.8-0.9 | 22/02/2011 | -       | -            | -                | -              | -          | -            | -            | -              | -          | -                  | -               | -                        | -                    | -        | -                      | -            | -        | -                       | -           | -            | -      | -                | -           | -             | -             | -           | -                            |
| HA13             | 0 - 0.1 | 22/02/2011 | -       | -            | -                | -              | -          | -            | -            | -              | -          | -                  | -               | -                        | -                    | -        | -                      | -            | -        | -                       | -           | -            | -      | -                | -           | -             | -             |             | -                            |
| HA15             | 0 - 0.1 | 22/02/2011 | <0.5    | <1           | < 0.5            | <2             | <1         | <3           | < 0.1        | 0.6            | 0.7        | 2.1                | 2.3             | 3.5                      | 1.2                  | 2.1      | 0.3                    | 5.3          | 0.3      | 1.4                     | <0.1        | 3.7          | 4.7    | 27.60            | <25         | <50           | <100          | <100        | <250                         |
| HA15             | 0.3-0.4 | 22/02/2011 | -       | -            | -                | -              | -          | -            | < 0.1        | <0.1           | < 0.1      | 0.2                | 0.2             | 0.3                      | 0.1                  | 0.2      | < 0.1                  | 0.6          | <0.1     | 0.1                     | <0.1        | 0.4          | 0.5    | 2.80             | -           | -             | -             | . –         | -                            |



Project Number: 41486 Hurstville Private Hospital Table D Soil Results - OCP, OPP and PCB Concentrations

|           |                      |                 |         |       |        |                   |       |                 |                   |       | Orga  | anoch | orine       | Pesti    | ides         |               |                     |        |                 |                 |            |                    |              | (               | Orgar        | nopho               | ospho    | rous       | Pesti  | cides        |        |               | Polyc         | hlorir        | nated         | Biphe         | envis         |               |
|-----------|----------------------|-----------------|---------|-------|--------|-------------------|-------|-----------------|-------------------|-------|-------|-------|-------------|----------|--------------|---------------|---------------------|--------|-----------------|-----------------|------------|--------------------|--------------|-----------------|--------------|---------------------|----------|------------|--------|--------------|--------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|           |                      |                 | 4,4-DDE | a-BHC | Aldrin | Aldrin + Dieldrin | b-BHC | Chlordane (cis) | Chlordane (trans) | d-BHC | DDD   | DDT   | DDT+DDE+DDD | Dieldrin | Endosulfan I | Endosulfan II | Endosulfan sulphate | Endrin | Endrin aldehyde | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide | Methoxychlor | Bromophos-ethyl | Chlorpyrifos | Chlorpyrifos-methyl | Diazinon | Dimethoate | Ethion | Fenitrothion | Ronnel | Arochlor 1016 | Arochlor 1221 | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | Arochlor 1260 |
|           |                      |                 | -       |       | mg/ka  | mg/ko             |       |                 |                   |       |       |       |             |          |              |               |                     |        |                 |                 |            |                    |              |                 |              |                     |          |            |        | ng/ko        |        |               |               |               |               | mg/kor        |               |               |
| EQL       | <del></del>          |                 | 0.1     | 0.1   | 0.1    |                   | 0.1   | _               | 0.1               | 0.1   | 0.1   | 0.1   |             | 0.1      | 0.1          | 0.1           | 0.1                 | 0.1    | 0.1             | 0.1             |            | 0.1                | 0.1          | 0.1             | 0.1          | 0.1                 | 0.1      | 0.1        | 0.1    | 0.1          | 0.1    | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           |
| NEPM 1999 |                      | Data            |         |       |        | 10                |       | 50              |                   |       |       |       | 200         |          |              |               |                     |        |                 |                 | 10         |                    |              |                 |              |                     |          |            |        |              |        |               |               |               |               |               |               |               |
|           | <b>Depth</b> 0.2-0.4 | Date 21/02/2011 | <0.1    | < 0.1 | < 0.1  | < 0.2             | < 0.1 | -0.1            | <0.1              | < 0.1 | < 0.1 | <0.1  | -0.2        | < 0.1    | < 0.1        | -0.1          | < 0.1               | < 0.1  | <0.1            | <0.1            | <0.1       | < 0.1              | < 0.1        | <0.1            | <0.1         | < 0.1               | < 0.1    | -0.1       | < 0.1  | < 0.1        | < 0.1  | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
|           | 0.2-0.4              | 21/02/2011      | < 0.1   | -     | < 0.1  | < 0.2             | < 0.1 | < 0.1           | < 0.1             | < 0.1 | < 0.1 | < 0.1 | < 0.3       | < 0.1    | < 0.1        | < 0.1         | < 0.1               | < 0.1  | -               | < 0.1           | -          | < 0.1              | < 0.1        |                 |              |                     | <0.1     | < 0.1      | <0.1   |              | -      |               | < 0.1         |               | 1011          |               |               | < 0.1         |
|           | 0.3-0.5              | 21/02/2011      |         |       |        | -0.2              |       |                 |                   |       |       |       |             | -        |              |               | -                   | -      | -               | -               |            | -                  | -            |                 |              | -                   |          | -          |        |              | -      |               |               | -             | -             | <u> </u>      | -             | -             |
|           | 0 - 0.1              | 21/02/2011      | < 0.1   | < 0.1 | < 0.1  | < 0.2             | < 0.1 | < 0.1           | < 0.1             | < 0.1 | < 0.1 | < 0.1 | < 0.3       | < 0.1    | < 0.1        | < 0.1         | < 0.1               | < 0.1  | < 0.1           | < 0.1           | < 0.1      | < 0.1              | < 0.1        | < 0.1           | < 0.1        | < 0.1               | < 0.1    | < 0.1      | < 0.1  | < 0.1        | < 0.1  | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
|           | 0.2-0.3              | 22/02/2011      | < 0.1   | -     | < 0.1  | < 0.2             | < 0.1 | < 0.1           | < 0.1             | < 0.1 | < 0.1 | < 0.1 | < 0.3       | < 0.1    | < 0.1        | < 0.1         | < 0.1               | < 0.1  | < 0.1           | < 0.1           | < 0.1      | < 0.1              | < 0.1        | < 0.1           | < 0.1        | < 0.1               | < 0.1    | < 0.1      | < 0.1  | < 0.1        | < 0.1  | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
|           |                      | 22/02/2011      | -       | -     | -      | -                 | -     | -               | -                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | -             | -             | -             |
| BH05      | 0.25                 | 21/02/2011      | -       | -     | -      | -                 | -     | -               | -                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | - 1           | -             | -             |
|           |                      | 22/02/2011      | -       | -     | -      | -                 | -     | -               | -                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | - 1           | -             | -             |
|           | 0 - 0.1              | 22/02/2011      | -       | -     | -      | -                 | -     | -               | -                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | - 1           | -             | -             |
|           | 0.3-0.4              | 22/02/2011      | -       | -     | -      | -                 | -     | -               | -                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | - 1           | -             | -             |
|           | 0 - 0.1              | 22/02/2011      | <0.1    | <0.1  | < 0.1  | < 0.2             | <0.1  | <0.1            | < 0.1             | <0.1  | <0.1  | <0.1  | < 0.3       | < 0.1    | <0.1         | <0.1          | <0.1                | <0.1   | <0.1            | <0.1            | <0.1       | < 0.1              | < 0.1        | <0.1            | <0.1         | <0.1                | <0.1     | < 0.1      | <0.1   | <0.1         | <0.1   | <0.1          | <0.1          | < 0.1         | < 0.1         | <0.1          | <0.1          | <0.1          |
| HA09      | 0.3-0.4              | 22/02/2011      | -       | -     | -      | -                 | -     | -               | -                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | - 1           | -             | -             |
| HA10      | 0 - 0.1              | 22/02/2011      | -       | -     | -      | -                 | -     | -               | -                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | - 1           | -             | -             |
| HA11      | 0 - 0.1              |                 | <0.1    | <0.1  | < 0.1  | < 0.2             | <0.1  | <0.1            | < 0.1             | <0.1  | <0.1  | <0.1  | < 0.3       | < 0.1    | <0.1         | <0.1          | <0.1                | <0.1   | <0.1            | <0.1            | <0.1       | < 0.1              | <0.1         | <0.1            | <0.1         | <0.1                | <0.1     | < 0.1      | <0.1   | <0.1         | <0.1   | <0.1          | <0.1          | < 0.1         | <0.1          | <0.1          | <0.1          | <0.1          |
|           | 0.3-0.4              | 22/02/2011      | -       | -     | -      | -                 | -     | -               | -                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | - 1           | -             | -             |
|           |                      | 22/02/2011      | -       | -     | -      | -                 | -     | -               | -                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | - 1           | -             | -             |
|           |                      | 22/02/2011      | 1       |       |        | _                 |       |                 |                   | _     | _     | _     | _           | -        | -            | _             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | - 1           | -             | -             |
| HA13      | 0 - 0.1              | 22/02/2011      | -       | -     |        | -                 | -     |                 | -                 | _     |       |       |             |          |              |               |                     |        |                 |                 |            |                    |              |                 |              |                     |          |            |        |              |        |               |               |               |               |               |               |               |
|           | 0 - 0.1              | 22/02/2011      | -       | -     | -      | -                 | -     | -               | _                 | -     | -     | -     | -           | -        | -            | -             | -                   | -      | -               | -               | -          | -                  | -            | -               | -            | -                   | -        | -          | -      | -            | -      | -             | -             | -             | -             | -             | -             | -             |



Project Number: 41486 Hurstville Private Hospital Table E Groundwater Sampling Register



| Well Number | Date Sampled | Date Installed | Analytes                            | Report # |
|-------------|--------------|----------------|-------------------------------------|----------|
| BH01/MW01   | 4/03/2011    | 22/02/2011     | Metals, TPH, BTEX, PAH, OCP/OPP/PCB | 52672    |
| BH02/MW02   | 4/03/2011    | 22/02/2011     | Metals, TPH, BTEX, PAH, OCP/OPP/PCB | 52672    |
| BH03/MW03   | 4/03/2011    | 22/02/2011     | Metals, TPH, BTEX, PAH, OCP/OPP/PCB | 52672    |
| BH04/MW04   | 4/03/2011    | 22/02/2011     | Metals, TPH, BTEX, PAH, OCP/OPP/PCB | 52672    |
|             |              |                | QA/QC                               |          |
| QA1         | 4/03/2011    | MWO4           | Metals, TPH, BTEX, PAH, OCP/OPP/PCB | 52672    |
| QC1         | 4/03/2011    | MWO4           | Metals, TPH, BTEX, PAH, OCP/OPP/PCB | SE100137 |
| Rinsate     | 4/03/2011    | Rinsate        | Metals, TPH, BTEX, PAH              | 52672    |
| Trip Spike  | 4/03/2011    | Trip Spike     | BTEX                                | 52672    |
| Trip Blank  | 4/03/2011    | Trip blank     | BTEX                                | 52672    |

Project Number: 41486 Hurstville Private Hospital Table F - Gauging and Observations



|           |             | Dept                      | h to Wa            | ater                                |                            | Phy                                | sical Pa | ramete                          | ers                             |                 |                                                         |
|-----------|-------------|---------------------------|--------------------|-------------------------------------|----------------------------|------------------------------------|----------|---------------------------------|---------------------------------|-----------------|---------------------------------------------------------|
| Sample ID | Date gauged | Relative Level (m<br>AHD) | Depth to water (m) | Relative Height of<br>Water (m AHD) | Dissolved oxygen<br>(mg/L) | Electrical<br>Conductivity (mS/cm) | Hd       | Redox (mV)<br>(converted to eH) | Total Dissolved Solids<br>(ppm) | Temperature (C) | Observations                                            |
| MW01      | 4/03/2011   | 9.236                     | 1.664              | 7.572                               | 2.19                       | 1.86                               | 4.86     | 177                             | 1040                            | 22              | No odour, clear to brown, slightly turbid, slight sheen |
| MW02      | 4/03/2011   | 10.201                    | 2.509              | 7.692                               | 2.39                       | 0.89                               | 4.9      | 290                             | 465                             | 20.9            | No odour, clear no turbidity, no sheen                  |
| MW03      | 4/03/2011   | 10.012                    | 3.437              | 6.575                               | 0.92                       | 2.66                               | 4.9      | 133                             | 1500                            | 22.0            | No odour, brown, very turbid, no sheen                  |
| MW04      | 4/03/2011   | 9.284                     | 0.925              | 8.359                               | 0.5                        | 3.49                               | 5.78     | 130                             | 2000                            | 24.4            | No odour, clear no turbidity, no sheen                  |

Project Number: 41486 Hurstville Private Hospital Table G Groundwater Results - Heavy Metal Concentrations



|          |             |                    |                    |                             | Me                | etals           |                    |                   |                 |
|----------|-------------|--------------------|--------------------|-----------------------------|-------------------|-----------------|--------------------|-------------------|-----------------|
|          |             | Arsenic (Filtered) | Cadmium (Filtered) | Chromium (111+VI) (Filtered | Copper (Filtered) | Lead (Filtered) | Mercury (Filtered) | Nickel (Filtered) | Zinc (Filtered) |
|          |             | µg/L               | µg/L               | µg/L                        | µq/L              | µg/L            | µg/L               | µq/L              | µq/L            |
| EQL      |             | 1                  | 1                  | 1                           | 1                 | 1               | 0.4                | 1                 | 1               |
|          | 2000 FW 95% |                    | 0.2                |                             | 1.4               | 3.4             | 0.6                | 11                | 8               |
| NEPM Dri | nking       | 7                  | 2                  |                             | 2000              | 10              | 1                  | 20                | 3000            |
| ID       | Date        |                    |                    |                             |                   |                 |                    |                   |                 |
| MW01     | 4/03/2011   | 2                  | 0.1                | <1                          | 5                 | <1              | <0.4               | 20                | 72              |
| MW02     | 4/03/2011   | <1                 | <0.1               | <1                          | 3                 | <1              | <0.4               | 1                 | 9               |
| MW03     | 4/03/2011   | 2                  | 0.2                | <1                          | 10                | <1              | <0.4               | 9                 | 48              |
| MW04     | 4/03/2011   | 14                 | <0.1               | <1                          | <1                | <1              | <0.4               | 29                | 58              |

#### Project Number: 41486 Hurstville Private Hospital Table H Groundwater Results - TPH, BTEX and PAH Concentrations



|                    |         |              | BT      | ΈХ             |            |              |              |                |            |                   |                 |                          |                      | PAH      |                       |              |          |                         |             |              |        |             |               | TPH           |             |                              |
|--------------------|---------|--------------|---------|----------------|------------|--------------|--------------|----------------|------------|-------------------|-----------------|--------------------------|----------------------|----------|-----------------------|--------------|----------|-------------------------|-------------|--------------|--------|-------------|---------------|---------------|-------------|------------------------------|
|                    | Benzene | Ethylbenzene | Toluene | Xylene (m & p) | Xylene (o) | Xylene Total | Acenaphthene | Acenaphthylene | Anthracene | Benz(a)anthracene | Benzo(a) pyrene | Benzo(b)&(k)fluoranthene | Benzo(g,h,i)perylene | Chrysene | Dibenz(a,h)anthracene | Fluoranthene | Fluorene | Indeno(1,2,3-c,d)pyrene | Naphthalene | Phenanthrene | Pyrene | трн с6 - с9 | трн с10 - с14 | TPH C15 - C28 | трн с29-с36 | TPH+C10 - C36 (Sum of total) |
|                    | µq/L    | µg/L         | µq/L    | μq/L           | µq/L       | µq/L         | µq/L         | µq/L           | µq/L       | µq/L              | µq/L            | µq/L                     | µq/L                 | µq/L     | µq/L                  | µq/L         | µq/L     | µq/L                    | µq/L        | µq/L         | µq/L   | µq/L        | µq/L          | µq/L          | µq/L        | µg/L                         |
| EQL                | 1       | 1            | 1       | 2              | 1          |              | 1            | 1              | 1          | 1                 | 1               | 2                        | 1                    | 1        | 1                     | 1            | 1        | 1                       | 1           | 1            | 1      | 10          | 50            | 100           | 100         |                              |
| ANZECC 2000 FW 95% | 950     |              |         |                | 350        |              |              |                | 0.4        |                   | 0.2             |                          |                      |          |                       | 1.4          |          |                         | 16          | 2            |        |             |               |               |             | 600                          |
| NEPM Drinking      | 1       | 300          | 800     |                |            | 600          |              |                |            |                   |                 |                          |                      |          |                       |              |          |                         |             |              |        |             |               |               |             |                              |
| ID Date            |         | -            | -       | -              |            |              |              |                |            |                   |                 |                          |                      |          |                       |              |          |                         |             | -            |        |             |               |               |             |                              |
| MW01 4/03/2011     | <1      | <1           | <1      | <2             | <1         | <3           | <1           | <1             | <1         | <1                | <1              | <2                       | <1                   | <1       | <1                    | <1           | <1       | <1                      | <1          | <1           | <1     | <10         |               |               |             | <250                         |
| MW02 4/03/2011     | <1      | <1           | <1      | <2             | <1         | <3           | <1           | <1             | <1         | <1                | <1              | <2                       | <1                   | <1       | <1                    | <1           | <1       | <1                      | 1.3         | <1           | <1     | <10         |               |               | <100        |                              |
| MW03 4/03/2011     | <1      | <1           | <1      | <2             | <1         | <3           | <1           | <1             | <1         | <1                | <1              | <2                       | <1                   | <1       | <1                    | <1           | <1       | <1                      | <1          | <1           | <1     | <10         |               |               |             | <250                         |
| MW04 4/03/2011     | <1      | <1           | <1      | <2             | <1         | <3           | <1           | <1             | <1         | <1                | <1              | <2                       | <1                   | <1       | <1                    | <1           | <1       | <1                      | <1          | <1           | <1     | <10         | <50           | <100          | <100        | <250                         |

## Project Number: 41486 Hurstville Private Hospital Table I Groundwater Results - OCP, OPPs and PCB Concentrations

|                    |         |       |        |                   |       |                 |                   | C     | )rgan | ochlo | orine       | Pest     | ticide       | es            |                     |        |                 |                 |            |                    |              |                 | Orga         | nopho               | sphor    | ous F      | Pesti  | cides        | 5      | F             | olycł         | nlorir        | nated         | Biph          | nenyl         | S             |
|--------------------|---------|-------|--------|-------------------|-------|-----------------|-------------------|-------|-------|-------|-------------|----------|--------------|---------------|---------------------|--------|-----------------|-----------------|------------|--------------------|--------------|-----------------|--------------|---------------------|----------|------------|--------|--------------|--------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                    | 4,4-DDE | a-BHC | Aldrin | Aldrin + Dieldrin | b-BHC | Chlordane (cis) | Chlordane (trans) | d-BHC | DDD   | ррт   | DDT+DDE+DDD | Dieldrin | Endosulfan I | Endosulfan II | Endosulfan sulphate | Endrin | Endrin aldehyde | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide | Methoxychlor | Bromophos-ethyl | Chlorpyrifos | Chlorpyrifos-methyl | Diazinon | Dimethoate | Ethion | Fenitrothion | Ronnel | Arochlor 1016 | Arochlor 1221 | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | Arochlor 1260 |
|                    | µg/L    | µg/L  | µg/L   | µg/L              | µg/L  | µq/L            | µg/L              | µg/L  | µg/L  | µg/L  | µg/L        | µg/L     | µg/L         | μg/L          | µq/L                | µg/L   | µg/L            | µq/L            | µg/L       | µg/L               | µg/L         | µg/L            | µg/L         | mg/L                | µg/L     | µg/L       | µg/L   | µq/L         | µg/L   | µg/L          | µg/L          | µg/L          | µg/L          | µg/L          | µg/L          | µg/L          |
| EQL                | 0.2     | 0.2   | 0.2    |                   | 0.2   | 0.2             | 0.2               | 0.2   | 0.2   | 0.2   |             | 0.2      | 0.2          | 0.2           | 0.2                 | 0.2    | 0.2             | 0.2             | 0.2        | 0.2                | 0.2          | 0.2             | 0.2          | 0.0002              | 0.2      | 0.2        | 0.2    | 0.2          | 0.2    | 2             | 2             | 2             | 2             | 2             | 2             | 2             |
| ANZECC 2000 FW 95% |         |       |        |                   |       |                 |                   |       |       | 0.01  |             |          |              |               |                     | 0.02   |                 | 0.2             | 0.09       |                    |              |                 | 0.01         |                     | 0.01     | 0.15       |        | 0.2          |        |               |               |               | 0.6           |               | 0.03          |               |
| NEPM Drinking      |         |       | 0.3    |                   |       |                 |                   |       |       | 20    |             | 0.3      |              |               |                     |        |                 |                 | 0.3        |                    |              |                 |              |                     |          |            |        |              |        |               |               |               |               |               |               |               |
| ID Date            |         |       |        |                   |       |                 |                   |       |       |       |             |          |              |               |                     |        |                 |                 |            |                    |              |                 |              |                     |          |            |        |              |        |               |               |               |               |               |               |               |
| MW01 4/03/2011     | <0.2    | < 0.2 | < 0.2  | 2 < 0.4           | < 0.2 | 2<0.2           | < 0.2             | < 0.2 | < 0.2 | < 0.2 | <0.6        | <0.2     | < 0.2        | 2<0.2         | 2<0.2               | <0.2   | < 0.2           | < 0.2           | < 0.2      | < 0.2              | <0.2         | <0.2            | <0.2         | < 0.000             | <0.2     | < 0.2      | <0.2   | <0.2         | <0.2   | <2            | <2            | <2            | <2            | <2            | <2            | <2            |
| MW02 4/03/2011     | < 0.2   | < 0.2 | < 0.2  | 2 < 0.4           | < 0.2 | 2<0.2           | <0.2              | < 0.2 | < 0.2 | <0.2  | <0.6        | < 0.2    | < 0.2        | 2<0.2         | 2<0.2               | <0.2   | < 0.2           | < 0.2           | < 0.2      | < 0.2              | <0.2         | <0.2            | <0.2         | < 0.000             | <0.2     | < 0.2      | <0.2   | < 0.2        | <0.2   | <2            | <2            | <2            | <2            | <2            | <2            | <2            |
| MW03 4/03/2011     | < 0.2   | <0.2  | < 0.2  | 2 < 0.4           | < 0.2 | 2<0.2           | <0.2              | <0.2  | <0.2  | <0.2  | <0.6        | < 0.2    | < 0.2        | 2<0.2         | 2<0.2               | <0.2   | <0.2            | <0.2            | <0.2       | < 0.2              | <0.2         | <0.2            | <0.2         | < 0.000             | <0.2     | <0.2       | <0.2   | <0.2         | <0.2   | <2            | <2            | <2            | <2            | <2            | <2            | <2            |
| MW04 4/03/2011     | <0.2    | <0.2  | < 0.2  | 2 < 0.4           | <0.2  | < 0.2           | <0.2              | <0.2  | <0.2  | <0.2  | <0.6        | <0.2     | <0.2         | 2<0.2         | 2<0.2               | <0.2   | <0.2            | <0.2            | <0.2       | <0.2               | <0.2         | <0.2            | <0.2         | < 0.000             | <0.2     | <0.2       | <0.2   | < 0.2        | <0.2   | <2            | <2            | <2            | <2            | <2            | <2            | <2            |





Appendix A Soil Field Documentation

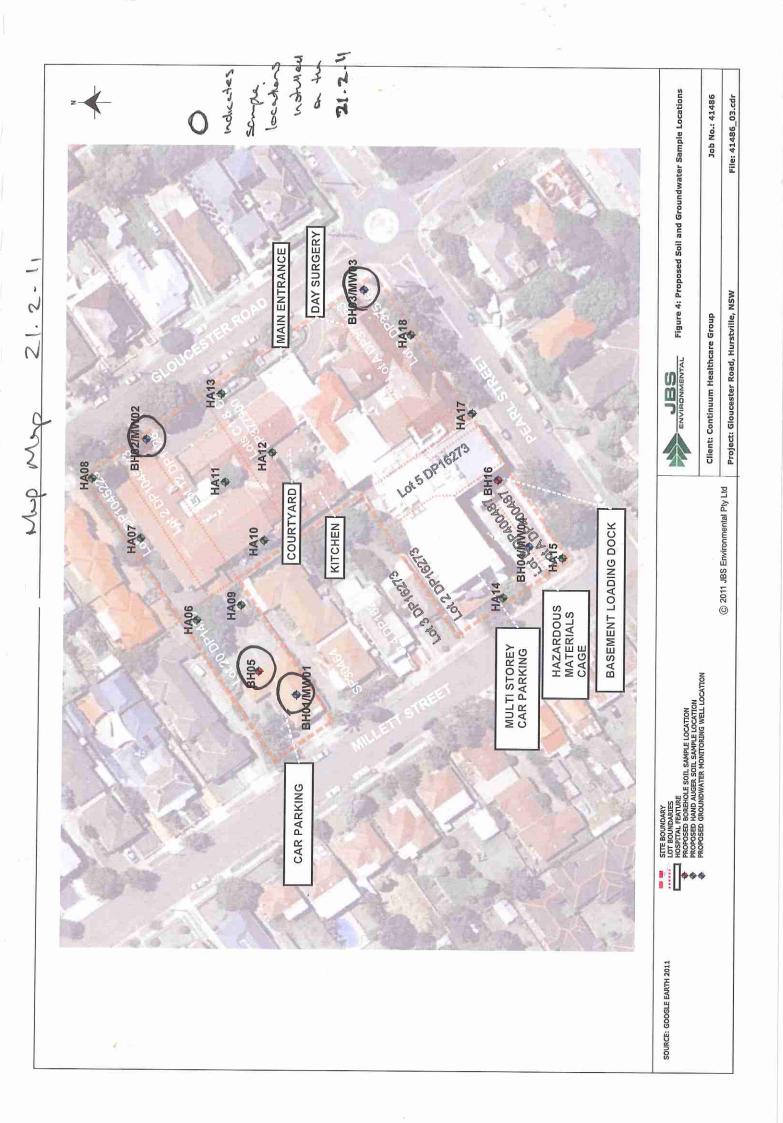
# Field Equipment Calibration and Decontamination



| PROJECT NAME: CONTINUUM HE | Hheave - Hurstville | PROJECT NO: 41486        |          |
|----------------------------|---------------------|--------------------------|----------|
| FIELD DATES: 21/2/11       |                     | FIELD STAFF: C. Roberts, | N.Cussen |

| CALIBRATION SUMMARY WA       |  |
|------------------------------|--|
| EQUIPMENT: - NA-             |  |
| CALIBRATION STANDARD: ~ NA . |  |

| DATE | TIME | READING (ppm <sub>v</sub> ) | COMMENTS |
|------|------|-----------------------------|----------|
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             | /        |
|      |      |                             |          |
| 1.   |      |                             | NA       |
|      |      |                             | /        |
|      |      |                             |          |
|      |      |                             |          |
|      | /    |                             |          |
|      |      | · · · ·                     |          |
|      |      |                             |          |
|      |      |                             |          |


| DECONTAMINATION SUMMARY                                                                                                                                              |        |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| EQUIPMENT: Mand Avger decontaninated at each Sample                                                                                                                  |        |     |
| EQUIPMENT: Hand Avger decontaninated at each Sample<br>anea, new nitrile gloves used at each sample.                                                                 |        |     |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?       Y                                                                        | N      | NA  |
| 2. Was excess soil removed by scraping, brushing or wiping with disposable towels?                                                                                   | N      | NA  |
| 3. Was the equipment contaminated with grease, tar or similar material? Y<br>If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane? Y | N<br>N |     |
| 4. Was phosphate-free detergent used to wash the equipment?                                                                                                          | Ν      | NA  |
| 5. Was the equipment rinsed with clean water?                                                                                                                        | N      | NA  |
| 6. Was the equipment then rinsed with deionised water?                                                                                                               | N      | NA  |
| 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection? Y                                                                       | Ν      | (NA |
| WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.                                                                                              |        |     |

|                                                         | Daily Fiel                                         | d Report                                                                                                                           | Page of                 |  |  |  |  |  |  |
|---------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|
| Date:<br>Arrival Time<br>Depart Time<br>Site Address    | 21/2/11<br>Fam<br>4:15pm<br>Glovder Rd Hurstville. | Completed by<br>Weather<br>Subcontractor(s                                                                                         | Claudia Roberts<br>Fine |  |  |  |  |  |  |
| Purpose of Visit                                        | Born hand tugers                                   | Bove holes \$ m<br>and drilling                                                                                                    | omtoring wells          |  |  |  |  |  |  |
| Notes<br>(include sketch<br>or attach site<br>map/plan) | - installed BH/M<br>                               | N. CUSSEN,<br>Wallebuey<br>W<br>BHDI/MWD/<br>BHO2/MWD2<br>BHO3/MWD3<br>BHO3<br>BHO3<br>BHO3<br>BHO3<br>BHO3<br>BHO3<br>BHO3<br>BHO | oft flush<br>areas post |  |  |  |  |  |  |
| Associated<br>Completed<br>Forms                        |                                                    |                                                                                                                                    |                         |  |  |  |  |  |  |
| (eg, bore logs,<br>PID/XRF<br>calibration<br>forms)     |                                                    |                                                                                                                                    |                         |  |  |  |  |  |  |

Note

This document contains information that is privileged, confidential or otherwise protected from use, disclosure, reproduction or distribution. © 1999 - 2009 JBS Environmental PO Box 940, Mascot NSW 1460 • Phone: 8338 1013 • Fax: 8338 1700 • E-mail: <u>jbs@jbsgroup.com.au</u>

IMSO Forms001 - Daily Field Report





Borehole # BHOL/NWOL

| Total Ho<br>Top of C<br>Screen:<br>Casing:<br>Drill Co    | Dia<br>Dia<br>Dia<br>Dia                        | h <u>9.3</u>                                                | ۷۸ میں<br>Leng<br>Lengt | Northing<br>W<br>th<br>h<br>_ Method | ater Level                               | Initial<br>Type/Siz<br>Type/Siz                          | NoEasting<br>e<br>e<br>e                                           | Static                                                     |                                                                    | COMMENTS                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|-------------------------|--------------------------------------|------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH<br>(METRES)                                         | WELL<br>CONSTRUCTION                            | SAMPLE ID<br>(INCL. OA/OC                                   | REFERENCE)              | (Mdd) (Id                            | USCS CLASS                               |                                                          | IPTION                                                             |                                                            |                                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | <b>8</b> [X]                                    | C                                                           | >                       |                                      | L -                                      | <u> </u>                                                 | face 6                                                             | ntumer                                                     |                                                                    | alin kun suuraa sa araa ka araa | Constant and the Constant of t |
|                                                           |                                                 | 0.2-0                                                       |                         |                                      |                                          | - Fill<br>- 6000<br>- 6109                               | Silty C<br>un, he<br>stic, me<br>coarse                            | lay, hg<br>tero, d                                         | nt to<br>wy, sol<br>to de                                          | medun<br>H, nov<br>inse, f<br>vy sev                                                                            | ine<br>fed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <br>                                                      |                                                 | 0.8-                                                        | -1-0                    |                                      |                                          | dav<br>unc                                               | NATURI<br>16 bra<br>Lusions                                        | un, da<br>, dense                                          | steer n                                                            | nottles,                                                                                                        | stale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /                                                         |                                                 |                                                             |                         |                                      | —                                        | - O · 8                                                  | : As a                                                             | bole                                                       |                                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>                                                      |                                                 | 2.5-                                                        | -2.7                    |                                      |                                          | Sta                                                      | NATURA<br>: Shale<br>: t, non<br>wels.                             | : browv                                                    | n, homo<br>, dens                                                  | e, fun                                                                                                          | tivm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                           |                                                 | 4.5-6                                                       | ャオ                      |                                      |                                          |                                                          | : As a<br>yey b                                                    |                                                            | chang                                                              | je to                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                 | 7.5-                                                        | 7.8                     |                                      |                                          | _                                                        | : As a<br>isture                                                   | _                                                          | . معرب                                                             |                                                                                                                 | w <sup>anna</sup> annana a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                           |                                                 | 90-9                                                        | .3                      |                                      |                                          | - we                                                     |                                                                    |                                                            |                                                                    |                                                                                                                 | noisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                           |                                                 | 2                                                           |                         |                                      |                                          | Eo                                                       | h@ 9                                                               | '3m, v                                                     | refusal                                                            | on st                                                                                                           | nale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Description                                               |                                                 | Colour                                                      | Struct                  | ure                                  | Moisture                                 | Cohesive Sc                                              | oils                                                               | Sand & Gravel                                              |                                                                    |                                                                                                                 | Secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT | clayey<br>silty<br>sandy<br>gravelly<br>organic | red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled |                         | ated<br>ioles                        | dry<br>damp<br>moist<br>wet<br>saturated | very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded)                                             | and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination<br>odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



Borehole # BHO2/MWO2

| Total Ho<br>Top of (<br>Screen:<br>Casing:<br>Drill Co                                                                                                                                   | Die Dept<br>Casing<br>Dia<br>Dia<br>NU          | HVILLE-<br>h 10n<br>                                        |                                                                                            | COMMENTS<br>No<br>ground<br>delec        | twater<br>ted,                                           |                                                                    |                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| DEPTH<br>(METRES)                                                                                                                                                                        | WELL<br>CONSTRUCTION                            | SAMPLE ID                                                   | REFERENCE)                                                                                 | USCS CLASS                               | DESCR                                                    | RIPTION                                                            |                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
|                                                                                                                                                                                          |                                                 | 0-0                                                         |                                                                                            |                                          |                                                          | FILL: S<br>why with mut<br>and mut                                 |                                                            | and the second | ويحصرهم والمحاصر والمحمد وسنجا والمحاصر والمحاصر والمحاصر والمحاصر والمحاصر والمحاصر والمحاصر والمحاص و | /k<br>)                                                                                     |
|                                                                                                                                                                                          |                                                 | 03-0                                                        | 5.5                                                                                        |                                          | 5.0<br>bvor<br>1005<br>1005<br>1005                      | FILL:<br>why, het<br>a to me<br>ted, lo<br>the + me                | silty<br>evo, d<br>edium<br>vge ign<br>etal fr             | sandy<br>vy, sol<br>density,<br>neous<br>agment                                                                  | clay,<br>ft, non<br>fine,<br>gravels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | davk<br>plastic,<br>poorly                                                                  |
| - #<br><br><br>                                                                                                                                                                          |                                                 | 0.5-1                                                       | 5.7                                                                                        |                                          | 0.5<br>670<br>100                                        | FILL:<br>plastic                                                   | silty cl<br>etero, c<br>cty, de                            | ay, he<br>tamp, t<br>unse, f                                                                                     | jut to i<br>given to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | stiff,<br>svse.                                                                             |
| 6                                                                                                                                                                                        |                                                 | 1.0 - 1.                                                    | 2                                                                                          |                                          | - red,<br>plas                                           | grey, V                                                            | romo, d<br>clense,                                         | poorly                                                                                                           | sorted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |
|                                                                                                                                                                                          |                                                 | 3-0- 3                                                      | 3.5                                                                                        |                                          | - plas                                                   | tic, poor                                                          | ly soute                                                   | A.                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | se,<br>moderate                                                                             |
| , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ,, , ,, , , , , , , , , , , , , , , , , , , , |                                                 | 9-8-1                                                       | 0                                                                                          |                                          |                                                          | noist, fi<br>: As al                                               | ~ ~ ~                                                      | , jin.,                                                                                                          | روياني ويومنع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| IQ<br>Description                                                                                                                                                                        |                                                 | Colour                                                      | Structure                                                                                  | Moisture                                 | - WIT                                                    | depth<br>toh@ 10                                                   | ```                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
| FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT                                                                                                                                | clayey<br>silty<br>sandy<br>gravelly<br>organic | red<br>yełlow<br>white<br>black<br>brown<br>grey<br>mottled | homogenous<br>heterogeneous<br>stratified<br>laminated<br>lens<br>root holes<br>occasional | dry<br>damp<br>moist<br>wet<br>saturated | very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand                                               | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination<br>odour |



Borehole # BHO3/MWO3

|                               | 01                           | i                        | 01 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                        |                              |                                  |
|-------------------------------|------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------|----------------------------------|
|                               |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                        | COMMENTS                     |                                  |
| Total H                       | lole Dept                    | h <u>10·S</u>            | WA_North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Easting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J                                       |                                        |                              |                                  |
| Top of                        | Casing _                     | ,معنو                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ Water Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ Static                                |                                        | ]                            |                                  |
| Screen                        | : Dia                        | Calendrates,             | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -9+062****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ Type/Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                        |                              |                                  |
|                               |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 348027342-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                        |                              |                                  |
|                               |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hod SFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                        |                              |                                  |
| Driller                       | Dea                          | -v~                      | Log B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VC-Rob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>ents</u> Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | te <u>21/2/11</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Permit #                                | 48.4Gan-                               |                              |                                  |
| DEPTH<br>(METRES)             | WELL<br>WELL<br>CONSTRUCTION |                          | REFERENCE)<br>PID (PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | USCS CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                        | 1                            |                                  |
| $\vdash$ $\stackrel{\sim}{-}$ | KI M                         | 0                        | an and a second s | - Constant | Contraction of the local division of the loc | LASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | <u> </u>                               | Ø                            | ~ 1                              |
|                               |                              | 0.3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - bra<br>- me<br>- So<br>- So<br>- Sha<br>- pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | un, het<br>which he when he when he when he when he when he will be a construction of the stice of | ero, dry<br>lense<br>sitth 'i<br>avels, | y, soft,<br>five,<br>nclusie<br>concre | non-p<br>peovily<br>the f    | lastic                           |
|                               |                              | 0.5-                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | plas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dium<br>thes. 1<br>thaty,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | letero,<br>dense,                       | peerly                                 | · Sh(ff,<br>Sarted           | Lew                              |
|                               |                              | · O                      | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - NATUR<br>dark<br>Luse gu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | brown                                   | , dry                                  | , non 1                      | plastic                          |
|                               |                              | 2.5-2                    | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - As<br>isture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | above                                   | with                                   | - inc                        | reased                           |
|                               |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.0<br>-101as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - as (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ubove,                                  | grei                                   | j, mar                       | eased                            |
| 7.5                           |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B.C<br>Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) - gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ey to c<br>emp, h                       | dark 1<br>nodera                       | brash<br>te plu              | clary,<br>xsticity               |
|                               |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ohe I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5m                                    | prog.                                  | ram c                        | lepth.                           |
|                               |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                        |                              |                                  |
| 0.5<br>Description            |                              | Colour                   | Ctructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mainture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cohartura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Courd D. C.                             |                                        |                              |                                  |
| FILL                          | clayey                       | red                      | Structure<br>homogenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Moisture<br>dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cohesive So<br>very soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | non-plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sand & Gravel<br>very loose             | boulders                               | poorly sorted                | Secondary<br>and (35-50%)        |
| CLAY<br>SILT<br>SAND          | silty<br>sandy<br>gravelly   | yellow<br>white<br>black | heterogeneou<br>stratified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | soft<br>firm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | low plasticity<br>mod plasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | loose<br>medium dense                   | cobbles<br>coarse gravel               | (well graded)<br>well sorted | some (20-35%)<br>little (10-20%) |
| GRAVEL                        | organic                      | brown<br>grey            | laminated<br>lens<br>root holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wet<br>saturated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | stiff<br>very stiff<br>hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | high plasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dense<br>very dense                     | fine gravel<br>coarse sand             | (poorly<br>graded)           | trace (0-10%)                    |
| PEAT                          |                              | mottled                  | occasional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | noru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                        |                              | Contamination                    |
|                               |                              | L                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                        |                              | odour                            |



Borehole # BHOS

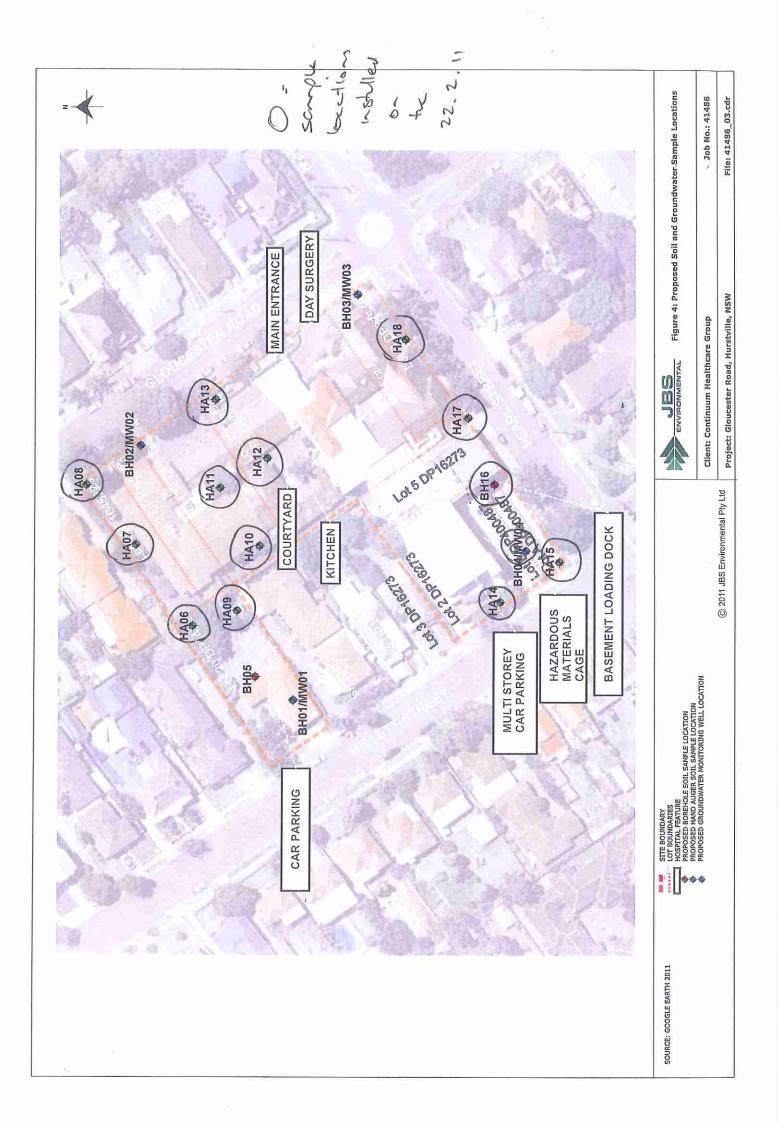
| Total He<br>Top of C<br>Screen:<br>Casing:<br>Drill Co    | ole Dept<br>Casing _<br>Dia _<br>Dia _<br>NU<br>MAR                          | h <u>0'7v</u><br>-<br>-<br>MAC                              | Leng       | Northing<br>W<br>Jth<br>th<br>Metho | Vater Level                              | Initial<br>Type/Siz                                      | No $4148$<br>Easting<br>ze<br>ze<br>te $21/2/11$                   | Static                                                     |                                                                    | COMMENTS                                                                                                        |                                                                                             |
|-----------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|------------|-------------------------------------|------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| DEPTH<br>(METRES)                                         | WELL<br>CONSTRUCTION                                                         | SAMPLE ID                                                   | REFERENCE) | (Mdd) (Id                           | USCS CLASS                               |                                                          | RIPTION                                                            |                                                            |                                                                    |                                                                                                                 |                                                                                             |
| <u> </u>                                                  |                                                                              |                                                             |            |                                     |                                          | _ 50                                                     | Ace: A                                                             | sphalt                                                     | ىرى يې چې لې دې کې             | 1004-11 Tengah Salah Manana ang salam 1990 - 1991 - 1992 - 1993 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 199 | anne                                                                                        |
|                                                           |                                                                              |                                                             |            |                                     |                                          | -1                                                       | 5: FILL,<br>lected.                                                |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     |                                          | 0.2                                                      | S: FILL                                                            | Silty                                                      | clay, l                                                            | ight by                                                                                                         | own,                                                                                        |
|                                                           |                                                                              | 0.15.                                                       | -0.2       |                                     |                                          | -gre<br>-nov<br>-igni                                    | s: FILL<br>y which<br>plastic<br>eous f                            | ite, der<br>z der<br>zvarel                                | ry, hei<br>nse, p<br>inclu                                         | tera s<br>oorly s<br>sions.                                                                                     | oft,<br>sovted                                                                              |
|                                                           | <b>1920 (1)</b> , (1) (1), (1) (1), (1) (1), (1) (1), (1) (1), (1) (1), (1), | 0.25-                                                       | 0.5        |                                     |                                          | gre<br>les                                               | : NATUR<br>y, while<br>s Igne                                      | LAL S<br>e, dur<br>ous é                                   | itty cl<br>1, soft<br>yrawel                                       | ay, br<br>non<br>intrus                                                                                         | plastic,<br>ions                                                                            |
|                                                           |                                                                              |                                                             |            |                                     |                                          | Eol                                                      | ~@ 0                                                               | ·7m,                                                       | reache                                                             | d Nati                                                                                                          | iral,                                                                                       |
|                                                           |                                                                              |                                                             |            |                                     |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     | <u> </u>                                 | -                                                        |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     | ┝ -                                      | -                                                        |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     |                                          | _                                                        |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     |                                          | _                                                        |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     |                                          | _                                                        |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     | · · · · · · · · · · · · · · · · · · ·    |                                                          |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
|                                                           |                                                                              |                                                             |            |                                     |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                                                                 |                                                                                             |
| Description                                               |                                                                              | Colour                                                      | Struct     |                                     | Moisture                                 | Cohesive So                                              |                                                                    | Sand & Gravel                                              |                                                                    |                                                                                                                 | Secondary                                                                                   |
| FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT | cłayey<br>silty<br>sandy<br>gravelly<br>organic                              | red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled |            | oted<br>oles                        | dry<br>damp<br>moist<br>wet<br>saturated | very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded)                                             | and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination<br>odour |

## Field Equipment Calibration and Decontamination



| PROJECT NAME: Continuum | Healthcare - Hurstville | PROJECT NO:  | 41486            |      |
|-------------------------|-------------------------|--------------|------------------|------|
| FIELD DATES: 22/2/11    |                         | FIELD STAFF: | C. Roberts, N.C. | ssen |

| CALIBRATION SUMMARY   | NA |  |
|-----------------------|----|--|
| EQUIPMENT:            |    |  |
| CALIBRATION STANDARD: |    |  |


| DATE | TIME | READING (ppm <sub>v</sub> ) | COMMENTS |
|------|------|-----------------------------|----------|
| ÷    |      |                             |          |
|      | 2    |                             |          |
| 1    |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             | NA       |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |

| DECONTAMINATION SUMMARY                                                                                                                                          |                          |        |    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|----|--|--|--|
| EQUIPMENT: Mand Auger decontaminated at each sample                                                                                                              |                          |        |    |  |  |  |
| EQUIPMENT: Mand Auger decontaminated at each<br>area, new nitrile gloves used for each                                                                           | Sampl                    | e      |    |  |  |  |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?                                                                            |                          | N      | NA |  |  |  |
| 2. Was excess soil removed by scraping, brushing or wiping with disposable towels?                                                                               | $\overline{\mathcal{O}}$ | N      | NA |  |  |  |
| 3. Was the equipment contaminated with grease, tar or similar material?<br>If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane? | Y<br>Y                   | N<br>N | NA |  |  |  |
| 4. Was phosphate-free detergent used to wash the equipment?                                                                                                      | $\bigcirc$               | Ν      | NA |  |  |  |
| 5. Was the equipment rinsed with clean water?                                                                                                                    | $\bigcirc$               | Ν      | NA |  |  |  |
| 6. Was the equipment then rinsed with deionised water?                                                                                                           | $\bigcirc$               | Ν      | NA |  |  |  |
| 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection? Y                                                                   |                          |        |    |  |  |  |
| WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.                                                                                          |                          |        |    |  |  |  |
|                                                                                                                                                                  |                          |        |    |  |  |  |

|                                                      | JBS                                                                                                               |  |  |  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                      | ENVIRONMENTAL                                                                                                     |  |  |  |  |  |  |
| Daily Field Report                                   |                                                                                                                   |  |  |  |  |  |  |
| Date:<br>Arrival Time<br>Depart Time<br>Site Address | 22/2/11<br>Tam Completed by Claudia Roberts<br>Weather Overcast.<br>Jpm Subcontractor(s)                          |  |  |  |  |  |  |
| Purpose of Visit                                     | Drilling BH04/MW04, installation of the nell,<br>in addition to HA 05 to HA&                                      |  |  |  |  |  |  |
| Notes<br>(include sketch                             | - Arrive on Site Fam                                                                                              |  |  |  |  |  |  |
| or attach site<br>map/plan)                          | - review Safety documents on site<br>- Supervise duilling of BH04/MW04 un<br>rear carpark in addition to BH16     |  |  |  |  |  |  |
|                                                      | -installation of MWOY, and develop the well.                                                                      |  |  |  |  |  |  |
|                                                      | - ensure the carpark area is clean and<br>cleared of any trip hazards, including<br>appropriate capping of HB104. |  |  |  |  |  |  |
|                                                      | - duillers signed out at 10:30 am.                                                                                |  |  |  |  |  |  |
|                                                      | - manual excavation of HAUgers, areas<br>indicated on map.<br>- HADE m HAMA                                       |  |  |  |  |  |  |
|                                                      | - Bore logs attached - HA08<br>- HA08                                                                             |  |  |  |  |  |  |
|                                                      | - Map attached - HA 10<br>- HA 11<br>- QA/QC 01 (HA15 0.0-0.1) - HA 12                                            |  |  |  |  |  |  |
|                                                      | $\frac{-QA}{QCO2} \left( \frac{HAOS}{HAOS} \frac{O \cdot O - O \cdot I}{O - HA} \right) = \frac{HA}{I2}$          |  |  |  |  |  |  |
|                                                      | - BH 16<br>- HA 17<br>- HA 18                                                                                     |  |  |  |  |  |  |
| Associated<br>Completed<br>Forms                     | -from which samples were taken as<br>per SAQP.                                                                    |  |  |  |  |  |  |
| (eg, bore logs,<br>PID/XRF<br>calibration            |                                                                                                                   |  |  |  |  |  |  |
| forms)                                               |                                                                                                                   |  |  |  |  |  |  |

Note

This document contains information that is privileged, confidential or otherwise protected from use, disclosure, reproduction or distribution. © 1999 - 2009 JBS Environmental PO Box 940, Mascot NSW 1460 • Phone: 8338 1013 • Fax: 8338 1700 • E-mail: <u>jbs@jbsgroup.com.au</u>



| JBS           | Drilling | Log |
|---------------|----------|-----|
| ENVIRONMENTAL | _        |     |

Borehole # BH04 /MW04

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project <u>Glov</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ster St h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | urstville   | Project No 41486 COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Easting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Top of Casing _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water Level | Initial Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Type/Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Casing: Dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Length _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6         | Type/Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drill Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAC M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ethod       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Driller _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Denn Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | By C-20b    | Mr Date 22/2/11_ Permit #                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I     I     I     I     I     I     I     DEPTH       I     I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I     I | 2-2-2.0<br>Sample ID<br>Sample ID<br>Sample ID<br>CINCL. QA/QC<br>Sample ID<br>Sample ID | PID (PPM)   | DESCRIPTION<br>DESCRIPTION<br>DESCRIPTION<br>DIS - concrete surface (NS)<br>0.15 - concrete surface (NS)<br>0.2 Fill: Silty Clay, light to med. brown,<br>hetero, dry, soft, non-plastic, med-dense,<br>coarse growels, to cottles, inclusions of<br>shale fragments, and igneous gravel.<br>0.5 Fill, Silty Clay, as above, the inclusions<br>of shale fragments.<br>2.2 - as above, darker browns to<br>grey.<br>3.9 - as above, grey to black<br>7.2 as above, black<br>9.8 - as above, met |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAR MARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95-9-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Eon @ manth program depth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | om                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Colour Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Cohesive Soils         Sand & Gravel         Secondary           verv soft         non-plastic         verv loose         boulders         poorly sorted         and (35-50%)                                                                                                                                                                                                                                                                                                                  |
| FILL clayey<br>CLAY silty<br>SILT sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | red homogene<br>yellow heterogen<br>white stratified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | very soft         non-plastic         very loose         boulders         poorly sorted         and (35-50%)           soft         low plasticity         loose         cobbles         (well graded)         some (20-35%)           firm         mod plasticity         medium dense         coarse gravel         well sorted         little (10-20%)                                                                                                                                      |
| SAND gravelly<br>GRAVEL organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | black laminated<br>brown lens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | stiff high plasticity dense coarse sand graded)                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOPSOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | grey root holes<br>mottled occasional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | hard Very dense coarse sand grocedy Contamination                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

IMSO Forms011 - Drilling Log

5



Borehole # HACE

| Project           | Hurs                 | tville          | Aive                       | ste H        | boopter          | _ Project           | No 448                           | 6                           |                            | COMMENTS                     |                                  |
|-------------------|----------------------|-----------------|----------------------------|--------------|------------------|---------------------|----------------------------------|-----------------------------|----------------------------|------------------------------|----------------------------------|
|                   |                      |                 |                            |              |                  |                     | Easting                          |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  |                     | ~                                |                             |                            |                              |                                  |
| Screen            | : Dia _              | *               | _ Leng                     | gth <u> </u> | :                | Type/Si             | ze 🤘                             |                             |                            |                              |                                  |
| Casing            | : Dia _              | *               | _ Leng                     | th           | e                | Type/Si             | ze 🦯 🦳                           |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  |                     | remetion                         |                             |                            |                              |                                  |
| Driller           | Net                  | na              |                            | Log By       | Notes            | Da                  | te <u>22. 2. 1</u>               | Permit #                    |                            |                              |                                  |
|                   |                      |                 |                            |              |                  |                     |                                  |                             |                            |                              |                                  |
|                   | WELL<br>CONSTRUCTION |                 | (INCL. QA/QC<br>REFERENCE) |              | SS               |                     |                                  |                             |                            |                              |                                  |
| DEPTH<br>(METRES) | L I                  | SAMPLE ID       | ENG                        | (MAA) OIA    | JSCS CLASS       | DESC                | RIPTION                          |                             |                            |                              |                                  |
| PTH               | NS.                  | MPI             | <u>5</u> Ř                 | B B          | S                |                     |                                  |                             |                            |                              |                                  |
| <u><u></u></u>    | <u><u> </u></u>      | SA              | LIN EN                     | DId          | nsı              |                     |                                  |                             |                            |                              |                                  |
|                   | 0.0                  |                 |                            |              | <u> </u>         | G                   | circle, B                        | ed: 1                       | Tulch                      |                              |                                  |
|                   |                      | 0.0             | -                          |              |                  |                     |                                  |                             | -0.0                       | ·                            |                                  |
|                   |                      | 0.0             |                            |              |                  | Fells               | silly ele                        | 2 cicit                     | bron h                     | cters dan                    | .p                               |
|                   |                      | 0.2.            | 04                         |              |                  |                     | for los                          | to more                     | wente pla                  | - sticity                    |                                  |
|                   |                      |                 |                            |              |                  |                     | with me.                         | -pions of                   | mach /                     | -society                     |                                  |
|                   | 0.6                  |                 |                            |              |                  |                     | shale yr                         | vels a                      | plastic                    |                              |                                  |
|                   |                      |                 |                            |              |                  |                     |                                  | 6                           | -                          |                              |                                  |
|                   |                      | 0.6 - 1         | f.a                        |              |                  | Silt                | s curry                          | mattiell a                  | yrey ora                   | ye hat                       | 2. 22                            |
|                   |                      |                 |                            |              |                  | dan                 | P Firm                           | moderat                     | e platie.                  | to wit                       | 010                              |
| _                 |                      |                 |                            |              |                  | incl                | p firm                           | 04 shell                    | a greet                    | 3                            |                                  |
|                   | 09                   |                 |                            |              |                  |                     |                                  |                             | 0                          |                              |                                  |
|                   | ~~                   |                 |                            |              |                  | D                   |                                  | - 0.4                       |                            | 0                            | 1                                |
|                   |                      |                 |                            |              |                  | . ~~                | not Ho                           | sle e c                     | s.c !                      | Program                      | Reph                             |
|                   |                      |                 |                            |              |                  |                     |                                  |                             |                            |                              |                                  |
| _ = _             |                      |                 |                            |              |                  |                     |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  |                     |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              | L _              |                     |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              | n                | _                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  |                     |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  | _                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  | _                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  | _                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  | _                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  |                     |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  | -                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  |                     |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  | -                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  | -                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  | -                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              |                  | -                   |                                  |                             |                            |                              |                                  |
|                   |                      |                 |                            |              | -                | -                   |                                  |                             |                            |                              |                                  |
| Description       |                      | Colour          | Struct                     | ure          | Moisture         | Cohesive Sc         | ile                              | Cond & Count                |                            |                              |                                  |
| FILL              | clayey               | red             | homo                       | genous       | dry              | very soft           | non-plastic                      | Sand & Gravel<br>very loose | boulders                   | poorly sorted                | Secondary<br>and (35-50%)        |
| CLAY<br>SILT      | silty<br>sandy       | yellow<br>white | stratif                    |              | damp<br>moist    | soft<br>firm        | low plasticity<br>mod plasticity | loose<br>medium dense       | cobbles<br>coarse gravel   | (well graded)<br>well sorted | some (20-35%)<br>little (10-20%) |
| SAND<br>GRAVEL    | gravelly<br>organic  | black<br>brown  | lamina<br>lens             | ated         | wet<br>saturated | stiff<br>very stiff | high plasticity                  | dense<br>very dense         | fine gravel<br>coarse sand | (poorly<br>graded)           | trace (0-10%)                    |
| TOPSOIL<br>PEAT   |                      | grey<br>mottled | root h<br>occasi           |              |                  | hard                |                                  |                             |                            |                              | Contamination                    |
|                   |                      |                 |                            |              |                  |                     |                                  |                             |                            |                              | odour                            |

|                                                                          | E                                               |                                                                       |                                                                                                         |                                            | filling                                                                 | J Log                                                                                                          | Borel                                                                       | nole #                                                             | A<br>107                                                            |                                                                                                          |
|--------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Total H<br>Top of<br>Screen<br>Casing:<br>Drill Co                       | ole Dept<br>Casing _<br>: Dia _<br>Dia _        | h <u>O</u> ·                                                          | Length                                                                                                  | hing<br>Water Lev<br><br>ethod <del></del> | el Initial<br>_ Type/Si<br>_ Type/Si<br>_ A A                           | No <u>41</u><br>Easting<br>ize <u>-</u><br>ze <u>-</u><br>vgev<br>ate $22/2/u$                                 | ) Static                                                                    |                                                                    | COMMENTS                                                            |                                                                                                          |
| DEPTH<br>(METRES)                                                        | WELL<br>CONSTRUCTION                            | SAMPLE ID                                                             | (LINCL. QA/QC<br>REFERENCE)                                                                             | USCS CLASS                                 | 0.1                                                                     | RIPTION                                                                                                        |                                                                             |                                                                    |                                                                     |                                                                                                          |
|                                                                          | 0.1-                                            | 0.2-                                                                  | 0.2                                                                                                     |                                            | fill<br>ger<br>Coa<br>cnc<br>0.2<br>Ls<br>Sar                           | when s<br>shift, nor<br>Silky C<br>nong du<br>use to<br>cluscons<br>above<br>defone<br>above<br>above<br>above | lay, lig<br>J. firm<br>fine S<br># pro<br>uncre                             | ht brow<br>, non p<br>hale e<br>escuce<br>ased                     | n, het<br>lastic, lo<br>gracel<br>of sano<br>mesence                | ero<br>osl,<br>Istone.                                                                                   |
|                                                                          |                                                 |                                                                       |                                                                                                         |                                            |                                                                         | the and ston                                                                                                   |                                                                             |                                                                    |                                                                     |                                                                                                          |
| Description<br>FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT | clayey<br>silty<br>sandy<br>gravelly<br>organic | Colour<br>red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled | Structure<br>homogenous<br>heterogeneous<br>stratified<br>laminated<br>lens<br>root holes<br>occasional |                                            | Cohesive So<br>very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | oils<br>non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity                                     | Sand & Gravel<br>very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded) | Secondary<br>and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination<br>odour |

IMSO Forms011 - Drilling Log

15

|                                                                                                                                                    |                                                          |                                                          | ling Log                                                                                                                             | Boreho                                                                      | le # HAO                                                           | 8                                                                   |                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Total Hole Dept<br>Top of Casing _<br>Screen: Dia _<br>Casing: Dia _<br>Drill Co                                                                   | h <u>ts</u> Nor<br>Length<br>Length                      | Mater Level I                                            | Project No 4486<br>Easting<br>Initial<br>Type/Size<br>Type/Size<br>Date 22.2.1                                                       | Static                                                                      |                                                                    | COMMENTS<br>QAZ/QC<br>collecter<br>sample lo<br>HAOS 0.1            | 1 Q                                                                                             |
| DEPTH<br>(METRES)<br>WELL<br>CONSTRUCTION                                                                                                          | SAMPLE ID<br>(INCL. QA/QC<br>REFERENCE)                  | PID (PPM)<br>USCS CLASS                                  | DESCRIPTION                                                                                                                          |                                                                             | 2                                                                  |                                                                     | ~                                                                                               |
|                                                                                                                                                    | 00-0-1<br>QAZ/GCZ<br>0-3-0-4<br>0-5-0-6<br>1-0-1-1<br>MS |                                                          | Carden Be<br>auti clay bro.<br>with clay bro.<br>plant material<br>damp from to<br>inclusions of<br>En of Hole                       | theor or shift is                                                           | dry fr<br>as greve<br>ic bon<br>plastic.<br>greens                 | hatero<br>is not                                                    | plesti                                                                                          |
| Description       FILL     clayey       CLAY     silty       SLT     sandy       SAND     gravelly       GRAVEL     organic       TOPSOIL     PEAT |                                                          | nous dry<br>eneous damp<br>I moist<br>d wet<br>saturated | Cohesive Soils<br>very soft non-plastic<br>soft low plasticity<br>firm mod plasticity<br>stiff high plasticity<br>very stiff<br>hard | Sand & Gravel<br>very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded) | Secondary<br>and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination |



Borehole # HACG

| Project           | Hurs                 | tulle          | Privite                  | . Hospit     | <u> </u> Project   | No 448                            | 6                     |                              | COMMENTS                       |                                                   |
|-------------------|----------------------|----------------|--------------------------|--------------|--------------------|-----------------------------------|-----------------------|------------------------------|--------------------------------|---------------------------------------------------|
| Total H           | ole Depl             | h <u>0.8</u>   | Nort                     | hing         |                    | Easting                           | ·                     |                              |                                |                                                   |
| Top of            | Casing _             | -              |                          | Water Lev    | el Initial         | ×                                 | _ Static              |                              |                                |                                                   |
| Screen            | : Dia _              | ~              | Length                   | 5            | Type/S             | ze                                |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    | ze                                |                       |                              |                                |                                                   |
| Drill Co          | 53:                  | 2              | Me                       | thod         | ~~~~               | Corcurate                         | sn                    |                              |                                |                                                   |
| Driller           | Net                  | time           | Log                      | By Net       | <u> </u>           | ite <u>22, 2, 1</u>               | Permit #              |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
| DEPTH<br>(METRES) | WELL<br>CONSTRUCTION | SAMPLE ID      | REFERENCE)               | USCS CLASS   | DESC               | RIPTION                           |                       |                              |                                |                                                   |
| DEPT<br>(MET      | MELI                 | SAM            | REFE                     | SDSU (P      |                    |                                   |                       |                              |                                |                                                   |
|                   | 0.0                  |                |                          | _            | Ges                | den Bed                           |                       |                              |                                |                                                   |
| <u></u> a         |                      |                | -                        |              | - Son -            | s. Hy cle                         | dont h                | hada                         | D de                           |                                                   |
|                   |                      | 0.0 -          | 0.1                      | _            |                    | fim la                            | to mod                | ente des                     | no clamp                       |                                                   |
|                   |                      | 10 10          |                          |              |                    | nelusions                         | 04 -30                | 10- miles                    | chie.                          |                                                   |
|                   |                      | 0.3            | 2.4.                     |              |                    | plantie.                          | a shire a             | a igneou                     | s annels                       |                                                   |
| <u> </u>          | 0.5                  |                |                          |              | _                  |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          | ·            |                    |                                   |                       |                              | 1                              |                                                   |
|                   |                      |                |                          |              | de                 | D Form                            | maleal                | Jud Ore                      | ise had                        | ers                                               |
|                   |                      | NS             |                          | -            | inci               | op form                           | a shile               | a prostici                   | to with                        |                                                   |
|                   |                      |                |                          |              |                    |                                   | +                     | Junas                        |                                |                                                   |
| 8                 | 0.8                  |                |                          |              | 0                  |                                   |                       | .« —                         |                                |                                                   |
|                   |                      |                |                          |              | trac               | son De                            | ph 0.8                | ~                            |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              | _                  |                                   |                       |                              |                                |                                                   |
| _                 |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              | -                  |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          | -            |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                |                                                   |
| Description       |                      | Colour         | Structure                | Moisture     | Cohesive S         | oils                              | Sand & Gravel         |                              |                                | Secondary                                         |
| FILL<br>CLAY      | clayey<br>silty      | red<br>yellow  | homogenou<br>heterogeneo | s dry        | very soft<br>soft  | non-plastic<br>low plasticity     | very loose<br>loose   | boulders<br>cobbles          | poorly sorted<br>(well graded) | and (35-50%)                                      |
| SILT<br>SAND      | sandy<br>gravelly    | white<br>black | stratified<br>laminated  | moist<br>wet | firm<br>stiff      | mod plasticity<br>high plasticity | medium dense<br>dense | coarse gravel<br>fine gravel | well sorted<br>(poorly         | some (20-35%)<br>little (10-20%)<br>trace (0-10%) |
| GRAVEL<br>TOPSOIL | organic              | brown<br>grey  | lens<br>root holes       | saturated    | very stiff<br>hard |                                   | very dense            | coarse sand                  | graded)                        | Contamination                                     |
| PEAT              |                      | mottled        | occasional               |              |                    |                                   |                       |                              |                                | odour                                             |
|                   |                      |                |                          |              |                    |                                   |                       |                              |                                | ououi                                             |



Borehole # \_\_\_\_\_

|                                                           |                                                 |                                                             |                                                                                          |            |                                                          | No 4149                                                            |                                                            |                                                                    | COMMENTS                                                            |                                                                                    |
|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Total H                                                   | ole Dept                                        | h                                                           | 0-8 Morth                                                                                | ning       | -                                                        | Easting                                                            |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          | 14-1<br>1-1                                                        |                                                            |                                                                    |                                                                     |                                                                                    |
| Screen                                                    | Dia _                                           | -                                                           | Length                                                                                   |            | Type/Siz                                                 | e                                                                  |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          | e                                                                  |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          | renation                                                           |                                                            |                                                                    |                                                                     | 2                                                                                  |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          | e 22.2.11                                                          |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
| DEPTH<br>(METRES)                                         | WELL<br>CONSTRUCTION                            | SAMPLE ID                                                   | REFERENCE)                                                                               | USCS CLASS | DESCR                                                    | IPTION                                                             |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           | 0.0                                             | <u>.</u>                                                    |                                                                                          |            | Gro                                                      | and Sinf                                                           | an - C                                                     | juda R                                                             | en                                                                  |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | Den.                                                     | elle se                                                            |                                                            | 0.6                                                                |                                                                     |                                                                                    |
|                                                           |                                                 | 0.0-0                                                       | 5= <u>)</u>                                                                              |            |                                                          | silly so                                                           | na bron                                                    | in water                                                           | el s ha                                                             | 05-2                                                                               |
|                                                           |                                                 | 0 2-0                                                       | 5-4                                                                                      |            |                                                          | fine gran                                                          | new poor                                                   | 2 cont                                                             | eg nith                                                             |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          | fine gran<br>mellocia<br>granelo                                   | not in                                                     | hear a                                                             | Shale                                                               |                                                                                    |
|                                                           | 0.45                                            | 0                                                           |                                                                                          |            |                                                          | 1                                                                  | conche                                                     | , terraco                                                          | ste frug.                                                           | to                                                                                 |
|                                                           |                                                 | 0.6 - 0                                                     | . 7                                                                                      |            | - 0                                                      |                                                                    | - 0.45                                                     | -                                                                  |                                                                     |                                                                                    |
|                                                           |                                                 | <u> </u>                                                    |                                                                                          |            | men.                                                     | crushed                                                            | Screisto                                                   | a dur                                                              | Loron                                                               |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | _                                                        | fia yra                                                            | ren                                                        |                                                                    |                                                                     | -                                                                                  |
|                                                           | 8.0                                             |                                                             |                                                                                          |            | -                                                        |                                                                    | . 0.8                                                      |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | ROR                                                      | user or                                                            | 500                                                        | 10.00                                                              | 1                                                                   |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          |                                                                    | - survi                                                    | Dier Lu                                                            | now e                                                               | -                                                                                  |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          |                                                                    | 08~                                                        |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | _                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | _                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | _                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | _                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | _                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | _                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
| <u> </u>                                                  |                                                 |                                                             |                                                                                          | <u> </u>   |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
| Description                                               |                                                 | Colour                                                      | Structure                                                                                | Moisture   | Cohesive So                                              | ils                                                                | Sand & Gravel                                              |                                                                    |                                                                     | Secondary                                                                          |
| FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT | clayey<br>silty<br>sandy<br>gravelly<br>organic | red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled | homogenous<br>heterogeneo<br>stratified<br>laminated<br>lens<br>root holes<br>occasional |            | very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded) | and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination |
|                                                           |                                                 |                                                             |                                                                                          |            |                                                          |                                                                    |                                                            |                                                                    |                                                                     | odour                                                                              |

| JBS           | Drilling | Log |
|---------------|----------|-----|
| ENVIRONMENTAL |          |     |

Borehole # \_\_\_\_\_\_

| Project_          | Glo                  | ister     | Rd                         | Hu       | stulle   | Project No410     | +86               | COMMENTS | L'al nas  |
|-------------------|----------------------|-----------|----------------------------|----------|----------|-------------------|-------------------|----------|-----------|
|                   |                      |           |                            |          |          | Easting           |                   | fraque   | fial ACM  |
|                   |                      |           |                            |          |          | Initial           | _ Static          |          | don       |
|                   |                      |           |                            |          |          | Type/Size         |                   |          | uce       |
|                   |                      |           |                            |          |          | Type/Size         |                   |          | all       |
| Drill Co          |                      | ×         |                            | _ Metho  | + flar   | nd Auger,         |                   | FQ       |           |
| Driller           | N.C                  | JEEE      |                            | Log By 🕻 | C. Kola  | 21/3 Date 22/2/11 | Permit # 🛫        |          |           |
|                   | z                    |           |                            | 1        | 1        | /                 |                   |          |           |
|                   | WELL<br>CONSTRUCTION |           | Sci                        |          | S        |                   |                   |          |           |
| (S                | - D                  | D II      | 6A/                        | Ω        | CLAS     | DESCRIPTION       |                   |          |           |
| TRE               | L LS                 | IPLE      | E E E                      | (MPM)    | S<br>S   |                   |                   |          |           |
| DEPTH<br>(METRES) | NON N                | SAMPLE ID | (INCL. QA/QC<br>REFERENCE) | DID      | lso      |                   |                   |          |           |
|                   |                      | F         |                            |          |          | Piver pephé       | e surface ab      | ove ae   | ofabric   |
|                   |                      |           | 0                          |          |          | N                 |                   |          |           |
|                   |                      | 0.0       | 1. 0                       |          |          | Bandya Solt       | , davk brown      | 1, hete  | evo,      |
|                   |                      |           |                            |          |          | alter Saind       |                   |          |           |
|                   |                      |           |                            |          |          | damp, los         | se-med densit     | y, fine  | grand     |
|                   |                      |           |                            |          |          | poorly south      | ed, newscors      | OF SI    | rale,     |
|                   |                      |           |                            |          |          | igneous q         | wavels            |          | - 1       |
|                   |                      |           |                            |          |          | - · · ·           |                   |          | _         |
|                   |                      | 0.3-      | -0.4                       |          | L -      | FILL ON SI        | thy sound, yell   | su \$ l  | enter     |
|                   |                      |           |                            |          |          | -1 1              | Jon days          |          | O.        |
|                   |                      |           |                            |          |          | brown, he         | tero, damp, 1     | Cosc- In | led       |
|                   |                      |           |                            |          |          | density, f        | ine grained,      | low pl   | asticuty, |
|                   |                      |           |                            |          |          | inclusion         | s of shale,       | igneiou  | S         |
|                   |                      |           |                            |          |          | gravet \$ s       | S                 | 0        |           |
|                   |                      |           |                            |          | <u> </u> |                   |                   | 1 de     |           |
|                   |                      | 0.5-      | - 0.6                      |          |          | 0.5 - Silte       | Sand, yellow      | to red.  | ~         |
|                   |                      |           |                            |          |          | brown, hi         | etero, dany, (    | pose -m  | 00        |
|                   |                      |           |                            |          |          | density, f        | the grained,      | low pla  | isticity, |
|                   |                      |           |                            |          |          | MANDALI           | s of shale,       | Laneoux  | S         |
|                   |                      |           |                            |          |          | and vel +         | - SS              | 0        |           |
|                   |                      |           |                            |          |          | LOWIE             |                   |          | <u> </u>  |
|                   |                      | 0.7       | 0.0                        |          | -        | 0.7 - Silty C     | iand with tra     | ace cla  | lys,      |
|                   |                      | 0.7-      | .A.A.                      |          |          | inclusions        | of shale, i       | gnewsg   | paiel,    |
|                   |                      |           |                            |          |          | 55 \$ plas        | tics              | U        |           |
|                   |                      |           |                            |          | -        |                   |                   |          |           |
|                   |                      | 0.8-      | 0.9                        |          |          | 0.8- Sandy        | day, brown        | n ordene | pe, gray  |
|                   |                      |           |                            |          |          | I DUS LAGE        | no danne nood     | to BT.   |           |
|                   |                      |           |                            |          |          | mod- slastic      | in the inclusions | of 19    | neous     |
|                   |                      |           |                            |          |          | Shale grave       | is + tewacette    | e. 1 0   |           |
| 1.3m              |                      | _         | _                          |          |          | The second        | usal or sha       | le       |           |
|                   |                      |           |                            |          |          | imboh nef         | usar on suc       |          |           |
|                   |                      |           |                            |          |          |                   |                   |          |           |
| Description       | 8                    | Colour    | Struct                     | ture     | Moisture | Cohesive Soils    | Sand & Gravel     |          | Secondary |

| Description                  |                                      | Colour                          | Structure                                              | Moisture                    | Cohesive S                         | oils                                                               | Sand & Gravel                                |                                                     |                                                          | Secondary                                                         |
|------------------------------|--------------------------------------|---------------------------------|--------------------------------------------------------|-----------------------------|------------------------------------|--------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|
| FILL<br>CLAY<br>SILT<br>SAND | clayey<br>silty<br>sandy<br>gravelly | red<br>yellow<br>white<br>black | homogenous<br>heterogeneous<br>stratified<br>laminated | dry<br>damp<br>moist<br>wet | very soft<br>soft<br>firm<br>stiff | non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | very loose<br>loose<br>medium dense<br>dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel | poorly sorted<br>(well graded)<br>well sorted<br>(poorly | and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%) |
| GRAVEL<br>TOPSOIL<br>PEAT    | organic                              | brown<br>grey<br>mottled        | lens<br>root holes<br>occasional                       | saturated                   | very stiff<br>hard                 |                                                                    | very dense                                   | coarse sand                                         | graded)                                                  | Contamination                                                     |
|                              |                                      | *                               |                                                        |                             |                                    |                                                                    |                                              |                                                     |                                                          | odour                                                             |

|                                                                          | E                                                |                                                                       |                            |                                           |                                                      | illing                                                                   | Log                                                                       | Borel                                                                       | nole #HA                                                           | 12                                                                  |                                                                                                          |
|--------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|----------------------------|-------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Total H<br>Top of<br>Screen<br>Casing<br>Drill Co                        | lole Depl<br>Casing _<br>: Dia _<br>: Dia _<br>o | th                                                                    | Leng                       | Northing<br>V<br>gth<br>th<br>Metho       | Vater Leve                                           | Initial<br>Type/Si<br>Type/Si                                            | No $4428$<br>Easting<br>ze<br>Ze<br>Anger<br>te $22/2/1($                 | Static                                                                      | 1                                                                  | COMMENTS                                                            |                                                                                                          |
| DEPTH<br>(METRES)                                                        | WELL<br>CONSTRUCTION                             | SAMPLE ID                                                             | (INCL. QA/QC<br>REFERENCE) | (M99) CI9                                 | USCS CLASS                                           | DESC                                                                     | RIPTION                                                                   |                                                                             |                                                                    |                                                                     |                                                                                                          |
|                                                                          |                                                  | 0-0                                                                   | 0.(                        |                                           |                                                      | 010                                                                      | why silt<br>why the<br>plastic<br>tenal of                                | Aun                                                                         | Spansol                                                            | firm                                                                |                                                                                                          |
|                                                                          |                                                  | 03-1                                                                  | 0.4                        |                                           |                                                      | rea                                                                      | silty choral pla<br>nod pla<br>esus                                       | tles he                                                                     | lown in                                                            | oran                                                                | ge p                                                                                                     |
|                                                                          |                                                  | 0.5-                                                                  |                            |                                           |                                                      | 6.1                                                                      | abon<br>IRAC: SIA<br>1 brows<br>inscores                                  |                                                                             |                                                                    |                                                                     |                                                                                                          |
|                                                                          |                                                  |                                                                       |                            |                                           |                                                      | 1.0W                                                                     | i Eoh                                                                     | progro                                                                      | ion dep                                                            | Н.                                                                  |                                                                                                          |
| Description<br>FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT | clayey<br>silty<br>sandy<br>gravelly<br>organic  | Colour<br>red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled |                            | genous<br>ogeneous<br>ied<br>ated<br>oles | Moisture<br>dry<br>damp<br>moist<br>wet<br>saturated | Cohesive Sco<br>very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | ils<br>non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | Sand & Gravel<br>very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded) | Secondary<br>and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination<br>odour |

| JBS           | Drilling | Log |
|---------------|----------|-----|
| ENVIRONMENTAL |          | 2   |

Borehole # HA13

| Total H<br>Top of<br>Screen:<br>Casing:                   | ole Dept<br>Casing _<br>: Dia _<br>Dia          | :h <u>0</u> 2                                               | <u> </u>                                                                   | Vorthing<br>V<br>th<br>h | Vater Level                              | Initial<br>Type/Si<br>Type/Si                            | No $414$<br>Easting<br>ze<br>ze<br>vger.<br>te $\frac{22/2/11}{2}$ | 9<br>Static                                                |                                                                           | COMMENTS                                                            |                                                                                             |
|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                           | WELL                                            | 0 - 0                                                       | Structu                                                                    |                          | Moisture                                 | 0.2<br>Top Si<br>100<br>0.2<br>hete<br>of<br>pojo        | se<br>FILL: SII<br>NO, dry<br>com ign<br>terial 4<br>es.           | by clay,<br>soft i<br>recons vo<br>fragn                   | plant m<br>helevo, du<br>in plast<br>poles, constructs of<br>3<br>fusal o | ned bro<br>nic uncli<br>cnete<br>ferroe                             | un,<br>usions<br>otte                                                                       |
| FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT | clayey<br>silty<br>sandy<br>gravelly<br>organic | red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled | homoge<br>heterog<br>stratifie<br>laminat-<br>lens<br>root hol<br>occasior | eneous<br>d<br>ed<br>es  | dry<br>damp<br>moist<br>wet<br>saturated | very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand        | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded) | and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination<br>odour |



Borehole #

HAIG

|                                                           |                                                 |                                                             |            |           |                                          |                                                          | No<br>Easting                                                      |                                                            |                                                                    | COMMENTS                                                            |                                                                                    |
|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|------------|-----------|------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                           |                                                 |                                                             |            |           |                                          |                                                          | Eusanig                                                            |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          | e                                                                  |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          | e _                                                                |                                                            | 1                                                                  |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          | constran                                                           |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          | e 11.2. 11                                                         |                                                            |                                                                    |                                                                     |                                                                                    |
| Driner .                                                  | ÷.                                              |                                                             |            |           |                                          | . <u> </u>                                               |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
| DEPTH<br>(METRES)                                         | WELL<br>CONSTRUCTION                            | SAMPLE ID                                                   | REFERENCE) | (Mqq) DId | USCS CLASS                               | DESCR                                                    | IPTION                                                             |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           | <u> </u>                                 | Grane                                                    | les Bear                                                           | : Loose                                                    | aint                                                               |                                                                     |                                                                                    |
|                                                           | 0.0                                             |                                                             | -          |           |                                          | - 112                                                    | silly sand                                                         | o.a                                                        | here of                                                            | En En                                                               |                                                                                    |
|                                                           |                                                 | 0.0 - 0                                                     |            |           |                                          |                                                          | grained p                                                          | 0014 50                                                    | rtea not                                                           | the section of                                                      |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          | shale gre                                                          | rets, con                                                  | nerete, D                                                          | lestic a                                                            | meta                                                                               |
|                                                           | 0.2                                             |                                                             |            |           |                                          |                                                          |                                                                    | 0.2                                                        |                                                                    |                                                                     | -ing                                                                               |
|                                                           |                                                 | 0.3-                                                        | 1          | -         | L                                        | F.M.                                                     | silly de-                                                          |                                                            | hetero dr                                                          | 10000                                                               | to                                                                                 |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          | firm non                                                           |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 | 0.5 -                                                       |            |           |                                          |                                                          | igneos a                                                           |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 | 1.0 - 1                                                     | • ¥        |           |                                          |                                                          | 4 concret                                                          |                                                            | 4                                                                  | <u> </u>                                                            |                                                                                    |
|                                                           | 1.2                                             | N                                                           |            |           |                                          |                                                          |                                                                    |                                                            | 2 -                                                                |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | Ref                                                      | Beck Roch                                                          | Shale                                                      | Q 1.2 m                                                            |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | 1                                                        | Seci Kac                                                           | <                                                          |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | 4                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           | <u> </u>                                 | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            | 2         |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | _                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           | <u> </u>                                 | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
|                                                           |                                                 |                                                             |            |           |                                          | -                                                        |                                                                    |                                                            |                                                                    |                                                                     |                                                                                    |
| Description                                               | 1                                               | Colour                                                      | Struc      |           | Moisture                                 | Cohesive So                                              |                                                                    | Sand & Gravel                                              |                                                                    |                                                                     | Secondary                                                                          |
| FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT | clayey<br>silty<br>sandy<br>gravelly<br>organic | red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled |            | ated      | dry<br>damp<br>moist<br>wet<br>saturated | very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded) | and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination |
|                                                           |                                                 | 1                                                           |            |           |                                          |                                                          |                                                                    |                                                            |                                                                    |                                                                     | odour                                                                              |



Borehole # HAIS

| Total Hole<br>Top of Cas<br>Screen: D<br>Casing: D<br>Drill Co | Depth<br>sing<br>Dia<br>Dia<br>TSS       | <u>o.</u>                                                             | ▲ North<br>Length _<br>Length _<br>Me                                                                | hing Water Leve | <br>_ Type/Siz<br>_ Type/Siz                                     | No 4448<br>Easting                                                        | Static                                                                      |                                                                    | COMMENTS<br>CAI/QLI<br>Called<br>HAIS                               | red Q<br>0.0- 0.1                                                                                        |
|----------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                | WELL                                     |                                                                       | ERENCE)                                                                                              | Net Strand      |                                                                  | RIPTION                                                                   | Permit #                                                                    |                                                                    |                                                                     |                                                                                                          |
|                                                                | 2                                        | 0.0 - 0<br>0.1 -<br>0.2 -<br>0.5 - 0<br>NS                            | 0-1<br>c1<br>0.4                                                                                     |                 | Fun: f                                                           | chan be<br>chan be<br>low plus<br>c grows<br>to brown<br>harrow           | brown b<br>pleatie in<br>thele gra<br>on hete<br>atienty mi<br>on hete      | ero da                                                             | to damp                                                             |                                                                                                          |
| CLAY sil<br>SILT sa<br>SAND gr                                 | ayey<br>Ity<br>andy<br>ravelly<br>rganic | Colour<br>red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled | Structure<br>homogenou<br>heterogeneu<br>stratified<br>laminated<br>lens<br>root holes<br>occasional |                 | Cohesive Sof<br>very soft<br>firm<br>stiff<br>very stiff<br>hard | ils<br>non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | Sand & Gravel<br>very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded) | Secondary<br>and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination<br>odour |

| $\gg$                                                                    | E                                                        |                                                                       |                                                                                   | <b>B</b><br>INTAL                  | Dr                                                   | illing                                                                  | Log                                                                       | Boreh                                                                       | nole # BH                                                          | 16                                                                  |                                                                                                          |
|--------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Total H<br>Top of<br>Screen<br>Casing<br>Drill Co                        | lole Dept<br>Casing _<br>: Dia _<br>: Dia _<br>0<br><br> | h <u> m</u>                                                           | Lengt                                                                             | lorthing<br>W<br>th<br>h<br>Methor | /ater Leve                                           | Initial<br>Type/Siz                                                     | No $419$<br>Easting<br>ze<br>ze<br>te $22/2/11$                           | Static                                                                      |                                                                    | COMMENTS                                                            |                                                                                                          |
| DEPTH<br>(METRES)                                                        | WELL<br>CONSTRUCTION                                     | SAMPLE ID                                                             | REFERENCE)                                                                        | PID (PPM)                          | USCS CLASS                                           |                                                                         | RIPTION                                                                   |                                                                             |                                                                    |                                                                     |                                                                                                          |
|                                                                          |                                                          | 020                                                                   | 15                                                                                |                                    |                                                      | 62                                                                      | iveta                                                                     | Conc                                                                        | rete                                                               | NIS                                                                 |                                                                                                          |
|                                                                          |                                                          | 0.2-                                                                  |                                                                                   |                                    |                                                      | AS<br>0.6                                                               | LC 1.                                                                     | , dark                                                                      | nght brinnedum<br>nedum<br>newsparad                               | sun.                                                                | hry,<br>inscions                                                                                         |
|                                                                          |                                                          |                                                                       | -                                                                                 |                                    |                                                      |                                                                         |                                                                           |                                                                             |                                                                    |                                                                     |                                                                                                          |
|                                                                          |                                                          |                                                                       |                                                                                   |                                    |                                                      |                                                                         |                                                                           |                                                                             |                                                                    |                                                                     |                                                                                                          |
| -                                                                        |                                                          |                                                                       |                                                                                   |                                    |                                                      |                                                                         |                                                                           | AND ALL ADDRESS                                                             |                                                                    |                                                                     |                                                                                                          |
| Description<br>FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT | clayey<br>silty<br>sandy<br>gravelly<br>organic          | Colour<br>red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled | Structu<br>homog<br>heterog<br>stratifie<br>laminat<br>lens<br>root ho<br>occasio | enous<br>geneous<br>ed<br>ted      | Moisture<br>dry<br>damp<br>moist<br>wet<br>saturated | Cohesive So<br>very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | ils<br>non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity | Sand & Gravel<br>very loose<br>loose<br>medium dense<br>dense<br>very dense | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded) | Secondary<br>and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination<br>odour |



Borehole # HAT

| Total H<br>Top of<br>Screen:<br>Casing:<br>Drill Co       | ole Dept<br>Casing _<br>Dia _<br>Dia _<br>Claur | th <u>0.</u>                                                | Leng                                                                   | Northing<br>V<br>jth<br>th<br>_ Metho | Vater Leve                               | I Initial<br>Type/Si<br>Type/Si                          | ze                                                                                                             | 9<br>_ Static                                                                     |                                                                        | COMMENTS                                                            |                                                                                             |
|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------|------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| DEPTH<br>(METRES)                                         | WELL                                            |                                                             | REFERENCE)                                                             | (MPA) DIA                             | USCS CLASS                               |                                                          |                                                                                                                |                                                                                   |                                                                        |                                                                     |                                                                                             |
|                                                           |                                                 | 0-                                                          | 0.1                                                                    |                                       |                                          | hete<br>coa<br>dru<br>coa<br>gri<br>Aso<br>sho           | sti: 0.1<br>soil, ou<br>y, sand<br>evo, dru<br>use to<br>Sitty C<br>), firm<br>use gr<br>useons<br>anels.<br>( | J. black<br>J. soft,<br>fine<br>lay, lig<br>dets n<br>avel u<br>. of Sn<br>increa | non pla<br>growel.<br>nt brau<br>redium<br>with s<br>rall to<br>esed s | stic, lor<br>stic, lor<br>loose, fr<br>hale<br>medum                | vo,<br>ne to                                                                                |
| Description                                               |                                                 | Colour                                                      | Structu                                                                | ıre                                   | Moisture                                 | Cohesive Sc                                              | lls                                                                                                            | Sand & Gravel                                                                     |                                                                        |                                                                     | Secondary                                                                                   |
| FILL<br>CLAY<br>SILT<br>SAND<br>GRAVEL<br>TOPSOIL<br>PEAT | clayey<br>silty<br>sandy<br>gravelly<br>organic | red<br>yellow<br>white<br>black<br>brown<br>grey<br>mottled | homog<br>heterog<br>stratifie<br>laminal<br>lens<br>root ho<br>occasio | geneous<br>ed<br>ted<br>iles          | dry<br>damp<br>moist<br>wet<br>saturated | very soft<br>soft<br>firm<br>stiff<br>very stiff<br>hard | non-plastic<br>low plasticity<br>mod plasticity<br>high plasticity                                             | very loose<br>loose<br>medium dense<br>dense<br>very dense                        | boulders<br>cobbles<br>coarse gravel<br>fine gravel<br>coarse sand     | poorly sorted<br>(well graded)<br>well sorted<br>(poorly<br>graded) | and (35-50%)<br>some (20-35%)<br>little (10-20%)<br>trace (0-10%)<br>Contamination<br>odour |

| JBS           | Drilling | Log |
|---------------|----------|-----|
| ENVIRONMENTAL |          |     |

Borehole # HAV8

|                     |                      |                 |                    |               |                  |                          | No_41486                         |                             |                            | COMMENTS                     |                                  |
|---------------------|----------------------|-----------------|--------------------|---------------|------------------|--------------------------|----------------------------------|-----------------------------|----------------------------|------------------------------|----------------------------------|
| Total H             | ole Dept             | h 🗾 🊧           | 1:3m               | Northing      |                  |                          | Easting                          | <u> </u>                    |                            |                              |                                  |
|                     |                      |                 |                    |               |                  |                          |                                  |                             |                            |                              |                                  |
| Screen:             | Dia _                | -               | Leng               | th            | -                | Type/Si                  | ze                               |                             |                            |                              |                                  |
| Casing:             | Dia                  |                 | Lengt              | h             | -                | Type/Si                  | ze                               |                             |                            |                              |                                  |
| Drill Co            | JB.                  | 2               |                    | Metho         | d Han            | d Avae                   | er                               |                             |                            |                              |                                  |
| Driller             | N.Cu                 | ssen            | L                  | og By         | N. Cuss          | en. Da                   | te 22/2/11                       | Permit #                    | -                          |                              |                                  |
|                     |                      |                 |                    |               |                  | •                        |                                  | AND PARAMUMPUTING SUB       |                            |                              |                                  |
|                     | WELL<br>CONSTRUCTION | , c             | REFERENCE)         |               | SS               |                          |                                  |                             |                            |                              |                                  |
| DEPTH<br>(METRES)   | RUC                  | SAMPLE ID       |                    | (MPM)         | CLASS            | DESC                     | RIPTION                          |                             |                            |                              |                                  |
| TH                  | NST<br>VST           | JPL 0           |                    | (PF           | scs o            |                          |                                  |                             |                            |                              |                                  |
| DEF<br>(ME          | COI<br>COI           | SAN             | REF                | DID           | nsc              |                          |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               | L                |                          |                                  | 0                           |                            |                              |                                  |
|                     | 0.0                  |                 |                    |               |                  | -                        | and sur                          | 0                           | 2                          |                              |                                  |
|                     |                      | 0.0 -           | DIA                |               |                  | Fur.                     | silt i                           | 1. Los                      | Lete                       | ro dy                        |                                  |
|                     |                      | 0.12 -          |                    |               |                  | -                        | firm no                          | ~ planti                    | enter la                   | lusion                       |                                  |
|                     |                      | 0.25            |                    |               |                  | -                        | of con                           | crate 8                     | hile of                    | ignears                      |                                  |
|                     |                      | 0.5 -           | 5.6                |               |                  | -                        | grenels                          |                             |                            | 0                            |                                  |
|                     | 0.95                 |                 |                    |               |                  |                          |                                  |                             | 85 -                       |                              |                                  |
|                     |                      |                 |                    |               |                  | K. It.                   | chan                             | mothed o                    | to sprate                  | brown                        | 2                                |
|                     |                      |                 |                    | k.            |                  | hete                     | o chy !                          | lon to                      | lo de                      | treit                        | E.                               |
|                     |                      | 24              |                    |               |                  | - unt                    | ro clas l<br>Inclusi             | one of                      | shale y                    | Fuels                        |                                  |
|                     | 1.2                  |                 |                    |               |                  |                          |                                  | 63                          | -                          | n                            |                                  |
|                     |                      |                 |                    |               |                  | Gre                      | n of Ho                          | Le. Prog                    | run Do                     | on                           |                                  |
| 9                   |                      |                 |                    |               |                  | -                        | n of Ho<br>1.2                   | ~                           | _                          |                              | +0                               |
|                     |                      |                 |                    |               |                  |                          |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  | -                        |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  |                          |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  |                          | 7                                |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  |                          |                                  | Ϋ́.                         |                            |                              |                                  |
|                     |                      |                 |                    |               |                  |                          |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  |                          |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               | L _              |                          |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  |                          |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  |                          |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  | _                        |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  | _                        |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  | _                        |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               | L _              | _                        |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  | _                        |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  | _                        |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  | _                        |                                  |                             |                            |                              |                                  |
|                     |                      |                 |                    |               |                  | _                        |                                  |                             |                            |                              |                                  |
| Desclarit           |                      |                 |                    |               |                  |                          |                                  | 12 12 2                     |                            |                              |                                  |
| Description<br>FILL | clayey               | Colour<br>red   | Structu<br>homog   |               | Moisture<br>dry  | Cohesive So<br>very soft | non-plastic                      | Sand & Gravel<br>very loose | boulders                   | poorly sorted                | Secondary<br>and (35-50%)        |
| CLAY<br>SILT        | silty<br>sandy       | yellow<br>white | hetero<br>stratifi | geneous<br>ed | damp<br>moist    | soft<br>firm             | low plasticity<br>mod plasticity | loose<br>medium dense       | cobbles<br>coarse gravel   | (well graded)<br>well sorted | some (20-35%)<br>little (10-20%) |
| SAND<br>GRAVEL      | gravelly<br>organic  | black<br>brown  | lamina<br>lens     |               | wet<br>saturated | stiff<br>very stiff      | high plasticity                  | dense<br>very dense         | fine gravel<br>coarse sand | (poorly<br>graded)           | trace (0-10%)                    |
| TOPSOIL<br>PEAT     |                      | grey<br>mottled | root ho<br>occasio |               |                  | hard                     |                                  |                             |                            |                              | Contamination                    |
|                     |                      |                 |                    |               |                  |                          |                                  |                             |                            |                              | odour                            |
|                     |                      |                 |                    | in T          | nin              |                          |                                  |                             |                            |                              |                                  |



Appendix B Borehole Logs



Borehole No.: BH01/MW01 Location: 37 Glouster Rd, Hurstville

Project: Hurstville Private Hospital

Project No.: 41486

*Client:* Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 9.3 m Eastings: -Northings: -Date: 21/2/11

|                    | S        | UBSURFACE PROFILE                                                                                                                                                                                                         |                     |           | SAM       | PLE          |                                                   |
|--------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-----------|--------------|---------------------------------------------------|
| Depth              | Visual   | Description                                                                                                                                                                                                               | Number              | Condition | PID (ppm) | Observations | Well Completion Details                           |
| -0.0               |          | Ground Surface                                                                                                                                                                                                            |                     |           |           |              |                                                   |
|                    |          | BITUMEN                                                                                                                                                                                                                   | 0.2-0.4             | D         |           |              |                                                   |
| -1.0               |          | FILL<br>Silty clay: light to medium brown,<br>heterogeneous, dry, soft, non plastic,<br>with inclusions of fine to coarse grave<br>NATURAL<br>Silty clay: medium to dark brown, dark<br>mottles, shale inclusions, dense, |                     | D         |           |              |                                                   |
| 2.0                |          | moderate plasticity                                                                                                                                                                                                       |                     |           |           |              | Backti                                            |
| 3.0                |          | <b>NATURAL</b><br>Shale: brown, homogeneous, dry, firm<br>stiff, non plastic, dense, fine gravels                                                                                                                         | 2.5-2.7             | D         |           |              | Class 18 PVC Casing                               |
| 4.0                |          |                                                                                                                                                                                                                           |                     |           |           |              |                                                   |
| 5.0                |          | <b>NATURAL</b><br>Shale: brown, homogeneous, increas<br>moisture, firm, stiff, non plastic, dense<br>fine gravels                                                                                                         |                     | D         |           |              | Bentonite                                         |
|                    |          |                                                                                                                                                                                                                           |                     |           |           |              | -2mm Graded Sand<br>21/02/2011<br>18 PVC Screen + |
| - 8.0              |          | <b>NATURAL</b><br>Shale: brown, homogeneous, wet, firr<br>moderate plasticity, dense, fine grave                                                                                                                          | 7.5-7.8<br>n,<br>Is | D         |           |              | Class 18 PVC                                      |
| 9.0                |          |                                                                                                                                                                                                                           | 9.0-9.3             | D         |           |              |                                                   |
| E                  |          | End of hole at 9.3 m, refusal on shale                                                                                                                                                                                    |                     |           |           |              |                                                   |
| Sample             | e Method | THA Sample Condition                                                                                                                                                                                                      |                     |           |           |              |                                                   |
| SFA - S<br>HFA - H |          | Int AugerD - disturbed samplelight AugerCS - core sample                                                                                                                                                                  | sample              |           |           |              |                                                   |
|                    |          |                                                                                                                                                                                                                           |                     |           |           |              |                                                   |



Borehole No.: BH02/MW02 Location: 37 Glouster Rd, Hurstville

Project: Hurstville Private Hospital

Project No.: 41486

*Client:* Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 10 m Eastings: -Northings: -Date: 21/2/11

|                                                                            | SI     | UBSURFA                                                                                                                                                                                                                                                                                                                                                                         | CE PROFILE                                                                                                                                                                                                                                                                                                                         |                                                               |           | SAM       | PLE          |                                                                                                           |
|----------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------|-----------|--------------|-----------------------------------------------------------------------------------------------------------|
| Depth                                                                      | Visual |                                                                                                                                                                                                                                                                                                                                                                                 | Description                                                                                                                                                                                                                                                                                                                        | Number                                                        | Condition | PID (ppm) | Observations | Well Completion Details                                                                                   |
| 0.0<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0 |        | brown, hete<br>plastic<br>FILL<br>Silty sandy of<br>heterogenea<br>loose to me<br>sorted, large<br>and metal fr<br>FILL<br>Silty sandy of<br>inclusions o<br>40%), heter<br>NATURAL<br>Silty clay: lig<br>heterogenea<br>plasticity, do<br>NATURAL<br>Shale: red v<br>dense, mod<br>sorted<br>NATURAL<br>Shale: grey<br>moderate pl<br>NATURAL<br>Shale: grey<br>plasticity, ho | clay: dark brown with<br>f plant material (approx.<br>ogeneous, dry, non plastic<br>ottled brown red and grey,<br>us, damp, firm, moderate<br>orly sorted<br>to medium brown,<br>bus, damp, firm to stiff, low<br>ense<br>white and grey, damp, stiff,<br>erate plasticity, poorly<br>increased moisture,<br>asticity, homogeneous | 0-0.1<br>0.3-0.5<br>0.5-0.7<br>1.0-1.2<br>3.0-3.5<br>9.8-10.0 |           |           |              | Bentonite<br>2mm Graded Sand<br>Bentonite<br>Bentonite<br>Bentonite<br>Bentonite<br>Bentonite<br>Backfill |
| HA - HA<br>SFA - S<br>HFA - I                                              |        | er<br>Iht Auger<br>light Auger                                                                                                                                                                                                                                                                                                                                                  | Sample Condition<br>U - undisturbed tube samp<br>D - disturbed sample<br>CS - core sample                                                                                                                                                                                                                                          | le                                                            |           |           |              |                                                                                                           |



Borehole No.: BH03/MW03 Location: 37 Glouster Rd, Hurstville

Project: Hurstville Private Hospital

Project No.: 41486

*Client:* Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 10.5 m Eastings: -Northings: -Date: 21/2/11

|                                                                     | S      | UBSURFA                                                                                                                                                                                                                                                                                            | CE PROFILE                                                                                                                                                                                                                                                           |                                                   |           | SAM       | PLE          |                                                                                                                |
|---------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|-----------|--------------|----------------------------------------------------------------------------------------------------------------|
| Depth                                                               | Visual |                                                                                                                                                                                                                                                                                                    | Description                                                                                                                                                                                                                                                          | Number                                            | Condition | PID (ppm) | Observations | Well Completion Details                                                                                        |
| 0.0<br>1.0<br>2.0<br>3.0<br>4.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0 |        | FILL<br>Silty clay: br<br>heterogened<br>with inclusio<br>gravels, con<br>NATURAL<br>Silty clay: da<br>black and re<br>dry,very stiff<br>NATURAL<br>Shale: light<br>increased m<br>gravels, heter<br>NATURAL<br>Shale: grey<br>moderate pl<br>heterogened<br>NATURAL<br>Shale: grey<br>moderate pl | ark to medium brown, with<br>ad mottles. heterogeneous,<br>, low plasticity<br>brown to dark brown, dry,<br>coarse gravels,<br>bus<br>brown to dark brown,<br>ioisture, non plastic, coarse<br>erogeneous<br>increased moisture,<br>asticity, coarse gravels,<br>bus | 0-0.1<br>0.3-0.5<br>0.5-0.7<br>1.0-1.2<br>2.5-2.7 | D         |           |              | Bentonite<br>Bentonite<br>Bentonite<br>Bentonite<br>Bentonite<br>Bentonite<br>Bentonite<br>Class 18 PVC Screen |
| HA - HA<br>SFA - S<br>HFA - I                                       |        | er<br>ght Auger<br>light Auger                                                                                                                                                                                                                                                                     | Sample Condition<br>U - undisturbed tube sample<br>D - disturbed sample<br>CS - core sample                                                                                                                                                                          | le                                                |           |           |              |                                                                                                                |



Borehole No.: BH04/MW04 Location: 37 Glouster Rd, Hurstville

Project: Hurstville Private Hospital

Project No.: 41486

*Client:* Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 9.6 m Eastings: -Northings: -Date: 21/2/11

|                    | S                     | UBSURFA                                               | CE PROFILE                                                                                                    |         |           | SAM       | PLE          |                         |
|--------------------|-----------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth              | Visual                |                                                       | Description                                                                                                   | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| _0.0               |                       | 0010055                                               | Ground Surface                                                                                                |         |           |           |              |                         |
| E                  |                       |                                                       | IE                                                                                                            | 0.2-0.3 | D         |           |              |                         |
| 1.0                |                       | heterogeneo<br>inclusions o<br>igneous gra<br>cobbles | ght to medium brown,<br>ous, dry, soft, non plastic,<br>f shale fragments and<br>vels, from coarse gravels to | 0.5-0.7 | D         |           |              | Backfiil                |
| 2.0                |                       | NATURAL                                               |                                                                                                               |         |           |           |              | Ba Ba                   |
| 3.0                |                       | heterogened<br>, less inclusion<br>, ligneous gra     | /                                                                                                             | 2.2-2.4 | D         |           |              | Class 18 PVC Casing     |
| 4.0                |                       | heterogeneo<br>inclusions o<br>of shale frag          | ous, dry, soft, non plastic,<br>f coarse gravels to pebbles<br>gments and igneous rock                        | 3.9-4.5 | D         |           |              | Bentonite               |
| 6.0                |                       | soft, non pla                                         | rey, heterogeneous, moist,<br>astic, inclusions of shale<br>nd igneous gravels                                |         |           |           |              | en <b>F</b>             |
| -7.0               |                       |                                                       |                                                                                                               |         |           |           |              | Scre                    |
| 8.0                |                       | heterogeneo<br>inclusions o                           | ery dark grey,<br>bus, wet, soft, non plastic,<br>f shale fragments and<br>vels, coarse to pebbles            | 7.2-7.5 | D         |           |              | -Class 18 PVC Screen    |
| -<br>9.0           |                       |                                                       |                                                                                                               |         |           |           |              |                         |
| E                  |                       |                                                       |                                                                                                               |         |           |           |              |                         |
| -10.0              | <u>4,414,14,1</u> 4,1 | End of hole                                           | at 9.6 m, program depth                                                                                       | 9.5-9.6 | D         |           |              | ¥⊡                      |
| Sample             | e Method              | HA                                                    | Sample Condition                                                                                              |         |           |           |              |                         |
| SFA - S<br>HFA - I |                       | ght Auger<br>light Auger                              | <i>U - undisturbed tube sampl<br/>D - disturbed sample<br/>CS - core sample</i>                               | le      |           |           |              |                         |
|                    |                       |                                                       |                                                                                                               |         |           |           |              |                         |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 0.7 m Eastings: -Northings: -Date: 21/2/11 Driller and Co.: JBS Drill Method: Hand Auger Log By: Claudia Roberts Bore Diameter: 100 mm

|                    | SI       |                                                          |                                                                                            | SAM       | PLE       |           |              |                         |
|--------------------|----------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------|-----------|-----------|--------------|-------------------------|
| Depth              | Visual   |                                                          | Description                                                                                | Number    | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0               |          | BITUMEN                                                  | Ground Surface                                                                             |           |           |           |              |                         |
| -                  |          | heterogeneo<br>inclusions o                              | ght brown, grey to white, dry,<br>bus, soft, non plastic, with<br>f coarse igneous gravels | 0.15-0.25 | D         |           |              |                         |
| -                  |          | NATURAL<br>Silty clay: br<br>soft, non pla<br>intrusions | own, grey and white, dry,<br>astic, less igneous gravel                                    | 0.25-0.5  | D         |           |              |                         |
| _                  |          | End of hole                                              | at 0.7 m, program depth                                                                    |           |           |           |              |                         |
| Sample             | e Methoa | <b>I</b> HA                                              | Sample Condition                                                                           |           |           |           |              |                         |
| SFA - S<br>HFA - H |          | ıht Auger<br>light Auger                                 | <i>U - undisturbed tube sampl<br/>D - disturbed sample<br/>CS - core sample</i>            | e         |           |           |              |                         |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

*Total Hole Depth:* 1.0 m *Eastings:* -*Northings:* -*Date:* 22/2/11 Driller and Co.: JBS Drill Method: Hand Auger Log By: Claudia Roberts Bore Diameter: 100 mm

|                               | SI                                  | UBSURFA                                                           | CE PROFILE                                                                                 |         |           | SAMPLE    |              |                         |  |  |
|-------------------------------|-------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|--|--|
| Depth                         | Visual                              |                                                                   | Description                                                                                | Number  | Condition | PID (ppm) | Observations | Well Completion Details |  |  |
| -0.0                          |                                     | CONCRET                                                           | Ground Surface                                                                             |         |           |           |              |                         |  |  |
| _                             |                                     | fine shale gi<br>NATURAL<br>Silty clay: lic                       | ght brown, dry, soft, non<br>inclusions of medium loose<br>ravels<br>                      | 0.2-0.3 | -         |           |              |                         |  |  |
| -                             |                                     | <b>NATURAL</b><br>Silty clay: da<br>plastic, with<br>fine shale g | ark brown, dry, soft, non<br>inclusions of medium loose                                    | 0.6-0.8 | -         |           |              |                         |  |  |
| 1.0                           |                                     | E. I. ( L. I.                                                     |                                                                                            |         |           |           |              |                         |  |  |
|                               | End of hole at 1.0 m, program depth |                                                                   |                                                                                            |         |           |           |              |                         |  |  |
| HA - Ha<br>SFA - S<br>HFA - H |                                     | er<br>Iht Auger<br>light Auger                                    | Sample Condition<br>U - undisturbed tube sampl<br>D - disturbed sample<br>CS - core sample | e       |           |           |              |                         |  |  |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 0.9 m Eastings: -Northings: -Date: 22/2/11

|                                                                                                                                                                                                          | SUBSURFACE PROFILE |                              |                                                                                                        |         |           |           |              |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|--------------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth                                                                                                                                                                                                    | Visual             |                              | Description                                                                                            | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0                                                                                                                                                                                                     |                    |                              | Ground Surface                                                                                         |         |           |           |              |                         |
|                                                                                                                                                                                                          |                    | damp, firm,<br>with inclusic | ark brown, heterogeneous,<br>low to moderate plasticity<br>ns of wooden mulch chips,<br>ls and plastic | 0.0-0.1 | D         |           |              |                         |
|                                                                                                                                                                                                          |                    |                              |                                                                                                        | 0.3-0.4 | D         |           |              |                         |
|                                                                                                                                                                                                          |                    | heterogeneo                  | ottled grey and orange<br>ous, damp, firm, moderate<br>h inclusions of shale                           | 0.6-0.7 | _<br>D    |           |              |                         |
|                                                                                                                                                                                                          |                    | End of hole                  | at 0.9 m, program depth                                                                                | -       |           |           |              |                         |
|                                                                                                                                                                                                          |                    |                              |                                                                                                        |         |           |           |              |                         |
| -1.0                                                                                                                                                                                                     |                    |                              |                                                                                                        |         |           |           |              |                         |
| Sample                                                                                                                                                                                                   | e Method           | 'HA                          | Sample Condition                                                                                       |         |           |           |              |                         |
| HA - Hand Auger     U - undisturbed tube sample       SFA - Solid Flight Auger     D - disturbed sample       HFA - Hollow Flight Auger     CS - core sample       PT - Push Tubing     CS - core sample |                    | le                           |                                                                                                        |         |           |           |              |                         |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 0.9 m Eastings: -Northings: -Date: 22/2/11 Driller and Co.: JBS Drill Method: Hand Auger Log By: Claudia Roberts Bore Diameter: 100 mm

|       | รเ     | JBSURFACE PROFILE                                                                                                                                                                                   |         |           |           |              |                         |
|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth | Visual | Description                                                                                                                                                                                         | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0  |        | Ground Surface                                                                                                                                                                                      |         |           |           |              |                         |
|       |        | FILL<br>Crushed shale surface, yellow to white,<br>dry, stiff, non plastic, loose, cobbles to<br>gravel                                                                                             | 00.1    | D         |           |              |                         |
| _     |        | FILL                                                                                                                                                                                                |         | _         |           |              |                         |
| _     |        | Silty clay: light brown, heterogeneous,<br>dry, firm, non plastic, with inclusions of<br>loose, coarse to fine shale gravels and<br>sandstone                                                       | 0.2-0.3 | D         |           |              |                         |
| -     |        | <b>FILL</b><br>Silty clay: light brown, heterogeneous,<br>dry, firm, non plastic, with inclusions of<br>loose, coarse to fine shale gravels and<br>sandstone                                        |         |           |           |              |                         |
| -     |        | FILL<br>Silty clay: light brown, heterogeneous,<br>dry, firm, non plastic, inclusions of<br>loose, coarse to fine shale gravels and<br>increased presence of sandstone                              | 0.5-0.6 | D         |           |              |                         |
| -     |        | <b>FILL</b><br>Silty clay: light brown, heterogeneous,<br>dry, firm, non plastic,inclusions of<br>loose, coarse to fine shale gravels with<br>presence of large cobbles to boulders of<br>sandstone |         |           |           |              |                         |
|       |        |                                                                                                                                                                                                     | 0.8-0.9 | D         |           |              |                         |
| -1.0  |        | End of hole at 0.9 m, refusal at sandstone boulders                                                                                                                                                 |         |           |           |              |                         |

| Sample Method                                                                                | Sample Condition                                                        |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| HA - Hand Auger<br>SFA - Solid Flight Auger<br>HFA - Hollow Flight Auger<br>PT - Push Tubing | U - undisturbed tube sample<br>D - disturbed sample<br>CS - core sample |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 1.5 m Eastings: -Northings: -Date: 22/2/11

| FILL<br>Silty clay: br<br>firm, non pla                | Description<br>Ground Surface<br>own, heterogeneous, dry,<br>stic with inclusions of<br>rels, concrete, plant<br>plastic | 0.0-0.1<br>0.3-0.4<br>0.5-0.6                                                                      | D Condition                                                                                                                                              | PID (ppm)                                                                                                                                                | QA2/QC2                                                                                                                                                  | Well Completion Details                                                                                                                                  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| FILL<br>Silty clay: br<br>firm, non pla<br>igneous gra | own, heterogeneous, dry,<br>stic with inclusions of<br>vels, concrete, plant                                             | 0.3-0.4                                                                                            | D                                                                                                                                                        |                                                                                                                                                          | QA2/QC2                                                                                                                                                  |                                                                                                                                                          |
| Silty clay: br<br>firm, non pla<br>igneous grav        | stic with inclusions of<br>/els, concrete, plant                                                                         | 0.3-0.4                                                                                            | D                                                                                                                                                        |                                                                                                                                                          | QA2/QC2                                                                                                                                                  |                                                                                                                                                          |
|                                                        |                                                                                                                          |                                                                                                    |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |
|                                                        |                                                                                                                          | 0.5-0.6                                                                                            | D                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |
| 8                                                      |                                                                                                                          |                                                                                                    |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |
| *                                                      |                                                                                                                          | 1.0-1.1                                                                                            | D                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |
| heterogeneo                                            | ottled orange and brown,<br>ous, damp, firm to stiff, low<br>h inclusions of shale                                       |                                                                                                    |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |
| End of hole                                            | at 1.5 m, program depth                                                                                                  |                                                                                                    |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |
| hod HA                                                 | Sample Condition                                                                                                         |                                                                                                    |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |
|                                                        |                                                                                                                          | ple                                                                                                |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                          |
| F                                                      | od HA<br>Iger<br>light Auger<br>Flight Auger                                                                             | iger U - undisturbed tube sam<br>light Auger D - disturbed sample<br>Flight Auger CS - core sample | od HA     Sample Condition       Iger     U - undisturbed tube sample       light Auger     D - disturbed sample       Flight Auger     CS - core sample | od HA     Sample Condition       Iger     U - undisturbed tube sample       light Auger     D - disturbed sample       Flight Auger     CS - core sample | od HA     Sample Condition       Iger     U - undisturbed tube sample       light Auger     D - disturbed sample       Flight Auger     CS - core sample | od HA     Sample Condition       Iger     U - undisturbed tube sample       light Auger     D - disturbed sample       Flight Auger     CS - core sample |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 0.8 m Eastings: -Northings: -Date: 22/2/11

|                    | SUBSURFACE PROFILE                                                                                                                                                              |                                                                                                                                                 |                                                                                                     |         |           | PLE       |              |                         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth              | Visual                                                                                                                                                                          |                                                                                                                                                 | Description                                                                                         | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0               |                                                                                                                                                                                 | FILL<br>Silty clay: da<br>damp, firm,<br>with inclusic<br>plastic, shal<br>NATURAL<br>Silty clay: m<br>heterogenee<br>plasticity wit<br>gravels | ottled grey, orange,<br>bus, damp, firm, moderate<br>th inclusions of shale<br>at 0.8 m, refusal on | 0.0-0.1 | D         |           |              |                         |
| -1.0<br>Sample     | e Methoa                                                                                                                                                                        | <b>I</b> HA                                                                                                                                     | Sample Condition                                                                                    |         |           |           |              |                         |
| SFA - S<br>HFA - H | Sample Method HASample ConditionHA - Hand AugerU - undisturbed tube sampleSFA - Solid Flight AugerD - disturbed sampleHFA - Hollow Flight AugerCS - core samplePT - Push Tubing |                                                                                                                                                 | le                                                                                                  |         |           |           |              |                         |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 0.8 m Eastings: -Northings: -Date: 22/2/11

|                               | S                                                                                                                                                                               | UBSURFA                                               | CE PROFILE                                                                                                                             |         |           | PLE       |              |                         |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth                         | Visual                                                                                                                                                                          |                                                       | Description                                                                                                                            | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0                          |                                                                                                                                                                                 | FILL<br>Silty sand, b<br>loose, fined<br>inclusions o | Ground Surface<br>prown, heterogeneous, dry,<br>grained, poorly sorted with<br>f igneous and shale gravels,<br>nd terracotta fragments | 0.0-0.1 | D         |           |              |                         |
| -                             |                                                                                                                                                                                 | <b>FILL</b><br>Crushed sar<br>grained                 | ndstone, dull brown, fine                                                                                                              | 0.3-0.4 | D         |           |              |                         |
| -                             |                                                                                                                                                                                 | End of holr                                           | at 0.8 m, refusal on                                                                                                                   | 0.6-0.7 | D         |           |              |                         |
|                               |                                                                                                                                                                                 | sandstone g                                           | ravels                                                                                                                                 |         |           |           |              |                         |
| Sample                        | e Method                                                                                                                                                                        | HA                                                    | Sample Condition                                                                                                                       |         |           |           |              |                         |
| HA - Ha<br>SFA - S<br>HFA - I | Sample Method HASample ConditionHA - Hand AugerU - undisturbed tube sampleSFA - Solid Flight AugerD - disturbed sampleHFA - Hollow Flight AugerCS - core samplePT - Push Tubing |                                                       | le                                                                                                                                     |         |           |           |              |                         |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 1.3 m Eastings: -Northings: -Date: 22/2/11 Driller and Co.: JBS Drill Method: Hand Auger Log By: Claudia Roberts Bore Diameter: 100 mm

|        | S        | UBSURFACE PROFILE                                                                                                                                                                                                                                      |         |           | SAM       | PLE          |                         |
|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth  | Visual   | Description                                                                                                                                                                                                                                            | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0   |          | Ground Surface                                                                                                                                                                                                                                         |         |           |           |              |                         |
| _      |          | RIVER PEBBLES<br>FILL<br>Silty sand: dark brown, heterogeneous,<br>damp, loose to medium density, fine<br>grained, poorly sorted, inclusions of<br>shale and igneous gravels<br>FILL                                                                   | 0-0.1   | D         |           |              |                         |
| _      |          | Silty sand: yellow and lighter brown,<br>heterogeneous, damp, loose to medium<br>density, fine grained, inclusions of<br>shale, igneous gravels and sandstone<br><b>FILL</b><br>Silty sand: yellow and lighter brown,<br>heterogeneous, damp, loose to | 0.3-0.4 | D         |           |              |                         |
| _      |          | mediumdensity, fine grained, inclusions<br>of shale, igneous gravels and<br>sandstone<br>FILL<br>Silty sand: yellow and lighter brown,<br>heterogeneous, damp, loose to medium                                                                         | 0.5-0.6 | D         |           |              |                         |
|        |          | density, fine grained, inclusions of shale, igneous gravels and sandstone                                                                                                                                                                              | 0.7-0.8 | D         |           |              |                         |
| _      |          | FILL<br>Silty sand: trace clays, inclusions of<br>shale, igneous gravel, sandstone, and<br>plastics<br>FILL                                                                                                                                            | 0.8-0.9 | D         |           |              |                         |
| - 1.0  |          | Sandy clay: brown with orange, grey<br>and yellow mottles, heterogeneous,<br>damp, moderate to stiff, moderate<br>plasticity, inclusions of igneous and<br>shale gravels and terracotta                                                                |         |           |           |              |                         |
|        |          | End of hole at 1.3 m, refusal on shale                                                                                                                                                                                                                 |         |           |           |              |                         |
| Sample | e Method | IHA Sample Condition                                                                                                                                                                                                                                   |         |           |           |              |                         |

| Sample Method HA          | Sample Condition            |
|---------------------------|-----------------------------|
| HA - Hand Auger           | U - undisturbed tube sample |
| SFA - Solid Flight Auger  | D - disturbed sample        |
| HFA - Hollow Flight Auger | CS - core sample            |
| PT - Push Tubing          |                             |
|                           |                             |
|                           |                             |
|                           |                             |
|                           |                             |
|                           |                             |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 1.0m Eastings: -Northings: -Date: 22/2/11 Driller and Co.: JBS Drill Method: Hand Auger Log By: Claudia Roberts Bore Diameter: 100mm

|       | S      | UBSURFACE PROFILE                                                                                                                                                                                                                                                                                                    |         |           |           |              |                         |
|-------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth | Visual | Description                                                                                                                                                                                                                                                                                                          | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0  |        | Ground Surface                                                                                                                                                                                                                                                                                                       |         |           |           |              |                         |
| _     |        | FILL<br>Sandy silt: heterogeneous, damp, dark<br>brown, firm, non plastic with inclusions<br>of plant material and woodern mulch                                                                                                                                                                                     | 0-0.1   | D         |           |              |                         |
| -     |        | <ul> <li>Chips</li> <li>FILL</li> <li>Silty clay: brown with orange and red mottles, heterogeneous, damp, firm, low to moderate plasticity with inclusions of igneous and shale gravels, concrete and sandstone inclusions</li> </ul>                                                                                |         |           |           |              |                         |
| _     |        |                                                                                                                                                                                                                                                                                                                      | 0.3-0.4 | D         |           |              |                         |
| -     |        | FILL<br>Silty clay: brown with orange and red<br>mottles, heterogeneous, damp, firm, low<br>to moderate plasticity with inclusions of<br>igneous and shale gravels, concrete<br>and sandstone inclusions, increase in<br>moisture levels                                                                             | 0.5-0.6 | D         |           |              |                         |
| -     |        | NATURAL<br>Silty clay, mottled orange and brown,<br>heterogeneous, stiff, moderate<br>plasticity, inclusions of shale gravels<br>NATURAL<br>Silty clay: light brown, heterogeneous,<br>dry, firm, non plastic, inclusions of loose,<br>coarse to fine shale gravels with<br>presence of large cobbles to boulders of | 0.7-0.8 | D         |           |              |                         |
| -1.0  |        | End of hole at 1.0m, program depth                                                                                                                                                                                                                                                                                   |         |           |           |              |                         |

| Sample Method                                                                                | Sample Condition                                                        |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| HA - Hand Auger<br>SFA - Solid Flight Auger<br>HFA - Hollow Flight Auger<br>PT - Push Tubing | U - undisturbed tube sample<br>D - disturbed sample<br>CS - core sample |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 0.3 m Eastings: -Northings: -Date: 22/2/11 Driller and Co.: JBS Drill Method: Hand Auger Log By: Claudia Roberts Bore Diameter: 100mm

|       | SI     | UBSURFACE PROFILE                                                                                                                                                                                                                                                                                           |         |           |           |              |                         |
|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth | Visual | Description                                                                                                                                                                                                                                                                                                 | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0  |        | Ground Surface<br>FILL<br>Topsoil: organic plant material, dark<br>brown, heterogeneous, dry, soft, non<br>plastic, loose<br>FILL<br>Silty clay: light to medium brown,<br>heterogeneous, dry, soft, non plastic,<br>inclusions of igneous rocks, concrete<br>material and fragments of terracotta<br>pipes | 0.0-0.1 | D         |           |              |                         |
| -     |        | End of holr at 0.3 m, refusal on concrete                                                                                                                                                                                                                                                                   | 0.2-0.3 | D         |           |              |                         |

| Sample Method HA                                                                             | Sample Condition                                                        |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| HA - Hand Auger<br>SFA - Solid Flight Auger<br>HFA - Hollow Flight Auger<br>PT - Push Tubing | U - undisturbed tube sample<br>D - disturbed sample<br>CS - core sample |
|                                                                                              |                                                                         |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 1.3 m Eastings: -Northings: -Date: 22/2/11

|            | S        | UBSURFACE PROF                                                                                                                                          | ILE             |         |           | SAM       | PLE          |                         |
|------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-----------|-----------|--------------|-------------------------|
| Depth      | Visual   | Descriptio                                                                                                                                              | on              | Number  | Condition | PID (ppm) | Oheartations | Well Completion Details |
| -0.0       |          | Ground Surf                                                                                                                                             | ace             |         |           |           |              |                         |
| -          |          | FILL<br>Silty sand: brown, hetero<br>loose, fine grained, poor<br>inclusions of shale grave<br>plastic, and metal<br>FILL<br>Silty clay: brown, heterog | ly sorted with  | 0.0-0.1 | D         |           |              |                         |
| _          |          | loose to firm, non plastic<br>of igneous gravels, shale                                                                                                 | with inclusions |         |           |           |              |                         |
| _          |          | plastic and concrete                                                                                                                                    | -               | 0.3-0.4 | D         |           |              |                         |
| _          |          |                                                                                                                                                         | -               | 0.5-0.6 | D         |           |              |                         |
| -<br>-<br> |          |                                                                                                                                                         | _               |         | _         |           |              |                         |
| _          |          |                                                                                                                                                         | _               | 1.0-1.1 | D         |           |              |                         |
| _          |          | End of holr at 1.2 m, refu<br>bed rock                                                                                                                  | isal on shale   |         |           |           |              |                         |
| Sample     | e Method | IHA Sample C                                                                                                                                            | ondition        |         |           |           |              |                         |
| Jampi      |          |                                                                                                                                                         |                 |         |           |           |              |                         |

| Sample Method HA                                                                             | Sample Condition                                                                 |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| HA - Hand Auger<br>SFA - Solid Flight Auger<br>HFA - Hollow Flight Auger<br>PT - Push Tubing | <i>U - undisturbed tube sample<br/>D - disturbed sample<br/>CS - core sample</i> |  |
|                                                                                              |                                                                                  |  |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 0.8 m Eastings: -Northings: -Date: 22/2/11

|        | SUBSURFACE PROFILE |                                                                                                                                                          |         |           | PLE       |              |                         |
|--------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth  | Visual             | Description                                                                                                                                              | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0   |                    | Ground Surface                                                                                                                                           |         |           |           |              |                         |
| _      |                    | <b>FILL</b><br>Silty clay:brown, heterogeneous, dry,<br>loose to firm, non plastic with inclusions<br>of igneous and shale gravels, glass and<br>plastic | 0.0-0.1 | D         |           | QA1/QC1      |                         |
| _      |                    | plasuc                                                                                                                                                   |         |           |           |              |                         |
| _      |                    |                                                                                                                                                          |         |           |           |              |                         |
|        |                    |                                                                                                                                                          | 0.3-0.4 | D         |           |              |                         |
|        |                    |                                                                                                                                                          |         |           |           |              |                         |
| _      |                    | SILTY CLAY<br>Silty clay: brown, heterogeneous, dry to<br>damp, firm, low plasticity with inclusions<br>of shale gravels                                 | 0.5-0.6 | D         |           |              |                         |
|        |                    |                                                                                                                                                          |         |           |           |              |                         |
| -      |                    | SHALE<br>Brown, dry.                                                                                                                                     |         |           |           |              |                         |
| -      |                    | End of hole at 0.8 m, program depth                                                                                                                      |         |           |           |              |                         |
|        |                    |                                                                                                                                                          |         |           |           |              |                         |
| -1.0   |                    |                                                                                                                                                          |         |           |           |              |                         |
| Sample | e Method           | I HA Sample Condition                                                                                                                                    |         |           |           |              |                         |

| Sample Method HA          | Sample Condition            |
|---------------------------|-----------------------------|
| HA - Hand Auger           | U - undisturbed tube sample |
| SFA - Solid Flight Auger  | D - disturbed sample        |
| HFA - Hollow Flight Auger | CS - core sample            |
| PT - Push Tubing          |                             |
|                           |                             |
|                           |                             |
|                           |                             |
|                           |                             |
|                           |                             |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 0.5 m Eastings: -Northings: -Date: 22/2/11 Driller and Co.: JBS Drill Method: Hand Auger Log By: Claudia Roberts Bore Diameter: 100 mm

|     | SUBSURFACE PROFILE |        |                                                                                                                                                       |         | SAM       |           |              |                         |
|-----|--------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| -   | Ueptn              | Visual | Description                                                                                                                                           | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0. | 0                  |        | Ground Surface                                                                                                                                        |         |           |           |              |                         |
| 0.  |                    |        | <b>FILL</b><br>Topsoil: organic garden material, silty<br>sandy dark brown, heterogeneous, dry,<br>soft, non plastic, loose, coarse to fine<br>gravel | 0.0-0.1 | D         |           |              |                         |
|     |                    |        | <b>FILL</b><br>Silty clay: light brown, heterogeneous,<br>dry, firm, inclusions of fine to coarse<br>shale gravels                                    |         |           |           |              |                         |
| -   |                    |        |                                                                                                                                                       | 0.2-0.3 | D         |           |              |                         |
|     |                    |        | FILL<br>Silty clay: light brown, heterogeneous,<br>dry, firm, shale inclusions, fine to coarse<br>gravels                                             |         |           |           |              |                         |
|     |                    |        |                                                                                                                                                       | 0.4-0.5 | D         |           |              |                         |
|     |                    |        | End of hole at 0.5 m, refulsal at shale gravels (not bedrock)                                                                                         |         |           |           |              |                         |

| Sample Method HA                                                                             | Sample Condition                                                        |  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| HA - Hand Auger<br>SFA - Solid Flight Auger<br>HFA - Hollow Flight Auger<br>PT - Push Tubing | U - undisturbed tube sample<br>D - disturbed sample<br>CS - core sample |  |



Project: Hurstville Private Hospital

Project No.: 41486

Client: Continuum Healthcare Group

Project Manager: Danielle Ord

Total Hole Depth: 1.3 m Eastings: -Northings: -Date: 22/2/11 Driller and Co.: JBS Drill Method: Hand Auger Log By: Claudia Roberts Bore Diameter: 100 mm

|                             | SI                     | UBSURFA                                 | CE PROFILE                                                                        |         |           | SAM       | PLE          |                         |
|-----------------------------|------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|---------|-----------|-----------|--------------|-------------------------|
| Depth                       | Visual                 |                                         | Description                                                                       | Number  | Condition | PID (ppm) | Observations | Well Completion Details |
| -0.0                        |                        |                                         | Ground Surface                                                                    |         |           |           |              |                         |
| - 0.0                       |                        | FILL<br>Silty clay: br<br>firm, non pla | rown, heterogeneous, dry,<br>astic with inclusions of<br>aale and igneous gravels | 0.0-0.1 | D         |           |              |                         |
| -                           |                        |                                         |                                                                                   | 0.3-0.4 | D         |           |              |                         |
| -                           |                        |                                         |                                                                                   | 0.5-0.6 | D         |           |              |                         |
| -<br>-<br>                  |                        | heterogened<br>inclusions o             | ottled orange and brown,<br>bus, dry, low plasticity with<br>f shale gravels      |         |           |           |              |                         |
| -                           |                        | End of hole                             | at 1.3 m, program depth                                                           |         |           |           |              |                         |
| Sampl                       | e Method               | /HA                                     | Sample Condition                                                                  |         |           |           |              |                         |
| HA - H<br>SFA - \$<br>HFA - | and Auge<br>Solid Flig | er<br>Iht Auger<br>light Auger          | U - undisturbed tube samp<br>D - disturbed sample<br>CS - core sample             | ole     |           |           |              |                         |



Appendix C

UCL 95% Statistical Datasheets

| From File       WorkSheet.wst         Full Precision       OFF         Confidence Coefficient       95%         Number of Valid Observations       18         Number of Distinct Observations       17         Minimum       8         Maximum       480         Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Valid Conservations       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data appear Lognormal (0.05)       150 | ······································                                                                         | Normal UCL Statistics for | or Full Data Sets                                                                                              | <b>,</b>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Al 12 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------|-------------|
| Full Precision     OFF       Confidence Coefficient     95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | User Selected Options                                                                                          |                           |                                                                                                                | a a d'ha a tha an an tha a channa d'hat the band a chand ach an |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Confidence Coefficient       95%         Number of Valid Observations       18         Number of Distinct Observations       17         Minimum       8         Maximum       480         Maximum       480         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Sbapiro Wilk Test Statistic       0.613         S% Shapiro Wilk Critical Value       0.897         Data anot Normal at 5% Significance Level       150         Data appear Lognormal (0.05)       150                                              |                                                                                                                |                           | ·····                                                                                                          |                                                                 | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                            |             |
| Number of Valid Observations       18         Number of Distinct Observations       17         Minimum       8         Maximum       480         Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal Distribution)       Student's-t UCL         Stappear Lognormal (0.05)       150                                                                  |                                                                                                                |                           | *******                                                                                                        |                                                                 | 1997 (A. 1999) (A. 1997) (A. 1977) ( |   |                                            |             |
| Number of Distinct Observations       17         Minimum       8         Maximum       480         Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       150         Data appear Lognormal (0.05)       150                                                                                                              | Contidence Coefficient                                                                                         | 95%                       | ······                                                                                                         |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Number of Distinct Observations       17         Minimum       8         Maximum       480         Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       150         Data appear Lognormal (0.05)       150                                                                                                              |                                                                                                                |                           | ······································                                                                         |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ·                                          |             |
| Number of Distinct Observations       17         Minimum       8         Maximum       480         Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       150         Data appear Lognormal (0.05)       150                                                                                                              |                                                                                                                |                           |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Number of Distinct Observations       17         Minimum       8         Maximum       480         Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       150         Data appear Lognormal (0.05)       150                                                                                                              |                                                                                                                |                           |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Number of Distinct Observations       17         Minimum       8         Maximum       480         Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       150         Data appear Lognormal (0.05)       150                                                                                                              | Numbe                                                                                                          | or of Valid Observations  | 18                                                                                                             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · |                                            |             |
| Minimum       8         Maximum       480         Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       150         Data appear Lognormal (0.05)       150                                                                                                                                                               |                                                                                                                |                           |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Maximum       480         Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       150         Data appear Lognormal (0.05)       150                                                                                                                                                                                       |                                                                                                                |                           | and a second |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Mean       93         Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       95% UCL (Assuming Normal Distribution)         Student's-t UCL       150         Data appear Lognormal (0.05)       150                                                                                                                                            |                                                                                                                |                           |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Median       36         SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal Distribution)       Student's-t UCL         Student's-t UCL       150                                                                                                                                                                                                                                                   |                                                                                                                |                           |                                                                                                                |                                                                 | 1994 Manual and State Annual Annual Annual a 1997 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                            |             |
| SD       139         Variance       19309         Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       95% UCL (Assuming Normal Distribution)         Student's-t UCL       150         Data appear Lognormal (0.05)       150                                                                                                                                                                                          |                                                                                                                |                           |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Coefficient of Variation       1.494         Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       95% UCL (Assuming Normal Distribution)         Student's-t UCL       150         Data appear Lognormal (0.05)       150                                                                                                                                                                                                                                            |                                                                                                                |                           | 139                                                                                                            | · · ·                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 |                                            | . <u> _</u> |
| Skewness       2.29         Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       0.897         95% UCL (Assuming Normal Distribution)       50         Student's-t UCL       150         Data appear Lognormal (0.05)       150                                                                                                                                                                                                                                                                  |                                                                                                                | Variance                  | 19309                                                                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Shapiro Wilk Test Statistic       0.613         5% Shapiro Wilk Critical Value       0.897         Data not Normal at 5% Significance Level       95% UCL (Assuming Normal Distribution)         Student's-t UCL       150         Data appear Lognormal (0.05)       150                                                                                                                                                                                                                                                                                                                     | ······                                                                                                         | Coefficient of Variation  | 1.494                                                                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| 5% Shapiro Wilk Critical Value     0.897       Data not Normal at 5% Significance Level     95% UCL (Assuming Normal Distribution)       Student's-t UCL     150       Data appear Lognormal (0.05)     150                                                                                                                                                                                                                                                                                                                                                                                   | an tan tang selata sebagai tan tang sarah sa | Skewness                  | 2.29                                                                                                           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| 5% Shapiro Wilk Critical Value     0.897       Data not Normal at 5% Significance Level     95% UCL (Assuming Normal Distribution)       Student's-t UCL     150       Data appear Lognormal (0.05)     150                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |                           | ······································                                                                         |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Data not Normal at 5% Significance Level       95% UCL (Assuming Normal Distribution)       Student's-t UCL       150       Data appear Lognormal (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sha                                                                                                            | apiro Wilk Test Statistic | 0.613                                                                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| 95% UCL (Assuming Normal Distribution)<br>Student's-t UCL 150<br>Data appear Lognormal (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5% Sha                                                                                                         | piro Wilk Critical Value  | 0.897                                                                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            | 1           |
| Student's-t UCL 150 Data appear Lognormal (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data not Normal at 5                                                                                           | % Significance Level      |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Student's-t UCL 150 Data appear Lognormal (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                           |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
| Data appear Lognormal (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% UCL (Assuming                                                                                              |                           |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | Student's-t UCL           | 150                                                                                                            |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                           |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Data appear Lo                                                                                                 | gnormal (0.05)            |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |                                            |             |
| May want to try Lognormal UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           |                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                            |             |

|   |                                          |                                                         | 2.2.2.7     |                                       | N SA                                                                        |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|---|------------------------------------------|---------------------------------------------------------|-------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|   |                                          | Normal UCL Statistics for                               | or Full Dat | a Sets                                |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | User Selected Options                    | , i ti sa waxa waxaa da ada a a a a a a a a a a a a a a |             |                                       | 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                                         | , , , , , , , , , , , , , , , , , , , |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | From File                                | WorkSheet.wst                                           |             | * *. *                                |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | Full Precision                           | OFF                                                     |             | · · · · · · · · · · · · · · · · · · · |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | Confidence Coefficient                   | 95%                                                     |             |                                       |                                                                                                                 |                                         |                                       | The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
|   | · · · · · · · · · · · · · · · · · · ·    |                                                         |             |                                       |                                                                                                                 | • • • • • • • • • • • • • • • • • • • • |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | · · · · · · · · · · · · · · · · · · ·    | ······                                                  |             |                                       |                                                                                                                 |                                         |                                       | Annual Contraction of the Contra |                                       |
| P |                                          | · · · · · · · · · · · · · · · · · · ·                   |             |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          | · · · · · · · · · · · · · · · · · · ·                   |             |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | Numb                                     | er of Valid Observations                                | 10          |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | Number                                   | of Distinct Observations                                | 5           |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          | Minimum                                                 | 0.05        |                                       |                                                                                                                 |                                         |                                       | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|   |                                          | Maximum                                                 | 2.3         |                                       |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     |
|   | . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | Mean                                                    | 0.43        |                                       |                                                                                                                 | ,                                       |                                       | and a second of a second second second second data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|   | · · · · · · · · · · · · · · · · · · ·    | Median                                                  | 0.2         |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          | SD                                                      | 0.692       |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          | Variance                                                | 0.479       |                                       |                                                                                                                 |                                         |                                       | ala akao akali akao akaina akao amin'ny fisika manana kao amin'ny fisika manana kao amin'ny fisika manana kao a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          | Coefficient of Variation                                | 1.61        |                                       | - [                                                                                                             |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          | Skewness                                                | 2.641       | · · · · · · · · · · · · · · · · · · · |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          |                                                         |             |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          | apiro Wilk Test Statistic                               | 0.609       |                                       | · · · · · · · · · · · · · · · · · · ·                                                                           |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          | epiro Wilk Critical Value                               | 0.842       |                                       | - 4                                                                                                             |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | Data not Normal at 5                     | % Significance Level                                    |             |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   |                                          |                                                         |             |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | 95% UCL (Assumin                         | g Normal Distribution)                                  |             |                                       |                                                                                                                 |                                         |                                       | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|   |                                          | Student's-t UCL                                         | 0.831       |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |
|   |                                          |                                                         |             |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | Data appear Gamm                         | a Distributed (0.05)                                    |             |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |
|   |                                          |                                                         |             |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|   | May want to try                          | Gamma UCLs                                              |             |                                       |                                                                                                                 |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |

| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ormal UCL Statistics for              | r Full Data Sets |                                        | <u></u>                                                                                                        |                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| User Selected Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  |                                        |                                                                                                                | ······································                                                                           |
| From File W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | orkSheet.wst                          |                  |                                        | annan 1999, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 19 | an an ann an                                                                          |
| Full Precision O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                  |                                        |                                                                                                                |                                                                                                                  |
| Confidence Coefficient 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5%                                    |                  |                                        |                                                                                                                |                                                                                                                  |
| ···· · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · · |                  | ···· · · · · · · · · · · · · · · · · · | aaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa                                                                         | Mantalanaa aa ka k                                                                 |
| Чs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · ·                                 |                  |                                        |                                                                                                                |                                                                                                                  |
| <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                  |                                        |                                                                                                                | ••••••••••••••••••••••••••••••••••••••                                                                           |
| Number o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of Valid Observations                 | 10               |                                        |                                                                                                                |                                                                                                                  |
| Number of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Distinct Observations                 | 7                |                                        |                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum                               | 1.55             |                                        |                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum                               | 27.6             |                                        |                                                                                                                |                                                                                                                  |
| a su an ann an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean                                  | 5.505            |                                        |                                                                                                                |                                                                                                                  |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Median                                | 2.425            |                                        | a a a a a a a a a a a a a a a a a a a                                                                          |                                                                                                                  |
| 1971 - 1971 - 1988 - 1988 - 1988 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1989 - 1980 - | SD                                    | 8.058            |                                        |                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Variance                              | 64.93            | ······                                 |                                                                                                                |                                                                                                                  |
| C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pefficient of Variation               | 1.464            |                                        |                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Skewness                              | 2.782            |                                        |                                                                                                                |                                                                                                                  |
| Shani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ro Wilk Test Statistic                | 0.562            |                                        |                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o Wilk Critical Value                 | 0.842            |                                        |                                                                                                                |                                                                                                                  |
| Data not Normal at 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | <b>ч.</b> 0та    |                                        |                                                                                                                | ······                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  |                                        |                                                                                                                |                                                                                                                  |
| 95% UCL (Assuming N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lormal Distribution)                  |                  |                                        | · · · · · · · · · · · · · · · · · · ·                                                                          | 1999 199 and 199 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Student's-t UCL                       | 10.18            |                                        |                                                                                                                | ·····                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  |                                        |                                                                                                                |                                                                                                                  |
| Data do not follow a Discern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | able Distribution (0.05)              |                  |                                        |                                                                                                                |                                                                                                                  |
| ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  |                                        | :                                                                                                              |                                                                                                                  |
| May want to try Nonp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | arametric UCLs                        |                  |                                        |                                                                                                                |                                                                                                                  |



Appendix D GME Field Documentation

# Field Equipment Calibration and Decontamination



| PROJECT NAME: HUVSTVILLE Private Hospital | project no: 41486       |
|-------------------------------------------|-------------------------|
| FIELD DATES: 4/3/11                       | FIELD STAFF: C. ROBERTS |
|                                           | N. Cussen               |

| CALIBRATION SUMMARY | <b></b> |  |  |
|---------------------|---------|--|--|
|                     |         |  |  |

EQUIPMENT:

#### CALIBRATION STANDARD:

| DATE | TIME | READING (ppm <sub>v</sub> ) | COMMENTS |
|------|------|-----------------------------|----------|
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      | ****                        |          |
|      |      |                             |          |
|      |      |                             |          |
|      |      |                             |          |

| DECONTAMINATION SUMMARY                                                                                                                                          |                 |        |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|------|
| EQUIPMENT: disposable tubing, Nitrile glove                                                                                                                      | <u>٢</u>        |        |      |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?                                                                            | 3               | N      | NA   |
| 2. Was excess soil removed by scraping, brushing or wiping with disposable towels?                                                                               | .77             | N      | (NA) |
| 3. Was the equipment contaminated with grease, tar or similar material?<br>If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane? | Y<br>Y          | N<br>N | NA   |
| 4. Was phosphate-free detergent used to wash the equipment?                                                                                                      | $(\mathbf{y})$  | N      | NA   |
| 5. Was the equipment rinsed with clean water?                                                                                                                    | $\overline{()}$ | N      | NA   |
| 6. Was the equipment then rinsed with deionised water?                                                                                                           | (Y)             | N      | NA   |
| 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?                                                                     | (Y)             | N      | NA   |
| WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.                                                                                          | 9               |        |      |
|                                                                                                                                                                  |                 |        |      |

|                                                                | JBS<br>ENVIRONMENTAL                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | Daily Field Report                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | Page of                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date:<br>Arrival Time<br>Depart Time<br>Site Address           | 4/3/11Completed by<br>WeatherC. Roberts, N. Cusser9 AMWeatherFire2 PMSubcontractor(s)                                                                                                                                                                                                                                                                                                                                                                             |
| Purpose of Visit                                               | Investigation + Sampling of 4 MW within<br>Site.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Notes                                                          | -Arrive Sete gam                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (include sketch<br>or attach site<br>map/plan)                 | - leview JRAS, updaked Safety documentation / conducted<br>too:box talk.<br>- Sign in at hospital reception.<br>- Set up PP with each Ground water MW<br>collect Samples for each, as per SARP<br>- QAI / QCI taken at MW04<br>- after Sampling dispose of rubbish<br>appropriately, dual close Mu.<br>- GRS readings taken for each<br>MW as well as all BH & HA on<br>sites (as per updated site map.)<br>- Sign out at hospital reception<br>- Left Site 2 pm. |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Associated<br>Completed<br>Forms<br>(eg, bore logs,<br>PID/XRF | 4x Grovnd water Sampling forms<br>decion                                                                                                                                                                                                                                                                                                                                                                                                                          |
| calibration<br>forms)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

This document contains information that is privileged, confidential or otherwise protected from use, disclosure, reproduction or distribution. © 1999 - 2009 JBS Environmental PO Box 940, Mascot NSW 1460 • Phone: 8338 1013 • Fax: 8338 1700 • E-mail: jbs@jbsgroup.com.au



FIELD RECORD SHEETS

•

| Project name: Hurstylle Private             | Location: Hwstylle                            | Well ID: MWO1/BHO1             |
|---------------------------------------------|-----------------------------------------------|--------------------------------|
| Person sampling:                            | Sample method:                                | Date: 4/3///<br>Weather: Cure  |
| Pre-purging<br>groundwater depth (m): (-664 | Post-sampling<br>groundwater depth (m): 3-421 | Total well<br>depth (m): 9-236 |
| Well diameter (mm):                         | Pump on time: //:/                            | Cycles per                     |
| Well volume (L):                            | Pump off time: 11 48                          | minute:                        |

#### **Field Measurements**

|             | Dept              | Γ             |                     |                                        | · · · · · · · · · · · · · · · · · · · | 1             |               |              | -          |
|-------------|-------------------|---------------|---------------------|----------------------------------------|---------------------------------------|---------------|---------------|--------------|------------|
| Time        | Burge             | Volume        |                     | -                                      |                                       |               |               |              | -          |
| nme         | Rate<br>(mL/min)  | purged<br>(L) | <b>DO</b><br>(mg/L) | DO<br>(% saturation)                   | EC<br>(us/cm)                         | pH<br>(units) | Redox<br>(mV) | Temp<br>(oC) | TDS<br>ppm |
| Field Stabi | lisation Criteria |               | +/- 10%             |                                        | +/-3%                                 | +/- 0.5       | +/- 10 mV     | (00)         | +/- 3%     |
| 11:15       | 2.048             | 11.           | 4.5                 | cri. LL                                | 1911                                  | SOL           | 3,-7_         | 22.9         | 1069       |
| 11.20       | 2.1159            | 21            | 2.0                 | 37.1                                   | inbr                                  | 11.95         | 11.2          | 77.5-        |            |
| 11.2        | 2.1.4             | 21            | 2.40                | 32.7                                   | 1010                                  | 1.02          | 17cm          | 22 3         | W J        |
| 11:30       | 2.886             |               | 2 17                | 25.1                                   | 1077                                  | 400           | :27-          | 11.5         | 105        |
|             | 3.011             | 4:51          | 2.17                | 231                                    | I STL                                 | 4.00          | 177           | 120          | (0>)       |
| 11:33       |                   |               | 2.20                | 23.6                                   | X61                                   | 4.80          | 176           | 22.0         | (03)       |
| 1):35       | 2.211             | 56            | 2.19                | Z3.4                                   | 1857                                  | 4.86          | 177           |              | 104        |
|             |                   |               |                     | 1                                      |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             | · · ·             |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     | n                                      |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     | ************************************** |                                       |               |               |              |            |
|             |                   |               | 1                   |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     | 2                                      |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             |                   |               |                     |                                        |                                       |               |               |              |            |
|             | (Odour, coloui    |               |                     |                                        |                                       |               |               |              |            |
| No ed       | tous clear        | to boo.       | - sha               | htly torba                             | a, shy                                | nt shae       | <b>~</b>      |              |            |
|             |                   |               | - 1                 | · /                                    | · ·                                   |               |               |              |            |
|             |                   |               | MEC                 |                                        |                                       |               |               |              |            |

Were Metals Field Filtered? Were QA/QC Samples Collected?

d? <u>NP</u>

(1) These parameters may be considered stable when three consecutive readings (obtained several minutes apart) are within these levels.

Source "Victorian Environmental Protection Authority, Groundwater Sampling Guidelines, Publication 669, April 2000".

IMSO Forms010 - Groundwater Sampling

33° 57.733 5

.



#### FIELD RECORD SHEETS

| Project name Huvstville Private                | Location: HUVSWILL                                | Well ID: BH02/MW02             |
|------------------------------------------------|---------------------------------------------------|--------------------------------|
| Person sampling:                               | Sample method:                                    | Date: 4(3)((<br>Weather: 4, NO |
| Pre-purging<br>groundwater depth (m): 2.509 m. |                                                   | 64m depth (m): 10.201 m        |
| Well diameter (mm):<br>Well volume (L):        | Pump on time: 12:13 pm.<br>Pump off time: 12:4/pi | Cycles per                     |
|                                                | ald Moscurements                                  |                                |

#### **Field Measurements**

|             |                             |                         | гіеі         | d Measuremen         | 15            |               |               |              |            |
|-------------|-----------------------------|-------------------------|--------------|----------------------|---------------|---------------|---------------|--------------|------------|
| Time        | Rate<br>(mL/min)            | Volume<br>purged<br>(L) | DO<br>(mg/L) | DO<br>(% saturation) | EC<br>(us/cm) | pH<br>(units) | Redox<br>(mV) | Temp<br>(oC) | TDS<br>ppm |
| Field Stabi | lisation Criteria           | a <sup>(1)</sup> :      | +/- 10%      |                      | +/- 3%        | +/- 0.5       | +/- 10 mV     |              | +/- 3%     |
| 12:15       | 3.299                       | 16                      | 3.25         | 36.0                 | 854           | 4.63          | 241           | 21.6         | 460        |
| 12:20       | 876.                        | 24                      | 2.71         | 21.3                 | 057           | 4.72          | 228           | 21.0         | 45         |
| 12:24       | 4.445                       | 24                      | 2.47         | 27.4                 | 864           | 4.95          | 285           | 20.9         | 462        |
| 12:27       | 4869                        | 4L                      | 2.34         | 26.1                 | 868           | 4.95          | 293           | 20.9         | 460        |
| 12:30       | C.012                       | 56                      | 2.39         | 26.3                 | 867           | 4.90          | 290           | 20.9         | 467        |
|             |                             |                         |              |                      |               |               | <u> </u>      | ŧ-           | 1          |
|             |                             |                         |              |                      |               |               |               |              |            |
|             | -04                         |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             | j.                          |                         |              |                      |               |               |               |              |            |
|             |                             | *                       |              |                      |               |               |               |              |            |
|             |                             |                         |              | · · · ·              |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              | ·····      |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              | ·<br>· ·             |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
|             |                             |                         |              |                      |               |               |               |              |            |
| omments     | (Odour, colour              | r, turbidity,           | sheen etc)   |                      |               |               |               |              |            |
|             | o_dour,<br>s Field Filtered |                         |              | turbid               | ho s          | shoen         |               |              |            |
|             |                             |                         | ,            | ¥ (V)                | /             |               |               |              |            |
| vere Metal  | s Field Filtered            | ~ ``                    | YES          |                      |               |               |               |              |            |
|             | C Samples Coll              |                         | NO           |                      |               |               |               |              |            |
| cie QA/Q    | c samples Con               | culeur .                | <u>NU</u>    |                      |               |               |               |              |            |

(1) These parameters may be considered stable when three consecutive readings (obtained several minutes apart) are within these levels.

Source "Victorian Environmental Protection Authority, Groundwater Sampling Guidelines, Publication 669, April 2000".

IMSO Forms010 - Groundwater Sampling

33° 57. 718 5 151° 05, 757 E



#### FIELD RECORD SHEETS

| Project name: HUVS fulle Aurale              | Location: Hurshulle                     | Well ID: BH03/MW03                     |
|----------------------------------------------|-----------------------------------------|----------------------------------------|
| Person sampling:                             | Sample method:                          | Date: 4/3/1<br>Weather: Fine           |
| Pre-purging<br>groundwater depth (m): 3·437m | Post-sampling<br>groundwater depth (m): | Total well $1.000$ depth (m): $10.012$ |
| Well diameter (mm):<br>Well volume (L):      | Pump on time: 1:03pm<br>Pump off time:  | Cycles per<br>minute:                  |

#### Field Measurements

| Time     | Rate<br>(mL/min)  | purged (L)         | <b>DO</b><br>(mg/L) | DO<br>(% saturation)                    | EC<br>(us/cm) | pH<br>(units) | Redox<br>(mV) | Temp<br>(oC)                            | TDS<br>ppm |        |
|----------|-------------------|--------------------|---------------------|-----------------------------------------|---------------|---------------|---------------|-----------------------------------------|------------|--------|
|          | ilisation Criteri | a <sup>(1)</sup> : | +/-10%              | <b>_</b>                                | +/-3%         | +/- 0.5       | +/- 10 mV     |                                         | +/-3%      |        |
| 1:00     | 4.166             | 1L                 | 2.01                | 22.6                                    | 2.58          | 7.74          | 116           | 22.8                                    | 1.44       | op k   |
| WOOD     | 4.196             | 21                 | 3.27                | 22.5                                    | 2.61          | 535           | 104_          | 22.1                                    | 1.44       | pp     |
| 1:16     | 4.202             | 31/                | 1.36                | 17.0                                    | 2.62          | 4.8           | 125           | 22.0                                    | 1-41       | 000    |
| 1:22     | 5.464             | 41                 | 1.00                | 4.4                                     | 2.68          | 4.8           | 141           | 22.0                                    | 1000       | SK     |
| 1:26     | 5.652             | 52                 | 0.92                | 9.5                                     | 2.70          | 4.9           | 122           | 22.0                                    | 1.87 6     | de     |
| 1 30     | 5-74-3            | 5.5C               | 0.91                | લં. ભ                                   | 2.68          | a-g           | 132           | 22.0                                    | 1.50 1     | pt     |
| 1:22     | 6.241             | 6.06               | 0.92                | 9.4                                     | 2.66          | 4.9           | 133           | 22.0                                    | 1:004      | 20     |
|          |                   |                    |                     |                                         |               | <u> </u>      |               |                                         |            | ¥742 € |
|          | 1                 |                    |                     |                                         |               |               | 1             | *************************************** |            |        |
|          |                   |                    |                     |                                         |               |               |               |                                         |            |        |
|          | ····              |                    |                     |                                         | +             |               |               |                                         |            |        |
|          |                   |                    |                     |                                         |               | 1             |               |                                         |            |        |
|          |                   |                    |                     |                                         |               | l             |               |                                         |            |        |
|          |                   | 3 3                |                     | · · · · · ·                             |               |               |               |                                         |            |        |
| <u> </u> |                   |                    |                     |                                         |               |               |               |                                         |            |        |
|          |                   |                    | •                   |                                         |               |               |               |                                         |            |        |
|          |                   |                    | Ster<br>T           | • • • • • • • • • • • • • • • • • • • • |               |               | ·····         |                                         |            |        |
|          |                   |                    | :                   |                                         |               |               |               |                                         |            |        |
|          | ·····             |                    |                     |                                         |               |               |               |                                         |            |        |
|          | - B               |                    |                     |                                         |               |               |               |                                         |            |        |
|          | ļ                 |                    |                     |                                         |               |               |               |                                         |            |        |
| ļ        |                   |                    |                     |                                         |               |               |               |                                         |            |        |
| <u> </u> |                   |                    |                     |                                         |               |               |               |                                         |            |        |
|          |                   |                    |                     |                                         |               |               |               |                                         |            |        |
|          |                   |                    |                     |                                         |               |               |               |                                         |            |        |
| Comments | (Odour, colou     | r, turbidity,      | sheen etc)          |                                         |               |               |               |                                         |            |        |
|          | ,                 |                    |                     |                                         | . 1           | _             |               |                                         |            |        |
| No od    | ow, brou          | $\sim$ , ve        | in tu               | doces , n                               | o sho         | فم            |               |                                         |            |        |
| <b>b</b> | ······            |                    |                     |                                         |               |               |               |                                         |            |        |
|          | ls Field Filtered |                    | YES                 |                                         |               |               |               |                                         |            |        |

<sup>(1)</sup> These parameters may be considered stable when three consecutive readings (obtained several minutes apart) are within these levels.

Source "Victorian Environmental Protection Authority, Groundwater Sampling Guidelines, Publication 669, April 2000".

IMSO Forms010 - Groundwater Sampling

33057.748 (S) 151005.786 (B)



#### FIELD RECORD SHEETS

.

| Project na               | Hvrstvill                      | e Privo          | ite.       | Location:                     | er Rd            | HURSTVIL           | e Bl                  | 104/144 | 104           |            |
|--------------------------|--------------------------------|------------------|------------|-------------------------------|------------------|--------------------|-----------------------|---------|---------------|------------|
| Person sai               | molina:                        | erts.            |            | Sample metho                  | od:              |                    | Date: 4               | 3/11    | <b>.</b>      |            |
| Claur<br>Pre-purgir      |                                |                  | -          | Post-sampling                 | 5.05             | 56                 | Total well            | MAL     |               | ł          |
| groundwa                 | ter depth (m):                 |                  | и<br>      | Post-sampling<br>groundwater  |                  | deptor             |                       | 9.284   | m             |            |
| Well diame<br>Well volun |                                |                  |            | Pump on time<br>Pump off time | = 945<br>= 10:35 | 5                  | Cycles per<br>minute: | <b></b> |               |            |
|                          | Volume<br>Mue                  |                  | Fiel       | d Measuremen                  | ts               |                    |                       |         |               | $\langle$  |
|                          | Repth .                        | Volume           |            |                               |                  |                    |                       |         |               |            |
| Time                     | Rate                           | purged           | DO         | DO                            | EC               | pH                 | Redox                 | Temp    | TDS           |            |
| Field Stabi              | (mL/min)<br>ilisation Criteria | (L)              | (mg/L)     | (% saturation)                | (us/cm)<br>+/-3% | (units)<br>+/- 0.5 | (mV)<br>+/- 10 mV     | (oC)    | ppm<br>+/- 3% |            |
| 245                      | 1.645                          |                  | 0.91       | 10.0                          | 3.53             | 5.78               | 155                   | 24.1    | 2.00          | 000        |
| 9.00                     | 2.053                          | 21               | n.~~       | 1.7                           | 3.52             | 5.72               | 142                   | 24.4    | 1.99          | 00         |
| 9.11                     | 2.40                           | 34               | n.110      | 5.5                           | 3.53             | c. 10              | 134                   | 24.4    | 1 (1          | <u>[</u> ] |
| 1:55                     | 2 7 12                         | 19-              | 0.71       | 5.3                           | 3.55             | 5.71               | 130                   | 24.4    | 2.00          | ppk        |
| <u></u>                  | KITIS<br>2.( OT                |                  | 10 43      | 5.2                           | 3.49             | 5.75               |                       | 24.4    | 12:00         | pre        |
| 1.02                     | <u>k'605</u>                   | 56               | 0.50       | 5.6                           | 5.40             | <u> &gt;'72</u>    | 130                   |         | 2.08          | PP         |
|                          |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  |                    |                       | \       |               | :<br>      |
|                          |                                |                  |            |                               | ·                |                    |                       | /       |               |            |
|                          |                                |                  |            |                               |                  | <u> </u>           |                       |         |               |            |
|                          |                                | ·····            |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  |                    |                       | ·····   |               |            |
| <u> </u>                 |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          | ·                              |                  |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  | L                  |                       |         | l             |            |
|                          |                                |                  |            |                               |                  |                    |                       |         |               |            |
| <u>.</u>                 |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          |                                |                  |            |                               |                  |                    |                       |         |               |            |
|                          | Ì                              |                  |            |                               |                  |                    |                       |         | <u> </u>      |            |
| `ommente                 | (Odour, colou                  | r. turbidity     | sheen etc) |                               |                  | 1                  | 1                     |         | ······        |            |
| r                        |                                | •                |            |                               |                  |                    |                       |         |               |            |
| NO C                     | dow, a                         | ear no           | on tur     | oid. no                       | she              | en.                |                       |         |               |            |
|                          | <b>}</b>                       |                  |            | -, •                          |                  |                    |                       |         | ]             |            |
| Vana 81-3-               |                                | e jaki<br>Harris | YES        |                               |                  |                    |                       |         |               |            |
|                          | ls Field Filtered              |                  | UF.C       | A.                            | 11411            | DAI /-             |                       |         |               |            |
|                          | QC Samples Col                 | lected?          |            | r P                           | INOLY /          | (261 1/6           |                       |         |               |            |

Source "Victorian Environmental Protection Authority, Groundwater Sampling Guidelines, Publication 669, April 2000".

IMSO Forms010 - Groundwater Sampling

™. S 33°57.784′, E 151° 05.738′

ì



| CLIENT/SITE: HURStville Auche Mospital | DATE: 4 . 3 . () |
|----------------------------------------|------------------|
| PARTICIPANTS: NC & CL                  | PAGE: ( OF: \    |
|                                        |                  |
|                                        |                  |
|                                        |                  |
|                                        |                  |

| BHOI/MWOI  | = Recorded on the log              |
|------------|------------------------------------|
| BHOZ MUOZ  |                                    |
| 13403/MW03 | = 33°57.748'(5) 151°05.786 (G)     |
| BH04 MW04  | > Recorded on the log              |
| BHOS       | = 330 57.735 (3) 151°05.713 (C)    |
| HAOG       | = 33° 57.723' (s) 151°05.721' (G)  |
| 11407      | = 33° 57.744 (5) 151°05.743 (G)    |
| 14408      | = 32° 57.716' (5) 151° 05.750' (C) |
| HAOG       | = 33°57.730(5) 151005.723'(6)      |
| 4410       | = 33° 57.740 (5) 151° 05.728 (C)   |
| НАП        | = No Coverage                      |
| 14A12      | = No Coverage                      |
| 12412      | = 33° 57.727 (E) 151° 05.762 (C)   |
| 12414      | = 330 57.760(5) 1510 05.726'(E)    |
| HAIS       | = 33° 57. 750 (3) 151°05.758 (C)   |
| RHB        | = 33° 57.743' (5) 151° 05.770' (G) |
| HAIJ       | = 33° 57.758 (5) 151° 05.765 (6)   |
| UHA-18     | = 33° 57.744 (3) 151° 05.779' (C)  |
|            |                                    |

IMSO Forms020 – JBS Pad

128 O'Riordan St Mascot NSW 2020

Tel +61 2 8338 1011 Fax +61 2 8338 1700 www.jbsgroup.com.au



Appendix E

Laboratory Reports and Chain of Custody Documentation



# CHAIN OF CUSTODY

| <b> </b> | PROJECT NO.: 41486          |                                 |                                |             |         |            |                               |             |          | BORA     | TORY       | BATCH       | LABORATORY BATCH NO.                   |            |            |           |                  |        |          |          |      |                                                   |
|----------|-----------------------------|---------------------------------|--------------------------------|-------------|---------|------------|-------------------------------|-------------|----------|----------|------------|-------------|----------------------------------------|------------|------------|-----------|------------------|--------|----------|----------|------|---------------------------------------------------|
|          |                             | ECT NAME Hurstville             |                                |             |         |            |                               |             | SAN      | MPLË     | RS         | NC          | sine~                                  | 4          | C          | Rob       | 2++2             |        | d        | 077      | 20   | bigroup. con - au<br>Efosgoup. con. au            |
|          |                             | REPORT TO: Q Orex               |                                | 34 <u>~</u> | SEND    | ) INVOICE  | TO: A work                    |             | PHO      | ONE:     | 04         | 31 40       | 022                                    |            |            |           | E١               | MAIL:  | 5        | يت       | Sen  | 2 pagous. com. au                                 |
|          |                             | NEEDED BY: STO                  |                                |             |         |            |                               |             | QC       | LEVE     | EL:        |             | NEF                                    | M 199      | 99 ( 🗸     | )         |                  |        |          |          |      | 0.01                                              |
|          | COMM                        | ENTS / SPECIAL HANDLIN          | NG / STORA                     | GE OR DISP  | OSAL:   |            |                               |             | س.       |          |            |             |                                        |            |            | Ì         |                  |        |          |          |      |                                                   |
| 1        |                             |                                 |                                |             |         |            |                               |             | ê,       | 1        | 2          |             |                                        |            |            |           |                  |        |          |          |      |                                                   |
|          |                             |                                 |                                |             |         |            |                               |             |          | Ľ        | 2          |             |                                        |            |            |           |                  |        |          |          |      |                                                   |
|          |                             |                                 |                                |             |         |            |                               |             | 3        | Se of a  | ctal       |             |                                        |            |            |           |                  |        |          |          |      |                                                   |
|          |                             |                                 |                                |             |         |            |                               |             | 8        | -<br>E   | 2          |             |                                        |            |            |           |                  |        |          |          |      |                                                   |
|          |                             | SAMPLE ID                       | MATRIX                         | DATE        | TIME    | TYPE       | & PRESERVATIVE                | pН          | 0        | 4        |            |             |                                        |            |            |           |                  |        |          |          |      | NOTES                                             |
| 1        | BHO                         | 1/MW01 0-2-04                   | soil                           | 21. 2. 11   |         | Barry .    | - Jas + la                    |             | ×        |          |            |             |                                        |            |            |           |                  |        |          |          |      |                                                   |
| 2        |                             | 0.8-1.0                         |                                | 1           |         |            |                               |             |          | ×        |            |             |                                        |            |            |           |                  |        |          |          |      |                                                   |
| 3        |                             | 2.5-2.7                         |                                |             |         |            |                               |             |          |          |            |             |                                        |            |            |           |                  |        |          |          |      |                                                   |
| 4        |                             |                                 |                                |             |         |            |                               |             |          |          | A          |             |                                        |            |            |           |                  |        |          |          |      | Envirolab Services                                |
| T        |                             |                                 |                                |             |         |            |                               |             |          |          |            |             |                                        | -          |            |           |                  |        |          | -        |      | Entriced 12 Ashley St<br>Chetswood NSW 2067       |
| S        |                             | 7.5.7.8                         | ·····                          |             |         |            |                               |             |          |          |            |             | ······································ |            | ļ          |           | ·····            |        |          |          |      | Ph' 9970 0200                                     |
|          |                             | 9.0-9.3                         |                                |             |         |            |                               |             | <b> </b> |          |            |             |                                        |            |            |           |                  |        |          | <u></u>  |      | JOB ALO: 52147                                    |
|          | BHO                         | 2/ MW02 0.0-01                  |                                |             |         |            |                               |             | ×        |          |            |             |                                        |            |            |           |                  |        |          |          | ļ    | Date roceived: 22/2/11                            |
| 8        |                             | 0.3-0.5                         |                                |             |         |            |                               |             |          | ×        | ×          |             |                                        |            |            |           |                  | _      |          |          |      | Time received: 6pm                                |
| .9       |                             | 0.3-07                          |                                |             |         |            |                               |             |          |          |            |             |                                        |            |            |           |                  |        |          |          |      | Temp Cool/Ambient                                 |
| 10       |                             | 1-0-1-2                         |                                |             |         |            |                               |             |          |          |            |             |                                        |            |            |           |                  |        |          |          |      | Coeling: concepack<br>Security: intacDBroken/None |
| 11       |                             | 2-0-25                          |                                |             |         |            |                               |             |          |          |            |             |                                        | ,          |            |           | •                |        |          |          |      |                                                   |
| IZ       |                             | 9-1-10-0                        |                                |             |         |            |                               |             |          |          |            |             | a dina da kata a batant                |            |            |           |                  |        |          |          |      |                                                   |
| IS       | BHOT                        | MW03 0.0 -01                    |                                |             |         |            |                               |             | ×        |          |            |             |                                        |            |            |           |                  |        |          |          |      |                                                   |
| 14       |                             | 1 0-3-6.5                       |                                | 4           |         |            |                               |             |          |          |            |             |                                        |            |            |           |                  |        |          |          |      | τ                                                 |
| IS       |                             | C-2-0-7                         |                                |             |         |            |                               |             |          |          |            | ·····       |                                        |            |            |           |                  |        |          |          |      |                                                   |
| 16       |                             | 1.0 - 1.2                       |                                |             |         | 11         |                               |             |          |          |            |             | [                                      |            |            |           |                  |        |          |          |      |                                                   |
| 17       |                             | 2.5.2.7                         | 4                              |             |         |            |                               |             |          |          |            |             |                                        |            |            |           |                  |        |          |          |      |                                                   |
| 18       |                             |                                 | Freig                          | •           |         | Bay        |                               |             |          | ×        |            |             |                                        |            |            |           |                  | ."     |          |          |      | τ                                                 |
| . 🗸      |                             | RELINQUISHED B                  | iY:                            |             |         | METH       | OD OF SHIPMENT:               |             |          | <u> </u> | N          | A. R        | ECENVE                                 | P BY:      | . 1        | an l      |                  |        |          |          |      | EIVING LAB USE ONLY:                              |
|          | NAME                        | Nothern Cussen                  |                                | CONS        | SIGNMEN | IT NOTE NO | Э.                            |             |          |          |            | Aorgan      | Phi                                    | T YI       | DATE:      | 22/L      | ( co             | OLER S | SEAL -   | - Yes.   | No   | Intact Broken                                     |
|          | OF: 30 22.2.1 TRANSPORT CO. |                                 |                                |             |         |            |                               |             | OF:      | E        | LSU        |             | •                                      |            | 1          |           |                  |        |          | eg C     |      |                                                   |
| 1        | NAME                        |                                 | DATE:                          | CONS        | SIGNMEN | IT NOTE NO |                               |             |          |          | ME:        |             |                                        |            | DATE       |           |                  |        | (在1997年) | Sec. 91  |      | Intact Broken                                     |
|          | OF:                         | ner & Preservative Codes: P = P | lactic: 1 - 5c <sup>0</sup> la |             |         | CO         | C = Sodium Hydrovide Preve VC | - Hydrochio | ric Acid | OF:      | /ial: VS ≠ | Sulfuric Ar | id Prsvd Vi                            | al: S = Si | lifuric Ac | id Prsvd: | CO<br>Z = Zinc F | OLER   |          | <b>d</b> | eg C | Sterile Bottle; 0 = Other                         |

JBS Environmental Pty Ltd., ABN 67 071 842 638 Phone: (02) 8338-1011 Fax: (02) 8338-1700 Custody

IMSO FormsO13 - Chain of Custody

1 1

Suite 2, 595 Gardeners Road MASCOT NSW 2020 PO Box 940 MASCOT NSW 1460 www.ibsgroup.com.au



# CHAIN OF CUSTODY

| PROJECT NO.: 4.2.86                                    |                                                                                                              |                |                                        |    | LAB       | ORAT               | ORY        | BATC                                  | HNO.           |                |        |       |      | ·       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|----|-----------|--------------------|------------|---------------------------------------|----------------|----------------|--------|-------|------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT NAME Harahul                                   |                                                                                                              |                |                                        |    | SAM       | 1PLER              | S          | NI                                    | Car.           | <u>به</u>      | رو     | alaar | 45   | ele     | Side   | bogroup con.a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SEND REPORT TO: Corol                                  |                                                                                                              | SENE           | DINVOICE TO: A warty                   |    | PHC       | DNE:               | Oq         | 21 4                                  | 0,0            | 22             | /      | 1     | EMA  | IL: O   | د<br>د | smelogop.com.a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DATE NEEDED BY:                                        | STO TA                                                                                                       |                | ··· ·                                  |    | QC        | LEVEL              | .:         |                                       | N              | EPM 19         | 99 ( 🖌 |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COMMENTS / SPECIAL HANDLI                              | NG / STORAG                                                                                                  | E OR DISPOSAL: |                                        |    | Contea 69 | Conta 39           | METC.12    | P44                                   | Adoestas       |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE ID                                              | MATRIX                                                                                                       | DATETIME       | TYPE & PRESERVATIVE                    | рН | 8         | 3                  | 2   F      | - 0-                                  | Æ              |                |        |       |      |         |        | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 BHO4/ MWO4 0.2-0.3                                   | lice                                                                                                         | 22.2.11        | Jer + Bay + Ice                        |    | ×         |                    |            |                                       |                |                |        |       |      |         |        | Red Telds - North - No |
| F.o. 2.0                                               | <br>                                                                                                         |                |                                        |    |           | ,                  | < _        |                                       | ×              |                |        |       | _    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 BHO4/ MWO4 0.2-0.3<br>0 0.5-0.7<br>1 2.2-2.4         |                                                                                                              |                |                                        |    |           |                    |            |                                       |                |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 3.9-45                                               | · · · · · · · · · · · · · · · · · · ·                                                                        |                |                                        |    |           |                    |            |                                       |                |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                                                                              |                |                                        |    | -+        |                    |            |                                       |                |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.8-10<br>BHOS 0.15-0.25                               |                                                                                                              | 7              |                                        |    |           |                    | × 7        | < <del>x</del>                        | $\checkmark$   |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.25-0.5                                               |                                                                                                              | 21.2.4         |                                        |    |           |                    |            |                                       |                |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 HADE 0.0- 0.1                                        | - <u></u>                                                                                                    |                |                                        |    |           |                    |            | _                                     | -              |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$ 0.3.0.4                                             |                                                                                                              |                |                                        |    |           |                    |            |                                       |                |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 0.6-0.7                                              |                                                                                                              |                |                                        |    |           |                    |            |                                       |                |                |        |       |      |         |        | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HA07 0.0 - 0.1                                         |                                                                                                              | · ······       |                                        |    |           | ×                  |            |                                       |                |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0-2-0-3                                                |                                                                                                              |                |                                        |    |           |                    |            |                                       |                |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5-0.6                                                |                                                                                                              |                |                                        |    |           |                    |            |                                       |                |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 V 0.8-0.9<br>4 1408 0.0-0.1                          |                                                                                                              |                | ······································ |    |           | ×                  |            | · · · · · · · · · · · · · · · · · · · |                |                |        |       | +    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                                                              |                |                                        |    |           |                    | ×          |                                       | ×              |                |        |       | -    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 0 5-0.4                                              |                                                                                                              |                | ↓ ↓                                    |    |           |                    |            |                                       |                |                |        |       |      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NAME: Nothing Coss                                     | RELINQUISHED BY:     METHOD OF SHIPMENT:       AME:     CONSIGNMENT NOTE NO.       22.2.11     TRANSPORT CO. |                |                                        |    |           |                    | ::  \<br>F | Abyg5<br>ELS                          | RECEIV<br>IN P | ED BY:<br>IIIP | DATE:2 | z/z/t | COOL | ER SEAL | - Yes  | RECEIVING LAB USE ONLY:<br>No Intact Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OF: ⊃S><br>NAME:<br>OF:                                | UP: SS TRANSPORT CO.                                                                                         |                |                                        |    |           | OF:<br>NAME<br>OF: | 1          |                                       |                |                | DATE:  |       | COOL | ER SEAL | - Yes  | . No Intact Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

JBS Environmental Pty Ltd ABN 67 071 842 638 Phone: (02) 8338-1011 Fax: (02) 8338-1700

IMSO FormsO13 – Chain of Custody

Suite 2, 595 Gardeners Road MASCOT NSW 2020 PO Box 940 MASCOT NSW 1460 www.ibsgroup.com.au



Į.

# CHAIN OF CUSTODY

|                      |               |                             |               |                                        |                      |                 |                   |                                        |             |          |                        | TOP                |                        | тсн                   | NO        |                    | 1.1         | 1.1               | i qu     | 1.4                  |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|---------------|-----------------------------|---------------|----------------------------------------|----------------------|-----------------|-------------------|----------------------------------------|-------------|----------|------------------------|--------------------|------------------------|-----------------------|-----------|--------------------|-------------|-------------------|----------|----------------------|--------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ſ                    | PROJECT       | NO .: 44486                 |               |                                        |                      |                 |                   |                                        |             |          |                        |                    |                        | <u></u>               | <u></u>   | <u> </u>           | labe        | 17                |          | C                    | lores              | ela       | sgrosp.com.a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | PROJECT       | NAME Herstwill              | د             |                                        | r=                   |                 | 110/0-0-          | <u></u>                                |             |          |                        | . <u>n.s</u><br>20 | <u>47</u> 1            | 40                    | 1 02:     | 2                  |             | -                 | EM/      | AIL: 7               | ت م                | sert      | Jesgrap-con. en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | SEND RE       | PORT TO: Q Ord              |               | <u>ب د</u>                             | <u></u>              | SENC            | INVOICE           | TO: A work                             |             |          | LEVI                   |                    |                        |                       | NEP       | -<br>M 199         | 9(5)        |                   |          |                      |                    |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | DATE NE       | FDFD BY: 🦭                  | $\tau \alpha$ | AT .                                   |                      |                 |                   |                                        |             | QC.      |                        | <u> </u>           | 1                      |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | COMMENT       | S / SPECIAL HANDLI          | NG / S        | TORAG                                  | E OR DIS             | POSAL:          |                   |                                        |             | S        | 1                      |                    | Ì                      |                       | 0         |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |               |                             |               |                                        |                      |                 |                   |                                        |             |          | Abestos                | Medals             | ļ                      | -                     | Absentes  |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |               |                             |               |                                        |                      |                 |                   |                                        |             | 8        | Ĩ                      | 1-5                | I                      | PAH                   | Ĵå.       |                    |             |                   |          |                      | l l                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |               |                             |               |                                        |                      |                 |                   |                                        |             | ò        | P                      | Σ                  | F                      | a l                   | Æ∣        | 1 1                | i ì         | 1                 |          |                      |                    | I I       | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |               |                             |               | TOTY                                   | DAT                  |                 |                   | & PRESERVATIVE                         | DH          | $\nabla$ | -                      | -                  | ,                      |                       |           |                    |             |                   |          |                      | <u> </u>           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |               | SAMPLE ID                   | MA            |                                        |                      |                 |                   |                                        |             |          | <u> </u>               |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 57                   | IHA08         | 1.0-1-1                     | 300           | 1                                      | 22-2.4               | <u> </u>        | Ser +             | Bay + les                              |             |          |                        |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 38                   | HADG          | 0.0 - 0-1                   |               | <b></b>                                |                      |                 |                   |                                        |             | ×        |                        | ·'                 |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 39                   |               | 0.3-0.4                     |               |                                        |                      | ļ               |                   |                                        |             |          | <u> </u>               | <u> </u>           | <b> </b>               |                       |           |                    | <u> </u>    |                   |          |                      |                    | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |               |                             |               | ······································ |                      |                 |                   |                                        |             |          |                        | ~                  | $\mathbf{\dot{\star}}$ | $\mathbf{\mathbf{x}}$ | *         |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40                   | HAVO          | 0.0. 0.1                    |               |                                        | }                    |                 |                   |                                        |             |          | 1                      |                    |                        |                       |           |                    |             |                   | ļ        |                      | ł                  | 4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 41                   |               | 0.3-0.4                     |               |                                        | <u> </u>             |                 |                   |                                        |             | -        |                        |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 42                   |               | 0.6-0-7                     |               |                                        | <u> </u>             |                 |                   | -                                      |             | +        |                        | -                  |                        |                       |           |                    |             | ······            |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 43                   | HAII          | 0-0-0-1                     |               |                                        |                      |                 |                   | ······································ | _           |          | _                      | X                  | ·                      |                       | ×         |                    |             |                   |          | - <del> </del>  <br> |                    | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 44<br>45<br>46<br>47 |               | 0.3.0.4                     |               |                                        |                      |                 |                   | ·                                      |             |          |                        |                    |                        | ]                     |           |                    | ╂╼╼╉╸       |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45                   |               | 0.5-0.6                     |               |                                        |                      |                 |                   |                                        |             |          |                        |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 46                   |               | 0.7-0.8                     |               |                                        |                      |                 |                   |                                        |             |          |                        |                    |                        |                       |           |                    |             |                   |          | ++                   |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 47                   |               | 0-8-0-9                     |               |                                        |                      |                 |                   | V                                      |             |          |                        | ×                  | <u> </u>               |                       | ×         |                    | ╉┈┼╴        |                   |          |                      |                    |           | ng Mananala ang ang ang ang ang ang ang ang ang an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48                   | FZ            |                             | Fre           |                                        |                      |                 | Ban               | •                                      |             |          | ×                      |                    | -[                     |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 48<br>49             | HA12          | 0.0-0-1                     |               |                                        |                      |                 | 30-+              | Day + 1ce                              |             |          |                        |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SC                   |               | 0.3 - 0.4                   |               |                                        |                      |                 |                   |                                        |             | 1        |                        |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SI                   | <b>` </b>     | 0.5-0.6                     |               |                                        |                      |                 |                   |                                        |             |          |                        |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 52                   |               | 0.7 - 0.8                   |               | -                                      |                      |                 |                   |                                        |             |          | <u> </u>               |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 102                  | ; <del></del> |                             |               | -                                      |                      |                 |                   |                                        |             |          |                        | ×                  |                        |                       | ×         |                    |             |                   |          | _                    |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S                    | 14AG          | 0.0 - 0.1                   |               |                                        | ╞──╁╴                |                 |                   | $\checkmark$                           |             |          |                        |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 54                   | H V           | 0-2 3                       |               | ¥                                      | <u> </u>             |                 | METL              | OD OF SHIPMENT:                        |             |          | +                      | <u></u>            |                        | R                     | ECEIVE    | D BY:              |             |                   |          |                      | - (* )<br>F        | FOR RECI  | EIVING LAB USE ONLY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |               | RELINQUISHED                |               | DATE                                   |                      | NSIGNM          | NT NOTE N         |                                        |             |          | N/                     | AME:               |                        |                       |           |                    | DATE:       |                   | 1 1 1    | ang provinsi se sel  | 1997 - Maria Maria | 이번 것 같아요. | Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | NAME:         | Jathan Crose                | -             | 22.2                                   |                      |                 |                   |                                        |             |          |                        | F:                 |                        |                       |           |                    |             |                   | co       | OLER TI              | EMP                | deg C     | 自己的上位于今日48日14日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | OF: 🍣         | 207                         |               |                                        | 18                   | ANSPORT         | CO.<br>NT NOTE N  | <u> </u>                               | <u>.</u>    |          |                        | F.<br>AME:         |                        |                       | <u> </u>  |                    | DATE        |                   | со       | OLER SI              | EAL - Ye           | es No     | Intact Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | NAME:         |                             |               | DATE:                                  |                      |                 |                   |                                        |             |          |                        |                    |                        |                       |           |                    |             |                   | 60       | OLER TI              | ЕМР                | . deg C   | • Note that a set of the first strategies of the descent set of the set of |
| 1                    | OF:           |                             |               |                                        |                      | ANSPORT         | CO                | C = Sodium Hydroxide Prsvd; V          | C = Hydroch | loric Ac | <u>  O</u><br>id Prsvo | ⊢:<br>d Vial; '    | √ <u>5</u> = Sı        | ulfuric A             | cid Prsvd | Viai; <u>5</u> = 9 | Sulfuric Ac | d <u>Prsvd; Z</u> | = Zinc P | Prsvd; E =           | EDTA Pr            | svd; ST = | Sterile Bottle; O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2                    | Containe      | r & Preservative Codes: P : | = Plastic;    | ] = 50   J                             | ar; B = <u>Glass</u> | Bottle; $N = N$ | IGTE ACIG Prsyd.; | C = Sydiant - Jaionide - 15tay -       |             |          | -                      |                    |                        |                       |           |                    |             |                   |          |                      |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

JBS Environmental Pty Ltd ABN 67 071 842 638 Phone: (02) 8338-1011 Fax: (02) 8338-1700 Suite 2, 595 Gardeners Road MASCOT NSW 2020 PO Box 940 MASCOT NSW 1460 www.jbsgroup.com.au

IMSO FormsO13 - Chain of Custody

ł



# CHAIN OF CUSTODY

|                                        | PROJECT N       | 10 .: 44486                        |                                       |                     |                                       |                                        |             | 1.4      | 800                                    | TOD             | 10.17     |              |                |              |            |              |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------|-----------------|------------------------------------|---------------------------------------|---------------------|---------------------------------------|----------------------------------------|-------------|----------|----------------------------------------|-----------------|-----------|--------------|----------------|--------------|------------|--------------|---------|--------|-----------------------------------------------|-----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l.                                     | PROJECT N       | AME Hursty                         | lie                                   |                     |                                       | <u> </u>                               |             |          | DUKA                                   |                 | I PAI     | CH.N         | 0.             | e 187 - H    | ne na sy i | به جا په کې  |         | a      |                                               | (, <sup>2</sup> | n 160 🚌 in | in an in an air an airte an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ł                                      | SEND REP        | ORT TO: O                          | d in                                  | Crese               | SEND INVO                             | ICE TO: A work                         | •           |          | MPLE                                   | :RS             | $\sim$    | <u> </u>     | <u>ل کوالا</u> | <u> </u>     | <u> </u>   | dor          | +       |        | d                                             | Srd             | 0          | 229m 10-com.cn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                      | DATE NEE        | DED BY: STO                        | The                                   |                     |                                       | ICE TO: IT WERE                        |             |          | IONE:                                  | 00              | +31 (     | 101          | 022            | <b>-</b>     |            | $\checkmark$ | E       | MAIL   | <u>.:                                    </u> | حب              | ser.       | of a guarb com. co<br>enduration of a grant of |
| -                                      | COMMENTS        | / SPECIAL HANDL                    | ING / STORA                           | GE OR DISPOS        | AL:                                   |                                        |             |          |                                        | <u> </u>        |           |              | NEPN           | <u>1 199</u> | 9 🗸        |              |         |        |                                               |                 |            | J astran - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        |                 |                                    |                                       |                     |                                       |                                        |             |          | 1 1                                    |                 | 50        |              |                |              | ļ          |              |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        |                 |                                    |                                       |                     |                                       |                                        |             |          | 0                                      | <i>v</i>        | 1         |              |                |              |            |              | [       |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [                                      | 1               |                                    |                                       |                     |                                       |                                        |             | )<br>Sec | Conto                                  | Contes          | الخ       |              |                |              |            |              |         |        |                                               | 1               | ļ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        |                 | MPLE ID                            |                                       |                     | ~                                     |                                        |             | 15       | 6                                      | 3               | Cento     |              |                | ĺĺ           | 1          | ĺ            |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Łc                                     |                 |                                    |                                       | DATE                |                                       | YPE & PRESERVATIVE                     | pН          | <u> </u> | V                                      | Ů               | <u> </u>  |              |                |              |            |              |         |        | Í                                             |                 |            | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| \$S                                    | HAIQ C          | 2.0- 0.1                           | 50:1                                  | 22.2.1              | Ser                                   | + Bay + Ice                            |             |          |                                        |                 |           |              |                |              |            |              |         |        |                                               | +               | - <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\overline{\mathcal{P}}_{\mathcal{C}}$ |                 | 0-2-04                             |                                       |                     |                                       |                                        |             |          |                                        |                 |           | 1            |                | -            |            |              |         | ·····  |                                               | 1               |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ÞI                                     |                 | 0.5-0.6                            |                                       |                     |                                       |                                        |             |          |                                        |                 |           |              |                |              |            |              |         | _      |                                               |                 |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56<br>57<br>58                         | <u>↓</u>        | 10- L1                             |                                       |                     |                                       |                                        |             | -[       |                                        |                 |           |              |                | -            |            |              |         |        |                                               |                 |            | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 39<br>60                               | HAIS C          | 5-0-0-1                            |                                       |                     |                                       |                                        |             |          |                                        |                 | ×         |              |                |              |            |              |         |        |                                               |                 | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 66                                     |                 | 0.3-0.4                            |                                       |                     |                                       |                                        |             | -        |                                        |                 | <u> </u>  |              |                |              |            |              |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6(                                     |                 | 0.5-0.6                            |                                       |                     |                                       |                                        |             |          |                                        |                 |           |              |                | ·            |            |              |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                      |                 | 0.2 - 0.3                          |                                       |                     |                                       |                                        | ·····       |          | ······································ |                 |           |              |                |              |            |              |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ۲2                                     |                 | 0.6 - 0.8                          |                                       |                     |                                       |                                        |             |          |                                        |                 | <u> </u>  |              |                | ·····        |            |              |         |        |                                               |                 |            | un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34                                     | HALL            | 0.0- 0.1<br>0.2 - 0.3<br>0.4 - 0.5 |                                       |                     |                                       |                                        | -           |          |                                        |                 |           |              |                |              |            |              |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| įζ                                     |                 | 6.2-0.3                            |                                       |                     | ·····                                 | ······································ |             |          |                                        |                 |           |              |                |              |            |              |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5                                      |                 | 0.4-0.5                            | *                                     |                     |                                       |                                        |             |          |                                        |                 |           |              |                |              |            |              |         |        |                                               | <u> </u>        | _          | re .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <del>3</del> 7                         | QA1             | ,                                  | ·                                     | ·                   |                                       | · · · · · · · · · · · · · · · · · · ·  |             |          |                                        |                 |           |              |                |              |            |              |         |        |                                               | <u> </u>        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ķ                                      | QC1             |                                    |                                       | <u> </u>            |                                       | -                                      |             |          |                                        | - 3             |           |              |                |              |            |              |         | -      |                                               | ļ               | ļ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6                                      | QAZ             |                                    | · · · · · · · · · · · · · · · · · · · |                     |                                       |                                        |             | Ple      | <u> 2</u>                              | <u></u>         | anter     | 64           | 5              |              | <u>a</u> [ | <u>, 4</u>   | for     | 4 4    | R                                             | -70             | -05        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 38<br>39                               | Qcz             |                                    |                                       |                     |                                       |                                        |             |          |                                        |                 |           |              |                |              |            |              |         | 1      |                                               |                 | ļ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10                                     |                 |                                    |                                       |                     |                                       | •                                      | - <u> </u>  |          |                                        |                 |           |              | ļļ             |              |            |              |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.1                                    | The Spil        |                                    | water                                 |                     | <u>Via</u>                            | λ                                      |             | 4        |                                        |                 |           |              |                |              |            |              |         |        |                                               |                 |            | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 41                                     | Trip Bla        | ~~~                                | 1                                     | <b>_</b>            |                                       |                                        |             | *        | ĺ                                      |                 | 1         |              | ļļ             |              |            | 1            |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ŧ                                      |                 | RELINQUISHED B                     | <u>Y:</u><br>DATE:                    |                     | MET                                   | HOD OF SHIPMENT:                       |             |          |                                        | n a             | F         | <b>RECÉI</b> | ED B           | Y:           |            | 1 .          | 1.2.2   | 1997 N | 1.0                                           | FOR             | RECE       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                      | NAME:<br>Notice | Case                               | 22-2. W                               |                     | IMENT NOTE                            | NU.                                    |             |          | NAM                                    | E: [∇           | 101da     | IN P         | 'hilf          | ) DA         | TE: Z      | 421          |         | LER S  | EAL -                                         | Yes             | No         | IVING LAB USE ONLY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | OF:             | 7B>                                |                                       | <u>IRANSPC</u>      | RT CO.                                |                                        |             | ļ        | OF:                                    | F               | ELS       |              | 1              |              |            | <i>·</i> ·   |         |        |                                               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                      | INAME           |                                    | DATE:                                 | CONSIGN             | MENT NOTE                             | NO.                                    |             |          | NAM                                    |                 |           |              |                | DA           | ATE:       |              | COC     | LER S  | EAL -                                         | Yes             | No.        | Intact Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | OF:             | Sepustive Coder: D - D             |                                       |                     | RT CO                                 |                                        |             |          | OF:                                    |                 |           |              |                |              |            |              |         | 夢したズロ  | S                                             |                 |            | 방법 것이 있는 것 같아요. 이상 것 같아요. 그 것 같아요. 그 것 같아요. 이 것 같아요. 이 것 같아요.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                      | AFIE            | A THINK LOUGS: P = PI              | asiic; J = Soll Jar;                  | B = Glass Bottle; N | <ul> <li>Nitric Acid Prsvd</li> </ul> | .; C = Sodium Hydroxide Prsvd; VC ≈    | Hydrochlori | c Acid P | rsvd Vlal                              | <u>; VS = S</u> | ulfuric A | cid Prsvd    | d Vial; S      | = Sulfur     | C Acid Pr  | svd: 7 =     | Zinc Pr | vd F - | - EDTA                                        | Broudu          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

JBS Environmental Pty Ltd ABN 67 071 842 638 Phone: (02) 8338-1011 Fax: (02) 8338-1700

Suite 2, 595 Gardeners Road MASCOT NSW 2020 PO Box 940 MASCOT NSW 1460 www.jbsgroup.com.au

IMSO FormsO13 ~ Chain of Custody

1



.

# CHAIN OF CUSTODY

|                      | PROJECT NO .: 44 486                                                                |              |                                        |         |                                                                                                                 |           | LAE         | ORA        | TOR     | Y BAT    | TCH N    | 0.             |                 | 1.1    |      |         |                    |                           | 1     |      |                                   |                                        |
|----------------------|-------------------------------------------------------------------------------------|--------------|----------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|-----------|-------------|------------|---------|----------|----------|----------------|-----------------|--------|------|---------|--------------------|---------------------------|-------|------|-----------------------------------|----------------------------------------|
|                      | PROJECT NAME Hursturi                                                               |              |                                        |         |                                                                                                                 |           |             |            |         |          |          | <u>م</u>       | 4               | $\leq$ | Roba | the     |                    |                           | do    | N    | <u>a 5</u>                        | bgnoup.com.cn                          |
|                      | SEND REPORT TO: O Cre                                                               | N N G        | -23-e-                                 | SEND    | INVOICE TO: A worth                                                                                             |           |             |            |         |          |          | 024            |                 |        |      |         | EMA                | AIL:                      | مص    | 100  | <u>ne</u>                         | bgnup.com.an                           |
|                      | DATE NEEDED BY: STO                                                                 | TAT          |                                        |         |                                                                                                                 |           | QC          | LEVE       | EL:     |          |          | NEPM           | 1999            | ) (    | ٢.,  |         |                    |                           |       |      |                                   |                                        |
|                      | COMMENTS / SPECIAL HANDLIN                                                          | NG / STORAC  | SE OR DISPO                            | SAL:    |                                                                                                                 |           | M           |            |         |          |          |                | i               | 1      |      | ĺ       |                    |                           |       |      |                                   |                                        |
|                      |                                                                                     |              |                                        |         |                                                                                                                 |           |             |            |         |          |          |                |                 |        |      |         |                    |                           | ł     |      |                                   |                                        |
|                      |                                                                                     |              |                                        |         |                                                                                                                 |           | 8           |            |         |          |          |                |                 |        |      |         | ļ                  | ļ                         |       |      |                                   |                                        |
|                      |                                                                                     |              |                                        |         |                                                                                                                 |           | 1           |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
|                      |                                                                                     | MATRIX       | DATE                                   | TIME    | TYPE & PRESERVATIVE                                                                                             | рН        | 19          |            |         |          |          |                |                 |        | Í    |         |                    |                           |       |      |                                   | NOTES                                  |
|                      | SAMPLE ID                                                                           |              | 1                                      |         |                                                                                                                 |           | 4           |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
| 4                    | Minsche .                                                                           | wet-5        | 22-2-11                                |         | Buttes/Vials + lee                                                                                              |           |             |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
| B                    | KHOS (MWO 3 (9.5-1                                                                  | <u>b) S</u>  | <u> </u> ]                             | <u></u> | · ····································                                                                          |           |             |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   | ······································ |
| ,4                   | 13HOS (0.5-0.7)                                                                     | <u>    S</u> | extra-                                 |         |                                                                                                                 |           |             |            | }<br>   |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
| 15                   | HA18 (0.0-0-2)                                                                      | S            | jors                                   |         |                                                                                                                 |           |             |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
| 16                   | Rinsch<br>BHO3 / MWO3 (9.5-1)<br>BHOS (0.5-0.7)<br>HA18 (0.0-0-2)<br>HA18 (0.3-0.4) | ) S          | bigs                                   | 1       |                                                                                                                 |           |             |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
| 77                   | HA18 (0.5-0.6)                                                                      | S            | 7 202                                  |         |                                                                                                                 |           | 1           |            |         |          |          |                | L               |        |      |         |                    |                           |       | -    |                                   |                                        |
|                      | HA14 (0.2-0.3)                                                                      | <u> </u>     | had                                    | -       |                                                                                                                 |           |             |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
| 10                   | 11714 10 200 3)                                                                     | <u> </u>     | bag                                    | -       |                                                                                                                 |           |             |            |         |          |          |                |                 |        |      | ·       |                    |                           |       |      |                                   |                                        |
| -                    |                                                                                     |              | ······································ | -       | <b>n</b>                                                                                                        |           |             |            | ··/     |          |          |                |                 |        |      |         |                    |                           |       |      |                                   | · · · · · · · · · · · · · · · · · · ·  |
|                      |                                                                                     |              |                                        | +       |                                                                                                                 |           |             |            |         |          |          |                | <u></u><br>     |        |      |         |                    |                           |       |      |                                   |                                        |
| 1                    |                                                                                     |              |                                        | -       |                                                                                                                 |           |             |            |         |          |          |                | -               |        |      |         |                    |                           |       |      |                                   |                                        |
|                      |                                                                                     |              | ·····                                  |         |                                                                                                                 |           | -           |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
| a fan de la de la de |                                                                                     | <u> </u>     |                                        |         |                                                                                                                 |           |             |            | •       |          |          |                | .  -            |        |      |         |                    |                           |       |      |                                   |                                        |
|                      |                                                                                     |              |                                        |         |                                                                                                                 |           |             |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
| 1                    |                                                                                     |              |                                        |         |                                                                                                                 |           |             | <u> </u>   |         | .        |          |                | <u> </u>        |        |      |         |                    |                           |       |      |                                   |                                        |
|                      |                                                                                     |              |                                        |         |                                                                                                                 |           | _           |            |         |          |          |                |                 |        |      |         |                    |                           |       |      | <u> </u>                          |                                        |
|                      |                                                                                     |              |                                        |         |                                                                                                                 |           |             |            |         |          |          |                | ļ               |        |      |         |                    | ļ                         |       |      |                                   |                                        |
|                      |                                                                                     |              |                                        |         |                                                                                                                 |           |             |            |         |          |          |                |                 |        |      |         | <i></i>            |                           |       |      |                                   |                                        |
| 1                    | New Sector Control Control AAA* 100-012-012-012-012-012-012-012-012-012-            |              |                                        |         | 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 |           |             |            |         |          |          |                |                 |        |      |         |                    |                           |       |      |                                   |                                        |
|                      | RELINQUISHED E                                                                      | 3Y:          | <u> </u>                               |         | METHOD OF SHIPMENT:                                                                                             |           |             |            |         |          | REC      | ELVED          | βY:             |        |      | h-11    |                    | Spel Ja                   | 학 국 ( | FOI  | RECE                              | IVING LAB USE ONLY:                    |
|                      | NAME: Nathan Cusson                                                                 | DATE:        | CONS                                   | IGNMEN  | IT NOTE NO.                                                                                                     |           |             | NA         | ME:     | 1/10     | (yah     | Phi            | ηρī             | DATE:  | 24   | 4       | lcoo               | LER S                     | EAL - | Yes. | No                                | IVING LAB USE ONLY:                    |
|                      | OF: TES                                                                             | 22.2         | ''   TRAN                              | SPORT O |                                                                                                                 |           |             | OF         |         | EL       | 5        |                | ۱<br>           |        |      |         |                    |                           |       |      | eg C                              |                                        |
| ;                    | NAME:                                                                               | DATE:        | 1                                      |         | IT NOTE NO.                                                                                                     |           | _           |            | ME:     |          |          |                |                 | DATE   |      |         | 1.11.11            | 1. 1. 97                  | . T   |      | 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Intact Broken                          |
| -                    | OF:<br>Container & Preservative Codes: P = 1                                        | = Hydrochi   | oric Arir                              | OF      | Vial: V                                                                                                         | s = Sulfa | ITIC Acid I | rsvd Vial: | S = Sul | furic Ac | id Prsvd | ; <u>z =</u> 2 | COO<br>Zinc Prs | LER T  | EMP  | A Prsvd | eg C :<br>; ST = : | Sterile Bottle: 0 = Other |       |      |                                   |                                        |

JBS Environmental Pty Ltd ABN 67 071 842 638 Phone: (02) 8338-1011 Fax: (02) 8338-1700 IMSO FormsO13 - Chain of Custody

Suite 2, 595 Gardeners Road MASCOT NSW 2020 PO Box 940 MASCOT NSW 1460 www.ibsgroup.com.au

ţ



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

#### **CERTIFICATE OF ANALYSIS**

52147

Client: JBS Environmental Pty Ltd P.O. Box 940 MASCOT NSW 1460

Attention: Danielle Ord / Nathan Cussen

#### Sample log in details:

| Your Reference:                                         | 41486, Hurstville               |
|---------------------------------------------------------|---------------------------------|
| No. of samples:                                         | 67 Soils, 2 Materials, 3 Waters |
| Date samples received / completed instructions received | 22/02/11 / 22/02/11             |

#### Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

#### **Report Details:**

 Date results requested by: / Issue Date:
 1/03/11
 / 1/03/11

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with \*.

#### **Results Approved By:**

-Alan

Nancy Zhang Chemist

Rhian Morgan Reporting Supervisor

M. Mauffield

Matt Mansfield Approved Signatory

Envirolab Reference: 52147 Revision No: R 00





Jeremy Faircloth Chemist

| vTRH & BTEX in Soil            |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | 52147-1    | 52147-7    | 52147-13   | 52147-19   | 52147-25   |
| Your Reference                 |       | BH01/MW01  | BH02/MW02  | BH03/MW03  | BH04/MW04  | BH05       |
| Depth                          |       | 0.2-0.4    | 0.0-0.1    | 0.0-0.1    | 0.2-0.3    | 0.25       |
| Date Sampled                   |       | 21/02/2011 | 21/02/2011 | 21/02/2011 | 22/02/2011 | 21/02/201  |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2017 |
| Date analysed                  | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/201  |
| vTRHC6 - C9                    | mg/kg | <25        | <25        | <25        | <25        | <25        |
| Benzene                        | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | [NA]       |
| Toluene                        | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | [NA]       |
| Ethylbenzene                   | mg/kg | <1.0       | <1.0       | <1.0       | <1.0       | [NA]       |
| m+p-xylene                     | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | [NA]       |
| o-Xylene                       | mg/kg | <1.0       | <1.0       | <1.0       | <1.0       | [NA]       |
| Surrogate aaa-Trifluorotoluene | %     | 86         | 83         | 101        | 101        | 89         |

| vTRH & BTEX in Soil            |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | 52147-30   | 52147-34   | 52147-38   | 52147-40   | 52147-43   |
| Your Reference                 |       | HA07       | HA08       | HA09       | HA10       | HA11       |
| Depth                          |       | 0.0-0.1    | 0.0-0.1    | 0.0-0.1    | 0.0-0.1    | 0.0-0.1    |
| Date Sampled                   |       | 22/02/2011 | 22/02/2011 | 22/02/2011 | 22/02/2011 | 22/02/2011 |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Date analysed                  | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| vTRHC6 - C9                    | mg/kg | <25        | <25        | <25        | <25        | <25        |
| Benzene                        | mg/kg | <0.5       | <0.5       | <0.5       | [NA]       | <0.5       |
| Toluene                        | mg/kg | <0.5       | <0.5       | <0.5       | [NA]       | <0.5       |
| Ethylbenzene                   | mg/kg | <1.0       | <1.0       | <1.0       | [NA]       | <1.0       |
| m+p-xylene                     | mg/kg | <2.0       | <2.0       | <2.0       | [NA]       | <2.0       |
| o-Xylene                       | mg/kg | <1.0       | <1.0       | <1.0       | [NA]       | <1.0       |
| Surrogate aaa-Trifluorotoluene | %     | 105        | 104        | 101        | 100        | 96         |

| vTRH&BTEX in Soil              |       |            |            |
|--------------------------------|-------|------------|------------|
| Our Reference:                 | UNITS | 52147-59   | 52147-67   |
| Your Reference                 |       | HA15       | QA1        |
| Depth                          |       | 0.0-0.1    | -          |
| Date Sampled                   |       | 22/02/2011 | 22/02/2011 |
| Type of sample                 |       | Soil       | Soil       |
| Date extracted                 | -     | 23/02/2011 | 23/02/2011 |
| Date analysed                  | -     | 23/02/2011 | 23/02/2011 |
| vTRHC6 - C9                    | mg/kg | <25        | <25        |
| Benzene                        | mg/kg | <0.5       | <0.5       |
| Toluene                        | mg/kg | <0.5       | <0.5       |
| Ethylbenzene                   | mg/kg | <1.0       | <1.0       |
| m+p-xylene                     | mg/kg | <2.0       | <2.0       |
| o-Xylene                       | mg/kg | <1.0       | <1.0       |
| Surrogate aaa-Trifluorotoluene | %     | 101        | 103        |

| sTRH in Soil (C10-C36) |       |            |            |            |            |            |
|------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:         | UNITS | 52147-1    | 52147-7    | 52147-13   | 52147-19   | 52147-25   |
| Your Reference         |       | BH01/MW01  | BH02/MW02  | BH03/MW03  | BH04/MW04  | BH05       |
| Depth                  |       | 0.2-0.4    | 0.0-0.1    | 0.0-0.1    | 0.2-0.3    | 0.25       |
| Date Sampled           |       | 21/02/2011 | 21/02/2011 | 21/02/2011 | 22/02/2011 | 21/02/2011 |
| Type of sample         |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted         | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Date analysed          | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| TRHC 10 - C 14         | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TRHC 15 - C28          | mg/kg | <100       | 250        | <100       | <100       | <100       |
| TRHC29 - C36           | mg/kg | <100       | 400        | <100       | <100       | <100       |
| Surrogate o-Terphenyl  | %     | 93         | 94         | 90         | 89         | 90         |

| sTRH in Soil (C10-C36)        |                |              |              |              |              |              |
|-------------------------------|----------------|--------------|--------------|--------------|--------------|--------------|
| Our Reference:                | UNITS          | 52147-30     | 52147-34     | 52147-38     | 52147-40     | 52147-43     |
| Your Reference                |                | HA07         | HA08         | HA09         | HA10         | HA11         |
| Depth                         |                | 0.0-0.1      | 0.0-0.1      | 0.0-0.1      | 0.0-0.1      | 0.0-0.1      |
| Date Sampled                  |                | 22/02/2011   | 22/02/2011   | 22/02/2011   | 22/02/2011   | 22/02/2011   |
| Type of sample                |                | Soil         | Soil         | Soil         | Soil         | Soil         |
| Date extracted                | -              | 23/02/2011   | 23/02/2011   | 23/02/2011   | 23/02/2011   | 23/02/2011   |
| Date analysed                 | -              | 23/02/2011   | 23/02/2011   | 23/02/2011   | 23/02/2011   | 23/02/2011   |
| TRHC 10 - C 14                | mg/kg          | <50          | <50          | <50          | <50          | <50          |
|                               |                |              |              |              |              |              |
| TRHC 15 - C28                 | mg/kg          | <100         | <100         | <100         | <100         | <100         |
| TRHC 15 - C28<br>TRHC29 - C36 | mg/kg<br>mg/kg | <100<br><100 | <100<br><100 | <100<br><100 | <100<br><100 | <100<br><100 |

| sTRH in Soil (C10-C36)               |       |            |            |
|--------------------------------------|-------|------------|------------|
| Our Reference:                       | UNITS | 52147-59   | 52147-67   |
| Your Reference                       |       | HA15       | QA1        |
| Depth                                |       | 0.0-0.1    | -          |
| Date Sampled                         |       | 22/02/2011 | 22/02/2011 |
| Type of sample                       |       | Soil       | Soil       |
| Date extracted                       | -     | 23/02/2011 | 23/02/2011 |
| Date analysed                        | -     | 23/02/2011 | 23/02/2011 |
| TRHC 10 - C 14                       | mg/kg | <50        | <50        |
| TRHC 15 - C28                        | mg/kg | <100       | <100       |
| TRHC <sub>29</sub> - C <sub>36</sub> | mg/kg | <100       | <100       |
| Surrogate o-Terphenyl                | %     | 91         | 92         |

| PAHs in Soil<br>Our Reference:<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample | UNITS<br> | 52147-1<br>BH01/MW01<br>0.2-0.4<br>21/02/2011<br>Soil | 52147-7<br>BH02/MW02<br>0.0-0.1<br>21/02/2011<br>Soil | 52147-13<br>BH03/MW03<br>0.0-0.1<br>21/02/2011<br>Soil | 52147-19<br>BH04/MW04<br>0.2-0.3<br>22/02/2011<br>Soil | 52147-25<br>BH05<br>0.25<br>21/02/2011<br>Soil |
|---------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|
| <br>Date extracted                                                                          | -         | 23/02/2011                                            | 23/02/2011                                            | 23/02/2011                                             | 23/02/2011                                             | 23/02/2011                                     |
| Date analysed                                                                               | -         | 23/02/2011                                            | 23/02/2011                                            | 23/02/2011                                             | 23/02/2011                                             | 23/02/2011                                     |
| Naphthalene                                                                                 | mg/kg     | <0.1                                                  | <0.1                                                  | <0.1                                                   | <0.1                                                   | <0.1                                           |
| Acenaphthylene                                                                              | mg/kg     | <0.1                                                  | <0.1                                                  | <0.1                                                   | <0.1                                                   | 0.1                                            |
| Acenaphthene                                                                                | mg/kg     | <0.1                                                  | <0.1                                                  | <0.1                                                   | <0.1                                                   | <0.1                                           |
| Fluorene                                                                                    | mg/kg     | <0.1                                                  | <0.1                                                  | <0.1                                                   | <0.1                                                   | <0.1                                           |
| Phenanthrene                                                                                | mg/kg     | 1.1                                                   | 0.1                                                   | 0.2                                                    | <0.1                                                   | 1.0                                            |
| Anthracene                                                                                  | mg/kg     | 0.2                                                   | <0.1                                                  | <0.1                                                   | <0.1                                                   | 0.2                                            |
| Fluoranthene                                                                                | mg/kg     | 1.8                                                   | 0.3                                                   | 0.4                                                    | <0.1                                                   | 1.5                                            |
| Pyrene                                                                                      | mg/kg     | 1.6                                                   | 0.3                                                   | 0.4                                                    | <0.1                                                   | 1.4                                            |
| Benzo(a)anthracene                                                                          | mg/kg     | 0.8                                                   | 0.1                                                   | 0.2                                                    | <0.1                                                   | 0.7                                            |
| Chrysene                                                                                    | mg/kg     | 0.7                                                   | 0.1                                                   | 0.1                                                    | <0.1                                                   | 0.6                                            |
| Benzo(b+k)fluoranthene                                                                      | mg/kg     | 1.1                                                   | 0.3                                                   | 0.3                                                    | <0.2                                                   | 1.0                                            |
| Benzo(a)pyrene                                                                              | mg/kg     | 0.6                                                   | 0.2                                                   | 0.2                                                    | <0.05                                                  | 0.7                                            |
| Indeno(1,2,3-c,d)pyrene                                                                     | mg/kg     | 0.4                                                   | 0.1                                                   | 0.1                                                    | <0.1                                                   | 0.4                                            |
| Dibenzo(a,h)anthracene                                                                      | mg/kg     | <0.1                                                  | <0.1                                                  | <0.1                                                   | <0.1                                                   | <0.1                                           |
| Benzo(g,h,i)perylene                                                                        | mg/kg     | 0.4                                                   | 0.1                                                   | 0.1                                                    | <0.1                                                   | 0.4                                            |
| Surrogate p-Terphenyl-d14                                                                   | %         | 104                                                   | 108                                                   | 108                                                    | 107                                                    | 108                                            |

#### Client Reference:

41486, Hurstville

| PAHs in Soil              |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | 52147-30   | 52147-34   | 52147-38   | 52147-40   | 52147-43   |
| Your Reference            |       | HA07       | HA08       | HA09       | HA10       | HA11       |
| Depth                     |       | 0.0-0.1    | 0.0-0.1    | 0.0-0.1    | 0.0-0.1    | 0.0-0.1    |
| Date Sampled              |       | 22/02/2011 | 22/02/2011 | 22/02/2011 | 22/02/2011 | 22/02/2011 |
| Type of sample            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted            | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Date analysed             | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Naphthalene               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthylene            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthene              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluorene                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Phenanthrene              | mg/kg | <0.1       | 0.3        | 0.5        | <0.1       | <0.1       |
| Anthracene                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluoranthene              | mg/kg | <0.1       | 0.5        | 1.0        | <0.1       | <0.1       |
| Pyrene                    | mg/kg | <0.1       | 0.5        | 0.9        | <0.1       | <0.1       |
| Benzo(a)anthracene        | mg/kg | <0.1       | 0.1        | 0.4        | <0.1       | <0.1       |
| Chrysene                  | mg/kg | <0.1       | 0.2        | 0.4        | <0.1       | <0.1       |
| Benzo(b+k)fluoranthene    | mg/kg | <0.2       | 0.3        | 0.8        | <0.2       | <0.2       |
| Benzo(a)pyrene            | mg/kg | <0.05      | 0.2        | 0.5        | <0.05      | <0.05      |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | <0.1       | 0.1        | 0.3        | <0.1       | <0.1       |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(g,h,i)perylene      | mg/kg | <0.1       | 0.1        | 0.3        | <0.1       | <0.1       |
| Surrogate p-Terphenyl-d14 | %     | 108        | 108        | 104        | 108        | 106        |

#### Client Reference: 41486,

41486, Hurstville

| PAHs in Soil              |       |            |            |
|---------------------------|-------|------------|------------|
| Our Reference:            | UNITS | 52147-59   | 52147-67   |
| Your Reference            |       | HA15       | QA1        |
| Depth                     |       | 0.0-0.1    | -          |
| Date Sampled              |       | 22/02/2011 | 22/02/2011 |
| Type of sample            |       | Soil       | Soil       |
| Date extracted            | -     | 23/02/2011 | 23/02/2011 |
| Date analysed             | -     | 23/02/2011 | 23/02/2011 |
| Naphthalene               | mg/kg | <0.1       | <0.1       |
| Acenaphthylene            | mg/kg | 0.6        | 0.6        |
| Acenaphthene              | mg/kg | <0.1       | <0.1       |
| Fluorene                  | mg/kg | 0.3        | 0.2        |
| Phenanthrene              | mg/kg | 3.7        | 3.2        |
| Anthracene                | mg/kg | 0.7        | 0.5        |
| Fluoranthene              | mg/kg | 5.3        | 4.5        |
| Pyrene                    | mg/kg | 4.7        | 4.0        |
| Benzo(a)anthracene        | mg/kg | 2.1        | 1.8        |
| Chrysene                  | mg/kg | 2.1        | 1.7        |
| Benzo(b+k)fluoranthene    | mg/kg | 3.5        | 3.0        |
| Benzo(a)pyrene            | mg/kg | 2.3        | 1.9        |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | 1.4        | 1.2        |
| Dibenzo(a,h)anthracene    | mg/kg | 0.3        | 0.2        |
| Benzo(g,h,i)perylene      | mg/kg | 1.2        | 1.0        |
| Surrogate p-Terphenyl-d14 | %     | 107        | 109        |

| Organochlorine Pesticides in soil |       |            |            |            |            |            |
|-----------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                    | UNITS | 52147-1    | 52147-7    | 52147-13   | 52147-19   | 52147-38   |
| Your Reference                    |       | BH01/MW01  | BH02/MW02  | BH03/MW03  | BH04/MW04  | HA09       |
| Depth                             |       | 0.2-0.4    | 0.0-0.1    | 0.0-0.1    | 0.2-0.3    | 0.0-0.1    |
| Date Sampled                      |       | 21/02/2011 | 21/02/2011 | 21/02/2011 | 22/02/2011 | 22/02/2011 |
| Type of sample                    |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Date analysed                     | -     | 24/02/2011 | 24/02/2011 | 24/02/2011 | 24/02/2011 | 24/02/2011 |
| НСВ                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX                   | %     | 77         | 86         | 84         | 78         | 82         |

| Organochlorine Pesticides in soil |       |            |
|-----------------------------------|-------|------------|
| Our Reference:                    | UNITS | 52147-43   |
| Your Reference                    |       | HA11       |
| Depth                             |       | 0.0-0.1    |
| Date Sampled                      |       | 22/02/2011 |
| Type of sample                    |       | Soil       |
| Date extracted                    | -     | 23/02/2011 |
| Date analysed                     | -     | 24/02/2011 |
| HCB                               | mg/kg | <0.1       |
| alpha-BHC                         | mg/kg | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       |
| beta-BHC                          | mg/kg | <0.1       |
| Heptachlor                        | mg/kg | <0.1       |
| delta-BHC                         | mg/kg | <0.1       |
| Aldrin                            | mg/kg | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       |
| pp-DDE                            | mg/kg | <0.1       |
| Dieldrin                          | mg/kg | <0.1       |
| Endrin                            | mg/kg | <0.1       |
| pp-DDD                            | mg/kg | <0.1       |
| EndosulfanII                      | mg/kg | <0.1       |
| pp-DDT                            | mg/kg | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       |
| Surrogate TCLMX                   | %     | 75         |

| Organophosphorus Pesticides |       |            |            |            |            |            |
|-----------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:              | UNITS | 52147-1    | 52147-7    | 52147-13   | 52147-19   | 52147-38   |
| Your Reference              |       | BH01/MW01  | BH02/MW02  | BH03/MW03  | BH04/MW04  | HA09       |
| Depth                       |       | 0.2-0.4    | 0.0-0.1    | 0.0-0.1    | 0.2-0.3    | 0.0-0.1    |
| Date Sampled                |       | 21/02/2011 | 21/02/2011 | 21/02/2011 | 22/02/2011 | 22/02/2011 |
| Type of sample              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Date analysed               | -     | 24/02/2011 | 24/02/2011 | 24/02/2011 | 24/02/2011 | 24/02/2011 |
| Diazinon                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dimethoate                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos-methyl        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ronnel                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fenitrothion                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Bromophos-ethyl             | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ethion                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX             | %     | 77         | 86         | 84         | 78         | 82         |

| Organophosphorus Pesticides |       |            |
|-----------------------------|-------|------------|
| Our Reference:              | UNITS | 52147-43   |
| Your Reference              |       | HA11       |
| Depth                       |       | 0.0-0.1    |
| Date Sampled                |       | 22/02/2011 |
| Type of sample              |       | Soil       |
| Date extracted              | -     | 23/02/2011 |
| Date analysed               | -     | 24/02/2011 |
| Diazinon                    | mg/kg | <0.1       |
| Dimethoate                  | mg/kg | <0.1       |
| Chlorpyriphos-methyl        | mg/kg | <0.1       |
| Ronnel                      | mg/kg | <0.1       |
| Chlorpyriphos               | mg/kg | <0.1       |
| Fenitrothion                | mg/kg | <0.1       |
| Bromophos-ethyl             | mg/kg | <0.1       |
| Ethion                      | mg/kg | <0.1       |
| Surrogate TCLMX             | %     | 75         |

| PCBs in Soil    |       |            |            |            |            |            |
|-----------------|-------|------------|------------|------------|------------|------------|
| Our Reference:  | UNITS | 52147-1    | 52147-7    | 52147-13   | 52147-19   | 52147-38   |
| Your Reference  |       | BH01/MW01  | BH02/MW02  | BH03/MW03  | BH04/MW04  | HA09       |
| Depth           |       | 0.2-0.4    | 0.0-0.1    | 0.0-0.1    | 0.2-0.3    | 0.0-0.1    |
| Date Sampled    |       | 21/02/2011 | 21/02/2011 | 21/02/2011 | 22/02/2011 | 22/02/2011 |
| Type of sample  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted  | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Date analysed   | -     | 24/02/2011 | 24/02/2011 | 24/02/2011 | 24/02/2011 | 24/02/2011 |
| Arochlor 1016   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1221*  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1232   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1242   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1248   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1254   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1260   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX | %     | 77         | 86         | 84         | 78         | 82         |

| PCBs in Soil    |       |            |
|-----------------|-------|------------|
| Our Reference:  | UNITS | 52147-43   |
| Your Reference  |       | HA11       |
| Depth           |       | 0.0-0.1    |
| Date Sampled    |       | 22/02/2011 |
| Type of sample  |       | Soil       |
| Date extracted  | -     | 23/02/2011 |
| Date analysed   | -     | 24/02/2011 |
| Arochlor 1016   | mg/kg | <0.1       |
| Arochlor 1221*  | mg/kg | <0.1       |
| Arochlor 1232   | mg/kg | <0.1       |
| Arochlor 1242   | mg/kg | <0.1       |
| Arochlor 1248   | mg/kg | <0.1       |
| Arochlor 1254   | mg/kg | <0.1       |
| Arochlor 1260   | mg/kg | <0.1       |
| Surrogate TCLMX | %     | 75         |

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                  | UNITS | 52147-1    | 52147-7    | 52147-8    | 52147-13   | 52147-19   |
| Your Reference                  |       | BH01/MW01  | BH02/MW02  | BH02/MW02  | BH03/MW03  | BH04/MW04  |
| Depth                           |       | 0.2-0.4    | 0.0-0.1    | 0.3-0.5    | 0.0-0.1    | 0.2-0.3    |
| Date Sampled                    |       | 21/02/2011 | 21/02/2011 | 21/02/2011 | 21/02/2011 | 22/02/2011 |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Datedigested                    | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Date analysed                   | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Arsenic                         | mg/kg | <4         | <4         | <4         | 4          | 6          |
| Cadmium                         | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Chromium                        | mg/kg | 15         | 21         | 25         | 9          | 8          |
| Copper                          | mg/kg | 21         | 43         | 37         | 15         | 51         |
| Lead                            | mg/kg | 18         | 38         | 34         | 100        | 14         |
| Mercury                         | mg/kg | <0.1       | <0.1       | 0.2        | <0.1       | <0.1       |
| Nickel                          | mg/kg | 7          | 21         | 57         | 3          | 6          |
| Zinc                            | mg/kg | 34         | 100        | 59         | 49         | 49         |
| Acid Extractable metals in soil |       |            |            |            |            |            |
| Our Reference:                  | UNITS | 52147-20   | 52147-25   | 52147-30   | 52147-34   | 52147-35   |
| Your Reference                  |       | BH04/MW04  | BH05       | HA07       | HA08       | HA08       |
| Depth                           |       | 0.5-0.7    | 0.25       | 0.0-0.1    | 0.0-0.1    | 0.3-0.4    |
| Date Sampled                    |       | 22/02/2011 | 21/02/2011 | 22/02/2011 | 22/02/2011 | 22/02/2011 |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date digested                   | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Date analysed                   | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Arsenic                         | mg/kg | 16         | 6          | 74         | <4         | <4         |
|                                 |       | 1          | 1          |            | 1          | 1          |

<0.5

8

49

40

<0.1

11

44

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

<0.5

17

52

110

0.1

6

180

<0.5

3

2

18

0.2

2

35

<0.5

12

18

26

<0.1

31

49

<0.5

18

20

33

<0.1

38

51

Cadmium

Chromium

Copper

Lead

Mercury

Nickel

Zinc

| Acid Extractable metals in soil |       |                    |                    |                    |                    |                    |
|---------------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Our Reference:                  | UNITS | 52147-38           | 52147-40           | 52147-43           | 52147-44           | 52147-47           |
| Your Reference                  |       | HA09               | HA10               | HA11               | HA11               | HA11               |
| Depth                           |       | 0.0-0.1            | 0.0-0.1            | 0.0-0.1            | 0.3-0.4            | 0.8-0.9            |
| Date Sampled<br>Type of sample  |       | 22/02/2011<br>Soil | 22/02/2011<br>Soil | 22/02/2011<br>Soil | 22/02/2011<br>Soil | 22/02/2011<br>Soil |
| Date digested                   | -     | 23/02/2011         | 23/02/2011         | 23/02/2011         | 23/02/2011         | 23/02/2011         |
| Date analysed                   | -     | 23/02/2011         | 23/02/2011         | 23/02/2011         | 23/02/2011         | 23/02/2011         |
| Arsenic                         | mg/kg | 13                 | <4                 | <4                 | 5                  | 8                  |
| Cadmium                         | mg/kg | 0.9                | <0.5               | <0.5               | <0.5               | <0.5               |
| Chromium                        | mg/kg | 23                 | 6                  | 5                  | 11                 | 31                 |
| Copper                          | mg/kg | 63                 | 6                  | 19                 | 12                 | 23                 |
| Lead                            | mg/kg | 430                | 8                  | 21                 | 69                 | 480                |
| Mercury                         | mg/kg | 1                  | <0.1               | <0.1               | <0.1               | 0.3                |
| Nickel                          | mg/kg | 8                  | 4                  | 3                  | 3                  | 13                 |
| Zinc                            | mg/kg | 630                | 25                 | 160                | 59                 | 180                |

| Acid Extractable metals in soil |       |            |            |            |
|---------------------------------|-------|------------|------------|------------|
| Our Reference:                  | UNITS | 52147-53   | 52147-59   | 52147-67   |
| Your Reference                  |       | HA13       | HA15       | QA1        |
| Depth                           |       | 0.0-0.1    | 0.0-0.1    | -          |
| Date Sampled                    |       | 22/02/2011 | 22/02/2011 | 22/02/2011 |
| Type of sample                  |       | Soil       | Soil       | Soil       |
| Date digested                   | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Date analysed                   | -     | 23/02/2011 | 23/02/2011 | 23/02/2011 |
| Arsenic                         | mg/kg | <4         | 4          | 4          |
| Cadmium                         | mg/kg | <0.5       | <0.5       | <0.5       |
| Chromium                        | mg/kg | 33         | 11         | 11         |
| Copper                          | mg/kg | 9          | 27         | 28         |
| Lead                            | mg/kg | 11         | 180        | 170        |
| Mercury                         | mg/kg | <0.1       | 0.2        | 0.2        |
| Nickel                          | mg/kg | 6          | 5          | 5          |
| Zinc                            | mg/kg | 29         | 100        | 100        |

| Moisture                                                                                                                                                    |                     |                                                                                                           |                                                                                                            |                                                                                                    |                                                |                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Our Reference:                                                                                                                                              | UNITS               | 52147-1                                                                                                   | 52147-7                                                                                                    | 52147-8                                                                                            | 52147-13                                       | 52147-19                                       |
| Your Reference                                                                                                                                              | UNITS               | BH01/MW01                                                                                                 | BH02/MW02                                                                                                  | BH02/MW02                                                                                          | BH03/MW03                                      | BH04/MW04                                      |
| Depth                                                                                                                                                       |                     | 0.2-0.4                                                                                                   | 0.0-0.1                                                                                                    | 0.3-0.5                                                                                            | 0.0-0.1                                        | 0.2-0.3                                        |
| Date Sampled                                                                                                                                                |                     | 21/02/2011                                                                                                | 21/02/2011                                                                                                 | 21/02/2011                                                                                         | 21/02/2011                                     | 22/02/2011                                     |
| Type of sample                                                                                                                                              |                     | Soil                                                                                                      | Soil                                                                                                       | Soil                                                                                               | Soil                                           | Soil                                           |
|                                                                                                                                                             |                     | 23/02/2011                                                                                                | 23/02/2011                                                                                                 | 23/02/2011                                                                                         | 23/02/2011                                     | 23/02/2011                                     |
| Date prepared                                                                                                                                               | -                   |                                                                                                           |                                                                                                            | 23/02/2011                                                                                         |                                                |                                                |
| Date analysed                                                                                                                                               | -                   | 24/02/2011                                                                                                | 24/02/2011                                                                                                 |                                                                                                    | 24/02/2011                                     | 24/02/2011                                     |
| Moisture                                                                                                                                                    | %                   | 18                                                                                                        | 48                                                                                                         | 21                                                                                                 | 10                                             | 11                                             |
| Moisture                                                                                                                                                    |                     |                                                                                                           |                                                                                                            |                                                                                                    |                                                |                                                |
| Our Reference:                                                                                                                                              | UNITS               | 52147-20                                                                                                  | 52147-25                                                                                                   | 52147-30                                                                                           | 52147-34                                       | 52147-35                                       |
| Your Reference                                                                                                                                              |                     | BH04/MW04                                                                                                 | BH05                                                                                                       | HA07                                                                                               | HA08                                           | HA08                                           |
| Depth                                                                                                                                                       |                     | 0.5-0.7                                                                                                   | 0.25                                                                                                       | 0.0-0.1                                                                                            | 0.0-0.1                                        | 0.3-0.4                                        |
| DateSampled                                                                                                                                                 |                     | 22/02/2011                                                                                                | 21/02/2011                                                                                                 | 22/02/2011                                                                                         | 22/02/2011                                     | 22/02/2011                                     |
| Type of sample                                                                                                                                              |                     | Soil                                                                                                      | Soil                                                                                                       | Soil                                                                                               | Soil                                           | Soil                                           |
| Date prepared                                                                                                                                               | -                   | 23/02/2011                                                                                                | 23/02/2011                                                                                                 | 23/02/2011                                                                                         | 23/02/2011                                     | 23/02/2011                                     |
| Date analysed                                                                                                                                               | -                   | 24/02/2011                                                                                                | 24/02/2011                                                                                                 | 24/02/2011                                                                                         | 24/02/2011                                     | 24/02/2011                                     |
| Moisture                                                                                                                                                    | %                   | 8.8                                                                                                       | 37                                                                                                         | 7.0                                                                                                | 10                                             | 8.0                                            |
| Malation                                                                                                                                                    |                     |                                                                                                           |                                                                                                            |                                                                                                    |                                                |                                                |
| Moisture                                                                                                                                                    |                     | 504 47 00                                                                                                 | 504 47 40                                                                                                  | 504 47 40                                                                                          | F04 47 44                                      | 504 47 47                                      |
| Our Reference:<br>Your Reference                                                                                                                            | UNITS               | 52147-38<br>HA09                                                                                          | 52147-40<br>HA10                                                                                           | 52147-43<br>HA11                                                                                   | 52147-44<br>HA11                               | 52147-47<br>HA11                               |
| Depth                                                                                                                                                       |                     | HAU9                                                                                                      | HATU                                                                                                       | DATI                                                                                               | DATI                                           | DATI                                           |
| Depin                                                                                                                                                       |                     | 0001                                                                                                      | 0001                                                                                                       | 0001                                                                                               | 0204                                           | 0 0 0 0                                        |
| •                                                                                                                                                           |                     | 0.0-0.1                                                                                                   | 0.0-0.1                                                                                                    | 0.0-0.1                                                                                            | 0.3-0.4                                        | 0.8-0.9                                        |
| Date Sampled                                                                                                                                                |                     | 22/02/2011                                                                                                | 22/02/2011                                                                                                 | 22/02/2011                                                                                         | 22/02/2011                                     | 22/02/2011                                     |
| Date Sampled<br>Type of sample                                                                                                                              |                     | 22/02/2011<br>Soil                                                                                        | 22/02/2011<br>Soil                                                                                         | 22/02/2011<br>Soil                                                                                 | 22/02/2011<br>Soil                             | 22/02/2011<br>Soil                             |
| Date Sampled<br>Type of sample<br>Date prepared                                                                                                             |                     | 22/02/2011<br>Soil<br>23/02/2011                                                                          | 22/02/2011<br>Soil<br>23/02/2011                                                                           | 22/02/2011<br>Soil<br>23/02/2011                                                                   | 22/02/2011<br>Soil<br>23/02/2011               | 22/02/2011<br>Soil<br>23/02/2011               |
| Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed                                                                                            | -                   | 22/02/2011<br>Soil                                                                                        | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011                                                             | 22/02/2011<br>Soil                                                                                 | 22/02/2011<br>Soil                             | 22/02/2011<br>Soil                             |
| Date Sampled<br>Type of sample<br>Date prepared                                                                                                             | <br>-<br>%          | 22/02/2011<br>Soil<br>23/02/2011                                                                          | 22/02/2011<br>Soil<br>23/02/2011                                                                           | 22/02/2011<br>Soil<br>23/02/2011                                                                   | 22/02/2011<br>Soil<br>23/02/2011               | 22/02/2011<br>Soil<br>23/02/2011               |
| Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed                                                                                            | -                   | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011                                                            | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011                                                             | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011                                                     | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 |
| Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Moisture                                                                                | -                   | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011                                                            | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011                                                             | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011                                                     | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 |
| Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Moisture<br>Moisture<br>Our Reference:                                                  | -<br>%              | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>24<br>52147-53                                          | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>5.6<br>52147-59                                          | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>12<br>52147-67                                   | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 |
| Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Moisture<br>Our Reference:<br>Your Reference                                            | -<br>%              | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>24<br>52147-53<br>HA13                                  | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>5.6                                                      | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>12                                               | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 |
| Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Moisture<br>Our Reference:<br>Your Reference<br>Depth                                   | -<br>%<br>UNITS     | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>24<br>52147-53<br>HA13<br>0.0-0.1                       | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>5.6<br>52147-59<br>HA15<br>0.0-0.1                       | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>12<br>52147-67<br>QA1                            | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 |
| Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Moisture<br>Our Reference:<br>Your Reference                                            | -<br>%<br>UNITS     | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>24<br>52147-53<br>HA13                                  | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>5.6<br>52147-59<br>HA15                                  | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>12<br>52147-67                                   | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 |
| Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Moisture<br>Our Reference:<br>Your Reference<br>Depth<br>Date Sampled                   | -<br>%<br>UNITS     | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>24<br>52147-53<br>HA13<br>0.0-0.1<br>22/02/2011         | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>5.6<br>52147-59<br>HA15<br>0.0-0.1<br>22/02/2011         | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>12<br>52147-67<br>QA1<br>-<br>22/02/2011         | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 |
| Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Moisture<br>Our Reference:<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample | -<br>%<br>UNITS<br> | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>24<br>52147-53<br>HA13<br>0.0-0.1<br>22/02/2011<br>Soil | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>5.6<br>52147-59<br>HA15<br>0.0-0.1<br>22/02/2011<br>Soil | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011<br>12<br>52147-67<br>QA1<br>-<br>22/02/2011<br>Soil | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 | 22/02/2011<br>Soil<br>23/02/2011<br>24/02/2011 |

#### 41486. Hurstville **Client Reference:**

| 41486, | Hurstville |
|--------|------------|
|--------|------------|

|                                       |       |                            |                    | 1                  |                    |                    |
|---------------------------------------|-------|----------------------------|--------------------|--------------------|--------------------|--------------------|
| Asbestos ID - soils                   |       |                            |                    |                    |                    |                    |
| Our Reference:                        | UNITS | 52147-1                    | 52147-2            | 52147-7            | 52147-8            | 52147-13           |
| Your Reference                        |       | BH01/MW01                  | BH01/MW01          | BH02/MW02          | BH02/MW02          | BH03/MW03          |
| Depth                                 |       | 0.2-0.4                    | 0.8-1.0            | 0.0-0.1            | 0.3-0.5            | 0.0-0.1            |
| DateSampled                           |       | 21/02/2011                 | 21/02/2011         | 21/02/2011         | 21/02/2011         | 21/02/2011         |
| Type of sample                        |       | Soil                       | Soil               | Soil               | Soil               | Soil               |
| Date analysed                         | -     | 24/02/2011                 | 24/02/2011         | 24/02/2011         | 24/02/2011         | 24/02/2011         |
| Sample Description                    | -     | Approx 30g<br>Soil & Rocks | Approx 25g<br>Soil | Approx 40g<br>Soil | Approx 40g<br>Soil | Approx 25g<br>Soil |
| Asbestos ID in soil                   | -     | No asbestos                | No asbestos        | No asbestos        | No asbestos        | No asbestos        |
|                                       |       | found at                   | found at           | found at           | found at           | found at           |
|                                       |       | reporting limit            | reporting limit    | reporting limit    | reporting limit    | reporting limit    |
|                                       |       | of 0.1g/kg                 | of 0.1g/kg         | of 0.1g/kg         | of 0.1g/kg         | of 0.1g/kg         |
| Trace Analysis                        | -     | Respirable                 | Respirable         | Respirable         | Respirable         | Respirable         |
|                                       |       | fibres not                 | fibres not         | fibres not         | fibres not         | fibres not         |
|                                       |       | detected                   | detected           | detected           | detected           | detected           |
| Asbestos ID - soils                   |       |                            |                    |                    |                    |                    |
| Our Reference:                        | UNITS | 52147-19                   | 52147-20           | 52147-25           | 52147-30           | 52147-34           |
| Your Reference                        |       | BH04/MW04                  | BH04/MW04          | BH05               | HA07               | HA08               |
| Depth                                 |       | 0.2-0.3                    | 0.5-0.7            | 0.25               | 0.0-0.1            | 0.0-0.1            |
| Date Sampled                          |       | 22/02/2011                 | 22/02/2011         | 21/02/2011         | 22/02/2011         | 22/02/2011         |
| Type of sample                        |       | Soil                       | Soil               | Soil               | Soil               | Soil               |
|                                       |       |                            |                    |                    |                    |                    |
| Date analysed                         | -     | 24/02/2011                 | 24/02/2011         | 24/02/2011         | 24/02/2011         | 24/02/2011         |
| Sample Description                    | -     | Approx 30g<br>Soil         | approx 35g<br>Soil | Approx 40g<br>Soil | Approx 30g<br>Soil | Approx 25g<br>Soil |
| Asbestos ID in soil                   | -     | No asbestos                | No asbestos        | No asbestos        | No asbestos        | No asbestos        |
|                                       |       | found at                   | found at           | found at           | found at           | found at           |
|                                       |       | reportinglimit             | reportinglimit     | reportinglimit     | reportinglimit     | reportinglimit     |
|                                       |       | of 0.1g/kg                 | of 0.1g/kg         | of 0.1g/kg         | of 0.1g/kg         | of 0.1g/kg         |
| Trace Analysis                        | -     | Respirable                 | Respirable         | Respirable         | Respirable         | Respirable         |
|                                       |       | fibres not                 | fibres not         | fibres not         | fibres not         | fibres not         |
|                                       |       | detected                   | detected           | detected           | detected           | detected           |
| Asharia ID a "                        |       |                            |                    |                    |                    |                    |
| Asbestos ID - soils<br>Our Reference: | UNITS | 52147-35                   | 52147-38           | 52147-40           | 52147-43           | 52147-44           |
| Your Reference                        |       | HA08                       | HA09               | HA10               | HA11               | HA11               |
|                                       |       |                            |                    |                    |                    |                    |
| Depth                                 |       | 0.3-0.4                    | 0.0-0.1            | 0.0-0.1            | 0.0-0.1            | 0.3-0.4            |
| Date Sampled                          |       | 22/02/2011                 | 22/02/2011         | 22/02/2011         | 22/02/2011         | 22/02/2011         |
| Type of sample                        |       | Soil                       | Soil               | Soil               | Soil               | Soil               |
| Date analysed                         | -     | 24/02/2011                 | 24/02/2011         | 24/02/2011         | 24/02/2011         | 24/02/2011         |
| Sample Description                    | -     | Approx 25g                 | Approx 25g         | Approx 30g         | Approx 25g         | Approx 30g         |
|                                       |       | Soil                       | Soil               | Sandy Soil         | Soil               | Soil               |
| Asbestos ID in soil                   | -     | No asbestos                | No asbestos        | No asbestos        | No asbestos        | No asbestos        |
|                                       |       | found at                   | found at           | found at           | found at           | found at           |
|                                       |       | reportinglimit             | reportinglimit     | reportinglimit     | reportinglimit     | reportinglimit     |
|                                       |       | of 0.1g/kg                 | of 0.1g/kg         | of 0.1g/kg         | of 0.1g/kg         | of 0.1g/kg         |
| Trace Analysis                        | -     | Respirable                 | Respirable         | Respirable         | Respirable         | Respirable         |
|                                       |       | fibres not                 | fibres not         | fibres not         | fibres not         | fibres not         |
|                                       |       | detected                   | detected           | detected           | detected           | detected           |
|                                       |       | detected                   | detected           | detected           | detected           | detected           |

| Asbestos ID - soils |       |                |                |                          |                |
|---------------------|-------|----------------|----------------|--------------------------|----------------|
| Our Reference:      | UNITS | 52147-47       | 52147-53       | 52147-59                 | 52147-67       |
| Your Reference      |       | HA11           | HA13           | HA15                     | QA1            |
| Depth               |       | 0.8-0.9        | 0.0-0.1        | 0.0-0.1                  | -              |
| Date Sampled        |       | 22/02/2011     | 22/02/2011     | 22/02/2011               | 22/02/2011     |
| Type of sample      |       | Soil           | Soil           | Soil                     | Soil           |
| Date analysed       | -     | 24/02/2011     | 24/02/2011     | 24/02/2011               | 24/02/2011     |
| Sample Description  | -     | Approx 30g     | Approx 30g     | Approx 30g               | Approx 40g     |
|                     |       | Soil           | Sandy Soil     | Soil & Organic<br>Matter | Soil & Rocks   |
| Asbestos ID in soil | -     | No asbestos    | No asbestos    | No asbestos              | No asbestos    |
|                     |       | found at       | found at       | found at                 | found at       |
|                     |       | reportinglimit | reportinglimit | reportinglimit           | reportinglimit |
|                     |       | of 0.1g/kg     | of 0.1g/kg     | of 0.1g/kg               | of 0.1g/kg     |
| Trace Analysis      | -     | Respirable     | Respirable     | Respirable               | Respirable     |
|                     |       | fibres not     | fibres not     | fibres not               | fibres not     |
|                     |       | detected       | detected       | detected                 | detected       |

| Asbestos ID - materials<br>Our Reference:<br>Your Reference | UNITS | 52147-18<br>F1                                                        | 52147-48<br>F2                                   |
|-------------------------------------------------------------|-------|-----------------------------------------------------------------------|--------------------------------------------------|
| Depth<br>Date Sampled<br>Type of sample                     |       | -<br>21/02/2011<br>Material                                           | -<br>22/02/2011<br>Mateiral                      |
| Date analysed<br>Sample Description                         | -     | 24/02/2011<br>65x65x4mm<br>Fibre cement<br>sheet                      | 24/02/2011<br>50x48x6mm<br>Fibre cement<br>sheet |
| Asbestos ID in materials                                    | -     | Chrysotile<br>asbestos<br>detected<br>Amosite<br>asbestos<br>detected | No asbestos<br>detected                          |

#### Client Reference: 41486, H

41486, Hurstville

| vTRH & BTEX in Water           |       |                     |                     |                     |
|--------------------------------|-------|---------------------|---------------------|---------------------|
| Our Reference:                 | UNITS | 52147-70            | 52147-71            | 52147-72            |
| Your Reference                 |       | Trip Spike          | Trip Blank          | Rinsate             |
| Depth                          |       | -                   | -                   | -                   |
| Date Sampled<br>Type of sample |       | 22/02/2011<br>Water | 22/02/2011<br>Water | 22/02/2011<br>Water |
| Date extracted                 | -     | 23/02/2011          | 23/02/2011          | 23/02/2011          |
| Date analysed                  | -     | 20/02/2011          | 20/02/2011          | 20/02/2011          |
| TRHC6 - C9                     | µg/L  | [NA]                | <10                 | <10                 |
| Benzene                        | µg/L  | 96%                 | <1.0                | <1.0                |
| Toluene                        | µg/L  | 112%                | <1.0                | <1.0                |
| Ethylbenzene                   | µg/L  | 98%                 | <1.0                | <1.0                |
| m+p-xylene                     | µg/L  | 98%                 | <2.0                | <2.0                |
| o-xylene                       | µg/L  | 98%                 | <1.0                | <1.0                |
| Surrogate Dibromofluoromethane | %     | 123                 | 102                 | 102                 |
| Surrogate toluene-d8           | %     | 116                 | 91                  | 91                  |
| Surrogate 4-BFB                | %     | 101                 | 96                  | 94                  |

| sTRH in Water (C10-C36) |       |            |
|-------------------------|-------|------------|
| Our Reference:          | UNITS | 52147-72   |
| Your Reference          |       | Rinsate    |
| Depth                   |       | -          |
| Date Sampled            |       | 22/02/2011 |
| Type of sample          |       | Water      |
| Date extracted          | -     | 24/02/2011 |
| Date analysed           | -     | 25/02/2011 |
| TRHC 10 - C 14          | µg/L  | <50        |
| TRHC 15 - C28           | µg/L  | <100       |
| TRHC29 - C36            | µg/L  | <100       |
| Surrogate o-Terphenyl   | %     | 92         |

| PAHs in Water             |       |            |
|---------------------------|-------|------------|
| Our Reference:            | UNITS | 52147-72   |
| Your Reference            |       | Rinsate    |
| Depth                     |       | -          |
| Date Sampled              |       | 22/02/2011 |
| Type of sample            |       | Water      |
| Date extracted            | -     | 24/02/2011 |
| Date analysed             | -     | 25/02/2011 |
| Naphthalene               | µg/L  | <1         |
| Acenaphthylene            | µg/L  | <1         |
| Acenaphthene              | µg/L  | <1         |
| Fluorene                  | µg/L  | <1         |
| Phenanthrene              | µg/L  | <1         |
| Anthracene                | µg/L  | <1         |
| Fluoranthene              | µg/L  | <1         |
| Pyrene                    | µg/L  | <1         |
| Benzo(a)anthracene        | μg/L  | <1         |
| Chrysene                  | µg/L  | <1         |
| Benzo(b+k)fluoranthene    | µg/L  | <2         |
| Benzo(a)pyrene            | µg/L  | <1         |
| Indeno(1,2,3-c,d)pyrene   | µg/L  | <1         |
| Dibenzo(a,h)anthracene    | µg/L  | <1         |
| Benzo(g,h,i)perylene      | µg/L  | <1         |
| Surrogate p-Terphenyl-d14 | %     | 117        |

| Metals in Water - Dissolved |       |            |
|-----------------------------|-------|------------|
| Our Reference:              | UNITS | 52147-72   |
| Your Reference              |       | Rinsate    |
| Depth                       |       | -          |
| Date Sampled                |       | 22/02/2011 |
| Type of sample              |       | Water      |
| Date digested               | -     | 24/02/2011 |
| Date analysed               | -     | 24/02/2011 |
| Arsenic - Dissolved         | mg/L  | <0.05      |
| Cadmium - Dissolved         | mg/L  | <0.01      |
| Chromium - Dissolved        | mg/L  | <0.01      |
| Copper - Dissolved          | mg/L  | <0.01      |
| Lead - Dissolved            | mg/L  | <0.03      |
| Mercury - Dissolved         | mg/L  | <0.0004    |
| Nickel - Dissolved          | mg/L  | <0.02      |
| Zinc - Dissolved            | mg/L  | <0.02      |

| MethodID             | Methodology Summary                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GC.16                | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.<br>Water samples are analysed directly by purge and trap GC-MS. |
| GC.3                 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                            |
| GC.12 subset         | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.                                                             |
| GC-5                 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                                |
| GC.8                 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                                |
| GC-6                 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.                                                            |
| Metals.20<br>ICP-AES | Determination of various metals by ICP-AES.                                                                                                                                |
| Metals.21<br>CV-AAS  | Determination of Mercury by Cold Vapour AAS.                                                                                                                               |
| LAB.8                | Moisture content determined by heating at 105 deg C for a minimum of 4 hours.                                                                                              |
| AS4964-2004          | Asbestos ID - Qualitative identification of asbestos type fibres in bulk samples using Polarised Light<br>Microscopy and Dispersion Staining Techniques.                   |

41486 Hurstville

| Client Reference: 41486, Hurstville |       |     |                 |                |               |                            |           |                     |
|-------------------------------------|-------|-----|-----------------|----------------|---------------|----------------------------|-----------|---------------------|
| QUALITYCONTROL                      | UNITS | PQL | METHOD          | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| vTRH&BTEX in Soil                   |       |     |                 |                |               | Base II Duplicate II % RPD |           |                     |
| Date extracted                      | -     |     |                 | 23/02/2<br>011 | 52147-1       | 23/02/2011  23/02/2011     | LCS-3     | 23/02/2011          |
| Date analysed                       | -     |     |                 | 23/02/2<br>011 | 52147-1       | 23/02/2011    23/02/2011   | LCS-3     | 23/02/2011          |
| vTRHC6 - C9                         | mg/kg | 25  | GC.16           | <25            | 52147-1       | <25  <25                   | LCS-3     | 99%                 |
| Benzene                             | mg/kg | 0.5 | GC.16           | <0.5           | 52147-1       | <0.5  <0.5                 | LCS-3     | 102%                |
| Toluene                             | mg/kg | 0.5 | GC.16           | <0.5           | 52147-1       | <0.5  <0.5                 | LCS-3     | 90%                 |
| Ethylbenzene                        | mg/kg | 1   | GC.16           | <1.0           | 52147-1       | <1.0  <1.0                 | LCS-3     | 95%                 |
| m+p-xylene                          | mg/kg | 2   | GC.16           | <2.0           | 52147-1       | <2.0  <2.0                 | LCS-3     | 103%                |
| o-Xylene                            | mg/kg | 1   | GC.16           | <1.0           | 52147-1       | <1.0  <1.0                 | LCS-3     | 103%                |
| Surrogate<br>aaa-Trifluorotoluene   | %     |     | GC.16           | 102            | 52147-1       | 86    98    RPD: 13        | LCS-3     | 94%                 |
| QUALITYCONTROL                      | UNITS | PQL | METHOD          | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| sTRH in Soil (C10-C36)              |       |     |                 |                |               | Base II Duplicate II % RPD |           | ,                   |
| Date extracted                      | -     |     |                 | 23/02/2<br>011 | 52147-1       | 23/02/2011  23/02/2011     | LCS-3     | 23/02/2011          |
| Date analysed                       | -     |     |                 | 23/02/2<br>011 | 52147-1       | 23/02/2011  23/02/2011     | LCS-3     | 23/02/2011          |
| TRHC 10 - C 14                      | mg/kg | 50  | GC.3            | <50            | 52147-1       | <50  <50                   | LCS-3     | 95%                 |
| TRHC 15 - C28                       | mg/kg | 100 | GC.3            | <100           | 52147-1       | <100  <100                 | LCS-3     | 97%                 |
| TRHC 29 - C 36                      | mg/kg | 100 | GC.3            | <100           | 52147-1       | <100  <100                 | LCS-3     | 85%                 |
| Surrogate<br>o-Terphenyl            | %     |     | GC.3            | 91             | 52147-1       | 93    95    RPD: 2         | LCS-3     | 90%                 |
| QUALITYCONTROL                      | UNITS | PQL | METHOD          | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| PAHs in Soil                        |       |     |                 |                |               | Base II Duplicate II % RPD |           |                     |
| Date extracted                      | -     |     |                 | 23/02/2<br>011 | 52147-1       | 23/02/2011  23/02/2011     | LCS-3     | 23/02/2011          |
| Date analysed                       | -     |     |                 | 23/02/2<br>011 | 52147-1       | 23/02/2011    23/02/2011   | LCS-3     | 23/02/2011          |
| Naphthalene                         | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 52147-1       | <0.1    <0.1               | LCS-3     | 110%                |
| Acenaphthylene                      | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 52147-1       | <0.1    <0.1               | [NR]      | [NR]                |
| Acenaphthene                        | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 52147-1       | <0.1    <0.1               | [NR]      | [NR]                |
| Fluorene                            | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 52147-1       | <0.1    <0.1               | LCS-3     | 115%                |
| Phenanthrene                        | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 52147-1       | 1.1  0.3  RPD:114          | LCS-3     | 128%                |
| Anthracene                          | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 52147-1       | 0.2  <0.1                  | [NR]      | [NR]                |
| Fluoranthene                        | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 52147-1       | 1.8  0.8  RPD:77           | LCS-3     | 119%                |
| Pyrene                              | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 52147-1       | 1.6  0.8  RPD:67           | LCS-3     | 123%                |
| Benzo(a)anthracene                  | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 52147-1       | 0.8  0.3  RPD:91           | [NR]      | [NR]                |

Client Reference:

41486, Hurstville

|                                      |       | Cile | nt Reference    | e. 4           | 486, Hurstvill | e                          |           |                     |
|--------------------------------------|-------|------|-----------------|----------------|----------------|----------------------------|-----------|---------------------|
| QUALITY CONTROL                      | UNITS | PQL  | METHOD          | Blank          | Duplicate Sm#  | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| PAHs in Soil                         |       |      |                 |                |                | Base II Duplicate II % RPD |           |                     |
| Chrysene                             | mg/kg | 0.1  | GC.12<br>subset | <0.1           | 52147-1        | 0.7  0.3  RPD:80           | LCS-3     | 122%                |
| Benzo(b+k)fluoranthene               | mg/kg | 0.2  | GC.12<br>subset | <0.2           | 52147-1        | 1.1    0.6    RPD: 59      | [NR]      | [NR]                |
| Benzo(a)pyrene                       | mg/kg | 0.05 | GC.12<br>subset | <0.05          | 52147-1        | 0.6  0.4  RPD:40           | LCS-3     | 114%                |
| Indeno(1,2,3-c,d)pyrene              | mg/kg | 0.1  | GC.12<br>subset | <0.1           | 52147-1        | 0.4  0.2  RPD:67           | [NR]      | [NR]                |
| Dibenzo(a,h)anthracene               | mg/kg | 0.1  | GC.12<br>subset | <0.1           | 52147-1        | <0.1    <0.1               | [NR]      | [NR]                |
| Benzo(g,h,i)perylene                 | mg/kg | 0.1  | GC.12<br>subset | <0.1           | 52147-1        | 0.4  0.2  RPD:67           | [NR]      | [NR]                |
| Surrogate<br>p-Terphenyl-d14         | %     |      | GC.12<br>subset | 110            | 52147-1        | 104  107  RPD:3            | LCS-3     | 107%                |
| QUALITYCONTROL                       | UNITS | PQL  | METHOD          | Blank          | Duplicate Sm#  | Duplicate results          | Spike Sm# | Spike %             |
| Organochlorine<br>Pesticides in soil |       |      |                 |                |                | Base II Duplicate II % RPD |           | Recovery            |
| Date extracted                       | -     |      |                 | 23/02/2<br>011 | 52147-1        | 23/02/2011  23/02/2011     | LCS-3     | 23/02/2011          |
| Date analysed                        | -     |      |                 | 24/02/2<br>011 | 52147-1        | 24/02/2011    24/02/2011   | LCS-3     | 24/02/2011          |
| HCB                                  | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| alpha-BHC                            | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1    <0.1               | LCS-3     | 86%                 |
| gamma-BHC                            | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| beta-BHC                             | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | LCS-3     | 90%                 |
| Heptachlor                           | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | LCS-3     | 89%                 |
| delta-BHC                            | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| Aldrin                               | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | LCS-3     | 84%                 |
| Heptachlor Epoxide                   | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | LCS-3     | 94%                 |
| gamma-Chlordane                      | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| alpha-chlordane                      | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| Endosulfanl                          | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| pp-DDE                               | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | LCS-3     | 91%                 |
| Dieldrin                             | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | LCS-3     | 104%                |
| Endrin                               | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | LCS-3     | 96%                 |
| pp-DDD                               | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | LCS-3     | 96%                 |
| Endosulfan II                        | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| pp-DDT                               | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| Endrin Aldehyde                      | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| Endosulfan Sulphate                  | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | LCS-3     | 103%                |
| Methoxychlor                         | mg/kg | 0.1  | GC-5            | <0.1           | 52147-1        | <0.1  <0.1                 | [NR]      | [NR]                |
| Surrogate TCLMX                      | %     |      | GC-5            | 75             | 52147-1        | 77  89  RPD:14             | LCS-3     | 77%                 |

| Client | Reference: |
|--------|------------|
|--------|------------|

41486, Hurstville

| Client Reference: 41486, Hurstville |       |     |                      |                |               |                            |           |                     |
|-------------------------------------|-------|-----|----------------------|----------------|---------------|----------------------------|-----------|---------------------|
| QUALITYCONTROL                      | UNITS | PQL | METHOD               | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| Organophosphorus<br>Pesticides      |       |     |                      |                |               | Base II Duplicate II % RPD |           |                     |
| Date extracted                      | -     |     |                      | 23/02/2<br>011 | 52147-1       | 23/02/2011  23/02/2011     | LCS-3     | 23/02/2011          |
| Date analysed                       | -     |     |                      | 24/02/2<br>011 | 52147-1       | 24/02/2011    24/02/2011   | LCS-3     | 24/02/2011          |
| Diazinon                            | mg/kg | 0.1 | GC.8                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Dimethoate                          | mg/kg | 0.1 | GC.8                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Chlorpyriphos-methyl                | mg/kg | 0.1 | GC.8                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Ronnel                              | mg/kg | 0.1 | GC.8                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Chlorpyriphos                       | mg/kg | 0.1 | GC.8                 | <0.1           | 52147-1       | <0.1  <0.1                 | LCS-3     | 122%                |
| Fenitrothion                        | mg/kg | 0.1 | GC.8                 | <0.1           | 52147-1       | <0.1  <0.1                 | LCS-3     | 130%                |
| Bromophos-ethyl                     | mg/kg | 0.1 | GC.8                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Ethion                              | mg/kg | 0.1 | GC.8                 | <0.1           | 52147-1       | <0.1  <0.1                 | LCS-3     | 126%                |
| Surrogate TCLMX                     | %     |     | GC.8                 | 75             | 52147-1       | 77  89  RPD:14             | LCS-3     | 76%                 |
| QUALITYCONTROL                      | UNITS | PQL | METHOD               | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| PCBs in Soil                        |       |     |                      |                |               | Base II Duplicate II % RPD |           |                     |
| Date extracted                      | -     |     |                      | 23/02/2<br>011 | 52147-1       | 23/02/2011  23/02/2011     | LCS-3     | 23/02/2011          |
| Date analysed                       | -     |     |                      | 24/02/2<br>011 | 52147-1       | 24/02/2011    24/02/2011   | LCS-3     | 24/02/2011          |
| Arochlor 1016                       | mg/kg | 0.1 | GC-6                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Arochlor 1221*                      | mg/kg | 0.1 | GC-6                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Arochlor 1232                       | mg/kg | 0.1 | GC-6                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Arochlor 1242                       | mg/kg | 0.1 | GC-6                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Arochlor 1248                       | mg/kg | 0.1 | GC-6                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Arochlor 1254                       | mg/kg | 0.1 | GC-6                 | <0.1           | 52147-1       | <0.1  <0.1                 | LCS-3     | 112%                |
| Arochlor 1260                       | mg/kg | 0.1 | GC-6                 | <0.1           | 52147-1       | <0.1  <0.1                 | [NR]      | [NR]                |
| Surrogate TCLMX                     | %     |     | GC-6                 | 75             | 52147-1       | 77  89  RPD:14             | LCS-3     | 80%                 |
| QUALITYCONTROL                      | UNITS | PQL | METHOD               | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %             |
| Acid Extractable metals in soil     |       |     |                      |                |               | Base II Duplicate II % RPD |           | Recovery            |
| Date digested                       | -     |     |                      | 23/02/2<br>011 | 52147-1       | 23/02/2011  23/02/2011     | LCS-1     | 23/02/2011          |
| Date analysed                       | -     |     |                      | 23/02/2<br>011 | 52147-1       | 23/02/2011    23/02/2011   | LCS-1     | 23/02/2011          |
| Arsenic                             | mg/kg | 4   | Metals.20<br>ICP-AES | <4             | 52147-1       | <4  <4                     | LCS-1     | 100%                |
| Cadmium                             | mg/kg | 0.5 | Metals.20<br>ICP-AES | <0.5           | 52147-1       | <0.5  <0.5                 | LCS-1     | 102%                |
| Chromium                            | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 52147-1       | 15  10  RPD:40             | LCS-1     | 104%                |
| Copper                              | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 52147-1       | 21    19    RPD: 10        | LCS-1     | 101%                |
| Lead                                | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 52147-1       | 18  16  RPD:12             | LCS-1     | 101%                |

|                                          |       |     | ent Reference        |                | 486, Hurstvil |                            | On its O  | On the Of           |
|------------------------------------------|-------|-----|----------------------|----------------|---------------|----------------------------|-----------|---------------------|
| QUALITYCONTROL                           | UNITS | PQL | METHOD               | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| Acid Extractable metals in soil          |       |     |                      |                |               | Base II Duplicate II % RPD |           |                     |
| Mercury                                  | mg/kg | 0.1 | Metals.21<br>CV-AAS  | <0.1           | 52147-1       | <0.1  <0.1                 | LCS-1     | 104%                |
| Nickel                                   | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 52147-1       | 7  8  RPD:13               | LCS-1     | 105%                |
| Zinc                                     | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 52147-1       | 34  35  RPD:3              | LCS-1     | 104%                |
| QUALITYCONTROL<br>Moisture               | UNITS | PQL | METHOD               | Blank          |               |                            |           |                     |
| Date prepared                            | -     |     |                      | 23/02/2<br>011 | =             |                            |           |                     |
| Date analysed                            | -     |     |                      | 24/02/2<br>011 |               |                            |           |                     |
| Moisture                                 | %     | 0.1 | LAB.8                | <0.10          |               |                            |           |                     |
| QUALITYCONTROL                           | UNITS | PQL | METHOD               | Blank          | 1             |                            |           |                     |
| Asbestos ID - soils                      |       |     |                      |                |               |                            |           |                     |
| Date analysed                            | -     |     |                      | [NT]           |               |                            |           |                     |
| QUALITY CONTROL                          | UNITS | PQL | METHOD               | Blank          |               |                            |           |                     |
| Asbestos ID - materials                  |       |     |                      |                |               |                            |           |                     |
| Date analysed                            | -     |     |                      | [NT]           |               |                            |           |                     |
| QUALITYCONTROL                           | UNITS | PQL | METHOD               | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| vTRH&BTEX in Water                       |       |     |                      |                |               | Base II Duplicate II % RPD |           |                     |
| Date extracted                           | -     |     |                      | 23/02/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 23/02/2011          |
| Date analysed                            | -     |     |                      | 23/02/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 23/02/2011          |
| TRHC6 - C9                               | µg/L  | 10  | GC.16                | <10            | [NT]          | [NT]                       | LCS-W1    | 106%                |
| Benzene                                  | µg/L  | 1   | GC.16                | <1.0           | [NT]          | [NT]                       | LCS-W1    | 101%                |
| Toluene                                  | µg/L  | 1   | GC.16                | <1.0           | [NT]          | [NT]                       | LCS-W1    | 116%                |
| Ethylbenzene                             | µg/L  | 1   | GC.16                | <1.0           | [NT]          | [NT]                       | LCS-W1    | 104%                |
| m+p-xylene                               | µg/L  | 2   | GC.16                | <2.0           | [NT]          | [NT]                       | LCS-W1    | 104%                |
| o-xylene                                 | µg/L  | 1   | GC.16                | <1.0           | [NT]          | [NT]                       | LCS-W1    | 104%                |
| <i>Surrogate</i><br>Dibromofluoromethane | %     |     | GC.16                | 99             | [NT]          | [NT]                       | LCS-W1    | 119%                |
| Surrogate toluene-d8                     | %     |     | GC.16                | 90             | [NT]          | [NT]                       | LCS-W1    | 115%                |

GC.16

99

[NT]

%

Surrogate 4-BFB

LCS-W1

100%

[NT]

|                                     | -     |     | ent Reference   | ce: 41         | 486, Hurstvill | e                          |           |                     |
|-------------------------------------|-------|-----|-----------------|----------------|----------------|----------------------------|-----------|---------------------|
| QUALITYCONTROL                      | UNITS | PQL | METHOD          | Blank          | Duplicate Sm#  | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| sTRH in Water<br>(C10-C36)          |       |     |                 |                |                | Base II Duplicate II %RPD  |           |                     |
| Date extracted                      | -     |     |                 | 24/02/2<br>011 | [NT]           | [NT]                       | LCS-W1    | 24/02/2011          |
| Date analysed                       | -     |     |                 | 25/02/2<br>011 | [NT]           | [NT]                       | LCS-W1    | 25/02/2011          |
| TRHC 10 - C 14                      | µg/L  | 50  | GC.3            | <50            | [NT]           | [NT]                       | LCS-W1    | 62%                 |
| TRHC 15 - C28                       | µg/L  | 100 | GC.3            | <100           | [NT]           | [NT]                       | LCS-W1    | 65%                 |
| TRHC 29 - C 36                      | µg/L  | 100 | GC.3            | <100           | [NT]           | [NT]                       | LCS-W1    | 68%                 |
| Surrogate<br>o-Terphenyl            | %     |     | GC.3            | 92             | [NT]           | [NT]                       | LCS-W1    | 70%                 |
| QUALITYCONTROL                      | UNITS | PQL | METHOD          | Blank          | Duplicate Sm#  | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| PAHs in Water                       |       |     |                 |                |                | Base II Duplicate II % RPD |           |                     |
| Date extracted                      | -     |     |                 | 24/02/2<br>011 | [NT]           | [NT]                       | LCS-W1    | 24/02/2011          |
| Date analysed                       | -     |     |                 | 25/02/2<br>011 | [NT]           | [NT]                       | LCS-W1    | 25/02/2011          |
| Naphthalene                         | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | LCS-W1    | 84%                 |
| Acenaphthylene                      | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | [NR]      | [NR]                |
| Acenaphthene                        | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | [NR]      | [NR]                |
| Fluorene                            | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | LCS-W1    | 95%                 |
| Phenanthrene                        | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | LCS-W1    | 103%                |
| Anthracene                          | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | [NR]      | [NR]                |
| Fluoranthene                        | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | LCS-W1    | 94%                 |
| Pyrene                              | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | LCS-W1    | 106%                |
| Benzo(a)anthracene                  | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | [NR]      | [NR]                |
| Chrysene                            | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | LCS-W1    | 113%                |
| Benzo(b+k)fluoranthene              | µg/L  | 2   | GC.12<br>subset | 2              | [NT]           | [NT]                       | [NR]      | [NR]                |
| Benzo(a)pyrene                      | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | LCS-W1    | 91%                 |
| Indeno(1,2,3-c,d)pyrene             | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | [NR]      | [NR]                |
| Dibenzo(a,h)anthracene              | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | [NR]      | [NR]                |
| Benzo(g,h,i)perylene                | µg/L  | 1   | GC.12<br>subset | <1             | [NT]           | [NT]                       | [NR]      | [NR]                |
| <i>Surrogate</i><br>p-Terphenyl-d14 | %     |     | GC.12<br>subset | 113            | [NT]           | [NT]                       | LCS-W1    | 104%                |

| QUALITYCONTROL                    | UNITS | PQL    | METHOD               | Blank          | Duplicate Sm#  | Duplicate results          | Spike Sm#        | Spike %<br>Recovery |
|-----------------------------------|-------|--------|----------------------|----------------|----------------|----------------------------|------------------|---------------------|
| Metals in Water -<br>Dissolved    |       |        |                      |                |                | Base II Duplicate II % RPD |                  |                     |
| Date digested                     | -     |        |                      | 24/02/2<br>011 | [NT]           | [NT]                       | LCS-1            | 24/02/2011          |
| Date analysed                     | -     |        |                      | 24/02/2<br>011 | [NT]           | [NT]                       | LCS-1            | 24/02/2011          |
| Arsenic - Dissolved               | mg/L  | 0.05   | Metals.20<br>ICP-AES | <0.05          | [NT]           | [NT]                       | LCS-1            | 106%                |
| Cadmium - Dissolved               | mg/L  | 0.01   | Metals.20<br>ICP-AES | <0.01          | [NT]           | [NT]                       | LCS-1            | 101%                |
| Chromium - Dissolved              | mg/L  | 0.01   | Metals.20<br>ICP-AES | <0.01          | [NT]           | [NT]                       | LCS-1            | 102%                |
| Copper - Dissolved                | mg/L  | 0.01   | Metals.20<br>ICP-AES | <0.01          | [NT]           | [NT]                       | LCS-1            | 103%                |
| Lead - Dissolved                  | mg/L  | 0.03   | Metals.20<br>ICP-AES | <0.03          | [NT]           | [NT]                       | LCS-1            | 99%                 |
| Mercury - Dissolved               | mg/L  | 0.0004 | Metals.21<br>CV-AAS  | <0.000<br>4    | [NT]           | [NT]                       | LCS-1            | 96%                 |
| Nickel - Dissolved                | mg/L  | 0.02   | Metals.20<br>ICP-AES | <0.02          | [NT]           | [NT]                       | LCS-1            | 103%                |
| Zinc - Dissolved                  | mg/L  | 0.02   | Metals.20<br>ICP-AES | <0.02          | [NT]           | [NT]                       | LCS-1            | 98%                 |
| QUALITYCONTROL                    | UNITS | S I    | Dup. Sm#             |                | Duplicate      | Spike Sm#                  | Spike % Recovery |                     |
| vTRH&BTEX in Soil                 |       |        |                      | Base+I         | Duplicate+%RPI |                            |                  |                     |
| Date extracted                    | -     |        | [NT]                 |                | [NT]           | 52147-7                    | 23/02/2011       |                     |
| Date analysed                     | -     |        | [NT]                 |                | [NT]           | 52147-7                    | 23/02/2011       |                     |
| vTRHC6 - C9                       | mg/k  | g      | [NT]                 |                | [NT]           | 52147-7                    | 79%              |                     |
| Benzene                           | mg/k  | g      | [NT]                 |                | [NT]           | 52147-7                    | 85%              |                     |
| Toluene                           | mg/k  | g      | [NT]                 |                | [NT]           | 52147-7                    | 80%              |                     |
| Ethylbenzene                      | mg/k  | g      | [NT]                 |                | [NT]           | 52147-7                    | 71%              |                     |
| m+p-xylene                        | mg/k  | g      | [NT]                 |                | [NT]           | 52147-7                    | 80%              |                     |
| o-Xylene                          | mg/k  | g      | [NT]                 |                | [NT]           | 52147-7                    | 80%              |                     |
| Surrogate<br>aaa-Trifluorotoluene | %     |        | [NT]                 |                | [NT]           | 52147-7                    | 89%              |                     |

|                              |       | Client Reference | e: 41486, Hurstville    |           |                  |
|------------------------------|-------|------------------|-------------------------|-----------|------------------|
| QUALITYCONTROL               | UNITS | Dup.Sm#          | Duplicate               | Spike Sm# | Spike % Recovery |
| sTRH in Soil (C10-C36)       |       |                  | Base + Duplicate + %RPD |           |                  |
| Date extracted               | -     | [NT]             | [NT]                    | 52147-7   | 23/02/2011       |
| Date analysed                | -     | [NT]             | [NT]                    | 52147-7   | 23/02/2011       |
| TRHC 10 - C14                | mg/kg | [NT]             | [NT]                    | 52147-7   | 98%              |
| TRHC 15 - C28                | mg/kg | [NT]             | [NT]                    | 52147-7   | 139%             |
| TRHC29 - C36                 | mg/kg | [NT]             | [NT]                    | 52147-7   | 92%              |
| Surrogate o-Terphenyl        | %     | [NT]             | [NT]                    | 52147-7   | 91%              |
| QUALITYCONTROL               | UNITS | Dup.Sm#          | Duplicate               | Spike Sm# | Spike % Recovery |
| PAHs in Soil                 |       |                  | Base + Duplicate + %RPD |           |                  |
| Date extracted               | -     | [NT]             | [NT]                    | 52147-7   | 23/02/2011       |
| Date analysed                | -     | [NT]             | [NT]                    | 52147-7   | 23/02/2011       |
| Naphthalene                  | mg/kg | [NT]             | [NT]                    | 52147-7   | 114%             |
| Acenaphthylene               | mg/kg | [NT]             | [NT]                    | [NR]      | [NR]             |
| Acenaphthene                 | mg/kg | [NT]             | [NT]                    | [NR]      | [NR]             |
| Fluorene                     | mg/kg | [NT]             | [NT]                    | 52147-7   | 129%             |
| Phenanthrene                 | mg/kg | [NT]             | [NT]                    | 52147-7   | 125%             |
| Anthracene                   | mg/kg | [NT]             | [NT]                    | [NR]      | [NR]             |
| Fluoranthene                 | mg/kg | [NT]             | [NT]                    | 52147-7   | 122%             |
| Pyrene                       | mg/kg | [NT]             | [NT]                    | 52147-7   | 125%             |
| Benzo(a)anthracene           | mg/kg | [NT]             | [NT]                    | [NR]      | [NR]             |
| Chrysene                     | mg/kg | [NT]             | [NT]                    | 52147-7   | 120%             |
| Benzo(b+k)fluoranthene       | mg/kg | [NT]             | [NT]                    | [NR]      | [NR]             |
| Benzo(a)pyrene               | mg/kg | [NT]             | [NT]                    | 52147-7   | 113%             |
| Indeno(1,2,3-c,d)pyrene      | mg/kg | [NT]             | [NT]                    | [NR]      | [NR]             |
| Dibenzo(a,h)anthracene       | mg/kg | [NT]             | [NT]                    | [NR]      | [NR]             |
| Benzo(g,h,i)perylene         | mg/kg | [NT]             | [NT]                    | [NR]      | [NR]             |
| Surrogate<br>p-Terphenyl-d14 | %     | [NT]             | [NT]                    | 52147-7   | 109%             |

|                                                         |       | Client Reference | ce: 41486, Hurstville                |           |                  |
|---------------------------------------------------------|-------|------------------|--------------------------------------|-----------|------------------|
| QUALITY CONTROL<br>Organochlorine Pesticides<br>in soil | UNITS | Dup.Sm#          | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                          | -     | [NT]             | [NT]                                 | 52147-7   | 23/02/2011       |
| Date analysed                                           | -     | [NT]             | [NT]                                 | 52147-7   | 24/02/2011       |
| HCB                                                     | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| alpha-BHC                                               | mg/kg | [NT]             | [NT]                                 | 52147-7   | 96%              |
| gamma-BHC                                               | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| beta-BHC                                                | mg/kg | [NT]             | [NT]                                 | 52147-7   | 100%             |
| Heptachlor                                              | mg/kg | [NT]             | [NT]                                 | 52147-7   | 99%              |
| delta-BHC                                               | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Aldrin                                                  | mg/kg | [NT]             | [NT]                                 | 52147-7   | 92%              |
| Heptachlor Epoxide                                      | mg/kg | [NT]             | [NT]                                 | 52147-7   | 66%              |
| gamma-Chlordane                                         | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| alpha-chlordane                                         | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Endosulfanl                                             | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| pp-DDE                                                  | mg/kg | [NT]             | [NT]                                 | 52147-7   | 103%             |
| Dieldrin                                                | mg/kg | [NT]             | [NT]                                 | 52147-7   | 120%             |
| Endrin                                                  | mg/kg | [NT]             | [NT]                                 | 52147-7   | 114%             |
| pp-DDD                                                  | mg/kg | [NT]             | [NT]                                 | 52147-7   | 114%             |
| Endosulfan II                                           | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| pp-DDT                                                  | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Endrin Aldehyde                                         | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Endosulfan Sulphate                                     | mg/kg | [NT]             | [NT]                                 | 52147-7   | 120%             |
| Methoxychlor                                            | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Surrogate TCLMX                                         | %     | [NT]             | [NT]                                 | 52147-7   | 85%              |

|                                                       |       | Client Reference | e: 41486, Hurstville                 |           |                  |
|-------------------------------------------------------|-------|------------------|--------------------------------------|-----------|------------------|
| QUALITY CONTROL<br>Organophosphorus<br>Pesticides     | UNITS | Dup. Sm#         | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                        | -     | [NT]             | [NT]                                 | 52147-7   | 23/02/2011       |
| Date analysed                                         | -     | [NT]             | [NT]                                 | 52147-7   | 24/02/2011       |
| Diazinon                                              | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Dimethoate                                            | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Chlorpyriphos-methyl                                  | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Ronnel                                                | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Chlorpyriphos                                         | mg/kg | [NT]             | [NT]                                 | 52147-7   | 121%             |
| Fenitrothion                                          | mg/kg | [NT]             | [NT]                                 | 52147-7   | 135%             |
| Bromophos-ethyl                                       | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Ethion                                                | mg/kg | [NT]             | [NT]                                 | 52147-7   | 135%             |
| Surrogate TCLMX                                       | %     | [NT]             | [NT]                                 | 52147-7   | 81%              |
| QUALITY CONTROL<br>PCBs in Soil                       | UNITS | Dup. Sm#         | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                        | -     | [NT]             | [NT]                                 | 52147-7   | 23/02/2011       |
| Date analysed                                         | -     | [NT]             | [NT]                                 | 52147-7   | 24/02/2011       |
| Arochlor 1016                                         | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1221*                                        | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1232                                         | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1242                                         | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1248                                         | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1254                                         | mg/kg | [NT]             | [NT]                                 | 52147-7   | 103%             |
| Arochlor 1260                                         | mg/kg | [NT]             | [NT]                                 | [NR]      | [NR]             |
| Surrogate TCLMX                                       | %     | [NT]             | [NT]                                 | 52147-7   | 84%              |
| QUALITY CONTROL<br>Acid Extractable metals in<br>soil | UNITS | Dup. Sm#         | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date digested                                         | -     | 52147-38         | 23/02/2011  23/02/2011               | 52147-7   | 23/01/2011       |
| Date analysed                                         | -     | 52147-38         | 23/02/2011    23/02/2011             | 52147-7   | 23/01/2011       |
| Arsenic                                               | mg/kg | 52147-38         | 13  14  RPD:7                        | 52147-7   | 121%             |
| Cadmium                                               | mg/kg | 52147-38         | 0.9  0.6  RPD:40                     | 52147-7   | 102%             |
| Chromium                                              | mg/kg | 52147-38         | 23  19  RPD:19                       | 52147-7   | 98%              |
| Copper                                                | mg/kg | 52147-38         | 63  42  RPD:40                       | 52147-7   | 115%             |
| Lead                                                  | mg/kg | 52147-38         | 430  380  RPD:12                     | 52147-7   | 93%              |
| Mercury                                               | mg/kg | 52147-38         | 1  0.9  RPD:11                       | 52147-7   | 106%             |
| Nickel                                                | mg/kg | 52147-38         | 8  6  RPD:29                         | 52147-7   | 98%              |
| Zinc                                                  | mg/kg | 52147-38         | 630  510  RPD:21                     | 52147-7   | 85%              |

#### **Report Comments:**

PAH's in soil: The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.

| Asbestos ID was analysed by Approved I | Paul Ching     |   |  |
|----------------------------------------|----------------|---|--|
| Asbestos ID was authorised by Approved | Matt Mansfield |   |  |
|                                        |                | o |  |

| INS: Insufficient sample for this test | PQL: Practical Quantitation Limit | NT: Not tested                 |
|----------------------------------------|-----------------------------------|--------------------------------|
| NA: Test not required                  | RPD: Relative Percent Difference  | NA: Test not required          |
| <: Less than                           | >: Greater than                   | LCS: Laboratory Control Sample |

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike** : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# SAMPLE RECEIPT ADVICE

| <u>Client:</u><br>JBS Environmental Pty Ltd<br>P.O. Box 940<br>MASCOT NSW 1460                                                             | ph: 8338 1013<br>Fax: 8338 1700                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Attention: Danielle Ord / Nathan Cussen                                                                                                    |                                                                  |
| Sample log in details:<br>Your reference:<br>Envirolab Reference:<br>Date received:<br>Date results expected to be reported:               | <b>41486, Hurstville<br/>52147</b><br>22/02/11<br><b>1/03/11</b> |
| Samples received in appropriate condition for analysis:<br>No. of samples provided<br>Turnaround time requested:<br>Temperature on receipt | YES<br>67 Soils, 2 Materials, 3 Waters<br>Standard<br>Cool       |

#### Comments:

Cooling Method:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Ice

# Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

# Aileen Hie

|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                       | 00 60 |                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                                                             |                       |                                                                             |                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|
| This message is intended solely for the individual(s) and entity(s) addressed. It is confidential and may contain legally privileged information. The<br>use, copying or distribution of this message or any information it contains, by anyone other than the addressee, is prohibited. If you have received<br>this message in error, please notify the sender by return email at <u>dord@lbsgroup.com.au</u> . | JBS Environmental Pty Ltd<br>JBS Environmental Pty Ltd<br>128 O'Riordan Street, Mascot, NSW, 2020<br>(ph) 02 8338 1011 (fax) 02 8338 1700<br>www <u>.jbsgroup.com.au</u><br>If you would like to send me large electronic files (>10MB), please use JBS Environmental's secure internet-based file delivery system located<br>at http://dropbox.yousendit.com/JBSENVIRONMENTAL | 5 ( and HA09 (0.3-0.4) for metals (standard 8 metals).<br>Please advise if this is not possible. Thanks<br>Danielle Ord |       | Aileen / Jacinta,<br>Can I please get some additional analysis (if possible and within holding times) for two samples which were<br>submitted (and put on hold) with those reported on certificate 52147 (Envirolab ref), 41486 (JBS ref). | From: Danielle Ord [mailto:DOrd@jbsgroup.com.au]<br>Sent: Tuesday, 1 March 2011 01:00<br>To: Aileen Hie; Jacinta Hurst<br>Subject: additional analysis for 52147. | Jacinta Hurst<br>Envirolab Services Pty Ltd<br>Asstay St Chatswood NSW 2067<br>-0.359-0.6200 F 62.9910.6201<br>-0.359-0.6220 M 0407-00.3037<br>-0.353 anvrolabservices.com.au   www.envrolabservices.com.au | Regards,              | <b>To:</b> Aileen Hie<br><b>Subject:</b> FW: additional analysis for 52147. | From: Jacinta Hurst<br>Sent: Wednesday, 2 March 2011 10:16 AM |
| <ol> <li>It is confidential and may contain legally privileged information. The<br/>y anyone other than the addressee, is prohibited. If you have received<br/><u>proup.com.au</u></li> </ol>                                                                                                                                                                                                                     | Environmental's secure internet-based file delivery system located                                                                                                                                                                                                                                                                                                             |                                                                                                                         |       | d within holding times) for two samples which were<br>cate 52147 (Envirolab ref), 41486 (JBS ref).                                                                                                                                         |                                                                                                                                                                   | We: 8/3/4                                                                                                                                                                                                   | Envivolab Ref. 52147A |                                                                             |                                                               |



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

#### CERTIFICATE OF ANALYSIS

52147-A

Client: JBS Environmental Pty Ltd P.O. Box 940 MASCOT NSW 1460

Attention: Danielle Ord / Nathan Cussen

#### Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

# Additional Testing on 2 Soils22/02/11/01/03/11

41486, Hurstville

#### Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

#### **Report Details:**

 Date results requested by: / Issue Date:
 8/03/11
 /
 4/03/11

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with \*.

# **Results Approved By:**

Jacinta/Hurst

Laboratory Manager

Kluigh Morgen

Rhian Morgan Reporting Supervisor

52147-A R 00



| PAHs in Soil              |       | ]          |
|---------------------------|-------|------------|
| Our Reference:            | UNITS | 52147-A-60 |
| Your Reference            |       | HA15       |
| Depth                     |       | 0.3-0.4    |
| Date Sampled              |       | 22/02/2011 |
| Type of sample            |       | Soil       |
| Date extracted            | -     | 03/03/2011 |
| Date analysed             | -     | 03/03/2011 |
| Naphthalene               | mg/kg | <0.1       |
| Acenaphthylene            | mg/kg | <0.1       |
| Acenaphthene              | mg/kg | <0.1       |
| Fluorene                  | mg/kg | <0.1       |
| Phenanthrene              | mg/kg | 0.4        |
| Anthracene                | mg/kg | <0.1       |
| Fluoranthene              | mg/kg | 0.6        |
| Pyrene                    | mg/kg | 0.5        |
| Benzo(a)anthracene        | mg/kg | 0.2        |
| Chrysene                  | mg/kg | 0.2        |
| Benzo(b+k)fluoranthene    | mg/kg | 0.3        |
| Benzo(a)pyrene            | mg/kg | 0.2        |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | 0.1        |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1       |
| Benzo(g,h,i)perylene      | mg/kg | 0.1        |
| Surrogate p-Terphenyl-d14 | %     | 126        |

| Acid Extractable metals in soil |       |            |
|---------------------------------|-------|------------|
| Our Reference:                  | UNITS | 52147-A-39 |
| Your Reference                  |       | HA09       |
| Depth                           |       | 0.3-0.4    |
| Date Sampled                    |       | 22/02/2011 |
| Type of sample                  |       | Soil       |
| Date digested                   | -     | 03/03/2011 |
| Date analysed                   | -     | 03/03/2011 |
| Arsenic                         | mg/kg | 5          |
| Cadmium                         | mg/kg | <0.5       |
| Chromium                        | mg/kg | 17         |
| Copper                          | mg/kg | 8          |
| Lead                            | mg/kg | 44         |
| Mercury                         | mg/kg | 0.3        |
| Nickel                          | mg/kg | 4          |
| Zinc                            | mg/kg | 200        |

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference: | UNITS | 52147-A-39 | 52147-A-60 |
| Your Reference |       | HA09       | HA15       |
| Depth          |       | 0.3-0.4    | 0.3-0.4    |
| Date Sampled   |       | 22/02/2011 | 22/02/2011 |
| Type of sample |       | Soil       | Soil       |
| Date prepared  | -     | 3/03/2011  | 3/03/2011  |
| Date analysed  | -     | 4/03/2011  | 4/03/2011  |
| Moisture       | %     | 25         | 15         |

| MethodID             | Methodology Summary                                                                                            |
|----------------------|----------------------------------------------------------------------------------------------------------------|
| GC.12 subset         | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. |
| Metals.20<br>ICP-AES | Determination of various metals by ICP-AES.                                                                    |
| Metals.21<br>CV-AAS  | Determination of Mercury by Cold Vapour AAS.                                                                   |
| LAB.8                | Moisture content determined by heating at 105 deg C for a minimum of 4 hours.                                  |

|                              |       | Clie | ent Referenc    | e: 4 <sup>-</sup> | 1486, Hurstvil | le                         |           |                     |
|------------------------------|-------|------|-----------------|-------------------|----------------|----------------------------|-----------|---------------------|
| QUALITYCONTROL               | UNITS | PQL  | METHOD          | Blank             | Duplicate Sm#  | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| PAHs in Soil                 |       |      |                 |                   |                | Base II Duplicate II % RPD |           | Recovery            |
| Date extracted               | -     |      |                 | 03/03/2<br>011    | [NT]           | [NT]                       | LCS-3     | 03/03/2011          |
| Date analysed                | -     |      |                 | 03/03/2<br>011    | [NT]           | [NT]                       | LCS-3     | 03/03/2011          |
| Naphthalene                  | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | LCS-3     | 93%                 |
| Acenaphthylene               | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | [NR]      | [NR]                |
| Acenaphthene                 | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | [NR]      | [NR]                |
| Fluorene                     | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | LCS-3     | 95%                 |
| Phenanthrene                 | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | LCS-3     | 107%                |
| Anthracene                   | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | [NR]      | [NR]                |
| Fluoranthene                 | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | LCS-3     | 100%                |
| Pyrene                       | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | LCS-3     | 105%                |
| Benzo(a)anthracene           | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | [NR]      | [NR]                |
| Chrysene                     | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | LCS-3     | 112%                |
| Benzo(b+k)fluoranthene       | mg/kg | 0.2  | GC.12<br>subset | <0.2              | [NT]           | [NT]                       | [NR]      | [NR]                |
| Benzo(a)pyrene               | mg/kg | 0.05 | GC.12<br>subset | <0.05             | [NT]           | [NT]                       | LCS-3     | 106%                |
| Indeno(1,2,3-c,d)pyrene      | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | [NR]      | [NR]                |
| Dibenzo(a,h)anthracene       | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | [NR]      | [NR]                |
| Benzo(g,h,i)perylene         | mg/kg | 0.1  | GC.12<br>subset | <0.1              | [NT]           | [NT]                       | [NR]      | [NR]                |
| Surrogate<br>p-Terphenyl-d14 | %     |      | GC.12<br>subset | 135               | [NT]           | [NT]                       | LCS-3     | 124%                |

|                                 |       | Clie | ent Referenc         | ce: 4          | 1486, Hurstvil | le                         |           |                     |
|---------------------------------|-------|------|----------------------|----------------|----------------|----------------------------|-----------|---------------------|
| QUALITYCONTROL                  | UNITS | PQL  | METHOD               | Blank          | Duplicate Sm#  | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| Acid Extractable metals in soil |       |      |                      |                |                | Base II Duplicate II % RPD |           |                     |
| Date digested                   | -     |      |                      | 03/03/2<br>011 | [NT]           | [NT]                       | LCS-1     | 03/03/2011          |
| Date analysed                   | -     |      |                      | 03/03/2<br>011 | [NT]           | [NT]                       | LCS-1     | 03/03/2011          |
| Arsenic                         | mg/kg | 4    | Metals.20<br>ICP-AES | <4             | [NT]           | [NT]                       | LCS-1     | 95%                 |
| Cadmium                         | mg/kg | 0.5  | Metals.20<br>ICP-AES | <0.5           | [NT]           | [NT]                       | LCS-1     | 94%                 |
| Chromium                        | mg/kg | 1    | Metals.20<br>ICP-AES | <1             | [NT]           | [NT]                       | LCS-1     | 94%                 |
| Copper                          | mg/kg | 1    | Metals.20<br>ICP-AES | <1             | [NT]           | [NT]                       | LCS-1     | 95%                 |
| Lead                            | mg/kg | 1    | Metals.20<br>ICP-AES | <1             | [NT]           | [NT]                       | LCS-1     | 92%                 |
| Mercury                         | mg/kg | 0.1  | Metals.21<br>CV-AAS  | <0.1           | [NT]           | [NT]                       | LCS-1     | 93%                 |
| Nickel                          | mg/kg | 1    | Metals.20<br>ICP-AES | <1             | [NT]           | [NT]                       | LCS-1     | 95%                 |
| Zinc                            | mg/kg | 1    | Metals.20<br>ICP-AES | <1             | [NT]           | [NT]                       | LCS-1     | 92%                 |
| QUALITY CONTROL<br>Moisture     | UNITS | PQL  | METHOD               | Blank          |                |                            |           |                     |
| Date prepared                   | -     |      |                      | 03/03/2<br>011 |                |                            |           |                     |
| Date analysed                   | -     |      |                      | 04/03/2<br>011 |                |                            |           |                     |
| Moisture                        | %     | 0.1  | LAB.8                | <0.10          |                |                            |           |                     |

#### **Report Comments:**

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

| INS: Insufficient sample for this test | PQL: Practical Quantitation Limit | NT: Not tested                 |
|----------------------------------------|-----------------------------------|--------------------------------|
| NA: Test not required                  | RPD: Relative Percent Difference  | NA: Test not required          |
| <: Less than                           | >: Greater than                   | LCS: Laboratory Control Sample |

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. **Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable. PICKFORD & RHYDER CONSULTING PTY LTD - ABN 17 105 546 076



PO Box 1422 Lane Cove 1595 Rear - 244 Burns Bay Road Lane Cove NSW Australia (02) 9418 9151 Phone: Fax: (02) 9418 9150

28 February 2011

Ms D. Ord & N. Cussen JBS Environmental PO Box 940 MASCOT NSW 1460

Fax: 8338-1700

# **CERTIFICATE OF ANALYSIS - ASBESTOS IDENTIFICATION**

YOUR REFERENCE/JOB No.: 41486 TYPE OF SAMPLES: Bulk sample -as received from Envirolab Services SITE LOCATION: Hurstville 23 February 2011 DATE SAMPLED: 22 February 2011 DATE RECEIVED: OUR REFERENCE: 65731-ID

TEST METHOD: Soil samples examined by Stereomicroscopy and Polarized Light Microscopy (with Dispersion Staining) in accordance with AS 4964-2004: - 'Method for the qualitative identification of asbestos in bulk samples' as outlined in Laboratory Method ID/1. The Reporting Limit for the results in this Certificate is numerically equal to the lowest detection limit of 0.1 g/kg. Trace asbestos analysis has been conducted on each sample, which is generally designed to detect 'respirable' asbestos fibres (ie less than 3 micrometres in width) distributed throughout the sample.

All sampling and site work have been undertaken by the client - the analytical procedures and results reported on this Certificate have been conducted by Pickford & Rhyder Consulting.

| Sample No | Lab No | Sample Information         | Analysis Result      | Description                                                                                                                                                                                        |
|-----------|--------|----------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QC1       | 65731  | Soil sample as<br>received | no asbestos detected | The sample was a brown soil<br>with plant matter, of approximate<br>weight 31 g, in which organic<br>fibres were detected. No<br>asbestos fibres were found at<br>the Reporting Limit of 0.1 g/kg. |

Analysed and reported by:

L. Apthorpe. Approved Identifier and Signatory.



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced except in full.

Accreditation number 2515

| CUSTODY ENVIRONMENTAL | LABORATORY BATCH NO.<br>SAMPLERS N LUN C RADARTA CONTACTOR CONTRACTOR PHONE: CONTACTOR OF CONTRACTOR PHONE: CONTACTOR OF CONTRACTOR | pé edre                                            | 2.                                                    |   |  |   |  | MECH Deres to was a right for a kindler |                       |                  | E: [V[0/0] JAN P/11/P DATE: 22/2/11 COOLER SEAL - Y | NAME: K. Autor V. DATE: COOLER TEMP deg C | 100                                                                                                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|---|--|---|--|-----------------------------------------|-----------------------|------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHAIN OF              | PROJECT NO.: 414 86<br>PROJECT NAME HUSTUNIC<br>SEND REPORT TO: O Ord N. CLESS, SEND INVOICE TO: A WORLD<br>DATE NEEDED BY: STO TRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL: | HAIA S. S. S. 22.2.1, JATE THE TYPE & PRESERVATIVE PH | 0 |  | 1 |  |                                         | Trp Spike wiches with | RELINQUISHED BY: | NAME: DATE: CONSIGNMENT NOTE NO.                    | IE: JU.                                   | OF: ・ビビル う<br>Container & Preservative Codes: P = Plastic, J = Soil Jar, B = Glass Bottle, N = Nitric Add Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrox |

Suite 2, 595 Gardeners Road MASCOT NSW 2020 PO Box 940 MASCOT NSW 1460 www.jbsgroup.com.au

JBS Environmental Pty Ltd ABN 67 071 842 638 Phone: (02) 8338-1011 Fax: (02) 8338-1700 IMSO FormsO13 - Chain of Custody

| Z = Zinc Prsvd: E = EDTA Prevd: ST = Storik Rotle: O = Other | thone Add Pravd Vial; VS = Sulfuric Add Pravd Vial; S = Sulfuric Add Pravd; 2 | Glass Botter: N = Nitre Acid Prsvd; C = Sodium Hydroxide Pisvd; VC = Hydroxitoric Acid Prsvd Vili; VS = Sulfuric Acid Prsvd Vili; S = Sulfuric Acid Prsvd; Z = Zinc Fervet; E = EDTA Prevd; S = Section Result, C = Solice Res | Container & Preservative Codes: P = Plastic; J = Soil Jar; B = ( |
|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| COOLER TEMP den C                                            | OF                                                                            | TRANSPORT CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OF:                                                              |
| COOLER SEAL - Yes Vo Intact Broken                           | NAME: DATE:                                                                   | CONSIGNMENT NOTE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NAME: DATE:                                                      |
|                                                              | OF: Jed                                                                       | TRANSPORT CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JBS ENV                                                          |
| COOLER SEAL -                                                | NAME: NAGAS DATE: 2223                                                        | CONSIGNMENT NOTE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |
| 一次表示的描述。FOR RECEIVING LAB USE ONLY: A LA SOL AND             | A RECEIVED BY:                                                                | METHOD OF SHIPMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IED BY;                                                          |
|                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| 65000135 Jac 805                                             |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| mperature o-<br>orage Locato                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| CRICORDIN LINE                                               |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| 4. 11 pm (2)                                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| aver 23ppor                                                  |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
|                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
|                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
|                                                              |                                                                               | 22/2/11 Jac .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QCI So,1 2                                                       |
| NOTES                                                        |                                                                               | D A T E TIME TYPE & PRESERVATIVE pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE ID MATRIX D                                               |
|                                                              | QC LEVEL: NEPM 1999 ( )                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:               |
| EMAIL:                                                       | PHONE: 83381011                                                               | SEND INVOICE TO: Amy Warth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0: Dord +                                                        |
| 「「「「「「」」」」、「「」」」、「」」、「」」、「」、「」、「」、「」、「」、                     | 0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT NAME Lington                                             |
| ENVIRONMENTAL                                                | CUSTODY                                                                       | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |

Phone: (02) 8338-1011 Fax: (02) 8338-1011 Fax: (02) 8338-1700

Suite 2, 595 Gardeners Road MASCOT NSW 2020 PO Box 940 MASCOT NSW 1460 www.jbsgroup.com.au

Coc 23/2/2011@ 5:14 pm .

V LDDS ENVIRONMENTAL



# **ANALYTICAL REPORT**



| - CLIENT DETAILS |                                                          | LABORATORY DETA | ILS                                          |
|------------------|----------------------------------------------------------|-----------------|----------------------------------------------|
| Contact          | Danielle Ord                                             | Manager         | Huong Crawford                               |
| Client           | JBS Environmental                                        | Laboratory      | SGS Alexandria Environmental                 |
| Address          | Suite 2, 595 Gardeners Road<br>Mascot<br>Sydney NSW 2020 | Address         | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone        | 02 8338 1011                                             | Telephone       | +61 2 8594 0400                              |
| Facsimile        | 02 8338 1700                                             | Facsimile       | +61 2 8594 0499                              |
| Email            | dord@jbsgroup.com.au                                     | Email           | au.environmental.sydney@sgs.com              |
| Project          | 41497 - Hurstville                                       | SGS Reference   | SE100099 R0                                  |
| Order Number     | (Not specified)                                          | Report Number   | 000000926                                    |
| Samples          | 1                                                        | Date Reported   | 07 Mar 2011                                  |
|                  |                                                          | Date Received   | 23 Feb 2011                                  |

COMMENTS

The document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES \_

Dong Liang Inorganics Metals Team Leader

Tuewey

Jue Wang Organic Chemist

Kmly

Ly Kim Ha Organics Supervisor

Alexandria NSW 2015 Australia



# **ANALYTICAL REPORT**

|           | S     | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE100099.001<br>Soil<br>22 Feb 2011<br>QC1 |
|-----------|-------|--------------------------------------------------------------|--------------------------------------------|
| Parameter | Units | LOR                                                          |                                            |

#### Volatile Petroleum Hydocarbons in Soil Method: AN433/AN434

| TRH C6-C9                     | mg/kg | 20  | <20  |
|-------------------------------|-------|-----|------|
| Benzene                       | mg/kg | 0.1 | <0.1 |
| Toluene                       | mg/kg | 0.1 | <0.1 |
| Ethylbenzene                  | mg/kg | 0.1 | <0.1 |
| m/p-xylene                    | mg/kg | 0.2 | <0.2 |
| o-xylene                      | mg/kg | 0.1 | <0.1 |
| MtBE(Methyl-tert-butyl ether) | mg/kg | 0.1 | <0.1 |

#### Surrogates

| Trifluorotoluene (Surrogate) % - 8 | 33 |
|------------------------------------|----|
|------------------------------------|----|

#### TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403

| TRH C10-C14 | mg/kg | 20 | <20 |
|-------------|-------|----|-----|
| TRH C15-C28 | mg/kg | 50 | <50 |
| TRH C29-C36 | mg/kg | 50 | <50 |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420

| Naphthalene            | mg/kg | 0.1 | <0.1 |
|------------------------|-------|-----|------|
| 2-methylnaphthalene    | mg/kg | 0.1 | <0.1 |
| 1-methylnaphthalene    | mg/kg | 0.1 | <0.1 |
| Acenaphthylene         | mg/kg | 0.1 | 0.7  |
| Acenaphthene           | mg/kg | 0.1 | <0.1 |
| Fluorene               | mg/kg | 0.1 | 0.2  |
| Phenanthrene           | mg/kg | 0.1 | 3.8  |
| Anthracene             | mg/kg | 0.1 | 0.9  |
| Fluoranthene           | mg/kg | 0.1 | 4.9  |
| Pyrene                 | mg/kg | 0.1 | 4.1  |
| Benzo(a)anthracene     | mg/kg | 0.1 | 2.9  |
| Chrysene               | mg/kg | 0.1 | 1.2  |
| Benzo(b&k)fluoranthene | mg/kg | 0.2 | 3.0  |
| Benzo(a)pyrene         | mg/kg | 0.1 | 1.7  |
| Indeno(1,2,3-cd)pyrene | mg/kg | 0.1 | 1.1  |
| Dibenzo(a&h)anthracene | mg/kg | 0.1 | 0.2  |
| Benzo(ghi)perylene     | mg/kg | 0.1 | 1.2  |
| Total PAH              | mg/kg | 1.8 | <1.8 |
|                        |       |     |      |

Surrogates

| d5-nitrobenzene (Surrogate)  | % | - | 111 |
|------------------------------|---|---|-----|
| 2-fluorobiphenyl (Surrogate) | % | - | 98  |
| d14-p-terphenyl (Surrogate)  | % | - | 79  |

#### Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNEY) Method: AN040/AN320

| Arsenic, As  | mg/kg | 3   | 4   |
|--------------|-------|-----|-----|
| Cadmium, Cd  | mg/kg | 0.3 | 0.3 |
| Chromium, Cr | mg/kg | 0.3 | 11  |
| Copper, Cu   | mg/kg | 0.5 | 25  |
| Lead, Pb     | mg/kg | 1   | 190 |
| Nickel, Ni   | mg/kg | 0.5 | 4.8 |
| Zinc, Zn     | mg/kg | 0.5 | 99  |



# ANALYTICAL REPORT

|                                | Sam<br>Sa<br>Sa<br>Sa | SE100099.001<br>Soil<br>22 Feb 2011<br>QC1 |       |
|--------------------------------|-----------------------|--------------------------------------------|-------|
| Parameter                      | Units                 | LOR                                        |       |
| Mercury in Soil Method: AN312  |                       |                                            |       |
| Mercury                        | mg/kg                 | 0.05                                       | <0.05 |
| Moisture Content Method: AN234 |                       |                                            |       |
| % Moisture                     | %                     | 0.5                                        | 9.6   |



#### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### Mercury in Soil Method: ME-(AU)-[ENV]AN312

| Parameter | QC<br>Reference | Units | LOR  | MB    | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|-----------|-----------------|-------|------|-------|----------|------------------|-----------------|
| Mercury   | LB000505        | mg/kg | 0.05 | <0.05 | 2%       | 108%             | 98%             |

#### Metals in Soil by ICPOES from EPA 200.8 Digest (SYDNEY) Method: ME-(AU)-[ENV]AN040/AN320

| Parameter    | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|--------------|-----------|-------|-----|------|----------|-----------|-----------|
|              | Reference |       |     |      |          | %Recovery | %Recovery |
| Arsenic, As  | LB000504  | mg/kg | 3   | <3   | 16%      | 96%       | 92%       |
| Cadmium, Cd  | LB000504  | mg/kg | 0.3 | <0.3 | 10%      | 99%       | 92%       |
| Chromium, Cr | LB000504  | mg/kg | 0.3 | <0.3 | 18%      | 99%       | 93%       |
| Copper, Cu   | LB000504  | mg/kg | 0.5 | <0.5 | 4%       | 101%      | 101%      |
| Lead, Pb     | LB000504  | mg/kg | 1   | <1   | 13%      | 99%       | 64%       |
| Nickel, Ni   | LB000504  | mg/kg | 0.5 | <0.5 | 9%       | 100%      | 93%       |
| Zinc, Zn     | LB000504  | mg/kg | 0.5 | <0.5 | 4%       | 97%       | 119%      |

#### Moisture Content Method: ME-(AU)-[ENV]AN234

| Parameter  | QC        | Units | LOR | DUP %RPD |
|------------|-----------|-------|-----|----------|
|            | Reference |       |     |          |
| % Moisture | LB000487  | %     | 0.5 | 16%      |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

| Parameter              | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|------------------------|-----------------|-------|-----|------|----------|------------------|-----------------|
| Naphthalene            | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | 99%              | 96%             |
| 2-methylnaphthalene    | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| 1-methylnaphthalene    | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Acenaphthylene         | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | 87%              | 94%             |
| Acenaphthene           | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | 93%              | 96%             |
| Fluorene               | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Phenanthrene           | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | 88%              | 98%             |
| Anthracene             | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | 94%              | 95%             |
| Fluoranthene           | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | 91%              | 101%            |
| Pyrene                 | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | 94%              | 105%            |
| Benzo(a)anthracene     | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Chrysene               | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Benzo(b&k)fluoranthene | LB000485        | mg/kg | 0.2 | <0.2 | 0%       | NA               | NA              |
| Benzo(a)pyrene         | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | 83%              | 89%             |
| Indeno(1,2,3-cd)pyrene | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Dibenzo(a&h)anthracene | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Benzo(ghi)perylene     | LB000485        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Total PAH              | LB000485        | mg/kg | 1.8 | <1.8 | 0%       | NA               | NA              |

Surrogates

| Parameter                    | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|------------------------------|-----------------|-------|-----|------|----------|------------------|-----------------|
| d5-nitrobenzene (Surrogate)  | LB000485        | %     | -   | 110% | 2%       | 110%             | 100%            |
| 2-fluorobiphenyl (Surrogate) | LB000485        | %     | -   | 98%  | 4%       | 101%             | 91%             |
| d14-p-terphenyl (Surrogate)  | LB000485        | %     | -   | 81%  | 3%       | 83%              | 75%             |

#### TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

| Parameter   | QC        | Units | LOR | MB  | DUP %RPD | LCS       | MS        |
|-------------|-----------|-------|-----|-----|----------|-----------|-----------|
|             | Reference |       |     |     |          | %Recovery | %Recovery |
| TRH C10-C14 | LB000485  | mg/kg | 20  | <20 | 4%       | 90%       | 80%       |
| TRH C15-C28 | LB000485  | mg/kg | 50  | <50 | 0%       | 103%      | 99%       |
| TRH C29-C36 | LB000485  | mg/kg | 50  | <50 | 0%       | 79%       | 73%       |



MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### Volatile Petroleum Hydocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434

| Parameter                     | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|-------------------------------|-----------------|-------|-----|------|----------|------------------|-----------------|
| TRH C6-C9                     | LB000486        | mg/kg | 20  | <20  | 0%       | 121%             | 116%            |
| Benzene                       | LB000486        | mg/kg | 0.1 | <0.1 | 0%       | 103%             | 97%             |
| Toluene                       | LB000486        | mg/kg | 0.1 | <0.1 | 0%       | 104%             | 101%            |
| Ethylbenzene                  | LB000486        | mg/kg | 0.1 | <0.1 | 0%       | 105%             | 103%            |
| m/p-xylene                    | LB000486        | mg/kg | 0.2 | <0.2 | 0%       | 112%             | 110%            |
| o-xylene                      | LB000486        | mg/kg | 0.1 | <0.1 | 0%       | 115%             | 113%            |
| MtBE(Methyl-tert-butyl ether) | LB000486        | mg/kg | 0.1 | <0.1 | 0%       | 111%             | 105%            |

Surrogates

| Parameter                    | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|------------------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                              | Reference |       |     |      |          | %Recovery | %Recovery |
| Trifluorotoluene (Surrogate) | LB000486  | %     | -   | 121% | 13%      | 110%      | 96%       |



# **METHOD SUMMARY**

| METHOD      | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN040       | A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analsysis by ASS or ICP as per USEPA Method 200.8.                                                                                                                                                                                                                                                                       |
| AN045       | A portion of sample is digested with Nitric acid and Hydrogen Peroxide over time and then with Hydrochloric acid through several heating and cooling cycles. It provides a strong oxidising medium for bringing metal analytes into solution according to USEPA3050, after filtration the solution is presented for analysis on AAS or ICP.                                                                                                                                           |
| AN088       | Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.                                                            |
| AN234       | The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin.<br>After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of<br>moisture will take some time in a drying oven for complete removal of water.                                                                                                                                                                        |
| AN312       | Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid,<br>mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury<br>vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser.<br>Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA<br>3112/3500                       |
| AN403       | Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent<br>extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the<br>combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four<br>alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36.                                  |
| AN403       | Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differial polarity of the elluent solvents.                                    |
| AN403       | The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependant on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B. |
| AN420       | (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments<br>and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on<br>USEPA 3500C and 8270D).                                                                                                                                                                                                                                   |
| AN433/AN434 | VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.                                                                                                        |



#### FOOTNOTES

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. \* This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- $\uparrow\downarrow$  Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

Page 7 of 7

- QC result is above the upper tolerance QC result is below the lower tolerance The sample was not analysed for this analyte
- QFH QFL



# SAMPLE RECEIPT ADVICE

| CLIENT DETAILS |                                                          | LABORATORY DETAILS _ | _ LABORATORY DETAILS                         |  |  |  |  |  |  |  |  |
|----------------|----------------------------------------------------------|----------------------|----------------------------------------------|--|--|--|--|--|--|--|--|
| Contact        | Danielle Ord                                             | Manager              | Huong Crawford                               |  |  |  |  |  |  |  |  |
| Client         | JBS Environmental                                        | Laboratory           | SGS Alexandria Environmental                 |  |  |  |  |  |  |  |  |
| Address        | Suite 2, 595 Gardeners Road<br>Mascot<br>Sydney NSW 2020 | Address              | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |  |  |  |  |  |  |  |  |
| Telephone      | 02 8338 1011                                             | Telephone            | +61 2 8594 0400                              |  |  |  |  |  |  |  |  |
| Facsimile      | 02 8338 1700                                             | Facsimile            | +61 2 8594 0499                              |  |  |  |  |  |  |  |  |
| Email          | dord@jbsgroup.com.au                                     | Email                | au.environmental.sydney@sgs.com              |  |  |  |  |  |  |  |  |
| Project        | 41497 - Hurstville                                       | Samples Received     | Wed 23/2/2011                                |  |  |  |  |  |  |  |  |
| Order Number   | (Not specified)                                          | Report Due           | Thu 3/3/2011                                 |  |  |  |  |  |  |  |  |
| Samples        | 1                                                        | SGS Reference        | SE100099                                     |  |  |  |  |  |  |  |  |

SUBMISSION DETAILS

This is to confirm that 1 sample was received on Wednesday 23/2/2011. Results are expected to be ready by Thursday 3/3/2011. Please quote SGS reference SE100099 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 1 Soil 23/2/2011 Yes Other Lab Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

COC Yes Cool Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS \_

Instructions received at SGS 23/02/2011@5:14pm.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms\_and\_conditions.htm as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

10 Reid Road PO Box 32, Welshpool DC

Perth Int'l Airport Newburn

WA 6105 Australia WA 6896 Australia

t +61 (0)8 9373 3500 f +61 (0)8 9373 3556 www.au.sgs.com



# SAMPLE RECEIPT ADVICE

CLIENT DETAILS . 41497 - Hurstville Client JBS Environmental Project SUMMARY OF ANALYSIS PAH (Polynuclear Aromatic Hydrocarbons) in Metals in Soil by ICPOES from EPA 200.8 Digest TRH (Total Recoverable Hydrocarbons) in Soil Volatile Petroleum Hydocarbons in Soil Moisture Content Mercury in Soil No. Sample ID 7 001 1 1 21 3 12 QC1

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

# CHAIN OF CUSTODY



| PROJECT NO .: 414                        | 56                      |            |                                        | · · · ·                      |             | LAE      | BORA     | TORY    | BATCH       | I NO.     |                   | 1. T.A.             | 1997.<br>1997. | lan 1       | 1 × 141                        | e di le   |             |                                |
|------------------------------------------|-------------------------|------------|----------------------------------------|------------------------------|-------------|----------|----------|---------|-------------|-----------|-------------------|---------------------|----------------|-------------|--------------------------------|-----------|-------------|--------------------------------|
| PROJECT NAME: HOV                        | stulle                  | Frivak     | S                                      |                              |             | SAI      | MPLE     | rs 🤇    | 2.B.        | Kc        | le                | $\Lambda S$         | $\wedge$       | $( \cdot ($ | 1.556                          | 20        |             |                                |
| SEND REPORT TO: D.                       | Ovd, N.                 | CUSSEr     | SEND INVOICE 1                         | ro: Amy wort                 | th          | PHO      | ONE:     | 02.8    | 3338 10     | 11        | -                 |                     |                |             |                                | Ē         | MAIL:       | Dord@ 1650000-0011.au          |
| DATE NEEDED BY: Stand                    |                         |            |                                        |                              |             | QC       | LEVE     | 1÷      |             | NE        | PM 19             | 999 (               | <b>_</b>       | /           |                                |           | Chro        | Dovola bseroup.com.au          |
| COMMENTS / SPECIAL HAND                  | DLING / STORAG          | E OR DISPO | SAL:                                   |                              |             | Combo 6  | BIEX     | ombo 3  |             |           |                   |                     |                |             |                                |           |             | Neveserejbsgra                 |
| SAMPLE ID                                | MATRIX                  | DATE       |                                        | & PRESERVATIVE               | рН          | હ        | <b>B</b> | S       |             |           |                   |                     |                |             |                                |           |             | NOTES                          |
| MWOI                                     | Water                   | 4/3/11     | Bottle                                 | s+Vials+lce                  |             | Y        |          | -       |             |           |                   |                     |                |             |                                |           |             | Combo 6 =                      |
| MW02                                     |                         | <u>'</u>   |                                        |                              |             | X        |          |         |             |           |                   |                     |                |             |                                |           |             | - TPM                          |
| MW03                                     |                         |            |                                        |                              |             | X        |          |         |             |           |                   |                     |                |             | _                              |           |             | - PAH                          |
| MW04                                     |                         |            |                                        |                              |             | X        |          |         |             |           |                   |                     |                |             |                                |           |             | - BTEX                         |
| 1W-QAI                                   |                         |            |                                        |                              |             | ×        |          | •       |             |           |                   |                     |                |             |                                |           |             | - oc/op/PCB                    |
| MW-QCI                                   | ↓                       | <b>↓</b>   |                                        |                              | ·           | × ×      |          |         | PLE         | 76        | 5 S€              | ave                 | 2              | S           | ds                             |           |             | - Metals                       |
| Trip spike<br>Trip blank                 |                         |            |                                        |                              |             |          | ×        |         |             |           |                   |                     |                |             |                                |           |             |                                |
| Trip blank                               |                         |            |                                        |                              |             |          | ٢        |         |             |           |                   |                     |                |             |                                |           |             | Combo 3 =                      |
| Rinsate                                  |                         |            |                                        |                              | _           |          |          | X       |             |           |                   |                     |                | trob b      |                                |           |             | _ Meta()                       |
|                                          |                         |            |                                        |                              |             |          |          |         |             |           | (Enfly            | rolal) ,            | 2/14/51        | 12 A        | shiey St<br>SW 2067<br>19 6200 |           |             | - TPH                          |
| •                                        |                         | [          |                                        |                              |             |          |          |         |             |           | $\rightarrow$     | _1                  |                | Ph: 99      | 10 6200                        |           |             | - PAH                          |
|                                          |                         |            |                                        |                              |             |          |          |         |             |           | Job I             | <u>to:</u>          | 5              | 261         | 2                              |           |             | - BTEX                         |
|                                          |                         |            |                                        |                              |             |          |          |         |             |           |                   |                     |                | 13/1        | 1                              |           |             |                                |
|                                          |                         |            |                                        |                              |             |          |          | i       |             |           | Time re<br>Receiv | eceived<br>/ed.lev: | Z              |             |                                |           |             |                                |
|                                          |                         |            |                                        |                              |             |          |          |         |             |           | Temp:             | CeelA               | mbient         |             |                                |           |             |                                |
|                                          |                         |            |                                        |                              |             |          |          |         |             |           | Gool n            | g:feefi<br>tv Gola  | vepack         | en/None     |                                |           |             |                                |
|                                          |                         |            |                                        |                              |             | -        |          |         |             |           |                   |                     |                | 014140418   |                                |           |             |                                |
|                                          |                         |            | ······································ |                              |             | -        |          |         |             |           |                   |                     |                |             |                                |           |             |                                |
| RELINQUISHE                              | D BY:                   | l          |                                        | D OF SHIPMENT: C             | JUR-1       | ere      |          |         |             | ECEIV     | ED BY             |                     |                |             |                                |           |             | RECEIVING LAB USE ONLY:        |
| NAME: C. Roboents D                      | ATE: <b>4/3/1</b> 1     | CONSI      | GNMENT NOTE NO                         | •                            |             |          | NAM      |         | ZL.         |           |                   |                     | ате:<br>-/З    | / 1 1       |                                |           |             | No Intact Broken               |
| DF: JBS Environmental                    | DATE:                   |            | PORT CO.<br>GNMENT NOTE NO             |                              |             |          | OF:      |         | ELS         |           |                   | _                   | ר /־<br>ATE:   | 11          |                                |           |             | C. Intact                      |
|                                          | DATE:                   |            |                                        |                              |             |          | OF:      |         |             |           |                   |                     |                |             |                                |           |             | C                              |
| OF:<br>Container & Preservative Codes: ( | - Plastic: 1 - Coil Jar | I KANS     |                                        | - Sodium Hudrovida Braud: VC | = Hydrochiz | nin Aoid | Decud Vi | al VS - | Sulfuric Ac | id Decire | 110510            | - Sulfu             | nic Acid       | Preud: 7    | = Zinc Prsv                    | d: E = EC | TA Prsvd: 5 | 5T = Sterile Bottle; O = Other |

rifune: (22) 8338-101 Fax: (02) 8338-1700 IMSO FormsO13 - Chain of Custody

www.ibsgroup.com.au



**Envirolab Services Pty Ltd** ABN 37 112 535 645 12 Ashlev St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

#### **CERTIFICATE OF ANALYSIS**

52672

Client: **JBS Environmental Pty Ltd** P.O. Box 940 MASCOT NSW 1460

Attention: Danielle Ord, Nathan Cussen, Cathy Roberts

#### Sample log in details:

| Your Reference:                                         | 41486, Hurstville Privates |   |            |  |  |  |  |
|---------------------------------------------------------|----------------------------|---|------------|--|--|--|--|
| No. of samples:                                         | 8 Waters                   |   |            |  |  |  |  |
| Date samples received / completed instructions received | 04/03/2011                 | / | 04/03/2011 |  |  |  |  |

# **Analysis Details:**

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

#### **Report Details:**

Date results requested by: / Issue Date: 11/03/11 10/03/11 1 Date of Preliminary Report: Not issued NATA accreditation number 2901. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \*.

# **Results Approved By:**

-Manay Nancy Zhang Chemist

| Paciochewicz.         |  |
|-----------------------|--|
| Kasjan Paciuszkiewicz |  |
| Chemist               |  |

Envirolab Reference: Revision No: R 00

52672



Page 1 of 15

#### Client Reference: 41486, Hurstville Privates

| vTRH&BTEX in Water             |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | 52672-1    | 52672-2    | 52672-3    | 52672-4    | 52672-5    |
| Your Reference                 |       | MW01       | MW02       | MW03       | MW04       | MW - QA1   |
| Date Sampled                   |       | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  |
| Type of sample                 |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted                 | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| Date analysed                  | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| TRHC6 - C9                     | µg/L  | <10        | <10        | <10        | <10        | <10        |
| Benzene                        | µg/L  | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |
| Toluene                        | µg/L  | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |
| Ethylbenzene                   | µg/L  | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |
| m+p-xylene                     | µg/L  | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       |
| o-xylene                       | µg/L  | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |
| Surrogate Dibromofluoromethane | %     | 103        | 101        | 101        | 101        | 99         |
| Surrogate toluene-d8           | %     | 100        | 100        | 100        | 100        | 100        |
| Surrogate 4-BFB                | %     | 100        | 100        | 100        | 100        | 100        |

| vTRH&BTEX in Water             |       |            |            |            |
|--------------------------------|-------|------------|------------|------------|
| Our Reference:                 | UNITS | 52672-6    | 52672-7    | 52672-8    |
| Your Reference                 |       | Trip Spike | Trip Blank | Rinsate    |
| Date Sampled                   |       | 4/03/2011  | 4/03/2011  | 4/03/2011  |
| Type of sample                 |       | Water      | Water      | Water      |
| Date extracted                 | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| Date analysed                  | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| TRHC6 - C9                     | μg/L  | [NA]       | [NA]       | <10        |
| Benzene                        | μg/L  | 74%        | <1.0       | <1.0       |
| Toluene                        | µg/L  | 81%        | <1.0       | <1.0       |
| Ethylbenzene                   | µg/L  | 81%        | <1.0       | <1.0       |
| m+p-xylene                     | μg/L  | 79%        | <2.0       | <2.0       |
| o-xylene                       | μg/L  | 82%        | <1.0       | <1.0       |
| Surrogate Dibromofluoromethane | %     | 98         | 98         | 99         |
| Surrogate toluene-d8           | %     | 101        | 100        | 100        |
| Surrogate 4-BFB                | %     | 101        | 100        | 99         |

#### Client Reference: 41486, Hurstville Privates

| sTRH in Water (C10-C36) |       |            |            |            |            |            |
|-------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:          | UNITS | 52672-1    | 52672-2    | 52672-3    | 52672-4    | 52672-5    |
| Your Reference          |       | MW01       | MW02       | MW03       | MW04       | MW - QA1   |
| Date Sampled            |       | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  |
| Type of sample          |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted          | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| Date analysed           | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| TRHC 10 - C 14          | µg/L  | <50        | 340        | <50        | <50        | <50        |
| TRHC 15 - C28           | µg/L  | <100       | <100       | <100       | <100       | <100       |
| TRHC29 - C36            | µg/L  | <100       | <100       | <100       | <100       | <100       |
| Surrogate o-Terphenyl   | %     | 130        | 140        | 126        | 116        | 112        |

| sTRH in Water (C10-C36) |       |            |  |
|-------------------------|-------|------------|--|
| Our Reference:          | UNITS | 52672-8    |  |
| Your Reference          |       | Rinsate    |  |
| Date Sampled            |       | 4/03/2011  |  |
| Type of sample          |       | Water      |  |
| Date extracted          |       | 08/03/2011 |  |
| Date extracted          | -     | 06/03/2011 |  |
| Date analysed           | -     | 08/03/2011 |  |
| TRHC 10 - C 14          | µg/L  | <50        |  |
| TRHC15 - C28            | µg/L  | <100       |  |
| TRHC29 - C36            | µg/L  | <100       |  |
| Surrogate o-Terphenyl   | %     | 87         |  |

| PAHs in Water             |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | 52672-1    | 52672-2    | 52672-3    | 52672-4    | 52672-5    |
| Your Reference            |       | MW01       | MW02       | MW03       | MW04       | MW - QA1   |
| Date Sampled              |       | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  |
| Type of sample            |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted            | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| Date analysed             | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| Naphthalene               | µg/L  | <1         | 1.3        | <1         | <1         | <1         |
| Acenaphthylene            | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Acenaphthene              | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Fluorene                  | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Phenanthrene              | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Anthracene                | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Fluoranthene              | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Pyrene                    | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(a)anthracene        | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Chrysene                  | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(b+k)fluoranthene    | µg/L  | <2         | <2         | <2         | <2         | <2         |
| Benzo(a)pyrene            | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Indeno(1,2,3-c,d)pyrene   | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Dibenzo(a,h)anthracene    | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(g,h,i)perylene      | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Surrogate p-Terphenyl-d14 | %     | 110        | 107        | 100        | 98         | 101        |

| PAHs in Water           |       |            |
|-------------------------|-------|------------|
| Our Reference:          | UNITS | 52672-8    |
| Your Reference          |       | Rinsate    |
| Date Sampled            |       | 4/03/2011  |
| Type of sample          |       | Water      |
| Date extracted          | -     | 08/03/2011 |
| Date analysed           | -     | 08/03/2011 |
| Naphthalene             | µg/L  | <1         |
| Acenaphthylene          | µg/L  | <1         |
| Acenaphthene            | µg/L  | <1         |
| Fluorene                | µg/L  | <1         |
| Phenanthrene            | μg/L  | <1         |
| Anthracene              | μg/L  | <1         |
| Fluoranthene            | µg/L  | <1         |
| Pyrene                  | µg/L  | <1         |
| Benzo(a)anthracene      | µg/L  | <1         |
| Chrysene                | µg/L  | <1         |
| Benzo(b+k)fluoranthene  | µg/L  | <2         |
| Benzo(a)pyrene          | µg/L  | <1         |
| Indeno(1,2,3-c,d)pyrene | µg/L  | <1         |
| Dibenzo(a,h)anthracene  | µg/L  | <1         |
| Benzo(g,h,i)perylene    | µg/L  | <1         |

## Client Reference: 414

# 41486, Hurstville Privates

| PAHs in Water             |       |           |
|---------------------------|-------|-----------|
| Our Reference:            | UNITS | 52672-8   |
| Your Reference            |       | Rinsate   |
| Date Sampled              |       | 4/03/2011 |
| Type of sample            |       | Water     |
| Surrogate p-Terphenyl-d14 | %     | 82        |

Envirolab Reference: 52672 Revision No: R 00 Page 5 of 15

| OCP in water        |       |            |            |            |            |            |
|---------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:      | UNITS | 52672-1    | 52672-2    | 52672-3    | 52672-4    | 52672-5    |
| Your Reference      |       | MW01       | MW02       | MW03       | MW04       | MW - QA1   |
| Date Sampled        |       | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  |
| Type of sample      |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted      | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| Date analysed       | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| НСВ                 | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| alpha-BHC           | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| gamma-BHC           | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| beta-BHC            | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Heptachlor          | μg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| delta-BHC           | μg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Aldrin              | μg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Heptachlor Epoxide  | μg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| gamma-Chlordane     | μg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| alpha-Chlordane     | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Endosulfan I        | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| pp-DDE              | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Dieldrin            | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Endrin              | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| pp-DDD              | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Endosulfan II       | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| pp-DDT              | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Endrin Aldehyde     | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Endosulfan Sulphate | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Methoxychlor        | µg/L  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Surrogate TCLMX     | %     | 96         | 101        | 117        | 105        | 93         |

| OP Pesticides in water<br>Our Reference:<br>Your Reference<br>Date Sampled<br>Type of sample | UNITS<br> | 52672-1<br>MW01<br>4/03/2011<br>Water | 52672-2<br>MW02<br>4/03/2011<br>Water | 52672-3<br>MW03<br>4/03/2011<br>Water | 52672-4<br>MW04<br>4/03/2011<br>Water | 52672-5<br>MW - QA1<br>4/03/2011<br>Water |
|----------------------------------------------------------------------------------------------|-----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|
| Date extracted                                                                               | -         | 08/03/2011                            | 08/03/2011                            | 08/03/2011                            | 08/03/2011                            | 08/03/2011                                |
| Date analysed                                                                                | -         | 08/03/2011                            | 08/03/2011                            | 08/03/2011                            | 08/03/2011                            | 08/03/2011                                |
| Diazinon                                                                                     | µg/L      | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                      |
| Dimethoate                                                                                   | µg/L      | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                      |
| Chlorpyriphos-methyl                                                                         | µg/L      | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                      |
| Ronnel                                                                                       | µg/L      | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                      |
| Chlorpyriphos                                                                                | µg/L      | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                      |
| Fenitrothion                                                                                 | µg/L      | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                      |
| Bromophos ethyl                                                                              | µg/L      | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                      |
| Ethion                                                                                       | µg/L      | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                  | <0.2                                      |
| Surrogate TCLMX                                                                              | %         | 96                                    | 101                                   | 117                                   | 105                                   | 93                                        |

| PCBs in Water   |       |            |            |            |            |            |
|-----------------|-------|------------|------------|------------|------------|------------|
| Our Reference:  | UNITS | 52672-1    | 52672-2    | 52672-3    | 52672-4    | 52672-5    |
| Your Reference  |       | MW01       | MW02       | MW03       | MW04       | MW - QA1   |
| Date Sampled    |       | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  |
| Type of sample  |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted  | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| Date analysed   | -     | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 | 08/03/2011 |
| Arochlor 1016   | µg/L  | <2         | <2         | <2         | <2         | <2         |
| Arochlor 1221*  | µg/L  | <2         | <2         | <2         | <2         | <2         |
| Arochlor 1232   | µg/L  | <2         | <2         | <2         | <2         | <2         |
| Arochlor 1242   | µg/L  | <2         | <2         | <2         | <2         | <2         |
| Arochlor 1248   | µg/L  | <2         | <2         | <2         | <2         | <2         |
| Arochlor 1254   | μg/L  | <2         | <2         | <2         | <2         | <2         |
| Arochlor 1260   | μg/L  | <2         | <2         | <2         | <2         | <2         |
| Surrogate TCLMX | %     | 96         | 101        | 117        | 105        | 93         |

| HM in water - dissolved |       |            |            |            |            |            |
|-------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:          | UNITS | 52672-1    | 52672-2    | 52672-3    | 52672-4    | 52672-5    |
| Your Reference          |       | MVV01      | MW02       | MW03       | MW04       | MW - QA1   |
| Date Sampled            |       | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  | 4/03/2011  |
| Type of sample          |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared           | -     | 09/03/2011 | 09/03/2011 | 09/03/2011 | 09/03/2011 | 09/03/2011 |
| Date analysed           | -     | 09/03/2011 | 09/03/2011 | 09/03/2011 | 09/03/2011 | 09/03/2011 |
| Arsenic-Dissolved       | µg/L  | 2          | <1         | 2          | 14         | 14         |
| Cadmium-Dissolved       | µg/L  | 0.1        | <0.1       | 0.2        | <0.1       | <0.1       |
| Chromium-Dissolved      | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Copper-Dissolved        | µg/L  | 5          | 3          | 10         | <1         | <1         |
| Lead-Dissolved          | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Mercury-Dissolved       | µg/L  | <0.4       | <0.4       | <0.4       | <0.4       | <0.4       |
| Nickel-Dissolved        | µg/L  | 20         | 1          | 9          | 29         | 29         |
| Zinc-Dissolved          | μg/L  | 72         | 9          | 48         | 58         | 58         |

| HM in water - dissolved |       |            |
|-------------------------|-------|------------|
| Our Reference:          | UNITS | 52672-8    |
| Your Reference          |       | Rinsate    |
| Date Sampled            |       | 4/03/2011  |
| Type of sample          |       | Water      |
| Date prepared           | -     | 09/03/2011 |
| Date analysed           | -     | 09/03/2011 |
| Arsenic-Dissolved       | μg/L  | <1         |
| Cadmium-Dissolved       | μg/L  | <0.1       |
| Chromium-Dissolved      | μg/L  | <1         |
| Copper-Dissolved        | μg/L  | <1         |
| Lead-Dissolved          | μg/L  | <1         |
| Mercury-Dissolved       | μg/L  | <0.4       |
| Nickel-Dissolved        | μg/L  | <1         |
| Zinc-Dissolved          | µg/L  | <1         |

Envirolab Reference: 52672 Revision No: R 00 Page 9 of 15

| MethodID             | Methodology Summary                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-016              | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.<br>Water samples are analysed directly by purge and trap GC-MS. |
| Org-003              | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                            |
| Org-012 subset       | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.                                                             |
| Org-005              | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                                |
| Org-008              | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                                |
| Org-006              | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.                                                            |
| Metals-022 ICP-MS    | Determination of various metals by ICP-MS.                                                                                                                                 |
| Metals-021<br>CV-AAS | Determination of Mercury by Cold Vapour AAS.                                                                                                                               |

|                                          |       | Clie | ent Referenc      | e: 41          | 486, Hurstvil | le Privates                |           |                     |
|------------------------------------------|-------|------|-------------------|----------------|---------------|----------------------------|-----------|---------------------|
| QUALITYCONTROL                           | UNITS | PQL  | METHOD            | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %             |
| vTRH & BTEX in Water                     |       |      |                   |                |               | Base II Duplicate II % RPD |           | Recovery            |
| Date extracted                           | -     |      |                   | 08/03/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 08/03/2011          |
| Date analysed                            | -     |      |                   | 08/03/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 08/03/2011          |
| TRHC6 - C9                               | µg/L  | 10   | Org-016           | <10            | [NT]          | [NT]                       | LCS-W1    | 91%                 |
| Benzene                                  | µg/L  | 1    | Org-016           | <1.0           | [NT]          | [NT]                       | LCS-W1    | 91%                 |
| Toluene                                  | µg/L  | 1    | Org-016           | <1.0           | [NT]          | [NT]                       | LCS-W1    | 92%                 |
| Ethylbenzene                             | µg/L  | 1    | Org-016           | <1.0           | [NT]          | [NT]                       | LCS-W1    | 90%                 |
| m+p-xylene                               | µg/L  | 2    | Org-016           | <2.0           | [NT]          | [NT]                       | LCS-W1    | 92%                 |
| o-xylene                                 | µg/L  | 1    | Org-016           | <1.0           | [NT]          | [NT]                       | LCS-W1    | 90%                 |
| <i>Surrogate</i><br>Dibromofluoromethane | %     |      | Org-016           | 88             | [NT]          | [TN]                       | LCS-W1    | 125%                |
| Surrogate toluene-d8                     | %     |      | Org-016           | 100            | [NT]          | [NT]                       | LCS-W1    | 101%                |
| Surrogate 4-BFB                          | %     |      | Org-016           | 98             | [NT]          | [NT]                       | LCS-W1    | 102%                |
| QUALITYCONTROL                           | UNITS | PQL  | METHOD            | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| sTRH in Water<br>(C10-C36)               |       |      |                   |                |               | Base II Duplicate II %RPD  |           |                     |
| Date extracted                           | -     |      |                   | 08/03/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 08/03/2011          |
| Date analysed                            | -     |      |                   | 08/03/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 08/03/2011          |
| TRHC 10 - C14                            | µg/L  | 50   | Org-003           | <50            | [NT]          | [NT]                       | LCS-W1    | 122%                |
| TRHC 15 - C28                            | µg/L  | 100  | Org-003           | <100           | [NT]          | [NT]                       | LCS-W1    | 83%                 |
| TRHC 29 - C 36                           | µg/L  | 100  | Org-003           | <100           | [NT]          | [NT]                       | LCS-W1    | 121%                |
| <i>Surrogate</i><br>o-Terphenyl          | %     |      | Org-003           | 118            | [NT]          | [NT]                       | LCS-W1    | 127%                |
| QUALITYCONTROL                           | UNITS | PQL  | METHOD            | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %             |
| PAHs in Water                            |       |      |                   |                |               | Base II Duplicate II % RPD |           | Recovery            |
| Date extracted                           | -     |      |                   | 08/03/2        | [NT]          | [NT]                       | LCS-W1    | 08/03/2011          |
|                                          |       |      |                   | 011            |               |                            |           |                     |
| Date analysed                            | -     |      |                   | 08/03/2<br>011 | [NT]          | [TN]                       | LCS-W1    | 08/03/2011          |
| Naphthalene                              | µg/L  | 1    | Org-012<br>subset | <1             | [NT]          | [NT]                       | LCS-W1    | 99%                 |
| Acenaphthylene                           | µg/L  | 1    | Org-012<br>subset | <1             | [NT]          | [NT]                       | [NR]      | [NR]                |
| Acenaphthene                             | µg/L  | 1    | Org-012<br>subset | <1             | [NT]          | [NT]                       | [NR]      | [NR]                |
| Fluorene                                 | µg/L  | 1    | Org-012<br>subset | <1             | [NT]          | [NT]                       | LCS-W1    | 107%                |
| Phenanthrene                             | µg/L  | 1    | Org-012<br>subset | <1             | [NT]          | [NT]                       | LCS-W1    | 104%                |
| Anthracene                               | µg/L  | 1    | Org-012<br>subset | <1             | [NT]          | [TN]                       | [NR]      | [NR]                |
| 1                                        | 1     | 1    |                   | 1              |               |                            | 1         |                     |

Envirolab Reference: 5 Revision No: R

52672 R 00 Page 11 of 15

|                              |           | Clie | ent Referenc      | e: 41                 | 486, Hurstvill | e Privates                 |           |            |
|------------------------------|-----------|------|-------------------|-----------------------|----------------|----------------------------|-----------|------------|
| QUALITYCONTROL               | UNITS     | PQL  | METHOD            | Blank                 | Duplicate Sm#  | Duplicate results          | Spike Sm# | Spike %    |
| PAHs in Water                |           |      |                   |                       |                | Base II Duplicate II % RPD |           | Recovery   |
| Pyrene                       | µg/L      | 1    | Org-012<br>subset | <1                    | [NT]           | [TM]                       | LCS-W1    | 105%       |
| Benzo(a)anthracene           | µg/L      | 1    | Org-012<br>subset | <1                    | [NT]           | [NT]                       | [NR]      | [NR]       |
| Chrysene                     | µg/L      | 1    | Org-012<br>subset | <1                    | [NT]           | [NT]                       | LCS-W1    | 112%       |
| Benzo(b+k)fluoranthene       | µg/L      | 2    | Org-012<br>subset | ~2                    | [NT]           | [NT]                       | [NR]      | [NR]       |
| Benzo(a)pyrene               | µg/L      | 1    | Org-012<br>subset | <1                    | [NT]           | [NT]                       | LCS-W1    | 110%       |
| Indeno(1,2,3-c,d)pyrene      | µg/L      | 1    | Org-012<br>subset | <1                    | [NT]           | [NT]                       | [NR]      | [NR]       |
| Dibenzo(a,h)anthracene       | µg/L      | 1    | Org-012<br>subset | <1                    | [NT]           | [NT]                       | [NR]      | [NR]       |
| Benzo(g,h,i)perylene         | µg/L      | 1    | Org-012<br>subset | <1                    | [NT]           | [NT]                       | [NR]      | [NR]       |
| Surrogate<br>p-Terphenyl-d14 | %         |      | Org-012<br>subset | 93                    | [NT]           | [NT]                       | LCS-W1    | 114%       |
| QUALITYCONTROL               | UNITS     | PQL  | METHOD            | Blank                 | Duplicate Sm#  | Duplicate results          | Spike Sm# | Spike %    |
| OCP in water                 |           |      |                   |                       |                | Base II Duplicate II % RPD |           | Recovery   |
| Date extracted               | -         |      |                   | 08/03/2               | [NT]           | [NT]                       | LCS-W1    | 08/03/2011 |
| Date analysed                | -         |      |                   | 011<br>08/03/2<br>011 | [NT]           | [NT]                       | LCS-W1    | 08/03/2011 |
| HCB                          | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| alpha-BHC                    | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 94%        |
| gamma-BHC                    | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| beta-BHC                     | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 95%        |
| Heptachlor                   | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 90%        |
| delta-BHC                    | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| Aldrin                       | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 93%        |
| Heptachlor Epoxide           | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 94%        |
| gamma-Chlordane              | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| alpha-Chlordane              | μg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| Endosulfan I                 | μg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| pp-DDE                       | μg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 95%        |
| Dieldrin                     | μg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 95%        |
| Endrin                       | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 90%        |
| pp-DDD                       | µg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 80%        |
| Endosulfan II                | μg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| pp-DDT                       | μg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| Endrin Aldehyde              | μg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| Endosulfan Sulphate          | μg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | LCS-W1    | 97%        |
| Methoxychlor                 | μg/L      | 0.2  | Org-005           | <0.2                  | [NT]           | [NT]                       | [NR]      | [NR]       |
| Surrogate TCLMX              | μg/L<br>% | 0.2  | Org-005           | 86                    | [NT]           | [NT]                       | LCS-W1    | 99%        |
| Surroyate TOLIVIA            | /0        |      | 019-003           | 00                    | [141]          | [141]                      | 100-001   | 3370       |

|                         |       | Clie | nt Referenc          | <u>e: 4</u> 1  | 486, Hurstvil | e Privates                 |           |                     |
|-------------------------|-------|------|----------------------|----------------|---------------|----------------------------|-----------|---------------------|
| QUALITYCONTROL          | UNITS | PQL  | METHOD               | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %             |
| OP Pesticides in water  |       |      |                      |                |               | Base II Duplicate II % RPD |           | Recovery            |
| Date extracted          | -     |      |                      | 08/03/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 08/03/2011          |
| Date analysed           | -     |      |                      | 08/03/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 08/03/2011          |
| Diazinon                | µg/L  | 0.2  | Org-008              | <0.2           | [NT]          | [NT]                       | [NR]      | [NR]                |
| Dimethoate              | µg/L  | 0.2  | Org-008              | <0.2           | [NT]          | [NT]                       | [NR]      | [NR]                |
| Chlorpyriphos-methyl    | µg/L  | 0.2  | Org-008              | <0.2           | [NT]          | [NT]                       | [NR]      | [NR]                |
| Ronnel                  | µg/L  | 0.2  | Org-008              | <0.2           | [NT]          | [NT]                       | [NR]      | [NR]                |
| Chlorpyriphos           | µg/L  | 0.2  | Org-008              | <0.2           | [NT]          | [NT]                       | LCS-W1    | 60%                 |
| Fenitrothion            | µg/L  | 0.2  | Org-008              | <0.2           | [NT]          | [NT]                       | LCS-W1    | 77%                 |
| Bromophos ethyl         | µg/L  | 0.2  | Org-008              | <0.2           | [NT]          | [NT]                       | [NR]      | [NR]                |
| Ethion                  | µg/L  | 0.2  | Org-008              | <0.2           | [NT]          | [NT]                       | LCS-W1    | 66%                 |
| Surrogate TCLMX         | %     |      | Org-008              | 86             | [NT]          | [NT]                       | LCS-W1    | 74%                 |
| QUALITYCONTROL          | UNITS | PQL  | METHOD               | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %<br>Recovery |
| PCBs in Water           |       |      |                      |                |               | Base II Duplicate II %RPD  |           |                     |
| Date extracted          | -     |      |                      | 08/03/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 08/03/2011          |
| Date analysed           | -     |      |                      | 08/03/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 08/03/2011          |
| Arochlor 1016           | µg/L  | 2    | Org-006              | ~2             | [NT]          | [NT]                       | [NR]      | [NR]                |
| Arochlor 1221*          | µg/L  | 2    | Org-006              | ~2             | [NT]          | [NT]                       | [NR]      | [NR]                |
| Arochlor 1232           | µg/L  | 2    | Org-006              | ~2             | [NT]          | [NT]                       | [NR]      | [NR]                |
| Arochlor 1242           | µg/L  | 2    | Org-006              | ~2             | [NT]          | [NT]                       | [NR]      | [NR]                |
| Arochlor 1248           | µg/L  | 2    | Org-006              | ~2             | [NT]          | [NT]                       | [NR]      | [NR]                |
| Arochlor 1254           | µg/L  | 2    | Org-006              | ~2             | [NT]          | [NT]                       | LCS-W1    | 99%                 |
| Arochlor 1260           | µg/L  | 2    | Org-006              | ~2             | [NT]          | [NT]                       | [NR]      | [NR]                |
| Surrogate TCLMX         | %     |      | Org-006              | 86             | [NT]          | [NT]                       | LCS-W1    | 70%                 |
| QUALITYCONTROL          | UNITS | PQL  | METHOD               | Blank          | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %             |
| HM in water - dissolved |       |      |                      |                |               | Base II Duplicate II % RPD |           | Recovery            |
|                         | +     |      |                      | 00/02/2        |               |                            |           | 00/02/2244          |
| Date prepared           | -     |      |                      | 09/03/2<br>011 | [NT]          | [TN]                       | LCS-W1    | 09/03/2011          |
| Date analysed           | -     |      |                      | 09/03/2<br>011 | [NT]          | [NT]                       | LCS-W1    | 09/03/2011          |
| Arsenic-Dissolved       | µg/L  | 1    | Metals-022<br>ICP-MS | <1             | [NT]          | [NT]                       | LCS-W1    | 97%                 |
| Cadmium-Dissolved       | µg/L  | 0.1  | Metals-022<br>ICP-MS | <0.1           | [NT]          | [NT]                       | LCS-W1    | 85%                 |
| Chromium-Dissolved      | µg/L  | 1    | Metals-022<br>ICP-MS | <1             | [NT]          | [ТИ]                       | LCS-W1    | 87%                 |
| Copper-Dissolved        | µg/L  | 1    | Metals-022<br>ICP-MS | <1             | [NT]          | [ТИ]                       | LCS-W1    | 83%                 |
| Lead-Dissolved          | µg/L  | 1    | Metals-022<br>ICP-MS | <1             | [NT]          | [ТИ]                       | LCS-W1    | 94%                 |
| Mercury-Dissolved       | µg/L  | 0.4  | Metals-021<br>CV-AAS | <0.4           | [NT]          | [NT]                       | LCS-W1    | 96%                 |

Envirolab Reference: 8 Revision No: F

52672 R 00

| Client Reference: 41486, Hurstville Privates |       |     |                      |       |                |                            |      |               |                     |
|----------------------------------------------|-------|-----|----------------------|-------|----------------|----------------------------|------|---------------|---------------------|
| QUALITYCONTROL                               | UNITS | PQL | METHOD               | Blank | Duplicate Sm#  | Duplicate results          |      | Spike Sm#     | Spike %<br>Recovery |
| HM in water - dissolved                      |       |     |                      |       |                | Base II Duplicate II % RPD |      |               |                     |
| Nickel-Dissolved                             | µg/L  | 1   | Metals-022<br>ICP-MS | <1    | [NT]           | [NT]                       |      | LCS-W1        | 80%                 |
| Zinc-Dissolved                               | µg/L  | 1   | Metals-022<br>ICP-MS | <1    | [NT]           | [NT]                       |      | LCS-W1        | 83%                 |
| QUALITYCONTROL                               | UNITS | 3   | Dup.Sm#              |       | Duplicate      | Spike Sm#                  | Spil | ke % Recovery |                     |
| HM in water - dissolved                      |       |     |                      | Base+ | Duplicate+%RPD | )                          |      |               |                     |
| Date prepared                                | -     |     | [NT]                 |       | [NT]           | 52672-2                    |      | 09/03/2011    |                     |
| Date analysed                                | -     |     | [NT]                 |       | [NT]           | 52672-2                    |      | 09/03/2011    |                     |
| Arsenic-Dissolved                            | µg/L  |     | [NT]                 |       | [NT]           | 52672-2                    |      | 99%           |                     |
| Cadmium-Dissolved                            | µg/L  |     | [NT]                 |       | [NT]           | 52672-2                    |      | 84%           |                     |
| Chromium-Dissolved                           | µg/L  |     | [NT]                 |       | [NT]           | 52672-2                    |      | 85%           |                     |
| Copper-Dissolved                             | µg/L  |     | [NT]                 |       | [NT]           | 52672-2                    |      | 80%           |                     |
| Lead-Dissolved                               | µg/L  |     | [NT]                 |       | [NT]           | 52672-2                    |      | 90%           |                     |
| Mercury-Dissolved                            | µg/L  |     | [NT]                 |       | [NT]           | 52672-2                    |      | 116%          |                     |
| Nickel-Dissolved                             | µg/L  |     | [NT]                 |       | [NT]           | 52672-2                    |      | 80%           |                     |
| Zinc-Dissolved                               | µg/L  |     | [NT]                 |       | [NT]           | 52672-2                    |      | 95%           |                     |

## **Report Comments:**

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

| INS: Insufficient sample for this test | PQL: Practical Quantitation Limit | NT: Not tested                 |
|----------------------------------------|-----------------------------------|--------------------------------|
| NA: Test not required                  | RPD: Relative Percent Difference  | NA: Test not required          |
| <: Less than                           | >: Greater than                   | LCS: Laboratory Control Sample |

## **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. **Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

## Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# SAMPLE RECEIPT ADVICE

<u>Client:</u> JBS Environmental Pty Ltd P.O. Box 940 MASCOT NSW 1460

ph: 8338 1013 Fax: 8338 1700

Attention: Danielle Ord, Nathan Cussen, Cathy Roberts

| Sample log in details:                |                            |
|---------------------------------------|----------------------------|
| Your reference:                       | 41486, Hurstville Privates |
| Envirolab Reference:                  | 52672                      |
| Date received:                        | 04/03/2011                 |
| Date results expected to be reported: | 11/03/11                   |

| Samples received in appropriate condition for analysis: | YES      |
|---------------------------------------------------------|----------|
| No. of samples provided                                 | 8 Waters |
| Turnaround time requested:                              | Standard |
| Temperature on receipt                                  | Cool     |
| Cooling Method:                                         | lce      |

## Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

| T NSW 2020<br>1460                                                                                             | 128 O'Riordan St, MASCOT NSW 2020<br>PO Box 940 MASCOT NSW 1460<br>www.jbsgroup.com.au          | ental Pty Ltd ABN 67 071 842 638<br>1336-1011<br>18-1700                                                                                     | JBS Environmental Pty Ltd<br>Phone: (02) 8338-1011<br>Fax: (02) 8338-1700<br>IMSO FormsO13 – Chain of Custody                        |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| ulfunc Acid Prsvd Viai; S = Sulfunc Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; 0 = Other | I OF:<br>= Hydrochloric Add Prsvd Vial; VS = Sulfuric Add Prsvd Vial; S = Sulfuric Add Prsvd; Z | Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd; J C = Sodium Hydroxide Prsvd; VC = Hydro | Container & Preservative Codes: P = Plastic; J = Soil Jar; 6                                                                         |
| COOLER SEAL - Yes No Intact Broken                                                                             | NAME: DATE:                                                                                     | TRANSPORT OD                                                                                                                                 |                                                                                                                                      |
| COOLER TEMP                                                                                                    | SGJ                                                                                             | CONSTRAMENT NOTE NO                                                                                                                          | OF: JBS Environmental DATE:                                                                                                          |
| COOLER SEAL - Yes No Intact Broken                                                                             | 0                                                                                               | CONSIGNMENT NOTE NO.                                                                                                                         | NAME C. KOLOWIS DATE: 43/11                                                                                                          |
| FOR RECEIVING LAB USE ONLY.                                                                                    | RECEIVED BY:                                                                                    | METHOD OF SHIPMENT:                                                                                                                          | RELINQUIST                                                                                                                           |
|                                                                                                                |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
|                                                                                                                |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
|                                                                                                                |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
| iemaaratule on Krewer                                                                                          |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
|                                                                                                                |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
| 1                                                                                                              |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
| 7/8/11                                                                                                         |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
| のつつ                                                                                                            |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
|                                                                                                                |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
|                                                                                                                |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
|                                                                                                                |                                                                                                 |                                                                                                                                              |                                                                                                                                      |
|                                                                                                                | XXX                                                                                             | 13/11 Bottles-Vials-ice                                                                                                                      | MW-QCI WHINKI                                                                                                                        |
| NOTES                                                                                                          | PH<br>8 Metals<br>TPH<br>PAM<br>BTEX<br>OC<br>OP<br>PCB                                         | A T E TIME TYPE & PRESERVATIVE                                                                                                               | SAMPLE ID                                                                                                                            |
| EMAIL: Dova@ Jesgnoup.com. au                                                                                  |                                                                                                 | Around<br>DRAGE OR DISPOSAL:                                                                                                                 | SEND REPORT TO: D. O.d., N. CUSSEL SEN<br>DATE NEEDED BY: Standard Turn Around<br>COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL: |
|                                                                                                                | LABORATORY BATCH NO.                                                                            |                                                                                                                                              | 98414                                                                                                                                |
| ENVIRONMENTAL                                                                                                  | CHAIN OF CUSTODY SGS                                                                            | CHAIN OF                                                                                                                                     |                                                                                                                                      |

**JBS** 



# **ANALYTICAL REPORT**



| - CLIENT DETAILS |                                                          | LABORATORY DETA | ILS                                          |
|------------------|----------------------------------------------------------|-----------------|----------------------------------------------|
| Contact          | Danielle Ord                                             | Manager         | Huong Crawford                               |
| Client           | JBS Environmental                                        | Laboratory      | SGS Alexandria Environmental                 |
| Address          | Suite 2, 595 Gardeners Road<br>Mascot<br>Sydney NSW 2020 | Address         | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone        | 02 8338 1011                                             | Telephone       | +61 2 8594 0400                              |
| Facsimile        | 02 8338 1700                                             | Facsimile       | +61 2 8594 0499                              |
| Email            | dord@jbsgroup.com.au                                     | Email           | au.environmental.sydney@sgs.com              |
| Project          | 41486 - Hurstville Private - Water                       | SGS Reference   | SE100137 R0                                  |
| Order Number     | (Not specified)                                          | Report Number   | 000001093                                    |
| Samples          | 1                                                        | Date Reported   | 15 Mar 2011                                  |
|                  |                                                          | Date Received   | 07 Mar 2011                                  |

COMMENTS

The document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES \_

Dong Liang Inorganics Metals Team Leader

Member \_\_\_\_\_

Ly Kim Ha Organics Supervisor

- Amorz

Huong Crawford Laboratory Manager

Tueway

Jue Wang Organic Chemist



# **ANALYTICAL REPORT**

|            | Sample Number | SE400427.004 |
|------------|---------------|--------------|
|            |               |              |
|            | Sample Matrix | Water        |
|            | Sample Date   | 04 Mar 2011  |
|            | Sample Name   | MW-QC1       |
|            |               |              |
| Demonstern |               |              |
| Parameter  | Units LOR     |              |

## Volatile Petroleum Hydrocarbons in Water Method: AN433/AN434

| TRH C6-C9                      | µg/L | 40  | <40  |
|--------------------------------|------|-----|------|
| Benzene                        | µg/L | 0.5 | <0.5 |
| Toluene                        | µg/L | 0.5 | <0.5 |
| Ethylbenzene                   | µg/L | 0.5 | <0.5 |
| m/p-xylene                     | µg/L | 1   | <1   |
| MtBE (Methyl-tert-butyl ether) | µg/L | 1   | <1   |
| o-xylene                       | µg/L | 0.5 | <0.5 |
| Total BTEX*                    | µg/L | 3   | <3   |
| Total Xylenes*                 | µg/L | 1.5 | <1.5 |

| Trifluorotoluene (Surrogate) | % | - | 80 |
|------------------------------|---|---|----|

## TRH (Total Recoverable Hydrocarbons) in Water Method: AN403

| TRH (Surrogate) | %    | -   | -    |
|-----------------|------|-----|------|
| Surrogates      |      |     |      |
| TRH C29-C36     | µg/L | 200 | <200 |
| TRH C15-C28     | μg/L | 200 | <200 |
| TRH C10-C14     | µg/L | 100 | <100 |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: AN420

| New John Jawa          |      | 0.5 | -0.5 |
|------------------------|------|-----|------|
| Naphthalene            | µg/L | 0.5 | <0.5 |
| 2-methylnaphthalene    | µg/L | 0.5 | <0.5 |
| 1-methylnaphthalene    | μg/L | 0.5 | <0.5 |
| Acenaphthylene         | μg/L | 0.5 | <0.5 |
| Acenaphthene           | μg/L | 0.5 | <0.5 |
| Fluorene               | μg/L | 0.5 | <0.5 |
| Phenanthrene           | µg/L | 0.5 | <0.5 |
| Anthracene             | µg/L | 0.5 | <0.5 |
| Fluoranthene           | μg/L | 0.5 | <0.5 |
| Pyrene                 | μg/L | 0.5 | <0.5 |
| Benzo(a)anthracene     | µg/L | 0.5 | <0.5 |
| Chrysene               | µg/L | 0.5 | <0.5 |
| Benzo(b&k)fluoranthene | µg/L | 1   | <1.0 |
| Benzo(a)pyrene         | µg/L | 0.5 | <0.5 |
| Indeno(1,2,3-cd)pyrene | µg/L | 0.5 | <0.5 |
| Dibenzo(a&h)anthracene | µg/L | 0.5 | <0.5 |
| Benzo(ghi)perylene     | µg/L | 0.5 | <0.5 |
| Total PAH (18)*        | μg/L | 9   | <9   |

#### Surrogates

| d5-nitrobenzene (Surrogate)  | % | - | 90  |
|------------------------------|---|---|-----|
| 2-fluorobiphenyl (Surrogate) | % | - | 112 |
| d14-p-terphenyl (Surrogate)  | % | - | 86  |



# ANALYTICAL REPORT

|                                            | Sam<br>Sa<br>Sa | SE100137.001<br>Water<br>04 Mar 2011<br>MW-QC1 |      |
|--------------------------------------------|-----------------|------------------------------------------------|------|
| Parameter                                  | Units           | LOR                                            |      |
| OC Pesticides in Water Method: AN400/AN420 |                 |                                                |      |
| Hexachlorobenzene                          | µg/L            | 0.2                                            | <0.2 |
| Alpha BHC                                  | µg/L            | 0.2                                            | <0.2 |
| Lindane (gamma BHC)                        | µg/L            | 0.2                                            | <0.2 |
| Heptachlor                                 | µg/L            | 0.2                                            | <0.2 |
| Aldrin                                     | µg/L            | 0.2                                            | <0.2 |
| Beta BHC                                   | µg/L            | 0.2                                            | <0.2 |
| Delta BHC                                  | µg/L            | 0.2                                            | <0.2 |
| Heptachlor epoxide                         | µg/L            | 0.2                                            | <0.2 |
| o,p'-DDE                                   | µg/L            | 0.2                                            | <0.2 |
| Alpha Endosulfan                           | µg/L            | 0.2                                            | <0.2 |
| Gamma Chlordane                            | µg/L            | 0.2                                            | <0.2 |
| Alpha Chlordane                            | µg/L            | 0.2                                            | <0.2 |
| trans-Nonachlor                            | µg/L            | 0.2                                            | <0.2 |
| p,p'-DDE                                   | µg/L            | 0.2                                            | <0.2 |
| Dieldrin                                   | µg/L            | 0.2                                            | <0.2 |
| Endrin                                     | µg/L            | 0.2                                            | <0.2 |
| o,p'-DDD                                   | µg/L            | 0.2                                            | <0.2 |
| o,p'-DDT                                   | µg/L            | 0.2                                            | <0.2 |
| Beta Endosulfan                            | µg/L            | 0.2                                            | <0.2 |
| p,p'-DDD                                   | µg/L            | 0.2                                            | <0.2 |
| p,p'-DDT                                   | µg/L            | 0.2                                            | <0.2 |
| Endosulfan sulphate                        | µg/L            | 0.2                                            | <0.2 |
| Endrin aldehyde                            | µg/L            | 0.2                                            | <0.2 |
| Methoxychlor                               | µg/L            | 0.2                                            | <0.2 |
| Endrin ketone                              | µg/L            | 0.2                                            | <0.2 |

#### Surrogates

| Tetrachloro-m-xylene (TCMX) (Surrogate) | %  | - | 87 |
|-----------------------------------------|----|---|----|
| reading to mysterie (remy) (carregate)  | 70 |   | •• |

## OP Pesticides in Water Method: AN400/AN420

| Dichlorvos                        | µg/L | 1   | <1   |
|-----------------------------------|------|-----|------|
| Dimethoate                        | µg/L | 1   | <1   |
| Diazinon (Dimpylate)              | µg/L | 0.5 | <0.5 |
| Fenitrothion                      | µg/L | 0.2 | <0.2 |
| Malathion                         | µg/L | 0.2 | <0.2 |
| Chlorpyrifos (Chlorpyrifos Ethyl) | µg/L | 0.2 | <0.2 |
| Parathion-ethyl (Parathion)       | µg/L | 0.2 | <0.2 |
| Bromophos Ethyl                   | µg/L | 0.2 | <0.2 |
| Methidathion                      | µg/L | 0.5 | <0.5 |
| Ethion                            | µg/L | 0.2 | <0.2 |
| Azinphos-methyl                   | µg/L | 0.2 | <0.2 |

## Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | 112 |
|------------------------------|---|---|-----|
| d14-p-terphenyl (Surrogate)  | % | - | 86  |

## PCBs in Water Method: AN400/AN420

| Arochlor 1016    | µg/L | 10 | <10 |
|------------------|------|----|-----|
| Arochlor 1221    | µg/L | 10 | <10 |
| Arochlor 1232    | µg/L | 10 | <10 |
| Arochlor 1242    | µg/L | 10 | <10 |
| Arochlor 1248    | µg/L | 10 | <10 |
| Arochlor 1254    | µg/L | 10 | <10 |
| Arochlor 1260    | µg/L | 10 | <10 |
| Arochlor 1262    | µg/L | 10 | <10 |
| Arochlor 1268    | µg/L | 10 | <10 |
| Total Arochlors* | µg/L | 90 | <90 |



# **ANALYTICAL REPORT**

73

|                                                          | Samı<br>Saı<br>S<br>Sa | Water |      |
|----------------------------------------------------------|------------------------|-------|------|
| Parameter                                                | Units                  | LOR   |      |
| PCBs in Water Method: AN400/AN420 (continued) Surrogates |                        |       |      |
| Tetrachloro-m-xylene (Surrogate)                         | %                      | -     | 87   |
|                                                          | : AN318                | 1 1   |      |
| Arsenic, As                                              | µg/L                   | 1     | 14   |
| Cadmium, Cd                                              | µg/L                   | 0.1   | <0.1 |
| Chromium, Cr                                             | µg/L                   | 1     | <1   |
| Copper, Cu                                               | µg/L                   | 1     | 1    |
| Lead, Pb                                                 | µg/L                   | 1     | <1   |
| Nickel, Ni                                               | µg/L                   | 1     | 32   |

µg/L

1

## Mercury (dissolved) in Water Method: AN311/AN312

Zinc, Zn

| Maraura |      | 0.0001 | < 0.0001 |
|---------|------|--------|----------|
| Mercury | mg/L | 0.0001 | <0.0001  |



# **QC SUMMARY**

## MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311/AN312

| Parameter | QC        | Units | LOR    | MB      | DUP %RPD | LCS       | MS        |
|-----------|-----------|-------|--------|---------|----------|-----------|-----------|
|           | Reference |       |        |         |          | %Recovery | %Recovery |
| Mercury   | LB000624  | mg/L  | 0.0001 | <0.0001 | 0%       | 101%      | 98%       |

#### OC Pesticides in Water Method: ME-(AU)-[ENV]AN400/AN420

| Parameter           | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery |
|---------------------|-----------------|-------|-----|------|----------|------------------|
| Hexachlorobenzene   | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Alpha BHC           | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Lindane (gamma BHC) | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Heptachlor          | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | 98%              |
| Aldrin              | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | 95%              |
| Beta BHC            | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Delta BHC           | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | 88%              |
| Heptachlor epoxide  | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| o,p'-DDE            | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Alpha Endosulfan    | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Gamma Chlordane     | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Alpha Chlordane     | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| trans-Nonachlor     | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| p,p'-DDE            | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Dieldrin            | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | 92%              |
| Endrin              | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | 99%              |
| o,p'-DDD            | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| o,p'-DDT            | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Beta Endosulfan     | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| p,p'-DDD            | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| p,p'-DDT            | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | 81%              |
| Endosulfan sulphate | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Endrin aldehyde     | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Methoxychlor        | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |
| Endrin ketone       | LB000619        | µg/L  | 0.2 | <0.2 | 0%       | NA               |

| Surrogates |
|------------|
|------------|

| Parameter                               | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|-----------------------------------------|-----------|-------|-----|------|----------|-----------|
|                                         | Reference |       |     |      |          | %Recovery |
| Tetrachloro-m-xylene (TCMX) (Surrogate) | LB000619  | %     | -   | 105% | 16%      | 99%       |

#### OP Pesticides in Water Method: ME-(AU)-[ENV]AN400/AN420

| Parameter                         | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|-----------------------------------|-----------|-------|-----|------|----------|-----------|
|                                   | Reference |       |     |      |          | %Recovery |
| Dichlorvos                        | LB000619  | µg/L  | 1   | <1   | 0%       | 78%       |
| Dimethoate                        | LB000619  | µg/L  | 1   | <1   | 0%       | NA        |
| Diazinon (Dimpylate)              | LB000619  | µg/L  | 0.5 | <0.5 | 0%       | 83%       |
| Fenitrothion                      | LB000619  | µg/L  | 0.2 | <0.2 | 0%       | NA        |
| Malathion                         | LB000619  | µg/L  | 0.2 | <0.2 | 0%       | NA        |
| Chlorpyrifos (Chlorpyrifos Ethyl) | LB000619  | µg/L  | 0.2 | <0.2 | 0%       | 75%       |
| Parathion-ethyl (Parathion)       | LB000619  | µg/L  | 0.2 | <0.2 | 0%       | NA        |
| Bromophos Ethyl                   | LB000619  | µg/L  | 0.2 | <0.2 | 0%       | NA        |
| Methidathion                      | LB000619  | µg/L  | 0.5 | <0.5 | 0%       | NA        |
| Ethion                            | LB000619  | µg/L  | 0.2 | <0.2 | 0%       | 95%       |
| Azinphos-methyl                   | LB000619  | µg/L  | 0.2 | <0.2 | 0%       | NA        |

| Surrogates                   |           |       |     |      |          |           |
|------------------------------|-----------|-------|-----|------|----------|-----------|
| Parameter                    | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|                              | Reference |       |     |      |          | %Recovery |
| 2-fluorobiphenyl (Surrogate) | LB000619  | %     | -   | 110% | 9%       | 128%      |
| d14-p-terphenyl (Surrogate)  | LB000619  | %     | -   | 78%  | 28%      | 118%      |



# **QC SUMMARY**

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420

| Parameter              | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery |
|------------------------|-----------------|-------|-----|------|----------|------------------|
| Naphthalene            | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | 75%              |
| 2-methylnaphthalene    | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | NA               |
| 1-methylnaphthalene    | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | NA               |
| Acenaphthylene         | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | 75%              |
| Acenaphthene           | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | 75%              |
| Fluorene               | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | NA               |
| Phenanthrene           | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | 75%              |
| Anthracene             | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | 88%              |
| Fluoranthene           | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | 75%              |
| Pyrene                 | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | 88%              |
| Benzo(a)anthracene     | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | NA               |
| Chrysene               | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | NA               |
| Benzo(b&k)fluoranthene | LB000619        | µg/L  | 1   | <1.0 | 0%       | NA               |
| Benzo(a)pyrene         | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | 63%              |
| Indeno(1,2,3-cd)pyrene | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | NA               |
| Dibenzo(a&h)anthracene | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | NA               |
| Benzo(ghi)perylene     | LB000619        | µg/L  | 0.5 | <0.5 | 0%       | NA               |
| Total PAH (18)*        | LB000619        | µg/L  | 9   | <9   |          |                  |

#### Surrogates

| Parameter                    | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|------------------------------|-----------|-------|-----|------|----------|-----------|
|                              | Reference |       |     |      |          | %Recovery |
| d5-nitrobenzene (Surrogate)  | LB000619  | %     | -   | 80%  | 14%      | 76%       |
| 2-fluorobiphenyl (Surrogate) | LB000619  | %     | -   | 110% | 9%       | 128%      |
| d14-p-terphenyl (Surrogate)  | LB000619  | %     | -   | 78%  | 28%      | 118%      |

### PCBs in Water Method: ME-(AU)-[ENV]AN400/AN420

| Parameter        | QC<br>Reference | Units | LOR | MB  | DUP %RPD | LCS<br>%Recovery |
|------------------|-----------------|-------|-----|-----|----------|------------------|
| Arochlor 1016    | LB000619        | µg/L  | 10  | <10 | 0%       | NA               |
| Arochlor 1221    | LB000619        | µg/L  | 10  | <10 | 0%       | NA               |
| Arochlor 1232    | LB000619        | µg/L  | 10  | <10 | 0%       | NA               |
| Arochlor 1242    | LB000619        | µg/L  | 10  | <10 | 0%       | NA               |
| Arochlor 1248    | LB000619        | µg/L  | 10  | <10 | 0%       | NA               |
| Arochlor 1254    | LB000619        | µg/L  | 10  | <10 | 0%       | NA               |
| Arochlor 1260    | LB000619        | µg/L  | 10  | <10 | 0%       | 100%             |
| Arochlor 1262    | LB000619        | µg/L  | 10  | <10 | 0%       | NA               |
| Arochlor 1268    | LB000619        | µg/L  | 10  | <10 | 0%       | NA               |
| Total Arochlors* | LB000619        | µg/L  | 90  | <90 |          |                  |

Surrogates

| Parameter                        | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|----------------------------------|-----------|-------|-----|------|----------|-----------|
|                                  | Reference |       |     |      |          | %Recovery |
| Tetrachloro-m-xylene (Surrogate) | LB000619  | %     | -   | 105% | 16%      | 113%      |

#### Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

| Parameter    | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|--------------|-----------|-------|-----|------|----------|-----------|-----------|
|              | Reference |       |     |      |          | %Recovery | %Recovery |
| Arsenic, As  | LB000614  | µg/L  | 1   | <1   | 0%       | 95%       | 95%       |
| Cadmium, Cd  | LB000614  | µg/L  | 0.1 | <0.1 | 0%       | 95%       | 96%       |
| Chromium, Cr | LB000614  | µg/L  | 1   | <1   | 0%       | 86%       | 92%       |
| Copper, Cu   | LB000614  | µg/L  | 1   | <1   | 2%       | 97%       | 99%       |
| Lead, Pb     | LB000614  | µg/L  | 1   | <1   | 0%       | 100%      | 99%       |
| Nickel, Ni   | LB000614  | µg/L  | 1   | <1   | 0%       | 98%       | 80%       |
| Zinc, Zn     | LB000614  | µg/L  | 1   | <1   | 6%       | 96%       | 99%       |



## MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403

| Parameter   | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|-------------|-----------|-------|-----|------|----------|-----------|-----------|
|             | Reference |       |     |      |          | %Recovery | %Recovery |
| TRH C10-C14 | LB000619  | µg/L  | 100 | <100 | 0%       | 121%      | 80%       |
| TRH C15-C28 | LB000619  | µg/L  | 200 | <200 | 0%       | 128%      | 84%       |
| TRH C29-C36 | LB000619  | µg/L  | 200 | <200 | 0%       | 108%      | 82%       |

#### Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433/AN434

| Parameter                      | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery |
|--------------------------------|-----------------|-------|-----|------|----------|------------------|
| TRH C6-C9                      | LB000601        | µg/L  | 40  | <40  | 0%       | 119%             |
| Benzene                        | LB000601        | µg/L  | 0.5 | <0.5 | 0%       | 103%             |
| Toluene                        | LB000601        | µg/L  | 0.5 | <0.5 | 0%       | 105%             |
| Ethylbenzene                   | LB000601        | µg/L  | 0.5 | <0.5 | 0%       | 105%             |
| m/p-xylene                     | LB000601        | µg/L  | 1   | <1   | 0%       | 106%             |
| MtBE (Methyl-tert-butyl ether) | LB000601        | µg/L  | 1   | <1   | 0%       | 103%             |
| o-xylene                       | LB000601        | µg/L  | 0.5 | <0.5 | 0%       | 106%             |
| Total BTEX*                    | LB000601        | µg/L  | 3   | <3   | 0%       | NA               |
| Total Xylenes*                 | LB000601        | µg/L  | 1.5 | <1.5 | 0%       | NA               |

#### Surrogates Parameter QC Units LOR MB DUP %RPD LCS Reference %Recovery LB000601 75% Trifluorotoluene (Surrogate) % 5% 76%



# **METHOD SUMMARY**

| AN020       | METHODOLOGY SUMMARY Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to                                                                                                                                                                                                                                                                                                                                                   |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | APHA3030B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AN083       | Separatory funnels are used for aqueous samples and extracted by transferring an appropriate volume (mass) of liquid into a separatory funnel and adding 3 serial aliquots of dichloromethane. Samples receive a single extraction at pH 7 to recover base / neutral analytes and two extractions at pH < 2 to recover acidic analytes. QC samples are prepared by spiking organic free water with target analytes and extracting as per samples.                                     |
| AN311/AN312 | Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.                                                                                                            |
| AN318       | Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.                                                                                                                                                                                                                                                                                                                                                                               |
| AN400       | OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)                                                                                                                                                                                                                                             |
| AN403       | Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36.                                           |
| AN403       | Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with diffential polarity of the elluent solvents.                                   |
| AN403       | The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependant on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B. |
| AN420       | (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments<br>and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on<br>USEPA 3500C and 8270D).                                                                                                                                                                                                                                   |
| AN420       | SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).                                                                                                                                                                                               |
| AN433/AN434 | VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.                                                                                                        |



#### FOOTNOTES

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. \* This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- $\uparrow \downarrow$  Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

QFL

QFH

QC result is above the upper tolerance
 QC result is below the lower tolerance
 The sample was not analysed for this analyte

Page 9 of 9



# SAMPLE RECEIPT ADVICE

| CLIENT DETAILS |                                                          | LABORATORY DETAILS |                                              |  |  |  |
|----------------|----------------------------------------------------------|--------------------|----------------------------------------------|--|--|--|
| Contact        | Danielle Ord                                             | Manager            | Huong Crawford                               |  |  |  |
| Client         | JBS Environmental                                        | Laboratory         | SGS Alexandria Environmental                 |  |  |  |
| Address        | Suite 2, 595 Gardeners Road<br>Mascot<br>Sydney NSW 2020 | Address            | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |  |  |  |
| Telephone      | 02 8338 1011                                             | Telephone          | +61 2 8594 0400                              |  |  |  |
| Facsimile      | 02 8338 1700                                             | Facsimile          | +61 2 8594 0499                              |  |  |  |
| Email          | dord@jbsgroup.com.au                                     | Email              | au.environmental.sydney@sgs.com              |  |  |  |
| Project        | 41486 - Hurstville Private - Water                       | Samples Received   | Mon 7/3/2011                                 |  |  |  |
| Order Number   | (Not specified)                                          | Report Due         | Tue 15/3/2011                                |  |  |  |
| Samples        | 1                                                        | SGS Reference      | SE100137                                     |  |  |  |

SUBMISSION DETAILS

This is to confirm that 1 sample was received on Monday 7/3/2011. Results are expected to be ready by Tuesday 15/3/2011. Please quote SGS reference SE100137 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 1 Water Sample 7/3/2011 Yes Other Lab Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

COC Yes Cool Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS \_

Sample received at SGS 07/03/2011@5:00pm.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms\_and\_conditions.htm as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

10 Reid Road Perth Int'l Airport Newburn PO Box 32, Welshpool DC

WA 6896 Australia

WA 6105 Australia

t +61 (0)8 9373 3500 f +61 (0)8 9373 3556 www.au.sgs.com



# SAMPLE RECEIPT ADVICE

CLIENT DETAILS . Client JBS Environmental Project 41486 - Hurstville Private - Water SUMMARY OF ANALYSIS PAH (Polynuclear Aromatic Hydrocarbons) in Trace Metals (Dissolved) in Water by ICPMS TRH (Total Recoverable Hydrocarbons) in Water OC Pesticides in Water **OP Pesticides in Water** Volatile Petroleum Hydrocarbons in Water Mercury (dissolved) in Water PCBs in Water No. Sample ID 7 001 1 26 13 21 11 4 14 MW-QC1

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.



## © JBS Environmental Pty Ltd 2011

This document is and shall remain the property of JBS Environmental Pty Ltd. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

#### **Document Status**

| Rev | Author       | Reviewer     | Approved for Issue | for Issue                  |            |  |  |  |
|-----|--------------|--------------|--------------------|----------------------------|------------|--|--|--|
| No. | Author       | Name Name    |                    | Signature                  | Date       |  |  |  |
| А   | Danielle Ord | Charlie Furr |                    | DRAFT for internal review  | 16/03/2011 |  |  |  |
| В   | Danielle Ord | Charlie Furr | Charlie Furr       | DRAFT for client<br>Review | 18/03/2011 |  |  |  |
| 0   | Danielle Ord | Charlie Furr | Charlie Furr       | bolin                      | 9/06/2011  |  |  |  |