

Environmental - Remediation - Engineering - Laboratories - Drilling

3rd May 2013

Mr Mark Sykes EG Funds Management By Email: <u>msyke@egfunds.com</u>

Dear Sir,

Re: Summer Hill Stage 1 – Groundwater Management

I refer to your correspondence with the Department regarding potential issues pertaining to groundwater management at the subject Summer Hill property.

The department provided a request for further information being either:

- a) A groundwater assessment, or
- b) Confirmation on the depth of excavation required for footings and a report/statement indicating an assessment is not required.

This letter provides information regarding item b) of the subject.

A geotechnical assessment and environmental assessment were conducted on the subject property. The geotechnical assessment has been provided as reference with bore logs indicating the following:

- BH1 found rock at 4m then rock cored with no groundwater found to the borehole termination
- BH2 found rock at 1.0m then rock cored with no groundwater found at the borehole termination
- BH3 found rock at 1.6m then rock cored with no groundwater found to the borehole termination
- BH4 found rock at 2.6m then rock cored with no groundwater found to the borehole termination
- BH5 found rock at 4.1m then rock cored with no groundwater found to the borehole termination
- BH6 found rock at 4.3m then rock cored with groundwater found at a depth of 3.8m

HEAD OFFICE: PO Box 398 Drummoyne NSW 1470

A borehole plan and site plan indicates that the only location where groundwater was found was at Borehole location 6. The site plans indicate that the Stage 1 area where BH1, BH2 and BH5 are located has a proposed single level basement. This basement level is founded at a depth of at most 3m below ground surface with an average of 2.5m (plans attached). As the basement excavation does not intersect any groundwater and in the absence of groundwater shown from the logs taken, a detailed groundwater assessment would not be warranted as the groundwater would not be disturbed during site works or foundation works. It should be noted that the closest location where groundwater was found is at location BH6. The depth of groundwater was found at 3.9m and it is considered that this is rather water seepage as a perched water layer on top of the sandstone bedrock formation.

To support these findings, the detailed environmental investigation undertaken (extract attached of site plan) showed that groundwater found was not located within the Stage 1 area. The DESA boreholes located within the Stage 1 area are BH1, BH28, BH2, BH29, BH3, BH8, BH30, BH8, BH31 and BH13. None of these boreholes showed groundwater to depths upto 3m bgl, although only boreholes BH29 & BH30 extended below 3m (see logs attached).

We are happy to provide further information on any aspect of the geotechnical report as required.

For and on behalf of Aargus Pty Ltd

Nick Kariotoglou Managing Director

Environmental - Remediation - Engineering - Laboratories - Drilling

EG FUNDS MANAGEMENT

PROPOSED MIXED USE DEVELOPMENT ALLIED FLOUR MILLS SITE NOS. 2-32 SMITH STREET AND NOS. 16-32 EDWARD STREET SUMMER HILL

GEOTECHNICAL INVESTIGATION REPORT

Report No:SE07146-AAB:NKDate:17th February 2011Client:EG Funds ManagementLevel 14, 345 George StreetSYDNEY NSW 2000

HEAD OFFICE: PO Box 398 Drummoyne NSW 1470

Telephone: 1300 137 038 Facsimile: 1300 136 038 Email: admin@aargus.net Website: www.aargus.net Aargus Pty Ltd ACN 063 579 313 Aargus Engineering Pty Ltd ACN 050 212 710 Aargus Laboratories Pty Ltd ACN 086 993 937

Other office locations in NSW - QLD - VIC - SA and 4 overseas countries

Environmental - Remediation - Engineering - Laboratories - Drilling

SE07146-A AB:NK 17th February 2011

EG Funds Management Level 14, 345 George Street SYDNEY NSW 2000

Dear Mr Syke,

RE: Proposed Mixed Use Development – Allied Flour Mills Site – Nos. 2-32 Smith Street and Nos. 16-32 Edward Street, Summer Hill

As requested, Brink & Associates' Geotechnical Engineers visited the Allied Flour Mills Site at Nos. 2-32 Smith Street and 16-32 Edward Street in Summer Hill on Monday 11th, Tuesday 12th, and Thursday 14th of March 2008 in order to undertake a Geotechnical Investigation. The purpose of the investigation was to assess the site's surface and subsurface conditions in order to determine the suitability of the site for a proposed mixed use development and to provide recommendations from a geotechnical viewpoint for the design and construction of the proposed development.

This report presents the details and results of the investigation and assessment and provides recommended geotechnical design parameters relevant to the project's structural design and structural works.

For and on behalf of

Aargus Engineering Pty Ltd

ernett

Anthony Bennett Geotechnical Engineer

Reviewed by

Nick Kariotoglou

Geotechnical EngineerPrincipal & Managing DirectorHEAD OFFICE: PO Box 398 Drummoyne NSW 1470Telephone: 1300 137 038 Facsimile: 1300 136 038 Email: admin@aargus.netAargus Pty Ltd ACN 063 579 313 Aargus Engineering Pty Ltd ACN 050 212 710 Aargus Laboratories Pty Ltd ACN 086 993 937

Other office locations in NSW - QLD - VIC - SA and 4 overseas countries

Executive Summary

This report has been prepared for EG Funds Management detailing the results of a Geotechnical Investigation at the Allied Flour Mills Site at Nos. 2-32 Smith Street and Nos. 16-32 Edward Street in Summer Hill.

We understand it is proposed to construct a mixed use residential and commercial development at the site located within the eastern part of Summer Hill, on the south-eastern corner of the intersection between Smith Street and Edward Street, and covering an area of approximately 25,000m².

The geotechnical investigation for the proposed development comprised the drilling of six (6) boreholes through the subsurface soils and the upper reaches of the underlying bedrock down to depths of between 0.8m and 7.3m below existing ground surface levels. In-situ testing of the subsurface soils and laboratory testing of the subsurface soils and rock at our NATA accredited laboratory was undertaken to determine the condition of the soil and rock and to determine suitable design parameters.

The subsurface soil profile within the site consists predominantly of moderately to well compacted fill underlain by stiff to very stiff alluvial clay in the east and very stiff alluvial / residual clay in the west, all overlying residual sandy clays / clayey sands. The fill profile was deepest in the north-eastern corner of the site where the Hawthorne Canal has been backfilled. The depth of the alluvium decreased on increasing distance from the canal. The thickness of the residual soil profile varied between 0.5m and 1.9m, though increasing generally from south to north. Sandstone bedrock was encountered at depths increasing from between about 1.6m (BH3) to 2.4m (BH4) below ground surface levels in the southern area of the site. The near-horizontally bedded coarse grained sandstone was found to be distinctly to moderately weathered, containing some cross-bedding, weaker bedding layers and clay seams. A few low angle joints and joint sets were identified within the upper 2m of the bedrock.

Ground water seepage was encountered within one borehole (BH6) only, at a depth of about 3.9m below existing ground surface levels, indicating a possible groundwater table at that location. This location is noted at the centre of the site where no basement excavations are proposed. All basements are also single basements and are not proposed to be excavated more than 3 metres.

The laboratory test results indicate the residual and alluvial materials to be of medium to high plasticity, to have a typical CBR value of 6% and to be non-aggressive, and the rock to be of low to medium strength increasing to medium to high with depth.

We expect that the fill, alluvium and residual clays / sands will be readily excavated by conventional earthworks equipment, such as bulldozers and excavators but that heavy ripping and/or vibratory rock breaking techniques will be required for the sandstone bedrock. Vibration control will be necessary to minimise the impact of the vibrations resulting form the excavation on adjacent structures.

The majority of material at the site may be reused as fill material at the site subject to confirmation by a Geotechnical Consultant at the time of excavation.

Shallow and deep footings are considered suitable for the proposed development.

Excavation retention will not be required, particularly where the excavation extends below the zone of influence of adjacent structures. As no structures are proposed near or adjoining existing dwellings, these should only be considered if any changes to the drawings are proposed. Retaining structures, if required, must be engineer designed. Allowance for isolated rock bolts to retain potential block failure should be made where required. Earth pressures resulting from water ingress should be allowed for in the retaining wall design, unless effectively drained.

Based on the results of the investigation and laboratory testing, we consider the site to be suitable for the proposed development.

TABLE OF CONTENTS

		Page No.
1.0	PROPOSED DEVELOPMENT	6
2.0	LOCATION	6
3.0	FIELDWORK	6
4.0	SITE CONDITIONS	7
4.1	Site Description	7
4.2	Topography	8
4.3	Regional Geology	8
4.4	Subsurface Conditions	8
5.0	LABORATORY TESTING	10
5.1	CBR Values	10
5.2	Atterberg Limits	11
5.3	Exposure Classification	11
5.1	Rock Strength	12
6.0	GEOTECHNICAL COMMENTS AND RECOMMENDATIONS	12
6.1	General	12
6.2	Footings	13
6.3	Excavations	15
6.4	Batters / Retaining walls	16
6.5	Pavements	19
7.0	LIMITATIONS	19

APPENDIX A	Engineering Borehole Logs (9 pages)
APPENDIX B	Recovered Core Photographs (1 page)
APPENDIX C	Laboratory Test Results (7 pages)
APPENDIX D	Site Plan
APPENDIX E	Architectural Concept Plan

1.0 PROPOSED DEVELOPMENT

The design details for the proposed development are presented in the Hassell Summer Hill Flour Mill Site Concept Plan shown in Appendix E. It is comprised of 280-300 residential dwellings and 2,500-2,800m² of retail space and 3,500-4,000m² of commercial space.

2.0 LOCATION

The subject site is located within the eastern part of Summer Hill. More specifically, it is located on the south-eastern corner of the intersection between Smith Street and Edward Street, approximately 500m south-east of Summer Hill train station.

3.0 FIELDWORK

In order to determine the geotechnical condition of the subsurface materials at the site, the fieldwork component of our Geotechnical Investigation comprised the following:

- A detailed walk-over inspection of the site.
- The drilling of six (6) boreholes at various locations across the site. The boreholes were drilled using a truck-mounted drilling rig initially to V-bit refusal and then continued to TC-Bit refusal in bedrock at depths of between 1.6m (BH3) and 4.3m (BH6) below existing ground surface levels. Three boreholes (BH1, BH3 & BH6) were advanced by an additional 3.0m within the bedrock using NMLC rock coring techniques.
- Standard Penetrometer Tests (SPT) were performed at regular intervals during borehole excavation in order to determine the strength of the subsurface soils.
- All collected rock core samples were carefully boxed and transported to our NATA accredited laboratory for logging and testing.
- Three (3) disturbed bulk samples were collected for submission to our NATA accredited laboratory in order to determine a typical CBR value and the Atterberg Limits of the soils.
- Five (5) disturbed samples were collected for submission to an external NATA accredited laboratory in order to assist in an exposure classification for the design of concrete or steel structures.

The approximate test locations have been shown on the site sketch referenced Drawing No. S07146-1.in Appendix D.

4.0 SITE CONDITIONS

4.1 Site Description

The site is irregular in shape, covering an area of approximately $24,738m^2$. It has a grade of between approximately 2° and 5° down towards the east. Site features at the time of our investigation include:

- A three storey brick office building located in the north-west corner of the site.
- Demountable offices located in the north to central area of the site.
- A brick flour mill building located on the eastern side of the site.
- Wooden silos located south of the flour mill.
- The general store building of steel frame construction and aluminium cladding located to the south of the wooden silos.
- Four large concrete bulk wheat storage silos located to the south of the general store building.
- Rail wagon unloading facilities located on the south-eastern side of the site.
- Six concrete bulk wheat storage silos located near the centre of the site.
- A workshop of steel frame construction and aluminium cladding located in the southern area of the site.
- Three storage buildings of steel frame construction with fibro cladding, located in the southern corner of the site.
- A brick amenities building with aluminium roofing located between the merchant shed and flour silos.
- Other minor buildings on the site include the office and weigh bridge, main sprinkler pump house, the hydrant pump house, gardeners shed and flammable liquids storage shed.

The site is bound by Smith Street to the north and Edward Street to the west. Hawthorne Canal and the industrial freight line bound the site to the east. The neighbouring properties surrounding the subject site are occupied by a mix of single and double storey brick houses and light industrial units.

4.2 Topography

The subject property is surrounded by moderately undulating land, typical of the area, which exhibits grades of between 1° to 3° sloping down towards the north-east.

4.3 Regional Geology

Reference to the Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) 1983, indicates the western part of the site to be underlain by Ashfield Shale (Rwa) of Middle Triassic Age. Ashfield Shale is characterised by black to dark grey shale and laminite, which upon weathering typically forms medium to high plasticity residual silty clays and clays. The Ashfield Shale is typically underlain by Hawkesbury Sandstone.

The eastern area of the site has been indicated to be underlain by either Quaternary Period alluvial soils comprising silty to peaty quartz sands and clays or man made fill.

4.4 Subsurface Conditions

The subsurface soils encountered during drilling confirm the eastern part of the site to have been filled and to be underlain by alluvial soils while the western part of the site is underlain by medium to high plasticity clays indicative of an extremely weathered Ashfield Shale profile. However, considering the presence of sandy clays and clayey sands underlying these surface materials and the presence of Sandstone bedrock throughout the site, we infer the site to be likely located at the transition between the Ashfield Shale and the underlying Hawkesbury Sandstone.

The results of the borehole excavations have been presented as Engineering Borehole Logs, provided in Appendix A, and have been summarised as follows:

PAVEMENT: Concrete, Asphaltic Concrete, DGB, Crushed Sandstone, to depths of between 0.2m and 0.4m below existing ground surface levels in boreholes BH2 to BH6,

	or
TOPSOIL:	Clayey SILT, medium plasticity, brown, to a depth of
	0.2m below existing ground surface levels in borehole
	BH1 only, overlying
FILL:	Silty CLAY, CLAY, Sandy Gravelly CLAY, medium to
	high plasticity, orange/brown, pale brown, red/orange,
	grey, moderately to well compacted, to depths of
	between 0.8m (BH2) and 2.8m (BH6) below existing
	ground surface levels, overlying
ALLUVIUM / RESIDUAL:	CLAY, Sandy CLAY, Clayey SAND, low to medium
	plasticity clay, coarse grained sand, white, brown, grey,
	mottled orange/red and white, mottled red and grey, to
	depths of between about 1.6m (BH3) and 4.3m (BH5)
	below existing ground surface levels, overlying
BEDROCK:	SANDSTONE, coarse grained, distinctly weathered
	becoming moderately weathered and medium to high
	strength, yellow, orange, white, grey.

SPT testing indicated the fill material to be moderately to well compacted and the alluvium/residual material to be in a stiff to very stiff condition. V-bit and TC-bit refusal were encountered simultaneously at depths indicated in Table 1.

	Depth (m) Below Existing Ground Surface Levels							
Refusal	BH1	BH2	BH3	BH4	BH5	BH6		
TC-Bit	3.8	N/A*	1.6	2.6	4.1	4.3		

Table 1: V-Bit/TC-Bit Refusal Depths

*BH2 was terminated near ground surface levels within an unknown concrete substructure not detailed on any drawings.

Three boreholes (BH1, BH3 and BH6) were advanced below TC-bit refusal by a further 3.0m into bedrock using NMLC rock coring methods. The recovered core

samples revealed bedrock to consist of a near-horizontally bedded coarse grained sandstone that was distinctly to moderately weathered, and of a medium to high strength. Some cross bedding was also encountered. Although only a few joints and joint sets were identified within the upper 2m of bedrock, numerous weak bedding planes and partings were identified throughout the core samples. Photographs of the recovered core samples are provided in Appendix B.

Ground water seepage was encountered within one borehole (BH6) at a depth of about 3.9m below existing ground surface levels, indicating a possible groundwater table at that location. Groundwater monitoring standpipes were installed in boreholes (BH1, BH3 and BH6) by Aargus Pty Ltd in order to facilitate future groundwater monitoring. All results indicated depths of perched water at between 2-2.5 metres with the unconfined aquifer standing at below 5m and below any basement parking or excavations required as part of the development. Initial readings at borehole 6 shows groundwater ingress at 3.9m but as no basement excavation is noted for this area and all basements are above 3m bgl, this does not affect the integrity of the development. The perched water is noted as water ingress and will not provide deleterious affects on building structures.

5.0 LABORATORY TESTING

5.1 CBR Values

Two representative soil samples of the subgrade materials (medium to high plasticity clay) were submitted to our NATA accredited soil laboratory for testing to determine the four day soaked California Bearing Ratio (CBR) value. The laboratory test results are provided in Appendix C and are summarised in Table 2 below.

Borehole	Depth (m)	CBR (%) @		
Dorenoie		2.5mm*	5.0mm*	
BH1	0.4-1.0	6	6	
BH4	0.4-1.0	15	16	

Table 2:	California	Bearing	Ratio	Test Results
I GOIC II				

*Penetration

5.2 Atterberg Limits

Three representative soil samples of the subgrade materials (medium to high plasticity clay) were submitted to our NATA accredited soil laboratory for testing to determine their Atterberg Limits. The laboratory test results are provided in Appendix C and are summarised in Table 3 below.

			Atterberg Limits			
Borehole	Material Type	Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	
BH1	Clay, brown	0.5-0.95	76	29	47	
BH4	Sandy Gravelly Clay, orange/brown/grey	0.4-1.0	43	18	25	
BH6	Clay, red	1.5-1.7	39	13	26	

Table 3: Atterberg Limits Test Results

5.3 Exposure Classification

Five representative soil samples of the subgrade materials (medium to high plasticity clay) were submitted to an external NATA accredited soil laboratory for testing to determine their Exposure Classification. The laboratory test results are provided in Appendix C and are summarised in Table 4 below.

		Exposure Classification					
Borehole	Depth (m)	pН	Chlorides (%)	Resistivity (ohm)	Sulphates (%)		
BH1	0.4-1.0	5.8	<0.5%	2941	<0.2%		
BH1	2.0-2.4	6.1	<0.5%	1960	<0.2%		
BH3	0.8-1.0	7.1	<0.5%	1388	<0.2%		
BH4	0.4-1.0	6.5	<0.5%	259	<0.2%		
BH6	2.0-2.4	6.3	<0.5%	892	<0.2%		

Table 4: Exposure Classification Test Results

Based on the results of the laboratory testing, the soils are assessed to be "**Non-Aggressive**" in accordance with AS2159-1995 "Piling – Design and installation".

5.1 Rock Strength

Axial point load testing of the rock cores recovered from the boreholes was carried out to aid in estimating rock strengths. The point load test results have been shown on the corelogs (See Appendix A) and are summarised in Table 5 below.

Borehole	Depth (m)	I _{s(50)}	Strength*			
BH1	3.90	0.96	M-H			
BH1	4.95	1.41	Н			
BH1	5.10	0.47	М			
BH1	5.30	0.57	М			
BH1	5.90	0.97	M-H			
BH1	6.30	1.3	Н			
BH1	6.90	1.54	Н			
BH1	7.40	2.08	Н			
BH3	1.70	1.72	Н			
BH3	2.10	0.83	М			
BH3	2.70	1.11	Н			
BH3	3.40	0.31	L-M			
BH3	3.50	0.7	М			
BH3	3.90	1.03	Н			
BH3	4.20	1.24	Н			
BH6	4.40	1.59	Н			
BH6	4.85	1.32	Н			
BH6	4.55	1.85	Н			
BH6	6.95	1.4	Н			
BH6	7.60	1.16	Н			

Table	5:	Point Load	Test Results
Lanc	U •	I Unit Lloau	I COL INCOULO

*VL=Very Low, L=Low, M=Medium, H=High

6.0 GEOTECHNICAL COMMENTS AND RECOMMENDATIONS

6.1 General

The subsurface soil profile within the site consists predominantly of moderately to well compacted fill that was underlain by stiff to very stiff alluvial clay in the east and very stiff alluvial / residual clay in the west, all overlying residual sandy clays / clayey sands. The fill profile was deepest in the north-eastern corner of the site where the Hawthorne Canal has been backfilled. The depth of the Alluvium decreased on increasing distance from the canal. The thickness of the residual soil profile varied

between 0.5m and 1.9m, though increasing generally from south to north. Sandstone bedrock was encountered at depths increasing from between about 1.6m (BH3) to 2.4m (BH4) below ground surface levels in the southern area of the site to between about 3.8m (BH1) and 4.5m (BH5) in the northern area of the site. The near-horizontally bedded coarse grained sandstone was found to be distinctly to moderately weathered and of a medium to high strength, containing some cross-bedding, weaker bedding layers and clay seams. A few low angle joints and joint sets were identified within the upper 2m of the bedrock.

Ground water seepage was encountered within one borehole (BH6) only, at a depth of about 3.9m below existing ground surface levels. Further investigations showed that perched water was found at a depth of between 2-2.5m with the unconfined groundwater aquifer noted as being present below 5 metres.

6.2 Footings

Based on the investigation results, we consider shallow (for light weight structures only) and deep footings to be suited to the subject site conditions. Such footings must be constructed in accordance with good engineering principles and the following recommendations:

- Owing to the fact that no compaction certificates can be presented for the placement of the fill and owing to the variable nature of the fill materials, we recommend that all footings penetrate though any fill. Should compaction certificates be available, an allowable end bearing pressure of 100kPa may be assigned to the fill materials.
- Shallow footings (such as strip and pad footings) founding on stiff to very stiff alluvium / residual material may be designed for an allowable end bearing pressure of 100kPa (see Table 6).
- Shallow and deep footings founding within low strength sandstone bedrock and/or within 1m below TC-bit refusal may be designed for an allowable end bearing pressure of 1000kPa and an allowable shaft adhesion of 100kPa (see Table 6).

- Deep footings founding on and socketed a minimum of 300mm into medium strength sandstone bedrock may be designed for an allowable end bearing pressure of 2000kPa and an allowable shaft adhesion of 200kPa (see Table 6).
- Deep footings founding on and socketed a minimum of 300mm into high strength sandstone bedrock may be designed for an allowable end bearing pressure of 3000kPa and an allowable shaft adhesion of 300kPa (see Table 6).
- Maximum footing settlements are expected to be 1% of the minimum footing dimension for the above end bearing conditions.
- All footings should be taken to the same bearing materials. Alternatively, design of the structure should incorporate articulation to minimise the effects of differential settlements.
- All footing excavations should be free of loose debris and wet soil prior to concrete placement.
- The geotechnical consultant should inspect footing excavations at the time of excavation to ensure that all foundation loadings are taken to suitable bearing materials.
- All footings must be founded below the "zone of influence" of adjacent excavations; that is, a line drawn 45° down from the foundation level to the based of any retaining walls or features.
- Groundwater infiltration into excavated footings is expected where footings extend below depths of about 3.9m. If so, all water should be pumped from the base of the excavated piles prior to concrete placement. Alternatively a tremmie system should be adopted for concrete placement.

	nring Pressure / (kPa)** #	Depth	n Below Existi	ing Ground S	urface Levels	(m)***
End Bearing	Shaft Adhesion	BH1	BH3	BH4	BH5	BH6
-	-	0-3.0	0-1.2	0-0.8	0-1.4	0-1.4
100	-	3.0-3.8	1.2-1.6	0.8-2.6	1.4-4.1	1.4-4.3
1000	100	3.8-5.8	1.6-2.6	2.6+*	4.1+*	4.3-5.3
2000	200	5.8-7.0	2.6-4.4##	-	-	-
3000	300	7.0-7.3##	-	-	-	5.3-7.3##

Table 6: Allowable Bearing Pressures

- * BH4 & BH5 were non-cored boreholes.
- ** Allowable bearing pressures must be confirmed by a Geotechnical Engineer/Engineering Geologist at the time of footing excavation.
- *** BH2 was terminated within an unknown concrete substructure not detailed on any drawings.
- # Consideration must be given to rock strength reduction as a result of the presence of shear zones, bedding weaknesses, joint sets and increased weathering within 1m of foundation level.

Final Depth of core sample

6.3 Excavations

We expect that the fill, alluvium and residual clays / sands will be readily excavated by conventional earthworks equipment, such as bulldozers and excavators. However, we anticipate that heavy ripping and/or vibratory rock breaking techniques will be required for the sandstone bedrock.

If vibratory rock breaking equipment is required for the proposed excavations in sandstone bedrock, we recommend that, prior to the use of vibratory equipment, the excavation perimeter is saw cut where appropriate with the aid of an excavator mounted rock saw or by drill and split techniques so as to minimise transmission of vibrations to adjoining structures. Following sawing of the perimeter of the excavation, sandstone bedrock may be broken up using a vibratory hammer suited to an excavator no larger than 30.0 tonnes. To further reduce vibration, the rock hammer should be inserted horizontally into bedding planes within the rock to be excavated. Induced vibrations in structures adjacent to the excavation are to be examined at the time of applying vibration (or at the time of excavation) to ensure that they do not exceed a peak particle velocity (PPV) of 10mm/sec. If vibrations in adjacent structures exceed a PPV of 10mm/sec or if vibrations appear excessive, excavation work should cease and this office should be contacted immediately.

If it is desired to utilise larger excavation equipment, or not to saw cut the excavation perimeter prior to use of smaller vibratory excavation equipment, then induced vibrations in structures adjacent to the proposed excavations must be monitored continuously using specialised monitoring equipment to ensure excessive vibrations do not transfer to surrounding structures. If vibrations in adjacent structures exceed a PPV of 10mm/sec or if vibrations appear excessive, excavation work should cease at the site and this office should be contacted immediately.

We consider the majority of material at the site to be suitable for fill placement, should it be required. Suitability of the material for fill should however be determined by a Geotechnical Consultant at the time of excavation.

Groundwater is encountered within the excavations below depths of about 5m below existing ground conditions with water ingress through perched water found at some locations at between 2-2.5m. No excavations are planned to extend below the depth of groundwater so infiltration into the excavation would be minimal. We recommend that the excavation perimeter should provide adequate drainage and a sump to allow any water ingress to be appropriately removed. Any construction should provide adequate temporary drainage to allow removal of any water ingress.

Groundwater quality was tested to meet regulatory criteria and as such will not affect ecological or environmental receptors. As no groundwater pump out is required, no concerns arising from drawdown or settlement. No beneficial use of groundwater is noted for the area as Summer Hill has low recharge rates. The proposed development will remove any observed contaminants (minimal – refer to Aargus Detailed Environmental Site Assessment, June 2008) and also remove fill of poor quality from the site. This removes the potential for any fill or waste to leach into the groundwater table. The removal of these waste fill materials will enhance the local groundwater quality and green landscaped areas will allow for rainwater interaction to occur with the groundwater allowing constant hydraulic gradients to remain unchanged.

6.4 Batters / Retaining walls

Deep excavation may form part of the proposed development. Resultant unretained embankments should be battered back where appropriate to the following recommended slopes:

- Short term unretained batters in uncontrolled fill and alluvium / residual clays not steeper than 1 Vertical to 2.0 Horizontal.
- Short term unretained batters in low to medium strength sandstone bedrock not steeper than 1 Vertical to 0.5 Horizontal.
- Long term unretained batters in uncontrolled fill and alluvium / residual clays not steeper than 1 Vertical to 2.5 Horizontal.
- Long term unretained batters in low to medium strength sandstone bedrock not steeper than 1 Vertical to 1 Horizontal.

Excavations less than 1m in height may not require temporary retention.

Exposed medium to high strength sandstone may remain temporarily unretained, subject to confirmation at the time of excavation by a suitably qualified Geotechnical Engineer / Engineering Geologist. The Engineering Consultant is to inspect the exposed rock faces at the time of excavation in order to identify potential presence of any rock defects that could induce instability of the exposure and thus affect adjacent properties. The Geotechnical Consultant is to advise on the nature of the required permanent retention, should it be deemed necessary, which may include rock bolts or pre-tensioned rock anchors.

Unretained excavations should not extend below the "zone of influence" of adjacent structures; that is a line drawn 45° down from the foundation level of adjacent structures or features (including paths, fences, stairs etc). If excavations are to extend below this line, proposed excavations are to be retained prior to excavation.

Suitable permanent pre-excavation retention may comprise cantilevered contiguous bored pile walls, secant bored pile walls or diaphragm walls, should excavations extend below the ground water table, or reinforced concrete soldier pile walls in conjunction with shotcreted infill panels should excavations not extend below the ground water table. Where the toes of bored piles extend below the ground water table or where ground water inflow is encountered, a tremmie system is to be utilised to ensure correct and effective concrete placement. Alternatively all water is to be pumped from the excavation prior to concrete placement. Furthermore, the concrete is to be placed as soon as practicable and no later than 6 hours after excavation completion.

The pressure distribution on such retaining structures above ground water levels is assumed triangular and estimated as follows:

 $p_h = \gamma k H + q k$

Where,

- p_h = Horizontal pressure (kN/m²)
- γ = Wet density (kN/m³)
- $k = Coefficient of earth pressure (k_a or k_o)$
- H = Retained height (m)
- q = Surcharge pressure behind retaining wall (kN/m²)

Recommended parameters for the design of retaining structures are presented in Table 7.

Material	Ka	Ko	K _p	Unit Weight kN/m ³
Uncontrolled Fill	0.42	0.59	2.37	17
Alluvium / Residual Clay	0.36	0.53	2.8	18
Low to Medium Strength Sandstone	0.31	0.47	3.25	20
Medium to High Strength Sandstone	0.22	0.36	4.60	22

Table 7: Material parameters

The above coefficients assume that ground level behind the retaining structures is horizontal and the retained material is effectively drained.

The design of any retaining structure should be checked by a Structural Engineer for bearing capacity, overturning, sliding and overall stability. Should retention comprise soldier piles with reinforced shotcrete infill panels, the design of such a system is to allow for additional forces placed on the wall as a result of potential wedge or planar block failure from the rock face. Allowance for isolated rock bolts to retain potential block failure should be made. In addition, earth pressures resulting from groundwater should be allowed for in the retaining wall design, unless effectively drained.

6.5 Pavements

Based on the results of the borehole excavations and the laboratory test results, we consider a CBR of 6% to be typical for the materials encountered at the site. We therefore recommend the use of a CBR value of 6% for the design of any new pavements.

7.0 LIMITATIONS

Assessment of the sub-surface profile at the site and the recommendations presented in this report are based on information from six boreholes, drilled at locations considered representative across the site. Based on the results of the investigation and subsurface variability, there is a possibility that actual geotechnical conditions across the site could differ from the inferred geotechnical model (on which our recommendations are based) presented in this report.

The report contains geotechnical parameters to be used as input for the structural design of footings and retaining walls. On-going geotechnical input is required to ensure recommendations provided in this report are followed and that actual ground conditions reflect those indicated in this report.

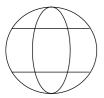
Furthermore, the recommendations and conditions presented in this report pertain to the general development of the site. Upon design finalisation of the proposed development, the geotechnical conditions are to be reassessed with respect to the final design. Please do not hesitate to contact the undersigned if you require any further information.

For and on behalf of

Aargus Engineering Pty Ltd

mett

Anthony Bennett Geotechnical Technician

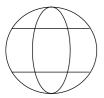

Reviewed by

Ralph Erni B.Sc. Eng. (Civil) MIEAust CPEng NPER3 National Engineering Manager

Released by

Nick Kariotoglou Managing Director

APPENDIX A



Job No: S07146-A Hole No: BH1 Sheet 1 of 2

Geotechnical, Geological, Environmental Consultants

BRINK & Associates

	Iient:) L					r						
								Funds Manageme					n:Ref. Dwg I		
	oject							posed Mixed Use					Truck Mou		
Pro	oject	t Lo	catio	on:				s. 2-32 Smith Stree		s. 16-32	Coordi			Logged by:	
							Edv	vard Street, Summ	ner Hill		Surfac	e leve	:Existing	Date: 11/3/	08
ZGroundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification			escription		Moisture Condition	Consistency/ Rel. Densitv		Comments	Depth (m)
Ν						-		Clayey SILT, me	edium plas	ticity, brown.	M>Wp	-	TOPSOIL		
l L			0.5					Silty CLAY, mediur	n plasticity	, orange/brown.	M>Wp		FILL - appea moderately		0.5
			1.0					CLAY, high	n plasticity,	brown.					
	2,3 N=		1.0			-		CLAY, medi with r	um plastici ninor grave						1.0
			1.5												1.5
			2.0					Sandy CLA low plasticity cla							2.0
	1,2 N=		2.5												2.5
			3.0		Ċ			CLAY, mediun	n plasticity	, red/brown	ĪMĪ>ĪVĪP	ĪSt-VS	RESIDUAL		3.0
<u> </u>								Roreholo	continued	lwith			TC-Bit refus	al at 3.8m	+
			4.0					NMLC rock c							4.0
		ŀ													
Exp	blana	ator	y No	tes:											
	nsiste	-					<u>Den</u>	sity Index	<u>S</u> an	nples		Moistu	Ire		
VS			y So	ft				Very Loose	В	Bulk Sample		D D			
s		Sof	-	-			L	Loose	D	Disturbed Sample		M M	-		
F		Firn					_	Medium Dense	U50			W W			
г St					D	Dense	0.00	(50mm diam.)	0		astic Limit				
					-		NI	S.P.T. Value		-					
VS H	/St Very Stiff H Hard						vD	Very Dense	N	S.F.I. Value		VVI LI	quid Limit		
		1.101	u												

Job No: S07146-A Hole No: BH2 Sheet 1 of 1

Geotechnical, Geological, Environmental Consultants

BRINK & Associates

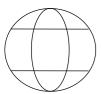
						EG Funds Manageme						No. S07146-	
	ject:					Proposed Mixed Use						nted Drill Rig	
Pro	ject Lo	ocatio	on:		Ţ	Nos. 2-32 Smith Stree	et and No	s. 16-32	Coord	dinates:	-	Logged by:	AB
						Edward Street, Summ	ner Hill		Surfa	ce level	:Existing	Date: 12/3/	08
r – ZGroundwater	г – Z ^{Samples/} Field Tests	0.5	Graphic Log	Unified	Classification	Asphaltic (rey. (100r STONE, w	nm) hite (250mm)	Moisture Condition	-	Additional PAVEMEN FILL - appe moderately	ars	0.5 0.5 0.5
\mid		1.0				BH2 terminated at 1	Om duo f	o TC-bit rofucel	_				1.0
							.om due t	o i c-bit refusal.		1			$\left - \right $
						Borehole	continued	l with					
						NMLC rock co							
		1.5				revealing an unknow	wn concre	te substructure.					1.5
		2.0											2.0
		2.5											2.5
		3.0											3.0
		0.0											0.0
		3.5											3.5
		3.5											3.5
										1			
		4.0								1			4.0
		\vdash											\vdash
		\vdash											\vdash
Exp	lanator	y No	tes:								•		
Cor	nsistend	<u>cy</u>				Density Index	<u>Sar</u>	<u>nples</u>		Moistu	<u>ire</u>		
vs	Ve	ry So	ft			VL Very Loose	В	Bulk Sample		D Dr	•		
s	So					L Loose	D	Disturbed Samp			pist		
F						MD Medium Dense	U50		nple	WW			
St						D Dense		(50mm diam.)		-	astic Limit		
VSt		ry Sti	ff			VD Very Dense	Ν	S.P.T. Value		WI Lie	quid Limit		
Η	На	rd											

BRINK & Associates

Job No: S07146-A Hole No: BH3 Sheet 1 of 2

Geotechnical, Geological, Environmental Consultants

Clie	ent:						Funds Managemen						:Ref. Dwg No. S07146-	
Pro	ject:						posed Mixed Use D						Truck Mounted Drill Rig	g
Pro	ject Lo	ocati	on:				s. 2-32 Smith Street		s. 16-32	Coordi			 Logged by: 	
		1	1			Edv	ward Street, Summe	<u>r Hill</u>		Surfac	e le	vel:	Existing Date: 12/3/	08
ZGroundwater	Samples/ Field Tests	Depth (m)	Graphic Log	Unified	Classification		Des	cription		Moisture Condition	Consistency/	Rel. Density	Additional Comments	Depth (m)
				-			Asphaltic Co			D	-	-	PAVEMENT	
							DGB, gre	ey. (150n	nm)					
				-	•		Silty CLAY, high plas	ticity, da	rk brown / grey.	M>Wp	-		FILL - appears well compacted	
		0.5												0.5
							orange/bro	wn from	0.6m					
		1.0												1.0
	2,3,3 N=6			S	С	(Clayey SAND, medium	n to coar	se grained, white	M	Ŝ-	-F	RESIDUAL	
	N-0													
		1.5												1.5
							Darahalaa		L 4 In					
							Borehole c NMLC rock core							
								0.00.000						
		2.0												2.0
		2.5												2.5
														<u> </u>
		3.0												3.0
														<u> </u>
		<u> </u>	1											
		3.5	1											3.5
			1											
]											
		4.0												4.0
		4.0												4.0
		L_	Ļ											
	lanator		otes:			Don	sity Index	Son	nnles		Mai	otur	ro	
VS	<u>isisteno</u> Vei	<u>.y</u> ry So	oft				<u>isity Index</u> Very Loose	<u>- 5an</u> B	n <u>ples</u> Bulk Sample		<u>Moi</u> D	Dry		
s	Sot	-				L	Loose	D	Disturbed Sample	1		Mo		
F	Firi					_	Medium Dense	U50	Undisturbed Sample			We		
St	Stif	ff				D	Dense		(50mm diam.)		Wp	Pla	astic Limit	
VSt		ry St	iff			VD	Very Dense	Ν	S.P.T. Value		WI	Liq	uid Limit	
Н	На	rd												



BRINK & Associates

Job No: S07146-A Hole No: BH4 Sheet 1 of 1

Geotechnical, Geological, Environmental Consultants

	-		1 / 1	INC							. 1
	ent:					EG Funds Management				No. S07146-	
	ject:					Proposed Mixed Use Development				nted Drill Rio	
Pro	ject Lo	catio	on:			Nos. 2-32 Smith Street and Nos. 16-32	Coord	inates:	-	Logged by:	AB
						Edward Street, Summer Hill	Surfac	e level	:Existing	Date: 14/3/	
ZGroundwater	Z Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description DCB, grey	Moisture Condition	Consistency/ Rel. Density		Comments	Depth (m)
						DOD, groy					
Ĺ	L	0.5				Sandy Gravelly CLAY, medium plasticity, orange/brown/grey.	M>Wp		FILL - appea moderately		0.5
		1.0		CI-	ĊĦ	Silty CLAY, medium to high plasticity, mottled yellow and orange.	M>Wp	St	ALLUVIUM	RESIDUAL	1.0
	2,4,6 N=10 1.5										1.5
	2.0										2.0
		2.5				BH4 terminated at 2.6m due to TC-Bit refusal on Sandstone Bedrock.					2.5
		3.0									3.0
		3.5									3.5
		5.5									0.0
	4.0										4.0
											<u> </u>
-	olanator nsistenc	-	tes:			Density Index Samples	<u> </u>	Moistu	<u>re</u>		<u> </u>
vs	Ver	y So	ft			VL Very Loose B Bulk Sample		D Dr	у		
s						L Loose D Disturbed Sample	е	M Mo	ist		
F						MD Medium Dense U50 Undisturbed Samp		W We			
St	Stif					D Dense (50mm diam.)			astic Limit		
VS		' y Sti	ff			VD Very Dense N S.P.T. Value		-	uid Limit		
H	Har	-									

BRINK & Associates

Job No: S07146-A Hole No: BH5 Sheet 1 of 1

Geotechnical, Geological, Environmental Consultants

					ING I		G OF BOREH			-					
_	ent:						Funds Managemen							lo. S07146-	
	ojec						posed Mixed Use D							nted Drill Rig	<i>_</i>
Pro	ojec	t Lo	catio	on:			s. 2-32 Smith Street		s. 16-32	Coord				Logged by:	AB
						Ed	ward Street, Summe	r Hill		Surfac	e lev	/el:	Existing	Date:	
ZGroundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified Classification			cription B, grey		Moisture D Condition	, Consistency/	Rel. Density	Additional PAVEMENT	Comments	Depth (m)
1															
L					-		Gravelly	ASH, g	rey	D	-		FILL - appea well compac		
			0.5				Gravelly CLAY, me	edium pl	asticity, grey.	M>Wp					0.5
			1.0												1.0
		3,7 =10													
			4.5		CI-CH		Gravelly CLAY, me	dium to l			- <u></u>		ALLUVIUM		
			1.5				mottled grey			w>wp	51-1	้อเ	ALLOVIUM		1.5
			2.0												2.0
			2.5												2.5
	31	5,7			CI-SC		Sandy CLAY			- M>Wp	Ī	 +	ALLUVIUM		_
		:12			0-30		medium to coa			w~vp	ve	זנ		RESIDUAL	
							medium p	lasticity of	clay,						
			3.0				mottled orang	e/brown	& white.						3.0
			3.5												3.5
						1									
			4.0												4.0
\square						1	BH5 terminate TC-Bit refusal on				1				
Exp	blan	ator	y No	tes:		1		5410310		1	1				щ
		tenc				Der	nsity Index	<u>San</u>	nples		Mois	stur	<u>e</u>		
vs					VL	Very Loose	в	Bulk Sample		D	Dry	/			
s					L	Loose	D	Disturbed Sample			Мо				
F							Medium Dense	U50		le		We			
St		Stif				D	Dense		(50mm diam.)				stic Limit		
VSt						VD	Very Dense	Ν	S.P.T. Value		WI	Liq	uid Limit		
Н		нar	u												

Job No: S07146-A Hole No: BH6 Sheet 1 of 1

BRINK & Associates Geotechnical, Geological, Environmental Consultants

			.1 \ 1		OG OF BOREHOLE					
	ent:				EG Funds Management				No. S07146-	
	ject:				Proposed Mixed Use Development			Fruck Mou	nted Drill Rig	
Pro	ject Lo	ocatio	on:		Nos. 2-32 Smith Street and Nos. 16-32		inates:	-	Logged by:	
		-			Edward Street, Summer Hill	Surfac	e level	Existing	Date: 14/3/0	08
Groundwater	Samples/ Field Tests	Depth (m)	Graphic Log	Unified Classification	Description	Moisture Condition	Consistency/ Rel. Density		Comments	Depth (m)
				-	Concrete (200mm) DGB (100mm)	-	-	PAVEMENT		
		0.5			Gravelly CLAY, medium plasticity, grey.	M>Wp	<u>-</u>	FILL - appea well compac		0.5
	3,6,7 N=13	1.5		CI	CLAY, medium plasticity, red.	M>Wp	VSt	ALLUVIUM		1.5
		2.0								2.0
	4,8,8 N=16	3.0		ci	Sandy CLAY, medium plasticity, mottled red and grey.	M>Wp	VST-H	RESIDUAL moderate to r V-Bit resistan	-	3.0
		4.0			Borehole continued with			groundwate	r at 3.9m	4.0
					NMLC rock core barrel from 4.3m					
Exp	lanator	y No	tes:							
-	nsistenc	-			Density Index Samples		Moistu	<u>re</u>		
S	Sof				VL Very Loose B Bulk Sample		D Dr			
F	Firr	n			L Loose D Disturbed Sample	;	M Mo	-		
St					MD Medium Dense U50 Undisturbed Sampl		W We			
	VSt Very Stiff				D Dense (50mm diam.)			astic Limit		
н					VD Very Dense N S.P.T. Value		-	uid Limit		
<u> </u>	IId	u			VE VERY DELISE IN S.F.I. VAIUE		WWI LIQ			

Job No: S07146-A Hole No: BH1 Sheet: 2 of 2

Geotechnical, Geological, Environmental Consultants

CORELOG OF TEST HOLE

	.000	ЛІ	ESTHOLE							1 1 1 1 0 1 0 0	
Client:			EG Funds Management							enced: 11/3/08	
Project:	otion		Proposed Mixed Use Development Nos. 2-32 Smith Street and Nos. 16-32	<u>, </u>			Hole				
Project Loo	cation:			2			Supe Chec				
Drill Model	· Truck I	Moun	Edward Street, Summer Hill Ited Drill Rig Slope:	90°			Chec		-	urface: existing	
										0	
Barrel Type			NMLC/ 1.5m Bearing	g -				Datu	IM:	: AHD	
Drilling Inf	ormation		Rock Substance				r – –			Rock Mass Defects	T
Method Case - Lift Groundwater	∕ ts ∕	Graphic Log		ng		L Estimated M Strength VH Strength EH	MPa	sct	Spacing		
od - Lift ndwał	Samples / Field Tests	ic L		leri		stim	≥	Defect	Spa		Depth (m)
Se		hud		sath		m 22	s(50)				pth
Method Case - I Groundv	Field Test	D D U		We	۲L ۲L	LZIZU	ls(30 300 300	100	Defect Description	De
			coring started at 3.8m								
N N	N _	_	SANDSTONE, coarse grained,	DW			0.96				
M I	_	4.0	yellow, white, orange/brown, grey.							clay seam @ 4.00m, 50mm	4.0
	└ ┝-										-
	-										-
											-
	4	1.5								clay seam @ 4.54m, 10mm	4.5
				EW						Joint set from 4.5m to 4.8m,	
										15°, about 50mm spacing	
						ΙЦΙ				clay seam @ 4.72m, 20mm	
				DW							
	5	5.0					1.41				5.0
							0.47			Bedding parting (bp) @ 5.11m, 10°, KL, Ro3,PL	
	- F						0.47			10, KL, R03,PL	
	- F						0.58			bp @ 5.43m, 10°, KL, Ro3,PL	
		5.5					0.00			op @ of form, for , for	5.5
				MW						bp @ 5.84m, 10°, KL, Ro3,PL	
							0.97				
	e	6.0									6.0
		_									
		_									
	- F						1.30				
		6.5									6.5
										clay seam @ 6.72m, 5mm	
										clay seam @ 6.76m, 5mm	
	\vdash										
		7.0					1.54				7.0
	⊢	-									┣—
	⊢	\neg					2.08				-
			BH1 terminated at 7.3m		\square			╏╏╏╏			+
Key - Method	•	•	Case - lift	Wea	the	ing			Str	rength Is (50) MPa	
AS Auge	er Screwin	a	Casing used	Fr	F	resh			FI	. Extremely Low	< 0.03
AD Auge	er Drilling	3	Barrel withdrawn water level	sw		lightly we	athered			· · ·) ·	3 - 0.1
R Rolle	er / Tricone	e	date shown	MW	N	oderately	weathe	ered	L	Low 0.1	- 0.3
W Wasl NMLC NML	hbore C Core Di	ill	Water inflow Partial drilling water loss	DW EW		istinctly w xtremely v			M H		3 - 1.0) - 3.0
NQ,HQ Wire			Complete drilling water loss		-				VH	I Very High 3.0	- 10.0
									EΗ	Extremely High	>10.0

BRINK & Associates

Job No: S07146-A Hole No: BH3 Sheet: 2 of 2

Geotechnical, Geological, Environmental Consultants

CORELOG OF TEST HOLE

	-		_00									0.0.00		10/0/00	
	ent:	۴.				EG Funds Management							enced: 12/3/08		
	ojec		action			Proposed Mixed Use Development Nos. 2-32 Smith Street and Nos. 16-32	<u>ר</u>				Hole		•		
PIC	Jec	LO	cation	•			2				Supe			5	
Dui			I. T	I. N.A.		Edward Street, Summer Hill	90°				Chec				
Dn		oue	el: Truc	K IVI	Jun	ted Drill Rig Slope:	90					R.L	. 51	urface: existing	
			be / Lei			NMLC/ 1.5m Bearin	g -					Dat	um	: AHD	
Dr	illing	g In	format	ion		Rock Substance	_	-			1			Rock Mass Defects	-
		Iter	s		g		D		h ted	_	MPa	t	ing		
-	- Lift	lwa	est	(u)	Ц С		erin		Estimated	orrengun	M	Defect	Spacing		Ē
ğ	ч Ө	nnc	d T	th	phi		athe		Est CFS		6				Ę
Method	Case	Groundwate	Samples / Field Tests	Depth (m)	Graphic Log	Substance Description	Weathering	μ	ב∑ב	-도급	ls(50)	30 100	200	Defect Description	Depth (m)
	Ŭ	<u> </u>	о, н		0	Coring Started at 1.6m		T					<u> </u>		
Ν		Ν	Ν			SANDSTONE, coarse grained,	DW			П	1.72			joint (jt) @ 1.70m, 10°,	
М		L	I			yellow, orange, white.								clean (KL), rough (Ro3),	
L		L	L										н.	planar (PL)	
С				2.0											2.0
									LШ					jt @ 2.13m, 10°, KL, Ro3,PL	
											0.83			jt @ 2.22m, 10°, KL, Ro3,PL	
														jt @ 2.35m, 10°, KL, Ro3,PL	
				2.5										jt @ 2.54m, 10°, KL, Ro3,PL	2.5
				2.5											2.0
														jt @ 2.76m, 10°, KL, Ro3,PL	
											1.11				
													н.		
				3.0									н.		3.0
													н.	clay seam @ 3.08m, 5mm	
													н.	jt @ 3.09m to 3.25m, 90°,	
						Extremely weathered eeem between							н.	clay infill, Ro3, undulating	
				25		Extremely weathered seam between 3.35 and 3.4m, with organic infill	EW		L I P	11	0.31		н.		3.5
				3.5		5.55 and 5.4m, with organic mini					0.70		н.	bedding parting (bp) @ 3.68m,	3.5
						Cross-bedded from 3.6m	011				0.70		н.	0°, KL, Ro3,PL	
													н.	- ,	
													н.	bp @ 3.91m, 0°, KL, Ro3, PL	
				4.0							1.03				4.0
														bp @ 4.17m, 0°, KL, Ro3,PL	
														bp @ 4.29m, 10°, KL, Ro3,PL	
											1.24			Ext. weathered seam @ 4.37m	,
				4.5		BH3 terminated at 4.4m		+	┝┼╄	╀┼			╢	5mm, 10°	4.5
				4.5		Diro terminateu al 4.411									4.5
				5.0											5.0
1/		. 11					10/-	41	ĻШ						
ĸey	′ - Me	eino	u			Case - lift	Wea	ine	ung				Sti	rength Is (50) MPa	
AS			er Screv			Casing used	Fr		resh					5	< 0.03
AD			er Drillin			Barrel withdrawn water level	SW				athered			5	3 - 0.1
R W			er / Trico shbore	ne		date shown Water inflow	MW DW				<pre>v weather veathere</pre>		L M		1 - 0.3 3 - 1.0
NM	LC	NMI	LC Core			Partial drilling water loss	EW				weather		н	High 1.0) - 3.0
NQ	,HQ	Wire	eline Cor	re Dri		Complete drilling water loss									- 10.0
L													EF	Extremely High	>10.0

BRINK & Associates Geotechnical, Geological, Environmental Consultants Job No: S07146-A Hole No: BH6 Sheet: 2 of 2

CORELOG OF TEST HOLE

	LUG U		ESTHOLE					_			
Client:			EG Funds Management							enced: 14/3/08	
Project:			Proposed Mixed Use Development				Hole		•		
Project L	ocation:		Nos. 2-32 Smith Street and Nos. 16-32				Supe			-	
			Edward Street, Summer Hill				Chec		-		
Drill Mod	el: Truck M	loun	ted Drill Rig Slope:	90°				R.L	. Sı	urface: existing	
	pe / Lengt		NMLC/ 1.5m Bearing	-				Dat	um	: AHD	
Drilling I	nformation		Rock Substance	r						Rock Mass Defects	_
ter	Ś	g		b		h fed	a	Ħ	ing		
Method Case - Lift Groundwate	Samples / Field Tests Depth (m)	Graphic Log		Weathering		Estimated Strength	MPa	Defect	Spacing		Depth (m)
ur	t Dle	ohid		athe		Stre Stre	ô		0		ţ,
Method Case - L Groundv	Samples / Field Test Depth (m)	Braj	Substance Description	Veâ		TZTZ	ЕН s(50)	100 100	888	Defect Description	bep
200			coring started at 4.3m	>	<u> </u>		ш —	<u>~``</u>	<u>7</u>		
N N	N		SANDSTONE, coarse grained,	DW					+	Beddign parting (bp) @ 4.37m,	
M	4.	5	orange, grey, white.	5			1.59			10°, KL, Ro3, PL	4.5
LL	L									, ,	
С											
				мw			1.32			bp @ 4.74m, 15°, clay filled,	
										Ro3, PL	
	5.)									5.0
			Bedding at 10° from 5.1m to 7.5m								
										bp @ 5.35m, 15°, KL, Ro3,PL	
		_									
	5.	5									5.5
		-					1.85	H		bp @ 5.58m, 15°, KL, Ro3,PL	-
		-								bp @ 5.67m, 15°, KL, Ro3,PL	
										bp @ 5.83m, 15°, KL, Ro3,PL	
	6.	,								bp @ 5.65m, 13 , KE, K65,FE	6.0
	0.	, 								bp @ 6.11m, 15°, KL, Ro3,PL	0.0
											-
										bp @ 6.34m, 15°, clay coated	
								П		Ro3, PL	
	6.	5	Some bedding containing quartz gravel								6.5
										joint @ 6.62m, 15°, KL, Ro3,PL	
		_									
	7.)					1.40			bp @ 6.93m, 15°, KL, Ro3,PL	7.0
		-									
											-
	7.	5									7.5
	1.	Ś								bp @ 7.60m, 15°, KL, Ro3,	7.5
							1.16			undulating	
			BH6 terminated at 7.7m					HT	T		
Key - Methe	od		Case - lift	Wea	the	ing			St	rength Is (50) MPa	
A.C. A.I.	aor Sorowing		Casing used	Fr	F	roch				Extromoly Low	< 0.03
	ger Screwing ger Drilling		Casing used Barrel withdrawn water level	SW		resh liahtlv w	eathered			5	< 0.03 3 - 0.1
R Ro	ller / Tricone		date shown	MW	N	oderate	ly weathe		L	Low 0.1	l - 0.3
-	ashbore		Water inflow	DW	D	istinctly	weathere	d	М		3 - 1.0
	ILC Core Dri reline Core D		Partial drilling water loss Complete drilling water loss	EW	E	xtremely	/ weather	ed	H) - 3.0 - 10.0
			Complete drilling water 1055								- 10.0 >10.0
				1					1-1		

APPENDIX B

Photos of Recovered Cores

APPENDIX C

BRINK & Associates

Geotechnical, Geological, Environmental Consultants

P.O.Box 6871 Wetherill Park NSW 2164 Telephone: (02) 9609 3800 Facsimile: (02) 9604 6427

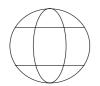
CALIFORNIA BEARING RATIO TEST REPORT

Client EG Funds	Management			Job Number	SL07146-A
Project Proposed	Mixed Use De	evelopment		Date	4/03/2008
Location Nos. 2-32	Smith St & No	os. 16-32 Edward	St, Summer Hill	Page	1 of 1
SAMPLE DETAILS				-	
Test Number		MT 1	MT 2		
Date Sampled		11/03/2008	14/03/2008		
Test Location		BH:1	BH: 4		
Sample Depth		0.4m - 1.0m	0.4m-1.0m		
LABORATORY COMPACTI	ON	AS1289 5.1.1 (S	Standard) 🗹	AS1289 5.2.1	(Modified)
Maximum Dry Density	t/m ³	1.62	1.84		
Optimum Moisture Content	%	19.2	15.3		
TEST RESULTS		AS1289.6.1.1			
Dry Density Before Soak	t/m ³	1.55	1.85		
Moisture Content Before Soa	k %	23.3	14.7		
Density Ratio Before Soak	%	96.0	101.0		
Moisture Ratio Before Soak	%	121.0	96.0		
Dry Density After Soak	t/m ³	1.53	1.84		
Moisture Content After Soak	%	25.7	16.6		
Moisture Cont. After Test (W	hole) %	21.8	15.8		
Moisture Cont. After Test (To	p30mm) %	23.4	16.9		
Material Retained 19.0mm	%	10.3	10.3		
+19.0mm Crushed/Included ((Y/N)	N	N		
Mass of Surcharge	Kg	4.5	4.5		
Compactive Effort		STD	STD		
Period of Soaking	days	4	4		
Swell After Soaking	%	1.5	0.3		
CBR value @ 2.5/5.0mm pen	etration %	6 / 6	15 / 16		
Specification:					

.....

Material Description:

Notes:


1. Unless otherwise stated the CBR test is not repeated if the 5.0mm value exceeds the 2.5mm value

 This document is issued in accordance with NATA's accreditation
 Approved Signatory

 requirements. Accredited for compliance with ISO/IEC 17025.
 O. Mendoza

 This document shall not be reproduced, except in full.
 Date 04/03/2008

BRINK & Associates

Geotechnical, Geological, Environmental Consultants

P.O.Box 6871 Wetherill Park NSW 2164 Telephone: (02) 9609 3800 Facsimile: (02) 9604 6427

ATTERBERG LIMITS AND LINEAR SHRINKAGE TEST REPORT

– <i>– – –</i>		anagement			Job Number	SL07146-A
Project	Proposed Mix	ked Use Dev	elopment		Date	15/04/2008
Location	Nos. 2-32 Srr	hith St & Nos	s. 16-32 Edward S	St, Summer Hill	Page	1 of 1
SAMPLE DETAI	LS					
Sample Number			MT1	MT2	MT3	
Date Sampled			11/03/2008	14/03/2008	14/03/2008	
Sample Location	/ Source		BH 1	BH 4	BH 6	
			0.5- 0.7m	0.4m - 1.0m	1.5m-1.7m	
Material Descript	on					
			Silty CLAY,	Sandy Gravelly CLAY,	CLAY, red	
			orange-brown	orange/brown	OLAT, ICU	
Sample History						
Method of Prepar	ation		Oven Dried	Oven Dried	Oven Dried	
Shrinkage Mould	Length	mm	Dry Sieved	Dry Sieved	Dry Sieved	
TEST METHOD				TEST R	ESULTS	
Liquid Limit		%	76	43	39	
AS1289 3.1.1						
RTA (NSW) T108	3					
Plastic Limit		%	29	18	13	
AS1289 3.2.1						
RTA (NSW) T109						
		%	47	25	26	
Plasticity Index		70	/			
AS1289 3.3.1	Z	70	-1			
-		70				
AS1289 3.3.1		%	-	-	-	
AS1289 3.3.1 RTA (NSW) T109	e		-	-	-	

rev3/13june06/kd/1of1

O LabMark ENVIRONMENTAL LABORATORIES	Client Contac	atory Repor Name: et Name: Reference:	A	037038 argus Pty. L .nthony Beni ummer Hill S	nett		plus Date	e: 1 of 5 cover page e: 22/04/08 eport supercedes	reports issued or	Final Certificate of Analysis
Laboratory Identification		149539	149540	149541	149542	149543	149540d	149540r	mb	
Sample Identification		BH1	BH1	BH3	BH4	BH6	QC	QC	QC	
Depth (m) Sampling Date recorded on COC		0.4-1.0 20/2/08	2.0-2.4 20/2/08	0.8-1.0 20/2/08	0.4-1.0 20/2/08	2.0-2.4 20/2/08				
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		10/4/08 14/4/08	10/4/08 14/4/08	10/4/08 14/4/08	10/4/08 14/4/08	10/4/08 14/4/08	10/4/08 14/4/08		10/4/08 14/4/08	
Method : E032.2 Electrical conductivity (EC) Electric conductivity (uS/cm)	EQL 5	34	51	72	286	112	158	102%	<5	

Results expressed in uS/cm unless otherwise specified

Comments:

E032.2: Measurement by EC probe as per 1:5 soil:water extract. Results expressed as uS/cm as per the extract.

6) LabMark	Labora	atory Repor	t No: E	E037038			Page:2 of 5plus cover page			Final Certificate		
	Client Name:			argus Pty. L	td							
ENVIRONMENTAL LABORATORIES	Contac	t Name:	А	nthony Beni	nett		Date	e: 22/04/08		of Analysis		
	Client	Reference:	S	ummer Hill	S07146		This report supercedes reports issued on: 17/04/08					
Laboratory Identification		149539	149540	149541	149542	149543	149540d	149540r				
Sample Identification		BH1	BH1	BH3	BH4	BH6	QC	QC				
Depth (m)		0.4-1.0	2.0-2.4	0.8-1.0	0.4-1.0	2.0-2.4						
Sampling Date recorded on COC		20/2/08	20/2/08	20/2/08	20/2/08	20/2/08						
Laboratory Extraction (Preparation) Date		10/4/08	10/4/08	10/4/08	10/4/08	10/4/08	10/4/08					
Laboratory Analysis Date		10/4/08	10/4/08	10/4/08	10/4/08	10/4/08	10/4/08					
Method : E018.2 pH in soil pH (pH units)	EQL 0.1	5.8	6.1	7.1	6.5	6.3	6.9	12%				

Results expressed in pH units unless otherwise specified

Comments:

E018.2: 1:5 soil leachate. Followed by measurement by pH ion selective electrode. Results expressed as per leachate.

6) LabMark	Labora	atory Repor	t No: E	037038			Page	e: 3 of 5		Final		
A POINTAL IC		Name:	A	Aargus Pty. Ltd			plus cover page			Certificate		
ENVIRONMENTAL LABORATORIES	Contact Name:			nthony Beni	nett		Date: 22/04/08				of Analysis	
	Client	Reference:	S	ummer Hill	S07146		This re	eport supercedes	s reports issued on: 17/04/08			
Laboratory Identification		149539	149540	149541	149542	149543	149540d	149540r	149542s	lcs	mb	
Sample Identification		BH1	BH1	BH3	BH4	BH6	QC	QC	QC	QC	QC	
Depth (m)		0.4-1.0	2.0-2.4	0.8-1.0	0.4-1.0	2.0-2.4						
Sampling Date recorded on COC		20/2/08	20/2/08	20/2/08	20/2/08	20/2/08						
Laboratory Extraction (Preparation) Date		10/4/08	10/4/08	10/4/08	10/4/08	10/4/08	10/4/08		10/4/08	10/4/08	10/4/08	
Laboratory Analysis Date		15/4/08	15/4/08	15/4/08	15/4/08	15/4/08	15/4/08		15/4/08	15/4/08	15/4/08	
Method : E033.2/E045.2/E047.2 Chloride Chloride	EQL 10	10	<10	<10	50	30	<10		110%	105%	<10	

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E033.2/E045.2/E047.2: 1:5 water extraction. Determination by colour and/or by Ion Chromatography.

6) LabMark	Labora	atory Repor	t No: E	037038			Page	e: 4 of 5		Final			
A POINTAL IC	Client Name:			Aargus Pty. Ltd			plus cover page			Certificate			
ENVIRONMENTAL LABORATORIES	VIRONMENTAL LABORATORIES Contact				Anthony Bennett					of Analysis			
	Client Reference: Summer Hill S07146						This report supercedes reports issued on: 17/04/08						
Laboratory Identification		149539	149540	149541	149542	149543	149540d	149540r	149540t	149542s	lcs		
Sample Identification		BH1	BH1	BH3	BH4	BH6	QC	QC	QC	QC	QC		
Depth (m)		0.4-1.0	2.0-2.4	0.8-1.0	0.4-1.0	2.0-2.4							
Sampling Date recorded on COC		20/2/08	20/2/08	20/2/08	20/2/08	20/2/08							
Laboratory Extraction (Preparation) Date		10/4/08	10/4/08	10/4/08	10/4/08	10/4/08	10/4/08		17/4/08	10/4/08	10/4/08		
Laboratory Analysis Date		15/4/08	15/4/08	15/4/08	15/4/08	15/4/08	15/4/08		18/4/08	15/4/08	15/4/08		
Method : E042.2/E045.2 Sulphate/Sulphite Sulphate	EQL 10	<10	130	20	210	150	10	171%	<10	116%	100%		

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E042.2/E045.2: 1:5 water extraction. Determination by colour and/or Ion Chromatography. Note Sulphite test is not covered by NATA accreditation.

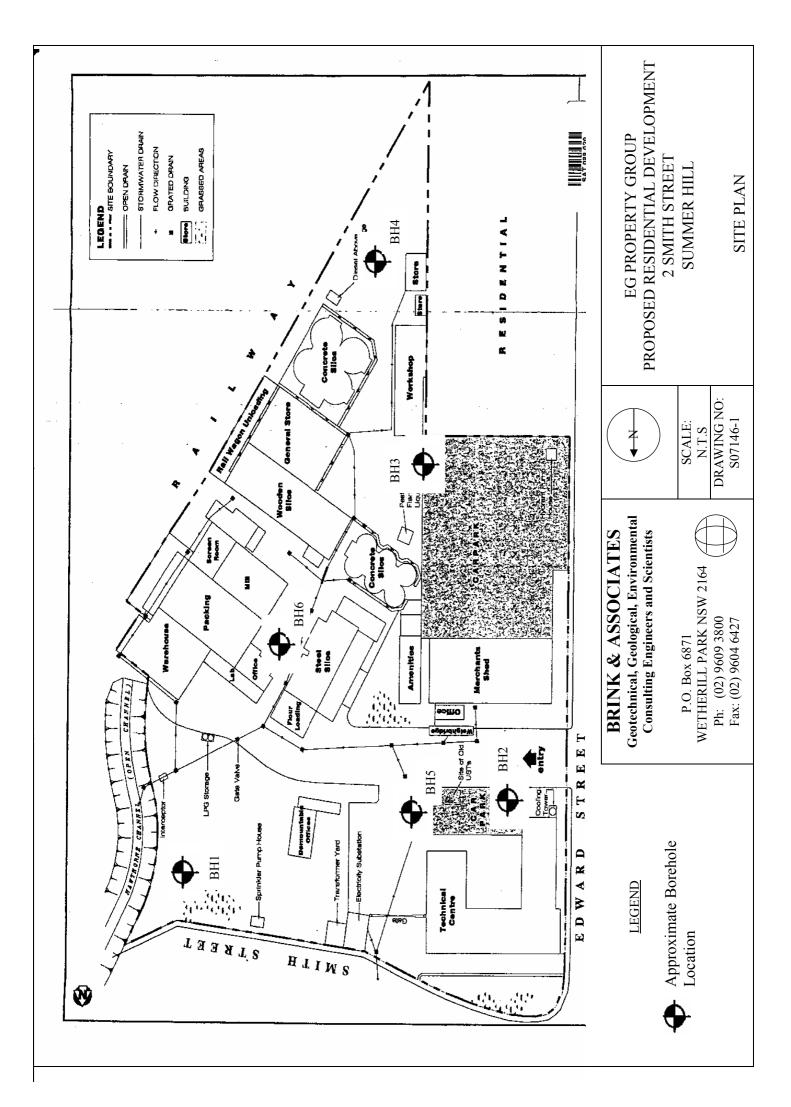
Laboratory Identification		lcs	mb	mb				
Sample Identification		QC	QC	QC				
Depth (m) Sampling Date recorded on COC								
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		17/4/08 17/4/08	10/4/08 15/4/08	17/4/08 17/4/08				
Method : E042.2/E045.2 Sulphate/Sulphite Sulphate	EQL 10	94%	<10	<10				

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E042.2/E045.2: 1:5 water extraction. Determination by colour and/or Ion Chromatography. Note Sulphite test is not covered by NATA accreditation.

LabMark Pty Ltd ABN 27 079 798 397 SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 Telephone: (02) 9476 6533 Fax: (02) 9476 8219 MELBOURNE: 116 Moray Street, South Melbourne VIC 3205 Telephone: (03) 9686 8344 Fax: (03) 9686 7344 Form Q80145, Rev. 0: Date Issued 10/03/05


O LabMark ENVIRONMENTAL LABORATORIES	Client Name:			037038 .argus Pty. L .nthony Beni ummer Hill 3	nett	Page: 5 of 5 plus cover page Date: 22/04/08 This report supercedes reports issued				Final Certificate of Analysis		
Laboratory Identification		149539	149540	149541	149542	149543	149540d	149540r				
Sample Identification		BH1	BH1	BH3	BH4	BH6	QC	QC				
Depth (m) Sampling Date recorded on COC		0.4-1.0 20/2/08	2.0-2.4 20/2/08	0.8-1.0 20/2/08	0.4-1.0 20/2/08	2.0-2.4 20/2/08						
Laboratory Extraction (Preparation) Date		10/4/08 11/4/08	10/4/08 11/4/08	10/4/08 11/4/08	10/4/08 11/4/08	10/4/08 11/4/08	10/4/08 11/4/08					
Method : E005.2 Moisture Moisture	EQL 	9	7	16	11	15	9	25%				

Results expressed in % w/w unless otherwise specified

Comments:

E005.2: Moisture by gravimetric analysis. Results are in % w/w.

APPENDIX D

APPENDIX E