

> ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = 90. RETURN PERIOD (YRS) = 5. = 1.0000 ΒX TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60

SUMM	ARY OF CATCH	MENT AND RAI	NFALL DATA	Ą					
Link	Catch. Are	a Slope	% Impe	ervious	Pe	ern	В		Link
Label	#1 #2	#1 #	2 #1	#2	#1	#2	#1	#2	No.
	(ha)	(%)		(%)					
Stage 1	0.5100 0.09	00 2.000 2.	000 99.90	.1000	.018	.040	.0010	.0073	1.000
nodel	.00001 0.0	.0010 0.	000 0.000	0.000	.025	0.00	.0021	0.000	1.001
out	.00001 0.0	.0010 0.	0.00 0.000	0.000	.025	0.00	.0021	0.000	1.002

Link	Average	Init. I	Loss (Cont.	Loss	Excess	Rain	Peak	Time	Link
Label	Intensity	#1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(mm)	(mm /	h)	(mm)	(m^3/s)	Peak	mins
Stage 1	41.278	5.000 20	0.00	0.000	2.500	56.900	38.992	0.2382	30.00	0.000
nodel	41.278	5.000 0.	.000	0.000	0.000	56.900	0.000	0.2382	30.00	0.000
out	41.278 5	5.000 0	.000	0.000	0.000	56.900	0.000	0.2379	30.00	0.000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
nodel	30.00	.2382	30.00	.2379	325.18	0.0000	151.91	1.1913

SUMMARY OF BASIN OUTLET RESULTS

Link	No.	S/D	Dia	Width	Pipe	Pipe
Label	of	Factor			Length	Slope
		(m)	(m)	(m)	(m)	(응)
nodel	1.0	1.000		0.000	5.000	0.2000

LINK Stage 1 7.000

ESTIMATED VOLUME (CU METRES	5*10**3) =	0.3633
ESTIMATED PEAK FLOW	(CUMECS) =	0.22
ESTIMATED TIME TO PEAK	(MINS) =	35.00
LINK nodel 7.00	00	
ESTIMATED VOLUME (CU METRES	S*10**3) =	0.3633
ESTIMATED PEAK FLOW	(CUMECS) =	0.22
ESTIMATED TIME TO PEAK	(MINS) =	35.00

iosd llkta 0 2 LINK out 7.000

ESTIMATED	VOLUME (CU METR	ES*10**3) =	0.2129
ESTIMATED	PEAK FLOW	(CUMECS) =	0.16
ESTIMATED	TIME TO PEAK	(MINS) =	40.00

Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990

ROUTING INCREMENT (MINS) =	0.10	
STORM DURATION (MINS) =	120.	
RETURN PERIOD (YRS) =	5.	
BX =	1.0000	
TOTAL OF FIRST SUB-AREAS (ha)	=	0.51
TOTAL OF SECOND SUB-AREAS (ha)	=	0.09
TOTAL OF ALL SUB-AREAS (ha)	=	0.60

SUMM	ARY OF CATC	HMENT AND	RAINFAI	L DAT	A					
Link	Catch. Ar	ea S	lope	% Imp	ervious	Pe	ern	В		Link
Label	#1 #2	2 #1	#2	#1	#2	#1	#2	#1	#2	No.
	(ha)		(응)		(%)					
Stage 1	0.5100 0.0	900 2.00	0 2.000	99.9	0 .1000	.018	.040	.0010	.0073	1.000
nodel	.00001 0.	000 .001	0 0.000	0.00	0.000	.025	0.00	.0021	0.000	1.001
out	.00001 0.	000 .001	0 0.000	0.00	0 0.000	.025	0.00	.0021	0.000	1.002

Link	Average	Init.	Loss	Cont.	Loss	Excess	Rain	Peak	Time	Link
Label	Intensity	#1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(mm	ι)	(mm ,	/h)	(mm	n)	(m^3/s)	Peak	mins
Stage 1	34.200 !	5.000 2	0.00	0.000	2.500	63.381	44.590	0.2202	35.00	0.000
nodel	34.200 !	5.000 0	.000	0.000	0.000	63.381	0.000	0.2202	35.00	0.000
out	34.200 !	5.000 0	.000	0.000	0.000	63.381	0.000	0.1633	40.00	0.000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
nodel	35.00	.2202 4	40.00	.1633	363.27	0.0000	151.43	3 1.1429

SUMMARY OF BASIN OUTLET RESULTS

Link	No.	S/D	Dia	Width	Pipe	Pipe
Label	of	Factor			Length	Slope
		(m)	(m)	(m)	(m)	(응)
node1	1.0	1.000		0.000	5.000	0.2000

LINK Stage 1 8.000

ESTIMATED VOLUME (CU METRES*10**3) = ESTIMATED PEAK FLOW (CUMECS) = ESTIMATED TIME TO PEAK (MINS) =	0.4216 0.13 45.00	
LINK nodel 8.000		
ESTIMATED VOLUME (CU METRES*10**3) = ESTIMATED PEAK FLOW (CUMECS) = ESTIMATED TIME TO PEAK (MINS) =	0.4216 0.13 45.00	
iosd llkta 0 2 LINK out 8.000		
ESTIMATED VOLUME (CU METRES*10**3) = ESTIMATED PEAK FLOW (CUMECS) = ESTIMATED TIME TO PEAK (MINS) =	0.2712 0.13 45.00	

> ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = 180. RETURN PERIOD (YRS) = 5. BX = 1.0000 TOTAL OF FIRST SUB-AREAS (ha) = 0.51

TOTAL	OF	SECOND	SUB-ARE	CAS (ha)	=	0.09
TOTAL	OF	ALL SUR	B-AREAS	(ha)	=	0.60

SUMM Link	ARY OF C. Catch.	ATCHMENT Area	AND Sl	RAINFAL	L DATA % Impe	rvious	Pe	ern	в		Link
Link Label Stage 1 nodel out	#1	#2	#1	#2	#1	#2	#1	#2	#1	#2	No.
Stage 1	(ha) 0.5100	0.0900	2.000	*) 2.000	99.90	(%)).1000	.018	.040	.0010	.0073	1.000
node1	.00001	0.000	.0010	0.000	0.000	0.000	.025	0.00	.0021	0.000	1.001
out	.00001	0.000	.0010	0.000	0.000	0.000	.025	0.00	.0021	0.000	1.002
Link .	Average	Init. L	oss	Cont. L	oss	Excess	Rain	Peal	k T	ime	Link
Link Label I	ntensity	#1 (mm	#2 \	#1 (mm/b	#2 \	#1 (mm	#2	Inflo	ow t	0 0	Lag
Stage 1	26.158	5.000 20	.00	0.000 2	.500	73.465	52.282	2 0.1	261 4	5.00 0	.000
nodel out	26.158	5.000 0.	000	0.000 0	.000	73.465	0.000		261 4	5.00 0	.000
out	20.158	5.000 0.	000	0.000 0	.000	/3.405	0.000	0.1	260 4	5.00 0	.000
SUM	MARY OF	BASIN RE	SULTS	;							
Link	Time	Peak T	ime	Peak	Tot	al		- Bas	in		
Label nodel	to I	nflow	to	Outflow	Infl	OW	Vol.	V	ol.	Stage	2
nodel	45.00	.1261 45	.00	.1260	(m 421	61 0	.0000	15	sea 1.17	use 1.1166	a
	MARY OF										
Link	No.	S/D	Dia	Wid	th	Pipe	Pir	e			
Label	of	Factor			,	Length (m)	Slo	pe			
nodel	1 0	(m) 1 000	(m)	(m 0 00) 0	(m) 5 000	(%) 0 200	0			
nouer	1.0	1.000		0.00	0	5.000	0.200	,0			
LINK Sta	ge 1	9	.000								
ESTIMATE							0.	3831			
ESTIMATE ESTIMATE								0.31 25.00			
LOIIMAIL	D IIME I	O PEAR		(MINS) –		2	33.00			
LINK nod	el	9	.000								
ESTIMATE	D VOLUME	(CU MET	RES*1	.0**3) =			0.	3831			
ESTIMATE	D PEAK F	LOW	(CUMECS)	_ =			0.31			
ESTIMATE	D TIME T	O PEAK		(MINS) =		2	25.00			
iosd llk											
LINK out		9	.000								
ESTIMATE								2327			
ESTIMATE			(CUMECS) (MINS				0.30 25.00			
ESTIMATE	ע דדאת די	U FLAR		(MITIN2	, –		2				
######### Summer Hi								*####	######	######	############
Results f	or perio										
########	########			0 1/1			#####	1 # # # # # #	######	######	***
######################################	****	****	#####		######	*****	######	• ++ +f ## ## =	****	#######	############
				D.011	a +1		MINCY		0 7	0	
						REMENT (ION (MIN	,		0.1 60		
				RETURN		D (YRS)		=	20	•	
				BX TOTAL	ਰਾਜ ਜ0	ST SUB-	AREAG	= (ha)	1.000	0 0.5	1
						COND SUB				0.0	
				TOTAL	OF ALL	J SUB-AR	EAS (1	na)	=	0.6	0
	ARY OF C						-		_		T dayla
Link Label	Catch. #1	Area #2		ope #2	% Impe #1	ervious #2		ern #2	В #1		Link No.

(ha)(%)Stage 10.51000.09002.0002.00099.90.1000.018.040.0010.00731.000node1.000010.000.00100.0000.000.0250.00.00210.0001.001out.000010.000.00100.0000.000.0250.00.00210.0001.002
Link Average Init. Loss Cont. Loss Excess Rain Peak Time Link Label Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak mins
Stage 171.4055.00020.000.0002.50066.37849.5110.305225.000.000nodel71.4055.0000.0000.00066.3780.0000.305225.000.000out71.4055.0000.0000.00066.3780.0000.304925.000.000
SUMMARY OF BASIN RESULTS
Link Time Peak Time Peak Total Basin Label to Inflow to Outflow Inflow Vol. Vol. Stage Peak (m^3/s) Peak (m^3/s) (m^3) Avail Used Used nodel 25.00 .3052 25.00 .3049 383.08 0.0000 152.31 1.2314
SUMMARY OF BASIN OUTLET RESULTS
Link No. S/D Dia Width Pipe Pipe Label of Factor Length Slope (m) (m) (m) (m) (%) nodel 1.0 1.000 0.000 5.000 0.2000
nodel 1.0 1.000 0.000 5.000 0.2000
LINK Stage 1 10.000
ESTIMATED VOLUME (CU METRES*10**3) =0.4473ESTIMATED PEAK FLOW(CUMECS) =0.32ESTIMATED TIME TO PEAK(MINS) =30.00
LINK nodel 10.000
ESTIMATED VOLUME (CU METRES*10**3) =0.4473ESTIMATED PEAK FLOW(CUMECS) =0.32ESTIMATED TIME TO PEAK(MINS) =30.00
iosd llkta 0 2 LINK out 10.000
ESTIMATED VOLUME (CU METRES*10**3) =0.2969ESTIMATED PEAK FLOW(CUMECS) =0.32ESTIMATED TIME TO PEAK(MINS) =30.00
######################################
Results for period from 0: 0.0 1/ 1/1990
to 5: 0.0 1/ 1/1990
ROUTING INCREMENT (MINS) = 0.10
STORM DURATION (MINS) = 90. RETURN PERIOD (YRS) = 20. BX = 1.0000
TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60
SUMMARY OF CATCHMENT AND RAINFALL DATA
Link Catch. Area Slope % Impervious Pern B Link Label #1 #2 #1 #2 #1 #2 #1 #2 #1 #2 No. (ha) (%) (%)
Stage 1 0.5100 0.0900 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 nodel .00001 0.000 .0010 0.000 0.000 .025 0.00 .0021 0.000 1.001 out .00001 0.000 .0000 0.000 .0000 .025 0.00 .0021 0.000 1.002
Link Average Init. Loss Cont. Loss Excess Rain Peak Time Link

Label	Intensity	#1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(mm)	(mm /	h)	(mn	n)	(m^3/s)	Peak	mins
Stage 1	54.865 5	.000 2	0.00	0.000	2.500	77.276	59.168	0.3239	30.00	0.000
nodel	54.865 5	.000 0	.000	0.000	0.000	77.276	0.000	0.3239	30.00	0.000
out	54.865 5	.000 0	.000	0.000	0.000	77.276	0.000	0.3236	30.00	0.000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
nodel	30.00	.3239	30.00	.3236	447.30	0.0000	152.42	1.2421

SUMMARY OF BASIN OUTLET RESULTS

Link	No.	S/D	Dia	Width	Pipe	Pipe
Label	of	Factor			Length	Slope
		(m)	(m)	(m)	(m)	(%)
nodel	1.0	1.000		0.000	5.000	0.2000

LINK Stage 1 11.000

ESTIMATED VOLUME (CU METRES*10**3) = ESTIMATED PEAK FLOW (CUMECS) = ESTIMATED TIME TO PEAK (MINS) =	0.4967 0.30 35.00
LINK nodel 11.000	
ESTIMATED VOLUME (CU METRES*10**3) = ESTIMATED PEAK FLOW (CUMECS) = ESTIMATED TIME TO PEAK (MINS) =	0.4967 0.30 35.00
iosd llkta 0 2 LINK out 11.000	
ESTIMATED VOLUME (CU METRES*10**3) = ESTIMATED PEAK FLOW (CUMECS) =	0.3463 0.30

ESTIMATED TIME TO	PEAK	(MINS) =	35.00

ROUTING INCREMENT (MINS) =	0.10	
STORM DURATION (MINS) =	120.	
RETURN PERIOD (YRS) =	20.	
BX =	1.0000	
TOTAL OF FIRST SUB-AREAS (ha)	=	0.51
TOTAL OF SECOND SUB-AREAS (ha)	=	0.09
TOTAL OF ALL SUB-AREAS (ha)	=	0.60

SUMM	ARY OF CATCH	IMENT AND	RAINFAL	L DATA						
Link	Catch. Are	ea Sl	.ope ⁹	% Imper	rvious	Pe	ern	В		Link
Label	#1 #2	2 #1	#2	#1	#2	#1	#2	#1	#2	No.
	(ha)	(응)		(%)					
Stage 1	0.5100 0.09	900 2.000	2.000	99.90	.1000	.018	.040	.0010	.0073	1.000
nodel	.00001 0.0	.0010	0.000	0.000	0.000	.025	0.00	.0021	0.000	1.001
out	.00001 0.0	.0010	0.000	0.000	0.000	.025	0.00	.0021	0.000	1.002

Link	Average	Init.	Loss	Cont.	Loss	Excess	Rain	Peak	Time	Link
Label	Intensity	#1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(mn	n)	(mm	/h)	(mm	n)	(m^3/s)	Peak	mins
Stage 1	45.334	5.000 2	20.00	0.000	2.500	85.643	66.622	0.2994	35.00	0.000
nodel	45.334	5.000 (0.000	0.000	0.000	85.643	0.000	0.2994	35.00	0.000
out	45.334 !	5.000 0	0.000	0.000	0.000	85.643	0.000	0.2991	35.00	0.000

SUMMARY OF BASIN RESULTS

Link	Time Peak Time	Peak Total	Bas	in
Laber	to Inflow to Peak (m^3/s) Peak	(m^3/s) (m^3)	Avail U	sed Used
nodel	35.00 .2994 35.00	.2991 496.70	0.0000 15	2.28 1.2280
SUM	MARY OF BASIN OUTLET	RESULTS		
Link	No. S/D Dia	. Width Pip	e Pipe	
Label	of Factor	Leng	th Slope	
node1	No. S/D Dia of Factor (m) (m) 1.0 1.000	(m) (m) 0.000 5.0	(%) 00 0.2000	
	ge 1 12.000			
ESTIMATE	D VOLUME (CU METRES*1	.0**3) =	0.5722	
ESTIMATE	D PEAK FLOW (D TIME TO PEAK	CUMECS) =	0.17 45.00	
LOIIMAIL	D TIME TO PEAK	(MINS) -	45.00	
LINK nod	el 12.000			
	D VOLUME (CU METRES*1		0.5722	
ESTIMATE	D PEAK FLOW (D TIME TO PEAK	CUMECS) =	0.17 45.00	
LOIIMAIL	D TIME TO PEAK	(MINS) -	45.00	
	ta 0	2		
LINK out	12.000			
ESTIMATE	D VOLUME (CU METRES*1	.0**3) =	0.4218	
ESTIMATE	D PEAK FLOW (D TIME TO PEAK	CUMECS) =	0.17 45.00	
LOIIMAIL	D TIME TO FEAK	(MINS) -	43.00	
	######################################			*****
Results f	or period from 0: 0.	0 1/ 1/1990		
		0 1/ 1/1990		
#########	*****	*************	****	*****
		ROUTING INCREMEN	T (MINS) =	0 10
		ROUTING INCREMEN STORM DURATION (RETURN PERIOD (Y BX	MINS) =	180.
		RETURN PERIOD (Y	RS) =	20. 1.0000
		TOTAL OF FIRST S TOTAL OF SECOND		
		TOTAL OF ALL SUB	-AREAS (ha)	= 0.60
SUMM Link	ARY OF CATCHMENT AND Catch. Area Sl	RAINFALL DATA .ope % Impervio	us Pern	B Link
Label	#1 #2 #1			#1 #2 No.
		8) (8)		
Stage 1 node1) 2.000 99.90 .10) 0.000 0.000 0.0		.0010 .0073 1.000 .0021 0.000 1.001
out		0.000 0.000 0.0		.0021 0.000 1.002
Link	Average Init. Loss	Cont. Loss Exc	ess Rain Pea	k Time Link
Label I	ntensity #1 #2 (mm/h) (mm)	#1 #2 #1		
Stage 1	(mm/n) (mm) 34.539 5.000 20.00		mm) (m^3 05 77.230 0.1	
nodel	34.539 5.000 0.000	0.000 0.000 98.6	05 0.000 0.1	707 45.00 0.000
out	34.539 5.000 0.000	0.000 0.000 98.6	05 0.000 0.1	706 45.00 0.000
OTTA	MARY OF BASIN RESULTS	1		
MUC	THUS OF DESTINATION OF STREET	,		

Link	Time	Peak	Time	Peak	Total		Basin ·	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
nodel	45.00	.1707	45.00	.1706	572.23	0.0000	151.4	8 1.1479

SUMMARY OF BASIN OUTLET RESULTS

	of	Factor (m)	(m)	Width (m) 0.000	Length (m)	Slope (%)		
LINK Sta	ge 1	13.	000					
ESTIMATE	D PEAK	E (CU METF FLOW TO PEAK	(CU	JMECS) =		0.5273 0.39 25.00		
LINK nod	el	13.	000					
ESTIMATE	D PEAK	·	(Ct	**3) = JMECS) = (MINS) =		0.5273 0.39 25.00		
iosd llk LINK out		0 13.	_					
ESTIMATE	D PEAK	E (CU METF FLOW TO PEAK	(Ct	JMECS) =		0.3769 0.39 25.00		
				:#####################################			****	###

ROUTING INCREMENT (MINS)	=	0.10	
STORM DURATION (MINS)	=	60.	
RETURN PERIOD (YRS)	=	100.	
BX	=	1.0000	
TOTAL OF FIRST SUB-AREAS	(ha)	=	0.51
TOTAL OF SECOND SUB-AREAS	3 (ha)	=	0.09
TOTAL OF ALL SUB-AREAS (h	na)	=	0.60

SUMM	ARY OF CATCHME	NT AND RAINFAI	LL DATA			
Link	Catch. Area	Slope	% Impervious	Pern	В	Link
Label	#1 #2	#1 #2	#1 #2	#1 #2	#1 #2	No.
	(ha)	(응)	(%)			
Stage 1	0.5100 0.0900	2.000 2.000	99.90 .1000	.018 .040	.0010 .007	3 1.000
nodel	.00001 0.000	.0010 0.000	0.000 0.000	.025 0.00	.0021 0.00	1.001
out	.00001 0.000	.0010 0.000	0.000 0.000	.025 0.00	.0021 0.00	1.002

Link	Average	Init.	Loss	Cont.	Loss	Excess	Rain	Peak	Time	Link
Label	Intensity	#1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(mm	n)	(mm ,	/h)	(mm	ı)	(m^3/s)	Peak	mins
Stage 1	95.495	5.000 2	20.00	0.000	2.500	90.451	73.493	0.3907	25.00	0.000
nodel	95.495	5.000 0	0.000	0.000	0.000	90.451	0.000	0.3907	25.00	0.000
out	95.495	5.000 0	0.000	0.000	0.000	90.451	0.000	0.3903	25.00	0.000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
nodel	25.00	.3907	25.00	.3903	527.29	0.0000	152.79	9 1.2791

SUMMARY OF BASIN OUTLET RESULTS

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
node1	1.0	(m) 1.000	(m)	(m) 0.000	(m) 5.000	(%) 0.2000

LINK Stage 1 14.00	00	
ESTIMATED VOLUME (CU METRES ESTIMATED PEAK FLOW ESTIMATED TIME TO PEAK	S*10**3) = 0.6115 (CUMECS) = 0.41 (MINS) = 30.00	
LINK nodel 14.00	00	
ESTIMATED VOLUME (CU METRES ESTIMATED PEAK FLOW ESTIMATED TIME TO PEAK	S*10**3) = 0.6115 (CUMECS) = 0.41 (MINS) = 30.00	
iosd llkta 0 LINK out 14.00	2 00	
ESTIMATED VOLUME (CU METRES ESTIMATED PEAK FLOW ESTIMATED TIME TO PEAK	(CUMECS) = 0.41	
######################################	######################################	####
Results for period from 0:	0.0 1/ 1/1990 0.0 1/ 1/1990	
60 5.		####
	ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = $90.$ RETURN PERIOD (YRS) = $100.$ BX = 1.0000 TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60	
SUMMARY OF CATCHMENT AN Link Catch. Area Label #1 #2 #1 (ha) Stage 1 0.5100 0.0900 2.0 node1 .00001 0.000 .00 out .00001 0.000 .00	ND RAINFALL DATA Slope % Impervious Pern B Link 1 #2 #1 #2 #1 #2 #1 #2 No. (%) 000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 010 0.000 0.000 0.000 .025 0.00 .0021 0.000 1.001 010 0.000 0.000 0.000 .025 0.00 .0021 0.000 1.002	
Link Catch. Area Label #1 #2 #1 (ha) Stage 1 0.5100 0.0900 2.0 nodel .00001 0.000 .00 out .00001 0.000 .00 Link Average Init. Loss Label Intensity #1 #2 (mm/h) (mm) Stage 1 73.141 5.000 20.00	Slope % Impervious Pern B Link 1 #2 #1 #2 #1 #2 No. (%) (%) (%) 000 .0010 .0073 1.000 010 0.000 0.000 .025 0.00 .0021 0.000 1.001 010 0.000 0.000 .025 0.00 .0021 0.000 1.002 s Cont. Loss Excess Rain Peak Time Link #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (m^3/s) Peak mins 0 0.000 2.500 104.68 86.478 0.4067 30.00 0.000	
Link Catch. Area Label #1 #2 #1 (ha) Stage 1 0.5100 0.0900 2.0 nodel .00001 0.000 .00 out .00001 0.000 .00 Link Average Init. Loss Label Intensity #1 #2 (mm/h) (mm) Stage 1 73.141 5.000 20.00	Slope % Impervious Pern B Link 1 #2 #1 #2 #1 #2 No. (%) (%) (%) 0000 2.0000 99.90 .1000 .018 .040 .0010 .0073 1.000 010 0.000 0.000 .025 0.00 .0021 0.000 1.001 010 0.000 0.000 .025 0.00 .0021 0.000 1.002 s Cont. Loss Excess Rain Peak Time Link #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (m^3/s) Peak mins	
Link Catch. Area Label #1 #2 #1 (ha) Stage 1 0.5100 0.0900 2.0 nodel .00001 0.000 .00 out .00001 0.000 .00 Link Average Init. Loss Label Intensity #1 #2 (mm/h) (mm) Stage 1 73.141 5.000 20.00	Slope % Impervious Pern B Link 1 #2 #1 #2 #1 #2 No. (%) (%) (%) 000 .0010 .0073 1.000 000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 010 0.000 0.000 .025 0.00 .0021 0.000 1.001 010 0.000 0.000 .025 0.00 .0021 0.000 1.002 s Cont. Loss Excess Rain Peak Time Link #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (m^3/s) Peak mins 0 0.000 1.04.68 0.4067 30.00 0.000 0 0.000 104.68 0.000 0.4064 30.00 0.000	
Link Catch. Area Label #1 #2 #1 (ha) Stage 1 0.5100 0.0900 2.0 nodel .00001 0.000 .00 out .00001 0.000 .00 Link Average Init. Loss Label Intensity #1 #2 (mm/h) (mm) Stage 1 73.141 5.000 20.00 nodel 73.141 5.000 0.000 out 73.141 5.000 0.000 SUMMARY OF BASIN RESUI	Slope % Impervious Pern B Link 1 #2 #1 #2 #1 #2 #1 #2 No. (%) (%) (%) 000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 010 0.000 0.000 .025 0.00 .0021 0.000 1.001 010 0.000 0.000 .025 0.00 .0021 0.000 1.002 cs Cont. Loss Excess Rain Peak Time Link #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (m^3/s) Peak mins 0 0.000 0.000 0.000 0 0.000 0.000 104.68 0.000 0.4067 30.00 0.000 0 0.000 0.000 104.68 0.000 0.4064 30.00 0.000 1 #1 #1 Basin	
Link Catch. Area Label #1 #2 #1 (ha) Stage 1 0.5100 0.0900 2.0 nodel .00001 0.000 .00 out .00001 0.000 .00 Link Average Init. Loss Label Intensity #1 #2 (mm/h) (mm) Stage 1 73.141 5.000 20.00 nodel 73.141 5.000 0.000 out 73.141 5.000 0.000 SUMMARY OF BASIN RESUI	Slope % Impervious Pern B Link 1 #2 #1 #2 #1 #2 #1 #2 No. (%) (%) (%) (%) 0000 .0010 .0073 1.000 010 0.000 0.000 .025 0.00 .0021 0.000 1.001 010 0.000 0.000 .025 0.00 .0021 0.000 1.001 010 0.000 0.000 .025 0.00 .0021 0.000 1.002 cs Cont. Loss Excess Rain Peak Time Link #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (m^3/s) Peak mins 0 0.000 0.000 0.000 0 0.000 0.000 104.68 0.000 0.4064 30.00 0.000 0 0.000 0.000 104.68 0.000 0.4064 30.00 0.000 LTS E Peak Total	
Link Catch. Area Label #1 #2 #1 (ha) Stage 1 0.5100 0.0900 2.0 nodel .00001 0.000 .00 out .00001 0.000 .00 Link Average Init. Loss Label Intensity #1 #2 (mm/h) (mm) Stage 1 73.141 5.000 20.00 nodel 73.141 5.000 0.000 out 73.141 5.000 0.000 out 73.141 5.000 0.000 SUMMARY OF BASIN RESUL Link Time Peak Time Label to Inflow to Peak (m^3/s) Peak nodel 30.00 .4067 30.00 SUMMARY OF BASIN OUTLE Link No. S/D I	Slope % Impervious Pern B Link 1 #2 #1 #2 #1 #2 #1 #2 No. (%) (%) (%) 0000 .0000 .0010 .0073 1.000 010 0.000 0.000 .025 0.00 .0021 0.000 1.001 010 0.000 0.000 .025 0.00 .0021 0.000 1.002 cs Cont. Loss Excess Rain Peak Time Link #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (m^3/s) Peak mins 0 0.000 0.000 0.000 0 0.000 1.04.68 0.4067 30.00 0.000 0.000 0 0.000 1.04.68 0.000 0.4064 30.00 0.000 0 0.000 1.04.68 0.000 0.4064 30.00 0.000 0 .4064 611.51 0.0000 152.88 1.2878 ET R	
Link Catch. Area Label #1 #2 #1 (ha) Stage 1 0.5100 0.0900 2.0 nodel .00001 0.000 .00 out .00001 0.000 .00 Link Average Init. Loss Label Intensity #1 #2 (mm/h) (mm) Stage 1 73.141 5.000 20.00 nodel 73.141 5.000 0.000 out 73.141 5.000 0.000 out 73.141 5.000 0.000 UNMARY OF BASIN RESUL Link Time Peak Time Label to Inflow to Peak (m^3/s) Peak nodel 30.00 .4067 30.00 SUMMARY OF BASIN OUTLE Link No. S/D I Label of Factor (m) (0	Slope % Impervious Pern B Link 1 #2 #1 #2 #1 #2 #1 #2 No. (%) (%) (%) (%) 0000 .0010 .0010 .0073 1.000 010 0.000 0.000 .0025 0.00 .0021 0.000 1.001 010 0.000 0.000 .025 0.00 .0021 0.000 1.002 0 0.000 0.000 .025 0.00 .0021 0.000 1.002 0 0.000 0.000 .025 0.00 .0021 0.000 1.002 0 0.000 0.000 .025 0.00 .0021 0.000 1.002 0 0.000 0.000 .000 .025 0.00 .0001 1.002 0 0.000 2.500 104.68 86.478 0.4067 30.00 0.000 0 0.000 104.68 0.000 0.4064 30.00 0.000 0 0.000 104.68 0.000	

ESTIMATED VOL	UME (CU METRES	S*10**3) =	0.6760
ESTIMATED PEA	K FLOW	(CUMECS) =	0.38
ESTIMATED TIM	E TO PEAK	(MINS) =	35.00

LINK nodel	15.000			
ESTIMATED VOLUM ESTIMATED PEAK H ESTIMATED TIME T	TLOW	10**3) = (CUMECS) = (MINS) =	0.6760 0.38 35.00	
iosd llkta LINK out	0 15.000	2		
ESTIMATED VOLUM ESTIMATED PEAK H ESTIMATED TIME T	FLOW	10**3) = (CUMECS) = (MINS) =	0.5256 0.38 35.00	

ROUTING INCREMENT (MINS) =0.10STORM DURATION (MINS) =120.RETURN PERIOD (YRS) =100.BX =1.0000TOTAL OF FIRST SUB-AREAS (ha) =0.51TOTAL OF SECOND SUB-AREAS (ha) =0.09TOTAL OF ALL SUB-AREAS (ha) =0.60

SUMM	ARY OF CATCHME	NT AND RAINFAI	ΓĽ	DATA						
Link	Catch. Area	Slope	%	Imper	rvious	Pe	ern	В		Link
Label	#1 #2	#1 #2		#1	#2	#1	#2	#1	#2	No.
	(ha)	(%)			(응)					
Stage 1	0.5100 0.0900	2.000 2.000		99.90	.1000	.018	.040	.0010	.0073	1.000
nodel	.00001 0.000	.0010 0.000		0.000	0.000	.025	0.00	.0021	0.000	1.001
out	.00001 0.000	.0010 0.000		0.000	0.000	.025	0.00	.0021	0.000	1.002

Link	Average	Init.	Loss	Cont.	Loss	Excess	Rain	Peak	Time	Link
Label	Intensity	#1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(mn	n)	(mm ,	/h)	(mm	ı)	(m^3/s)	Peak	mins
Stage 1	60.296 5	.000 2	20.00	0.000	2.500	115.56	96.411	0.3763	35.00	0.000
nodel	60.296 5	.000 0	0.000	0.000	0.000	115.56	0.000	0.3764	35.00	0.000
out	60.296 5	.000 0	0.000	0.000	0.000	115.56	0.000	0.3760	35.00	0.000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
nodel	35.00	.3764	35.00	.3760	676.01	0.0000	152.71	1.2714

SUMMARY OF BASIN OUTLET RESULTS

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
nodel	1.0	(m) 1.000	(m)	(m) 0.000	(m) 5.000	(%) 0.2000

LINK Stage 1 16.000

ESTIMATED VOLUME (CU METRE	S*10**3) =	0.7744
ESTIMATED PEAK FLOW	(CUMECS) =	0.21
ESTIMATED TIME TO PEAK	(MINS) =	45.00
LINK nodel 16.0	00	
ESTIMATED VOLUME (CU METRE	S*10**3) =	0.7744
ESTIMATED PEAK FLOW	(CUMECS) =	0.21
ESTIMATED TIME TO PEAK	(MINS) =	45.00

iosd llkta 0 2

LINK out 16.000

ESTIMATED V	OLUME (CU I	METRES*10**3) =	0.6240
ESTIMATED PI	EAK FLOW	(CUMECS) =	0.21
ESTIMATED T	IME TO PEAD	K (MINS) =	45.00

ROUTING INCREMENT (MINS) =	0.10	
STORM DURATION (MINS) =	180.	
RETURN PERIOD (YRS) =	100.	
BX =	1.0000	
TOTAL OF FIRST SUB-AREAS (ha)	=	0.51
TOTAL OF SECOND SUB-AREAS (ha)	=	0.09
TOTAL OF ALL SUB-AREAS (ha)	=	0.60

SUMM	ARY OF CATCHME	NT AND RAINFA	LL DATA			
Link	Catch. Area	Slope	% Impervious	Pern	В	Link
Label	#1 #2	#1 #2	#1 #2	#1 #2	#1 #2	No.
	(ha)	(%)	(%)			
Stage 1	0.5100 0.0900	2.000 2.000	99.90 .1000	.018 .040	.0010 .0073	3 1.000
nodel	.00001 0.000	.0010 0.000	0.000 0.000	.025 0.00	.0021 0.000	0 1.001
out	.00001 0.000	.0010 0.000	0.000 0.000	.025 0.00	.0021 0.000	1.002

Link	Average	Init. L	loss Cont	Loss	Excess	Rain	Peak	Time	Link
Label	Intensity	#1	#2 #1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(mm) (mr	n/h)	(mm)	(m^3/s)	Peak	mins
Stage 1	45.785 5	5.000 20	0.00 0.000	2.500	132.34	110.80	0.2126	45.00	0.000
nodel	45.785 5	5.000 0.	000 0.000	0.000	132.34	0.000	0.2126	45.00	0.000
out	45.785 5	5.000 0.	000 0.000	0.000	132.34	0.000	0.2126	45.00	0.000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
nodel	45.00	.2126	45.00	.2126	774.42	0.0000	151.75	1.1754

SUMMARY OF BASIN OUTLET RESULTS

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
nodel	1.0	(m) 1.000	(m)	(m) 0.000	(m) 5.000	(%) 0.2000

Run completed at: 4th October 2012 10:11:19

Existing Conditions

Run started at: 4th October 2012 9:58:59 RESULTS RUNTIME ****** Max. no. of links allowed = 1500 Max. no. of routng increments allowed = 250000 Max. no. of rating curve points = 250000 250000 Max. no. of storm temporal points = Max. no. of channel subreaches = 25 Max link stack level = 50 Input Version number = 800 LINK Stage 1 1.000 ESTIMATED VOLUME (CU METRES*10**3) = 0.1392 ESTIMATED PEAK FLOW (CUMECS) = 0.12 ESTIMATED TIME TO PEAK (MINS) = 23.80 **** Summer Hill Stage 1 - 4-10-12 -existing Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 ***** ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = 60. RETURN PERIOD (YRS) = 1. BХ 1.0000 = TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60 SUMMARY OF CATCHMENT AND RAINFALL DATA Catch. Area В Link Slope % Impervious Pern Link #2 #1 #2 (%) '^` #1 #2 #1 (ha) #1 #2 #1 #2 #1 Label #2 No. 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 Stage 1 Link Average Init. Loss Cont. Loss Excess Rain Peak Time Link Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak mins Label Lag 30.677 5.000 20.00 0.000 2.500 25.666 9.257 0.1210 23.80 0.000 Stage 1 LINK Stage 1 2.000 ESTIMATED VOLUME (CU METRES*10**3) = 0.1681 ESTIMATED PEAK FLOW (CUMECS) = 0.13 ESTIMATED TIME TO PEAK (MINS) =30.00 ******* Summer Hill Stage 1 - 4-10-12 -existing Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = 90. RETURN PERIOD (YRS) = 1. 1.0000 ΒX = TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) 0.60

SUMMARY OF CATCHMENT AND RAINFALL DATA

Link Catch. Area Slope % Impervious Pern B Link Label #1 #2 #1 #2 #1 #2 #1 #2 #1 #2 #1 #2 No. (ha) (%) (%)
Stage 1 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000
Link Average Init. Loss Cont. Loss Excess Rain Peak Time Link Label Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak mins Stage 1 23.789 5.000 20.00 0.000 2.500 30.674 13.103 0.1284 30.00 0.000
LINK Stage 1 3.000
ESTIMATED VOLUME (CU METRES*10**3) =0.1906ESTIMATED PEAK FLOW(CUMECS) =0.12ESTIMATED TIME TO PEAK(MINS) =33.50
######################################
Results for period from 0: 0.0 1/ 1/1990
to 5: 0.0 1/ 1/1990 ###################################
ROUTING INCREMENT (MINS) =0.10STORM DURATION (MINS) =120.RETURN PERIOD (YRS) =1.
BX = 1.0000
TOTAL OF FIRST SUB-AREAS (ha) =0.51TOTAL OF SECOND SUB-AREAS (ha) =0.09
TOTAL OF ALL SUB-AREAS $(ha) = 0.60$
SUMMARY OF CATCHMENT AND RAINFALL DATA Link Catch. Area Slope % Impervious Pern B Link Label #1 #2 #1 #2 #1 #2 #1 #2 #1 #2 No. (ha) (%) (%)
Stage 1 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000
Link Average Init. Loss Cont. Loss Excess Rain Peak Time Link Label Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak mins
Stage 1 19.788 5.000 20.00 0.000 2.500 34.565 16.065 0.1211 33.50 0.000
LINK Stage 1 4.000
ESTIMATED VOLUME (CU METRES*10**3) = 0.2252
ESTIMATED PEAK FLOW(CUMECS) =0.66E-01ESTIMATED TIME TO PEAK(MINS) =45.00
######################################
Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990
ROUTING INCREMENT (MINS) = 0.10
STORM DURATION (MINS) = 180. RETURN PERIOD (YRS) = 1.
BX = 1.0000 TOTAL OF FIRST SUB-AREAS (ha) = 0.51
TOTAL OF SECOND SUB-AREAS (ha) =0.09TOTAL OF ALL SUB-AREAS (ha) =0.60
SUMMARY OF CATCHMENT AND RAINFALL DATA Link Catch. Area Slope % Impervious Pern B Link Label #1 #2 #1 #2 #1 #2 #1 #2 #1 #2 No. (ha) (%) (%)

Stage 1 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 Excess Rain Peak Time Link Link Average Init. Loss Cont. Loss #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (m^3/s) Peak mins Label Intensity #1 #2 Lag (mm) (mm/h) 15.219 5.000 20.00 0.000 2.500 40.653 19.924 0.0655 45.00 0.000 Stage 1 LINK Stage 1 5.000 ESTIMATED VOLUME (CU METRES*10**3) = 0.2758 ESTIMATED PEAK FLOW (CUMECS) = ESTIMATED TIME TO PEAK (MINS) = 0.22 (MINS) = 25.00 Summer Hill Stage 1 - 4-10-12 -existing Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 *** ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = 60. RETURN PERIOD (YRS) = 5. = 1.0000 ВX TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60 SUMMARY OF CATCHMENT AND RAINFALL DATA Catch. Area Slope % Impervious #1 #2 #1 #2 #1 #2 (ba) Pern Link В Link Label #1 #2 #1 #2 No. (ha) (%) (%) 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 Stage 1 Link Average Init. Loss Cont. Loss Excess Rain Peak Time Link Intensity #1 #2 #1 #2 #1 #2 Inflow (mm/h) (mm) (mm/h) (mm) (m^3/s) Label to Laq (m³/s) Peak mins 53.519 5.000 20.00 0.000 2.500 48.499 31.795 0.2225 25.00 0.000 Stage 1 LINK Stage 1 6.000 ESTIMATED VOLUME (CU METRES*10**3) = 0.3252 ESTIMATED PEAK FLOW (CUMECS) = 0.24 ESTIMATED TIME TO PEAK (MINS) = 30.00 Summer Hill Stage 1 - 4-10-12 -existing Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 ***** ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = 90. RETURN PERIOD (YRS) = 5. ΒХ = 1.0000 TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60 SUMMARY OF CATCHMENT AND RAINFALL DATA Pern Slope % Impervious Link Catch. Area В Link #1 #2 #1 #2 #1 #2 #2 Label #1 #2 #1 No. (응) (%) (ha)

stage 1 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000

Link Average Init. Loss Cont. Loss Excess Rain Peak Time Link Label Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak mins Stage 1 41.278 5.000 20.00 0.000 2.500 56.900 38.992 0.2382 30.00 0.000
LINK Stage 1 7.000
ESTIMATED VOLUME (CU METRES*10**3) =0.3633ESTIMATED PEAK FLOW(CUMECS) =0.22ESTIMATED TIME TO PEAK(MINS) =35.00
######################################
Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 ###################################
ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = $120.$ RETURN PERIOD (YRS) = $5.$ BX = 1.0000 TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60
SUMMARY OF CATCHMENT AND RAINFALL DATA Link Catch. Area Slope % Impervious Pern B Link Label #1 #2 #1 #2 #1 #2 No. (ha) (%) (%) Stage 1 0.5100 0.0900 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000
Link Average Init. Loss Cont. Loss Excess Rain Peak Time Link Label Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak mins Stage 1 34.200 5.000 20.00 0.000 2.500 63.381 44.590 0.2202 35.00 0.000
LINK Stage 1 8.000
ESTIMATED VOLUME (CU METRES*10**3) =0.4216ESTIMATED PEAK FLOW(CUMECS) =0.13ESTIMATED TIME TO PEAK(MINS) =45.00
######################################
Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 ###################################
ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = $180.$ RETURN PERIOD (YRS) = $5.$ BX = 1.0000 TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60
SUMMARY OF CATCHMENT AND RAINFALL DATA Link Catch. Area Slope % Impervious Pern B Link Label #1 #2 #1 #2 #1 #2 #1 #2 No. (ha) (%) (%) Stage 1 0.5100 0.0900 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000
Link Average Init.Loss Cont.Loss Excess Rain Peak Time Link Label Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm)) (mm/h) (mm) (m^3/s) Peak mins

Stage 1 26.158 5.000 20.00 0.000 2.500 73.465 52.282 0.1261 45.00 0.000 9.000 LINK Stage 1 ESTIMATED VOLUME (CU METRES*10**3) = 0.3831 ESTIMATED PEAK FLOW (CUMECS) = 0.31 25.00 ESTIMATED TIME TO PEAK (MINS) =***** Summer Hill Stage 1 - 4-10-12 -existing Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 **** ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = 60. RETURN PERIOD (YRS) = 20. 1.0000 ΒX = TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60 SUMMARY OF CATCHMENT AND RAINFALL DATA Catch. Area Slope % Impervious Pern Link В Link #1 #2 #1 #2 #1 #2 #2 #1 #2 #1 Label No. (응) (응) (ha) 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 Stage 1 Average Init. Loss Cont. Loss Excess Rain Time Link Peak Link Intensity #1 #2 #1 #2 #1 #2 Inflow to (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak Laq Label Peak mins 71.405 5.000 20.00 0.000 2.500 66.378 49.511 0.3052 25.00 0.000 Stage 1 LINK Stage 1 10.000 ESTIMATED VOLUME (CU METRES*10**3) = 0.4473 ESTIMATED PEAK FLOW (CUMECS) = 0.32 ESTIMATED TIME TO PEAK (MINS) = 30.00 Summer Hill Stage 1 - 4-10-12 -existing Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 0.10 ROUTING INCREMENT (MINS) = STORM DURATION (MINS) = 90. RETURN PERIOD (YRS) 20. = 1.0000 ВX = TOTAL OF FIRST SUB-AREAS (ha) = 0.51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) 0.60 SUMMARY OF CATCHMENT AND RAINFALL DATA Catch. Area Slope % Impervious #1 #2 #1 #2 #1 #2 (ha) (%) (%) Link Pern В Link #1 #2 #1 #2 Label No. (%) (%) 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 Stage 1 Link Average Init. Loss Cont. Loss Excess Rain Peak Time Link Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak mins Label 54.865 5.000 20.00 0.000 2.500 77.276 59.168 0.3239 30.00 0.000 Stage 1

LINK Stage 1 11.000		
ESTIMATED VOLUME (CU METRES*10 ESTIMATED PEAK FLOW (C ESTIMATED TIME TO PEAK	CUMECS) =	0.4967 0.30 35.00
######################################		*****
	0 1/ 1/1990	****
	ROUTING INCREMENT (MIN STORM DURATION (MINS) RETURN PERIOD (YRS) BX TOTAL OF FIRST SUB-ARE TOTAL OF SECOND SUB-AR TOTAL OF ALL SUB-AREAS	= 120. = 20. = 1.0000 AS (ha) = 0.51 EAS (ha) = 0.09
SUMMARY OF CATCHMENT AND F Link Catch. Area Slo Label #1 #2 #1	ope % Impervious	Pern B Link
Label #1 #2 #1 (ha) (% Stage 1 0.5100 0.0900 2.000	#2 #1 #2 # \$) (%) 2.000 99.90 .1000 .0	1 #2 #1 #2 No. 18.040 .0010 .0073 1.000
Link Average Init.Loss (Label Intensity #1 #2 (mm/h) (mm)	#1 #2 #1 #2	in Peak Time Link Inflow to Lag (m^3/s) Peak mins
Stage 1 45.334 5.000 20.00 (0.000 2.500 85.643 66.	622 0.2994 35.00 0.000
LINK Stage 1 12.000		
ESTIMATED VOLUME (CU METRES*10 ESTIMATED PEAK FLOW (C ESTIMATED TIME TO PEAK	CUMECS) =	0.5722 0.17 45.00
######################################		*****
Results for period from 0: 0.0 to 5: 0.0		

	ROUTING INCREMENT (MIN STORM DURATION (MINS) RETURN PERIOD (YRS) BX TOTAL OF FIRST SUB-ARE TOTAL OF SECOND SUB-AR TOTAL OF ALL SUB-AREAS	= 180. = 20. = 1.0000 AS (ha) = 0.51 EAS (ha) = 0.09
SUMMARY OF CATCHMENT AND F Link Catch. Area Slo Label #1 #2 #1 (ha) (5	RAINFALL DATA ope % Impervious #2 #1 #2 # %) (%)	Pern B Link 1 #2 #1 #2 No.
Stage 1 0.5100 0.0900 2.000	2.000 99.90 .1000 .0	18 .040 .0010 .0073 1.000
Link Average Init. Loss (Label Intensity #1 #2 (mm/h) (mm) Stage 1 34.539 5.000 20.00 (#1 #2 #1 #2 (mm/h) (mm)	Inflow to Lag (m^3/s) Peak mins
LINK Stage 1 13.000		
ESTIMATED VOLUME (CU METRES*10)**3) =	0.5273

089-Appendix RAFTS

Page 21

5/11/2012

ESTIMATED PEAK FLOW (CUM ESTIMATED TIME TO PEAK (MECS) = MINS) =	0.39 25.00
######################################		
Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 ###################################		
ST RE BX TC TC	- (-)	= 60. = 100. = 1.0000 S (ha) = 0.51 AS (ha) = 0.09
SUMMARY OF CATCHMENT AND RAI Link Catch. Area Slope Label #1 #2 #1 # (ha) (%) Stage 1 0.5100 0.0900 2.000 2.	e % Impervious H 2 #1 #2 #1 (%)	#2 #1 #2 No.
Link Average Init. Loss Con Label Intensity #1 #2 #1 (mm/h) (mm) (Stage 1 95.495 5.000 20.00 0.0	mm/h) (mm)	(m^3/s) Peak mins
LINK Stage 1 14.000		
ESTIMATED VOLUME (CU METRES*10** ESTIMATED PEAK FLOW (CUM ESTIMATED TIME TO PEAK (0.6115 0.41 30.00
######################################		
Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 ###################################		
ST RE BX TC TC	OUTING INCREMENT (MINS) CORM DURATION (MINS) CTURN PERIOD (YRS) C DTAL OF FIRST SUB-AREAS DTAL OF SECOND SUB-AREAS DTAL OF ALL SUB-AREAS (= 90. = 100. = 1.0000 S (ha) = 0.51 AS (ha) = 0.09
SUMMARY OF CATCHMENT AND RAI Link Catch. Area Slope Label #1 #2 #1 # (ha) (%) Stage 1 0.5100 0.0900 2.000 2.	e % Impervious I 2 #1 #2 #1 (%)	#2 #1 #2 No.
Link Average Init. Loss Com Label Intensity #1 #2 #1 (mm/h) (mm) (Stage 1 73.141 5.000 20.00 0.0	. #2 #1 #2 mm/h) (mm)	Inflow to Lag (m^3/s) Peak mins
LINK Stage 1 15.000		
ESTIMATED VOLUME (CU METRES*10** ESTIMATED PEAK FLOW (CUM ESTIMATED TIME TO PEAK (IECS) =	0.6760 0.38 35.00

Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 ******* ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = 120. RETURN PERIOD (YRS) = 100. 1.0000 ΒX = EX TOTAL OF FIRST SUB-AREAS (ha) = 0 51 TOTAL OF SECOND SUB-AREAS (ha) = 0.09 TOTAL OF ALL SUB-AREAS (ha) = 0.60 SUMMARY OF CATCHMENT AND RAINFALL DATA Catch. Area Slope % Impervious Pern B #1 #2 #1 #2 #1 #2 #1 #2 #1 #2 (ha) (%) (%) Link Link Label No. stage 1 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 Average Init. Loss Cont. Loss Excess Rain Link Peak Time Link Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak mins Label Laq Stage 1 60.296 5.000 20.00 0.000 2.500 115.56 96.411 0.3763 35.00 0.000 16.000 LINK Stage 1 ESTIMATED VOLUME (CU METRES*10**3) = 0.7744 ESTIMATED PEAK FLOW (CUMECS) = 0.21 (MINS) = ESTIMATED TIME TO PEAK 45.00 Summer Hill Stage 1 - 4-10-12 -existing Results for period from 0: 0.0 1/ 1/1990 to 5: 0.0 1/ 1/1990 ROUTING INCREMENT (MINS) = 0.10 STORM DURATION (MINS) = 180. RETURN PERIOD (YRS) = 100. 1.0000 ВX = TOTAL OF FIRST SUB-AREAS (ha) = 0.51 0.09 TOTAL OF SECOND SUB-AREAS (ha) = TOTAL OF ALL SUB-AREAS (ha) = 0.60 SUMMARY OF CATCHMENT AND RAINFALL DATA
 Catch. Area
 Slope
 % Impervious
 Pern
 B

 #1
 #2
 #1
 #2
 #1
 #2
 #1
 #2

 (ha)
 (%)
 (%)
 Link Link Label No. (%) Stage 1 0.5100 0.0900 2.000 2.000 99.90 .1000 .018 .040 .0010 .0073 1.000 Average Init. Loss Cont. Loss Excess Rain Peak Time Link Link Intensity #1 #2 #1 #2 #1 #2 Inflow to Lag (mm/h) (mm) (mm/h) (mm) (m^3/s) Peak mins Label Lag 45.785 5.000 20.00 0.000 2.500 132.34 110.80 0.2126 45.00 0.000 Stage 1 Run completed at: 4th October 2012 9:59:03

Summer Hill Stage 1 - 4-10-12 -existing

APPENDIX C – MUSIC

Civil Certification 089 - civ cert -mjs -2-11-12 summer hill stage 1 PA (v2 final).doc

Site Wide Model

Source nodes

Location,Roof-5CD,Roof-4,Roof-1A,Road-1A plus BRS3,Non Roof-4,Road-4 plus BRS2,Main Road plus BRS1,Non Roof-5CD, Roof-2AB, Roof-3ABCD, Non Roof-23, Rd23, Roof-5AB, Non Roof-5AB, Perv Balance ID, 3, 4, 5, 14, 15, 17, 18, 19, 23, 25, 26, 27, 29, 30, 33 Node Type, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode, Ur banSourceNode, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode, UrbanSour ceNode, UrbanSourceNode, ForestSourceNode Total Area (ha),0.124,0.2,0.192,0.077,0.13,0.064,0.056,0.169,0.096,0.149,0.12,0.188,0.069,0.048,0.82 Area Impervious 7456140351,0.096,0.149,0.0839210526315789,0.159791754385965,0.069,0.033781052631579,0.366410526315789 Area Pervious ,0,0,0.0360789473684211,0.0282082456140349,0,0.014218947368421,0.45358947368421 Groundwater Daily Recharge Rate Groundwater Daily Baseflow Rate Stormflow Total Suspended Solids Mean (log Stormflow Total Suspended Solids Standard Deviation (log Stormflow Total Suspended Solids Estimation Method, Stochastic, Stochastic ic,Stochastic,Stochastic,Stochastic,Stochastic,Stochastic,Stochastic Stormflow Total Suspended Solids Serial Correlation,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 Stormflow Total Phosphorus Mean (log mg/L), -0.45, 0.45,-0.45,-0.45,-0.45,-0.45,-1.1 Stormflow Total Phosphorus Standard Deviation (log Stormflow Total Phosphorus Estimation Method, Stochastic, Stochastic ic,Stochastic,Stochastic,Stochastic,Stochastic,Stochastic Stormflow Total Nitrogen Mean (log $\texttt{mg/L}), \texttt{0.42, 0.42$ Stormflow Total Nitrogen Standard Deviation (log mg/L), 0.19,Stormflow Total Nitrogen Estimation Method, Stochastic, Stochastic ic,Stochastic,Stochastic,Stochastic,Stochastic,Stochastic,Stochastic Baseflow Total Suspended Solids Mean (log Baseflow Total Suspended Solids Standard Deviation (log mg/L), 0.17,Baseflow Total Suspended Solids Estimation Method, Stochastic, Stochastic ic,Stochastic,Stochastic,Stochastic,Stochastic,Stochastic,Stochastic Baseflow Total Phosphorus Mean (log mg/L),-0.82, 0.82,-0.82,-0.82,-0.82,-1.5 Baseflow Total Phosphorus Standard Deviation (log mg/L), 0.19,Baseflow Total Phosphorus Estimation Method, Stochastic, Stochastic ic,Stochastic,Stochastic,Stochastic,Stochastic,Stochastic Baseflow Total Phosphorus Serial Correlation,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 Baseflow Total Nitrogen Mean (log $\texttt{mg/L}), \texttt{0.32, 0.32$ Baseflow Total Nitrogen Standard Deviation (log

Baseflow Total Nitrogen Estimation Method, Stochastic, Stochastic ic, Stochastic, Stochastic, Stochastic, Stochastic, Stochastic Baseflow Total Nitrogen Serial Correlation,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 OUT - Mean Annual Flow (ML/yr), 1.58, 2.55, 2.44, 0.901, 1.39, 0.727, 0.636, 1.80, 1.22, 1.90, 1.28, 2.20, 0.879, 0.512, 7.33 OUT - TSS Mean Annual Load (kg/yr),341,541,496,181,291,153,130,384,254,403,255,454,182,107,626 OUT - TP Mean Annual Load (kg/yr), 0.654, 1.08, 1.02, 0.375, 0.580, 0.306, 0.266, 0.742, 0.494, 0.806, 0.530, 0.884, 0.357, 0.214, 0.645, 0.530, 0.530, 0.884, 0.357, 0.214, 0.645, 0.530,OUT - TN Mean Annual Load (kg/yr), 4.54, 7.37, 7.07, 2.60, 4.01, 2.11, 1.81, 5.14, 3.51, 5.54, 3.69, 6.31, 2.56, 1.46, 7.35, 1.46, 1OUT - Gross Pollutant Mean Annual Load (kg/yr), 37.9, 61.1, 58.7, 21.8, 33.4, 17.6, 15.4, 43.4, 29.3, 45.5, 30.8, 53.3, 21.1, 12.3, 166Rain In $(\mathtt{ML/yr}), \texttt{1.73832}, \texttt{2.80375}, \texttt{2.69161}, \texttt{1.07944}, \texttt{1.82243}, \texttt{0.8972}, \texttt{0.78505}, \texttt{2.36917}, \texttt{1.3458}, \texttt{2.08879}, \texttt{1.68225}, \texttt{2.63553}, \texttt{0.78505}, \texttt{0.78$.967292,0.672901,11.4954 ET Loss $(\mathtt{ML/yr}), \texttt{0.15934}, \texttt{0.256999}, \texttt{0.24672}, \texttt{0.177034}, \texttt{0.430728}, \texttt{0.168781}, \texttt{0.147683}, \texttt{0.559945}, \texttt{0.12336}, \texttt{0.191465}, \texttt{0.397595}, \texttt{0.12336}, \texttt{0.191465}, \texttt{0.191465}, \texttt{0.397595}, \texttt{0.191465}, \texttt{0.191$,0.43224,0.0886653,0.159038,4.10289 Deep Seepage Loss (ML/yr),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 Baseflow Out $(\mathtt{ML/yr}), 0, 0, 0, 0, 0.00703025, 0.0237383, 0.007791, 0.006817, 0.0308598, 0, 0, 0.0219123, 0.0171645, 0, 0.00876475, 0.239123, 0.0171645, 0, 0.00876475, 0.239123, 0.0171645, 0, 0.00876475, 0.239123, 0.00976475, 0.029123, 0.009123, 0.00976475, 0.029123, 0.009123, 0.0$ 74511 Imp. Stormflow Out (ML/yr), 1.57898, 2.54675, 2.44488, 0.833425, 1.15877, 0.651968, 0.570472, 1.5064, 1.22244, 1.89733, 1.06964, 2.034 85,0.878628,0.427854,4.69875 Perv. Stormflow Out $(\mathtt{ML/yr}), 0, 0, 0, 0, 0.0604813, 0.204222, 0.0670268, 0.0586485, 0.265489, 0, 0, 0.188513, 0.147669, 0, 0.0754052, 2.36165, 0.06904813, 0.0754052, 0.0670268, 0.0586485, 0.265489, 0.08513, 0.147669, 0.08513, 0.0904813, 0.0904813, 0.0904822, 0.0904848, 0.0904844, 0.0904844, 0.090484, 0.0904844, 0.09048, 0.090484, 0.090484, 0.090484, 0.$ Total Stormflow Out (ML/yr), 1.57898, 2.54675, 2.44488, 0.893906, 1.36299, 0.718995, 0.629121, 1.77189, 1.22244, 1.89733, 1.25815, 2.18 252,0.878628,0.503259,7.0604 Total Outflow $(\mathtt{ML/yr}), 1.57898, 2.54675, 2.44488, 0.900936, 1.38673, 0.726786, 0.635937, 1.80275, 1.22244, 1.89733, 1.28006, 2.19, 0.635937, 1.80275, 1.22244, 1.89733, 1.28006, 2.19, 0.635937, 1.80275, 1.22244, 0.635937, 0.63592, 0.6$ 968,0.878628,0.512024,7.33491 Change in Soil Storage (ML/yr),0,0,0,0.0014745,0.00497875,0.001634,0.00142975,0.00647225,0,0.00459575,0.0036,0,0.00183825,0. 0575735 TSS Baseflow Out $(\mathtt{ML/yr}), 0, 0, 0, 0, 0.0955115, 0.322984, 0.105818, 0.0929283, 0.418488, 0, 0, 0.297699, 0.23376, 0, 0.119237, 2.28104, 0.0929283, 0.418488, 0.0929282, 0.418488, 0.0929282, 0.418488, 0.09282, 0.09282, 0.09282, 0.418488, 0.09282, 0.418488, 0.09282, 0.418488, 0.09282, 0.418488, 0.09282, 0.418488, 0.09282, 0.418488, 0.09282, 0.418488, 0.09282, 0.418488, 0.41848488, 0.418488, 0.4184888, 0.4184888, 0.4184888, 0.4184888, 0.4$ TSS Total Stormflow Out (ML/yr), 341.266, 541.006, 496.074, 181.217, 290.556, 152.658, 130.229, 383.893, 254.369, 403.015, 254.786, 454.174, 256.266,182.367,106.411,623.426 TSS Total Outflow (ML/yr), 341.266, 541.006, 496.074, 181.313, 290.879, 152.764, 130.322, 384.311, 254.369, 403.015, 255.084, 454.408, 396.012,182.367,106.53,625.707 TP Baseflow Out (ML/yr),0,0,0,0.00116825,0.003967,0.00129825,0.001139,0.00511475,0,0,0.003641,0.00286325,0,0.00146075,0 .00906975 TP Total Stormflow Out $(\mathtt{ML/yr}), \texttt{0.654253}, \texttt{1.07799}, \texttt{1.02249}, \texttt{0.373973}, \texttt{0.576521}, \texttt{0.304854}, \texttt{0.264426}, \texttt{0.73653}, \texttt{0.49364}, \texttt{0.806306}, \texttt{0.526576}, \texttt{0.5265$ 0.881221,0.357166,0.212754,0.636342 TP Total Outflow (ML/yr), 0.654253, 1.07799, 1.02249, 0.375141, 0.580488, 0.306152, 0.265565, 0.741645, 0.49364, 0.806306, 0.530217),0.884085,0.357166,0.214215,0.645411 TN Baseflow Out 98 TN Total Stormflow Out (ML/yr), 4.53907, 7.37153, 7.06956, 2.58718, 3.95635, 2.09119, 1.79436, 5.07507, 3.51141, 5.5414, 3.64548, 6.2688, 2 .55742.1.44218.7.13836 TN Total Outflow $(\mathtt{ML/yr}), \mathtt{4.53907}, \mathtt{7.37153}, \mathtt{7.06956}, \mathtt{2.60242}, \mathtt{4.00782}, \mathtt{2.10809}, \mathtt{1.80915}, \mathtt{5.14211}, \mathtt{3.51141}, \mathtt{5.5414}, \mathtt{3.69298}, \mathtt{6.30608}, \mathtt{3.60242}, \mathtt{4.00782}, \mathtt{2.10809}, \mathtt{1.80915}, \mathtt{5.14211}, \mathtt{3.51141}, \mathtt{5.5414}, \mathtt{3.69298}, \mathtt{6.30608}, \mathtt{3.6068}, \mathtt{3.6068},$ 2.55742,1.46118,7.34646 GP Total Outflow (ML/yr), 37.8809, 61.0982, 58.6542, 21.8257, 33.4254, 17.6146, 15.4128, 43.4531, 29.3271, 45.5181, 30.8543, 53.2886 ,21.0789,12.3417,166.74

No Imported Data Source nodes

USTM treatment nodes

Location,BRS1,BRS2,BRS3,RWT4,RWT3,RWT1,RWT6,RWT5,RW2,Buffer,Perm Paving ID,6,7,8,11,12,13,22,24,28,31,32 Node Type,MediaFiltrationNode,MediaFiltrationNode,MediaFiltrationNode,RainWaterTankNode,RainWaterTankNode,Ra

inWaterTankNode,RainWaterTankNode,RainWaterTankNode,RainWaterTankNode,BufferNode,InfiltrationSystemNode V4 Lo-flow bypass rate (cum/sec),0,0,0,0,0,0,0,0,0,0, ,0 Hi-flow bypass rate (cum/sec),1,1,1,100,1,100,100,100,100, ,0.05 Inlet pond volume, , , ,0,0,0,0,0,0, , Area (sqm),100,70,135,62.5,62.5,62.5,25,125,125,1648.84736842105,450 Extended detention depth (m),0.25,0.25,0.25,0.01,0.01,0.01,0.01,0.01,0.01,,0.01, ,0.2 Permanent Pool Volume (cubic metres), , , ,125,100,125,25,250,250, , Proportion vegetated, , , ,0,0,0,0,0,0, Equivalent Pipe Diameter (mm), , , ,150,100,150,150,150,150, , Overflow weir width (m),2,2,2,10,10,10,10,10,10, ,20 Notional Detention Time (hrs), , , ,33.1E-3,74.5E-3,33.1E-3,13.2E-3,66.2E-3,66.2E-3, , Number of CSTR Cells, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1 Total Suspended Solids - C* (mg/L),12,12,12,12,12,12,12,12,12,12,12,12 Total Suspended Solids - C** (mg/L), , , ,12,12,12,12,12,12, ,12 Total Phosphorus - k (m/yr),500,500,500,300,300,300,300,300, ,300 Total Phosphorus – C^{**} (mg/L), , , 0.13,0.13,0.13,0.13,0.13,0.13, 0.09 Total Nitrogen - k (m/yr),50,50,50,40,40,40,40,40,40, 40, 40 Total Nitrogen - C** (mg/L), , , ,1.4,1.4,1.4,1.4,1.4,1.4, ,1 Total Nitrogen - C** (mg/L), , , ,1.4,1.4,1.4,1.4,1.4,1.4, ,1 Threshold Hydraulic Loading for C** (m/yr), , , ,3500,3500,3500,3500,3500,3500, ,3500 Horizontal Flow Coefficient, , ,3 Extraction for Re-use,Off,Off,Off,On,On,On,On,On,Off,Off Annual Re-use Demand - scaled by daily PET (ML), , , ,0,0,0,0,0,0, , Annual Re-use Demand - scaled by daily PET - Rain (ML), , , ,-9999,0,-9999,-9999,-9999, , Constant Daily Re-use Demand (kL), , , ,4,5,8.1,1.35,16.2,13.5, , User-defined Annual Re-use Demand (ML), , , ,0,0,0,0,0,0,, , Percentage of User-defined Annual Re-use Demand 33333333, Percentage of User-defined Annual Re-use Demand 33333333, , Percentage of User-defined Annual Re-use Demand 33333333, , Percentage of User-defined Annual Re-use Demand 33333333, , Percentage of User-defined Annual Re-use Demand Auq, 33333333, , Percentage of User-defined Annual Re-use Demand 33333333, , User-defined Re-use File, , Filter area (sqm),90,65,67.5, , , , , , , ,450 Filter Median Particle Diameter (mm), 5, 5, 5, Saturated Hydraulic Conductivity (mm/hr),100,100,100, , , , , , , Infiltration Media Porosity, 0.3, 0.3, 0.3, , , , , , , , , , 0.35 Length (m), , , , , , , , , , ,

Top width (m), , , , , , , , , , , , Vegetation height (m), , , , , , , , , , , , Vegetation Type, , , , , , , Total Nitrogen Content in Filter (mg/kg), , , , , , , , , , , Orthophosphate Content in Filter (mg/kg), , , , , , , , , , , Is Base Lined?, , , , , , , , , , , Is Underdrain Present?, , , , , , , , , , , Is Submerged Zone Present?, , , , , , , , , , , Submerged Zone Depth (m), , B for Media Soil Texture, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999 , , , , , , ,0.5, Proportion of upstream impervious area treated, Exfiltration Rate (mm/hr),10,10,10,0,0,0,0,0,0,10,25 Evap Loss as proportion of PET, , , ,0,0,0,0,0,0,, ,1 Depth in metres below the drain pipe, 0.05, 0.05, 0.05, , , , , , , , TSS A Coefficient, 0.52, 0.52, 0.52, , , , , , , , TSS B Coefficient,-0.39,-0.39,-0.39, , , , , , , , TP A Coefficient, 1.28, 1.28, 1.28, , , , , , , , TP B Coefficient, -0.19, -0.19, -0.19, , , , , , , , TN A Coefficient, 1.67, 1.67, 1.67, TN B Coefficient,-0.09,-0.09,-0.09, , , , , , , , Sfc, , , , , , , , , , , , S*, , , , , , , , , , , , Sw, , , , , , , , , , , , Sh, , Emax (m/day), , , , , , , , , , , Ew (m/day), , , , IN - Mean Annual Flow (ML/yr),0.636,0.727,0.901,1.58,2.55,2.44,1.22,1.90,0.879,7.33,2.20 $\label{eq:interm} \text{IN} \ - \ \text{TSS} \ \text{Mean Annual Load} \ (\text{kg/yr}), 130, 153, 181, 341, 541, 496, 254, 403, 182, 626, 454$ IN - TP Mean Annual Load (kg/yr),0.266,0.306,0.375,0.654,1.08,1.02,0.494,0.806,0.357,0.645,0.884 IN - TN Mean Annual Load (kg/yr),1.81,2.11,2.60,4.54,7.37,7.07,3.51,5.54,2.56,7.35,6.31 IN - Gross Pollutant Mean Annual Load (kg/yr),15.4,17.6,21.8,37.9,61.1,58.7,29.3,45.5,21.1,166,53.3 OUT - Mean Annual Flow (ML/yr),0.211,0.326,0.439,0.482,1.17,0.771,0.793,92.0E-3,0.00,4.84,47.1E-3 OUT - TSS Mean Annual Load (kg/yr),5.50,8.85,10.5,43.4,137,90.6,93.4,10.2,0.00,341,5.82 OUT - TP Mean Annual Load (kg/yr),30.7E-3,49.6E-3,63.0E-3,0.122,0.337,0.235,0.228,26.0E-3,0.00,0.423,13.1E-3 OUT - TN Mean Annual Load (kg/yr),0.383,0.614,0.809,1.17,3.13,2.10,2.09,0.263,0.00,4.84,0.136 Flow In $(\mathtt{ML/yr}), 0.635885, 0.726836, 0.90093, 1.57895, 2.54676, 2.44491, 1.22245, 1.89732, 0.878618, 7.3351, 2.19974, 0.878618, 0.90093, 0.90$ ET Loss (ML/yr),0,0,0,0,0,0,0,0,0,0,0.00469175 Infiltration Loss (ML/yr),0.431031,0.404748,0.466981,0,0,0,0,0,0,0,2.49922,2.14716 Low Flow Bypass Out (ML/yr),0,0,0,0,0,0,0,0,0,0,0 High Flow Bypass Out (ML/yr), 0, 0, 0, 0, 0, 0, 0, 0, 3.66755, 0Orifice / Filter Out (ML/yr), 0.211072, 0.321489, 0.434339, 0.425196, 0.698078, 0.616966, 0.744862, 0.0753098, 0, 1.16828, 0 Weir Out (ML/yr),0,0.00491425,0.00422325,0.0563205,0.475553,0.154191,0.048056,0.016703,0,0,0.0470848 Transfer Function Out (ML/yr),0,0,0,0,0,0,0,0,0,0,0 Reuse Supplied (ML/yr),0,0,0,1.11952,1.37893,1.69151,0.429883,1.86734,0.941199,0,0 Reuse Requested (ML/yr),0,0,0,1.46227,1.82472,2.95932,0.49321,5.91865,4.92901,0,0 % Reuse Demand Met,0,0,0,76.5601,75.5697,57.1585,87.1603,31.5501,19.0951,0,0 % Load Reduction, 66.8066, 55.0926, 51.3211, 69.504, 53.9168, 68.4587, 35.1372, 95.1504, 100, 34.0727, 97.8595 TSS Flow In (kg/yr), 130.268, 152.701, 181.244, 341.266, 541.006, 496.075, 254.369, 403.015, 182.367, 625.772, 454.225 TSS ET Loss (kg/yr),0,0,0,0,0,0,0,0,0,0,0 TSS Infiltration Loss (kg/yr),5.7507,6.13847,6.49711,0,0,0,0,0,0,0,66.7642 TSS Low Flow Bypass Out $(kg/yr)\,,0\,,0\,,0\,,0\,,0\,,0\,,0\,,0\,,0\,,0\,,0$ TSS High Flow Bypass Out (kg/yr),0,0,0,0,0,0,0,0,0,312.886,0 TSS Orifice / Filter Out TSS Weir Out (kg/yr),0,0.800355,0.386676,7.94725,63.0702,19.5764,6.06435,2.00979,0,0,5.81636 TSS Transfer Function Out (kg/yr),0,0,0,0,0,0,0,0,0,0,0,0 TSS Reuse Supplied (kg/yr),0,0,0,22.272,33.4079,46.9572,9.91213,43.4378,17.4006,0,0 TSS Reuse Requested (kg/yr),0,0,0,0,0,0,0,0,0,0,0,0 TSS % Reuse Demand Met,0,0,0,0,0,0,0,0,0,0,0 TSS % Load Reduction, 95.7747, 94.2023, 94.1973, 87.2956, 74.699, 81.7371, 63.2738, 97.4667, 100, 45.4605, 98.7195 TP Flow In (kg/yr), 0.265578, 0.306165, 0.375139, 0.654252, 1.07798, 1.02249, 0.493641, 0.806306, 0.357166, 0.645411, 0.88411 8 TP ET Loss (kg/yr),0,0,0,0,0,0,0,0,0,0,0 TP Infiltration Loss (kg/yr),0.0590658,0.0578253,0.064513,0,0,0,0,0,0,0,0.28538 TP Low Flow Bypass Out (kg/yr),0,0,0,0,0,0,0,0,0,0,0

TP High Flow Bypass Out (kg/yr),0,0,0,0,0,0,0,0,0,0.322705,0

TP Orifice / Filter Out (kg/yr),0.0306958,0.0481393,0.061538,0.106308,0.19196,0.184163,0.214315,0.0211328,0,0.100071,0 TP Weir Out (kg/yr),0,0.001446,0.00144775,0.0159455,0.144822,0.0508705,0.0136,0.0048235,0,0,0.013143 TP Reuse Supplied (kg/yr),0,0,0,0.16226,0.213243,0.274294,0.064615,0.285907,0.134821,0,0 TP Reuse Requested (kg/yr),0,0,0,0,0,0,0,0,0,0,0,0 TP % Reuse Demand Met, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 TP % Load Reduction,88.4419,83.8044,83.21,81.314,68.7582,77.0136,53.8297,96.7808,100,34.495,98.5134 TN Flow In (kg/yr), 1.80912, 2.10808, 2.60256, 4.53906, 7.37153, 7.06956, 3.51141, 5.54139, 2.55742, 7.34647, 6.30632, 3.51141, 5.54139, 2.55742, 7.34647, 5.30632, 3.51141, 5.54139, 5.54139, 5.5742, 7.34647, 5.30632, 5.5742TN ET Loss (kg/yr),0,0,0,0,0,0,0,0,0,0,0 TN Infiltration Loss (kg/yr),0.759938,0.749199,0.801392,0,0,0,0,0,0,0,4.41517 TN Low Flow Bypass Out (kg/yr),0,0,0,0,0,0,0,0,0,0,0 TN High Flow Bypass Out (kg/yr),0,0,0,0,0,0,0,0,0,3.67324,0 TN Orifice / Filter Out (kg/yr),0.382627,0.596056,0.797204,1.02596,1.83182,1.69723,1.95743,0.212863,0,1.16563,0 TN Weir Out (kg/yr),0,0.0183583,0.0114108,0.146092,1.29967,0.407498,0.128148,0.0498033,0,0,0.136066 TN Transfer Function Out (kg/yr),0,0,0,0,0,0,0,0,0,0,0,0 TN Reuse Supplied (kg/yr),0,0,0,2.14361,2.80911,3.68746,0.842083,3.96,1.86757,0,0 TN Reuse Requested (kg/yr),0,0,0,0,0,0,0,0,0,0,0,0 TN % Reuse Demand Met,0,0,0,0,0,0,0,0,0,0,0 TN % Load Reduction, 78.8501, 70.8544, 68.93, 74.1785, 57.5191, 70.2283, 40.6056, 95.2599, 100, 34.1335, 97.8424 GP Flow In (kg/yr), 15.4018, 17.602, 21.8145, 37.8808, 61.098, 58.6543, 29.3271, 45.5182, 21.0788, 166.242, 53.2614 GP ET Loss (kg/yr),0,0,0,0,0,0,0,0,0,0,0 GP Infiltration Loss (kg/yr),0,0,0,0,0,0,0,0,0,0,0 GP High Flow Bypass Out (kg/yr),0,0,0,0,0,0,0,0,0,83.1209,0 GP Orifice / Filter Out (kg/yr),0,0,0,0,0,0,0,0,0,0,0 GP Weir Out (kg/yr),0,0,0,0,0,0,0,0,0,0,0 GP Transfer Function Out (kg/yr),0,0,0,0,0,0,0,0,0,0,0,0 GP Reuse Supplied (kg/yr),0,0,0,0,0,0,0,0,0,0,0,0 GP Reuse Requested (kg/yr),0,0,0,0,0,0,0,0,0,0,0,0 GP % Reuse Demand Met,0,0,0,0,0,0,0,0,0,0,0 GP % Load Reduction,100,100,100,100,100,100,100,100,100,50,100 Generic treatment nodes

Location, GPT2, GPT1, GPT3 ID,9,10,34 Node Type, GPTNode, GPTNode, GPTNode Lo-flow bypass rate (cum/sec),0,0,0 Hi-flow bypass rate (cum/sec),100,100,100 Flow Transfer Function Input (cum/sec),0,0,0 Output (cum/sec),0,0,0 Input (cum/sec),10,10,10 Output (cum/sec),10,10,10 Input (cum/sec), , , Output (cum/sec), , , Gross Pollutant Transfer Function Input (kg/ML),0,0,0 Output (kg/ML),0,0,0 Input (kg/ML),15,15,15 Output (kg/ML),0.4,0.4,0.4 Input (kg/ML), , , Output (kg/ML), , , Input (kg/ML), , , Output (kg/ML), , , Input (kg/ML), , , Output (kg/ML), , , Input (kg/ML), , ,

Output (kg/ML), , , Input (kg/ML), , , Output (kg/ML), , , Total Nitrogen Transfer Function Input (mg/L),0,0,0 Output (mg/L),0,0,0 Input (mg/L),50,50,50 Output (mg/L),45,45,45 Input (mg/L), , , Output (mg/L), , , Input (mg/L), , , Output (mg/L), , Total Phosphorus Transfer Function Input (mg/L),0,0,0 Output (mg/L),0,0,0 Input (mg/L),5,5,5 Output (mg/L), 3.5, 3.5, 3.5 Input (mg/L), , , Output (mg/L), , , Input (mg/L), , , Output (mg/L), Total Suspended Solids Transfer Function Input (mg/L),0,0,0 Output (mg/L),0,0,0 Input (mg/L),1000,1000,1000 Output (mg/L),150,150,150 Input (mg/L), , , Output (mg/L), , , Input (mg/L), , , Output (mg/L), , IN - Mean Annual Flow (ML/yr),8.11,1.21,4.84 IN - TSS Mean Annual Load (kg/yr),1.34E3,101,341 IN - TP Mean Annual Load (kg/yr),2.87,0.298,0.423

IN - TN Mean Annual Load (kg/yr),22.1,2.91,4.84 IN - Gross Pollutant Mean Annual Load (kg/yr),120,0.00,97.3 OUT - Mean Annual Flow (ML/yr), 8.11, 1.21, 4.84 OUT - TSS Mean Annual Load (kg/yr),201,15.2,51.2 OUT - TP Mean Annual Load (kg/yr),2.01,0.209,0.296 OUT - TN Mean Annual Load (kg/yr),19.9,2.62,4.35 OUT - Gross Pollutant Mean Annual Load (kg/yr),3.20,0.00,2.60 Flow In (ML/yr), 8.10625, 1.20972, 4.83593 ET Loss (ML/yr),0,0,0 Infiltration Loss (ML/yr),0,0,0 Low Flow Bypass Out (ML/yr),0,0,0 High Flow Bypass Out (ML/yr),0,0,0 Orifice / Filter Out (ML/yr),0,0,0 Weir Out (ML/yr),0,0,0 Transfer Function Out (ML/yr),8.10625,1.20972,4.83593 Reuse Supplied (ML/yr),0,0,0 Reuse Requested (ML/yr),0,0,0 % Reuse Demand Met,0,0,0 % Load Reduction,0,0,0 TSS Flow In (kg/yr),1340.33,101.114,341.271 TSS ET Loss (kg/yr),0,0,0 TSS Infiltration Loss (kg/yr),0,0,0 TSS Low Flow Bypass Out (kg/yr),0,0,0 TSS High Flow Bypass Out (kg/yr),0,0,0 TSS Orifice / Filter Out (kg/yr),0,0,0 TSS Weir Out (kg/yr),0,0,0 TSS Transfer Function Out (kg/yr),201.02,15.1672,51.1923 TSS Reuse Supplied (kg/yr),0,0,0 TSS Reuse Requested (kg/yr),0,0,0 TSS % Reuse Demand Met,0,0,0 TSS % Load Reduction,85.0022,85,84.9995 TP Flow In (kg/yr),2.87317,0.298019,0.422775 TP ET Loss (kg/yr),0,0,0 TP Infiltration Loss (kg/yr),0,0,0 TP Low Flow Bypass Out (kg/yr),0,0,0 TP High Flow Bypass Out (kg/yr),0,0,0 TP Orifice / Filter Out (kg/yr),0,0,0 TP Weir Out (kg/yr),0,0,0 TP Transfer Function Out (kg/yr),2.01105,0.208614,0.295943 TP Reuse Supplied (kg/yr),0,0,0 TP Reuse Requested (kg/yr),0,0,0 TP % Reuse Demand Met,0,0,0 TP % Load Reduction, 30.0058, 30, 30 TN Flow In (kg/yr), 22.0883, 2.91334, 4.83888 TN ET Loss (kg/yr),0,0,0 TN Infiltration Loss (kg/yr),0,0,0 TN Low Flow Bypass Out (kg/yr),0,0,0 TN High Flow Bypass Out (kg/yr),0,0,0 TN Orifice / Filter Out (kg/yr),0,0,0 TN Weir Out (kg/yr),0,0,0 TN Transfer Function Out (kg/yr),19.8802,2.622,4.35499 TN Reuse Supplied (kg/yr),0,0,0 TN Reuse Requested (kg/yr),0,0,0 TN % Reuse Demand Met,0,0,0 TN % Load Reduction, 9.99678, 10.0002, 10.0001 GP Flow In (kg/yr),119.933,0,97.3249 GP ET Loss (kg/yr),0,0,0 GP Infiltration Loss (kg/yr),0,0,0 GP Low Flow Bypass Out (kg/yr),0,0,0 GP High Flow Bypass Out (kg/yr),0,0,0 GP Orifice / Filter Out (kg/yr),0,0,0 GP Weir Out (kg/yr),0,0,0 GP Transfer Function Out (kg/yr),3.19821,0,2.59532 GP Reuse Supplied (kg/yr),0,0,0 GP Reuse Requested (kg/yr),0,0,0 GP % Reuse Demand Met,0,0,0 GP % Load Reduction, 100, 100, 100 Other nodes

Location,Dummy Out,J1,J2,J3,J4,Jstage1 ID,1,2,16,20,21,35 Node Type,ReceivingNode,JunctionNode,JunctionNode,JunctionNode,JunctionNode IN - Mean Annual Flow (ML/yr),14.2,14.2,5.38,0.559,2.16,3.10 IN - TSS Mean Annual Load (kg/yr),267,267,870,112,359,442 IN - TP Mean Annual Load (kg/yr),2.52,2.52,1.86,0.227,0.784,0.998

IN - Gross Pollutant Mean Annual Load (kg/yr),5.79,5.79,76.8,12.3,30.8,33.4 OUT - Mean Annual Flow (ML/yr),0.00,14.2,5.38,0.559,2.16,3.10 OUT - TSS Mean Annual Load (kg/yr),0.00,267,870,112,359,442 OUT - TP Mean Annual Load (kg/yr),0.00,2.52,1.86,0.227,0.784,0.998 OUT - TN Mean Annual Load (kg/yr),0.00,26.9,14.5,1.60,6.04,8.14 OUT - Gross Pollutant Mean Annual Load (kg/yr),0.00,5.79,76.8,12.3,30.8,33.4 Links Location,Drainage Link,Drainage Link,Drainage Link,Drainage Link,Drainage Link,Drainage Link,Drainage Link, Drainage Link, Link, Drainage Link Source node $\mathsf{ID}, \mathsf{2}, \mathsf{9}, \mathsf{8}, \mathsf{10}, \mathsf{3}, \mathsf{4}, \mathsf{5}, \mathsf{14}, \mathsf{13}, \mathsf{16}, \mathsf{17}, \mathsf{18}, \mathsf{19}, \mathsf{11}, \mathsf{20}, \mathsf{21}, \mathsf{22}, \mathsf{23}, \mathsf{25}, \mathsf{24}, \mathsf{28}, \mathsf{29}, \mathsf{30}, \mathsf{26}, \mathsf{27}, \mathsf{32}, \mathsf{33}, \mathsf{31}, \mathsf{34}, \mathsf{6}, \mathsf{35}, \mathsf{15}, \mathsf{12}, \mathsf{7}$ Target node ${\tt ID}, {\tt 1}, {\tt 2}, {\tt 10}, {\tt 2}, {\tt 11}, {\tt 12}, {\tt 13}, {\tt 8}, {\tt 10}, {\tt 9}, {\tt 7}, {\tt 6}, {\tt 16}, {\tt 16}, {\tt 9}, {\tt 9}, {\tt 21}, {\tt 22}, {\tt 24}, {\tt 21}, {\tt 20}, {\tt 28}, {\tt 20}, {\tt 21}, {\tt 32}, {\tt 20}, {\tt 31}, {\tt 34}, {\tt 2}, {\tt 35}, {\tt 16}, {\tt 35}, {\tt 35}$ Muskingum-Cunge Routing, Not Routed, Not Routed Muskingum theta, IN - Mean Annual Flow $(\mathtt{ML/yr}), 14.2, 8.11, 0.439, 1.21, 1.58, 2.55, 2.44, 0.901, 0.771, 5.38, 0.727, 0.636, 1.80, 0.482, 0.559, 2.16, 0.793, 1.50, 0.793, 0.50, 0.793, 0.50, 0.793, 0.50, 0.793, 0.50, 0.793, 0.50, 0.5$ 22, 1.90, 92.0E - 3, 0.00, 0.879, 0.512, 1.28, 2.20, 47.1E - 3, 7.33, 4.84, 4.84, 0.211, 3.10, 1.39, 1.17, 0.326, 0.512

IN - TSS Mean Annual Load
(kg/yr),267,201,10.5,15.2,341,541,496,181,90.6,870,153,130,384,43.4,112,359,93.4,254,403,10.2,0.00,182,
107,255,454,5.82,626,341,51.2,5.50,442,291,137,8.85

IN - TP Mean Annual Load (kg/yr),2.52,2.01,63.0E-

IN - TN Mean Annual Load (kg/yr),26.9,26.9,14.5,1.60,6.04,8.14

3,0.209,0.654,1.08,1.02,0.375,0.235,1.86,0.306,0.266,0.742,0.122,0.227,0.784,0.228,0.494,0.806,26.0E-3,0.00,0.357,0.214,0.530,0.884,13.1E-3,0.645,0.423,0.296,30.7E-3,0.998,0.580,0.337,49.6E-3 IN - TN Mean Annual Load

(kg/yr),26.9,19.9,0.809,2.62,4.54,7.37,7.07,2.60,2.10,14.5,2.11,1.81,5.14,1.17,1.60,6.04,2.09,3.51,5.54 ,0.263,0.00,2.56,1.46,3.69,6.31,0.136,7.35,4.84,4.35,0.383,8.14,4.01,3.13,0.614 IN - Gross Pollutant Mean Annual Load

(kg/yr),5.79,3.20,0.00,0.00,37.9,61.1,58.7,21.8,0.00,76.8,17.6,15.4,43.4,0.00,12.3,30.8,0.00,29.3,45.5, 0.00,0.00,21.1,12.3,30.8,53.3,0.00,166,97.3,2.60,0.00,33.4,33.4,0.00,0.00

OUT - Mean Annual Flow

(ML/yr),14.2,8.11,0.439,1.21,1.58,2.55,2.44,0.901,0.771,5.38,0.727,0.636,1.80,0.482,0.559,2.16,0.793,1. 22,1.90,92.0E-3,0.00,0.879,0.512,1.28,2.20,47.1E-3,7.33,4.84,4.84,0.211,3.10,1.39,1.17,0.326 OUT - TSS Mean Annual Load

(kg/yr), 267, 201, 10.5, 15.2, 341, 541, 496, 181, 90.6, 870, 153, 130, 384, 43.4, 112, 359, 93.4, 254, 403, 10.2, 0.00, 182, 107, 255, 454, 5.82, 626, 341, 51.2, 5.50, 442, 291, 137, 8.85

OUT - TP Mean Annual Load (kg/yr),2.52,2.01,63.0E-

3,0.209,0.654,1.08,1.02,0.375,0.235,1.86,0.306,0.266,0.742,0.122,0.227,0.784,0.228,0.494,0.806,26.0E-3,0.00,0.357,0.214,0.530,0.884,13.1E-3,0.645,0.423,0.296,30.7E-3,0.998,0.580,0.337,49.6E-3 OUT - TN Mean Annual Load

(kg/yr),26.9,19.9,0.809,2.62,4.54,7.37,7.07,2.60,2.10,14.5,2.11,1.81,5.14,1.17,1.60,6.04,2.09,3.51,5.54,0.263,0.00,2.56,1.46,3.69,6.31,0.136,7.35,4.84,4.35,0.383,8.14,4.01,3.13,0.614 OUT - Gross Pollutant Mean Annual Load

(kg/yr), 5.79, 3.20, 0.00, 0.00, 37.9, 61.1, 58.7, 21.8, 0.00, 76.8, 17.6, 15.4, 43.4, 0.00, 12.3, 30.8, 0.00, 29.3, 45.5, 0.00, 0.00, 21.1, 12.3, 30.8, 53.3, 0.00, 166, 97.3, 2.60, 0.00, 33.4, 33.4, 0.00, 0.00

Stage 1 Model

Source nodes Location,Roof-4,Non Roof-4,Road-4 plus BRS2,Main Road plus BRS1 ID,1,6,8,9 Node Type, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode Total Area (ha),0.2,0.13,0.064,0.056 Area Impervious (ha),0.2,0.090555795847751,0.0512293522734171,0.0448576130638014 Area Pervious (ha),0,0.039444204152249,0.0127706477265829,0.0111423869361986 Field Capacity (mm), 50, 50, 50, 50 Pervious Area Infiltration Capacity coefficient - a,50,50,50,50 Pervious Area Infiltration Capacity exponent - b,2,2,2,2 Impervious Area Rainfall Threshold (mm/day),1,1,1,1 Pervious Area Soil Storage Capacity (mm), 150, 150, 150, 150 Pervious Area Soil Initial Storage (% of Capacity),25,25,25,25 Groundwater Initial Depth (mm), 50, 50, 50, 50 Groundwater Daily Recharge Rate (%),0.65,0.65,0.65,0.65 Groundwater Daily Baseflow Rate (%),0.85,0.85,0.85,0.85 Groundwater Daily Deep Seepage Rate (%),0,0,0,0 Stormflow Total Suspended Solids Mean (log mg/L),2.2,2.2,2.2,2.2 Stormflow Total Suspended Solids Standard Deviation (log mg/L),0.32,0.32,0.32,0.32 Stormflow Total Suspended Solids Estimation Method, Stochastic, Stochastic, Stochastic, Stochastic Stormflow Total Suspended Solids Serial Correlation,0,0,0,0 Stormflow Total Phosphorus Mean (log mg/L), -0.45, -0.45, -0.45, -0.45 Stormflow Total Phosphorus Standard Deviation (log mg/L),0.25,0.25,0.25,0.25 Stormflow Total Phosphorus Estimation Method, Stochastic, Stochastic, Stochastic Stormflow Total Phosphorus Serial Correlation,0,0,0,0 Stormflow Total Nitrogen Mean (log mg/L),0.42,0.42,0.42,0.42 Stormflow Total Nitrogen Standard Deviation (log mg/L),0.19,0.19,0.19,0.19 Stormflow Total Nitrogen Estimation Method, Stochastic, Stochastic, Stochastic, Stochastic Stormflow Total Nitrogen Serial Correlation,0,0,0,0 Baseflow Total Suspended Solids Mean (log mg/L),1.1,1.1,1.1,1.1 Baseflow Total Suspended Solids Standard Deviation (log mg/L), 0.17, 0.17, 0.17, 0.17 Baseflow Total Suspended Solids Estimation Method, Stochastic, Stochastic, Stochastic, Stochastic Baseflow Total Suspended Solids Serial Correlation,0,0,0,0 Baseflow Total Phosphorus Mean (log mg/L),-0.82,-0.82,-0.82,-0.82 Baseflow Total Phosphorus Standard Deviation (log mg/L),0.19,0.19,0.19,0.19 Baseflow Total Phosphorus Estimation Method, Stochastic, Stochastic, Stochastic Baseflow Total Phosphorus Serial Correlation,0,0,0,0 Baseflow Total Nitrogen Mean (log mg/L),0.32,0.32,0.32,0.32 Baseflow Total Nitrogen Standard Deviation (log mg/L),0.12,0.12,0.12,0.12 Baseflow Total Nitrogen Estimation Method, Stochastic, Stochastic, Stochastic Baseflow Total Nitrogen Serial Correlation,0,0,0,0 OUT - Mean Annual Flow (ML/yr), 2.55, 1.39, 0.727, 0.636 OUT - TSS Mean Annual Load (kg/yr),520,282,147,130 OUT - TP Mean Annual Load (kg/yr),1.04,0.569,0.307,0.262 OUT - TN Mean Annual Load (kg/yr),7.32,4.04,2.08,1.85 OUT - Gross Pollutant Mean Annual Load (kg/yr),61.1,33.4,17.6,15.4 Rain In (ML/yr), 2.80375, 1.82243, 0.8972, 0.78505 ET Loss (ML/yr),0.256999,0.430728,0.168781,0.147683 Deep Seepage Loss (ML/yr),0,0,0,0 Baseflow Out (ML/yr),0,0.0237383,0.007791,0.006817 Imp. Stormflow Out (ML/yr), 2.54675, 1.15877, 0.651968, 0.570472 Perv. Stormflow Out (ML/yr),0,0.204222,0.0670268,0.0586485 Total Stormflow Out (ML/yr), 2.54675, 1.36299, 0.718995, 0.629121 Total Outflow (ML/yr), 2.54675, 1.38673, 0.726786, 0.635937 Change in Soil Storage (ML/yr),0,0.00497875,0.001634,0.00142975 TSS Baseflow Out (ML/yr),0,0.321702,0.106137,0.0923863 TSS Total Stormflow Out (ML/yr),519.981,281.81,146.63,130.191 TSS Total Outflow (ML/yr),519.981,282.131,146.736,130.284 TP Baseflow Out (ML/yr),0,0.003969,0.001304,0.00113975 TP Total Stormflow Out (ML/yr), 1.03883, 0.564816, 0.305662, 0.260748 TP Total Outflow (ML/yr), 1.03883, 0.568785, 0.306966, 0.261887 TN Baseflow Out (ML/yr), 0, 0.051562, 0.016904, 0.0148075TN Total Stormflow Out (ML/yr),7.31957,3.99072,2.05968,1.83921 TN Total Outflow (ML/yr), 7.31957, 4.04228, 2.07659, 1.85402 GP Total Outflow (ML/yr),61.0982,33.4254,17.6146,15.4128

No Imported Data Source nodes

USTM treatment nodes

Location,BRS1,BRS2,RWT3 ID,2,3,5 Node Type,MediaFiltrationNode,MediaFiltrationNode,RainWaterTankNode


```
Lo-flow bypass rate (cum/sec),0,0,0
Hi-flow bypass rate (cum/sec),1,1,1
Inlet pond volume, , ,0
Area (sqm),100,70,50
Extended detention depth (m),0.25,0.25,0.01
Permanent Pool Volume (cubic metres), , ,100
Proportion vegetated, , ,0
Equivalent Pipe Diameter (mm), , ,100
Overflow weir width (m),2,2,10
Notional Detention Time (hrs), , ,59.6E-3
Orifice Discharge Coefficient, , ,0.6
Weir Coefficient, 1.7, 1.7, 1.7
Number of CSTR Cells, 3, 3, 2
Total Suspended Solids - k (m/yr),1000,1000,400
Total Suspended Solids - C* (mg/L),12,12,12
Total Suspended Solids - C** (mg/L), , ,12
Total Phosphorus - k (m/yr),500,500,300
Total Phosphorus - C* (mg/L),0.13,0.13
Total Phosphorus - C** (mg/L),, ,0.13
Total Nitrogen - k (m/yr),50,50,40
Total Nitrogen - C* (mg/L),1.3,1.3,1.4
Total Nitrogen - C** (mg/L), , ,1.4
Threshold Hydraulic Loading for C** (m/yr), , ,3500
Horizontal Flow Coefficient, ,
Extraction for Re-use,Off,Off,On
Annual Re-use Demand - scaled by daily PET (ML), , ,0 \,
Annual Re-use Demand - scaled by daily PET - Rain (ML), , ,0
Constant Daily Re-use Demand (kL), , ,5
User-defined Annual Re-use Demand (ML), , ,0
Percentage of User-defined Annual Re-use Demand Jan, , ,8.333333333333333
Percentage of User-defined Annual Re-use Demand Feb, , ,8.333333333333333
Percentage of User-defined Annual Re-use Demand Mar, , ,8.3333333333333333
Percentage of User-defined Annual Re-use Demand Apr, , ,8.333333333333333
Percentage of User-defined Annual Re-use Demand May, , ,8.3333333333333333
Percentage of User-defined Annual Re-use Demand Jun, , ,8.333333333333333
Percentage of User-defined Annual Re-use Demand Jul, , ,8.333333333333333
Percentage of User-defined Annual Re-use Demand Aug, , ,8.333333333333333
Percentage of User-defined Annual Re-use Demand Sep, , ,8.3333333333333333
Percentage of User-defined Annual Re-use Demand Oct, , ,8.33333333333333333
Percentage of User-defined Annual Re-use Demand Nov, , ,8.3333333333333333
Percentage of User-defined Annual Re-use Demand Dec, , ,8.333333333333333
User-defined Re-use File, , ,
Filter area (sqm),90,65,
Filter perimeter (m), ,
Filter depth (m),1,1,
Filter Median Particle Diameter (mm),5,5,
Saturated Hydraulic Conductivity (mm/hr),100,100,
Infiltration Media Porosity, 0.3, 0.3,
Length (m), , ,
Bed slope, ,
Base Width (m), , ,
Top width (m), ,
Vegetation height (m), , ,
Vegetation Type, , ,
Total Nitrogen Content in Filter (mg/kg), , ,
Orthophosphate Content in Filter (mg/kg), , ,
Is Base Lined?, , ,
Is Underdrain Present?, ,
Is Submerged Zone Present?, , ,
Submerged Zone Depth (m),
B for Media Soil Texture,-9999,-9999,-9999
Proportion of upstream impervious area treated, , ,
Exfiltration Rate (mm/hr),10,10,0
Evap Loss as proportion of PET, , ,0
Depth in metres below the drain pipe,0.05,0.05,
TSS A Coefficient, 0.52, 0.52,
TSS B Coefficient, -0.39, -0.39,
TP A Coefficient, 1.28, 1.28,
TP B Coefficient, -0.19, -0.19,
TN A Coefficient, 1.67, 1.67,
TN B Coefficient, -0.09, -0.09,
Sfc, , ,
S*, , ,
Sw, , ,
Sh, , ,
```


Emax (m/day), , , Ew (m/day), , , IN - Mean Annual Flow (ML/yr),0.636,0.727,2.55 IN - TSS Mean Annual Load (kg/yr),130,147,520 IN - TP Mean Annual Load (kg/yr),0.262,0.307,1.04 IN - TN Mean Annual Load (kg/yr),1.85,2.08,7.32 IN - Gross Pollutant Mean Annual Load (kg/yr),15.4,17.6,61.1 OUT - Mean Annual Flow (ML/yr),0.211,0.326,1.17 OUT - TSS Mean Annual Load (kg/yr), 5.46, 8.34, 134 OUT - TP Mean Annual Load (kg/yr), 31.4E-3, 50.0E-3, 0.343 OUT - TN Mean Annual Load (kg/yr),0.401,0.592,3.10 OUT - Gross Pollutant Mean Annual Load (kg/yr),0.00,0.00,0.00 Flow In (ML/yr),0.635885,0.726836,2.54676 ET Loss (ML/yr),0,0,0 Infiltration Loss (ML/yr),0.431031,0.404748,0 Low Flow Bypass Out (ML/yr),0,0,0 High Flow Bypass Out (ML/yr), 0, 0, 0Orifice / Filter Out (ML/yr),0.211072,0.321489,0.694839 Weir Out (ML/yr),0,0.00491425,0.478802 Transfer Function Out (ML/yr),0,0,0 Reuse Supplied (ML/yr),0,0,1.37892 Reuse Requested (ML/yr),0,0,1.82472 % Reuse Demand Met,0,0,75.5688 % Load Reduction, 66.8066, 55.0926, 53.9164 TSS Flow In (kg/yr),130.229,146.674,519.981 TSS ET Loss (kg/yr),0,0,0 TSS Infiltration Loss (kg/yr),5.68503,5.99436,0 TSS Low Flow Bypass Out (kg/yr),0,0,0 TSS High Flow Bypass Out (kg/yr),0,0,0 TSS Orifice / Filter Out (kg/yr),5.45522,7.74142,73.1187 TSS Weir Out (kg/yr),0,0.600267,61.2967 TSS Transfer Function Out (kg/yr),0,0,0 TSS Reuse Supplied (kg/yr),0,0,36.7603 TSS Reuse Requested (kg/yr),0,0,0 TSS % Reuse Demand Met,0,0,0 TSS % Load Reduction, 95.8111, 94.3128, 74.1499 TP Flow In (kg/yr),0.2619,0.30698,1.03883 TP ET Loss (kg/yr),0,0,0 TP Infiltration Loss (kg/yr),0.0590128,0.0578373,0 TP Low Flow Bypass Out (kg/yr), 0, 0, 0TP High Flow Bypass Out (kg/yr),0,0,0 TP Orifice / Filter Out (kg/yr),0.0313705,0.0478535,0.198319 TP Weir Out (kg/yr),0,0.0020965,0.144885 TP Transfer Function Out (kg/yr),0,0,0 TP Reuse Supplied (kg/yr),0,0,0.219181 TP Reuse Requested (kg/yr),0,0,0 TP % Reuse Demand Met,0,0,0 TP % Load Reduction,88.0219,83.7286,66.9624 TN Flow In (kg/yr), 1.85401, 2.07657, 7.31957 TN ET Loss (kg/yr),0,0,0 TN Infiltration Loss (kg/yr),0.767027,0.741487,0 TN Low Flow Bypass Out (kg/yr),0,0,0 TN High Flow Bypass Out (kg/yr),0,0,0 TN Orifice / Filter Out (kg/yr),0.401023,0.579636,1.8405 TN Weir Out (kg/yr),0,0.0119073,1.26076 TN Transfer Function Out (kg/yr), 0, 0, 0TN Reuse Supplied (kg/yr),0,0,2.93333 TN Reuse Requested (kg/yr), 0, 0, 0TN % Reuse Demand Met,0,0,0 TN % Load Reduction,78.37,71.5134,57.6305 GP Flow In (kg/yr),15.4018,17.602,61.098 GP ET Loss (kg/yr),0,0,0 GP Infiltration Loss (kg/yr),0,0,0 GP Low Flow Bypass Out (kg/yr), 0, 0, 0GP High Flow Bypass Out (kg/yr),0,0,0 GP Orifice / Filter Out (kg/yr),0,0,0 GP Weir Out (kg/yr),0,0,0 GP Transfer Function Out (kg/yr),0,0,0 GP Reuse Supplied (kg/yr),0,0,0 GP Reuse Requested (kg/yr),0,0,0 GP % Reuse Demand Met,0,0,0 GP % Load Reduction, 100, 100, 100

Generic treatment nodes Location.GPT2

ID,4 Node Type, GPTNode Lo-flow bypass rate (cum/sec),0 Hi-flow bypass rate (cum/sec),100 Flow Transfer Function Input (cum/sec),0 Output (cum/sec),0 Input (cum/sec),10 Output (cum/sec),10 Input (cum/sec), Output (cum/sec), Gross Pollutant Transfer Function Input (kg/ML),0 Output (kg/ML),0 Input (kg/ML),15 Output (kg/ML),0.4 Input (kg/ML), Output (kg/ML), Total Nitrogen Transfer Function Input (mg/L), 0Output (mg/L),0 Input (mg/L),50 Output (mg/L),45 Input (mg/L), Output (mg/L), Total Phosphorus Transfer Function Input (mg/L),0 Output (mg/L),0 Input (mg/L),5 Output (mg/L),3.5 Input (mg/L), Output (mg/L), Input (mg/L),


```
Output (mg/L),
Input (mg/L),
Output (mg/L),
Total Suspended Solids Transfer Function
Input (mg/L),0
Output (mg/L),0
Input (mg/L),1000
Output (mg/L),150
Input (mg/L),
Output (mg/L),
IN - Mean Annual Flow (ML/yr),3.10
IN - TSS Mean Annual Load (kg/yr),430
IN - TP Mean Annual Load (kg/yr),0.993
IN - TN Mean Annual Load (kg/yr),8.14
IN - Gross Pollutant Mean Annual Load (kg/yr),33.4
OUT - Mean Annual Flow (ML/yr),3.10
OUT - TSS Mean Annual Load (kg/yr),64.6
OUT - TP Mean Annual Load (kg/yr),0.695
OUT - TN Mean Annual Load (kg/yr),7.32
OUT - Gross Pollutant Mean Annual Load (kg/yr),0.890
Flow In (ML/yr), 3.09759
ET Loss (ML/yr),0
Infiltration Loss (ML/yr),0
Low Flow Bypass Out (ML/yr), 0
High Flow Bypass Out (ML/yr),0
Orifice / Filter Out (ML/yr),0
Weir Out (ML/yr),0
Transfer Function Out (ML/yr), 3.09759
Reuse Supplied (ML/yr),0
Reuse Requested (ML/yr),0
% Reuse Demand Met,0
% Load Reduction,0
TSS Flow In (kg/yr),430.15
TSS ET Loss (kg/yr),0
TSS Infiltration Loss (kg/yr),0
TSS Low Flow Bypass Out (kg/yr),0
TSS High Flow Bypass Out (kg/yr),0
TSS Orifice / Filter Out (kg/yr),0
TSS Weir Out (kg/yr),0
TSS Transfer Function Out (kg/yr),64.525
TSS Reuse Supplied (kg/yr),0
TSS Reuse Requested (kg/yr),0
TSS % Reuse Demand Met,0
TSS % Load Reduction,84.9994
TP Flow In (kg/yr),0.993351
TP ET Loss (kg/yr),0
TP Infiltration Loss (kg/yr),0
TP Low Flow Bypass Out (kg/yr),0
TP High Flow Bypass Out (kg/yr),0
TP Orifice / Filter Out (kg/yr),0
TP Weir Out (kg/yr),0
```


TP Transfer Function Out (kg/yr),0.695336 TP Reuse Supplied (kg/yr),0 TP Reuse Requested (kg/yr),0 TP % Reuse Demand Met,0 TP % Load Reduction, 30.001 TN Flow In (kg/yr),8.1362 TN ET Loss (kg/yr),0 TN Infiltration Loss (kg/yr),0 TN Low Flow Bypass Out (kg/yr),0 TN High Flow Bypass Out (kg/yr),0 TN Orifice / Filter Out (kg/yr),0 TN Weir Out (kg/yr),0 TN Transfer Function Out (kg/yr),7.32246 TN Reuse Supplied (kg/yr),0 TN Reuse Requested (kg/yr),0 TN % Reuse Demand Met,0 TN % Load Reduction,10.0015 GP Flow In (kg/yr),33.386 GP ET Loss (kg/yr),0 GP Infiltration Loss (kg/yr),0 GP Low Flow Bypass Out (kg/yr),0 GP High Flow Bypass Out (kg/yr),0 GP Orifice / Filter Out (kg/yr),0 GP Weir Out (kg/yr),0 GP Transfer Function Out (kg/yr),0.890291 GP Reuse Supplied (kg/yr),0 GP Reuse Requested (kg/yr),0 GP % Reuse Demand Met,0 GP % Load Reduction,100

Other nodes

```
Location,J2,Jstagel

ID,7,10

Node Type,JunctionNode,JunctionNode

IN - Mean Annual Flow (ML/yr),3.10,3.10

IN - TSS Mean Annual Load (kg/yr),430,430

IN - TP Mean Annual Load (kg/yr),0.993,0.993

IN - TN Mean Annual Load (kg/yr),8.14,8.14

IN - Gross Pollutant Mean Annual Load (kg/yr),33.4,33.4

OUT - Mean Annual Flow (ML/yr),3.10,3.10

OUT - TSS Mean Annual Load (kg/yr),430,430

OUT - TP Mean Annual Load (kg/yr),0.993,0.993

OUT - TN Mean Annual Load (kg/yr),8.14,8.14

OUT - Gross Pollutant Mean Annual Load (kg/yr),33.4,33.4
```

Links

Location,Drainage Link,Drainage Link,Drainage Link,Drainage Link,Drainage Link,Drainage Link,Drainage Link, Drainage Link, Drainage Link Source node ID,1,7,8,9,2,10,6,5,3 Target node ID,5,4,3,2,10,7,10,10,10 Muskingum-Cunge Routing, Not Routed, Not Routed Muskingum K, , , , , , , , , Muskingum theta, , , IN - Mean Annual Flow (ML/yr), 2.55, 3.10, 0.727, 0.636, 0.211, 3.10, 1.39, 1.17, 0.326 IN - TSS Mean Annual Load (kg/yr),520,430,147,130,5.46,430,282,134,8.34 IN - TP Mean Annual Load (kg/yr),1.04,0.993,0.307,0.262,31.4E-3,0.993,0.569,0.343,50.0E-3 IN - TN Mean Annual Load (kg/yr),7.32,8.14,2.08,1.85,0.401,8.14,4.04,3.10,0.592 IN - Gross Pollutant Mean Annual Load (kg/yr),61.1,33.4,17.6,15.4,0.00,33.4,33.4,0.00,0.00 OUT - Mean Annual Flow (ML/yr),2.55,3.10,0.727,0.636,0.211,3.10,1.39,1.17,0.326 OUT - TSS Mean Annual Load (kg/yr),520,430,147,130,5.46,430,282,134,8.34 OUT - TP Mean Annual Load (kg/yr),1.04,0.993,0.307,0.262,31.4E-3,0.993,0.569,0.343,50.0E-3 OUT - TN Mean Annual Load (kg/yr),7.32,8.14,2.08,1.85,0.401,8.14,4.04,3.10,0.592

APPENDIX D - TREATMENT TRAIN MASTERPLAN

Civil Certification 089 - civ cert -mjs -2-11-12 summer hill stage 1 PA (v2 final).doc

