15 December 2010

PRINCE OF WALES HOSPITAL MENTAL HEALTH INTENSIVE **CARE UNIT, RANDWICK** STORMWATER DESIGN STATEMENT

The stormwater concept is designed to provide stormwater drainage, and erosion and sediment control documentation in accordance with Randwick City Council policies and best practice principles.

The design includes the following:

- Provision of an on-site detention (OSD) system to ensure no negative impact on the existing stormwater drainage regime.
- Erosion and sediment control to minimise the effect of construction on the environment.
- Gross pollutant trap for on-going water quality control.

The total site area is approximately 0.22ha. The proposed roofed areas drain directly to the rainwater reuse storage to be reused for on-site non-potable use. The overflow from the rainwater storage flows into the detention tank. Currently we are indicating two options for the connection of the OSD tank's outlet to existing stormwater systems.

- Connecting all the way across to the existing council stormwater Option 1 system on Avoca Drive.
- Option 2 Short connection into the existing hospital stormwater system to the south of the site.

The preferred connection would be option 2 but our initial site investigations have confirmed that the majority of the existing stormwater system to the south of the site is blocked and its capacity is unknown. We have previously requested that the hospital maintenance department arrange for the pipes and pits to be cleaned out so that the risk of flooding to existing infrastructure is reduced and that the capacity of the existing system can be confirmed.

Overland flowpath around the site is provided including overflow path from the OSD tank to the south. The final layout of the overflow path will be determined once additional survey to the south of the site is obtained. Adequate freeboard to habitable floor levels will be provided above the calculated 1 in 100-year water level within the OSD tank. Layout of the proposed stormwater disposal system is shown in Appendix A.

Mass Curve Analysis in accordance with Australian Rainfall Runoff (AR&R) was used to size the detention storage to cater for storms up to and including the 100-year average recurrence interval (ARI) event with maximum permissible discharge (PSD) limited to the site's 5-year 1 hour pre-development peak flow of 28.7 litres/second. The calculated minimum detention storage required is 130cu.m. For OSD storage and PSD calculations, refer to Appendix B for details.

TaylorThomsonWhitting

Structural

Civil

Traffic

Facade

Engineers

TTW Group

Directors

RT Green BE(Hons) MEng Sc FIE Aust D Carolan BE(Hons) MEng Sc MIE Aust R VanKatwyk BE(Hons) DipEng MIE Aust R Mackellar BE(Hons) MIE Aust B Young BE(Hons) MIE Aust
M Eddy BE(Hons)
Technical Directors
P Yannoulatos BE(Hons) Dip LGE MIE Aust
D Genner BE(Hons) MIE Aust
S Brain BE(Hons) MIE Aust
D Jeffree BE MIE Aust
R McDougall BE MIE Aust
Associate Directors
G Hetherington BE(Hons) MIE Aust
S Schuetze BE(Hons) MIE Aust
M Rogers BSc(Hons) MIE Aust
T Sharrock BE(Hons) BEc MIE Aust
A Scroggie BE(Hons) LLB MIE Aust
G Freeman BE(Hons) Grad Dip IT MIE Aust
N Foye BE(Hons) MIE Aust
G Janes BE(Hons) MIE Aust
H Nguyen BSc(Eng) MIE Aust
D Taylor BE(Hons) MIE Aust
J Tropiano BE MIE Aust
P Lambley BE MIE Aust
Associates
G. Petschack JP
M Raddatz

101418

Water quality treatment will be provided for the proposed stormwater system to improve the existing stormwater quality. The treatment will be in the form of a gross pollutant trap (GPT) with oil and silt capacity (CDS unit or equivalent) to treat the stormwater discharge.

Based on the above, it is our opinion that;

- The downstream stormwater system would not be adversely affected by the provision of OSD.
- That the proposed works comply with Council's policies, Australian Rainfall and Runoff, & best practice principles.

Yours Faithfully TAYLOR THOMSON WHITTING (NSW) PTY LTD

Almil

CRAIG SMITH Civil Engineer Authorised by: TAYLOR THOMSON WHITTING (NSW) PTY LTD

han

STEPHEN BRAIN Technical Director - Civil

P:\2010\1014\101418\Reports\101215 MHICU Stormwater Design Statement.dj.doc

Appendix A: Proposed Stormwater System

GENERAL NOTES

- 1. Contractor must verify all dimensions and existing levels on site prior to commencement of works. Any discrepancies to be reported to the Engineer
- 2. Strip all topsoil from the construction area. All stripped topsoil shall be disposed of off-site unless directed otherwise.
- 3. Make smooth connection with all existing works. 4. Compact subgrade under buildings and pavements to minimum 98%
- standard maximum dry density in accordance with AS 1289 5.1.1. Compaction under buildings to extend 2m minimum beyond building footprint. 5. All work on public property, property which is to become public
- property, or any work which is to come under the control of the Statutory Authority is to be carried out in accordance with the requirements of the relevant Authority. The Contractor shall obtain these requirements from the Authority. Where the requirements of the Authority are different to the drawings and specifications, the requirements of the Authority shall be applicable. 6. For all temporary batters refer to geotechnical recommendations.

REFERENCE DRAWINGS

1. These drawings have been based from, and to be read in conjunction with the following Consultants drawings. Any conflict to the drawings must be notified immediately to the Engineer.

<u>Consultant</u>	<u>Dwg Title</u>	<u>Dwg No</u>	<u>Rev</u>	<u>Date</u>
CRAIG & RHODES	DETAIL SURVEY	096-10	1	23.08.10
BVN	FLOOR PLAN LOWER GRD	AR-MHICU-DA-D-B1	06	02.12.10

PIT SCHEDULE

Note: Grate size does not necessarily reflect pit size, refer pit type details, shown on detail sheets - C10

Final internal pit dimensions are to comply with AS3500					
Туре	Description	Cover (Clear Opening)	Number		
A	Kerb inlet pit 1800 lintel	450 x 900 Class D galvanised mild steel grate hinged to frame	????????		
В	Surface inlet pit	600 x 900 Class D galvanised mild steel grate hinged to frame	????????		
С	Junction pit	600 x 900 Class D cast iron cover with concrete infill	????????		
D		Existing pit to be demolished and removed	????????		
E		Existing pit to remain	????????		

SURVEY AND SERVICES INFORMATION

<u>SURVEY</u> Origin of levels : SSM. 51804 RL.65.572 Datum of levels : A.H.D. AUSTRALIAN HEIGHT DATUM Coordinate system : <u>MGA</u>

Survey prepared by : CRAIG & RHODES : SSM. 50498 Setout Points SSM. 51804 Taylor Thomson Whitting does not guarantee that the survey information shown on these drawings is accurate and will accept no liability for any

inaccuracies in the survey information provided to us from any cause whatsoever. <u>UNDERGROUND SERVICES – WARNING</u>

The locations of underground services shown on Taylor Thomson Whittings drawings have been plotted from diagrams provided by service authorities. This information has been prepared solely for the

authorities own use and may not necessarily be updated or accurate. The position of services as recorded by the authority at the time of installation may not reflect changes in the physical environment subsequent to installation.

Taylor Thomson Whitting does not guarantee that the services information shown on these drawings shows more than the presence or absence of services, and will accept no liability for inaccuracies in the services information shown from any cause whatsoever. The Contractor must confirm the exact location and extent of

services prior to construction and notify any conflict with the drawings immediately to the Engineer/Superintendent.

The contractor is to get approval from the relevant state survey department, to remove/adjust any survey mark. This includes but is not limited to; State Survey Marks (SSM), Permanent Marks (PM), cadastral reference marks or any other survey mark which is to be removed or adjusted in any way.

Taylor Thomson Whitting plans do not indicate the presence of any survey mark. The contractor is to undertake their own search.

SITEWORKS NOTES

- 1. All basecourse material to comply with RTA specification No 3051 and compacted to minimum 98% modified standard dry density in
- accordance with AS 1289 5.2.1. 2. All trench backfill material shall be compacted to the same density as the adjacent material.
- 3. All service trenches under vehicular pavements shall be backfilled with an approved select material and compacted to a minimum 98% standard maximum dry density in accordance with AS 1289 5.1.1

PRINCE OF WALES HOSPITAL MENTAL HEALTH INTENSIVE CARE UNIT

STORMWATER DRAINAGE NOTES

approved spigot and socket with rubber ring joints U.N.O.

- 3. Pipes up to 300 dia shall be sewer grade uPVC with solvent welded joints.
- 4. Equivalent strength VCP or FRP pipes may be used subject
- to approval. 5. Precast pits may be used external to the building subject
- to approval by Engineer
- 6. Enlargers, connections and junctions to be manufactured
- fittings where pipes are less than 300 dia. 7. Where subsoil drains pass under floor slabs and vehicular
- pavements, unslotted uPVC sewer grade pipe is to be used.
- 8. Grates and covers shall conform with AS 3996-2006, and AS 1428.1 for access requirements.
- 9. Pipes are to be installed in accordance with AS 3725. All bedding to be type H2 U.N.O.
- 10. Care is to be taken with levels of stormwater lines. Grades
- shown are not to be reduced without approval.
- 11. All stormwater pipes to be 150 dia at 1.0% min fall U.N.O 12. Subsoil drains to be slotted flexible uPVC U.N.O.
- 13. Adopt invert levels for pipe installation (grades shown are only nominal).

SITEWORKS LEGEND

- Finished surface level
- Finished contour

Kerb and gutter

Kerb only Stormwater pit, flow direction and line with Invert level upstream Pipe size and class Pipe grade Flow (Litres per second) Invert level downstream Grated drain Intermediate riser with subsoil drainage line (100 dia) drainage line (100 dia) -O DP Down pipe Rodding point Concrete encased stormwater line Stormwater line with pipe taper and flow direction Taper kerb to zero height over 500 mm Wheelstop Blockwork retaining wall Brickwork retaining wall ----- Dowelled expansion joint ———— Sawn ioint Keyed construction joint ----- Weakened plane joint Expansion joint —— Tied keyed joint — 🗲 Grass catch drain < - <--- Overland flow path ------ Guard Rail

SURVEY LEGEND

19	
SW -	
т _	
I	
G -	
W -	
S _	
3 -	
EASEMENT FOR	(m WIDE)
/ _	
	5

+18.48

O SGN 🗆 Н MH G SV W TEL TRAP ◯ s E o elp ΟIL 🗆 TLL 🗆 TLB TB o pkm **PM** 1234 **A**BM 51.10 - BH 0 - TP No O FC o Fl o lh O BUB LB 🗆 FP 🗆 FP BOX O BOL SEAT BIN

0 K0

	Batter
	Retaining wall
SW	Stormwater drainage line
T	Telecommunications line
G	Gas line
W	Water main
S	Sewer line
ENT FOR(m WIDE)	Easement
/	Fence
(\mathbf{x})	Tree to be removed/be retained
	Boundary
O SGN	Sign
□ H	Hydrant
MH	Manhole
G	Gas
SV SV	Stop Valve
□ W	Water
TEL	Telecomunications
TRAP	Trap
	Cullu

Surface level

Contour

Kerb line

orgin
Hydrant
Manhole
Gas
Stop Valve
Water
Telecomunications
Trap
Gully
Grate
Sewer Manhole
Electricity
Electric Light Pole
Traffic Light
Traffic Light Lid
Traffic Light Box
Telephone Box
Parking Meter Permanent Mark
Bench Mark
Borehole
Test Pit
Fuel Cock
Flood Light
Lamp Hole
Bubbler
Letter Box
Flag Pole
Flag Pole Box
Bollard
Seat

Kerb Outlet

EROSION AND SEDIMENT CONTROL NOTES

- 1. All work shall be generally carried out in accordance with (A) Local authority requirements,
- (B) EPA Pollution control manual for urban stormwater, (C) LANDCOM NSW - Managing Urban Stormwater: Soils and Construction ("Blue Book").
- 2. Erosion and sediment control <u>drawings and notes are</u> provided for the whole of the works. Should the Contractor stage these works then the design may be required to be modified. Variation to these details may require approval by the relevant authorities. The erosion and sediment control **<u>plan</u>** shall be implemented and adopted to meet the varying situations as work on site progresses.
- 3. Maintain all erosion and sediment control devices to the satisfaction of the superintendent and the local authority. 4. When stormwater pits are constructed prevent site runoff entering
- the pits unless silt fences are erected around pits.
- 5. Minimise the area of site being disturbed at any one time. 6. Protect all stockpiles of materials from scour and erosion. Do not stockpile loose material in roadways, near drainage pits or in
- watercourses. 7. All soil and water control measures are to be put back in place at the end of each working day, and modified to best suit site
- conditions. 8. Control water from upstream of the site such that it does not enter the disturbed site.
- 9. All construction vehicles shall enter and exit the site via the
- temporary construction entry/exit. 10. All vehicles leaving the site shall be cleaned and inspected before
- 11. Maintain all stormwater pipes and pits clear of debris and sediment. Inspect stormwater system and clean out after each storm event.
- 12. Clean out all erosion and sediment control devices after each storm event.

Sequence Of Works

- 1. Prior to commencement of excavation the following soil
- management devices must be installed. 1.1. Construct silt fences below the site and across all potential runoff sites.
- 1.2. Construct temporary construction entry/exit and divert runoff to suitable control systems.
- 1.3. Construct measures to divert upstream flows into existing
- stormwater system. 1.4. Construct sedimentation traps/basin including outlet control and overflow.
- 1.5. Construct turf lined swales.
- 1.6. Provide sandbag sediment traps upstream of existing pits. 2. Construct geotextile filter pit surround around all proposed pits as they are constructed.
- 3. On completion of pavement provide sand bag kerb inlet sediment traps around pits.
- 4. Provide and maintain a strip of turf on both sides of all roads after the construction of kerbs.

PAVEMENT LEGEND

<u>NOTES</u> 1. Asphaltic concrete shall conform to AS2150 and the specification
2. Pavement based on geotechnical report by ???????????????????????????????????
Thickness asphaltic concrete (AC10) on Compacted thickness fine crushed rock (DGB20) on Compacted thickness fine crushed rock (DGS40)
Thickness asphaltic concrete (AC10) on Compacted thickness fine crushed rock (DGB20) on Compacted thickness fine crushed rock (DGS40)
Thickness concrete (f'c=32MPa) with SL92 fabric (40 top cover) on Compacted thickness fine crushed rock (DGB 20)
Thickness concrete (f'c=25MPa) with expansion joints at max 6.0m centres and weakened plane joints at max 1.5m centres on Sand bedding
Pavers to Architects specification on Thick mortar bedding on

	Thick mortar bedding on
mm	Thickness concrete (f'c=32MPa) with
	SL72 fabric (40 top cover) on
mm	Compacted thickness fine crushed
	rock (DGB20)

CONCRETE NOTES EXPOSURE CLASSIFICATION : External : B1

<u>CONCRETE</u> Place concrete of the following characteristic compressive strength f'c

as defined in AS 1379.

Location	AS 1. at 28
Paths Pits Footings Driveways	\$25 \$25 \$32 \$32 \$32

I. Use Type 'GP' cement, unless otherwise specified. 2. All concrete shall be subject to project assessment and testing to AS 1379.

- 3. Consolidate by mechanical vibration. Cure all concrete surfaces as directed in the Specification.
- 4. For all falls in slab, drip grooves, reglets, chamfers etc. refer to Architects drawings and specifications.
- 5. Unless shown on the drawings, the location of all construction joints shall be submitted to Engineer for review.
- 6. No holes or chases shall be made in the slab without the approval of the Engineer.
- 7. Conduits and pipes are to be fixed to the underside of the top reinforcement laver.
- 8. Slurry used to lubricate concrete pump lines is not to be used in any structural members. 9. All slabs cast on ground require sand blinding with a Concrete
- Underlay 10. (170) Indicates Slab or Band thickness variation.

FORMWORK

1. The design, certification, construction and performance of the formwork, falsework and backpropping shall be the responsibility of the contractor. Proposed method of installation and removal of formwork is to be submitted to the superintendent for comment prior to work being carried out.

REINFORCEMENT NOTES

1. Fix reinforcement as shown on drawings. The type and grade is indicated by a symbol as shown below. On the drawings this is followed by a numeral which indicates the size in millimetres of the reinforcement.

N.	Hot rolled ribbed bar	grade
R.	Plain round bar	grade
SL.	Square mesh	grade
RL.	Rectangular mesh	grade

2. Provide bar supports or spacers to give the following concrete cover to all reinforcement unless otherwise noted on drawings.

Footings	_	40	top, 40 bottom,
Slabs	-	40	top, 40 bottom,
	-	40	when exposed to w
Walls	-	40	generally.
	-	40	when cast in forms

weather or ground. - 40 when cast directly in contact with around. Cover to reinforcement ends to be 50 mm u.n.o. 4. Provide N12-450 support bars to top reinforcement as

- required , Lap 450. U.N.O. Maintain cover to all pipes, conduits, reglets, drip grooves etc 6. Laps in reinforcement shall be made only where shown on the drawings unless otherwise approved. Lap lengths shall be 40 bar dia. unless noted otherwise.
- '. All cogs to be standard cogs unless noted otherwise. 8. Fabric end and side laps are to be placed strictly in accordance with the manufacturers requirements to achieve a full tensile lap. Fabric shall be laid so that there is a maximum of 3 layers at any location.

FABRIC LAPS

_____ ____25

e D500N e R250N 500L e 500L

40 sides.

40 weather or ground.

ns but later exposed to

This drawing is copyright and is the property of TAYLOR THOMSON WHITTING (NSW) Pty Ltd

TaylorThomsonWhitting Consulting Engineers

48 Chandos Street St.Leonards NSW 2065 T: +61 2 9439 7288 F: +61 2 9439 3146 ttwsyd@ttw.com.au Taylor Thomson Whitting (NSW) Pty Ltd A.C.N. 113 578 377

Rev Description Eng Draft Date P1 PRELIMINARY CS EN 10.12.10

CLIENT

HEALTH INFRASTRUCTURE **NSW@HEALTH**

Health Infrastructure PROJECT

PRINCE OF WALES HOSPITAL MENTAL HEALTH INTENSIVE CARE UNIT

TTW PROJECT NUMBER 101418

BUILDING POW MHICU

DESIGN STAGE SCHEMATIC DESIGN

STATUS

PRELIMINARY

Scale at A1

DRAWING TITLE

NOTES AND LEGENDS SHEET

Drawn

ΕN

Authorised

DRAWING NUMBER ISSUE CI-MHICU-001 P1 Plot File Created: Dec 15, 2010 - 10:08am

This drawing is copyright and is the property of TAYLOR THOMSON WHITTING (NSW) Pty Ltd and must not be used without authorisation.

TaylorThomsonWhitting

Consulting Engineers 48 Chandos Street St.Leonards NSW 2065 T: +61 2 9439 7288 F: +61 2 9439 3146 ttwsyd@ttw.com.au Taylor Thomson Whitting (NSW) Pty Ltd A.C.N. 113 578 377

Rev	Description	Eng	Draft	Date
P1	PRELIMINARY	CS	EN	10.12.10

- Council stormwater Pipe

FOR NOTES AND LEGENDS REFER TO DRAWING No C01.

- COUNCIL STORMWATER PIPE

CLIENT

HEALTH INFRASTRUCTURE

Health Infrastructure

PROJECT PRINCE OF WALES HOSPITAL MENTAL HEALTH INTENSIVE CARE UNIT

TTW PROJECT NUMBER 101418

BUILDING

POW MHICU

DESIGN STAGE

SCHEMATIC DESIGN

STATUS

PRELIMINARY

Scale at A1 1:200 ΕN

DRAWING TITLE

STORMWATER CONCEPT PLAN

Authorised

DRAWING NUMBER ISSUE CI-MHICU-002 P1 Plot File Created: Dec 15, 2010 - 10:08am

EROSION AND SEDIMENT CONTROL NOTES

- 1. All work shall be generally carried out in accordance with (A) Local authority requirements,
- (B) EPA Pollution control manual for urban stormwater, (C) LANDCOM NSW - Managing Urban Stormwater: Soils and Construction ("Blue Book").
- 2. Erosion and sediment control drawings and notes are provided for the whole of the works. Should the Contractor stage these works then the design may be required to be modified. Variation to these details may require approval by the relevant authorities. The erosion and sediment control **<u>plan</u>** shall be implemented and
- adopted to meet the varying situations as work on site progresses. 3. Maintain all erosion and sediment control devices to the satisfaction of the superintendent and the local authority.
- 4. When stormwater pits are constructed prevent site runoff entering the pits unless silt fences are erected around pits. . Minimise the area of site being disturbed at any one time.
- 6. Protect all stockpiles of materials from scour and erosion. Do not stockpile loose material in roadways, near drainage pits or in watercourses.
- 7. All soil and water control measures are to be put back in place at the end of each working day, and modified to best suit site conditions.
- 8. Control water from upstream of the site such that it does not enter the disturbed site.
- 9. All construction vehicles shall enter and exit the site via the temporary construction entry/exit. 10. All vehicles leaving the site shall be cleaned and inspected before
- 11. Maintain all stormwater pipes and pits clear of debris and
- sediment. Inspect stormwater system and clean out after each storm event. 12. Clean out all erosion and sediment control devices after each
- storm event.

<u>Sequence Of Works</u>

- 1. Prior to commencement of excavation the following soil management devices must be installed.
- 1.1. Construct silt fences below the site and across all potential runoff sites.
- 1.2. Construct temporary construction entry/exit and divert runoff to suitable control systems. 1.3. Construct measures to divert upstream flows into existing
- stormwater system. 1.4. Construct sedimentation traps/basin including outlet control and overflow.
- 1.5. Construct turf lined swales.
- 1.6. Provide sandbag sediment traps upstream of existing pits. 2. Construct geotextile filter pit surround around all proposed pits
- as they are constructed. 3. On completion of pavement provide sand bag kerb inlet sediment traps around pits.
- 4. Provide and maintain a strip of turf on both sides of all roads after the construction of kerbs.

Batter

EROSION AND SEDIMENT CONTROL LEGEND

Stormwater pit with Geotextile filter surround Hay bale barriers Sandbag sediment trap

Siltation fence

Catch drain Overland flow path

FOR NOTES AND LEGENDS REFER TO DRAWING No C01.

This drawing is copyright and is the property of TAYLOR THOMSON WHITTING (NSW) Pty Ltd and must not be used without authorisation.

TaylorThomsonWhitting

Consulting Engineers 48 Chandos Street St.Leonards NSW 2065 T: +61 2 9439 7288 F: +61 2 9439 3146 ttwsyd@ttw.com.au Taylor Thomson Whitting (NSW) Pty Ltd A.C.N. 113 578 377

Rev	Description	Eng	Draft	Date
P1	PRELIMINARY	CS	EN	10.12.10

CLIENT

HEALTH INFRASTRUCTURE **NSW@HEALTH**

Health Infrastructure PROJECT

PRINCE OF WALES HOSPITAL MENTAL HEALTH INTENSIVE CARE UNIT

TTW PROJECT NUMBER

101418

BUILDING POW MHICU

DESIGN STAGE SCHEMATIC DESIGN

STATUS

PRELIMINARY

DRAWING TITLE

Scale at A1	Drawn	Authorised
1:200 uno.	EN	

Appendix B: Calculations

Structural Civil Traffic Facade Sydney Melbourne Canberra Jakarta Singapore **TaylorThomsonWhitting** POW MHICU Job No /01418 Page No Project Subject On -Site Detention - PSD CHIS Date 2/12/10 By Site Area = 2200 m^2 Impervious'/=100% = fe Is = 55 mm/hr (from App A of RCC Private SW code) "C10 = 0.6054 (for pervious area runof coefficient for RCC) => C10 = 0.9 × fe + 'C10 × (1-fe) [AR & VIII-177 $= 0.9 \times 1 + 0.6054 \times (1-1)$ = 0.9 => Cy = Fy. Cio $C_5 = F_5 \cdot C_{10}$ = 0.95 × 0.9 = 0.855 $i \cdot PSD = \frac{C_5 I_5 A}{3600} = \frac{0.855 \times 55 \times 2200}{3600}$ = 28.7 l/s. ENG 102/4

Mass Curve Detention Analysis

Prince of Wales Hospital - Mental Health and ICU 101418

Catchment Area =	2200	sq.m
Time of concentration =	5	min
Runoff Coefficient =	1	
ARI =	100	Years
Discharge rate =	0.0287	cu.m/s

	l mm	Vol cu.m	Cumulative	Allowable	Storage	l mm	Vol cu.m	Cumulative	Allowable	Storage	l mm	Vol cu.m	Cumulative	Allowable	Storage
	15	Minute	Volume	Volume	Required	20	Minute	Volume	Volume	Required	25	Minute	Volume Volume		Required
Time	189.5		cu.m	cu.m	cu.m	165		cu.m	cu.m	cu.m	151.5		cu.m	cu.m	cu.m
0	181.92	33.352	33.352	8.61	24.742	125.4	22.99	22.99	8.61	14.38	128.775	23.60875	23.60875	8.61	14.99875
5	284.25	52.1125	85.4645	17.22	68.2445	283.8	52.03	75.02	17.22	57.8	212.1	38.885	62.49375	17.22	45.27375
10	102.33	18.7605	104.225	25.83	78.395	198	36.3	111.32	25.83	85.49	295.425	54.16125	116.655	25.83	90.825
15			104.225	34.44	69.785	52.8	9.68	121	34.44	86.56	68.175	12.49875	129.15375	34.44	94.71375
20			104.225	43.05	61.175			121	43.05	77.95	53.025	9.72125	138.875	43.05	95.825
25			104.225	51.66	52.565			121	51.66	69.34			138.875	51.66	87.215
30			104.225	60.27	43.955			121	60.27	60.73			138.875	60.27	78.605
35			104.225	68.88	35.345			121	68.88	52.12			138.875	68.88	69.995
40								121	77.49	43.51			138.875	77.49	61.385
45								121	86.1	34.9			138.875	86.1	52.775
50													138.875	94.71	44.165
55															
60															
65															
70															
75															
80															
85															
90															
95															
100															
105															
110															
115															

l mm	Vol cu.m	Cumulative	Allowable	Storage	l mm	Vol cu.m	Cumulative	Allowable	Storage	l mm	Vol cu.m	Cumulative	Allowable	Storage	l mm	Vol cu.m	Cumulative	Allowable	Storage	l mm	Vol cu.m	Cumulative	Allowable	Storage
3) Minute	Volume	Volume	Required	45	5 Minute	Volume	Volume	Required	60) Minute	Volume	Volume	Required	90	0 Minute	Volume	Volume	Required	120) Minute	Volume	Volume	Required
138		cu.m	cu.m	cu.m	117.1		cu.m	cu.m	cu.m	96.2		cu.m	cu.m	cu.m	79.3		cu.m	cu.m	cu.m	62.4		cu.m	cu.m	cu.m
132.48	24.288	24.288	8.61	15.678	50.5872	9.27432	9.27432	8.61	0.66432	45.0216	8.25396	8.25396	8.25396	0	45.6768	8.37408	8.37408	8.37408	0	32.9472	6.04032	6.04032	6.04032	0
207	37.95	62.238	17.22	45.018	149.6538	27.4365	36.71085	17.22	19.49085	80.808	14.8148	23.06876	16.86396	6.2048	84.2166	15.4397	23.81379	16.98408	6.82971	79.3728	14.55168	20.592	14.65032	5.94168
273.24	50.094	112.332	25.83	86.502	260.3133	47.7241	84.434955	25.83	58.604955	193.9392	35.5555	58.62428	25.47396	33.15032	208.4004	38.2067	62.02053	25.59408	36.42645	46.4256	8.51136	29.10336	23.26032	5.84304
74.52	13.662	125.994	34.44	91.554	192.8637	35.3583	119.7933	34.44	85.3533	138.528	25.3968	84.02108	34.08396	49.93712	117.0468	21.4586	83.47911	34.20408	49.27503	73.3824	13.45344	42.5568	31.87032	10.68648
91.08	16.698	142.692	43.05	99.642	100.1205	18.3554	138.14873	43.05	95.098725	267.8208	49.1005	133.12156	42.69396	90.4276	148.4496	27.2158	110.69487	42.81408	67.88079	143.7696	26.35776	68.91456	40.48032	28.43424
49.68	9.108	151.8	51.66	100.14	122.2524	22.4129	160.56167	51.66	108.901665	116.5944	21.3756	154.4972	51.30396	103.19324	299.754	54.9549	165.64977	51.42408	114.22569	77.8752	14.27712	83.19168	49.09032	34.10136
		151.8	60.27	91.53	79.0425	14.4911	175.05279	60.27	114.78279	102.7416	18.836	173.33316	59.91396	113.4192	77.0796	14.1313	179.78103	60.03408	119.74695	269.568	49.4208	132.61248	57.70032	74.91216
		151.8	68.88	82.92	64.2879	11.7861	186.83891	68.88	117.958905	65.8008	12.0635	185.39664	68.52396	116.87268	75.6522	13.8696	193.6506	68.64408	125.00652	185.7024	34.04544	166.65792	66.31032	100.3476
		151.8	77.49	74.31	34.7787	6.3761	193.215	77.49	115.725	55.4112	10.1587	195.55536	77.13396	118.4214	62.8056	11.5144	205.16496	77.25408	127.91088	83.8656	15.37536	182.03328	74.92032	107.11296
		151.8	86.1	65.7			193.215	86.1	107.115	35.7864	6.56084	202.1162	85.74396	116.37224	44.2494	8.11239	213.27735	85.86408	127.41327	46.4256	8.51136	190.54464	83.53032	107.01432
		151.8	94.71	57.09			193.215	94.71	98.505	30.0144	5.50264	207.61884	94.35396	113.26488	61.3782	11.2527	224.53002	94.47408	130.05594	49.4208	9.06048	199.60512	92.14032	107.4648
		151.8	103.32	48.48			193.215	103.32	89.895	21.9336	4.02116	211.64	102.96396	108.67604	48.5316	8.89746	233.42748	103.08408	130.3434	62.8992	11.53152	211.13664	100.75032	110.38632
							193.215	111.93	81.285			211.64	111.57396	100.06604	29.9754	5.49549	238.92297	111.69408	127.22889	64.3968	11.80608	222.94272	109.36032	113.5824
							193.215	120.54	72.675			211.64	120.18396	91.45604	34.2576	6.28056	245.20353	120.30408	124.89945	31.4496	5.76576	228.70848	117.97032	110.73816
							193.215	129.15	64.065			211.64	128.79396	82.84604	31.4028	5.75718	250.96071	128.91408	122.04663	32.9472	6.04032	234.7488	126.58032	108.16848
												211.64	137.40396	74.23604	18.5562	3.40197	254.36268	137.52408	116.8386	50.9184	9.33504	244.08384	135.19032	108.89352
															21.411	3.92535	258.28803	146.13408	112.15395	28.4544	5.21664	249.30048	143.80032	105.50016
															18.5562	3.40197	261.69	154.74408	106.94592	17.9712	3.29472	252.5952	152.41032	100.18488
																	261.69	163.35408		14.976	2.7456		161.02032	
																	261.69	171.96408		34.4448	6.31488	261.65568	169.63032	0
																				13.4784	2.47104	264.12672		Ō
																				19.4688	3.56928	267.696	186.85032	0

Storage Required = 130.34 cu.m