# Appendix G

Results of Field Work

**CLIENT:** Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 68 AHD

EASTING: NORTHING:

DIP/AZIMUTH: 90°/-- SHEET

BORE No: 101 PROJECT No: 72138 DATE: 20/12/2010 SHEET 1 OF 2

| ſ                                        |                                         |              | Description                                                                                                                                                               | Degree of Weathering | <u>.</u> 2       | Rock<br>Strength                                  |       | Fracture    | Discontinuities                                                                                                        |      | Samp | ling &   | In Situ Testing |
|------------------------------------------|-----------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|---------------------------------------------------|-------|-------------|------------------------------------------------------------------------------------------------------------------------|------|------|----------|-----------------|
| ā                                        |                                         | Depth<br>(m) | of<br>Strata                                                                                                                                                              |                      | Graph            | Ex Low<br>Very Low<br>Low<br>Medium<br>High       | Water | Spacing (m) | B - Bedding J - Joint<br>S - Shear F - Fault                                                                           | Tvne | ore  | RQD<br>% | Test Results &  |
| -                                        | 8                                       |              | CONCRETE - 180mm                                                                                                                                                          | E S S & E E          | Ø · ∠            |                                                   | 面     | 0.05        | G-Great F-Fault                                                                                                        | +    | - 0, | 2 4      | Comments        |
|                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |              | FILLING - poorly compacted, grey gravel filling  CONCRETE - 350mm  FILLING - poorly compacted, yellow brown, sandstone cobbles and boulders filling                       |                      |                  |                                                   |       |             |                                                                                                                        | A/E  |      |          |                 |
|                                          | -2                                      |              | CONCRETE - 300mm  FILLING - poorly compacted, grey gravel filling                                                                                                         |                      | $\bigotimes_{A}$ |                                                   |       |             | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes dipping<br>between 0°- 10° |      |      |          |                 |
| . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 3                                       |              | SANDSTONE - high strength,<br>moderately then highly weathered,<br>fractured to slightly fractured, light<br>grey and red-purple, medium to<br>coarse grained sandstone   |                      |                  |                                                   |       |             |                                                                                                                        | С    | 96   | 84       | PL(A) = 1.6     |
| - 49                                     | -4                                      |              |                                                                                                                                                                           |                      |                  |                                                   |       |             | 4m; J85°, pl, ro, fe                                                                                                   | С    | 100  | 100      |                 |
| ŧ                                        |                                         | 4.2<br>4.36  | LAMINITE - high then medium                                                                                                                                               |                      |                  | <del>                                      </del> | ] [   |             | 4.18m: CORE LOSS:<br>20mm                                                                                              | С    | 100  | 77       | PL(A) = 0.6     |
| ŀ                                        |                                         |              | strength, moderately weathered, slightly fractured, dark grey laminite                                                                                                    |                      |                  |                                                   |       |             | 4.2m: J80°, pl, ro, fe<br>4.34m: CORE LOSS:                                                                            | С    | 100  | 92       |                 |
| 63                                       | -5                                      | 4.82         | SANDSTONE - high strength, fresh<br>and fresh stained then slightly<br>weathered, slightly fractured and<br>unbroken, medium to coarse<br>grained sandstone with distinct |                      |                  |                                                   |       |             | 20mm<br>4.75m: Cz, 20mm<br>5.23m: Cs, 10mm                                                                             | С    | 100  | 94       | PL(A) = 1.2     |
| 62                                       | -6                                      |              | laminations                                                                                                                                                               |                      |                  |                                                   |       |             |                                                                                                                        | С    | 100  | 100      |                 |
| 61                                       | -7                                      |              |                                                                                                                                                                           |                      |                  |                                                   |       |             |                                                                                                                        | С    | 100  | 100      | PL(A) = 1.1     |
| 09                                       | -8                                      |              |                                                                                                                                                                           |                      |                  |                                                   |       |             |                                                                                                                        |      |      |          | PL(A) = 2       |
| 59                                       | 9                                       |              |                                                                                                                                                                           |                      |                  |                                                   |       |             |                                                                                                                        | С    | 100  | 97       | PL(A) = 1.6     |
| <b>F F</b>                               |                                         |              |                                                                                                                                                                           |                      |                  |                                                   |       |             |                                                                                                                        | -    |      |          | PL(A) = 1       |
| E F                                      |                                         |              |                                                                                                                                                                           | 5                    |                  |                                                   |       |             |                                                                                                                        | С    | 100  | 100      |                 |
|                                          |                                         |              |                                                                                                                                                                           |                      | <u>:::1</u>      |                                                   |       |             |                                                                                                                        |      |      |          |                 |

RIG: Multi-drill DRILLER: Traccess LOGGED: PGH CASING: NW to 2.0m

TYPE OF BORING: Diatube 0.00-0.18m & 0.3-0.60m; Solid flight auger (TC-bit) 0.18-0.30 & 0.60-2.0m; NMLC-Coring 2.0-2.3m & 2.8-12.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Difficulty recovering samples in filling due to collapsing ground conditions

|     | SAME                 | LIN              | 3 & IN SITU TESTING     |      |                                          |
|-----|----------------------|------------------|-------------------------|------|------------------------------------------|
| Α   | Auger sample         | G                | Gas sample              | PID  | Photo ionisation detector (ppm)          |
| В   | Bulk sample          | Р                | Piston sample           |      | ) Point load axial test Is(50) (MPa)     |
| BLK | Block sample         | U,               | Tube sample (x mm dia.) | PL(D | ) Point load diametral test (s(50) (MPa) |
| l C | Core drilling        | W                | Water sample`           | pp ` | Pocket penetrometer (kPa)                |
| D   | Disturbed sample     | $\triangleright$ | Water seep              | S    | Standard penetration test                |
| E   | Environmental sample | ¥                | Water level             | V    | Shear vane (kPa)                         |



**CLIENT:** Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

**SURFACE LEVEL: 68 AHD** 

**EASTING: NORTHING:** 

**DATE:** 20/12/2010 DIP/AZIMUTH: 90°/--SHEET 2 OF 2

BORE No: 101

PROJECT No: 72138

|    |      | ,       |                                                                                                                                                                                       | T - |            |            |                | <del></del> | .,  |      |           |          |         | ,              |      |               |            |               |       |      |            |          | /I &            |
|----|------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|------------|----------------|-------------|-----|------|-----------|----------|---------|----------------|------|---------------|------------|---------------|-------|------|------------|----------|-----------------|
|    |      | Depth   | Description                                                                                                                                                                           | W   | Jeg<br>∕ea | ree<br>the | ot<br>ring     | Graphic     |     | St:  | coc<br>en | ж<br>gth | ,       | 70             | Fr   | actu<br>pacii | ire        | Discontinu    | ities |      |            |          | In Situ Testing |
|    | 립    | (m)     | of                                                                                                                                                                                    |     |            |            |                | ab          | ا ق | 31   | 151       | 15       | Ex High | Vate           | S    | (m)           | ng         | B - Bedding J | Joint | Туре | <u>е</u> % | RQD<br>% | Test Results    |
|    | 8    |         | Strata                                                                                                                                                                                | ΕW  | Ž Š        | ΝS         | ε <del>π</del> | 9           | E   | § (§ | Sed       | 를        |         |                | 0.05 | 0.10          | 6.5<br>8.8 | S - Shear F - | Fault | Ţ    | ပို့ မွ    | RG<br>%  | &<br>Comments   |
|    |      | -       | SANDSTONE - high strength, fresh and fresh stained then slightly weathered, slightly fractured and unbroken, medium to coarse grained sandstone with distinct laminations (continued) |     | 1          |            |                |             |     |      |           |          |         |                | 1    |               |            |               |       | С    |            | 100      | PL(A) = 2.5     |
|    |      | 12 12.0 |                                                                                                                                                                                       |     |            |            |                |             |     |      |           |          |         |                |      |               |            |               |       | С    | 100        | 100      | PL(A) = 2       |
| F  | -    |         | Bore discontinued at 12.0m                                                                                                                                                            | 1   |            |            |                |             | 1   |      | 1         |          |         | T              | T    |               |            |               |       |      |            |          |                 |
|    |      | 13      |                                                                                                                                                                                       |     |            |            |                |             |     |      | ·         |          |         |                |      |               |            |               |       |      |            |          |                 |
| F  | F    |         |                                                                                                                                                                                       | 1   | <br>       | 1          |                |             | 1   | {    | 1         | <br>     |         |                |      | 1             |            |               |       |      |            |          |                 |
| -3 | -1   | 14      |                                                                                                                                                                                       | 1   |            | ļ          |                |             | İ   | ij   | į į       | ij       |         | Įį.            | ij   | į             | j          |               |       |      |            |          |                 |
| Ē  |      |         |                                                                                                                                                                                       |     |            | !          |                |             | 1 1 |      |           | <br>     |         | li             | 11   |               |            |               |       |      |            |          |                 |
| 53 | 1    | 5       |                                                                                                                                                                                       |     |            |            |                |             |     |      |           |          |         |                |      |               |            |               |       |      |            |          |                 |
| 52 | - 1€ | 6       |                                                                                                                                                                                       |     |            |            |                |             |     |      |           |          |         |                |      |               |            |               |       |      |            |          |                 |
| 51 | · 17 | 7       |                                                                                                                                                                                       |     |            |            |                |             | 1   |      |           | 1        |         | 1              |      |               |            |               |       |      |            |          |                 |
| 50 | 18   |         |                                                                                                                                                                                       |     |            |            |                |             |     |      |           |          |         | <br> <br> <br> |      |               |            |               |       |      |            |          |                 |
| 49 | 19   |         |                                                                                                                                                                                       |     |            |            |                |             |     |      |           |          |         |                |      |               |            |               |       |      |            |          |                 |

RIG: Multi-drill **DRILLER:** Traccess LOGGED: PGH CASING: NW to 2.0m

TYPE OF BORING: Diatube 0.00-0.18m & 0.3-0.60m; Solid flight auger (TC-bit) 0.18-0.30 & 0.60-2.0m; NMLC-Coring 2.0-2.3m & 2.8-12.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Difficulty recovering samples in filling due to collapsing ground conditions

Environmental sample

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)



**CLIENT:** Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD

EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

PROJECT No: 72138 DATE: 9/12/2010 SHEET 1 OF 2

**BORE No: 102** 

Degree of Weathering Rock Fracture Description Discontinuities Sampling & In Situ Testing Strength Depth Spacing R of Core Rec. % RQD % Test Results (m) (m) B - Bedding J - Joint Strata S - Shear F - Fault 86 SW HW Comments ASPHALT - 50mm thick E/A -2 Note: Unless otherwise FILLING (ROADBASE) - grey blue stated, rock is fractured metal gravel filling 0.46 along rough planar E/A CLAY - red brown clay with bedding planes dipping 0.66 \ironstone bands between 0°- 10° SANDSTONE - extremely low E/A strength, extremely weathered, 1m: CORE LOSS: sandstone with high strength 360mm 1.36 ironstone bands SANDSTONE - extremely low and low strength with medium to high PL(A) = 0.8strength ironstone bands, extremely and highly weathered, 82 77 fractured, red brown and light grey, medium grained sandstone PL(A) = 0.61 1 1 2.77m: J50°, pl, ro 3.0 SANDSTONE - medium to high . 65 strength, moderately weathered, fractured and slightly fractured, 3.07m: Cz, 20mm PL(A) = 0.7light grey, fine to medium grained 100 88 sandstone - distinct and indistinct laminations 3.7m: Cs, 10mm from 3.7 to 4.6m SANDSTONE - high strength, slightly and moderately weathered, slightly fractured, light grey and PL(A) = 1.8light orange, medium grained sandstone 5 PL(A) = 1.3100 100 6 -ස SANDSTONE - medium to high 6.22m: Cs, 10mm strength, moderately weathered. 6.36m: Cz, pl, ro, cly slightly fractured, orange brown, PL(A) = 0.5medium grained sandstone SANDSTONE - high strength, slightly weathered then fresh, -8 slightly fractured, light orange then 7.13m; Cs. 10mm grey, medium grained sandstone 7.4-7.5m: distinct laminations PL(A) = 1.1. 8 С 100 100 PL(A) = 1.69 PL(A) = 1.6

RIG: Bobcat

DRILLER: SS

LOGGED: PGH

CASING: HW to 13.05m

9.78m: J70°, pl, ro, cln

TYPE OF BORING: Solid flight auger (TC-bit) to 0.90m; NMLC-Coring to 13.05m

WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C C core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING
G Gas sample
U Tube sample (x mm dia.)
W Water sample
W Water seep
E Environmental sample

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S standard penetration test
V Shear vane (kPa)



CLIENT: Stamford Property Services Ptv Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD

**EASTING: NORTHING:** 

DIP/AZIMUTH: 90°/--

**DATE:** 9/12/2010 SHEET 2 OF 2

PROJECT No: 72138

**BORE No: 102** 

Degree of Weathering Rock Strength Description Fracture Discontinuities Sampling & In Situ Testing Depth Spacing 교 of Core Rec. % RQD % Test Results (m) B - Bedding J - Joint (m) Strata S - Shear F - Fault 80 8.6 SW HW Comments SANDSTONE - high strength, 62 slightly weathered then fresh, slightly fractured, light orange then grey, medium grained sandstone PL(A) = 1.3(continued) PL(A) = 1.711.36m: Cs, 10mm С 100 98 12 -8 12.45-13.05m: distinct laminations <sup>13</sup>13.05 Bore discontinued at 13.05m -69 . 80 15 16 17 18 19 11

RIG: Bobcat DRILLER: SS LOGGED: PGH CASING: HW to 13.05m

TYPE OF BORING: Solid flight auger (TC-bit) to 0.90m; NMLC-Coring to 13.05m WATER OBSERVATIONS: No free groundwater observed whilst augering

**REMARKS:** 

Environmental sample

A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
Piston sample
Piston sample
U, Tube sample (x mm dia.)
Water sample
Water seep
P Water level
P S Standard penetration test
V Shear vane (kPa)



Stamford Property Services Pty Ltd CLIENT:

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

**SURFACE LEVEL: 72.3 AHD** 

**EASTING:** PROJECT No: 72138 **NORTHING: DATE:** 14/12/2010

**BORE No: 103** 

DIP/AZIMUTH: 90°/--SHEET 1 OF 2

|       |                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | L C | Deg<br>/eat | ree d | of<br>na S | <u> </u>                                | R<br>Str                  | ocl      | ith          |       | Fracture                  |   | Discontinuities                                                                                                        | s    |             |          | In Situ Testing               |
|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-------|------------|-----------------------------------------|---------------------------|----------|--------------|-------|---------------------------|---|------------------------------------------------------------------------------------------------------------------------|------|-------------|----------|-------------------------------|
| 꿉     | Depth<br>(m)           | of<br>Strata                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 : | ≥ ≥         | ree d | Jan Jan    | Log                                     | Ex Low<br>Very Low<br>Low | edium    | High<br>High | Water | Spacing<br>(m)<br>5 89 89 |   | B - Bedding J - Joint<br>S - Shear F - Fault                                                                           | Type | Core        | RQD<br>% | Test Results<br>&<br>Comments |
|       | 0.05                   | \ASPHALT - 50mm                                                                                                                                                                                                                                                                                                                                                                                                                |     | I S         | 1 1   | T.         | $\langle \rangle$                       | ביצוש<br>ו                | 21       | - 1  <br>    | -     |                           |   |                                                                                                                        | A/E  | <del></del> |          | Comments                      |
| 72    | 0.4<br>- 0.4<br>       | FILLING (ROADBASE) - grey blue metal gravel filling  SANDSTONE - extremely low strength, extremely weathered, orange and grey sandstone                                                                                                                                                                                                                                                                                        |     |             |       |            | × : : : : : : : : : : : : : : : : : : : |                           |          |              |       |                           |   | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes dipping<br>between 0*- 10* | A/E  |             |          |                               |
| 12    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |       |            |                                         |                           | İ        |              |       |                           |   | between 0 - 10                                                                                                         | s    |             |          | 11,17,22<br>N = 39            |
|       | 1.61                   |                                                                                                                                                                                                                                                                                                                                                                                                                                | T   | <b>≢</b>    |       |            | $\leq$                                  |                           | <u> </u> | Ħ            |       |                           | 7 | 1.5m: CORE LOSS:<br>110mm                                                                                              |      |             |          |                               |
| 69 70 | 2.4<br>2.4<br>3<br>3.3 | SANDSTONE - very low to low strength, highly weathered, slightly fractured, orange, medium grained sandstone  SANDSTONE - medium strength, fresh and moderately weathered, slightly fractured, light grey, medium grained sandstone with distinct laminations  SANDSTONE - high strength, slightly and moderately weathered then fresh, slightly fractured and unbroken, light orange and light grey, medium grained sandstone |     |             |       |            |                                         |                           |          |              |       |                           |   | 2.38m: Cs, 10mm<br>2.52m: J70°- 85°, pl, ro,<br>cln<br>2.84m: J55°, pl, ro, he<br>2.95m: Cs, 20mm                      | С    | 96          |          | PL(A) = 0.6<br>PL(A) = 0.9    |
| 67 68 | 5                      | L. siltstone laminations from 3.3 to 4.0m                                                                                                                                                                                                                                                                                                                                                                                      |     |             |       |            |                                         |                           |          |              | Ā     |                           |   | ,                                                                                                                      |      |             |          | PL(A) = 1.3                   |
| 99    | 6                      |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |       |            |                                         |                           |          |              |       |                           |   | 5.85m: J70°, pl, ro, fe                                                                                                | С    | 100         |          | PL(A) = 1.8<br>PL(A) = 1.8    |
| 65    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |       |            |                                         |                           |          |              |       |                           |   |                                                                                                                        |      |             |          | PL(A) = 1.6                   |
| 64    | В                      |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |       |            | <b>.</b>                                |                           |          |              |       |                           |   | 7.81m: Cs, 8mm                                                                                                         | С    | 100         |          | PL(A) = 1.1                   |
| 63    | 9                      |                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |       |            |                                         |                           |          |              |       |                           |   |                                                                                                                        |      |             |          | PL(A) = 1.5                   |

**RIG: DT 100** DRILLER: SY LOGGED: PGH CASING: HW to 1.50m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.50m; NMLC-Coring to 14.08m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 14.0m; Groundwater measured at 4.3m on 20/12/10, 4.7 on

22/12/10 and 4.6m on 11/1/11

Environmental sample

**SAMPLING & IN SITU TESTING LEGEND** LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa) A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sam
E Environmental Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling Disturbed sample



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.3 AHD

**EASTING: NORTHING:** 

DIP/AZIMUTH: 90°/--

**BORE No: 103** PROJECT No: 72138 **DATE:** 14/12/2010 SHEET 2 OF 2

|       |                     | Description                                                                                                                                                                 | Degree of<br>Weathering | U              | Rock                                   | $\top$                                  | Fracture    | Discontinuities       | S    | ilame          | na &     | In Situ Testing          |
|-------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|----------------------------------------|-----------------------------------------|-------------|-----------------------|------|----------------|----------|--------------------------|
| 占     | Depth<br>(m)        | of                                                                                                                                                                          | vveatnering             | Graphic<br>Log | Strength<br>New Low Medium High Medium | afer                                    | Spacing (m) | B - Bedding J - Joint | +    |                |          |                          |
|       | (111)               | Strata                                                                                                                                                                      | HW<br>MW<br>SW<br>FR    | ق ا            | Aediur<br>/ery L                       | N A High                                |             | S - Shear F - Fault   | Type | င်<br>င်<br>င် | RQD<br>% | &<br>Comments            |
| 61 62 | -11                 | SANDSTONE - high strength, slightly and moderately weathered then fresh, slightly fractured and unbroken, light orange and light grey, medium grained sandstone (continued) |                         |                |                                        |                                         |             |                       | С    | 100            |          | PL(A) = 2<br>PL(A) = 1.4 |
| 09    | -12                 |                                                                                                                                                                             |                         |                |                                        |                                         |             |                       |      |                |          | PL(A) = 1.5              |
| 99    | <sup>14</sup> 14.08 |                                                                                                                                                                             |                         |                |                                        |                                         |             |                       | С    | 100            |          | PL(A) = 1.5              |
| -88   | 14,00               | Bore discontinued at 14.08m                                                                                                                                                 | 11111                   |                |                                        |                                         |             |                       |      |                |          |                          |
| 57    | 15                  |                                                                                                                                                                             |                         |                |                                        |                                         |             |                       |      |                |          |                          |
| 55    | 17                  |                                                                                                                                                                             |                         |                |                                        | *************************************** |             |                       |      |                |          |                          |
| 53 54 |                     |                                                                                                                                                                             |                         |                |                                        |                                         |             |                       |      |                |          |                          |

**RIG: DT 100** 

Environmental sample

DRILLER: SY

LOGGED: PGH

CASING: HW to 1.50m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.50m; NMLC-Coring to 14.08m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 14.0m; Groundwater measured at 4.3m on 20/12/10, 4.7 on 22/12/10 and 4.6m on 11/1/11

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental Core drilling Disturbed sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
Piston sample
U, Tube sample (x mm dia.)
W Water sample
Water seep

Water level
PiD Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PCKET penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 73.6 AHD

**EASTING:** 

**NORTHING:** DIP/AZIMUTH: 90°/--

**BORE No: 104** PROJECT No: 72138 **DATE:** 20/12/2010

SHEET 1 OF 2

|       | D                | Description                                                                                                                                                                                                                | Degree of<br>Weathering | . <u>S</u> | Rock<br>Strength                                              | Fracture<br>Spacing | Discontinuities                                                                                                        | S        |      |       | In Situ Testing               |
|-------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|---------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------|----------|------|-------|-------------------------------|
| R     | Depth<br>(m)     | of<br>Strata                                                                                                                                                                                                               | Weathering              | Graph      | Ex tow Very Low Medium High Very High Ex High Very High Water | (m)                 | B - Bedding J - Joint<br>S - Shear F - Fault                                                                           | Type     | Core | RGD % | Test Results<br>&<br>Comments |
|       |                  | ASPHALT - 50mm thick FILLING - roadbase gravel filling SANDSTONE - extremely low                                                                                                                                           |                         |            |                                                               |                     |                                                                                                                        | A/E      |      |       |                               |
| 23    | -1               | strength, red grey sandstone with<br>clay                                                                                                                                                                                  |                         |            |                                                               |                     | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes dipping<br>between 0°- 10° | A/E<br>S |      |       | 10,16,21<br>N = 37            |
| 77 77 | 1.6<br>-2<br>2.1 | CLAY - apparently very stiff, grey clay with some sand  SANDSTONE - medium to high strength, highly and moderately weathered, fractured, grey and purple red, medium to coarse grained sandstone with distinct laminations |                         |            |                                                               | <u> </u>            |                                                                                                                        | С        | 100  | 71    | PL(A) = 0.9<br>PL(A) = 1.9    |
| 702   | 3.1-<br>3.46-    | SANDSTONE - medium to high strength, highly and moderately weathered, fractured then slightly fractured, grey and purple red, medium to coarse grained sandstone  SANDSTONE - high strength                                |                         |            |                                                               |                     | 3.45m: Cs, 9mm                                                                                                         |          |      |       | PL(A) = 1.3                   |
| 69    | 5                | highly and slightly weathered then<br>fresh, slightly fractured and<br>unbroken, red purple then light<br>grey, medium to coarse sandstone                                                                                 |                         |            |                                                               |                     |                                                                                                                        |          |      |       | PL(A) = 1.5<br>PL(A) = 1.4    |
| 89    | 6                | - siltstone laminations from 5.7m<br>to 7.4m                                                                                                                                                                               |                         |            |                                                               |                     | 5.68m: Cs, 20mm                                                                                                        | С        | 100  | 91    | PL(A) = 1                     |
| . 19  |                  | 6.55-6.6m: very low strength, black carbonaceous band                                                                                                                                                                      |                         |            |                                                               |                     | 6.65m: J85°, pl, ro, fe                                                                                                |          |      |       | PL(A) = 1                     |
| 99    | В                | 7.30-7.35m: very low strength,<br>black carbonaceous band                                                                                                                                                                  |                         |            |                                                               |                     | 7.72m: J82°, pl, ro, cln                                                                                               |          |      |       | PL(A) = 0.1                   |
| 99    |                  |                                                                                                                                                                                                                            |                         |            |                                                               |                     |                                                                                                                        | С        | 100  | 98    | PL(A) = 1                     |
| 64    |                  |                                                                                                                                                                                                                            |                         |            |                                                               |                     |                                                                                                                        |          |      |       | PL(A) = 1.4                   |

**RIG: DT 100** DRILLER: SS LOGGED: PGH CASING:

TYPE OF BORING: Solid flight auger (TC-bit) to 1.0m; Rotary (water) to 1.5m; NMLC-Coring to 14.70m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sam Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
P Piston sample
U, Tube sample (x mm dia.)
W Water sample
W Water seep
P Piston Sample (x mm dia.)
W Water seep
S Standard penetralitest (s(50) (MPa)
P Pic(D) Point load diametral test Is(50) (MPa)
P Picket Penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)



**CLIENT:** Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 73.6 AHD

**EASTING: NORTHING:** 

DIP/AZIMUTH: 90°/--

**BORE No: 104** PROJECT No: 72138 **DATE:** 20/12/2010 SHEET 2 OF 2

| Γ                                     | T    |              | Description                                                                                                                                               | Degree of<br>Weathering | j <u>e</u> | Rock<br>Strength                            | ) <u>.</u>  | Fracture       |    | Discontinuities                              | S    | ampli | ng &     | In Situ Testing |
|---------------------------------------|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|---------------------------------------------|-------------|----------------|----|----------------------------------------------|------|-------|----------|-----------------|
| ă                                     |      | Depth<br>(m) | of<br>Strate                                                                                                                                              |                         | Graph      | Ex Low<br>Very Low<br>Low<br>Medium<br>High | Water Water | Spacing<br>(m) | _  | B - Bedding J - Joint<br>S - Shear F - Fault | Type | ore % | RQD<br>% | Test Results &  |
| -                                     | +    |              | SANDSTONE - high strength.                                                                                                                                | WH WE WE THE            |            |                                             |             |                | Į, | 3-Shear F-Fault                              |      | 0 %   | ir.      | Comments        |
| + + + + + + + + + + + + + + + + + + + | ŀ    | -11          | highly and slightly weathered then<br>fresh, slightly fractured and<br>unbroken, red purple then light<br>grey, medium to coarse sandstone<br>(continued) |                         |            |                                             |             |                |    |                                              |      |       |          | PL(A) = 1.1     |
| 61 63                                 |      | 12           |                                                                                                                                                           |                         |            |                                             |             |                |    |                                              | С    | 100   | 99       | PL(A) = 2.2     |
| 9                                     | ŀ    | 13           | 12.72-12.74m: very low strength, laminite band                                                                                                            |                         |            |                                             |             |                |    |                                              |      |       |          | PL(A) = 3.2     |
| 59 60                                 |      | 14           |                                                                                                                                                           |                         |            |                                             |             |                |    |                                              | С    | 100   | 100      | PL(A) = 2.2     |
| E                                     | -    | - 1          | Bore discontinued at 14.7m                                                                                                                                | 11111                   | ,,,,       |                                             |             |                |    |                                              |      |       |          |                 |
| 89                                    | -1   |              |                                                                                                                                                           |                         |            |                                             |             |                |    |                                              |      |       |          |                 |
| 57                                    | -    |              |                                                                                                                                                           |                         |            |                                             |             |                |    |                                              |      |       |          |                 |
|                                       | - 1  | 7            |                                                                                                                                                           |                         |            |                                             |             |                |    |                                              |      |       |          |                 |
| 55                                    | - 18 |              |                                                                                                                                                           |                         |            |                                             |             |                |    |                                              |      |       |          |                 |
| 54                                    | 13   |              |                                                                                                                                                           |                         |            |                                             |             |                |    |                                              |      |       |          |                 |

**RIG: DT 100** DRILLER: SS LOGGED: PGH CASING:

TYPE OF BORING: Solid flight auger (TC-bit) to 1.0m; Rotary (water) to 1.5m; NMLC-Coring to 14.70m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

Environmental sample

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sam
E Environmenta Core drilling Disturbed sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
P Piston sample (xmm dia.)
W Water sample (xmm dia.)
P Decket penetrometer (kPa)
P Decket penetrometer (kPa)
P Decket penetrometer (kPa)
S Standard penetration test
Shear vane (kPa)



**CLIENT:** Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 73.9 AHD

**EASTING:** 

**NORTHING:** DIP/AZIMUTH: 90°/--

**BORE No:** 105 PROJECT No: 72138

**DATE:** 14/12/2010 SHEET 1 OF 2

| Strata    Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   Strata   St | Testing      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| CLAY - red and grey clay  SHALY CLAY - hard, grey shaly clay with some high strength ironstone bands  LAMINITE - high strength, highly to slightly weathered, slightly fractured, light grey and red, medium to coarse grained sandstone  SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  Note: Unless otherwise stated, rock is fractured, along rough planar bedding planes diong rough planar bedding planes diong rough planar bedding planes diop in the pedding planes diong rough planar bedding rough planar bedding planes diong rough planar bedding  Results<br>& |
| FLLING - crushed sandstone gravel filling with some sand CLAY - red and grey clay    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ments        |
| CLAY - red and grey clay  SHALY CLAY - hard, grey shaly clay with some high strength ironstone bands  2 2.44  LAMINITE - high strength, highly to slightly fractured, light grey and red, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly fractured, light grey, medium to coarse grained sandstone  3.45m: Cs, 10mm  SHALY CLAY - hard, grey shaly bedding planes dipping between 0°- 10°  A/E  C 100 51  PL(4)  PL(4)  PL(4)  PL(5)  PL(6)  PL(6)  PL(6)  PL(6)  PL(7)  PL(7)  PL(8)  PL(8)  PL(9)  |              |
| SHALY CLAY - hard, grey shaly clay with some high strength ironstone bands  2 2.44 LAMINITE - high strength, highly to slightly weathered, slightly fractured, light grey and red, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly fractured, light grey, medium to coarse grained sandstone  3.45m: Cs, 10mm  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| SANDSTONE - high strength, slightly weathered and fresh, slightly weathered and fresh, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly fractured, light grey, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly fractured, light grey, medium to coarse grained sandstone  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| LAMINITE - high strength, highly to slightly weathered, slightly fractured, light grey and red, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly fractured, light grey, medium to coarse grained sandstone  3.45m: Cs, 10mm  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| 2.44 LAMINITE - high strength, highly to slightly weathered, slightly weathered, slightly fractured, light grey and red, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly fractured, light grey, medium to coarse grained sandstone  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| 2.44 LAMINITE - high strength, highly to slightly weathered, slightly weathered, slightly fractured, light grey and red, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly fractured, light grey, medium to coarse grained sandstone  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| LAMINITE - nigh strength, nighly to slightly weathered, slightly fractured, light grey and red, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly weathered and fresh, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  3.6 PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| slightly weathered, slightly fractured, light grey and red, medium to coarse grained sandstone  3.6 SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  3.4 SANDSTONE - high strength, slightly fractured, light grey, medium to coarse grained sandstone  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| medium to coarse grained sandstone  3.6  SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) = 1.5      |
| 3.6 SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) = 1.6      |
| slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained sandstone  PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| PL(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =13          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 1.5        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| PL(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 1.4        |
| to 7.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 27         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| C 100 100 PL(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ 4 5        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 1.5        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 3          |

RIG: Scout DRILLER: RKE LOGGED: PGH CASING: HW to 1.0m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.0m; NMLC-Coring to 15.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

**REMARKS:** 

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample PL(A) Point load axial test ts(50) (MPa)
U, Flube sample (x mm dia.)
W Water sample PL(B) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
POCKet penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)



**CLIENT:** Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 73.9 AHD

**EASTING: NORTHING:** DIP/AZIMUTH: 90°/--

**DATE:** 14/12/2010 SHEET 2 OF 2

**BORE No: 105** 

PROJECT No: 72138

Degree of Weathering Rock Strength Description Fracture Discontinuities Sampling & In Situ Testing Core Depth Spacing Rec. % 꿉 Test Results of (m) B - Bedding J - Joint (m) & S - Shear F - Fault Strata 0.05 EW HWW SW SW SW SW 88 Comments SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light grey, medium to coarse grained PL(A) = 1.7sandstone (continued) - 82 PL(A) = 1.611.26m: J45°, pl, ro, cly 100 100 12 PL(A) = 1.613 13.18m: Cs, 3mm PL(A) = 214 100 100 PL(A) = 1.915 15.0 Bore discontinued at 15.0m -88 - 16 - 17 11 -8 - 19

RIG: Scout DRILLER: RKE LOGGED: PGH CASING: HW to 1.0m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.0m; NMLC-Coring to 15.0m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** 

**SAMPLING & IN SITU TESTING LEGEND** 

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sam Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample Core drilling Disturbed sample Water seep

Environmental sample

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PC(D) Point load diametral test Is(50) (MPa)
Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

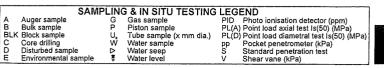


**CLIENT:** Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 73.2 AHD


EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 106 PROJECT No: 72138 DATE: 16/12/2010 SHEET 1 OF 2

| П     |              | Description                                                                                                                                                              | Degree of            | . <u>.</u> . | Rock<br>Strength     | Fracture       | Discontinuities                                                     | s    | ampl   | ing & | In Situ Testing            |
|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|----------------------|----------------|---------------------------------------------------------------------|------|--------|-------|----------------------------|
| Ζ     | Depth<br>(m) | of<br>Strata                                                                                                                                                             | Degree of Weathering | Graph        | Nate In Inches       | Spacing<br>(m) | B - Bedding J - Joint<br>S - Shear F - Fault                        | Type | Sore % | ROD % | Test Results &             |
|       | 0.05         | \ASPHALT /                                                                                                                                                               | WH WE EN             |              | EX LOW Very Very Low | 0.05           | o onedi i radic                                                     | A/E  |        |       | Comments                   |
| 73    | 0.2          |                                                                                                                                                                          |                      |              |                      |                | Note: Unless otherwise stated, rock is fractured along rough planar | A/E  | 7      |       |                            |
|       | 0.7          | LAMINITE - extremely low strength,                                                                                                                                       |                      |              |                      |                | bedding planes dipping<br>between 0°- 10°                           | A/E  |        |       |                            |
| 72    | 1.88         | LAMINITE - extremely low and very low strength, extremely and highly weathered, slightly fractured, grey laminite with clay bands                                        |                      |              |                      |                |                                                                     |      |        |       |                            |
|       | 3            | LAMINITE - medium to high<br>strength, moderately to highly then<br>slightly weathered, slightly<br>fractured, purple-red and grey,<br>medium to coarse grained laminite |                      |              |                      |                |                                                                     | С    | 100    | 71    | PL(A) = 0.8                |
| 02    | 3.61         | SANDSTONE - high strength,                                                                                                                                               |                      |              |                      |                | 3.38m: B110°, pl, ro, cly<br>3.6m: Cz, 10mm                         |      |        |       | PL(A) = 0.9                |
| 69 89 | 5            | moderately to highly weathered, slightly fractured, purple-red and grey, medium to coarse grained sandstone                                                              |                      |              |                      |                | 5.58m: Cz, 30mm                                                     | С    | 100    | 97    | PL(A) = 1.5<br>PL(A) = 1.2 |
| 29    | 6.81         | SANDSTONE - medium to high                                                                                                                                               |                      |              |                      |                | 6.77m: Cs, 30mm                                                     |      |        |       | PL(A) = 1.5                |
| 99    |              | and high strength, moderately and slightly weathered, slightly fractured, orange and light grey, medium to coarse grained sandstone with indistinct cross-beds           |                      |              |                      |                |                                                                     |      |        |       | PL(A) = 0.7                |
| 64 65 |              |                                                                                                                                                                          |                      |              |                      |                |                                                                     | С    | 100    | 100   | PL(A) = 1.3                |
|       |              |                                                                                                                                                                          |                      |              |                      |                |                                                                     |      |        |       | PL(A) = 1.3                |

RIG: Scout DRILLER: KKE LOGGED: PGH CASING: HW to 1.0m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.0m; NMLC-Coring to 15.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: 30% Water loss at 7.30m





CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

**SURFACE LEVEL: 73.2 AHD** 

**EASTING:** 

**NORTHING:** DIP/AZIMUTH: 90°/--

**BORE No: 106** PROJECT No: 72138 **DATE:** 16/12/2010

SHEET 2 OF 2

|       |                | Description                                                                                                                                                                                           | Degree of Weathering ≅                  | Rock<br>Strength                                                                               | Fracture    | Discontinuities                                                                                   | Sa   | ampl  | ing & | In Situ Testing   |
|-------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------|------|-------|-------|-------------------|
| R     | Dep<br>(m)     | pth<br>n) of<br>Strata                                                                                                                                                                                | Degree of Weathering Oraphic Cod        | Ex Low Very Low Needium and State Very High Very High Very High Very High Vary High Vare Mater | Spacing (m) | B - Bedding J - Joint<br>S - Shear F - Fault                                                      | Туре | ore % | RQD % | Test Results<br>& |
| 63    | -11            | SANDSTONE - medium to high and high strength, moderately and slightly weathered, slightly fractured, orange and light grey, medium to coarse grained sandstone with indistinct cross-beds (continued) | WH WW W & & & & & & & & & & & & & & & & | EX                                                                                             | 0.10        | 10m: J85°, pl, ro, fe  10.72m: J80°, pl, ro, he 10.87m: J85°, pl, ro, he 11.04m: J75°, pl, ro, fe |      | 0 2   |       | PL(A) = 1.2       |
| 61 62 | 11.            | 1.45  SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light orange and grey, medium to coarse grained sandstone                                                          |                                         |                                                                                                |             | 11.15m: J85°, pl, ro, fe<br>11.45m: J80°, pl, ro, fe<br>12.14m: B, cly                            | С    | 100   | 100   | PL(A) = 1         |
|       |                |                                                                                                                                                                                                       |                                         |                                                                                                |             |                                                                                                   |      |       |       | PL(A) = 1.1       |
| - 8   | -<br>- 13<br>- |                                                                                                                                                                                                       |                                         |                                                                                                |             | 12.95m: J80°, pl, ro, fe                                                                          |      |       |       |                   |
|       | -14            |                                                                                                                                                                                                       |                                         |                                                                                                |             | 13.8m: B, cly                                                                                     | С    | 100   | 100   | PL(A) = 1         |
|       | -15 15         | 5.0                                                                                                                                                                                                   |                                         |                                                                                                |             |                                                                                                   | С    | 100   | 100   | PL(A) = 1         |
| 58    | -16            | Bore discontinued at 15.0m                                                                                                                                                                            |                                         |                                                                                                |             |                                                                                                   |      |       |       |                   |
| 26    | 17             |                                                                                                                                                                                                       |                                         |                                                                                                |             |                                                                                                   |      |       |       |                   |
| 55    | 18             |                                                                                                                                                                                                       |                                         |                                                                                                |             |                                                                                                   |      |       |       |                   |
| 9     | <i>.</i>       |                                                                                                                                                                                                       |                                         |                                                                                                |             |                                                                                                   |      |       |       |                   |

RIG: Scout DRILLER: KKE LOGGED: PGH CASING: HW to 1.0m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.0m; NMLC-Coring to 15.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: 30% Water loss at 7.30m

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample Piston sample Piston sample PliD Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) PL



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 74.6 AHD

EASTING: PF
NORTHING: DA
DIP/AZIMUTH: 90°/-- SF

BORE No: 107 PROJECT No: 72138 DATE: 13/12/2010 SHEET 1 OF 2

|          | Dep      | ofb  | Description                                                                                 | N              | Degree of<br>leathering | 을 _       | Rock<br>Strength                                                    | 5     | Fracture<br>Spacing | Discontinuities                                         | s    |      |       | In Situ Testing   |
|----------|----------|------|---------------------------------------------------------------------------------------------|----------------|-------------------------|-----------|---------------------------------------------------------------------|-------|---------------------|---------------------------------------------------------|------|------|-------|-------------------|
| 占        | (m       |      | of<br>Strata                                                                                | 8              | Degree of<br>leathering | Grap      | Ex Low<br>Very Low<br>Low<br>Medium<br>High<br>Very High<br>Ex High | Water | (m)                 | B - Bedding J - Joint<br>S - Shear F - Fault            | Type | Core | ROD % | Test Results &    |
| -        | - (      | 0.05 | ASPHALT - 50mm thick                                                                        | Ξ<br>I         | ΞΣσχί<br>               |           |                                                                     | Ī     | 11 11               |                                                         | A/E  |      |       | Comments          |
| ļ        | ļ (      | 0.45 | FILLING (ROADBASE) -  sub-angular blue metal gravel                                         |                |                         | $\bowtie$ |                                                                     |       |                     |                                                         | A/E  |      |       |                   |
| - 42     | <u> </u> | 0.7  | \filling                                                                                    | İ              |                         | $\bowtie$ |                                                                     |       |                     | Note: Unless otherwise stated, rock is fractured        | ~-   | -    |       |                   |
| ŀ        | -1       |      | filling with some blue metal gravel, dry                                                    |                |                         |           |                                                                     |       |                     | along rough planar<br>bedding planes dipping<br>0°- 10° | -    | -    |       |                   |
| Ė        | <u> </u> |      | SHALY CLAY - hard, highly weathered, grey shaly clay with                                   |                |                         | -/-       |                                                                     |       |                     | 0 - 10                                                  | S/E  |      |       | 9,21,25<br>N = 46 |
| 73       | <u> </u> | 1.6  | ironstone bands                                                                             |                |                         |           | ###                                                                 | Ŧ     |                     | 1.5m: CORE LOSS:<br>100mm                               |      | 1    |       |                   |
| ļ        | 1<br>-2  | .83  | LAMINITE - medium strength with medium to high strength ironstone                           | -              |                         |           |                                                                     | C     |                     |                                                         |      |      |       |                   |
| E        |          |      | bands, highly and moderately weathered, fractured and slightly                              | 1              |                         |           |                                                                     | li    | <b> </b>            |                                                         |      |      |       | PL(A) = 0.3       |
| -2       |          |      | fractured, grey with purple red bands laminite                                              |                |                         |           |                                                                     | ļi    |                     |                                                         |      |      |       | 1 L(A) = 0.0      |
|          | -3       |      |                                                                                             |                |                         |           |                                                                     | li    |                     |                                                         | С    | 96   | 90    |                   |
| <u> </u> | • •<br>• |      |                                                                                             | 1              |                         |           |                                                                     | 1     | <b>     </b>        |                                                         |      |      |       |                   |
|          |          |      |                                                                                             | -              |                         |           | ;                                                                   | 1     |                     |                                                         |      |      |       | PL(A) = 1.5       |
|          |          |      |                                                                                             |                |                         |           | 1 1 1 1 1                                                           |       |                     |                                                         |      |      |       |                   |
|          | -4 4     | 1.0  | SANDSTONE - high strength,<br>moderately weathered, slightly                                | 1              |                         |           | <del>    -    </del>                                                |       | <u> </u>            |                                                         |      |      |       |                   |
|          |          |      | fractured, purple red with grey bands, medium grained sandstone                             | 1              |                         |           |                                                                     |       |                     |                                                         |      |      |       | PL(A) = 1.6       |
|          |          |      | with distinct laminations                                                                   | !              | <b>h</b> ]              |           |                                                                     |       |                     |                                                         |      |      |       |                   |
| F F      | -5       |      |                                                                                             | 1              |                         |           |                                                                     |       |                     |                                                         |      |      |       |                   |
| <u> </u> |          |      |                                                                                             | !              |                         |           |                                                                     |       |                     |                                                         | _    | 400  |       |                   |
| 69       |          |      |                                                                                             | 1              |                         |           |                                                                     |       |                     |                                                         | С    | 100  | 95    | PL(A) = 1.4       |
|          | 6        |      |                                                                                             |                |                         |           |                                                                     |       |                     |                                                         |      |      |       |                   |
|          |          |      |                                                                                             | L              |                         |           |                                                                     |       |                     | , 6.3m: B10°, pl, ro, fe                                |      |      |       |                   |
| 88       |          |      |                                                                                             |                |                         |           |                                                                     |       |                     | 6.36m: B10°, pl, ro, fe                                 |      |      |       | PL(A) = 1.6       |
| FF       | 7 7.     | .0   | CANDOTONIE L'.L.                                                                            |                |                         |           |                                                                     |       |                     |                                                         |      |      |       |                   |
| FF       |          | 5    | SANDSTONE - high strength, slightly and moderately weathered with some fresh stained zones, |                |                         |           |                                                                     |       |                     |                                                         |      |      |       |                   |
| 19       |          | 1 5  | slightly fractured, light grey and brange, medium grained sandstone                         |                |                         |           |                                                                     |       |                     |                                                         |      |      |       | PL(A) = 1.4       |
| ΕĒ.      | D        |      | gg.                                                                                         |                |                         |           |                                                                     |       |                     |                                                         |      |      |       |                   |
|          | 6        |      |                                                                                             |                |                         |           |                                                                     |       |                     |                                                         |      |      |       |                   |
| 99       |          |      |                                                                                             |                | اللم                    |           |                                                                     |       |                     | 8.41m: B0°, pl, ro, fe                                  | С    | 100  |       |                   |
| "        |          |      |                                                                                             |                |                         |           |                                                                     |       |                     |                                                         |      |      |       | PL(A) = 2.2       |
| -        | €        |      |                                                                                             | : !<br>   <br> | 4                       | :::]      |                                                                     |       |                     |                                                         |      |      |       |                   |
| <u> </u> |          |      |                                                                                             |                |                         |           |                                                                     | ļ     |                     |                                                         |      |      |       |                   |
| 65       |          |      |                                                                                             |                |                         |           |                                                                     |       |                     |                                                         |      |      |       | DI (A) = 4.5      |
| 止        |          |      |                                                                                             | L              | Tiil:                   |           |                                                                     | _ئاـ  |                     |                                                         |      |      |       | PL(A) = 1.5       |

RIG: Bobcat DRILLER: SS LOGGED: PGH CASING: HW to 1.5m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.5m; NMLC-Coring to 16.0m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS: 15% Water loss at 8.90m; 90% water loss from 13.0m

SURVEY DATUM:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G Gas sample
B Bulk sample P P Piston sample (x mm dia.)
BLK Block sample U, Tube sample (x mm dia.)
C Core drilling W Water sample
D Disturbed sample D Water seep S Standard penetration test
E Environmental sample



**CLIENT:** Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 74.6 AHD

**EASTING:** PROJECT No: 72138 NORTHING: DATE: 13/12/2010

**BORE No: 107** 

DIP/AZIMUTH: 90°/-- SHEET 2 OF 2

|     | T    | D            | Description                                                                                                                                                                                | Degree of<br>Weathering | ျှို့ | Rock<br>Strength                                     | Fracture    | Discontinuities                                                                  | S    | ampl  | ing &    | In Situ Testing      |
|-----|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|------------------------------------------------------|-------------|----------------------------------------------------------------------------------|------|-------|----------|----------------------|
| ã   |      | Depth<br>(m) | of<br>Strata                                                                                                                                                                               | 2 2 3 2                 | Graph | Ex Low Very Low Needium High Very High Ex High Water | Spacing (m) | B - Bedding J - Joint<br>S - Shear F - Fault                                     | Type | Core  | RQD<br>% | Test Results &       |
| 199 |      | 11           | SANDSTONE - high strength,<br>slightly and moderately weathered<br>with some fresh stained zones,<br>slightly fractured, light grey and<br>orange, medium grained sandstone<br>(continued) | EW HW WWW               |       | (57.1)                                               | 0.00        | 10.68m: B11°, pl, ro, fe<br>10.78m: B11°, pl, ro, fe<br>10.85m: B11°, pl, ro, fe |      | J - W |          | Comments PL(A) = 1.3 |
| 63  | -    | 12           |                                                                                                                                                                                            |                         |       |                                                      |             | 11.76m: B10°, pl, ro, fe<br>12.12m: B11°, pl, ro, fe                             | С    | 100   | 98       | PL(A) = 1.4          |
| 62  | -    | 13           |                                                                                                                                                                                            |                         |       |                                                      |             | 12.27m: B11°, pl, ro, fe<br>12.58m: B11°, pl, ro, fe<br>12.72m: B11°, pl, ro, fe |      |       |          | PL(A) = 1.3          |
| 61  | -    |              |                                                                                                                                                                                            |                         |       |                                                      |             |                                                                                  | С    | 100   | 98       | PL(A) = 1.2          |
| 90  | 1    | 4            |                                                                                                                                                                                            |                         |       |                                                      |             | 13.73-14.0m: J85°, pl, ro, fe  14.6m: B15°, pl, ro, fe                           |      |       |          |                      |
| 59  | - 1: | 5            |                                                                                                                                                                                            |                         |       |                                                      |             | 15.25m: J45°, pl, ro, fe<br>15.5m: J70°, pl, ro, he &                            | С    | 100   | 100      | PL(A) = 1.1          |
|     |      | 6 16.0       | Bore discontinued at 16.0m                                                                                                                                                                 |                         |       |                                                      |             | fe                                                                               |      |       |          | PL(A) = 1.4          |
| 288 | - 17 | 7            |                                                                                                                                                                                            |                         |       |                                                      |             |                                                                                  |      |       |          |                      |
| 57  | - 18 | ,            |                                                                                                                                                                                            |                         |       |                                                      |             |                                                                                  |      |       |          |                      |
| 56  |      |              |                                                                                                                                                                                            |                         |       |                                                      |             |                                                                                  |      |       |          |                      |
| 25  | 19   |              |                                                                                                                                                                                            |                         |       |                                                      |             |                                                                                  |      |       |          |                      |

RIG: Bobcat DRILLER: SS LOGGED: PGH CASING: HW to 1.5m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.5m; NMLC-Coring to 16.0m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS: 15% Water loss at 8.90m; 90% water loss from 13.0m





CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 75 AHD

**EASTING: NORTHING:** 

DIP/AZIMUTH: 90°/--

**BORE No: 108** PROJECT No: 72138 **DATE:** 20/12/2010 SHEET 1 OF 2

|          | Depth | Description                                                                                                                                                                           | Deg<br>Wea | ree of   | f<br>g ¦≧ | Str   | ock<br>ength | _    | Fractur       |                                             |   | Sam        | pling  | & In Situ Testing          |
|----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------|-------|--------------|------|---------------|---------------------------------------------|---|------------|--------|----------------------------|
| R        | (m)   | of                                                                                                                                                                                    |            |          | rapt      | 8   2 | ength        | Nate | Spacin<br>(m) | B - Bedding J - Joint                       |   | Type       | Rec. % | Test Result                |
| 32       | 0.05  | Strata                                                                                                                                                                                | N I N      | \$ ₹ 1   | ž O       | 휘를    | 집티           |      | 0.05          |                                             | 1 | <u>ک</u> ک | Rec    | Comments                   |
| 74       | 0.2   | 1 0 101 10 101 100111111                                                                                                                                                              |            |          |           |       |              |      |               |                                             | A | /E         |        | 10/100mm<br>refusal        |
| <b> </b> |       |                                                                                                                                                                                       | iii        | <u> </u> | · · · · · | 111   |              |      |               |                                             |   |            |        |                            |
| 72 73    |       | LAMINITE - medium strength,<br>moderately to highly weathered,<br>unbroken, grey and red brown, fine<br>grained laminite                                                              |            |          |           |       |              |      |               | 130mm<br>1.93-2.07m: dib<br>2.53-2.80m: dib | C | 96         | 0 92   | PL(A) = 0.4                |
| 71       | 4     |                                                                                                                                                                                       |            |          |           |       |              |      |               | >>                                          |   |            |        | PL(A) = 0.9                |
| 70       | 5     | SANDSTONE - high strength,<br>highly and moderately weathered<br>then slightly weathered, slightly<br>fractured, red brown and light<br>orange, medium to coarse grained<br>sandstone |            |          |           |       |              |      |               |                                             | С | 100        | 97     | PL(A) = 0.5                |
| 69 7     |       |                                                                                                                                                                                       |            |          |           |       |              |      |               |                                             | С | 100        | 98     | PL(A) = 1.6                |
| 8        |       |                                                                                                                                                                                       |            |          |           |       |              |      |               | 8.4m: J55°, pl, ro, fe                      |   |            |        | PL(A) = 1.2<br>PL(A) = 0.8 |
| 9        |       |                                                                                                                                                                                       |            |          |           |       |              |      |               |                                             | С | 100        | 96     | PL(A) = 1                  |

RIG: Bobcat DRILLER: SS LOGGED: PGH CASING: HW to 1.50m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.50m; Rotary (water) to 1.80m; NMLC-Coring to 17.55m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

Environmental sample

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample Piston sample PlD Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diameteral test Is(50) (MPa) PL(D) Point load diameteral test Is(50) (MPa) Pocket penetrometer (kPa) Pocket penetrometer (kPa) S Standard penetralion test sample Water seep S Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test Standard penetralion test



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 75 AHD

**EASTING: NORTHING:** 

DIP/AZIMUTH: 90°/--

**BORE No: 108** PROJECT No: 72138 **DATE:** 20/12/2010

SHEET 2 OF 2

|       |    | D            | Description                                                                                                                                                                        | Degree of Weathering :≅                       | Rock<br>Strength                                   | Fracture    | Discontinuities                              | s    | ampli          | ng &     | In Situ Testing               |
|-------|----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|-------------|----------------------------------------------|------|----------------|----------|-------------------------------|
|       | 교  | Depth<br>(m) | of<br>Strata                                                                                                                                                                       | Degree of WWW WWW WWW WWW WWW WWW WWW WWW WWW | Ex Low Low Low Low Low Low Low Low Low Low         | Spacing (m) | B - Bedding J - Joint<br>S - Shear F - Fault | Туре | Core<br>Rec. % | RQD<br>% | Test Results<br>&<br>Comments |
|       | 64 | - 11         | SANDSTONE - high strength, highly and moderately weathered then slightly weathered, slightly fractured, red brown and light orange, medium to coarse grained sandstone (continued) |                                               |                                                    |             | 10.38m: B3°, pl, ro, cly                     | С    | 100            | 96       | PL(A) = 1.3                   |
|       | 63 | 12           |                                                                                                                                                                                    |                                               |                                                    |             |                                              |      |                |          | PL(A) = 1.1                   |
|       | 1  | 13           |                                                                                                                                                                                    |                                               |                                                    |             |                                              | С    | 100            | 100      | PL(A) = 1.3                   |
| 61    |    |              | SANDSTONE - medium strength,<br>fresh, slightly fractured, light grey,<br>medium to coarse grained<br>sandstone                                                                    |                                               |                                                    |             | :                                            |      |                |          | PL(A) = 1.2                   |
| -     | -  |              |                                                                                                                                                                                    |                                               |                                                    | النبداا     | 14.34m: Cz                                   |      |                |          |                               |
| 09    | 1  | 5            |                                                                                                                                                                                    |                                               | ]     <del>                                 </del> |             |                                              |      |                |          | PL(A) = 0.9                   |
| 59    | 1  | 6            |                                                                                                                                                                                    |                                               |                                                    |             | 15.4m: J25°, pl, ro, fe                      |      |                |          | PL(A) = 0.8                   |
| 58    |    |              |                                                                                                                                                                                    |                                               |                                                    |             | 15.94m: Cs, 10mm                             | С    | 100 1          | 00       | PL(A) = 0.9                   |
|       |    | 17.55 E      | Bore discontinued at 17.55m                                                                                                                                                        |                                               |                                                    |             |                                              |      |                |          | PL(A) = 0.9                   |
| 56 57 |    | 3            |                                                                                                                                                                                    |                                               |                                                    |             |                                              |      |                |          |                               |

RIG: Bobcat DRILLER: SS LOGGED: PGH CASING: HW to 1.50m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.50m; Rotary (water) to 1.80m; NMLC-Coring to 17.55m

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** 

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample PlD Photo ionisation detector (ppm)
Piston sample PL(A) Point load axial test Is(50) (MPa)
U Tube sample (x mm dia.)
W Water sample Pp Pocket penetrometer (kPa)

Water seep S S Standard penetration test
Water level V Shear vane (kPa)



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

**SURFACE LEVEL:** 73.6 AHD

**EASTING:** 

NORTHING:

PROJECT No: 72138 **DATE:** 20/12/2010 SHEET 1 OF 2

**BORE No: 109** 

DIP/AZIMUTH: 90°/--

|            |              | Description                                                      | \V  | Degree of<br>/eathering   | . <u>e</u>               | Rock<br>Strength    | Fracture                                     | Discontinuities                                     | S            |            |          | In Situ Testing |
|------------|--------------|------------------------------------------------------------------|-----|---------------------------|--------------------------|---------------------|----------------------------------------------|-----------------------------------------------------|--------------|------------|----------|-----------------|
| R          | Depth<br>(m) | of                                                               |     |                           | Log                      | Water utgnests      | Spacing (m)                                  | B - Bedding J - Joint                               | Type         | <u>е</u> è | Rab<br>% | Test Results    |
|            | ()           | Strata                                                           | 3   | MW MW SW SW SW            | Ō                        | Ex Low Mediu        | 0.05<br>0.10<br>0.50<br>1.00                 | S - Shear F - Fault                                 | 7            | ြပ္ပ       | 5 5 %    | & Comments      |
| F          |              | ASPHALT & ROADBASE - 200mm                                       | T   |                           |                          |                     |                                              |                                                     | A/E          |            | +        |                 |
| FF         | 0.2<br>0.3   | FILLING - gravelly sandy clay filling-                           | 1   | 1111                      | $\otimes$                |                     |                                              |                                                     |              |            |          |                 |
| [ m        |              | FILLING - crushed sandstone gravel filling with some clay        | j   |                           | $\otimes$                |                     |                                              |                                                     | A/E          | =          |          |                 |
| 1          |              | graver mining with some clay                                     |     |                           | $\bowtie$                |                     |                                              |                                                     |              |            |          |                 |
|            | -1           |                                                                  | i   | iiii                      | $\langle \times \rangle$ |                     |                                              | Note: Unless otherwise<br>stated, rock is fractured | A/E          |            |          | 9,10/30mm       |
|            |              |                                                                  |     |                           | $\bowtie$                |                     | 11 11                                        | along rough planar                                  | A/E<br>S     |            |          | refusal         |
| ŧ ŧ        | 1.3          | SANDSTONE - extremely low                                        | li  |                           |                          |                     |                                              | bedding planes dipping<br>between 0°- 10°           |              |            |          |                 |
| 2          |              | strength, extremely weathered sandstone                          | 1   |                           |                          |                     |                                              |                                                     |              |            |          |                 |
| <u> </u>   | 1.8          | SHALY CLAY - hard, grey shaly                                    | +   |                           | 7-7                      |                     |                                              |                                                     | <del> </del> | +          | 1        |                 |
| <b> </b>   | 2            | clay                                                             | İ   |                           | [-]                      |                     | # !!                                         |                                                     |              |            |          |                 |
| <b> </b>   |              |                                                                  | 1   |                           | [-]                      |                     | —————————————————————————————————————        |                                                     | C            | 100        | 11       | PL(A) = 0.1     |
| E_E        | 2.4          | LAMINITE - very low strength,                                    | i,  | iiii                      |                          |                     |                                              |                                                     |              |            |          |                 |
|            | 2.73         | highly weathered, fragmented, \grey, medium to coarse grained    | #   |                           |                          | <del>▝</del> ╬┼┼┼┤╠ | ##                                           | 2.63m: CORE LOSS:                                   |              |            |          |                 |
| <b>‡ ‡</b> | 3            | laminite                                                         |     | li i i i                  |                          |                     |                                              | 100mm                                               |              |            |          |                 |
| <b>‡</b> ‡ |              | SANDSTONE - medium to high and high strength, highly to slightly |     |                           |                          |                     |                                              |                                                     |              |            |          | PL(A) = 0.9     |
| ĒĒ         |              | weathered, slightly fractured,                                   | i   |                           |                          |                     | ┡┿┱┆┆                                        | 3.38m: J85°, pl, ro, he                             |              |            | 1        |                 |
| [R         |              | purple red to light orange, medium to coarse grained sandstone   | - 1 |                           |                          |                     |                                              | 2,00m, 000 ; pi, 10; 110                            |              |            |          |                 |
| <u> </u>   |              | -                                                                | i   |                           |                          |                     | i                                            |                                                     |              |            |          | PL(A) = 5       |
| ‡ ‡        | 4            | - very high strength from 3.9-4.0m                               | -   |                           |                          | ++++                |                                              | 4.05m: Cs, 5mm                                      | С            | 97         | 82       |                 |
| <b>F</b>   |              |                                                                  | il  |                           |                          |                     |                                              | 1.00111.00, 0111111                                 |              |            |          |                 |
| - 63       |              |                                                                  |     |                           |                          |                     |                                              |                                                     |              |            |          | PL(A) = 0.9     |
| 9          |              |                                                                  | [   | <del>'</del> n'           |                          |                     |                                              |                                                     |              |            |          |                 |
| <u> </u>   | 5            |                                                                  | į   |                           |                          |                     |                                              |                                                     |              |            |          |                 |
| <b>;</b>   |              |                                                                  | ł   |                           |                          |                     |                                              |                                                     |              |            |          | PL(A) = 1       |
| <b>;</b>   |              |                                                                  | i   | ili i i                   |                          | i i i   i    i      | i di di                                      |                                                     |              |            |          |                 |
| -8         |              |                                                                  |     |                           |                          |                     |                                              |                                                     |              |            |          |                 |
| <u> </u>   |              |                                                                  | i   | iliii                     |                          |                     | ii ii                                        |                                                     |              |            |          | PL(A) = 0.8     |
|            | 5            |                                                                  |     |                           |                          |                     |                                              |                                                     |              |            |          | 1 2019 - 0.5    |
|            |              |                                                                  | i   |                           |                          |                     |                                              |                                                     |              |            |          |                 |
|            | ļ            |                                                                  |     | <b>!!</b>                 | ::::                     |                     |                                              |                                                     |              |            |          |                 |
| -6         |              |                                                                  | İ   | i i <b>l</b> i i i        |                          |                     |                                              |                                                     |              |            |          | PL(A) = 1.2     |
| :          | ,            |                                                                  | 1   | ! ! <b>!</b> ! ! <b>!</b> |                          |                     |                                              |                                                     |              |            |          | 1 = (1) = 1.2   |
| :          |              |                                                                  | 1   | :                         |                          |                     |                                              |                                                     | С            | 100        | 98       |                 |
| •          |              |                                                                  | 1   | ! <b>! [</b>              |                          |                     |                                              |                                                     |              |            |          | PL(A) = 0.7     |
| -96        |              |                                                                  | 1   | ╎╎┙╣┆┋                    |                          |                     |                                              |                                                     |              |            |          |                 |
| :          |              | İ                                                                | -   | ! i <b>!</b> ! i [        |                          |                     |                                              |                                                     |              |            |          |                 |
| -  -8      | 1            |                                                                  | 1   |                           |                          |                     |                                              |                                                     |              |            |          |                 |
| :          | 8.2          | SANDSTONE - medium to high                                       | į   |                           |                          |                     | <b>     </b>                                 |                                                     |              |            |          | PL(A) = 1       |
| 9          |              | strength, slightly weathered and fresh, slightly fractured to    | 1   |                           |                          |                     | <u>                                     </u> |                                                     |              |            |          |                 |
| 9          |              | unbroken, light orange and grey,                                 | i   | i ili i E                 |                          |                     |                                              | -                                                   |              |            |          |                 |
| - 5        |              | medium to coarse grained sandstone                               |     |                           |                          |                     |                                              |                                                     |              |            |          |                 |
| ţ          |              |                                                                  |     | <b>`^'</b> `              |                          |                     |                                              |                                                     |              |            |          | PL(A) = 0.5     |
| F          |              |                                                                  |     |                           |                          |                     | !!                                           |                                                     | c            | 100        | 100      | , , ,           |
| 8          |              |                                                                  | 1   | <b>  L</b>                |                          |                     |                                              |                                                     |              |            |          |                 |
| E          |              |                                                                  | į   | ili i                     |                          |                     |                                              |                                                     |              |            |          |                 |
|            |              |                                                                  | L   |                           |                          |                     |                                              |                                                     |              |            |          |                 |

RIG: Bobcat DRILLER: SY/SS LOGGED: PGH CASING: HW to 1.40m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.40m; NMLC-Coring to 16.18m WATER OBSERVATIONS: No free groundwater observed whilst augering

**REMARKS:** 

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water saep
Water level

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 73.6 AHD

**EASTING:** NORTHING:

**DATE:** 20/12/2010 SHEET 2 OF 2

**BORE No: 109** 

PROJECT No: 72138

DIP/AZIMUTH: 90°/--

| Γ     | Τ,                | D              | Description                                                                                                                                                              | De<br>We | gree<br>atheri | of<br>ing |     | St                 | Rock<br>reng | th                   |       | Fracture | Discontinuities                              | S    | ampl | ing &    | In Situ Testing                     |
|-------|-------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----------|-----|--------------------|--------------|----------------------|-------|----------|----------------------------------------------|------|------|----------|-------------------------------------|
| ā     | 1                 | Depth (<br>(m) | of<br>Strata                                                                                                                                                             |          | WW<br>SW       |           | Log | Ex Low<br>Very Low | Medium       | Very High<br>Ex High | VValt |          | B - Bedding J - Joint<br>S - Shear F - Fault | Type | Core | Rab<br>% | Test Results<br>&<br>Comments       |
| 62 63 | 1                 | 11             | SANDSTONE - medium to high strength, slightly weathered and fresh, slightly fractured to unbroken, light orange and grey, medium to coarse grained sandstone (continued) |          |                |           |     |                    |              |                      |       |          | 10.68m: J80°, pl, ro, fe                     | С    | 100  | 100      | PL(A) = 0.9  PL(A) = 0.8  PL(A) = 1 |
|       | - 1:              | 2              |                                                                                                                                                                          |          |                |           |     |                    |              |                      |       |          |                                              |      |      |          | PL(A) = 1                           |
| 61    | -<br>-<br>-<br>13 | 3              |                                                                                                                                                                          |          |                |           |     |                    |              |                      |       |          |                                              |      |      |          | PL(A) = 1                           |
| 09    |                   |                |                                                                                                                                                                          |          |                |           |     |                    |              |                      |       |          | 13.4m: Cs, 10mm                              | С    | 100  | 100      | PL(A) = 0.4                         |
| 59    | - 14              | 4              |                                                                                                                                                                          |          |                |           |     |                    |              |                      |       |          |                                              |      |      |          | PL(A) = 0.7                         |
| 58    | - 15              |                |                                                                                                                                                                          |          |                |           |     |                    |              |                      |       |          |                                              | С    | 100  | 100      | PL(A) = 1.2                         |
| 57    |                   |                | Bore discontinued at 16.18m                                                                                                                                              |          |                |           |     |                    |              |                      |       |          |                                              |      |      |          |                                     |
| 26    | - 17              |                |                                                                                                                                                                          |          |                |           |     |                    |              |                      |       |          |                                              |      |      |          |                                     |
| 54 55 | 19                |                |                                                                                                                                                                          |          |                |           |     |                    |              |                      |       |          |                                              |      |      |          |                                     |

RIG: Bobcat DRILLER: SY/SS LOGGED: PGH CASING: HW to 1.40m

TYPE OF BORING: Solid flight auger (TC-bit) to 1.40m; NMLC-Coring to 16.18m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

Environmental sample

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sam
E Environmental Core drilling Disturbed sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample Piston sample PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) PC(X) Point load diametral test Is(50) (MPa) PC(X) Point load diametral test Is(50) (MPa) PC(X) Point load diametral test Is(50) (MPa) PC(X) Point load diametral test Is(50) (MPa) PC(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) POINT IS(X) PO



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 74 AHD

EASTING: PRO-NORTHING: DATE DIP/AZIMUTH: 90°/-- SHEE

BORE No: 110 PROJECT No: 72138 DATE: 10/12/2010 SHEET 1 OF 2

| Depth                                    | Description                                                                                                                                                                                                 | Degree of Weathering Sw W W W W W W W W W W W W W W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>        | Fracture<br>Spacing                          | Discontinuities                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampling    | & In Situ Testing        |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|
| 교 (m)                                    | of<br>Strata                                                                                                                                                                                                | Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Me | х ніди<br>Wate | 0.00<br>0.00<br>0.10<br>0.50<br>0.10<br>0.10 | B - Bedding J - Joint<br>S - Shear F - Fault                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Core Rec. % | Test Results & Comments  |
| -2 − 1 1.0                               | FILLING - poorly compacted, brown silty clay filling with organic matter, moist  CONCRETE - 300mm thick  LAMINITE - low strength, moderately weathered, brown laminite                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes dipping<br>between 0°- 10° | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /E          | Comments                 |
| 1.6                                      | LAMINITE - high strength with low<br>strength, bands, slightly and<br>moderately weathered, fragmented<br>to fractured, purple red and grey<br>laminite                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | PL(A) = 0.8  PL(A) = 3   |
| 3.1                                      | 2.72-3.10m: extremely low strength<br>band with 200mm thick clay seam<br>SANDSTONE - high strength,<br>moderately weathered and fresh,<br>fractured and slightly fractured,<br>orange brown and light grey, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              | 2.9m: Cs, 200mm                                                                                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100         |                          |
| 4                                        | medium grained sandstone - distinct laminations from 3.1m to 5.2m, 5.9m to 6.2m and 7.3m to 7.7m                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              | 3.54m: J80°- 90°, cu, ro,<br>fe                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | PL(A) = 1.4              |
| -8-5                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              |                                                                                                                        | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |             | PL(A) = 1.4              |
| 689                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              |                                                                                                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100         | PL(A) = 1.4  PL(A) = 1.6 |
| 7                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | PL(A) = 1.4              |
| 8 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              |                                                                                                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100         | PL(A) = 1.9              |
| 9.3                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              | 09m: J35°, pl, ro, fe<br>6m: B20°, pl, ro, cly                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | PL(A) = 0.6              |

RIG: Bobcat DRILLER: SS LOGGED: PGH CASING: HW to 0.70m

TYPE OF BORING: Solid flight auger (TC-bit) to 0.70m; NMLC-Coring to 16.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 16.0m; Water level measured at 11.5m on 20/12/10 and 11.7m on 22/12/10
SURVEY DATUM:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G Gas sample PID Photo ionisation detector (ppm)
Bulk sample P Piston sample PL(A) Point load axial test is(50) (MPa)
BLK Block sample U, Tube sample (x mm dia.)
C Core drilling W Water sample p Pocket penetrometer (kPa)
D Disturbed sample V Water seep S Standard penetration test
E Environmental sample S Water level V Shear vane (kPa)



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

**SURFACE LEVEL: 74 AHD** 

**EASTING:** NORTHING: DIP/AZIMUTH: 90°/--

**BORE No: 110** PROJECT No: 72138 **DATE:** 10/12/2010

SHEET 2 OF 2

| Γ      | T          |              | Description                                                                                                                                                                                          | Degree of Roc<br>Weathering 을 Stren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ck                              | Fracture       | Discontinuities                          | s    | ampl | ing &    | In Situ Testing                       |
|--------|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|------------------------------------------|------|------|----------|---------------------------------------|
| ā      | 1          | Depth<br>(m) | of                                                                                                                                                                                                   | Meathering Graphic Craphic Company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company o | High Very High HS Ex High Water | Spacing<br>(m) | B - Bedding J - Joint                    |      |      |          | · · · · · · · · · · · · · · · · · · · |
| -      | 5          |              | Strata                                                                                                                                                                                               | HWW MWW SWW SWW FR FS Gold Gold Gold Gold Gold Gold Gold Gold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E KIND                          |                | S - Shear F - Fault                      | Туре | ပြည် | RQD<br>% | &<br>Comments                         |
| ****** |            | 10.7         | SANDSTONE - medium then low strength with some extremely low strength zones, fresh then slightly and moderately weathered, slightly fractured, light grey and orange brown, medium grained sandstone |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                | 10.27m: Cs, 10mm<br>10.63m: Cz, 50mm     | С    | 100  |          | PL(A) = 0.2                           |
|        |            | 11.66        | (continued)  SANDSTONE - high strength, fresh, slightly fractured, light grey, medium grained sandstone  SANDSTONE - medium strength,                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                | 11.46m: Cs, 10mm                         |      |      |          | PL(A) = 1                             |
| 62     | - 1<br>- 1 | 2            | moderately weathered, slightly fractured, orange brown, medium grained sandstone                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                | 11.66m: Cs, 10mm<br>11.73m: J35°, pl, ro | С    | 100  |          |                                       |
| 61     | - 1:       | 13.1         | SANDSTONE - high strength,                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                | 12.5-12.54m: B (x2) 10°, pl, ro, cly     |      |      |          | PL(A) = 0.3                           |
| -      |            | - 1          | slightly weathered and fresh,<br>slightly fractured, light orange and<br>grey, medium grained sandstone                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          |      |      |          | PL(A) = 1.1                           |
| 09     | - 14       | 4            |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          |      |      |          |                                       |
| 59     | 15         |              |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          | С    | 100  |          | PL(A) = 1                             |
| 58     | 16         | 16.0 E       | Bore discontinued at 16.0m                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          |      |      |          | PL(A) = 1.3                           |
|        |            |              |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          |      |      |          |                                       |
| 25     | 17         |              |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          |      |      |          |                                       |
| 95     | 8          |              |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          |      |      |          |                                       |
|        |            |              |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          |      |      |          |                                       |
| 55 1   | 9          |              | 1                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          |      |      |          |                                       |
|        |            |              |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                                          |      |      |          |                                       |

RIG: Bobcat DRILLER: SS LOGGED: PGH CASING: HW to 0.70m

TYPE OF BORING: Solid flight auger (TC-bit) to 0.70m; NMLC-Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 16.0m; Water level measured at 11.5m on 20/12/10 and 11.7m on 22/12/10 SURVEY DATUM:

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
P Piston sample
U, Tube sample (x mm dia.)
W Water sample
E D Water seep
P Water seep
P Pocket penetrometer (kPa)
S Standard penetration test
S Shear vane (kPa)



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD

**EASTING:** NORTHING: PROJECT No: 72138 **DATE:** 9/12/2010

BORE No: 111

DIP/AZIMUTH: 90°/--SHEET 1 OF 2

|                                         |                                          |                       | Description                                                                                                                                                                                                                          | Degree of<br>Weathering | , <u>.</u> | Rock<br>Strength                                                                | F    | racture    | Discontinuities                                                                                                        |    | Sam  | pling 8    | & In Situ Testing          |
|-----------------------------------------|------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|---------------------------------------------------------------------------------|------|------------|------------------------------------------------------------------------------------------------------------------------|----|------|------------|----------------------------|
|                                         | 귛                                        | Depth<br>(m)          | of                                                                                                                                                                                                                                   |                         | le g       | Ex Low Very Low Low Low Low Medium High Very High Ex High Stringh Water Vivater | S    | pacing (m) | B - Bedding J - Joint                                                                                                  |    | g g  | % 0        | Test Results               |
|                                         |                                          |                       |                                                                                                                                                                                                                                      | EW HEW ES SW BEW        | Ō          | EXTON FILE                                                                      | 0.04 | 50.0       | S - Shear F - Fault                                                                                                    |    | Core | Rob<br>Rob | % & Comments               |
|                                         | 72                                       | 0.15-<br>0.5-<br>0.8- | CONCRETE - 150mm thick  FILLING - brown silty clay filling, with some organic matter (grass cuttings) and sub-rounded gravel  FILLING - light brown, silty clay filling with some angular gravel  LAMINITE - extremely low strength. |                         |            |                                                                                 |      |            | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes dipping<br>between 0°- 10° | A  | /E   |            | 20/40mm                    |
| ŀ                                       | 7                                        | '.'                   | extremely weathered, red purple /                                                                                                                                                                                                    |                         | ::::       |                                                                                 |      | 5          | · · · · · · · · · · · · · · · · · · ·                                                                                  | 13 |      |            | refusal                    |
|                                         | 70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2                     | LAMINITE - high strength with extremely low strength bands, highly weathered with extremely weathered bands, highly fractured to fractured, grey and red brown, medium grained laminite                                              |                         |            |                                                                                 | T    |            | 1.7m: Cs, 10mm 2.05m: Cs, 20mm 2.4m: Cs, 20mm 2.53m: J45°, pl, ro, cly 2.7-2.9m: F90°, pl, ro,                         | C  |      |            | PL(A) = 1.2                |
|                                         |                                          | 3                     |                                                                                                                                                                                                                                      |                         |            |                                                                                 |      |            | 50mm displaced                                                                                                         |    |      |            | PL(A) = 1.1                |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5                                        | t<br>  \<br>  f       | SANDSTONE - medium to high then high strength, slightly weathered then fresh, slightly fractured, light grey then orange brown, medium grained sandstone, hickly bedded with indistinct and                                          |                         |            |                                                                                 |      | #          | 4.09m: Cs, 30mm                                                                                                        | С  | 100  | 34         | PL(A) = 1                  |
| 9 99                                    | 6                                        |                       | distinct laminations                                                                                                                                                                                                                 |                         |            |                                                                                 |      | 5          | i.3m: J60°, pl, ro, he                                                                                                 |    |      |            | PL(A) = 0.9                |
| 65                                      | -7                                       |                       |                                                                                                                                                                                                                                      |                         |            |                                                                                 |      | 6          | .35m: Cs, 20mm                                                                                                         |    |      |            | PL(A) = 0.9 PL(A) = 1.5    |
| 64                                      | -8                                       | 9.0                   | ANDSTONE - high strength,                                                                                                                                                                                                            |                         |            |                                                                                 |      |            |                                                                                                                        | С  | 100  | 99         | PL(A) = 1.1<br>PL(A) = 0.8 |
| 63                                      |                                          | lig<br>sli<br>sa      | ightly then moderately weathered, ht grey then orange brown, ightly fractured, medium grained andstone, thickly bedded with stinct laminations                                                                                       |                         |            |                                                                                 |      |            |                                                                                                                        | С  | 100  | 92         | PL(A) = 1.2                |

RIG: Bobcat DRILLER: SY LOGGED: PGH CASING: HW to 1.0m TYPE OF BORING: Diatube to 0.15m; Solid flight auger (TC-bit) to 1.0m; Rotary (water) to 1.10m; NMLC-Coring to 14.20m

WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

Environmental sample

**SAMPLING & IN SITU TESTING LEGEND** 

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample G Gas sample
P Piston sample (x mm dia.)
U Tube sample (x mm dia.)
W Water sample
D Water seep
Water level

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

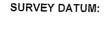
LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD

**EASTING: NORTHING:** DIP/AZIMUTH: 90°/--

BORE No: 111 PROJECT No: 72138 **DATE:** 9/12/2010 SHEET 2 OF 2

| Γ                                        | T        | Description                                                                                                                                                          | Degree of WWW 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | Rock                                                                                        | Fracture                                          | Discontinuities                              | -    | ama!   | ing °    | In City Tastin               |
|------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|------|--------|----------|------------------------------|
| 교                                        | Depth    | of                                                                                                                                                                   | Weathering                                        | Ex Low Lery Low Lery Low Lery Low Lery Low Lery Low Lery Low Lery High Lery High Lery Water | Spacing                                           |                                              |      |        |          | In Situ Testing Test Results |
| -                                        | (m)      | Strata                                                                                                                                                               | C S < <                                           | Waling Paris                                                                                | (m)                                               | B - Bedding J - Joint<br>S - Shear F - Fault | Type | ore of | Rab<br>% | &                            |
| -                                        |          | SANDSTONE - high strength,                                                                                                                                           | WH WE SEE                                         | E KE HE ME LE KE TE LE LE LE LE LE LE LE LE LE LE LE LE LE                                  | 0.05<br>0.10<br>0.50<br>1.00                      | o onour 1 Tuur                               | 1-   | 10 %   | 1-       | Comments                     |
| 62                                       | -11      | slightly then moderately weathered, light grey then orange brown, slightly fractured, medium grained sandstone, thickly bedded with distinct laminations (continued) |                                                   |                                                                                             |                                                   | 10.78m: Cs, 7mm                              |      |        |          | PL(A) = 1.3                  |
| 61                                       | <b>-</b> |                                                                                                                                                                      |                                                   |                                                                                             |                                                   |                                              | С    | 100    | 92       | PL(A) = 1.2                  |
| 09                                       | -12      |                                                                                                                                                                      |                                                   |                                                                                             |                                                   |                                              |      |        |          | PL(A) = 1.3                  |
| 59                                       | -13      |                                                                                                                                                                      |                                                   |                                                                                             |                                                   | į                                            | С    | 100    | 97       |                              |
| FF                                       |          |                                                                                                                                                                      |                                                   |                                                                                             |                                                   |                                              |      |        |          | DI (A) = 4.4                 |
| + +                                      | 14       | İ                                                                                                                                                                    |                                                   |                                                                                             | [                                                 |                                              |      |        |          | PL(A) = 1.4                  |
| 18                                       | 14.2     | Bore discontinued at 14.2m                                                                                                                                           | 1 1 1 1                                           | <del>╏╸</del> ┇                                                                             | <del>-                                     </del> |                                              |      |        | -        | PL(A) = 1                    |
| 5 95 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |          |                                                                                                                                                                      |                                                   |                                                                                             |                                                   |                                              |      |        |          |                              |


RIG: Bobcat DRILLER: SY LOGGED: PGH CASING: HW to 1.0m TYPE OF BORING: Diatube to 0.15m; Solid flight auger (TC-bit) to 1.0m; Rotary (water) to 1.10m; NMLC-Coring to 14.20m

WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G G Gas sample Piston sample Piston sample Pl.(A) Point load axial test ls(50) (MPa) PL.(D) Point load diametral test ls(50) (MPa) PL.(D) Point load diametral test ls(50) (MPa) pp Pocket penetrometer (kPa) pp S Standard penetration test water seep S Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetration test Standard penetratio





CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72 AHD

**EASTING: NORTHING:** 

DIP/AZIMUTH: 90°/--

BORE No: 112 PROJECT No: 72138 **DATE:** 20/12/2010 SHEET 1 OF 2

|       | T  |              | Description                                                                                                                                                      | Degree of Weathering .♀             | Rock<br>Strength                                                                 | Fracture       | Discontinuities                                                                                                        |   | Samp | ling &     | In Situ Testing        |
|-------|----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------|---|------|------------|------------------------|
| ā     | 뢰  | Depth<br>(m) | of                                                                                                                                                               | Meathering Graphic Log              | Ex Low Very Low Clow Medium High Very High Ex High Water Water Water Water Water | Spacing<br>(m) | B - Bedding J - Joint                                                                                                  |   | g g  | % <u>0</u> | Test Results           |
|       | 2  |              | Strata                                                                                                                                                           | EW<br>MWW<br>SW<br>SW<br>FIS<br>FIS | Very Very Very Very Very Very Very Very                                          |                | S - Shear F - Fault                                                                                                    | F | Core | RQD<br>%   | &<br>Comments          |
|       |    |              | PAVERS   FILLING - yellow brown, sand filling   FILLING (ROADBASE) - grey blue   metal gravel filling   LAMINITE - extremely low strength, yellow brown laminite |                                     |                                                                                  |                | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes dipping<br>between 0°- 10° | A | E    |            | 10,12/125mm<br>refusal |
| 02    |    |              | LAMINITE - medium and high<br>strength, highly to moderately<br>weathered, slightly fractured,<br>orange brown, grey and purple red<br>laminite                  |                                     |                                                                                  |                |                                                                                                                        | С | 100  | 98         | PL(A) = 0.8            |
| 69    |    | 3            | 2.19-2.4m: fragmented zone                                                                                                                                       |                                     |                                                                                  |                | 2.93m: J45°, st, ro, cln                                                                                               |   |      |            | PL(A) = 0.6            |
| 67 68 |    | 4.6          | SANDSTONE - high strength, nighly weathered to fresh, fractured o slightly fractured, orange brown and grey, medium to coarse grained sandstone                  |                                     |                                                                                  |                |                                                                                                                        | С | 100  | 96         | PL(A) = 1.4            |
| 99    | -6 |              |                                                                                                                                                                  |                                     |                                                                                  |                |                                                                                                                        |   |      |            | PL(A) = 1.6            |
| 66    | 7  |              |                                                                                                                                                                  |                                     |                                                                                  |                |                                                                                                                        | С | 100  | 93         | PL(A) = 1.5            |
| 64    | 8  |              |                                                                                                                                                                  |                                     |                                                                                  |                |                                                                                                                        |   |      |            | PL(A) = 1              |
| 63    | €  |              |                                                                                                                                                                  |                                     |                                                                                  | ;              |                                                                                                                        |   |      |            | PL(A) = 1              |
|       |    | 9.           | 45-11.20m: distinctly laminated    <br>  I<br>  I                                                                                                                |                                     |                                                                                  |                |                                                                                                                        | С | 100  | 99         | PL(A) = 1              |

RIG: Multi-drill DRILLER: SK LOGGED: PGH CASING: NW to 1.2m

TYPE OF BORING: Diatube to 0.1m; Solid flight auger (TC-bit) to 1.2m; NMLC-Coring to 14.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

**REMARKS:** 

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
P Piston sample
U, Tube sample (x mm dia.)
W Water sample
W Water seep

Water level

Water level
PID Photo ionisation detector (ppm)
PL(A) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load dia



CLIENT:

Stamford Property Services Pty Ltd

PROJECT:

Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72 AHD

**EASTING: NORTHING:**  PROJECT No: 72138

BORE No: 112

DIP/AZIMUTH: 90°/--

**DATE:** 20/12/2010 SHEET 2 OF 2

|                                                 |    | Donth        | Description                                                                                                                       | Degree of Weathering                             | j <u>e</u> | Rock<br>Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fracture       | Discontinuities                              | s    | ampl     | ing &    | In Situ Testing            |
|-------------------------------------------------|----|--------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------|------|----------|----------|----------------------------|
| Ī                                               | 뢰  | Depth<br>(m) | of<br>Strata                                                                                                                      |                                                  | Graph      | Ex Low Very Low Medium High Very High Ex High Ex High Oot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spacing<br>(m) | B - Bedding J - Joint<br>S - Shear F - Fault | Туре | ore<br>% | RQD<br>% | Test Results &             |
| H                                               | 8  |              | SANDSTONE - high strength.                                                                                                        | T SW HW                                          |            | Nedy Very Lex High Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Con | 0.05           | S - Shear F - Fault                          | -    | 0 %      | 2 122    | Comments                   |
|                                                 |    | -11          | highly weathered to fresh, fractured to slightly fractured, orange brown and grey, medium to coarse grained sandstone (continued) |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              | С    | 100      | 99       | PL(A) = 1.5                |
|                                                 |    | 12           |                                                                                                                                   |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              |      |          |          | PL(A) = 1.3                |
| 59                                              |    | 13           |                                                                                                                                   |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              | С    | 100      | 94       | PL(A) = 1.3<br>PL(A) = 1.1 |
|                                                 |    |              | •                                                                                                                                 | <del>-    </del>                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 13.52m: Cs, 12mm                             |      |          |          |                            |
| 88                                              | -1 | 14 14.0      | Bore discontinued at 14.0m                                                                                                        | <del>                                     </del> |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              |      |          |          |                            |
| 54 55 64 65 65 65 65 65 65 65 65 65 65 65 65 65 | 17 | 7            |                                                                                                                                   |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              |      |          |          |                            |
| 89                                              | 19 |              | 1   1   1   1   1   1   1   1   1   1                                                                                             |                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                              |      |          |          |                            |

RIG: Multi-drill

DRILLER: SK

LOGGED: PGH

CASING: NW to 1.2m

TYPE OF BORING: Diatube to 0.1m; Solid flight auger (TC-bit) to 1.2m; NMLC-Coring to 14.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample Piston sample PL(A) Point load axial test is(50) (MPa)
U, Tube sample (xmm dia.) PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral



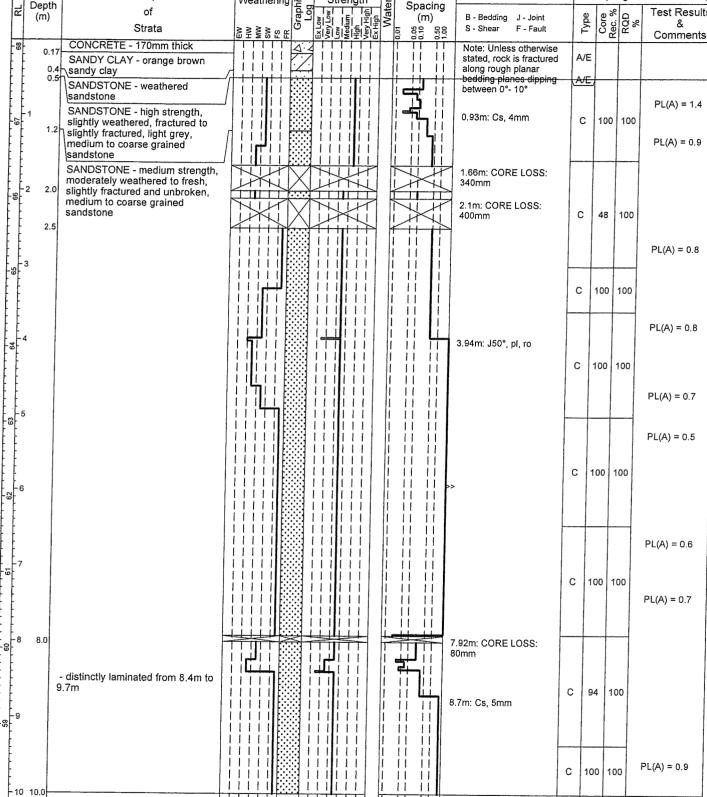
CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 68.1 AHD

**EASTING:** NORTHING:


DIP/AZIMUTH: 90°/--

**DATE:** 17/12/2011 SHEET 1 OF 1

PROJECT No: 72138

**BORE No: 113** 

Rock Fracture Discontinuities Sampling & In Situ Testing Description Weathering Strength Depth Spacing ٥f Core Rec. % Test Results (m) B - Bedding J - Joint ROD Ex Low Very Low Medium High Very High (m) Rec. Strata S - Shear 0.50 W T W S S S E 9,0 Comments CONCRETE - 170mm thick Note: Unless otherwise 0.17 SANDY CLAY - orange brown 11 stated, rock is fractured A/E ∖sandy clay 11 along rough planar bedding planes dippir



Bore discontinued at 10.0m

RIG: Underpinner DRILLER: LC LOGGED: PGH CASING: HW to 0.50m

TYPE OF BORING: Solid flight auger (TC-bit) to 0.50m; NMLC-Coring to 10.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

Environmental sample

**SAMPLING & IN SITU TESTING LEGEND** 

Water seep Water level

Gas sample Piston sample Auger sample Bulk sample B Bulk sample
BLK Block sample Tube sample (x mm dia.) Water sample Core drilling Disturbed sample

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
P Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 67.9 AHD

**EASTING:** PROJECT No: 72138 NORTHING: DATE: 14/12/2011 SHEET 1 OF 1

BORE No: 114

Rock Strength Degree of Fracture Discontinuities Sampling & In Situ Testing Description Weathering 을 Spacing Depth 굾 of Ex Low Very Low Low Medium High Very High Ex High Core Sec. % Test Results (m) (m) B - Bedding J - Joint Strata S - Shear F - Fault 0.05 0.50 EW HW SW MW FR SW FR Comments CONCRETE - 170mm thick 0.17 Note: Unless otherwise SANDY CLAY - orange brown and stated, rock is fractured red, sandy clay (possible filling) along rough planar A/E bedding planes dipping between 0°- 10° SANDSTONE - weathered 1m: J80°, pl, ro, cln sandstone С 100 100 SANDSTONE - medium strength, PL(A) = 0.5moderately to slightly weathered, slightly fractured, purple-red and light grey, medium to coarse 1 grained sandstone with indistinct cross beds PL(A) = 0.7C 100 99 2.44m; Cs. 6mm -69 PL(A) = 0.8100 100 PL(A) = 0.8-8 - 5 С 91 89 SANDSTONE - high strength moderately weathered then slightly PL(A) = 1.2weathered to fresh, slightly fractured and unbroken, orange 6,05 5.92m: CORE LOSS: and light orange-grey, medium to coarse grained, massive sandstone 130mm С 100 100 PL(A) = 1PL(A) = 1.5-8 100 | 100 PL(A) = 1С 100 100 PL(A) = 1.2

Bore discontinued at 10.0m

RIG: Underpinner DRILLER: LC LOGGED: PGH

TYPE OF BORING: Solid flight auger (TC-bit) to 1.0m; NMLC-Coring to 10.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

10 10.0

**SAMPLING & IN SITU TESTING LEGEND** 

A Auger sample
B B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
p
Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)



CASING: NQ to 1.0m

CLIENT: Stamford Property Services Ptv Ltd PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 66.3 AHD

**EASTING:** PROJECT No: 72138 **NORTHING:** DATE: 15/12/2011

**BORE No: 115** 

DIP/AZIMUTH: 90°/--SHEET 1 OF 1 Degree of Weathering Rock Description Fracture Discontinuities Sampling & In Situ Testing Strength Depth Spacing of Core Rec. % RQD Test Results (m) (m) B - Bedding J - Joint Strata S - Shear F - Fault 0.05 99 EW HW SW FS SW FR CONCRETE - 180mm thick Note: Unless otherwise stated, rock is fractured A/E FILLING - roadbase gravel filling 11 along rough planar



Bore discontinued at 10.0m

RIG: Underpinner DRILLER: LC LOGGED: PGH CASING: HQ to 0.50m

TYPE OF BORING: Solid flight auger (TC-bit) to 0.50m; NMLC-Coring to 10.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

**REMARKS:** 

Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Water level

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
p Pocket penetrometer (kPa)
S standard penetration test Shear vane (kPa)



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 66.8 AHD

**EASTING: NORTHING:** 

DIP/AZIMUTH: 90°/--

**BORE No: 116** PROJECT No: 72138 **DATE:** 16/12/2010 SHEET 1 OF 2

Degree of Rock Fracture Discontinuities Sampling & In Situ Testing Description Weathering Strength Spacing Depth Test Results of ROD % 7 Core (m) B - Bedding J - Joint (m) Rec. F - Fault S - Shear Strata 92 1.00 ୴ଵୄୗୢୢ୕ଌୗଵୄୄୗଵୄୗୄଌୗ Comments CONCRETE - 300mm ΑÆ FILLING - yellow brown, crushed sandstone gravel filling Α/E Α/E SANDY CLAY - orange brown sandy clay (possible filling) Note: Unless otherwise stated, rock is fractured Α along rough planar 9 bedding planes dipping between 0°- 10° Α SANDSTONE - weathered sandstone PL(A) = 1.1SANDSTONE - medium to high strength, slightly weathered and fresh, slightly fractured, medium to 8 С coarse grained sandstone 2.93m: CORE LOSS: 3.07 140mm PL(A) = 0.6С PL(A) = 0.6SANDSTONE - high strength. moderately weathered and fresh, unbroken, purple-red and grey, medium to coarse grained С sandstone PL(A) = 1.36.18m; Cs. 20mm С PL(A) = 1PL(A) = 1.2-60 С PL(A) = 1.5С PL(A) = 1.2

RIG: Underpinner DRILLER: LC LOGGED: PGH CASING: HW to 2.30m

TYPE OF BORING: Diatube to 0.2m; Solid flight auger (TC-bit) to 2.30m; NMLC-Coring to 11.84m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 11.8m; Water level measured at 2.4m on 20/12/10, 2.6m on 22/12/10 and 2.7m on 11/1/11

Water seep Water level

Auger sample Bulk sample Block sample Core drilling Disturbed sam

Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample Piton sample PL(A) Point load axial test Is(50) (MPa)
Tube sample (x mm dia.)
W Water sample POCKet penetrometer (kPa)
Water sample S Standard penetration test
With I should V Short van e (kPa) Shear vane (kPa)



CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 66.8 AHD

**EASTING:** 

NORTHING: DIP/AZIMUTH: 90°/--

**BORE No: 116** PROJECT No: 72138 **DATE:** 16/12/2010

SHEET 2 OF 2

|    |           | Description                                                                                                                                          | Degree of<br>Weathering | <u>.</u> 0 | Rock<br>Strength                   |       | Fracture    | Discontinuities       |      |      |          | In Situ Testing |
|----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|------------------------------------|-------|-------------|-----------------------|------|------|----------|-----------------|
| ā  | Depth (m) | of                                                                                                                                                   | vveathering             | aph<br>Log |                                    | Water | Spacing (m) | B - Bedding J - Joint | ø    | ъ %  | RQD<br>% | Test Results    |
|    |           | Strata                                                                                                                                               | EW HW SW FR             | Ō          | Ex Low Low Low Medium High Ex High | > 6   |             | S - Shear F - Fault   | Туре | ပြည် | RG<br>%  | &<br>Comments   |
| 95 | -11       | SANDSTONE - high strength,<br>moderately weathered and fresh,<br>unbroken, purple-red and grey,<br>medium to coarse grained<br>sandstone (continued) |                         |            |                                    |       |             |                       | С    |      |          | PL(A) = 1.1     |
| 55 |           | Bore discontinued at 11.84m                                                                                                                          |                         |            |                                    |       |             |                       | С    |      |          | PL(A) = 1.7     |
|    | -12       | Bore discontinued at 11.04m                                                                                                                          |                         |            |                                    |       |             |                       |      |      |          |                 |
| 54 | -13       |                                                                                                                                                      |                         |            |                                    |       |             |                       |      |      |          |                 |
| 53 | -14       |                                                                                                                                                      |                         |            |                                    |       |             |                       |      |      |          |                 |
| 52 | - 15      |                                                                                                                                                      |                         |            |                                    |       |             |                       |      |      |          |                 |
| 51 | 16        |                                                                                                                                                      |                         |            |                                    |       |             |                       |      |      |          |                 |
| 20 | 17        |                                                                                                                                                      |                         |            |                                    |       |             |                       |      |      |          |                 |
| 49 | 18        |                                                                                                                                                      |                         |            |                                    |       |             |                       |      |      |          |                 |
|    | 19        |                                                                                                                                                      |                         |            |                                    |       |             |                       |      |      |          |                 |
| 47 |           |                                                                                                                                                      |                         |            |                                    | 1     |             |                       |      |      |          |                 |

RIG: Underpinner DRILLER: LC LOGGED: PGH CASING: HW to 2.30m

TYPE OF BORING: Diatube to 0.2m; Solid flight auger (TC-bit) to 2.30m; NMLC-Coring to 11.84m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 11.8m; Water level measured at 2.4m on 20/12/10, 2.6m on 22/12/10 and 2.7m on 11/1/11

SURVEY DATUM:

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
P Piston sample
U, Tube sample (x mm dia.)
W Water sample
E D Water seep
S Standard penertation test
Water level
V Shear vane (kPa) A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sar

Environmental sample



## Appendix H

Laboratory Test Results



**Envirolab Services Pty Ltd** ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

#### **CERTIFICATE OF ANALYSIS 50196**

Client:

**Douglas Partners** 96 Hermitage Rd West Ryde NSW 2114

Attention: Gavin Boyd

Sample log in details:

Your Reference: 72138, Macquarie Village

No. of samples: 19 Soils Date samples received: 24/12/2010 Date completed instructions received: 24/12/2010

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by:

6/01/11

Date of Preliminary Report:

Not issued

Issue Date:

6/01/11

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with \*.

#### **Results Approved By:**

M. Slaudield Matt Mansfield Approved Signatory

> Manay Nancy Zhang Chemist

> > TECHNICAL

Nick Sarlamis Inorganics Supervisor

Envirolab Reference:

50196

Revision No:

R 00

Reporting Supervisor

Jacinta/Hurst

Laboratory Manager

Page 1 of 30

| vTRH & BTEX in Soil                                           |                 |                                   |                                   |                                   |                                   |                                   |
|---------------------------------------------------------------|-----------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Our Reference:                                                | UNITS           | 50196-1                           | 50196-2                           | 50196-3                           | 50196-4                           | 50196-5                           |
| Your Reference                                                |                 | 101/1.0-1.4                       | 102/0.1-0.2                       | 102/0.5-0.6                       | 102/1.0-1.1                       | 103/0.1-0.2                       |
| Date Sampled Type of sample                                   |                 | 20/12/2010                        | 20/12/2010                        | 20/12/2010                        | 20/12/2010                        | 20/12/2010                        |
|                                                               |                 | Soil                              | Soil                              | Soil                              | Soil                              | Soil                              |
| Date extracted                                                | -               | 04/01/2011                        | 04/01/2011                        | 04/01/2011                        | 04/01/2011                        | 04/01/2011                        |
| Date analysed                                                 | -               | 05/01/2011                        | 05/01/2011                        | 05/01/2011                        | 05/01/2011                        | 05/01/2011                        |
| vTRH C6 - C9                                                  | mg/kg           | <25                               | <25                               | <25                               | <25                               | <25                               |
| Benzene                                                       | mg/kg           | <0.5                              | <0.5                              | <0.5                              | <0.5                              | <0.5                              |
| Toluene                                                       | mg/kg           | <0.5                              | <0.5                              | <0.5                              | <0.5                              | <0.5                              |
| Ethylbenzene                                                  | mg/kg           | <1.0                              | <1.0                              | <1.0                              | <1.0                              | <1.0                              |
| m+p-xylene                                                    | mg/kg           | <2.0                              | <2.0                              | <2.0                              | <2.0                              | <2.0                              |
| o-Xylene                                                      | mg/kg           | <1.0                              | <1.0                              | <1.0                              | <1.0                              | <1.0                              |
| Surrogate aaa-Trifluorotoluene                                | %               | 110                               | 117                               | 118                               | 116                               | 126                               |
|                                                               |                 |                                   | Y                                 | 1                                 |                                   |                                   |
| vTRH & BTEX in Soil                                           |                 |                                   |                                   |                                   |                                   |                                   |
| Our Reference:                                                | UNITS           | 50196-6                           | 50196-7                           | 50196-8                           | 50196-9                           | 50196-10                          |
| Your Reference Date Sampled                                   |                 | 104/0.1-0.2                       | 107/0.1-0.2                       | 107/0.5-0.6                       | 109/0.1-0.2                       | 109/0.5-0.6                       |
| Type of sample                                                |                 | 20/12/2010<br>Soil                | 20/12/2010<br>Soil                | 20/12/2010<br>Soil                | 20/12/2010<br>Soil                | 20/12/2010<br>Soil                |
|                                                               |                 |                                   |                                   |                                   |                                   |                                   |
| Date extracted                                                | -               | 04/01/2011                        | 04/01/2011                        | 04/01/2011                        | 04/01/2011                        | 04/01/2011                        |
| Date analysed                                                 | -               | 05/01/2011                        | 05/01/2011                        | 05/01/2011                        | 05/01/2011                        | 05/01/2011                        |
| vTRH C6 - C9                                                  | mg/kg           | <25                               | <25                               | <25                               | <25                               | <25                               |
| Benzene                                                       | mg/kg           | <0.5                              | <0.5                              | <0.5                              | <0.5                              | <0.5                              |
| Toluene                                                       | mg/kg           | <0.5                              | <0.5                              | <0.5                              | <0.5                              | <0.5                              |
| Ethylbenzene                                                  | mg/kg           | <1.0                              | <1.0                              | <1.0                              | <1.0                              | <1.0                              |
| m+p-xylene                                                    | mg/kg           | <2.0                              | <2.0                              | <2.0                              | <2.0                              | <2.0                              |
| o-Xylene                                                      | mg/kg           | <1.0                              | <1.0                              | <1.0                              | <1.0                              | <1.0                              |
| Surrogate aaa-Trifluorotoluene                                | %               | 120                               | 127                               | 117                               | 117                               | 119                               |
|                                                               |                 |                                   |                                   |                                   |                                   |                                   |
| vTRH & BTEX in Soil                                           | LAUTO           | 50400 44                          | 50400.40                          | mo400.40                          | 50400.44                          | 50100.15                          |
| Our Reference: Your Reference                                 | UNITS           | 50196-11<br>110/0.1-0.2           | 50196-12<br>110/0.5-0.6           | 50196-13<br>111/0.2-0.3           | 50196-14                          | 50196-15                          |
| Date Sampled                                                  |                 | 20/12/2010                        | 20/12/2010                        | 9/12/2010                         | 111/0.5-0.6<br>9/12/2010          | 112/0.1-0.2<br>20/12/2010         |
| Type of sample                                                |                 | Soil                              | Soil                              | Soil                              | Soil                              | Soil                              |
| i ybe di Sallible                                             |                 |                                   |                                   |                                   |                                   |                                   |
|                                                               |                 | 04/04/2044                        | 04/04/2044                        | 04/04/2044                        | D 4 / D 4 / D D 4 4 1             |                                   |
| Date extracted                                                | -               | 04/01/2011                        | 04/01/2011                        | 04/01/2011                        | 04/01/2011                        | 04/01/2011                        |
| Date extracted  Date analysed                                 | -<br>-<br>ma/ka | 05/01/2011                        | 05/01/2011                        | 05/01/2011                        | 05/01/2011                        | 05/01/2011                        |
| Date extracted  Date analysed  vTRH C6 - C9                   | -<br>mg/kg      | 05/01/2011<br><25                 | 05/01/2011<br><25                 | 05/01/2011<br><25                 | 05/01/2011<br><25                 | 05/01/2011<br><25                 |
| Date extracted  Date analysed  vTRH C6 - C9  Benzene          | mg/kg           | 05/01/2011<br><25<br><0.5         | 05/01/2011<br><25<br><0.5         | 05/01/2011<br><25<br><0.5         | 05/01/2011<br><25<br><0.5         | 05/01/2011<br><25<br><0.5         |
| Date extracted  Date analysed  vTRH C6 - C9  Benzene  Toluene | mg/kg<br>mg/kg  | 05/01/2011<br><25<br><0.5<br><0.5 | 05/01/2011<br><25<br><0.5<br><0.5 | 05/01/2011<br><25<br><0.5<br><0.5 | 05/01/2011<br><25<br><0.5<br><0.5 | 05/01/2011<br><25<br><0.5<br><0.5 |
| Date extracted  Date analysed  vTRH C6 - C9  Benzene          | mg/kg           | 05/01/2011<br><25<br><0.5         | 05/01/2011<br><25<br><0.5         | 05/01/2011<br><25<br><0.5         | 05/01/2011<br><25<br><0.5         | 05/01/2011<br><25<br><0.5         |

<1.0

110

mg/kg

%

<1.0

121

<1.0

126

<1.0

123

Envirolab Reference: 50196 Revision No: R 00

o-Xylene

Surrogate aaa-Trifluorotoluene

<1.0

130

Client Reference: 72138, Macquarie Village

| vTRH & BTEX in Soil            |       |             |             |             |
|--------------------------------|-------|-------------|-------------|-------------|
| Our Reference:                 | UNITS | 50196-16    | 50196-17    | 50196-18    |
| Your Reference                 |       | 115/0.1-0.2 | 116/0.3-0.4 | 116/1.0-1.1 |
| Date Sampled                   |       | 16/12/2010  | 17/12/2010  | 17/12/2010  |
| Type of sample                 |       | Soil        | Soil        | Soil        |
| Date extracted                 | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed                  | -     | 05/01/2011  | 05/01/2011  | 05/01/2011  |
| vTRH C6 - C9                   | mg/kg | <25         | <25         | <25         |
| Benzene                        | mg/kg | <0.5        | <0.5        | <0.5        |
| Toluene                        | mg/kg | <0.5        | <0.5        | <0.5        |
| Ethylbenzene                   | mg/kg | <1.0        | <1.0        | <1.0        |
| m+p-xylene                     | mg/kg | <2.0        | <2.0        | <2.0        |
| o-Xylene                       | mg/kg | <1.0        | <1.0        | <1.0        |
| Surrogate aaa-Trifluorotoluene | %     | 122         | 127         | 119         |

Envirolab Reference: 50196

Total Reference.

Revision No:

R 00

#### Client Reference: 72138, Macquarie Village

| TDILL: 0-11 (040,000)                  |                                        |             |             |                         | T           |                        |
|----------------------------------------|----------------------------------------|-------------|-------------|-------------------------|-------------|------------------------|
| sTRH in Soil (C10-C36)  Our Reference: | UNITS                                  | 50196-1     | 50196-2     | 50196-3                 | 50196-4     | E0106 E                |
| Your Reference                         |                                        | 101/1.0-1.4 | 102/0.1-0.2 | 102/0.5-0.6             | 102/1.0-1.1 | 50196-5<br>103/0.1-0.2 |
| Date Sampled                           | *****                                  | 20/12/2010  | 20/12/2010  | 20/12/2010              | 20/12/2010  | 20/12/2010             |
| Type of sample                         |                                        | Soil        | Soil        | Soil                    | Soil        | Soil                   |
| Date extracted                         | _                                      | 04/01/2011  | 04/01/2011  | 04/01/2011              | 04/01/2011  |                        |
|                                        | -                                      |             |             |                         |             | 04/01/2011             |
| Date analysed                          | -                                      | 05/01/2011  | 05/01/2011  | 05/01/2011              | 05/01/2011  | 05/01/2011             |
| TRH C10 - C14                          | mg/kg                                  | <50         | <50         | <50                     | <50         | <50                    |
| TRH C <sub>15</sub> - C <sub>28</sub>  | mg/kg                                  | <100        | <100        | <100                    | <100        | <100                   |
| TRH C29 - C36                          | mg/kg                                  | <100        | <100        | <100                    | <100        | <100                   |
| Surrogate o-Terphenyl                  | %                                      | 104         | 109         | 93                      | 95          | 95                     |
| sTRH in Soil (C10-C36)                 |                                        |             |             |                         |             |                        |
| Our Reference:                         | UNITS                                  | 50196-6     | 50196-7     | 50196-8                 | 50196-9     | 50196-10               |
| Your Reference                         |                                        | 104/0.1-0.2 | 107/0.1-0.2 | 107/0.5-0.6             | 109/0.1-0.2 | 109/0.5-0.6            |
| Date Sampled                           |                                        | 20/12/2010  | 20/12/2010  | 20/12/2010              | 20/12/2010  | 20/12/2010             |
| Type of sample                         |                                        | Soil        | Soil        | Soil                    | Soil        | Soil                   |
| Date extracted                         | _                                      | 04/01/2011  | 04/01/2011  | 04/01/2011              | 04/01/2011  | 04/01/2011             |
| Date analysed                          | -                                      | 05/01/2011  | 05/01/2011  | 05/01/2011              | 05/01/2011  | 05/01/2011             |
| TRH C10 - C14                          | mg/kg                                  | <50         | <50         | <50                     | <50         | <50                    |
| TRH C15 - C28                          | mg/kg                                  | <100        | <100        | <100                    | <100        | <100                   |
| TRH C29 - C36                          | mg/kg                                  | <100        | <100        | <100                    | <100        | <100                   |
| Surrogate o-Terphenyl                  | ////////////////////////////////////// | 94          | 95          |                         |             |                        |
| Surrogate 0-1 erprienty                | /0                                     | ] 34        | 90          | 94                      | 94          | 94                     |
| sTRH in Soil (C10-C36)                 |                                        |             |             |                         |             |                        |
| Our Reference:                         | UNITS                                  | 50196-11    | 50196-12    | 50196-13                | 50196-14    | 50196-15               |
| Your Reference                         | ********                               | 110/0.1-0.2 | 110/0.5-0.6 | 111/0.2-0.3             | 111/0.5-0.6 | 112/0.1-0.2            |
| Date Sampled                           |                                        | 20/12/2010  | 20/12/2010  | 9/12/2010               | 9/12/2010   | 20/12/2010             |
| Type of sample                         |                                        | Soil        | Soil        | Soil                    | Soil        | Soil                   |
| Date extracted                         | -                                      | 04/01/2011  | 04/01/2011  | 04/01/2011              | 04/01/2011  | 04/01/2011             |
| Date analysed                          | -                                      | 05/01/2011  | 05/01/2011  | 05/01/2011              | 05/01/2011  | 05/01/2011             |
| TRH C10 - C14                          | mg/kg                                  | <50         | <50         | <50                     | <50         | <50                    |
| TRH C <sub>15</sub> - C <sub>28</sub>  | mg/kg                                  | <100        | <100        | <100                    | <100        | <100                   |
| TRH C29 - C36                          | mg/kg                                  | <100        | <100        | <100                    | <100        | <100                   |
| Surrogate o-Terphenyl                  | %                                      | 99          | 96          | 96                      | 94          | 93                     |
| oTBIL in Sell (040, 000)               |                                        |             |             |                         |             |                        |
| sTRH in Soil (C10-C36) Our Reference:  | UNITS                                  | 50196-16    | 50196-17    | E0106 40                |             |                        |
| Your Reference                         | UNITO                                  | 115/0.1-0.2 | 116/0.3-0.4 | 50196-18<br>116/1.0-1.1 |             |                        |
| Date Sampled                           |                                        | 16/12/2010  | 17/12/2010  | 17/12/2010              |             |                        |
| Type of sample                         |                                        | Soil        | Soil        | Soil                    |             |                        |
| Date extracted                         | -                                      | 04/01/2011  | 04/01/2011  | 04/01/2011              |             |                        |
| Date analysed                          | _                                      | 05/01/2011  | 05/01/2011  | 05/01/2011              |             |                        |
| TRH C10 - C14                          | mg/kg                                  | <50         | <50         | <50                     |             |                        |
| TRH C15 - C28                          | mg/kg                                  | <100        | <100        | <100                    |             |                        |
| TRH C29 - C36                          |                                        |             |             | Į                       |             |                        |
| Surrogate o-Terphenyl                  | mg/kg                                  | <100        | <100        | <100                    |             |                        |
|                                        | %                                      | 96          | 95          | 94                      |             |                        |

Envirolab Reference: 50196 Revision No: R 00

| PAHs in Soil              |       | T           |             |             |             |             |
|---------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference:            | UNITS | 50196-1     | 50196-2     | 50196-3     | 50196-4     | 50196-5     |
| Your Reference            |       | 101/1.0-1.4 | 102/0.1-0.2 | 102/0.5-0.6 | 102/1.0-1.1 | 103/0.1-0.2 |
| Date Sampled              |       | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  |
| Type of sample            |       | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date extracted            | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed             | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Naphthalene               | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Acenaphthylene            | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Acenaphthene              | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Fluorene                  | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Phenanthrene              | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Anthracene                | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Fluoranthene              | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Pyrene                    | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Benzo(a)anthracene        | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Chrysene                  | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Benzo(b+k)fluoranthene    | mg/kg | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
| Benzo(a)pyrene            | mg/kg | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Benzo(g,h,i)perylene      | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Surrogate p-Terphenyl-d14 | %     | 106         | 103         | 101         | 99          | 101         |

| PAHs in Soil              |       |             |             |             |             |             |
|---------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference:            | UNITS | 50196-6     | 50196-7     | 50196-8     | 50196-9     | 50196-10    |
| Your Reference            |       | 104/0.1-0.2 | 107/0.1-0.2 | 107/0.5-0.6 | 109/0.1-0.2 | 109/0.5-0.6 |
| Date Sampled              |       | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  |
| Type of sample            |       | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date extracted            | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed             | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Naphthalene               | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Acenaphthylene            | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Acenaphthene              | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Fluorene                  | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Phenanthrene              | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Anthracene                | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Fluoranthene              | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Pyrene                    | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Benzo(a)anthracene        | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Chrysene                  | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Benzo(b+k)fluoranthene    | mg/kg | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
| Benzo(a)pyrene            | mg/kg | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Benzo(g,h,i)perylene      | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Surrogate p-Terphenyl-d14 | %     | 102         | 102         | 101         | 98          | 102         |

Envirolab Reference: 50196 R 00 Revision No:

Page 5 of 30

| PAHs in Soil              |       |             |             |             |             |             |
|---------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference:            | UNITS | 50196-11    | 50196-12    | 50196-13    | 50196-14    | 50196-15    |
| Your Reference            |       | 110/0.1-0.2 | 110/0.5-0.6 | 111/0.2-0.3 | 111/0.5-0.6 | 112/0.1-0.2 |
| Date Sampled              |       | 20/12/2010  | 20/12/2010  | 9/12/2010   | 9/12/2010   | 20/12/2010  |
| Type of sample            |       | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date extracted            | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed             | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Naphthalene               | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Acenaphthylene            | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Acenaphthene              | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Fluorene                  | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Phenanthrene              | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Anthracene                | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Fluoranthene              | mg/kg | 0.3         | <0.1        | <0.1        | <0.1        | <0.1        |
| Pyrene                    | mg/kg | 0.3         | <0.1        | <0.1        | <0.1        | <0.1        |
| Benzo(a)anthracene        | mg/kg | 0.2         | <0.1        | <0.1        | <0.1        | <0.1        |
| Chrysene                  | mg/kg | 0.2         | <0.1        | <0.1        | <0.1        | <0.1        |
| Benzo(b+k)fluoranthene    | mg/kg | 0.4         | <0.2        | <0.2        | <0.2        | <0.2        |
| Benzo(a)pyrene            | mg/kg | 0.2         | <0.05       | <0.05       | <0.05       | <0.05       |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | 0.2         | <0.1        | <0.1        | <0.1        | <0.1        |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Benzo(g,h,i)perylene      | mg/kg | 0.2         | <0.1        | <0.1        | <0.1        | <0.1        |
| Surrogate p-Terphenyl-d14 | %     | 106         | 109         | 106         | 100         | 102         |

| PAHs in Soil              |       |             |             |             |
|---------------------------|-------|-------------|-------------|-------------|
| Our Reference:            | UNITS | 50196-16    | 50196-17    | 50196-18    |
| Your Reference            |       | 115/0.1-0.2 | 116/0.3-0.4 | 116/1.0-1.1 |
| Date Sampled              |       | 16/12/2010  | 17/12/2010  | 17/12/2010  |
| Type of sample            |       | Soil        | Soil        | Soil        |
| Date extracted            | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed             | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Naphthalene               | mg/kg | <0.1        | <0.1        | <0.1        |
| Acenaphthylene            | mg/kg | <0.1        | <0.1        | <0.1        |
| Acenaphthene              | mg/kg | <0.1        | <0.1        | <0.1        |
| Fluorene                  | mg/kg | <0.1        | <0.1        | <0.1        |
| Phenanthrene              | mg/kg | <0.1        | 1.2         | <0.1        |
| Anthracene                | mg/kg | <0.1        | 0.3         | <0.1        |
| Fluoranthene              | mg/kg | <0.1        | 2.4         | <0.1        |
| Pyrene                    | mg/kg | <0.1        | 2.0         | <0.1        |
| Benzo(a)anthracene        | mg/kg | <0.1        | 0.9         | <0.1        |
| Chrysene                  | mg/kg | <0.1        | 1.0         | <0.1        |
| Benzo(b+k)fluoranthene    | mg/kg | <0.2        | 1.4         | <0.2        |
| Benzo(a)pyrene            | mg/kg | <0.05       | 0.9         | <0.05       |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | <0.1        | 0.5         | <0.1        |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1        | <0.1        | <0.1        |
| Benzo(g,h,i)perylene      | mg/kg | <0.1        | 0.4         | <0.1        |
| Surrogate p-Terphenyl-d14 | %     | 103         | 104         | 103         |

| Organochlorine Pesticides in soil |       |             |             |             |             |             |
|-----------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference:                    | UNITS | 50196-1     | 50196-2     | 50196-3     | 50196-4     | 50196-5     |
| Your Reference                    |       | 101/1.0-1.4 | 102/0.1-0.2 | 102/0.5-0.6 | 102/1.0-1.1 | 103/0.1-0.2 |
| Date Sampled                      |       | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  |
| Type of sample                    |       | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date extracted                    | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed                     | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| HCB                               | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| alpha-BHC                         | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| gamma-BHC                         | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| beta-BHC                          | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Heptachlor                        | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| delta-BHC                         | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Aldrin                            | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Heptachlor Epoxide                | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| gamma-Chlordane                   | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| alpha-chlordane                   | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endosulfan I                      | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| pp-DDE                            | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Dieldrin                          | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endrin                            | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| pp-DDD                            | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endosulfan II                     | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| pp-DDT                            | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endrin Aldehyde                   | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endosulfan Sulphate               | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Methoxychlor                      | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Surrogate TCLMX                   | %     | 121         | 111         | 116         | 112         | 112         |

| Organochlorine Pesticides in soil |             |             |             |             |             |             |
|-----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Our Reference:                    | UNITS       | 50196-6     | 50196-7     | 50196-8     | 50196-9     | 50196-10    |
| Your Reference                    |             | 104/0.1-0.2 | 107/0.1-0.2 | 107/0.5-0.6 | 109/0.1-0.2 | 109/0.5-0.6 |
| Date Sampled                      | *********** | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  |
| Type of sample                    |             | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date extracted                    | -           | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed                     | -           | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| HCB                               | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| alpha-BHC                         | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| gamma-BHC                         | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| beta-BHC                          | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Heptachlor                        | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| delta-BHC                         | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Aldrin                            | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Heptachlor Epoxide                | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| gamma-Chlordane                   | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| alpha-chlordane                   | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endosulfan I                      | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| pp-DDE                            | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Dieldrin                          | mg/kg       | <0.1        | 0.1         | <0.1        | <0.1        | <0.1        |
| Endrin                            | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| pp-DDD                            | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endosulfan II                     | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| pp-DDT                            | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endrin Aldehyde                   | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endosulfan Sulphate               | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Methoxychlor                      | mg/kg       | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Surrogate TCLMX                   | %           | 112         | 111         | 105         | 111         | 114         |

Envirolab Reference: 50196

Revision No:

| Organochlorine Pesticides in soil |         |             |             |             |             |             |
|-----------------------------------|---------|-------------|-------------|-------------|-------------|-------------|
| Our Reference:                    | UNITS   | 50196-11    | 50196-12    | 50196-13    | 50196-14    | 50196-15    |
| Your Reference                    |         | 110/0.1-0.2 | 110/0.5-0.6 | 111/0.2-0.3 | 111/0.5-0.6 | 112/0.1-0.2 |
| Date Sampled                      | ******* | 20/12/2010  | 20/12/2010  | 9/12/2010   | 9/12/2010   | 20/12/2010  |
| Type of sample                    |         | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date extracted                    | -       | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed                     | -       | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| HCB                               | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| alpha-BHC                         | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| gamma-BHC                         | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| beta-BHC                          | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Heptachlor                        | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| delta-BHC                         | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Aldrin                            | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Heptachlor Epoxide                | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| gamma-Chlordane                   | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| alpha-chlordane                   | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endosulfan I                      | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| pp-DDE                            | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Dieldrin                          | mg/kg   | 0.1         | <0.1        | <0.1        | <0.1        | <0.1        |
| Endrin                            | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| pp-DDD                            | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endosulfan II                     | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| pp-DDT                            | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endrin Aldehyde                   | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Endosulfan Sulphate               | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Methoxychlor                      | mg/kg   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Surrogate TCLMX                   | %       | 107         | 114         | 117         | 115         | 112         |

| Organochlorine Pesticides in soil |       |             |             |             |
|-----------------------------------|-------|-------------|-------------|-------------|
| Our Reference:                    | UNITS | 50196-16    | 50196-17    | 50196-18    |
| Your Reference                    |       | 115/0.1-0.2 | 116/0.3-0.4 | 116/1.0-1.1 |
| Date Sampled                      |       | 16/12/2010  | 17/12/2010  | 17/12/2010  |
| Type of sample                    |       | Soil        | Soil        | Soil        |
| Date extracted                    | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed                     | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| HCB                               | mg/kg | <0.1        | <0.1        | <0.1        |
| alpha-BHC                         | mg/kg | <0.1        | <0.1        | <0.1        |
| gamma-BHC                         | mg/kg | <0.1        | <0.1        | <0.1        |
| beta-BHC                          | mg/kg | <0.1        | <0.1        | <0.1        |
| Heptachlor                        | mg/kg | <0.1        | <0.1        | <0.1        |
| delta-BHC                         | mg/kg | <0.1        | <0.1        | <0.1        |
| Aldrin                            | mg/kg | <0.1        | <0.1        | <0.1        |
| Heptachlor Epoxide                | mg/kg | <0.1        | <0.1        | <0.1        |
| gamma-Chlordane                   | mg/kg | <0.1        | <0.1        | <0.1        |
| alpha-chlordane                   | mg/kg | <0.1        | <0.1        | <0.1        |
| Endosulfan I                      | mg/kg | <0.1        | <0.1        | <0.1        |
| pp-DDE                            | mg/kg | <0.1        | <0.1        | <0.1        |
| Dieldrin                          | mg/kg | <0.1        | <0.1        | <0.1        |
| Endrin                            | mg/kg | <0.1        | <0.1        | <0.1        |
| pp-DDD                            | mg/kg | <0.1        | <0.1        | <0.1        |
| Endosulfan II                     | mg/kg | <0.1        | <0.1        | <0.1        |
| pp-DDT                            | mg/kg | <0.1        | <0.1        | <0.1        |
| Endrin Aldehyde                   | mg/kg | <0.1        | <0.1        | <0.1        |
| Endosulfan Sulphate               | mg/kg | <0.1        | <0.1        | <0.1        |
| Methoxychlor                      | mg/kg | <0.1        | <0.1        | <0.1        |
| Surrogate TCLMX                   | %     | 112         | 115         | 114         |

| Organophosphorus Pesticides Our Reference: Your Reference Date Sampled Type of sample | UNITS | 50196-1<br>101/1.0-1.4<br>20/12/2010<br>Soil | 50196-2<br>102/0.1-0.2<br>20/12/2010<br>Soil | 50196-3<br>102/0.5-0.6<br>20/12/2010<br>Soil | 50196-4<br>102/1.0-1.1<br>20/12/2010<br>Soil | 50196-5<br>103/0.1-0.2<br>20/12/2010<br>Soil |
|---------------------------------------------------------------------------------------|-------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Date extracted                                                                        | -     | 04/01/2011                                   | 04/01/2011                                   | 04/01/2011                                   | 04/01/2011                                   | 04/01/2011                                   |
| Date analysed                                                                         | -     | 04/01/2011                                   | 04/01/2011                                   | 04/01/2011                                   | 04/01/2011                                   | 04/01/2011                                   |
| Diazinon                                                                              | mg/kg | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
| Dimethoate                                                                            | mg/kg | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
| Chlorpyriphos-methyl                                                                  | mg/kg | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
| Ronnel                                                                                | mg/kg | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
| Chlorpyriphos                                                                         | mg/kg | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
| Fenitrothion                                                                          | mg/kg | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
| Bromophos-ethyl                                                                       | mg/kg | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
| Ethion                                                                                | mg/kg | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
| Surrogate TCLMX                                                                       | %     | 121                                          | 111                                          | 116                                          | 112                                          | 112                                          |

| Organophosphorus Pesticides |       |             |             |             |             |             |
|-----------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference:              | UNITS | 50196-6     | 50196-7     | 50196-8     | 50196-9     | 50196-10    |
| Your Reference              |       | 104/0.1-0.2 | 107/0.1-0.2 | 107/0.5-0.6 | 109/0.1-0.2 | 109/0.5-0.6 |
| Date Sampled                |       | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  |
| Type of sample              |       | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date extracted              | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed               | •     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Diazinon                    | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Dimethoate                  | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Chlorpyriphos-methyl        | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Ronnel                      | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Chlorpyriphos               | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Fenitrothion                | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Bromophos-ethyl             | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Ethion                      | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Surrogate TCLMX             | %     | 112         | 111         | 105         | 111         | 114         |

Envirolab Reference: 50196

Revision No:

| Organophosphorus Pesticides | T     |             |             |             |             |             |
|-----------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference:              | UNITS | 50196-11    | 50196-12    | 50196-13    | 50196-14    | 50196-15    |
| Your Reference              |       | 110/0.1-0.2 | 110/0.5-0.6 | 111/0.2-0.3 | 111/0.5-0.6 | 112/0.1-0.2 |
| Date Sampled                |       | 20/12/2010  | 20/12/2010  | 9/12/2010   | 9/12/2010   | 20/12/2010  |
| Type of sample              |       | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date extracted              | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed               | _     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Diazinon                    | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Dimethoate                  | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Chlorpyriphos-methyl        | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Ronnel                      | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Chlorpyriphos               | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Fenitrothion                | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Bromophos-ethyl             | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Ethion                      | mg/kg | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Surrogate TCLMX             | %     | 107         | 114         | 117         | 115         | 112         |

| Organophosphorus Pesticides |       |             | 4           |             |
|-----------------------------|-------|-------------|-------------|-------------|
| Our Reference:              | UNITS | 50196-16    | 50196-17    | 50196-18    |
| Your Reference              |       | 115/0.1-0.2 | 116/0.3-0.4 | 116/1.0-1.1 |
| Date Sampled                |       | 16/12/2010  | 17/12/2010  | 17/12/2010  |
| Type of sample              |       | Soil        | Soil        | Soil        |
| Date extracted              | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed               | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Diazinon                    | mg/kg | <0.1        | <0.1        | <0.1        |
| Dimethoate                  | mg/kg | <0.1        | <0.1        | <0.1        |
| Chlorpyriphos-methyl        | mg/kg | <0.1        | <0.1        | <0.1        |
| Ronnel                      | mg/kg | <0.1        | <0.1        | <0.1        |
| Chlorpyriphos               | mg/kg | <0.1        | <0.1        | <0.1        |
| Fenitrothion                | mg/kg | <0.1        | <0.1        | <0.1        |
| Bromophos-ethyl             | mg/kg | <0.1        | <0.1        | <0.1        |
| Ethion                      | mg/kg | <0.1        | <0.1        | <0.1        |
| Surrogate TCLMX             | %     | 112         | 115         | 114         |

| PCBs in Soil                   | <u> </u>                        | T                  |                    |                   |                   |                    |
|--------------------------------|---------------------------------|--------------------|--------------------|-------------------|-------------------|--------------------|
| Our Reference:                 | UNITS                           | 50196-1            | 50196-2            | 50196-3           | 50196-4           | 50196-5            |
| Your Reference                 |                                 | 101/1.0-1.4        | 102/0.1-0.2        | 102/0.5-0.6       | 102/1.0-1.1       | 103/0.1-0.2        |
| Date Sampled                   |                                 | 20/12/2010         | 20/12/2010         | 20/12/2010        | 20/12/2010        | 20/12/2010         |
| Type of sample                 |                                 | Soil               | Soil               | Soil              | Soil              | Soil               |
| Date extracted                 | -                               | 04/01/2011         | 04/01/2011         | 04/01/2011        | 04/01/2011        | 04/01/2011         |
| Date analysed                  | -                               | 04/01/2011         | 04/01/2011         | 04/01/2011        | 04/01/2011        | 04/01/2011         |
| Arochlor 1016                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1221*                 | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1232                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1242                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1248                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1254                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1260                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Surrogate TCLMX                | %                               | 121                | 111                | 116               | 112               | 112                |
|                                |                                 |                    | 1                  |                   | 112               | 112                |
| PCBs in Soil                   |                                 |                    |                    |                   |                   |                    |
| Our Reference:                 | UNITS                           | 50196-6            | 50196-7            | 50196-8           | 50196-9           | 50196-10           |
| Your Reference                 |                                 | 104/0.1-0.2        | 107/0.1-0.2        | 107/0.5-0.6       | 109/0.1-0.2       | 109/0.5-0.6        |
| Date Sampled                   |                                 | 20/12/2010         | 20/12/2010         | 20/12/2010        | 20/12/2010        | 20/12/2010         |
| Type of sample                 | - Article date of the second    | Soil               | Soil               | Soil              | Soil              | Soil               |
| Date extracted                 | -                               | 04/01/2011         | 04/01/2011         | 04/01/2011        | 04/01/2011        | 04/01/2011         |
| Date analysed                  | -                               | 04/01/2011         | 04/01/2011         | 04/01/2011        | 04/01/2011        | 04/01/2011         |
| Arochlor 1016                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1221*                 | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1232                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1242                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1248                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1254                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1260                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Surrogate TCLMX                | %                               | 112                | 111                | 105               | 111               | 114                |
|                                |                                 |                    |                    |                   |                   |                    |
| PCBs in Soil                   |                                 |                    |                    |                   |                   |                    |
| Our Reference:                 | UNITS                           | 50196-11           | 50196-12           | 50196-13          | 50196-14          | 50196-15           |
| Your Reference<br>Date Sampled |                                 | 110/0.1-0.2        | 110/0.5-0.6        | 111/0.2-0.3       | 111/0.5-0.6       | 112/0.1-0.2        |
| Type of sample                 | # 75 th at at at an at at at at | 20/12/2010<br>Soil | 20/12/2010<br>Soil | 9/12/2010<br>Soil | 9/12/2010<br>Soil | 20/12/2010<br>Soil |
| Date extracted                 | -                               | 04/01/2011         | 04/01/2011         | 04/01/2011        | 04/01/2011        | 04/01/2011         |
| Date analysed                  | -                               | 04/01/2011         | 04/01/2011         | 04/01/2011        | 04/01/2011        | 04/01/2011         |
| Arochlor 1016                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1221*                 | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1232                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1242                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1248                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1254                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Arochlor 1260                  | mg/kg                           | <0.1               | <0.1               | <0.1              | <0.1              | <0.1               |
| Surrogate TCLMX                | %                               | 107                | 114                | 117               | 115               | 1                  |
| Carrogate TOLIVIA              | /0                              | 107                | 114                | 117               | 110               | 112                |

| PCBs in Soil    |       |             |             |             |
|-----------------|-------|-------------|-------------|-------------|
| Our Reference:  | UNITS | 50196-16    | 50196-17    | 50196-18    |
| Your Reference  |       | 115/0.1-0.2 | 116/0.3-0.4 | 116/1.0-1.1 |
| Date Sampled    |       | 16/12/2010  | 17/12/2010  | 17/12/2010  |
| Type of sample  |       | Soil        | Soil        | Soil        |
| Date extracted  | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed   | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Arochlor 1016   | mg/kg | <0.1        | <0.1        | <0.1        |
| Arochlor 1221*  | mg/kg | <0.1        | <0.1        | <0.1        |
| Arochlor 1232   | mg/kg | <0.1        | <0.1        | <0.1        |
| Arochlor 1242   | mg/kg | <0.1        | <0.1        | <0.1        |
| Arochlor 1248   | mg/kg | <0.1        | <0.1        | <0.1        |
| Arochlor 1254   | mg/kg | <0.1        | <0.1        | <0.1        |
| Arochlor 1260   | mg/kg | <0.1        | <0.1        | <0.1        |
| Surrogate TCLMX | %     | 112         | 115         | 114         |

| Total Phenolics in Soil     |       |             |             |             |             |             |
|-----------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference:              | UNITS | 50196-1     | 50196-2     | 50196-3     | 50196-6     | 50196-7     |
| Your Reference              |       | 101/1.0-1.4 | 102/0.1-0.2 | 102/0.5-0.6 | 104/0.1-0.2 | 107/0.1-0.2 |
| Date Sampled                |       | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  |
| Type of sample              |       | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date extracted              | -     | 5/1/2011    | 5/1/2011    | 5/1/2011    | 5/1/2011    | 5/1/2011    |
| Date analysed               | -     | 5/1/2011    | 5/1/2011    | 5/1/2011    | 5/1/2011    | 5/1/2011    |
| Total Phenolics (as Phenol) | mg/kg | <5.0        | <5.0        | <5.0        | <5.0        | <5.0        |
| Total Phenolics in Soil     |       |             |             |             |             | 7           |
| Our Reference:              | UNITS | 50196-9     | 50196-10    | 50196-13    | 50196-14    |             |
|                             | į.    | 1           | I           | i .         | !           | 1           |

| Total Phenolics in Soil     |       |             |             |             |             |
|-----------------------------|-------|-------------|-------------|-------------|-------------|
| Our Reference:              | UNITS | 50196-9     | 50196-10    | 50196-13    | 50196-14    |
| Your Reference              |       | 109/0.1-0.2 | 109/0.5-0.6 | 111/0.2-0.3 | 111/0.5-0.6 |
| Date Sampled                |       | 20/12/2010  | 20/12/2010  | 9/12/2010   | 9/12/2010   |
| Type of sample              |       | Soil        | Soil        | Soil        | Soil        |
| Date extracted              | -     | 5/1/2011    | 5/1/2011    | 5/1/2011    | 5/1/2011    |
| Date analysed               | -     | 5/1/2011    | 5/1/2011    | 5/1/2011    | 5/1/2011    |
| Total Phenolics (as Phenol) | mg/kg | <5.0        | <5.0        | <5.0        | <5.0        |

| Acid Fater stable westels in sail                |                                         | T                  | 1                  | T                  | T                  |                    |
|--------------------------------------------------|-----------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Acid Extractable metals in soil Our Reference:   | UNITS                                   | 50196-1            | 50196-2            | 50196-3            | 50196-4            | 50196-5            |
| Your Reference                                   |                                         | 101/1.0-1.4        | 102/0.1-0.2        | 102/0.5-0.6        | 102/1.0-1.1        | 103/0.1-0.2        |
| Date Sampled                                     |                                         | 20/12/2010         | 20/12/2010         | 20/12/2010         | 20/12/2010         | 20/12/2010         |
| Type of sample                                   |                                         | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date digested                                    | -                                       | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         |
| Date analysed                                    | -                                       | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         |
| Arsenic                                          | mg/kg                                   | 9                  | <4                 | 6                  | 9                  | <4                 |
| Cadmium                                          | mg/kg                                   | <0.5               | <0.5               | <0.5               | <0.5               | <0.5               |
| Chromium                                         | mg/kg                                   | 9                  | 33                 | 35                 | 40                 | 33                 |
| Copper                                           | mg/kg                                   | 35                 | 54                 | 9                  | 4                  | 64                 |
| Lead                                             | mg/kg                                   | 14                 | 4                  | 11                 | 13                 | 4                  |
| Mercury                                          | mg/kg                                   | <0.1               | <0.1               | <0.1               | <0.1               | <0.1               |
| Nickel                                           | mg/kg                                   | 14                 | 100                | 21                 | 9                  | 81                 |
| Zinc                                             | mg/kg                                   | 62                 | 42                 | 10                 | 5                  | 39                 |
| 140 144 144 144 144 144 144 144 144 144          |                                         |                    |                    |                    |                    |                    |
| Acid Extractable metals in soil                  |                                         |                    |                    |                    |                    |                    |
| Our Reference:                                   | UNITS                                   | 50196-6            | 50196-7            | 50196-8            | 50196-9            | 50196-10           |
| Your Reference                                   | *************************************** | 104/0.1-0.2        | 107/0.1-0.2        | 107/0.5-0.6        | 109/0.1-0.2        | 109/0.5-0.6        |
| Date Sampled Type of sample                      |                                         | 20/12/2010<br>Soil | 20/12/2010<br>Soil | 20/12/2010<br>Soil | 20/12/2010<br>Soil | 20/12/2010<br>Soil |
|                                                  |                                         |                    |                    |                    |                    |                    |
| Date digested                                    | -                                       | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         |
| Date analysed                                    | -                                       | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         |
| Arsenic                                          | mg/kg                                   | <4                 | <4                 | 11                 | <4                 | 7                  |
| Cadmium                                          | mg/kg                                   | <0.5               | <0.5               | <0.5               | <0.5               | <0.5               |
| Chromium                                         | mg/kg                                   | 17                 | 39                 | 22                 | 65                 | 17                 |
| Copper                                           | mg/kg                                   | 59                 | 61                 | 4                  | 43                 | 10                 |
| Lead                                             | mg/kg                                   | 3                  | 4                  | 17                 | 7                  | 18                 |
| Mercury                                          | mg/kg                                   | <0.1               | <0.1               | <0.1               | <0.1               | <0.1               |
| Nickel                                           | mg/kg                                   | 110                | 110                | 13                 | 69                 | 6                  |
| Zinc                                             | mg/kg                                   | 44                 | 43                 | 6                  | 40                 | 15                 |
| A - 11 (" - 4 - 14 - 14 - 14 - 14 - 14 - 14 - 14 |                                         |                    |                    | <u> </u>           | <u></u>            | 1                  |
| Acid Extractable metals in soil  Our Reference:  | UNITS                                   | 50196-11           | 50196-12           | 50196-13           | 50196-14           | 50196-15           |
| Your Reference                                   |                                         | 110/0.1-0.2        | 110/0.5-0.6        | 111/0.2-0.3        | 111/0.5-0.6        | 112/0.1-0.2        |
| Date Sampled                                     |                                         | 20/12/2010         | 20/12/2010         | 9/12/2010          | 9/12/2010          | 20/12/2010         |
| Type of sample                                   |                                         | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date digested                                    | -                                       | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         |
| Date analysed                                    | -                                       | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         | 04/01/2011         |
| Arsenic                                          | mg/kg                                   | 18                 | 8                  | 7                  | <4                 | <4                 |
| Cadmium                                          | mg/kg                                   | <0.5               | <0.5               | <0.5               | <0.5               | <0.5               |
| Chromium                                         | mg/kg                                   | 24                 | 23                 | 19                 | 14                 | 15                 |
| Copper                                           | mg/kg                                   | 36                 | 18                 | 6                  | 3                  | 16                 |
| Lead                                             | mg/kg                                   | 210                | 61                 | 19                 | 16                 | 9                  |
| Mercury                                          | mg/kg                                   | 0.1                | <0.1               | <0.1               | <0.1               | <0.1               |
| Nickel                                           | mg/kg                                   | 7                  | 6                  | 5                  | 2                  | 13                 |
| Zinc                                             | mg/kg                                   | 230                | 74                 | 11                 | 6                  | 28                 |
|                                                  | J. J                                    |                    |                    |                    | -                  |                    |

| Acid Extractable metals in soil |       |             |             |             |
|---------------------------------|-------|-------------|-------------|-------------|
| Our Reference:                  | UNITS | 50196-16    | 50196-17    | 50196-18    |
| Your Reference                  |       | 115/0.1-0.2 | 116/0.3-0.4 | 116/1.0-1.1 |
| Date Sampled                    |       | 16/12/2010  | 17/12/2010  | 17/12/2010  |
| Type of sample                  |       | Soil        | Soil        | Soil        |
| Date digested                   | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Date analysed                   | -     | 04/01/2011  | 04/01/2011  | 04/01/2011  |
| Arsenic                         | mg/kg | <4          | <4          | <4          |
| Cadmium                         | mg/kg | <0.5        | <0.5        | <0.5        |
| Chromium                        | mg/kg | 11          | 10          | 23          |
| Copper                          | mg/kg | 28          | 27          | 9           |
| Lead                            | mg/kg | 5           | 43          | 7           |
| Mercury                         | mg/kg | <0.1        | <0.1        | <0.1        |
| Nickel                          | mg/kg | 28          | 13          | 21          |
| Zinc                            | mg/kg | 38          | 43          | 22          |

| Miscellaneous Inorg - soil   |          |             |             |             |
|------------------------------|----------|-------------|-------------|-------------|
| Our Reference:               | UNITS    | 50196-4     | 50196-18    | 50196-19    |
| Your Reference               |          | 102/1.0-1.1 | 116/1.0-1.1 | 103/1.0-1.1 |
| Date Sampled                 |          | 20/12/2010  | 17/12/2010  | 20/12/2010  |
| Type of sample               |          | Soil        | Soil        | Soil        |
| Date prepared                | -        | 5/1/2011    | 5/1/2011    | 5/1/2011    |
| Date analysed                | -        | 5/1/2011    | 5/1/2011    | 5/1/2011    |
| pH 1:5 soil:water            | pH Units | 5.5         | 8.6         | 5.2         |
| Chloride, Cl 1:5 soil:water  | mg/kg    | 27          | 15          | 17          |
| Sulphate, SO4 1:5 soil:water | mg/kg    | 31          | 45          | 40          |

| Moisture       |       |             | T           |             | T           | 1           |
|----------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference: | UNITS | 50196-1     | 50196-2     | 50196-3     | 50196-4     | 50196-5     |
| Your Reference |       | 101/1.0-1.4 | 102/0.1-0.2 | 102/0.5-0.6 | 102/1.0-1.1 | 103/0.1-0.2 |
| Date Sampled   |       | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  |
| Type of sample |       | Soil        | Soil        | Soil        | Soil        | Soil        |
|                |       | 1/01/0011   |             |             |             |             |
| Date prepared  | -     | 4/01/2011   | 4/01/2011   | 4/01/2011   | 4/01/2011   | 4/01/2011   |
| Date analysed  | -     | 5/01/2011   | 5/01/2011   | 5/01/2011   | 5/01/2011   | 5/01/2011   |
| Moisture       | %     | 15          | 16          | 21          | 22          | 5.9         |
|                |       | <del></del> | 1           | <del></del> | 1           |             |
| Moisture       |       |             |             |             |             |             |
| Our Reference: | UNITS | 50196-6     | 50196-7     | 50196-8     | 50196-9     | 50196-10    |
| Your Reference |       | 104/0.1-0.2 | 107/0.1-0.2 | 107/0.5-0.6 | 109/0.1-0.2 | 109/0.5-0.6 |
| Date Sampled   |       | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  | 20/12/2010  |
| Type of sample |       | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date prepared  | -     | 4/01/2011   | 4/01/2011   | 4/01/2011   | 4/01/2011   | 4/01/2011   |
| Date analysed  | -     | 5/01/2011   | 5/01/2011   | 5/01/2011   | 5/01/2011   | 5/01/2011   |
| Moisture       | %     | 16          | 9.5         | 18          | 12          | 28          |
|                |       |             |             |             |             |             |
| Moisture       |       |             |             |             |             |             |
| Our Reference: | UNITS | 50196-11    | 50196-12    | 50196-13    | 50196-14    | 50196-15    |
| Your Reference |       | 110/0.1-0.2 | 110/0.5-0.6 | 111/0.2-0.3 | 111/0.5-0.6 | 112/0.1-0.2 |
| Date Sampled   |       | 20/12/2010  | 20/12/2010  | 9/12/2010   | 9/12/2010   | 20/12/2010  |
| Type of sample |       | Soil        | Soil        | Soil        | Soil        | Soil        |
| Date prepared  | -     | 4/01/2011   | 4/01/2011   | 4/01/2011   | 4/01/2011   | 4/01/2011   |
| Date analysed  | -     | 5/01/2011   | 5/01/2011   | 5/01/2011   | 5/01/2011   | 5/01/2011   |
| Moisture       | %     | 43          | 20          | 24          | 24          | 12          |
|                |       |             |             |             |             |             |
| Moisture       |       |             |             |             |             |             |
| Our Reference: | UNITS | 50196-16    | 50196-17    | 50196-18    |             |             |
| Your Reference |       | 115/0.1-0.2 | 116/0.3-0.4 | 116/1.0-1.1 |             |             |
| Date Sampled   |       | 16/12/2010  | 17/12/2010  | 17/12/2010  |             |             |
| Type of sample |       | Soil        | Soil        | Soil        |             |             |
| Date prepared  | -     | 4/01/2011   | 4/01/2011   | 4/01/2011   |             |             |
| Date analysed  | -     | 5/01/2011   | 5/01/2011   | 5/01/2011   |             |             |
| Moisture       | %     | 15          | 13          | 14          |             |             |
| L              | L     |             |             |             | Į.          |             |

| Asbestos ID - soils |        |                                                          |                                                          |                                                          |                                                          |                                                          |
|---------------------|--------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Our Reference:      | UNITS  | 50196-1                                                  | 50196-2                                                  | 50196-5                                                  | 50196-6                                                  | 50196-7                                                  |
| Your Reference      |        | 101/1.0-1.4                                              | 102/0.1-0.2                                              | 103/0.1-0.2                                              | 104/0.1-0.2                                              | 107/0.1-0.2                                              |
| Date Sampled        | ****** | 20/12/2010                                               | 20/12/2010                                               | 20/12/2010                                               | 20/12/2010                                               | 20/12/2010                                               |
| Type of sample      |        | Soil                                                     | Soil                                                     | Soil                                                     | Soil                                                     | Soil                                                     |
| Date analysed       | -      | 5/01/2011                                                | 5/01/2011                                                | 5/01/2011                                                | 5/01/2011                                                | 5/01/2011                                                |
| Sample Description  | -      | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       |
| Asbestos ID in soil | -      | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg |
| Trace Analysis      | -      | Respirable<br>fibres not<br>detected                     | Respirable fibres not detected                           | Respirable fibres not detected                           | Respirable fibres not detected                           | Respirable<br>fibres not<br>detected                     |
| Asbestos ID - soils |        | 1                                                        | 1                                                        | T                                                        | 1                                                        | ٦                                                        |
| Our Reference:      | UNITS  | 50196-9                                                  | 50196-11                                                 | 50196-15                                                 | 50196-16                                                 |                                                          |
| Your Reference      | ONITS  | 109/0.1-0.2                                              | 110/0.1-0.2                                              | 112/0.1-0.2                                              | 115/0.1-0.2                                              |                                                          |
| Date Sampled        |        | 20/12/2010                                               | 20/12/2010                                               | 20/12/2010                                               | 16/12/2010                                               |                                                          |
| Type of sample      |        | Soil                                                     | Soil                                                     | Soil                                                     | Soil                                                     |                                                          |
| Date analysed       | -      | 5/01/2011                                                | 5/01/2011                                                | 5/01/2011                                                | 5/01/2011                                                |                                                          |
| Sample Description  | -      | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       |                                                          |
| Asbestos ID in soil | -      | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg |                                                          |
| Trace Analysis      | -      | Respirable fibres not                                    | Respirable fibres not                                    | Respirable fibres not                                    | Respirable fibres not                                    |                                                          |

detected

detected

detected

detected

| 00.40                |                                                                                                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GC.16                | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. |
| GC.3                 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                         |
| GC.12 subset         | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.                                                          |
| GC-5                 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                             |
|                      | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                             |
|                      | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.                                                         |
| LAB.30               | Total Phenolics - determined colorimetrically following disitillation.                                                                                                  |
| Metals.20<br>ICP-AES | Determination of various metals by ICP-AES.                                                                                                                             |
| Metals.21<br>CV-AAS  | Determination of Mercury by Cold Vapour AAS.                                                                                                                            |
| LAB.1                | pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.                                                                                    |
|                      | Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 21st ED, 4110-B.                                                               |
| LAB.8                | Moisture content determined by heating at 105 deg C for a minimum of 4 hours.                                                                                           |
|                      | Asbestos ID - Qualitative identification of asbestos type fibres in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques.                   |

Duplicate Sm#

Duplicate results

Spike Sm#

Spike %

|                                       |       |     |                 |                | '             | '                         | •         | Recovery            |
|---------------------------------------|-------|-----|-----------------|----------------|---------------|---------------------------|-----------|---------------------|
| vTRH & BTEX in Soil                   |       |     |                 |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted                        | -     |     |                 | 04/01/2<br>011 | 50196-1       | 04/01/2011    04/01/2011  | LCS-3     | 04/01/2011          |
| Date analysed                         | -     |     |                 | 05/01/2<br>011 | 50196-1       | 05/01/2011    05/01/2011  | LCS-3     | 05/01/2011          |
| vTRH C6 - C9                          | mg/kg | 25  | GC.16           | <25            | 50196-1       | <25    <25                | LCS-3     | 102%                |
| Benzene                               | mg/kg | 0.5 | GC.16           | <0.5           | 50196-1       | <0.5    <0.5              | LCS-3     | 107%                |
| Toluene                               | mg/kg | 0.5 | GC.16           | <0.5           | 50196-1       | <0.5    <0.5              | LCS-3     | 101%                |
| Ethylbenzene                          | mg/kg | 1   | GC.16           | <1.0           | 50196-1       | <1.0    <1.0              | LCS-3     | 94%                 |
| m+p-xylene                            | mg/kg | 2   | GC.16           | <2.0           | 50196-1       | <2.0    <2.0              | LCS-3     | 104%                |
| o-Xylene                              | mg/kg | 1   | GC.16           | <1.0           | 50196-1       | <1.0    <1.0              | LCS-3     | 105%                |
| Surrogate<br>aaa-Trifluorotoluene     | %     |     | GC.16           | 116            | 50196-1       | 110    119    RPD: 8      | LCS-3     | 114%                |
| QUALITY CONTROL                       | UNITS | PQL | METHOD          | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
| sTRH in Soil (C10-C36)                |       |     |                 |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted                        | -     |     |                 | 04/01/2<br>011 | 50196-1       | 04/01/2011    04/01/2011  | LCS-3     | 04/01/2011          |
| Date analysed                         | -     |     |                 | 05/01/2<br>011 | 50196-1       | 05/01/2011    05/01/2011  | LCS-3     | 05/01/2011          |
| TRH C10 - C14                         | mg/kg | 50  | GC.3            | <50            | 50196-1       | <50    <50                | LCS-3     | 109%                |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg | 100 | GC.3            | <100           | 50196-1       | <100    <100              | LCS-3     | 115%                |
| TRH C29 - C36                         | mg/kg | 100 | GC.3            | <100           | 50196-1       | <100    <100              | LCS-3     | 112%                |
| Surrogate<br>o-Terphenyl              | %     |     | GC.3            | 101            | 50196-1       | 104    97    RPD: 7       | LCS-3     | 103%                |
| QUALITY CONTROL                       | UNITS | PQL | METHOD          | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
| PAHs in Soil                          |       |     |                 |                |               | Base II Duplicate II %RPD |           | 1.000.0.,           |
| Date extracted                        | -     |     |                 | 04/01/2<br>011 | 50196-1       | 04/01/2011    04/01/2011  | LCS-3     | 04/01/2011          |
| Date analysed                         | -     |     |                 | 04/01/2<br>011 | 50196-1       | 04/01/2011    04/01/2011  | LCS-3     | 04/01/2011          |
| Naphthalene                           | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3     | 93%                 |
| Acenaphthylene                        | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Acenaphthene                          | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Fluorene                              | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3     | 104%                |
| Phenanthrene                          | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3     | 95%                 |
| Anthracene                            | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
|                                       |       | 1   | 00.40           | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3     | 96%                 |
| Fluoranthene                          | mg/kg | 0.1 | GC.12<br>subset | 10.1           |               |                           |           |                     |

Envirolab Reference: 50196 Revision No: R 00

QUALITY CONTROL

UNITS

PQL

METHOD

Page 22 of 30

Duplicate Sm#

Duplicate results

Spike Sm#

Spike %

Blank

| QUALITY CONTROL                          | UNITS | PQL  | METHOD          | Віапк          | Duplicate Sm# | Duplicate results         | Spike Sm#  | Recovery  |
|------------------------------------------|-------|------|-----------------|----------------|---------------|---------------------------|------------|-----------|
| PAHs in Soil                             |       |      |                 |                |               | Base II Duplicate II %RPD |            | recovery  |
| Benzo(a)anthracene                       | mg/kg | 0.1  | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| Chrysene                                 | mg/kg | 0.1  | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 96%       |
| Benzo(b+k)fluoranthene                   | mg/kg | 0.2  | GC.12<br>subset | <0.2           | 50196-1       | <0.2    <0.2              | [NR]       | [NR]      |
| Benzo(a)pyrene                           | mg/kg | 0.05 | GC.12<br>subset | <0.05          | 50196-1       | <0.05    <0.05            | LCS-3      | 90%       |
| Indeno(1,2,3-c,d)pyrene                  | mg/kg | 0.1  | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| Dibenzo(a,h)anthracene                   | mg/kg | 0.1  | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| Benzo(g,h,i)perylene                     | mg/kg | 0.1  | GC.12<br>subset | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| Surrogate<br>p-Terphenyl-d <sub>14</sub> | %     |      | GC.12<br>subset | 104            | 50196-1       | 106    97    RPD: 9       | LCS-3      | 116%      |
| QUALITY CONTROL                          | UNITS | PQL  | METHOD          | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm#  | Spike %   |
|                                          |       |      |                 |                |               | •                         | орико оппи | Recovery  |
| Organochlorine<br>Pesticides in soil     |       |      |                 |                |               | Base II Duplicate II %RPD |            |           |
| Date extracted                           | -     |      |                 | 04/01/2<br>011 | 50196-1       | 04/01/2011    04/01/2011  | LCS-3      | 04/01/20  |
| Date analysed                            | -     |      |                 | 04/01/2<br>011 | 50196-1       | 04/01/2011    04/01/2011  | LCS-3      | 04/01/201 |
| HCB                                      | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| alpha-BHC                                | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 89%       |
| gamma-BHC                                | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| beta-BHC                                 | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 75%       |
| Heptachlor                               | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 86%       |
| delta-BHC                                | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| Aldrin                                   | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 83%       |
| Heptachlor Epoxide                       | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 92%       |
| gamma-Chlordane                          | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| alpha-chlordane                          | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| Endosulfan I                             | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| pp-DDE                                   | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 71%       |
| Dieldrin                                 | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 111%      |
| Endrin                                   | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 91%       |
| pp-DDD                                   | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 75%       |
| Endosulfan II                            | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <br><0.1    <0.1          | [NR]       | [NR]      |
| pp-DDT                                   | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| Endrin Aldehyde                          | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| Endosulfan Sulphate                      | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | LCS-3      | 104%      |
| Methoxychlor                             | mg/kg | 0.1  | GC-5            | <0.1           | 50196-1       | <0.1    <0.1              | [NR]       | [NR]      |
| IVIEUTOXYCHIOL                           |       |      | 1               |                |               |                           | [ [. 4, 4] | 6.0.7     |

Envirolab Reference: 50196

Revision No:

QUALITY CONTROL

UNITS

PQL

METHOD

Client Reference:

72138, Macquarie Village

| QUALITY CONTROL                | UNITS | PQL | METHOD | Blank                 | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|--------------------------------|-------|-----|--------|-----------------------|---------------|---------------------------|-----------|---------------------|
| Organophosphorus<br>Pesticides |       |     |        |                       |               | Base II Duplicate II %RPD |           |                     |
| Date extracted                 | -     |     |        | 04/01/2               | 50196-1       | 04/01/2011    04/01/2011  | LCS-3     | 04/01/2011          |
| Date analysed                  | _     |     |        | 011<br>04/01/2<br>011 | 50196-1       | 04/01/2011    04/01/2011  | LCS-3     | 04/01/2011          |
| Diazinon                       | mg/kg | 0.1 | GC.8   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Dimethoate                     | mg/kg | 0.1 | GC.8   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Chlorpyriphos-methyl           | mg/kg | 0.1 | GC.8   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Ronnel                         | mg/kg | 0.1 | GC.8   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Chlorpyriphos                  | mg/kg | 0.1 | GC.8   | <0.1                  | 50196-1       | <0.1    <0.1              | LCS-3     | 105%                |
| Fenitrothion                   | mg/kg | 0.1 | GC.8   | <0.1                  | 50196-1       | <0.1    <0.1              | LCS-3     | 116%                |
| Bromophos-ethyl                | mg/kg | 0.1 | GC.8   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Ethion                         | mg/kg | 0.1 | GC.8   | <0.1                  | 50196-1       | <0.1    <0.1              | LCS-3     | 90%                 |
| Surrogate TCLMX                | %     |     | GC.8   | 112                   | 50196-1       | 121    109    RPD: 10     | LCS-3     | 134%                |
| QUALITY CONTROL                | UNITS | PQL | METHOD | Blank                 | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %             |
| PCBs in Soil                   |       |     |        |                       |               | Base II Duplicate II %RPD |           | Recovery            |
| Date extracted                 | -     |     |        | 04/01/2<br>011        | 50196-1       | 04/01/2011    04/01/2011  | LCS-3     | 04/01/2011          |
| Date analysed                  | -     |     |        | 04/01/2<br>011        | 50196-1       | 04/01/2011    04/01/2011  | LCS-3     | 04/01/2011          |
| Arochlor 1016                  | mg/kg | 0.1 | GC-6   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1221*                 | mg/kg | 0.1 | GC-6   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1232                  | mg/kg | 0.1 | GC-6   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1242                  | mg/kg | 0.1 | GC-6   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1248                  | mg/kg | 0.1 | GC-6   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1254                  | mg/kg | 0.1 | GC-6   | <0.1                  | 50196-1       | <0.1    <0.1              | LCS-3     | 111%                |
| Arochlor 1260                  | mg/kg | 0.1 | GC-6   | <0.1                  | 50196-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Surrogate TCLMX                | %     |     | GC-6   | 112                   | 50196-1       | 121    109    RPD: 10     | LCS-3     | 113%                |
| QUALITY CONTROL                | UNITS | PQL | METHOD | Blank                 | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %             |
| Total Phenolics in Soil        |       |     |        |                       |               | Base II Duplicate II %RPD |           | Recovery            |
| Date extracted                 | -     |     |        | 5/1/201               | 50196-1       | 5/1/2011    5/1/2011      | LCS-1     | 5/1/2011            |
| Date analysed                  | -     |     |        | 5/1/201<br>1          | 50196-1       | 5/1/2011    5/1/2011      | LCS-1     | 5/1/2011            |
| Total Phenolics (as<br>Phenol) | mg/kg | 5   | LAB.30 | <5.0                  | 50196-1       | <5.0    <5.0              | LCS-1     | 90%                 |

Envirolab Reference: 50196

Revision No:

| QUALITY CONTROL                 | UNITS | PQL | METHOD               | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|---------------------------------|-------|-----|----------------------|----------------|---------------|---------------------------|-----------|---------------------|
| Acid Extractable metals in soil |       |     |                      |                |               | Base II Duplicate II %RPD |           |                     |
| Date digested                   | -     |     |                      | 04/01/2<br>011 | 50196-1       | 04/01/2011    04/01/2011  | LCS-1     | 04/01/201           |
| Date analysed                   | -     |     |                      | 04/01/2<br>011 | 50196-1       | 04/01/2011    04/01/2011  | LCS-1     | 04/01/201           |
| Arsenic                         | mg/kg | 4   | Metals.20<br>ICP-AES | <4             | 50196-1       | 9    9    RPD: 0          | LCS-1     | 107%                |
| Cadmium                         | mg/kg | 0.5 | Metals.20<br>ICP-AES | <0.5           | 50196-1       | <0.5    <0.5              | LCS-1     | 103%                |
| Chromium                        | mg/kg | . 1 | Metals.20<br>ICP-AES | <1             | 50196-1       | 9    9    RPD: 0          | LCS-1     | 101%                |
| Copper                          | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 50196-1       | 35    34    RPD: 3        | LCS-1     | 108%                |
| Lead                            | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 50196-1       | 14    14    RPD: 0        | LCS-1     | 101%                |
| Mercury                         | mg/kg | 0.1 | Metals.21<br>CV-AAS  | <0.1           | 50196-1       | <0.1    <0.1              | LCS-1     | 104%                |
| Nickel                          | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 50196-1       | 14    14    RPD: 0        | LCS-1     | 105%                |
| Zinc                            | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 50196-1       | 62    64    RPD: 3        | LCS-1     | 101%                |
|                                 | T     | I   | 1                    | 1              | 1             |                           |           |                     |
| QUALITY CONTROL                 | UNITS | PQL | METHOD               | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %             |

| QUALITY CONTROL                | UNITS    | PQL | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|--------------------------------|----------|-----|--------|--------------|---------------|---------------------------|-----------|---------------------|
| Miscellaneous Inorg - soil     |          |     |        |              |               | Base II Duplicate II %RPD |           |                     |
| Date prepared                  | -        |     |        | 5/1/201<br>1 | 50196-4       | 5/1/2011    5/1/2011      | LCS-1     | 5/1/2011            |
| Date analysed                  | -        |     |        | 5/1/201<br>1 | 50196-4       | 5/1/2011    5/1/2011      | LCS-1     | 5/1/2011            |
| pH 1:5 soil:water              | pH Units |     | LAB.1  | [NT]         | 50196-4       | 5.5    5.5    RPD: 0      | LCS-1     | 101%                |
| Chloride, Cl 1:5<br>soil:water | mg/kg    | 2   | LAB.81 | <2.0         | 50196-4       | 27    [N/T]               | LCS-1     | 104%                |
| Sulphate, SO4 1:5 soil:water   | mg/kg    | 2   | LAB.81 | <2.0         | 50196-4       | 31    [N/T]               | LCS-1     | 112%                |

| QUALITY CONTROL<br>Moisture | UNITS | PQL | METHOD | Blank          |
|-----------------------------|-------|-----|--------|----------------|
| Date prepared               | -     |     |        | 04/01/2<br>011 |
| Date analysed               | -     |     |        | 05/01/2<br>011 |
| Moisture                    | %     | 0.1 | LAB.8  | <0.10          |

Client Reference:

72138, Macquarie Village

| QUALITY CONTROL<br>Asbestos ID - soils    | UNITS PO | DL METHOD | Blank                             |           |                  |
|-------------------------------------------|----------|-----------|-----------------------------------|-----------|------------------|
| Date analysed                             | -        |           | [NT]                              |           |                  |
| QUALITY CONTROL                           | UNITS    | Dup. Sm#  | Duplicate                         | Spike Sm# | Spike % Recovery |
| vTRH & BTEX in Soil                       |          |           | Base + Duplicate + %RPD           |           |                  |
| Date extracted                            | -        | 50196-11  | 04/01/2011    04/01/2011          | 50196-2   | 04/01/2011       |
| Date analysed                             | -        | 50196-11  | 05/01/2011    05/01/2011          | 50196-2   | 05/01/2011       |
| vTRH C6 - C9                              | mg/kg    | 50196-11  | <25    <25                        | 50196-2   | 95%              |
| Benzene                                   | mg/kg    | 50196-11  | <0.5    <0.5                      | 50196-2   | 100%             |
| Toluene                                   | mg/kg    | 50196-11  | <0.5    <0.5                      | 50196-2   | 95%              |
| Ethylbenzene                              | mg/kg    | 50196-11  | <1.0    <1.0                      | 50196-2   | 86%              |
| m+p-xylene                                | mg/kg    | 50196-11  | <2.0    <2.0                      | 50196-2   | 97%              |
| o-Xylene                                  | mg/kg    | 50196-11  | <1.0    <1.0                      | 50196-2   | 98%              |
| Surrogate<br>aaa-Trifluorotoluene         | %        | 50196-11  | 110    104    RPD: 6              | 50196-2   | 118%             |
| QUALITY CONTROL<br>sTRH in Soil (C10-C36) | UNITS    | Dup. Sm#  | Duplicate Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                            | -        | 50196-11  | 04/01/2011    04/01/2011          | 50196-2   | 04/01/2011       |
| Date analysed                             | -        | 50196-11  | 05/01/2011    05/01/2011          | 50196-2   | 05/01/2011       |
| TRH C10 - C14                             | mg/kg    | 50196-11  | <50    <50                        | 50196-2   | 101%             |
| TRH C <sub>15</sub> - C <sub>28</sub>     | mg/kg    | 50196-11  | <100    <100                      | 50196-2   | 105%             |
| TRH C29 - C36                             | mg/kg    | 50196-11  | <100    <100                      | 50196-2   | 96%              |
| Surrogate o-Terphenyl                     | %        | 50196-11  | 99    95    RPD: 4                | 50196-2   | 98%              |
| QUALITY CONTROL<br>PAHs in Soil           | UNITS    | Dup. Sm#  | Duplicate Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                            | -        | 50196-11  | 04/01/2011    04/01/2011          | 50196-2   | 04/01/2011       |
| Date analysed                             | -        | 50196-11  | 04/01/2011    04/01/2011          | 50196-2   | 04/01/2011       |
| Naphthalene                               | mg/kg    | 50196-11  | <0.1    <0.1                      | 50196-2   | 86%              |
| Acenaphthylene                            | mg/kg    | 50196-11  | <0.1    <0.1                      | [NR]      | [NR]             |
| Acenaphthene                              | mg/kg    | 50196-11  | <0.1    <0.1                      | [NR]      | [NR]             |
| Fluorene                                  | mg/kg    | 50196-11  | <0.1    <0.1                      | 50196-2   | 85%              |
| Phenanthrene                              | mg/kg    | 50196-11  | <0.1    0.1                       | 50196-2   | 87%              |
| Anthracene                                | mg/kg    | 50196-11  | <0.1    <0.1                      | [NR]      | [NR]             |
| Fluoranthene                              | mg/kg    | 50196-11  | 0.3    0.4    RPD: 29             | 50196-2   | 87%              |
| Pyrene                                    | mg/kg    | 50196-11  | 0.3    0.4    RPD: 29             | 50196-2   | 90%              |
| Benzo(a)anthracene                        | mg/kg    | 50196-11  | 0.2    0.2    RPD: 0              | [NR]      | [NR]             |
| Chrysene                                  | mg/kg    | 50196-11  | 0.2    0.3    RPD: 40             | 50196-2   | 88%              |
| Benzo(b+k)fluoranthene                    | mg/kg    | 50196-11  | 0.4    0.6    RPD: 40             | [NR]      | [NR]             |
| Benzo(a)pyrene                            | mg/kg    | 50196-11  | 0.2    0.3    RPD: 40             | 50196-2   | 80%              |
| Indeno(1,2,3-c,d)pyrene                   | mg/kg    | 50196-11  | 0.2    0.2    RPD: 0              | [NR]      | [NR]             |
| Dibenzo(a,h)anthracene                    | mg/kg    | 50196-11  | <0.1    <0.1                      | [NR]      | [NR]             |
| Benzo(g,h,i)perylene                      | mg/kg    | 50196-11  | 0.2    0.2    RPD: 0              | [NR]      | [NR]             |

Envirolab Reference: 50196

Revision No:

|                                          | Client Reference: 72138, Wacquarie Village |          |                                    |           |                  |  |  |  |  |
|------------------------------------------|--------------------------------------------|----------|------------------------------------|-----------|------------------|--|--|--|--|
| QUALITY CONTROL<br>PAHs in Soil          | UNITS                                      | Dup. Sm# | Duplicate  Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |  |  |  |  |
| 17/110/11/00/1                           |                                            |          | Dasc : Duplicate : 7811 D          |           |                  |  |  |  |  |
| Surrogate<br>p-Terphenyl-d <sub>14</sub> | %                                          | 50196-11 | 106    104    RPD: 2               | 50196-2   | 98%              |  |  |  |  |
| QUALITY CONTROL                          | UNITS                                      | Dup. Sm# | Duplicate                          | Spike Sm# | Spike % Recovery |  |  |  |  |
| Organochlorine Pesticides<br>in soil     |                                            |          | Base + Duplicate + %RPD            |           |                  |  |  |  |  |
| Date extracted                           | -                                          | 50196-11 | 04/01/2011    04/01/2011           | 50196-2   | 04/01/2011       |  |  |  |  |
| Date analysed                            | -                                          | 50196-11 | 04/01/2011    04/01/2011           | 50196-2   | 04/01/2011       |  |  |  |  |
| HCB                                      | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| alpha-BHC                                | mg/kg                                      | 50196-11 | <0.1    <0.1                       | 50196-2   | 82%              |  |  |  |  |
| gamma-BHC                                | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| beta-BHC                                 | mg/kg                                      | 50196-11 | <0.1    <0.1                       | 50196-2   | 70%              |  |  |  |  |
| Heptachlor                               | mg/kg                                      | 50196-11 | <0.1    <0.1                       | 50196-2   | 84%              |  |  |  |  |
| delta-BHC                                | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| Aldrin                                   | mg/kg                                      | 50196-11 | <0.1    <0.1                       | 50196-2   | 77%              |  |  |  |  |
| Heptachlor Epoxide                       | mg/kg                                      | 50196-11 | <0.1    <0.1                       | 50196-2   | 86%              |  |  |  |  |
| gamma-Chlordane                          | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| alpha-chlordane                          | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| Endosulfan I                             | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| pp-DDE                                   | mg/kg                                      | 50196-11 | <0.1    <0.1                       | 50196-2   | 66%              |  |  |  |  |
| Dieldrin                                 | mg/kg                                      | 50196-11 | 0.1    0.1    RPD: 0               | 50196-2   | 104%             |  |  |  |  |
| Endrin                                   | mg/kg                                      | 50196-11 | <0.1    <0.1                       | 50196-2   | 88%              |  |  |  |  |
| pp-DDD                                   | mg/kg                                      | 50196-11 | <0.1    <0.1                       | 50196-2   | 70%              |  |  |  |  |
| Endosulfan II                            | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| pp-DDT                                   | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| Endrin Aldehyde                          | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| Endosulfan Sulphate                      | mg/kg                                      | 50196-11 | <0.1    <0.1                       | 50196-2   | 99%              |  |  |  |  |
| Methoxychlor                             | mg/kg                                      | 50196-11 | <0.1    <0.1                       | [NR]      | [NR]             |  |  |  |  |
| Surrogate TCLMX                          | %                                          | 50196-11 | 107    111    RPD: 4               | 50196-2   | 113%             |  |  |  |  |

|                                                       |       | Client Reference | ce: 72138, Macquarie                 | e Village |                  |
|-------------------------------------------------------|-------|------------------|--------------------------------------|-----------|------------------|
| QUALITY CONTROL Organophosphorus Pesticides           | UNITS | Dup. Sm#         | Duplicate Base + Duplicate + %RPD    | Spike Sm# | Spike % Recovery |
| Date extracted                                        | _     | 50196-11         | 04/01/2011    04/01/2011             | 50196-2   | 04/01/2011       |
| Date analysed                                         | _     | 50196-11         | 04/01/2011    04/01/2011             | 50196-2   | 04/01/2011       |
| Diazinon                                              | mg/kg | 50196-11         |                                      | [NR]      | [NR]             |
| Dimethoate                                            | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Chlorpyriphos-methyl                                  | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Ronnel                                                | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Chlorpyriphos                                         | mg/kg | 50196-11         | <0.1    <0.1                         | 50196-2   | 105%             |
| Fenitrothion                                          | mg/kg | 50196-11         | <0.1    <0.1                         | 50196-2   | 112%             |
| Bromophos-ethyl                                       | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Ethion                                                | mg/kg | 50196-11         | <0.1    <0.1                         | 50196-2   | 92%              |
| Surrogate TCLMX                                       | %     | 50196-11         | 107    111    RPD: 4                 | 50196-2   | 115%             |
| QUALITY CONTROL<br>PCBs in Soil                       | UNITS | Dup. Sm#         | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                        | -     | 50196-11         | 04/01/2011    04/01/2011             | 50196-2   | 04/01/2011       |
| Date analysed                                         | _     | 50196-11         | 04/01/2011    04/01/2011             | 50196-2   | 04/01/2011       |
| Arochlor 1016                                         | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Arochlor 1221*                                        | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Arochlor 1232                                         | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Arochlor 1242                                         | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Arochlor 1248                                         | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Arochlor 1254                                         | mg/kg | 50196-11         | <0.1    <0.1                         | 50196-2   | 108%             |
| Arochlor 1260                                         | mg/kg | 50196-11         | <0.1    <0.1                         | [NR]      | [NR]             |
| Surrogate TCLMX                                       | %     | 50196-11         | 107    111    RPD: 4                 | 50196-2   | 97%              |
| QUALITY CONTROL<br>Total Phenolics in Soil            | UNITS | Dup. Sm#         | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                        | -     | [NT]             | [NT]                                 | 50196-2   | 5/1/2011         |
| Date analysed                                         | -     | [NT]             | [NT]                                 | 50196-2   | 5/1/2011         |
| Total Phenolics (as Phenol)                           | mg/kg | [NT]             | [NT]                                 | 50196-2   | 85%              |
| QUALITY CONTROL<br>Acid Extractable metals in<br>soil | UNITS | Dup. Sm#         | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date digested                                         | -     | 50196-11         | 04/01/2011    04/01/2011             | 50196-2   | 04/01/2011       |
| Date analysed                                         | -     | 50196-11         | 04/01/2011    04/01/2011             | 50196-2   | 04/01/2011       |
| Arsenic                                               | mg/kg | 50196-11         | 18    19    RPD: 5                   | 50196-2   | 94%              |
| Cadmium                                               | mg/kg | 50196-11         | <0.5    <0.5                         | 50196-2   | 82%              |
| Chromium                                              | mg/kg | 50196-11         | 24    22    RPD: 9                   | 50196-2   | 85%              |
| Copper                                                | mg/kg | 50196-11         | 36    43    RPD: 18                  | 50196-2   | 110%             |
| Lead                                                  | mg/kg | 50196-11         | 210    280    RPD: 29                | 50196-2   | 79%              |
| Mercury                                               | mg/kg | 50196-11         | 0.1    0.1    RPD: 0                 | 50196-2   | 107%             |
| Nickel                                                | mg/kg | 50196-11         | 7    7    RPD: 0                     | 50196-2   | 95%              |

| QUALITY CONTROL Acid Extractable metals in soil | UNITS | Dup. Sm# | Duplicate Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
|-------------------------------------------------|-------|----------|-----------------------------------|-----------|------------------|
| Zinc                                            | mg/kg | 50196-11 | 230    240    RPD: 4              | 50196-2   | 86%              |