3.0 GEOLOGY

The study area is situated within the Lachlan Fold Belt in south eastern New South Wales. Review of the areas geological setting was conducted with reference to the Department of Natural Resources Gunning 1:100,000 series sheet as is shown in **Figure 2**.

The investigation area is dominated by the Ordovician Adaminaby Group which comprises inter-bedded sandstone, phyllite and siltstone sequences that have been tightly folded and faulted. The Adaminaby Group adjoins Silurian aged granites to the east and south. The region is influenced by numerous major north-south fault structures with localised east-west lineaments.

4.0 HYDROGEOLOGY

4.1 SETTING

Viable groundwater resources in the area are associated primarily with fractured rock aquifers controlled by geological faults, fractures, and joints from both regional and district faulting. Enhanced hydraulic conductivity is largely dependent on the scale and density of primary (void space between grains) and secondary (fractures) porosity.

Groundwater gradients and flow regimes are expected to imitate catchment topography with flows towards the Lachlan River under subtle gradients.

The subject bores have been sited in proximity of geological lineaments mapped from aerial photography and geological maps to meet operational requirements. The bore locations are shown in **Figure 1**.

4.1.1 DEPTH

The subject bores were drilled to 114m (Bore 1) and 120m (Bore 2) whilst registered bores in the area are installed to depths between 18 metres and 61 metres below ground level (mbgl). During the investigation the static water level (SWL) in the subject bores was 26.84m (Bore 1) and 13.88m (Bore 2) during round 1 pump testing.

4.1.2 YIELD

Average yields for registered bores in the vicinity of the site are between 0.1L/s and 1.89L/s. The cumulative yield in the subject bores was reported as approximately 4L/s (Bore 1) and 0.6L/s (Bore 2) during airlifting by the driller.

4.1.3 GRADIENT AND FLOW

Determination of groundwater gradients and flow parameters requires field monitoring and surveying of boreheads to relative levels. The gathering of this necessary detail was beyond

the scope of work for this assessment. Local groundwater flows are expected to mimic topographic trends with subtle gradients towards the Lachlan River to the north.

4.1.4 RECHARGE AND DISCHARGE

The deep fractured rock aquifers intersected by the subject bores are considered regional scale systems with recharge from an extensive catchment area. During the scope of work no signs of groundwater discharge (seeps or springs) were identified at the site.

4.2 LICENSED WORKS

A review of *NOW* registered bore records was conducted to develop a conceptual understanding of regional groundwater conditions, including aquifer depths, yields, and water quality. The search did not identify any registered bores within a one (1) kilometre radius of the subject bores as depicted in **Figure 3**. The search was extended to the surrounding area. A summary of selected registered bore details is outlined in **Table 2** and bore reports are provided in **Appendix E**.

The existing registered bores in proximity to the area are drilled to various depths from 18-61m with 'good' to 'brackish' water quality and low yields up to 1.9L/s. In general the existing bores are considered insufficient in depth to facilitate assessment of the deeper aquifers (~50-120m) which have been intersected by the subject bores. Previous drilling investigations by *Hydroilex* in the region at Narrawa and Windermere Reserve intersected yields between 1.25 and 2.2L/s at depths from 23-48m.

It is noted that one (1) existing farm bore inspected during this assessment did not appear on the NOW groundwater database. *Hydroilex* understand the Stock and Domestic bore situated in Lot345 DP754111 (GDA 55E699430 N615483) may not be licensed. It is recommended that the owner be notified and the necessary documentation lodged with NOW.

		Table 2	Summary	of Nearb	y Register	ed Bores		
Bore ID	East/North GDA 55	Depth m	Purpose	Yield L/s	Salinity	Aquifer	Geology	Distance from B1
GW703450	699345 6158566	18.6	Stock & domestic	0.5	N.D.	N.D.	N.D.	2.4km
GW060994	-	48.1	Stock & domestic	0.13 0.33	Good Good	39-39.3 45.1-45.4	Shale Shale	-
GW054033	699368 6157565	54	Stock & domestic	0.3 0.15 0.16 0.69	Fair Fair Fair Fair	20-22 22-30 30-38 38-54	Slate Slate Slate Slate	3km
GW047202	700206 6155550	61.5	TWS Bore 2	0.1 1.89	N.D.	33-34 58-61	Siltstone Shale	4.4km
GW070051	-	42	Stock & domestic	0.8	Good Good	18-19 30-31	Slate Slate	-
GW700858	-	30	Stock & domestic	0.25 0.31	N.D.	15-16 22-24	Shale Shale	-
GW600151	-	50	Monitoring Bore	0.05	8808 uS/cm	34-40	Sand	-
GW702612	699595 6161312	21	Stock & domestic	0.67	Brackish	10-20	N.D.	2.2km
GW702614	-	50	Stock & domestic	N.D.	N.D.	N.D.	N.D.	-

Table 2 Summary of Nearby Registered Bores											
Bore ID	East/North GDA 55	Depth m	Purpose	Yield L/s	Salinity	Aquifer	Geology	Distance from B1			
GW015985	?	23.5	TWS	1.26	N.D.	21-21	Shale	-			
GW047175	-	50	Public municipal	0.1		29-36	Shale siltstone	-			
GW047174	700126 6155721	40	TWS (Bore 1)	1.5	salty	20-30	shale	4.3km			
No record	699430 6154835	n/a	n/a	n/a	n/a	n/a	n/a	5.3km			

5.0 BORE CONSTRUCTION

The subject bores were drilled and constructed by *Bungendore Water Bores* in December 2011 and January 2012. *Hydroilex* understand the bores were constructed in accordance with the guidelines set out by the Land and Water Biodiversity Committee in the *Minimum Construction Requirements for Water Bores in Australia - 2nd Edition* (2003). Detailed bore construction records are documented in the 'Form A' reports contained in **Appendix A**. A summary of the construction data and aquifer intercepts is provided in **Table 3**.

Bore ID	Dalton Power Station - Bore 1	Dalton Power Station - Bore 2
Completion Date	22 / 12 / 2011	5/1/2012
Test Bore License	70BL233651	70BL233652
Lot/DP	306 / DP754111	307 / DP754111
Easting MGA 55	701426	701574
Northing MGA	6159761	6159409
Depth Drilled (m)	114	120
Casing	0 - 6m (200 mm steel) 0 - 114m (150mm PVC casing)	0-120 class 9 PVC
Water Entry (m)	54-114m (150mm slotted PVC casing)	18-90m (150mm slotted PVC casing)
Gravel Pack	0-114m 3.5 tonne (~1.4m3) 6-7mm graded	0-90m 4 tonne (~1.5m3) 6-7mm graded
Static Water Level (mbgl)	26.84	13.88
Aquifers m-m~L/s (driller)	40-42 seepage 49-51 ~0.3L/s 64-66 ~0.3L/s 89-91 ~0.5L/s 103-105 ~2L/s	15m ~seepage 22-24 ~0.2 39-41 ~0.3 65-66 ~possible aquifer 76-78 ~0.1 87-90 ~0.1
Yield (drillers airlift after construction)	4L/s	0.7L/s
Geology	0-17 Clay and wthrd shale, orange/brown 17-19 Shale, wthrd, clayey, light grey 19-48 Shale, light grey 48-72 Shale, medium grey	0-1 Clay, yellow/brown 1-6 Shale, slatey, weathered, yellow/brown 6-12 a/a, light brown

Table 3 Bore Construction

Bore ID	Dalton Power Station - Bore 1	Dalton Power Station - Bore 2
	72-114 Shale, slatey, dark grey, carbonaceous, occasional silty interbeds	12-25 slate, light grey 25-120 slate, medium grey, occasional quartz veining, highly carbonaceous below 72m

6.0 AQUIFER TESTING

6.1 PUMP TEST METHODOLOGY

The bores were subjected to two (2) rounds of 24 hour drawdown and recovery pump testing conducted between in December 2011 and February 2012. Pumping test design and methodology was developed and conducted in accordance with the Australian Standard for Test Pumping of Water Wells (AS 2368-1990). The pumping rate, duration and depth setting was selected following detailed review of the hydrogeological conditions including depth of target aquifers, aquifer type, available drawdown, and bore construction. Testing was conducted using a submersible *Grundfos* pump. Water level data was collected both manually and automatically with a submersible *minitroll* water level data logger programmed to record water levels at 10 minute intervals.

6.2 PUMP TEST RESULTS

A summary of the drawdown and recovery test results is provided in **Appendix B** (Round 1) and **Appendix C** (Round 2). Drawdown and recovery data was tabulated and plotted to produce aquifer response curves. The drawdown and recovery curves demonstrate high quality aquifer response data to support graphical analysis of aquifer properties.

Bore ID	Bore 1 Test 1	Bore 1 Test 2	Bore 2 Test 2	Bore 2 Test 2	
Test Date Start	22/12/2011	16/2/2012	10/1/2012	14 2/2012	
Drawdown Test Duration (hrs)	1 Day (24 Hours)	1 Day (24 Hours)	1 Day (24 Hours)	1 Day (24 Hours)	
Recovery Test Duration (hrs)	>1 Day	>1 Day	>1 Day	>1 Day	
Flow Rate (Litres per second)	3 L/s	3 L/s	0.6L/s	0.6L/s	
Static Water Level (SWL mbgl)	26.84	26.71	13.88	13.88	
Available Drawdown (ADD)	76mbSWL (10 primary aquife		76mbSWL to base of aquifers observed during drilling & pump testing at 90mbgl)		
Final Drawdown during testing (m below SWL)	72.9mbgl after 24hrs	66.24mbgl after 24hrs	90.35mbgl after 24 hours	81.82mbgl after 24 hours	
Transmissivity (m ² /day)	8.6		0.5		
Storativity	0.008		0.4		

Table 4 Summary of Drawdown and Recovery Test Results

Bore ID	Bore 1 Test 1	Bore 1 Test 2	Bore 2 Test 2	Bore 2 Test 2	
Recommended discharge rate (L/s)	Up to 3.0L/s		Up to 0.5L/s		
Recommended pump setting (mbgl)	103m		90m		
Capable Annual Yield (ML) pumping at 50% duty (12hrs/day 365 days / year)	50ML		10ML		

6.3 AQUIFER PARAMETERS

Water level observation data from the pumping tests was analysed with Aqtesolv Prov 4.0 software to estimate aquifer properties. Pump test analysis is generally more rigorous supported by water level drawdown data in monitoring bores. Monitoring was conducted in both production bores and six (6) existing bores. The production bores are approximately 383m apart. However, no significant drawdown was observed in any monitoring bores during pumping. Hence the aquifer test analysis was conducted using only the observation data from within the pumping bores. Straight line methods for confined aquifers were applied including Cooper Jacob (1946), and Theis (1935). Results are summarised in **Table 5**. It is recommended that any further application of aquifer test results incorporate sensitivity analysis using the range of values presented in this assessment.

Transmissivity

Transmissivity is a measure of how easily an aquifer layer transmits water or the hydraulic conductivity (K) over the thickness of a given layer. **Bore 1** reports T values between $6.35m^2/day$ and $10.35m^2/day$. It is recommended the late time recovery data be applied with a T value of **8.6m²/day**. T values in Bore 1 are greater than Bore 2 which has a range between $0.316m^2/day$ and $3.99m^2/day$. The yield in **Bore 2** is significantly less than Bore 1 hence a lower T value of **0.5m²/day** should be adopted.

Storativity

Storativity (S) is a dimensionless parameter that integrates storage over the height of the aquifer (volume/area/length). S is defined as the volume of water an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in head. It is equal to the product of specific storage and aquifer thickness (Fetter 2001).

S values derived from pump testing presents a range of values, it is recommended that a value of **0.008** be adopted in **Bore 1**. Results in **Bore 2** indicate an S value of **0.4** may be suitable based on late drawdown data. Aquifter test results for Storativiy in Bore 2 report a large range in values as low as 2.8E-31. More detailed analysis of S values in Bore 2 would require an additional monitoring bore which is beyond the scope of work for this assessment and is not considered necessary given the relatively low required yield at the Site.

			Cooper Jacob Drawdown	Cooper Jacob Recovery	Theis Drawdown	Theis Recovery
	st 1	T m ² /day	8.096	8.682	8.147	8.621
e 1	Test 1	S	1.748E-5	8.099E-6	1.404E-5	-
Bore	it 2	T m ² /day	6.35	10.35	10.04	9.358
	Test	S	0.008247	1.404E-5	1.404E-5	-
	st 1	T m ² /day	0.5088	3.828	0.508	-
.e 2	Test	S	0.4414	2.8E-31	0.4408	-
Bore	st 2	T m ² /day	0.357	3.67	0.316	0.9007
	Test 2	S	0.2782	1.821E-24	0.441	-

Table 5	Transmissivity	and Storativity	Values
---------	----------------	-----------------	--------

6.4 CAPABLE YIELD

Initial water level recovery at completion of pumping is noted to be rapid becoming gradual. Groundwater yields are supported by the intersection of multiple fractured rock aquifers and an extensive recharge zone. The aquifer test results indicate Bore 1 is capable of sustaining discharge rates up to 4L/s with suitable recovery between pumping cycles to ensure the long term sustainability of the bore structure and groundwater resources. In general it is recommended to operate the bore at 50 percent duty pumping at 3L/s this is equivalent to an annual yield of approximately 50ML per year.

• Bore 1 - 3.0L/s; 12hr Pumping; 12hrs Recovery; 50ML per year at 50% duty.

Whilst the yield in Bore 2 is less, consistent pumping at a low rate may be conducted to maintain storage at the site. In general it is recommended to operate the bore at 50 percent duty pumping at 0.5L/s this is equivalent to an annual yield of approximately 10ML per year.

• Bore 2 - 0.5L/s; 12hr Pumping; 12hrs Recovery; 10ML per year at 50% duty.

The combined capable yield of the bores is approximately 60ML per year. This is noted to be greater than the proposed site requirements. The pumping regime recommendations are based on a 24 hour pumping cycle. Further drawdown modelling may be required to predict water levels under long term pumping. It should be noted that extrapolation beyond one (1) week is not reliable given the relatively short duration of the pump tests and no supporting records from monitoring bores. Should more accuracy be required for long term predictions a minimum 7 day pump test should be considered, and supported by water level measurements from one or more monitoring bores.

It should be noted that the indicated groundwater extraction regime is based on the aquifer response during a limited period of testing and simulation stress. Groundwater extraction should be supported by appropriate groundwater management practices including regular water level monitoring. Bore performance may alter as a result of structural and chemical changes within the bore or due to variations in aquifer recharge, namely as rainfall.

7.0 WATER QUALITY

Water samples were collected at the end of test pumping and submitted for formal analysis at a NATA accredited laboratory. A summary of the chemical analysis results is outlined in **Table 6** with the relevant water quality guidelines. Laboratory certificates of analysis are provided in **Appendix D**. Based on the laboratory results the water quality is considered appropriate for construction purposes including dust suppression. It is recommended that the laboratory results be compared against specific project requirements to determine

	7.1	1 Summary of	f Water Qual	ity Guidelines	5	
Analytes	Units	ANZECC 2000 Trigger values for Freshwater Level of protection (95% species)	ADW(Health	G 1996 Aesthetic	B1	B2
Diss Calcium	mg/L	ID	ID	ID	170	210
Diss Potassium	mg/L	ID	ID	ID	3.8	3.8
T. Sodium	mg/L	ID	ID	180	240	360
Diss Magnesium	mg/L	ID	ID	ID	140	270
Carbonate	mg/L	ID	ID	ID	< 0.1	< 0.1
Bicarbonate	mg/L	ID	ID	ID	587	544
Sulphate	mg/L	ID	500	250	270	110
Chloride	mg/L	ID	ID	250	460	1200
Nitrate (as N)	mg/L N	700	50	50	< 0.05	0.17
Nitrite (as N)	mg/L	ID	3	3	< 0.01	< 0.01
T.Iron	mg/L	ID	ID	0.3	3.4	3.2
рН	pH units	ID	ID	6.5-8.5	7.1	7.0
Electrical Conductivity	uS/cm	ID	ID	ID	2700	4600
T.Hardness	mg/L	ID	ID	200	1000	1600
T Diss Solids (c) - TDS	mg/L	ID	ID	500	1800	3000
Copper-Dissolved	mg/L	0.0014	2	1	0.0014	0.0028
Barium-Dissolved	mg/L	ID	0.7	ID	0.051	0.110
Cadmium-Dissolved	mg/L	0.0002	0.002	ID	< 0.0005	0.0005
Chromium-Dissolved	mg/L	0.001	0.05	ID	< 0.002	< 0.002
Manganese-Dissolved	mg/L	1.9	0.5	0.1	0.23	0.34
Zinc-Dissolved	mg/L	0.008	ID	3	0.016	0.036
Lead-Dissolved	mg/L	0.0034	0.01	ID	< 0.00005	< 0.00005
Antimony-Dissolved	mg/L	ID	0.003	ID	< 0.003	< 0.003
Arsenic-Dissolved	mg/L	0.024	0.007	ID	0.001	0.003
Mercury-Dissolved	mg/L	0.0006	0.001	ID	< 0.001	0.001
Selenium-Dissolved	mg/L	0.011	0.01	ID	< 0.003	< 0.002
Silver-Dissolved	mg/L	0.00005	0.1	ID	< 0.001	< 0.001

Table 6 Groundwater Quality Results

1: Australian and New Zealand Water Quality (ANZECC) Guidelines for fresh and marine waters, 2000

2: Australian Drinking Water Guidelines (ADWG) 1996

8.0 IMPACT ASSESSMENT

8.1 DISTANCE DRAWDOWN

The nearest registered bore (GW702612) is situated approximately 2.2km to the northwest and is not expected to be in strong hydraulic connection with the subject bores. The production bores (Bore 1 and Bore 2) were monitoring during pumping to assess potential drawdown. The bores are positioned approximately 385m apart. It should be noted that no drawdown during pumping was recorded in Bore 2 whilst pumping Bore 1 and similarly no drawdown was recorded in Bore 1 whilst pumping Bore 2. Water level loggers were installed in six (6) existing bores during the second round of pump testing, hydrographs are reported in Appendix C. The hydrographs show no drawdown was recorded in monitoring bores associated with pump testing in the production bores. Distinct drawdown responses are noted in several bores associated with pump operation in those bores during the test period. Hydroilex understand two (2) landowners have expressed concern regarding potential impacts from pumping. The monitoring data clearly demonstrates no drawdown impacts beyond ~380m from the production bores. The production bores have intersected deep fractured rock aquifers associated with large scale aquifers. Hence, given the distance of existing bores and no record of drawdown during pumping in monitoring bores the proposed pumping schedule is not expected to impact on existing users.

8.2 GROUNDWATER DEPENDENT ECOSYSTEMS

Review of the property and surrounding land uses indicates that the site does not contain or form part of any critical habitats. Site inspections did not identify any significant areas of groundwater discharge or Groundwater Dependent Ecosystems (GDE's) in vicinity of the site. GDE's were considered to comprise hanging swamps or vegetation communities dependent on groundwater discharge. No shallow aquifers were identified during drilling, hence the constructed bores are not assessed to be in strong hydraulic connection with any GDE's or existing nearby bores. In summary the aquifer testing and hydrogeological assessment demonstrates that under the recommended extraction regime the subject bores are unlikely to result in any significant measurable impact on environmental conditions.

9.0 GROUNDWATER MANAGEMENT

9.1 TRIGGER LEVELS

The practical purpose for creating trigger levels for groundwater abstraction thresholds is in consequence of the following:

- The need to manage the resource in a sustainable manner;
- To provide protection for other users in the region, where increased drawdown due to pumping may cause other users to be disadvantaged;

- To reduce any impact of severe drawdown on the environment e.g. baseflow declines, depletion of groundwater storage, impacts on distal GDE's; and
- To provide a level of confidence and protection to the designated authority (*NOW*) for the issue of the appropriate license.

Groundwater management requirements on the site will be outlined in the licence provided by *NOW*. The importance of limiting drawdown by excessive pumping will be important to maintain water quality consistency and pumping efficiency. A number of factors that have been considered important in the development of trigger levels are:

- Consideration of the aquifer boundaries, aquifer heterogeneity, and shape of the drawdown cone. A high level of confidence has however been gained by the regional knowledge, stratigraphic control, test data, and drawdown levels recorded during testing operations;
- Climatic changes which may impact on groundwater levels and recharge rates;
- 'Low risk' that stakeholders will be impacted;
- Impacts from any abstraction from future new bores on adjoining properties, especially if not controlled by an allocation or metered discharge rates (e.g. excessive abstraction from 'stock & domestic' licensed bores);
- The need to establish levels which certify the preservation of the environment, which are acceptable to the community. Recognition of groundwater abstraction attitudes, and perceptions of abstraction abuse which may or may not be tangible;
- The likely need to review trigger levels upon license renewal, or as required, in the event that conditions change;
- The setting of sensible trigger levels which are equitable for both the viability of the operation, other users and the environment;
- The need to review trigger levels in the event that new bores are constructed in the immediate area; and
- Recognition that the aquifer is relatively 'deep'.

It is proposed that three (3) trigger levels, or 'alarms' be created, having different levels of reporting requirements. The Trigger Levels and actions to be taken if threshold levels are reached or exceeded, including reporting to regulatory authority, cease-to-pump conditions are detailed in **Table 7**.

Level	Bore 1 - Trigger	Bore 2 - Trigger	Recommended Action
2	Monitored water level in the production bore during <i>any</i> production pumping period falls to a level of 80m below ground level Monitored water level in the production bore during <i>any</i> production pumping period falls to a level of 90m below ground level	Monitored water level in the production bore during <i>any</i> production pumping period falls to a level of 80m below ground level Monitored water level in the production bore during <i>any</i> production pumping period falls to a level of 85m below ground level	Record date of impact in water level database. Notify the hydrogeological consultant by email or phone within 7 days. This trigger level (if reached) should not constitute a formal notification. Provide relevant data to the hydrogeological consultant for assessment. Record date of impact in water level database. Notify the Senior Hydrogeologist, NOW and the hydrogeological consultant by email or letter within 7 days. Provide all relevant data to the hydrogeological consultant for assessment. Consider adjusting the extraction rate of the production bore to a flow where the trigger water level is not exceeded, OR Consider adjusting the pumping period where the trigger water level is not exceeded, OR Consider adjusting both the extraction rate and the pumping period where the trigger
3	Monitored water level in the production bore during <i>any</i> production pumping period falls to a level of 100m below ground level	Monitored water level in the production bore during <i>any</i> production pumping period falls to a level of 90m below ground level	 water level is not exceeded. STOP PUMPING Record date of impact in water level database. Notify the Senior Hydrogeologist, NOW and the hydrogeological consultant by email or letter within 5 days. Assess all monitoring and production data. Make conclusions and provide recommendations. Meet with the Senior Hydrogeologist, NOW to discuss results, cause/s of the declining water level and a contingency plan to go forward.

 Table 7 Pumping Trigger Levels

9.2 MONITORING

A long-term program of water level monitoring in the production bore should be implemented. Water level monitoring will provide important baseline water level data and facilitate the long-term sustainable management of the groundwater resource. Monitoring at the site should include the following:

• Measure and record water levels in the production bore by either manual water level readings, or installation of an automated water level data logger;

- Record the water level weekly if manual or daily if logger is installed;
- The water level logger should be maintained and downloaded regularly by a qualified groundwater consultant, or the site manager should be fully trained in the operation of the water level data logger; and
- Install a suitable on-line flow meter on the discharge of the production bore. Record discharge volumes on a regular basis for the production bore.

9.3 REPORTING

A proposed protocol for reporting is described as follows:

- All water level data and any water quality monitoring results should be reported inhouse on an annual basis and reviewed by the consulting hydrogeologist. The aim is to assess any medium to long-term changes in water levels and identify reasons for the changes if they occur. The monitoring schedule should be reviewed at least annually and changed if deemed appropriate by the consultant.
- A complete set of results of the production and monitoring program should be formally reported to the *Senior Hydrogeologist*, *NOW* on an annual basis.
- The annual report should provide the extraction records, pumping times and water level measurements from monitoring in the production bore. The report should include raw water level logger data, a figure showing the locations of the production bore and a set of hydrographs for the monitoring data.
- A copy of the annual report should be sent in hard copy to the *Senior Hydrogeologist*, *NOW*. The raw water level data can be appended to the report in electronic form. The complete report should also be submitted in electronic format to *NOW* and to the Owner.

9.4 CONSTRAINTS

Based on the information reviewed during this assessment no constraints have been identified that may impact the groundwater licence application and proposed use of groundwater. Potential constraints are considered to include any consent conditions imposed by council or other regulatory authority that would prevent the requested entitlement being realised in full for the purpose for which the licence is being sought.

It is noted that the area is subject to a Water Sharing Plan. Final licensing of the bores for production will require purchasing an existing allocation from a licence holder within the same groundwater source.

10.0 CONCLUSIONS AND RECOMMENDATIONS

10.1 CONCLUSIONS

Based on the findings obtained during the scope of work the following conclusions may be made:

- The proposal is to license Bore 1 and Bore 2 for irrigation, commercial and industrial purposes to support the construction and long-term operation of the Dalton power station;
- The site is situated on the southern side of the Lachlan River approximately five (5) kilometres north of Dalton in an area underlain by the Ordovician Adaminaby Group which comprises inter-bedded sandstone, phyllite and siltstone sequences;
- Bore 1 was drilled in December 2011 to 114m and constructed with 150mm Class 9 PVC slotted from 54-114m. The drillers airlift reported a cumulative yield of 4.0L/s;
- Bore 2 was drilled in January 2012 to 120m and constructed with 150mm Class 9 PVC slotted from 18-90m. The drillers airlift reported a cumulative yield of 0.7L/s;
- The bores were subjected to two (2) rounds of 24 hour drawdown and recovery pumping tests conducted between December 2011 and February 2012. The aquifer test results indicate the bores are capable of sustaining the following long term pumping regime:
 - ▶ Bore 1 3.0L/s; 12hr Pumping; 12hrs Recovery; 50ML per year at 50% duty;
 - Bore 2 0.5L/s; 12hr Pumping; 12hrs Recovery; 10ML per year at 50% duty.
- Water level loggers were installed in six (6) existing bores during the second round of pump testing. The hydrographs show no drawdown was recorded in monitoring bores associated with pump testing in the production bores;
- Review of registered bores and pumping test results indicates that under the proposed extraction regime the subject bores are not expected to result in any significant measurable impact on the environment and adjoining groundwater users; and
- This hydrogeological assessment incorporating two (2) rounds of 24 hour pump testing concludes the bores are capable of sustaining a combined annual groundwater allocation of 60ML, supported by a significant level of available drawdown, and multiple aquifers with an extensive recharge zone.

10.2 RECOMMENDATIONS

Based on the findings and conclusions outlined in this report the following recommendations are provided:

• A long-term program of water level monitoring in the production bores should be considered. Water level monitoring will provide important baseline water level data and facilitate the long-term sustainable management of the groundwater resource;

- Install a suitable on-line flow meter on the discharge of the proposed production bore. Record discharge volumes on a regular basis for the production bore. The *NSW Office* of *Water* (*NOW*) may require this as a condition of the bore licensing;
- Measure and record water levels in the production weekly if manual or daily with automated logger. The *NOW* may require this schedule as a condition of the bore licensing. *Hydroilex* can advise on the method and can review the water level data on an annual basis;
- Consider collecting groundwater discharge samples on a regular basis (summer and winter) and submit to a NATA registered laboratory for water quality testing; and
- Proceed with the licensing of the production bores for the intended purpose of Irrigation, commercial and industrial, and apply to transfer an annual allocation of:
 - ▶ Bore 1 50ML supported by 24 hour pumping test; and
 - ➢ Bore 2 10ML.

11.0 REFERENCES

Agriculture and Resource Management Council of Australia and New Zealand, 2003. Minimum Construction Requirements for Water Bores in Australia. Edition 2, Sept. 2003.

ANZECC (2001) Australian New Zealand Guidelines For Fresh And Marine Water Quality. National Water Quality Management Strategy. Australian And New Zealand Environment Conservation Council.

Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 3, Primary Industries - Rationale and Background Information (Chapter 9).

Australian Standard AS 2368--1990 Test Pumping of Water Wells

- Cooper H.H. and Jacob C.E. 1946. A Generalised Graphical Method for Evaluating Constants and Summarising Field History. Trans. Amer. Geophys. Union. Vol. 27, pp.526
- Domenico P.A. and Schwartz F.W. 1997. Physical and Chemical Hydrogeology. Second Ed. John Wiley & Sons, Inc. pp. 145

Fetter 2001. Applied Hydrogeology. Fourth Edition.

Freeze R.A. and Cherry J.A. 1997. Groundwater. Prentice-Hall, Inc.

Hydroilex Report HG10.7.1.LA. Groundwater Resource Review, Dalton Power Station.

FIGURES

Figure 1 Location Map Figure 2 Regional Geology Figure 3 Registered Groundwater Bores

Appendix A

Form A Bore Construction Report

					-	je 1	Hy	droilex	: - Bo	ore 2			
NSW [DEPAR	MENT OF	WATER	& ENE	ERGY					FOF	RM A		
Natura	l Resou	rce Produc	rts				P	ARTIC	ULA			ETE	D WORK
							Mark I	icence	Max	70	BL	22	2652
Driller's			23			1							3652 <u>2</u>
Class of									see:				ion Pty Ltd
Driller's		Da	nny Hill					Intended Use: Irrigation, Commercial & Industrial					
Assistar	nt Driller:	-					Compl	etion Da	te:	22/12/2	2011		
Contractor: Bungendore Water Bores							DRILL	ING DE	TAIL	S			3
					_		Fro	n	То		Hole		Drilling
New bor	re	X	Replace	ement be	ore						Diameter		Method
Deepen	ed		Enlarge	d	Г		(m))	(m)		(mm)		Code
Recondi	itioned		Other (s	pecify)	_		0		114		200		9
				,			114	4	120)	150		9
Final De	epth	120.0 m											
WATE		ING ZONE	2									_	4
				Fei	imated Y	ield	Test	DD		Dur	ation		Salinity
From	То	Thickness	SWL	23	(L/s)		method					(Con	ductivity or TDS)
(m)	(m)	(m)	(m)	Indivi	. ,	nulative		(m		Hrs	min	Cond	
(,	()	()	(,	Aqui			Code	(,			(µS/ci	
15	15	0	26.84	seep			1						
22	24	2		0.2			1						
39	41	2		0.3	3		1						
65	66	1		min			1						
76	78	2		0.1		0.7	1					400	0 2000
87	90	3		0.′		0.7	1					460	0 3000
CASIN	G / LINE	R DETAILS		-									5
Material	OD	Wall	From	То	Method	С	asing su	ipport n	netho	d	Co	de	2
		Thickness			Fixing								
Code	(mm)	(mm)	(m)	(m)	Code	Ty	ype of casing bottom Code 2				2		
5	150		0	90		Centra	alisers installed <u>No Yes X</u> (indicate on				ate on sketch)		
						Sump	installed	l No	х	Yes	From	m	То т
						Pressu	ire cemen	ted No	Х	Yes	From	m	То т
							g Protec				No [) Ye	
							9						
WATE		Y DESIGN	Conorol					Screen	T		Clat	Details	6
Motorial	OD	Wall	General	То	Open					onath	Width	1	
Material	00	Thickness	From	10	Openi type	Ŭ	Ang A	perture	ľ	ength	vviati	'	Alignment
Code	(mm)	(mm)	(m)	(m)	Cod		ode	(mm)		(mm)	(mm)		Code
5	150	()	18	90				2		()	()		
GRAVI	EL PAC	К											7
-	Туре		Grade			Grain si	ze		De	epth		(Quantity
	51 -					(mm)	-			m)			
					Fror	n	То	Fro	m	То		Litres	or m ³
Rounde	d X	Graded		х	6		7	0		90			1.5
Crushed		Ungrad	ed										
Bentonit		, , , , , , , , , , , , , , , , , , ,		Ye	s X								
		ment of Grav	el Pack	ie		ode	1				<u> </u>		
									1				
For D	WEU	se only:			G	W							

Natural Resource Products

Page 2

FORM A PARTICULARS OF COMPLETED WORK

Work Licence No: 10 BI 233652

						WORL	icence No.		L 233032	·
BORE DEVELOPMENT 8										
Chemical used for breaking down drilling mud No 🗙 Yes 🗌 Name:										
Method E	Bailing/Surg	ing 🔲 Je	tting	Airlift	ing X	Backwashing	Ρι	umping 🛛	Other:	
Duration		hrs	hr	s	~2 hrs		hrs	2 4 hrs		hrs
			D	ISINFEC	TION ON	COMPLETIC	N			9
	Chemica	al/s used		Qu	uantity app	lied (litres)		Method of	application	
			PU	MPING	TESTS O		ON			10
			Pump	Initial		Water Level			Recovery	
Τe	est	Date	intake	Water	Pumping	at end of	Duration		Recovery	
ty	pe		depth	Level	rate	pumping	of Test	Water	Time	taken
				(SWL)		(DDL)		level		
			(m)	(m)	(L/s)	(m)	(hrs)	(m)	(hrs)	(mins)
Multi stage	Stage 1 Stage 2									
(stepped	Stage 2 Stage 3				Refer to l	l Hydroilex Re	eport			
drawdown)	Stage 4									
Single stage	;									
(constant ra	te)									
Height of m	easuring po	int above gro	ound leve	el	m	Test Method	Code		See Code	Table 4
		W	ORK P	ARTLY	BACKFILL	ED OR ABA	NDONED			11
Original dep	th of work:	me	etres		ls	work partly ba	ckfilled:	No	Yes	
Is work aba	ndoned: N	lo Yes	M	ethod of	abandonm	ent: Backfille	ed	Plugged	Сарр	ed
Has any cas	sing been le	ft in the work	K No		Yes	From	m	То	m	
Sealing /	fill type	From dep	th	To de	pth	Sealing / fill ty	rpe F	rom depth	То	depth
Coc	le	(m)		(m))	Code		(m)		(m)
Site chosen b	oy: Hydrog	eologist X	Geolo	ogist	Driller	Diviner	Clien	t 🗌 Ot	her	12
Lot No	307	DP N	0	7541	11	-				13
Work Loca	tion Co orc	linates	Easting	7	01574	Northing	61 594	09	Zone	55
GPS:	No	Yes	Χ	>> AN	MG/AGD	or	MGA/GDA	X	(See expla	nation)
		k site with								
Indicate a	Indicate also the distances in metres from two (2) adjacent boundaries, and attach the map to this Form A package.									
					Signatu	res:				
	\wedge						\wedge			
Driller:	/ has	(on beh	alf of dril	ler)	Licens	see:	lat	(on behal	lf of applicaı	nt)
- Date:	20/	/1/2012		•	Date:	-6-2	20/1/20			
		·, =-==			Butt.		20/1/20			

Page 3

Natural Resource Products

FORM A PARTICULARS OF COMPLETED WORK

Work Licence No: 10 B L 233652

DF	RILLER'S	ROCK/S	TRATA DES	SCRIPTION (LIT	THOLOGY)							15
Dep	oth					v	VOR	кс	ON	STR	υст	ION
From	То			Description				S	KE	тсн	l	
(m)	(m)											
0	1		ow/brown									
1	6			ered, yellow/brov	wn							
6	12	a/a, light										
12	25	slate, lig										
25	120			, occasional qu	uartz veining,							
		highly c	arbonaceou	us below 72m								_
						.				Hyd	Iroile	X
							Re	por	t			
											_	
											_	
												╺┷┯┷
		V	NORK NOT	CONSTRUCTED	BY DRILLING RIG							16
Method of exe	cavation:	Hand dug	Back ho	e Dragline	Dozer	Othe	er .					
Depth	Length	Width	Diameter	Lining	Dimentions of	Fro	om l	Dep	th	Т	O D	epth
(m)	(m)	(m)	(m)	material	liner (m)		(m	•			(m	•
		Р	lease attach	copies of the fo	ollowing if available	;						17
Geologist log	No	Yes X	Laboratory analy	sis of water Sample	No Yes X Pump	ing tes	it(s)		No		Yes	Χ
Geophysical log	g _{No} X	Yes	Sieve analysis of	aquifer material	No X Yes Install	ed Pur	np de	etails	No	Χ	Yes	

					Pag	je 1	Hy	droile	x - Bo	ore 1					
NSW D	DEPAR	IMENT OF	WATER	& ENE	RGY					FOI	RM A				
Natural	Resou	Irce Produc	cts				PARTICULARS OF COMPLETED WORK								
Driller's	Licence	No: 16	23			1	Work L	icence.	No:	70	BL	2	2336	51	2
Class of	Licence	: 4					Name of Licensee: AGL Power Generation Pty Ltd								ł
Driller's	Name:	Da	nny Hill				Intende	ed Use:	:			omme	rcial	& Indus	trial
Assistan	t Driller:	-					Comple	etion D	ate:	22/12/	2011				
Contract	tor:	Bunge	endore	Water	Bores			ING D		S			1		3
		X		ement bo	Г		Fror	n	То		Hole			Drilling	
New bor					Diame	ter		Method							
Deepene			Enlarge				(m)		(m)		(mm	, ,		Code	
Recondi	tioned		Other (s	pecify)			0		114		200			9	
Final De	pth	114.0 m													
WATE		RING ZONE	s												4
			о Г	Esti	mated Y	ïeld	Test	ום	DL	Du	ration		ç	Salinity	
From	То	Thickness	SWL		(L/s)		method		of test			(0		ctivity or T	DS)
(m)	(m)	(m)	(m)	Individ	lual Cu	mulative	•	(r	n)	Hrs	min	Co	ond.	TDS	;
				Aquif	er		Code					(µS	/cm)	(mg/L	_)
40	42	2	26.84	seepa	-		1								
49 64	51 66	2 2		0.3			1								
89	<u> </u>	2		0.5			1								
103	105	2		2		4	1					2	700	1800)
CASIN	G / LINE	R DETAILS													5
Material	OD	Wall	From	То	Method	С	asing su	pport	metho	d	(Code		2	1
		Thickness			Fixing		Ū								-
Code	(mm)	(mm)	(m)	(m)	Code	Т	ype of c	asing	botton	n	(Code		2	
9	200		0	6		Centra	lisers inst	alled	No	Yes	x	(ind	dicate	e on sketo	:h)
5	150		0	114		Sump	installed	N	0 <u>x</u>	Yes	From		m	То	m
						Pressu	ire cemen	ted N	0 X	Yes	From		m	То	m
						Casin	g Protect	or cem	ented	in place	No		Yes	x	
WATE	R ENTR	Y DESIGN													6
			General				5	Screen			Slo	ot Deta	ails		
Material	OD	Wall	From	То	Open	ing F	ixing A	perture	e L	ength	Wi	dth		Alignmen	t
		Thickness			type										
Code	(mm)	(mm)	(m)	(m)	Cod	le C	ode	(mm)		(mm)	(m	m)		Code	
5	150		54	114				2							
GRAV	EL PAC	К													7
-	Туре		Grade		(Grain si	ze		D	epth			Qu	antity	
						(mm)	-	<u> </u>		m) —		1.14.1.1		or m ³	
					Fror	n	To		om	To		Litre	es c		
Rounde		Graded			6	-+	7	(0	114	4			1.4	
Crushed		Ungrad	ed		<u> </u>										
Bentonit				Yes		-	4	<u> </u>							
		ment of Grav	el Pack			Code	1		-						
For D	WEu	se only:			G	W									

Natural Resource Products

Page 2

FORM A

..... PARTICULARS OF COMPLETED WORK

Work Licence No: 10 BI 233651

								<u> </u>	L 23303	
				BO	RE DEVEL	OPMENT				8
Chemical u	used for bre	aking down d	rilling mu	ud No	X	Yes	Name:			
Method	Bailing/Sur	ging 🗌 Je	etting	Airlift	ing X	Backwashing	Pu	umping 🛛	Other:	
Duration		hrs	hr	s	~ 2 hrs		hrs	2 4 hrs	S	hrs
			D	ISINFEC	TION ON	COMPLETIO	N			9
	Chemic	al/s used		Q	uantity app	lied (litres)		Method of	application	
			PU	MPING	TESTS O	N COMPLET	ON			10
			Pump	Initial		Water Level			Recovery	
Т	est	Date	intake	Water	Pumping	at end of	Duration			
t	уре		depth	Level	rate	pumping	of Test	Water	Time	taken
			((SWL)	(1, (2))	(DDL)	(1	level	(1)	(
	Stage 1		(m)	(m)	(L/s)	(m)	(hrs)	(m)	(hrs)	(mins)
Multi stage	Stage 1 Stage 2									
(stepped	Stage 3				Refer to I	lydroilex Re	eport	1		
drawdown)										
Single stag	le									
(constant r	ate)									
Height of m	neasuring p	oint above gr	ound leve	el <u></u>	m	Test Method	Code		See Code	Table 4
		v	ORK P	ARTLY	BACKFILL	ED OR ABA	NDONED			11
Original de	pth of work	: m	etres		ls	work partly ba	ckfilled:	No	Yes	
ls work aba	andoned:	No Yes	M	ethod of	abandonm	ent: Backfille	ed 🗌	Plugged	Сарр	ed
Has any ca	ising been l	eft in the worl	K No	, 🗌	Yes	From	m	То	m	
Sealing	/ fill type	From dep	th	To de	pth	Sealing / fill ty	rpe F	rom depth	То	depth
Co	de	(m)		(m)	Code		(m)		(m)
										_
Site chosen	by: Hydro	geologist X	Geolo	ogist	Driller	Diviner	Clien	it 🗌 Ot	her	12
Lot No	306	DP N	lo	7541	11					13
	ation Co or		Easting		01426	Northing	61 597	61	Zone	55
GPS:	No	Yes	<u>.</u>		MG/AGD	or	MGA/GDA		(See expla	
0.0.			<u> </u>	~~ ~						
Please r	mark the wo	ork site with "	X" on th	e DWE (CLID map.					
Indicate	also the dis	stances in me	tres from	n two (2)	adjacent b	oundaries, and	d attach the	map to this	s Form A p	ackage.
					Signatu	res:				
	\bigcap					/	1.			
Driller:	(× la	(on beh	alf of dril	ler)	Licens	see: 📈	lat	(on beha	lf of applica	nt)
Def						-0				
Date:)/1/2012			Date:		20/1/20	<u> </u>		· -

Page 3

Natural Resource Products

FORM A PARTICULARS OF COMPLETED WORK

Work Licence No: 10 B L 233651

DF	RILLER'S	ROCK/S	TRATA DES	SCRIPTION (LIT	HOLOGY)								15
Der From (m)	oth To (m)	-		Description		v	/OF			ISTI ETC	RUC H	TIC	N
0	17	Clay and	wthrd shale	e, orange/brown									
17	19	Shale, wt	thrd, clayey,	light grey									
19	48	Shale, lig	jht grey										
48	72		edium grey									_	
72	114		latey, dark ceous, occ	grey, asional silty in	terbeds								
							Re	efei	⁻ to	Hy	dro	ilex	
							Re	epo	rt			_	
												_	
											_	—	
											_	+	
											_	_	
												_	
											_	—	
											+	+	
											_		
												+	
												-	
											-	+	
												-	
												-	
												+	
		v		CONSTRUCTED	BY DRILLING RIG					<u> </u>			16
Method of exe	cavation:	Hand dug	Back ho	e 🗌 Dragline [Dozer	Othe	r						
Depth (m)	Length (m)	Width (m)	Diameter (m)	Lining material	Dimentions of liner (m)	Fro	om (n	Dep	oth		To I	Dep m)	oth
(111)		(11)	(11)	material			(II	1)		+	(····)	
										+			
		P	lease attach	copies of the fo	llowing if available								17
				-									X
Geologist log	No			sis of water Sample	No Yes X Pump				No				
Geophysical lo	g _{No} X	Yes	Sieve analysis of	f aquifer material	No X Yes Install	ed Pun	np d	etails	s No	X	J Y	es	

Appendix B

Pumping Test Results (Round 1)

			TABLE 1							
				HYDROILEX						
DRAWDOW	N ANALY	SIS DAT	A	PROJECT :		Dalton AGL				
SINGLE RAT	TE PUMP	TEST		CLIENT :		Aurecon				
Test date :	22/12/2011			BORE No #		Bore 1				
Start time :	3:15 PM			Tested by:		J.Lee				
Pump Off:	23/12/2011	3:15 PM		Av.Pump Rate (l /sec):	2.94				
Casing I.D.:	-	0.1011		SWL (mbtoc):	2,000).	27.84				
Pump type/mod:	-			Ref. Point (m):		1.00				
Pump O.D.:	-									
Pump Intake m:	-			Depth to water	Discharge	Time				
		Time	Drawdown	metres below	Rate	to fill	Comments /			
Real time	Hours	minutes	metres	ground level	L/sec	200L	Observations			
		T	S1	mbgl	Q	Secs	0.000.000.000			
3:15 PM		0	0.00	26.84	2.94	-	= SWL			
		10	36.81	63.65	-	-				
	T	20	36.51	63.35	-	-	Note: Data recorded at			
	T	30	37.86	64.70	-	-	10 minute intervals			
		40	38.61	65.45	-	-	on Minitrol			
		50	39.07	65.91	-	-				
4:15 PM	1	60	39.38	66.22	-	-				
		70	39.55	66.39	-	-				
		80	39.87	66.71	-	-				
		90	40.06	66.90	-	-				
5:15 PM	2	120	40.63	67.47	-	-				
		150	40.97	67.81	-	-				
6:15 PM	3	180	41.33	68.17	-	-				
		210	41.65	68.49	-	-				
7:15 PM	4	240	41.93	68.77	-	-				
		270	42.12	68.96	-	-				
8:15 PM	5	300	42.36	69.20	-	-				
		330	42.46	69.30	-	-				
9:15 PM	6	360	42.67	69.51	-	-				
	7	420	42.94	69.78	-	-				
	8	480	43.35	70.19	-	-				
12:15 AM	9	540	43.66	70.50	-	-				
	10	600	43.91	70.75	-	-				
	11	660	44.10	70.94	-	-				
	11	670	44.12	70.96	-	-				
3:15 AM	12	720	44.34	71.18	-	-				
	14	840	44.78	71.62	-	-				
	16	960	45.17	72.01	-	-				
	18	1080	45.48	72.32	-	-				
	20	1200	45.57	72.41	-	-				
3:15 PM	24	1440	46.06	72.90	2.94	-				

			TABLE 2				
				HYDROILEX			
RECOVERY	ANALYSI	SDATA		PROJECT :		Dalton AGL	
SINGLE RAT		TEST		CLIENT :		Aurecon	
Test date :	22/12/2011			BORE No #		Bore 1	
Start time :	3:15 PM			Tested by:		J.Lee	
Pump Off:	23/12/2011	3:15 PM		Av.Pump Rate (I	_/sec):	2.94	
Casing I.D.:	-			SWL (mbtoc):		27.84	
Pump type/mod:	-			Ref. Point (m):		1.00	
Pump O.D.:	-						
Pump Intake m:	-						
	Minutes	Time s	ince	Depth to water		Residual	Comments /
Real time	since pump	pump s	topped	metres below		Drawdown	Observations
	Started	Hrs	Minutes	ground level	Ratio	metres	
	t		ť'	mbgl	t/t'	S'	
3:15 PM	1440		0.1	73.90	14401	46.06	= depth to water at
	1450		10	40.39	145	12.55	instant pump stopped
	1460		20	37.57	73	9.73	
	1470		30	36.68	49.0	8.84	
	1480		40	35.01	37.0	7.16	
	1490		50	35.68	29.8	7.83	
4:15 PM	1500	1	60	35.43	25.0	7.59	
	1510	-	70	35.20	21.6	7.36	
	1520		80	35.00	19.0	7.16	
5:15 PM	1530 1560	2	<u>90</u> 120	34.83	17.0 13.0	6.99 6.55	
5.15 PIVI	1560	2	120	34.39	13.0	6.20	
6:15 PM	1620	3	180	34.04	9.0	6.01	
0.13 FIVI	1620	3	210	33.85 33.53	9.0 7.9	5.69	
7:15 PM	1680	4	240	33.34	7.0	5.50	
	1710		240	33.15	6.3	5.31	
8:15 PM	1740	5	300	32.99	5.8	5.15	
0.10110	1740	Ť	330	32.85	5.4	5.00	
9:15 PM	1800	6	360	32.70	5.0	4.86	
	1860	7	420	32.44	4.4	4.60	
11:15 PM	1920	8	480	32.23	4.0	4.39	
	1980	9	540	32.04	3.7	4.20	
1:15 AM	2040	10	600	31.86	3.4	4.02	Ī
	2100	11	660	31.70	3.2	3.86	
3:15 AM	2160	12	720	31.56	3.0	3.72	
	2280	14	840	31.33	2.7	3.49	
	2400	16	960	-	-	-	
	2520	18	1080	-	-	-	
	2640	20	1200	-	-	-	
3:15 PM	2880	24	1440	-	-	-	

Chart 1: Drawdown & Recovery Curves - 'Dalton-AGL' Bore 1 Pumping at 2.94 L/sec for 24 Hours

SWL 26.84mbgl

Dalton_AGL_B1_PT

			TABLE 1							
				HYDROILEX						
DRAWDOW	N ANALY	SIS DAT	4	PROJECT :		Dalton AGL				
SINGLE RA		TEST		CLIENT :		Aurecon				
Test date :	10/01/2012			BORE No #		Bore 2				
Start time :	3:30 PM			Tested by:			D Schmich			
Pump Off:	3.30 FM 11/01/2012	4:00 PM		Av.Pump Rate (0.55	D Schinich			
Casing I.D.:	-	4.001 10		SWL (mbtoc):	L/360).	14.88				
Pump type/mod:				Ref. Point (m):		1.00				
Pump O.D.:	_			Kei. i Oint (iii).		1.00				
Pump Intake m:	_			Depth to water	Discharge	Time				
amp make m.		Time	Drawdown	metres below	Rate	to fill	Comments /			
Real time	Hours	minutes	metres	ground level	L/sec	200L	Observations			
	nouis	T	S1	mbgl	L/Sec Q	Secs	UNSEL VALIOUS			
3:30 PM		0	0.00	13.88	0.60	-	= SWL			
0.001 101		10	6.16	20.04		-	- 511L			
		20	8.74	20.04	-	-	Note: Data recorded at			
	1	30	11.50	25.38	-	-	10 minute intervals			
	1	40	14.75	28.63	-	-	on Minitrol			
		50	17.14	31.02	-	-				
4:30 PM	1	60	18.81	32.69	-	-				
		70	20.22	34.10	-	-				
		80	21.42	35.30	-	-				
	1	90	22.49	36.37	-	-				
5:30 PM	2	120	24.91	38.79	-	-				
		150	26.69	40.57	-	-				
6:30 PM	3	180	28.44	42.32	-	-				
		210	29.89	43.77	-	-				
7:30 PM	4	240	31.00	44.88	-	-				
		270	32.06	45.94	-	-				
8:30 PM	5	300	32.93	46.81	-	-				
		330	33.65	47.53	-	-				
9:30 PM	6	360	34.36	48.24	-	-				
	7	420	35.51	49.39	-	-				
	8	480	36.38	50.26	-	-				
12:30 AM	9	540	37.18	51.06	-	-				
	10	600	37.91	51.79	-	-				
	11	660	38.69	52.57	-	-				
	11	670	38.80	52.68	-	-				
3:30 AM	12	720	39.31	53.19	-	-				
	14	840	40.62	54.50	-	-				
	16	960	41.86	55.74	0.60	-				
	16	1030	42.53	56.41	0.55	-				
	18	1080	41.29	55.17	-	-				
2.20 DM	20	1200	43.14	57.02	-	-				
3:30 PM	24	1440	76.47	90.35	0.55	-				
	24	1440	76.44	90.32		-				

			TABLE 2						
RECOVERY	ANALYSI	S DATA		HYDROILEX PROJECT :		Dalton AGL			
SINGLE RAT Test date : Start time : Pump Off: Casing I.D.: Pump type/mod: Pump O.D.:	10/01/2012 3:30 PM 11/01/2012 -	TEST 4:00 PM		CLIENT : BORE No # Tested by: Av.Pump Rate (L/sec): SWL (mbtoc): Ref. Point (m):		Aurecon Bore 2 J.Lee & D Schmich 0.55 14.88 1.00			
Pump Intake m:	- Minutes	Time s	ince	Depth to water		Residual	Comments /		
Real time	since pump Started	pump si Hrs	topped Minutes	metres below ground level	Ratio t/t'	Drawdown metres S'	Observations		
4:00 PM	t 1470		t' 0.1	<i>mbgl</i> 91.32	14701	76.44	= depth to water at		
	1470		10	78.07	14701	63.19	instant pump stopped		
	1490		20	54.95	75	40.07	instant pump stopped		
	1500		30	38.71	50.0	23.83			
	1510		40	27.60	37.8	12.72			
	1520		50	23.15	30.4	8.27			
5:00 PM	1530	1	60	21.26	25.5	6.38			
	1540		70	19.59	22.0	4.71			
	1550		80	18.80	19.4	3.92			
	1560		90	18.40	17.3	3.52			
6:00 PM	1590	2	120	17.63	13.3	2.75			
	1620		150	17.35	10.8	2.47			
7:00 PM	1650	3	180	17.25	9.2	2.37			
	1680		210	17.03	8.0	2.15			
8:00 PM	1710	4	240	16.90	7.1	2.02			
	1740		270	16.82	6.4	1.94			
9:00 PM	1770	5	300	16.74	5.9	1.86			
	1800		330	16.68	5.5	1.80			
10:00 PM	1830	6	360	16.62	5.1	1.74			
10.05.111	1890	7	420	16.52	4.5	1.64			
12:00 AM	1950	8	480	16.43	4.1	1.55			
0.00 414	2010	9	540	16.36	3.7	1.48			
2:00 AM	2070	10	600	16.30	3.5	1.42			
4.00 414	2130	11	660	16.24	3.2	1.36			
4:00 AM	2190	12	720	16.18	3.0	1.30			
	2310	14	840	16.09	2.8	1.21			
	2430	16	960	-	-	-			
	2550 2670	18	1080	-	-	-			
4:00 PM	2670	20 24	1200 1440	-	-	-			

Chart 1: Drawdown & Recovery Curves - 'Dalton-AGL' Bore 2 Pumping at 0.55 L/sec for 24 Hours

SWL 13.88mbgl

0 5 10 15 20 SWL 13.88mbgl 25 30 35 Drawdown (m below ground level) Slight recovery due 40 to reduced pump rate under declining head. 45 50 55 60 65 Pump rate manually 70 increased from 0.55 75 to 0.73L/s 80 85 90 R 95 **Discharge** rate recovery 100 maintained at Drawdown 0.55L/s whilst 105 water level is at 110 the pump intake. 115 720 1440 2160 2880 0

Chart 2: Time-Drawdown & Recovery - 'Dalton - AGL' Bore 2 Pumping at 0.55 L/sec for 24 Hours

Appendix C

Pumping Test Results (Round 2)

			TABLE 1							
				HYDROILEX						
DRAWDOW	N ANALY	SIS DAT	A	PROJECT :		Dalton AGL				
SINGLE RAT		TEST		CLIENT :		Aurecon Bore 1				
Test date :	16/02/2012	_		BORE No #						
Start time :	8:00 AM			Tested by:		J.Lee				
Pump Off:	17/02/2012	8:00 AM		Av.Pump Rate (l /sec).	2.94				
Casing I.D.:	-	0.00740		SWL (mbtoc):	2/300).	27.41				
Pump type/mod:	-			Ref. Point (m):		0.70				
Pump O.D.:	-					0.10				
Pump Intake m:	80			Depth to water	Discharge	Time				
-	-	Time	Drawdown	metres below	Rate	to fill	Comments /			
Real time	Hours	minutes	metres	ground level	L/sec	200L	Observations			
		Т	S1	mbgl	Q	Secs				
8:00 AM		0	0.00	26.71	3.00	66.0	= SWL			
	1	10	22.88	49.59	-	-				
		20	29.42	56.13	-	-	Note: Data recorded at			
		30	30.92	57.63	-	-	10 minute intervals			
		40	31.65	58.36	-	-	on Minitrol			
		50	32.10	58.81	-	-				
9:00 AM	1	60	32.45	59.16	-	-				
		70	32.69	59.40	-	-				
		80	32.92	59.63	-	-				
		90	33.05	59.76	-	-				
10:00 AM	2	120	33.43	60.14	-	-				
		150	33.73	60.44	-	-				
11:00 AM	3	180	34.03	60.74	-	-				
		210	34.29	61.00	-	-				
12:00 PM	4	240	34.43	61.14	-	-				
4.00 514	<u> </u>	270	34.58	61.29	-	-				
1:00 PM	5	300	34.71	61.42	-	-				
0.00 DM		330	34.86	61.57	-	-				
2:00 PM	6	360	35.04	61.75	-	-				
	7	420	35.37	62.08	-	-				
5:00 PM	8	480	35.68	62.39	-	-				
5.00 PIVI	9 10	540 600	35.98 36.24	62.69 62.95		-				
	10									
	11	660 670	36.51 36.62	63.22 63.33	-	-				
8:00 PM	11	720	36.84	63.55	-	-				
	12	840	37.41	64.12	-	-				
	14	960	37.96	64.67	-	-				
	18	1080	38.52	65.23	-	-				
	20	1200	39.03	65.74	-	-				
8:00 AM	20	1440	39.53	66.24	2.80	72.0				
			TABLE 2							
----------------	--------------	------------	------------	-----------------	------------	--------------	----------------------	--		
				HYDROILEX						
RECOVERY	ANALYSI	SDATA		PROJECT :		Dalton AGL				
SINGLE RAT		TEST		CLIENT :		Aurecon				
Test date :	16/02/2012			BORE No #		Bore 1				
Start time :	8:00 AM			Tested by:		J.Lee				
Pump Off:	17/02/2012	8:00 AM		Av.Pump Rate (I	_/sec):	2.94				
Casing I.D.:	-			SWL (mbtoc):		27.41				
Pump type/mod:	-			Ref. Point (m):		0.70				
Pump O.D.:	-									
Pump Intake m:	80									
	Minutes	Time s	ince	Depth to water		Residual	Comments /			
Real time	since pump	pump st	topped	metres below		Drawdown	Observations			
	Started	Hrs	Minutes	ground level	Ratio	metres				
	t		ť	mbgl	t/t'	S'				
8:00 AM	1440		0.1	66.94	14401	39.53	= depth to water at			
	1450		10	44.38	145	16.97	instant pump stopped			
	1460		20	37.67	73	10.26				
	1470		30	36.61	49.0	9.20				
	1480		40	36.05	37.0	8.64				
	1490	-	50	35.66	29.8	8.25				
9:00 AM	1500	1	60	35.35	25.0	7.94	80% recovery			
	1510		70	35.11	21.6	7.70				
	1520		80	34.89	19.0	7.48				
	1530		90	34.72	17.0	7.31				
10:00 AM	1560	2	120	34.28	13.0	6.87				
44.00 414	1590		150	33.94	10.6	6.53				
11:00 AM	1620	3	180	33.74	9.0	6.33				
10:00 DM	1650		210	33.31	7.9	5.90				
12:00 PM	1680 1710	4	240 270	33.12 32.94	7.0 6.3	5.71 5.53				
1:00 PM	1710	5	300	32.94	5.8	5.37				
	1740	5	300	32.63	5.8	5.22	+			
2:00 PM	1800	6	360	32.63	5.4	5.08	+			
2.00 F IVI	1860	- 6 - 7	420	32.24	4.4	4.83				
4:00 PM	1920	8	480	32.03	4.4	4.62				
1.00 1 10	1980	9	540	31.86	3.7	4.45				
6:00 PM	2040	10	600	31.70	3.4	4.29				
0.001.00	2100	10	660	31.55	3.2	4.14	90% recovery			
8:00 PM	2160	12	720	31.40	3.0	3.99				
	2280	14	840	31.19	2.7	3.78				
	2400	16	960	31.00	2.5	3.59				
	2520	18	1080	30.83	2.3	3.42				
	2640	20	1200	30.70	2.2	3.29				
8:00 AM	2880	24	1440	30.49	2.0	3.08				

Chart 1: Drawdown & Recovery Curves - 'Dalton-AGL' Bore 1 Pumping at 3.0 L/sec for 24 Hours (TEST 2)

SWL 26.71mbgl

0 10 Pumping 20 Pump On **Cyclic Pumping** SWL 26.71mbgl Drawdown (m below ground level) at start of test 30 40 50 60 70 GW054033 -TWS B2 Drawdown -Recovery GW703450 -GW702612 TWSB1 -Lot 345/754111 PB2 80 5,040 2,00 3,000 5,00 5,700 1,080 2,000 3,240 3,600 360 1,440 1,800 2,60 ×,320 A.680 0 120

Chart 2: Time-Drawdown & Recovery - 'Dalton - AGL' Bore 1 Pumping at 3 L/sec for 24 Hours (TEST 2)

Time since pump started (minutes)

			TABLE 1					
				HYDROILEX				
DRAWDOW	N ANALY	SIS DAT	Α	PROJECT :		Dalton AGL		
SINGLE RAT	FE PUMP	TEST		CLIENT :		Aurecon		
Test date :	14/02/2012			BORE No #		Bore 2		
Start time :	9:45 AM			Tested by:			D Schmich	
Pump Off:	15/02/2012	9:45 AM		Av.Pump Rate (L/sec):	0.60		
Casing I.D.:	-			SWL (mbtoc):	· · · · ,	16.30		
Pump type/mod:	-			Ref. Point (m):		1.00		
Pump O.D.:	-							
Pump Intake m:	ntake m: 85 Depth to water Dischar					Time		
		Time	Drawdown	metres below	Rate	to fill	Comments /	
Real time	Hours	minutes	metres	ground level	L/sec	100L	Observations	
		Т	S1	mbgl	Q	Secs		
9:45 AM		0	0.00	15.30	0.67	150.0	= SWL	
		10	4.09	19.39	-	-		
		20	11.08	26.38	-	-	Note: Data recorded at	
		30	15.54	30.84	-	-	10 minute intervals	
		40	19.07	34.37	-	-	on Minitrol	
		50	22.01	37.31	-	-		
10:45 AM	1	60	24.38	39.68	-	-		
		70	26.65	41.95	-	-		
		80	28.91	44.21	-	-		
	-	90	30.91	46.21	-	-		
11:45 AM	2	120	35.75	51.05	-	-		
		150	39.18	54.48	-	-		
12:45 PM	3	180	41.59	56.89	-	-		
	-	210	43.65	58.95	-	-		
1:45 PM	4	240	45.30	60.60	-	-		
0.45 DM		270	46.70	62.00	-	-		
2:45 PM	5	300	47.83	63.13	-	-		
		330	48.84	64.14	-	-		
3:45 PM	6 7	360 420	49.54	64.84 66.17	-	-		
		420	50.87 52.10					
6:45 PM	8	480 540	52.10 53.29	67.40 68.59	0.63	158.0		
0.43 FIVI	10	600	53.29	69.60	-	-		
	11	660	55.33	70.63	-	-		
	11	670	55.58	70.88	-	-		
9:45 PM	12	720	56.55	71.85	-			
3. 4 3 T IVI	12	840	58.26	73.56	-	-		
	16	960	59.71	75.01	-	-		
	18	1080	61.17	76.47	-	-		
	20	1200	63.20	78.50	-	-		
9:45 AM	24	1440	66.52	81.82	0.58	171.0		

			TABLE 2				
				HYDROILEX			
RECOVERY	ANALYSI	S DATA		PROJECT :		Dalton AGL	
SINGLE RAT		TEST		CLIENT :		Aurecon	
Test date :	14/02/2012	-		BORE No #		Bore 2	
Start time :	9:45 AM			Tested by:		J.Lee & D Sch	imich
Pump Off:	15/02/2012	9:45 AM		Av.Pump Rate (I	L/sec):	0.60	
Casing I.D.:	-			SWL (mbtoc):		16.3	
Pump type/mod:	-			Ref. Point (m):		1.00	
Pump O.D.:	-						
Pump Intake m:	85						
	Minutes Time since Depth to water					Residual	Comments /
Real time				Drawdown	Observations		
l l	Started	Hrs	Minutes	ground level	Ratio	metres	
0.45.114	t		ť'	mbgl	<i>t/t'</i>	<u>S'</u>	
9:45 AM	1440		0.1	82.82	14401	66.52	= depth to water at
	1450		10	79.93	145	63.63	instant pump stopped
	1460		20	53.14	73	36.84	
	1470		30	36.35	49.0	20.05	
	1480		40	26.19	37.0	9.89	
10.45 414	1490	1	50 60	22.55	29.8	6.25	
10:45 AM	1500 1510			20.95 19.41	25.0 21.6	4.65 3.11	
	1510		80	19.41	19.0	2.40	
	1520		90	18.28	19.0	1.97	
11:45 AM	1560	2	120	17.37	17.0	1.07	
11.45 AM	1590	2	150	17.04	10.6	0.74	
12:45 PM	1620	3	180	16.92	9.0	0.62	
12.401 10	1650	, v	210	16.76	7.9	0.46	
1:45 PM	1680	4	240	16.49	7.0	0.19	
	1710	-	270	16.16	6.3	-0.14	
2:45 PM	1740	5	300	15.82	5.8	-0.48	
	1770	-	330	15.72	5.4	-0.58	
3:45 PM	1800	6	360	15.63	5.0	-0.67	
	1860	7	420	15.47	4.4	-0.83	
5:45 PM	1920	8	480	15.36	4.0	-0.94	
	1980	9	540	15.28	3.7	-1.02	
7:45 PM	2040	10	600	15.20	3.4	-1.10	
	2100	11	660	15.12	3.2	-1.18	
9:45 PM	2160	12	720	15.06	3.0	-1.24	
	2280	14	840	14.96	2.7	-1.34	
	2400	16	960	-	-	-	
	2520	18	1080	-	-	-	
	2640	20	1200	-	-	-	
9:45 AM	2880	24	1440	-	-	-	

Chart 1: Drawdown & Recovery Curves - 'Dalton-AGL' Bore 2 Pumping at 0.6 L/sec for 24 Hours (TEST 2)

SWL 15.3mbgl

Chart 2: Time-Drawdown & Recovery - 'Dalton - AGL' Bore 2 Pumping at 0.6 L/sec for 24 Hours (TEST 2)

Time since pump started (minutes)

Appendix D

Laboratory Certificates of Analysis

Environmental Division (Water Resources Group)

Batch No:	XHYDROILEX_21584		Page	Page 1 of 3			
Final Report:	– XHYDROILEX 21584 LALK6		Laboratory	Canberra Laborato	ry		
Than Kepon.	XIII DROILEX_21004_EACIO		Address	PO Box 1834, Fyshwick, Canberra. ACT 2609.			
Client:	Hydroilex		Phone	02 6202 5401			
Contact:	Rohan Last		Fax	02 6202 5452			
Address:	38 Gibbs Street		Contact:	Shane Reynolds			
	Miranda NSW 2228			Supervisor Chemis	try		
				shane.reynolds@a	lsglobal.com		
Client Ref:	Dalton PS Bore 1		Date Sampled:	04-Jan-2012	Date Samples	Received:	04-Jan-2012
			Date Issued:	12-Jan-2012	Date Testing	Commenced:	04-Jan-2012
Client PO:	Dalton Power Stn						
The sample(s)	referred to in this report were analysed by the following m	ethod(s):					
# - NATA	A accreditation does not cover the performance of this serve	ice					

Analysis	Method	Laboratory	NATA NO.	Analysis	Welliou	Laboratory	NATA NO.	Analysis	wethod	Laboratory	NATA NO.
Chloride	35	CANBERRA	992	Sulphate	35	CANBERRA	992	Alkal.(CaCO3)	10	CANBERRA	992
Conductivity	65	CANBERRA	992	Sulphide	273	CANBERRA	992	T.Diss Solids	260	CANBERRA	992
рН	210	CANBERRA	992	Diss. Calcium	120	CANBERRA	992	Diss. Magnesium	120	CANBERRA	992
Diss. Mercury	122	CANBERRA	992	Diss. Metals	121	CANBERRA	992	Total Calcium	120	CANBERRA	992
Total Hardness	105	CANBERRA	992	Total Iron	120	CANBERRA	992	Total Magnesium	120	CANBERRA	992
Total Potassium	120	CANBERRA	992	Total Sodium	120	CANBERRA	992	Nitrate (asN)	150 152	CANBERRA	992
Nitrite (asN)	150	CANBERRA	992	T.Oxid Nit(asN)	150	CANBERRA	992				

Temperature on receipt at Lab: 14.7

Signatories

NATA Accredited Laboratory No. 992

These results have been electronically signed by the authorised signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11

Accredited for compliance with ISO/IEC 17025

Name	Title	Name	Title	
Geetha Ramasundera	Chemistry	Shane Reynolds	Supervisor Chemistry	
Terry Obrien	Supervisor Nutrients	Titus Vimalasiri	Supervisor Metals	

Page:Page 2 of 3Batch No:XHYDROILEX_21584Report Number:XHYDROILEX_21584_LALK6Client:HydroilexClient Ref:Dalton PS Bore 1

		5	Sample No.	869180
				Dalton
		Client	Sample ID.	PS Bore 1
		Sar	nple Point.	GRNDWATER
			•	04-Jan-2012
		Sa	mple Date.	10:30:00AM
Analysis	Analyte	LOR L	Jnits	
Alkal.(CaCO3)	Bicarb	<2	mg/L	587
	Carb	<0.1	mg/L	<0.1
	Hydrox	<0.1	mg/L	<0.1
	Total	<2	mg/L	587
Chloride	Chloride	<0.1	mg/L	460
Conductivity	SpC	<2	uS/cm	2700
Diss. Calcium	Diss_Ca	<0.05	mg/L	170
Diss. Magnesium	Diss_Mg	<0.05	mg/L	140
Diss. Mercury	Diss_Hg	<0.1	ug/L	<0.1
Diss. Metals	Silver	<1	ug/L	<1
	Aluminium	N/A	ug/L	<5
	Arsenic	N/A	ug/L	1
	Barium	N/A	ug/L	51
	Beryllium	<0.1	ug/L	<0.1
	Cadmium	N/A	ug/L	< 0.05
	Cobalt	N/A	ug/L	0.8
	Chromium	N/A	ug/L	<2
	Copper	N/A	ug/L	1.4
	Manganese	N/A	ug/L	230
	Molybdenum	N/A	ug/L	<0.5
	Nickel	N/A	ug/L	7
	Lead	N/A	ug/L	<0.05
	Antimony	<3	ug/L	<3
	Selenium	N/A	ug/L	<2
	Zinc	N/A	ug/L	16
Nitrate (asN)	Nitrate	<0.01	mg/L N	<0.05
Nitrite (asN)	Nitrite	<0.01	mg/L N	<0.01
рН	рН	<0.1	pH units	7.1
Sulphate	Sulphate	<0.4	mg/L SO4	270
Sulphide	Sulphide	<0.02	mg/L S	<0.02
T.Diss Solids	TDS	<20	mg/L	1800
T.Oxid Nit(asN)	Oxidised_N	<0.05	mg/L N	<0.05
Total Calcium	 Total_Ca	<0.1	mg/L	170

Page:	Page 3 of 3
Batch No:	XHYDROILEX_21584
Report Number:	XHYDROILEX_21584_LALK6
Client:	Hydroilex
Client Ref:	Dalton PS Bore 1

				869180
				Dalton
				PS Bore 1
				GRNDWATER
				04-Jan-2012
				10:30:00AM
Total Hardness	Total	<0.1	mg/L	1000
Total Iron	Total_Fe	<0.02	mg/L	3.4
Total Magnesium	Total_Mg	<0.05	mg/L	140
Total Potassium	Total_K	<0.1	mg/L	3.8
Total Sodium	Total_Na	<0.1	mg/L	240

These samples were analysed as received into the Laboratory.

Tests marked # are not NATA accredited.

A blank space indicates no test performed. A 'P' indicates results are pending authorisation

Soil results expressed in mg/kg dry weight unless specified otherwise

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may due to high moisture content, insufficient sample or matrix interference.

The analytical procedures in this report (including house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM

Results listed as Total Metals are actually Total Recoverable Metals

Environmental Division (Water Resources Group)

Batch No:	XHYDROILEX_21630			Page		Page 1 of 3			
	-			Laboratory		Canberra Laborato	ry		
Final Report:	XHYDROILEX_21630_LASK5			Address		PO Box 1834, Fyshwick, Canberra. ACT 2609.			
Client:	Hydroilex			Phone		02 6202 5401			
Contact:	Rohan Last			Fax		02 6202 5452			
Address:	38 Gibbs Street			Contact:		Shane Reynolds			
	Miranda NSW 2228					Supervisor Chemis	stry		
						shane.reynolds@a	lsglobal.com		
Client Ref:	Dalton PS Bore 2			Date Sampled:		11-Jan-2012	Date Samples	s Received:	11-Jan-2012
				Date Issued:		19-Jan-2012	Date Testing	Commenced:	11-Jan-2012
Client PO:	Dalton Power Stn								
) referred to in this report were analysed by the follow								
<u># - NAT</u>	A accreditation does not cover the performance of th	s service	Method	Laboratory	NATA No.	Analysis	Method		NATA No.

210		~~~							
210	CANBERRA	992	Diss. Calcium	120	CANBERRA	992	Diss. Magnesium	120	CANBERRA
122	CANBERRA	992	Diss. Metals	121	CANBERRA	992	Total Calcium	120	CANBERRA
105	CANBERRA	992	Total Iron	120	CANBERRA	992	Total Magnesium	120	CANBERRA
120	CANBERRA	992	Total Sodium	120	CANBERRA	992	Nitrate (asN)	150 152	CANBERRA
150	CANBERRA	992	T.Oxid Nit(asN)	150	CANBERRA	992			
	122 105 120	122CANBERRA105CANBERRA120CANBERRA	122 CANBERRA 992 105 CANBERRA 992 120 CANBERRA 992	122CANBERRA992Diss. Metals105CANBERRA992Total Iron120CANBERRA992Total Sodium	122 CANBERRA 992 Diss. Metals 121 105 CANBERRA 992 Total Iron 120 120 CANBERRA 992 Total Sodium 120	122CANBERRA992Diss. Metals121CANBERRA105CANBERRA992Total Iron120CANBERRA120CANBERRA992Total Sodium120CANBERRA	122CANBERRA992Diss. Metals121CANBERRA992105CANBERRA992Total Iron120CANBERRA992120CANBERRA992Total Sodium120CANBERRA992	122CANBERRA992Diss. Metals121CANBERRA992Total Calcium105CANBERRA992Total Iron120CANBERRA992Total Magnesium120CANBERRA992Total Sodium120CANBERRA992Nitrate (asN)	122CANBERRA992Diss. Metals121CANBERRA992Total Calcium120105CANBERRA992Total Iron120CANBERRA992Total Magnesium120120CANBERRA992Total Sodium120CANBERRA992Nitrate (asN)150150

35

273

Sulphate

Sulphide

Temperature on receipt at Lab: 21.4

992

992

992

992

992

992

CANBERRA

CANBERRA

10

260

Chloride

Conductivity

Signatories

Name

CANBERRA

CANBERRA

992

992

NATA Accredited Laboratory No. 992

35

65

These results have been electronically signed by the authorised signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11

Name

Shane Reynolds

Titus Vimalasiri

CANBERRA

CANBERRA

992

992

Accredited for compliance with **ISO/IEC 17025**

Title Geetha Ramasundera Chemistry Terry Obrien Supervisor Nutrients Title Supervisor Chemistry **Supervisor Metals**

Alkal.(CaCO3)

T.Diss Solids

Page: Page 2 of 3 Batch No: XHYDROILEX_21630 Report Number: XHYDROILEX_21630_LASK5 Client: Hydroilex Dalton PS Bore 2 Client Ref:

		5	Sample No.	870318
		Client	Sample ID.	Dalton PS Bore 2
			mple Point.	GRNDWATER
			mple Point. mple Date.	11-Jan-2012 12:50:00PM
Analysis	Analyte	LOR L	Jnits	
Alkal.(CaCO3)	Bicarb	<2	mg/L	544
	Carb	<0.1	mg/L	<0.1
	Hydrox	<0.1	mg/L	<0.1
	Total	<2	mg/L	544
Chloride	Chloride	<0.1	mg/L	1200
Conductivity	SpC	<2	uS/cm	4600
Diss. Calcium	Diss_Ca	<0.05	mg/L	210
Diss. Magnesium	Diss_Mg	<0.05	mg/L	270
Diss. Mercury	Diss_Hg	<0.1	ug/L	0.1
Diss. Metals	Silver	<1	ug/L	<1
	Aluminium	N/A	ug/L	<5
	Arsenic	N/A	ug/L	3
	Barium	N/A	ug/L	110
	Beryllium	<0.1	ug/L	<0.1
	Cadmium	N/A	ug/L	0.05
	Cobalt	N/A	ug/L	2.7
	Chromium	N/A	ug/L	<2
	Copper	N/A	ug/L	2.8
	Manganese	N/A	ug/L	340
	Molybdenum	N/A	ug/L	<0.5
	Nickel	N/A	ug/L	10
	Lead	N/A	ug/L	<0.05
	Antimony	<3	ug/L	<3
	Selenium	N/A	ug/L	<2
	Zinc	N/A	ug/L	36
Nitrate (asN)	Nitrate	<0.01	mg/L N	0.17
Nitrite (asN)	Nitrite	<0.01	mg/L N	<0.01
рН	рН	<0.1	pH units	7.0
Sulphate	Sulphate	<0.4	mg/L SO4	110
Sulphide	Sulphide	<0.02	mg/L S	<0.02
T.Diss Solids	TDS	<20	mg/L	3000
T.Oxid Nit(asN)	Oxidised_N	<0.05	mg/L N	0.17
Total Calcium	Total_Ca	<0.1	mg/L	220

Page:	Page 3 of 3
Batch No:	XHYDROILEX_21630
Report Number:	XHYDROILEX_21630_LASK5
Client:	Hydroilex
Client Ref:	Dalton PS Bore 2

				870318
				Dalton
				PS Bore 2
				GRNDWATER
				11-Jan-2012
				12:50:00PM
Total Hardness	Total	<0.1	mg/L	1600
Total Iron	Total_Fe	<0.02	mg/L	3.2
Total Magnesium	Total_Mg	<0.05	mg/L	290
Total Potassium	Total_K	<0.1	mg/L	3.8
Total Sodium	Total_Na	<0.1	mg/L	360

These samples were analysed as received into the Laboratory.

Tests marked # are not NATA accredited.

A blank space indicates no test performed. A 'P' indicates results are pending authorisation

Soil results expressed in mg/kg dry weight unless specified otherwise

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may due to high moisture content, insufficient sample or matrix interference.

The analytical procedures in this report (including house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM

Results listed as Total Metals are actually Total Recoverable Metals

Appendix E

Registered Bore Records

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW703450

Works Details (top)

GROUNDWATER NUMBER	GW703450
LIC-NUM	70BL228934
AUTHORISED-PURPOSES	DOMESTIC STOCK
INTENDED-PURPOSES	DOMESTIC STOCK
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	(Unknown)
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2003-01-20
FINAL-DEPTH (metres)	18.60
DRILLED-DEPTH (metres)	
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	DAWNDEN
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	4.20
SALINITY	
YIELD	0.50

REGION	70 - LACHLAN
RIVER-BASIN	
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6158595.00
EASTING	699301.00
LATITUDE	34 41' 43"
LONGITUDE	149 10' 33"
GS-MAP	
AMG-ZONE	55
COORD-SOURCE	
REMARK	

COUNTY	KING
PARISH	BUNTON
PORTION-LOT-DP	50//754106

Licensed (top)

COUNTY	KING
PARISH	BUNTON
PORTION-LOT-DP	50 754106

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD ID (mm) (mm)	INTERVAL DETAIL
1	1	Casing	P.V.C.	0.00	0.00	100	

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW702614

Works Details (top)

GROUNDWATER NUMBER	GW702614
LIC-NUM	70BL228930
AUTHORISED-PURPOSES	DOMESTIC STOCK
INTENDED-PURPOSES	DOMESTIC STOCK
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	(Unknown)
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2003-03-31
FINAL-DEPTH (metres)	50.00
DRILLED-DEPTH (metres)	
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	ESHCOL
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	18.00
SALINITY	
YIELD	

REGION	70 - LACHLAN
RIVER-BASIN	412 - LACHLAN RIVER
AREA-DISTRICT	
CMA-MAP	8728-4S
GRID-ZONE	55/3
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	1
NORTHING	6156670.00
EASTING	699488.00
LATITUDE	34 42' 45"
LONGITUDE	149 10' 42"
GS-MAP	
AMG-ZONE	55
COORD-SOURCE	GIS - Geographic Information System
REMARK	

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	149//754111

Licensed (top)

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	149 754111

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	o Pipe-No	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	50.00	150			(Unknown)
1	1	Casing	P.V.C.	0.00	50.00	150			(Unknown); (Unknown); (Unknown)

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW702612

Works Details (top)

GROUNDWATER NUMBER	GW702612
LIC-NUM	70BL228833
AUTHORISED-PURPOSES	DOMESTIC STOCK
INTENDED-PURPOSES	DOMESTIC STOCK
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	(Unknown)
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2003-02-28
FINAL-DEPTH (metres)	21.00
DRILLED-DEPTH (metres)	
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	MT PLEASANT
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	9.50
SALINITY	
YIELD	0.67

REGION	70 - LACHLAN
RIVER-BASIN	412 - LACHLAN RIVER
AREA-DISTRICT	
CMA-MAP	8728-4S
GRID-ZONE	55/3
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	1
NORTHING	6161135.00
EASTING	699648.00
LATITUDE	34 40' 20"
LONGITUDE	149 10' 45"
GS-MAP	
AMG-ZONE	55
COORD-SOURCE	GIS - Geographic Information System
REMARK	

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	6//754111

Licensed (top)

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	6 754111

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)		OD ID (mm) (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	21.00	150		(Unknown)
1	1	Casing	P.V.C.	0.00	20.00	150		(Unknown); (Unknown); (Unknown)
1	1	Opening	Slots	10.00	20.00	150		PVC; (Unknown); (Unknown)

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC	S-W-L D-D-	L YIELD	TEST-HOLE-DEPTH (metres)	DURATION SALINITY
10.00	20.00	10.00		9.50	0.67		S.Brackish

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW700858

Works Details (top)

GROUNDWATER NUMBER	GW700858
LIC-NUM	70BL227308
AUTHORISED-PURPOSES	DOMESTIC STOCK
INTENDED-PURPOSES	DOMESTIC STOCK
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	Down Hole Hammer
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	1999-01-09
FINAL-DEPTH (metres)	30.00
DRILLED-DEPTH (metres)	30.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	KOOKABURRA RISE
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	9.00
SALINITY	
YIELD	0.56

REGION	70 - LACHLAN
RIVER-BASIN	412 - LACHLAN RIVER
AREA-DISTRICT	
CMA-MAP	8728-N
GRID-ZONE	55/3
SCALE	1:50,000
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6158184.00
EASTING	696388.00
LATITUDE	34 41' 58"
LONGITUDE	149 8' 39"
GS-MAP	74ab3
AMG-ZONE	55
COORD-SOURCE	Map Interpretation
REMARK	

COUNTY	KING
PARISH	BUNTON
PORTION-LOT-DP	LOT 1 DP 854987

Licensed (top)

COUNTY	KING
PARISH	BUNTON
PORTION-LOT-DP	1 854987

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NC	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD (mm)	ID (mm) INT	FERVAL	DETAIL
1		Hole	Hole	0.00	30.00	203			Down Hole Hammer
1	1	Casing	P.V.C.	-0.40	30.00	165	157		Screwed and Glued; Seated on Bottom
1	1	Opening	Slots - Vertical	12.00	24.00	165			PVC Class 9; Sawn; SL: 150mm; A: 2mm

Water Bearing Zones (top)

FROM-DEPTH (metres)	I TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC	S-W-L C)-D-L	YIELD	TEST-HOLE-DEPTH (metres)	DURATION SALINITY
15.00	16.00	1.00		9.00		0.25	17.00	0.50
22.00	24.00	2.00		9.00		0.31	30.00	1.50

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	6.00	6.00	Shale, fractured, yellow	
6.00	18.00	12.00	Shale, soft, brown	
18.00	30.00	12.00	Shale, grey-black	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW600151

Works Details (top)

GROUNDWATER NUMBER	GW600151
LIC-NUM	
AUTHORISED-PURPOSES	
INTENDED-PURPOSES	MONITORING BORE
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	Auger - Solid Flight
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2008-07-21
FINAL-DEPTH (metres)	50.00
DRILLED-DEPTH (metres)	52.30
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	
GWMA	
GW-ZONE	
STANDING-WATER-LEVEL	7.00
SALINITY	14680.00
YIELD	0.05

REGION RIVER-BASIN AREA-DISTRICT	60 - LOWER MURRAY / DARLING
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6155225.00
EASTING	703260.00
LATITUDE	34 43' 29"
LONGITUDE	149 13' 12"
GS-MAP	
AMG-ZONE	55
COORD-SOURCE	
REMARK	

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	308//754111

Licensed (top)

no details

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO) PIPE-NC	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	-	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	2.20	150			Auger - Solid Flight
1		Hole	Hole	2.20	52.30	122			Rotary - Coring
1	1	Casing	PVC Class 12	1.00	37.00	60.35	50.35		Glued; Cap
1	1	Opening	Slots - Horizontal	36.00	38.00	60.35			PVC Class 12; Mechanically Slotted; Glued
1		Annulus	Waterworn/Rounded	34.00	40.00	122	60.35		Graded; GS: 8-16mm

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC S-W-L D-D-L	YIELD TEST-HOLE-DEPTH (metres)	DURATION	SALINITY
34.00	40.00	6.00	7.00	0.05	1.50	8808.00

Drillers Log (top)

FRC	DM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00)	4.80	4.80	Grey Grey Brown Clay	
4.80)	6.80	2.00	Silty Sand	
6.80)	10.30	3.50	Green Grey heavy Clay	
10.3	30	52.30	42.00	Sand	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW070051

Works Details (top)

GROUNDWATER NUMBER	GW070051
LIC-NUM	70BL150254
AUTHORISED-PURPOSES	DOMESTIC STOCK
INTENDED-PURPOSES	DOMESTIC STOCK
WORK-TYPE	Bore
WORK-STATUS	(Unknown)
CONSTRUCTION-METHOD	Rotary Air
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	1992-06-01
FINAL-DEPTH (metres)	42.00
DRILLED-DEPTH (metres)	42.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	N/A
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	0.80

REGION	70 - LACHLAN
RIVER-BASIN	412 - LACHLAN RIVER
AREA-DISTRICT	
CMA-MAP	8728-4S
GRID-ZONE	55/3
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6155909.00
EASTING	701743.00
LATITUDE	34 43' 8"
LONGITUDE	149 12' 11"
GS-MAP	0074A4
AMG-ZONE	55
COORD-SOURCE	
REMARK	

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	239

Licensed (top)

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	235

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD II (mm) (I	D mm)	INTERVAL	DETAIL
1	1	Casing	P.V.C.	0.00	19.00	150			Driven into Hole
1	1	Opening	Slots - Horizontal	17.00	19.00	150		1	PVC; SL: 0mm; A: 3mm

Water Bearing Zones (top)

FROM-DEPTH (metres)	I TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC	S-W-L D-D-L	. YIELD	TEST-HOLE-DEPTH (metres)	DURATION SALINITY
18.00	19.00	1.00	Unconsolidated	16.00	0.80		Good
30.00	31.00	1.00	Fractured				Good

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	19.00	19.00	Topsoil and clay	
19.00	42.00	23.00	Slate	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW060994

Works Details (top)

GROUNDWATER NUMBER	GW060994
LIC-NUM	70BL132634
AUTHORISED-PURPOSES	DOMESTIC STOCK
INTENDED-PURPOSES	DOMESTIC STOCK
WORK-TYPE	Bore open thru rock
WORK-STATUS	(Unknown)
CONSTRUCTION-METHOD	Rotary Air
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	1985-05-01
FINAL-DEPTH (metres)	48.10
DRILLED-DEPTH (metres)	48.10
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	N/A
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	

REGION	70 - LACHLAN
RIVER-BASIN	412 - LACHLAN RIVER
AREA-DISTRICT	
CMA-MAP	8728-4S
GRID-ZONE	55/3
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	(Unknown)
NORTHING	6155838.00
EASTING	699349.00
LATITUDE	34 43' 12"
LONGITUDE	149 10' 37"
GS-MAP	0074A3
AMG-ZONE	55
COORD-SOURCE	GD.,ACC.MAP
REMARK	

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	348

Licensed (top)

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	348

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD ID (mm) (mm)	INTERVAL	DETAIL
1	1	Casing	Welded Steel	-0.30	6.70	165		Driven into Hole

Water Bearing Zones (top)

FROM-DEPTH (metres)	I TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC S-W-L D-	D-L YIELD	TEST-HOLE-DEPTH (metres)	DURATION SALINITY
39.00	39.30	0.30	Fractured	0.13		Good
45.10	45.40	0.30	Fractured	0.33		Good

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	0.30	0.30	Topsoil	
0.30	6.70	6.40	Shale Broken	
6.70	48.10	41.40	Shale Water Supply	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW054033

Works Details (top)

GROUNDWATER NUMBER	GW054033
LIC-NUM	70BL111689
AUTHORISED-PURPOSES	DOMESTIC STOCK
INTENDED-PURPOSES	DOMESTIC STOCK
WORK-TYPE	Bore open thru rock
WORK-STATUS	(Unknown)
CONSTRUCTION-METHOD	Rotary Air
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	1982-02-01
FINAL-DEPTH (metres)	54.00
DRILLED-DEPTH (metres)	54.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	KANIMBLA
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	

REGION	70 - LACHLAN
RIVER-BASIN	412 - LACHLAN RIVER
AREA-DISTRICT	
CMA-MAP	8728-4S
GRID-ZONE	55/3
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	(Unknown)
NORTHING	6157282.00
EASTING	699533.00
LATITUDE	34 42' 25"
LONGITUDE	149 10' 43"
GS-MAP	0074A3
AMG-ZONE	55
COORD-SOURCE	GD.,ACC.MAP
REMARK	

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	29

Licensed (top)

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	29

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD ID (mm) (mm) INTERVAL	DETAIL
1	1	Casing	P.V.C.	0.00	12.00	150		Driven into Hole

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC S-W-L D-D-L	YIELD	TEST-HOLE-DEPTH (metres)	DURATION	SALINITY
20.00	22.00	2.00	Fractured	0.30		I	Fair
22.00	30.00	8.00	Fractured	0.15		I	Fair
30.00	38.00	8.00	Fractured	0.16		I	Fair
38.00	54.00	16.00	Fractured	0.69		I	Fair

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	0.60	0.60	Soil	
0.60	5.00	4.40	Clay	
5.00	9.00	4.00	Mudstone	
9.00	12.00	3.00	Mudstone Consolidated	
12.00	54.00	42.00	Slate Fine Water Supply	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW047202

Works Details (top)

GROUNDWATER NUMBER	GW047202
LIC-NUM	70BL108944
AUTHORISED-PURPOSES	TOWN WATER SUPPLY
INTENDED-PURPOSES	G/WATER XPLORE
WORK-TYPE	Bore
WORK-STATUS	(Unknown)
CONSTRUCTION-METHOD	Cable Tool
OWNER-TYPE	Local Govt
COMMENCE-DATE	
COMPLETION-DATE	1978-08-01
FINAL-DEPTH (metres)	61.50
DRILLED-DEPTH (metres)	61.50
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	VILLAGE OF DALTON
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	

Site Details (top)

REGION	70 - LACHLAN
RIVER-BASIN	412 - LACHLAN RIVER
AREA-DISTRICT	
CMA-MAP	8728-4S
GRID-ZONE	55/3
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	(Unknown)
NORTHING	6155637.00
EASTING	700082.00
LATITUDE	34 43' 18"
LONGITUDE	149 11' 6"
GS-MAP	0074A3
AMG-ZONE	55
COORD-SOURCE	GD.,ACC.MAP
REMARK	

Form-A (top)

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	SEC 11

Licensed (top)

COUNTY	KING
PARISH	DALTON
PORTION-LOT-DP	182 754111

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO) PIPE-NC	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1	1	Casing	Threaded Steel	0.00	40.60	152			Suspended in Clamps
1	1	Casing	Threaded Steel	0.00	61.50	127			Seated on Bottom
1	1	Opening	Slots	13.90	40.60	152		1	Oxy-Acetylene Slotted; SL: 0mm; A: 0mm
1	1	Opening	Slots - Vertical	61.00	72.70	127		2	Oxy-Acetylene Slotted; SL: 0mm; A: 6mm

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC	S-W-L D-D-L	. YIELD	TEST-HOLE-DEPTH (metres)	DURATION SALINITY
33.00	34.00	1.00	(Unknown)	23.00	0.10		(Unknown)
58.00	61.00	3.00	(Unknown)	14.50	1.89		(Unknown)

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	0.10	0.10	Topsoil	
0.10	16.00	15.90	Clay Yellow Grey Streaks	
16.00	28.00	12.00	Clay Grey Some Shale	
28.00	34.00	6.00	Siltstone Grey Green Clay	
34.00	35.00	1.00	Shale Grey Hard	
35.00	44.00	9.00	Shale Slightly Hard	
44.00	61.45	17.45	Shale Grey	
61.45	61.50	0.05	Shale Grey Hard	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

URS Australia Pty Ltd Level 4, 407 Pacific Highway Artarmon NSW 2064 Australia T: 61 2 8925 5500 F: 61 2 8925 5555

www.ap.urscorp.com