

REPORT on PRELIMINARY CONTAMINATION ASSESSMENT

VEHICLE AND PEDESTRIAN SAFTEY (VAPS) PROJECT SYDNEY OPERA HOUSE BENNELONG POINT

Prepared for SYDNEY OPERA HOUSE TRUST

Project 71529.01 June 2010

REPORT on PRELIMINARY CONTAMINATION ASSESSMENT

VEHICLE AND PEDESTRIAN SAFTEY (VAPS) PROJECT SYDNEY OPERA HOUSE BENNELONG POINT

Prepared for SYDNEY OPERA HOUSE TRUST

Project 71529.01 June 2010

Douglas Partners Pty Ltd ABN 75 053 980 117

96 Hermitage Road West Ryde NSW 2114 Australia PO Box 472 West Ryde NSW 1685

 Phone
 (02) 9809 0666

 Fax
 (02) 9809 4095

 www@douglaspartners.com.au

EXECUTIVE SUMMARY

This report presents the results of a preliminary contamination assessment conducted by Douglas Partners Pty Ltd (DP) at the Sydney Opera House forecourt in support of the Vehicle and Pedestrian Safety (VAPS) project. The work was requested by Marie Khoury of Savills Australia Pty Ltd on behalf of the Sydney Opera House Trust (SOHT).

The site is located with the area currently occupied by the Sydney Opera House and Opera House Forecourt. It is understood that the construction of a new underground loading dock with associated new lifts, a truck turning-bay and an entry/access tunnel to facilitate a central loading dock below the Opera House is proposed. Other aspects of the VAPS project include the diversion of existing high voltage (HV) cables and the historic stormwater channel from beneath the main House building, to an outlet at the Man-O-War steps. For the purpose of this report "the site" is defined as the area in which the subsurface is likely to be disturbed by the VAPS project.

The preliminary contamination assessment was undertaken in conjunction with a preliminary acid sulphate soils assessment (DP Project 71529.01) and subsequent to a geotechnical investigation for the project (DP Project 72529).

The preliminary contamination assessment consisted of a review of the previous reports that relate to the site, a review of site history the drilling of six test bores and the sampling and analysis of representative soil and groundwater samples.

Based on the site history review it appears that the site has been occupied since European settlement. This site was the location of Fort Macquarie until 1901 and was later redeveloped for a tram shed and wharves/jetties between 1901 and 1950. The site was redeveloped for the Sydney Opera House in the 1960s and 1970s. During the course of the European occupation of the site it has been subject to several episodes of filling and reclamation associated with the various uses of the site.

Generally speaking it is considered that the land use would have a low overall contamination potential, although there is a potential for contamination from filling imported to the site from unknown and various sources.

The conditions encountered at the site typically consisted of pavements to depths between 0.2 m to 0.4 underlain by filling to depths ranging between 0.8 m below ground level to 4.95 m below ground level consisting of sand with inclusions of sandstone gravel overlying ballast ("blue metal" gravels and cobbles). The filling was underlain by sandstone. It is noted, however, that the filling was able to be penetrated at all locations.

For the most part the concentrations of the analytes in the soil samples were found to be less than the adopted site assessment criteria (SAC) with the exception of some elevated PAH and TPH.

Based on the results of this preliminary assessment it is considered that the site is suitable (from a contamination standpoint) for the proposed development and that the levels and nature of contamination detected are not likely to pose a significant risk to site users or workers during the construction period of the VAPS works. Furthermore, the final construction outcome will eliminate exposure pathways between general users of the site and the underlying soils with all floors, walls and ceilings being lined.

The filling at the site is provisionally classified as General Solid Waste (non-putrescible), however it is recommended that the waste classification be confirmed via *ex situ* assessment of the excavated spoil prior to final classification and disposal. The underlying natural sandstone is classified as VENM, provided it has not been impacted by odours or staining, however care should be taken in segregating natural and filling materials to avoid cross-contamination and the excavated VENM inspected prior to removal (and additional analysis conducted as/if necessary).

Based on the one test conducted, it is considered that groundwater beneath the site is not likely to present a significant health risk to workers involved in the VAPS project. However, should dewatering be required as part of the VAPS project, it may be necessary to undertake further groundwater assessment, possibly on a regular basis during the works, prior to disposal.

Due to the inherent variability of the filling beneath the site, and the fact that a number of the investigation bores refused within filling material (i.e. deeper filling could not be assessed at some locations) it is recommended that filling excavation works be monitored by an experienced environmental consultant. Furthermore, it is recommended that a Construction Environmental Management Plan be prepared and implemented to control segregation of materials, final waste classification, and management "unexpected finds".

GLOSSARY

AHD	Australian Height Datum
ANZECC	Australian and New Zealand Environment and Conservation Council
AS	Australian Standard
BGL	Below ground level
BTEX	Benzene, Toluene, Ethyl Benzene and Xylenes
C10-C36	long to medium chain hydrocarbons
C6-C9	short chain hydrocarbons
COC	chain of custody
DECCW	Department of Environment, Climate Change and Water
D.P.	Deposited Plan
DP	Douglas Partners
DQI	data quality indicator
DQO	data quality objective
EPA	Environmental Protection Authority
GIL	groundwater investigation level
HIL	human health based investigation level
HV	High voltage
NATA	National Association of Testing Authorities
NEPM	National Environment Protection Measure
NSW DECC	New South Wales Department of Environment and Climate Change
OCP	organochlorine pesticides
OPP	organophosphate pesticides
PAH	polycyclic aromatic hydrocarbons
PCB	polychlorinated biphenyl
PID	photoionisation detector
PPIL	phytotoxicity based investigation level
ppm	parts per million
PQL	practical quantification limit
PRG	primary remediation goal
Pty Ltd	Propriety Limited
PVC	polyvinyl chloride
QA/QC	quality assurance/quality control
RPD	relative percentage difference
SAC	site acceptance criteria
SAQP	sampling analysis and quality plan
SMF	synthetic mineral fibres
SOPT	Sydney Opera House Trust
TCLP	toxicity characteristic leaching procedure
TOPIC	total photoionisable compounds
TPH	total petroleum hydrocarbons
UCL	upper confidence limit

USEPA	United States Environmental Protection Agency
UST	underground storage tank
VAPS	Vehicle and Pedestrian Safety
VOC	volatile organic compounds

TABLE OF CONTENTS

			Page
1.	INTRO	DUCTION	1
2.	PROP(2.1 2.2	DSED DEVELOPMENT AND OBJECTIVES Proposed Development Objectives of Investigation	2
3.	SCOP	E OF WORKS	4
4.	SITE I	DENTIFICATION AND DESCRIPTION	6
5.	REGIC	NAL GEOLOGY, TOPOGRAPHY AND HYDROGEOLOGY	7
6.	PREVI 6.1 6.2 6.3	OUS REPORTS Previous Investigations conducted by Douglas Partners Previous Investigations Conducted by Others Previous/Concurrent Investigations undertaken for VAPS Project	8 9
7.	SITE ⊢ 7.1 7.2 7.3	IISTORY INFORMATION Heritage Report Historical Aerial and Site photographs EPA Contaminated Land Register	12 13
8.	POTEN	NTIAL CONTAMINANTS	17
9.	FIELD 9.1 9.2 9.3	WORK Data Quality Objectives Sample Rationale Sampling Procedures 9.3.1 Soil Sampling 9.3.2 Piezometer Installation and Groundwater Sampling Methods Analytical Rationale	18 19 20 20 22
10.	SITE A 10.1 10.2 10.3	SSESSMENT CRITERIA Soils Groundwater Waste Classification	25 28
11.	RESUL 11.1 11.2 11.3 11.4	TS OF SOIL INVESTIGATION Field Observations Total Photoionisable Compounds (TOPIC) Results Groundwater Laboratory Results	29 30 30

_

TABLE OF CONTENTS

Page

12.	DISSO	CUSSION OF RESULTS	. 35
	12.1	Contaminants in Soil	. 35
		12.1.1 Heavy Metals	. 36
		12.1.2 TPH, BTEX	. 36
		12.1.3 VOCs	
		12.1.4 PAH	
		12.1.5 OCP and PCB	. 38
		12.1.6 Phenols	. 38
	12.2	Asbestos	. 38
	12.3	Preliminary Waste Classification	. 39
	12.4	Groundwater Results	
13.	CONC	LUSIONS AND RECOMMENDATIONS	. 41
14.	LIMIT	ATIONS OF THIS REPORT	. 42

APPENDIX A	-	Site Drawings
APPENDIX B	-	Site Photographs
APPENDIX C	-	Site History Information
APPENDIX D	-	Bore Report Results
APPENDIX E	-	Laboratory Reports and Chain of Custody Documentation
APPENDIX F	-	Quality Assurance/Quality Control Procedures and Results

APPENDIX G - Calibration Certificates and Groundwater Field Notes

KP:jlb Project 71529.01 17 June 2010

REPORT ON PRELIMINARY CONTAMINATION ASSESSMENT VEHICLE AND PEDESTRIAN SAFETY (VAPS) PROJECT SYDNEY OPERA HOUSE, BENNELONG POINT

1. INTRODUCTION

This report presents the results of a preliminary contamination assessment conducted by Douglas Partners Pty Ltd (DP) at the Sydney Opera House forecourt in support of the Vehicle and Pedestrian Safety (VAPS) project. The work was requested by Marie Khoury of Savills Australia Pty Ltd on behalf of the Sydney Opera House Trust (SOHT).

The investigation area is currently occupied by The Sydney Opera House and Opera House Forecourt. It is understood that the construction of a new underground loading dock with associated new lifts, a truck turning-bay and an entry/access tunnel to facilitate a central loading dock below the Opera House is proposed. Other aspects of the VAPS project include the diversion of existing high voltage (HV) cables and the historic stormwater channel from beneath the main House building, to an outlet at the Man-O-War steps.

The preliminary contamination assessment was undertaken in conjunction with a preliminary acid sulphate soils assessment (DP Project 71529.02) and subsequent to a geotechnical investigation for the project (DP Project 72529) which also included some preliminary contamination testing (the results of which have been incorporated into this report).

The preliminary contamination assessment consists of a review of the previous reports that relate to the site, a review of site history, the drilling of test bores and the sampling and analysis of a limited number of soil and groundwater samples.

2. PROPOSED DEVELOPMENT AND OBJECTIVES

2.1 Proposed Development

The proposed VAPS development involves the construction of a new underground loading and delivery dock below the existing driveway entrance and Monumental Steps. The purpose of the development is to restrict the use of the existing Forecourt area to taxis and VIP vehicles only, thereby enhancing pedestrian safety and improving the aesthetics of the Opera House for patrons arriving and departing. It is understood that two service corridors are to be constructed as tunnels below the main Opera House building, extending to the north from the loading dock area. These service tunnels are to provide storage areas together with access to new internal lifts.

It is understood that the main part of the loading dock will be located underneath the Monumental Steps. The base of the new loading dock will be at RL -10.97 m (AHD) {Level - 36 foot} and will be approximately 14.6 m below the Ground Floor Level at RL +3.66 m (AHD) {Level +12 foot}.

The loading dock will be accessed via a new vehicle entry access tunnel located beneath the forecourt area, starting from near the current main gate house and extending in a northeasterly direction towards the Opera House. The architectural drawings indicate that the width of the tunnel will be about 11 m. The southern section of the access tunnel will be located close to the Tarpeian Way cliff line and the alignment of the Sydney Harbour Tunnel.

The dimensions of the main loading dock are about 45 m x 35 m in plan. The main loading dock area will also include a turning bay to accommodate large semi-trailer trucks, extending 20 - 25 m eastwards, towards the Man-O-War Steps. The two service corridors (eastern and western) will extend as tunnels from the base of the loading dock for a length of between 45 – 55 m beneath the main building, towards the central part of the Opera House. The eastern tunnel is shown as approximately 11 m in width in the plan provided, but is intended to be reduced to 8 m and will extend to a proposed new temporary scenery lift located below the set storage area. This corridor may also provide a storage area for containers. The western tunnel is approximately 6 - 7 m in width and will link-up with the existing "Lift 12". A new

goods lift will also be located midway along the western corridor. All three lift pits are shown to extend locally down to approximately RL -15 m (AHD), about 3 m lower than the proposed floor level of the service tunnels.

The proposed works will also include the diversion of the historic Bennelong Drain beneath the Opera House Forecourt, between the Monumental Steps and the Tarpeian Way to a new outflow point near the Man-O-War Steps. Existing underground HV cables will also be diverted.

It is understood that the proposed works will entail a combination of open excavation in relatively shallow construction areas and tunnelling in deeper areas, such as beneath the main Opera House building.

2.2 Objectives of Investigation

The objectives of the current investigation are as follows;

- To assess the potential for soil contamination at the site and the likely nature and extent of the contamination encountered;
- To assess the potential for groundwater contamination at the site;
- To assess the suitability of the site, from a contamination standpoint, for the proposed development (as detailed in Section 2.1);
- To determine a preliminary waste classification of the soils and bedrock at the site and
- To assess the need for remedial works or management protocols (if required) to render the site suitable for the proposed development

3. SCOPE OF WORKS

The scope of the preliminary contamination assessment included the following:-

- A review the Godden Mackay Logan (updated February 2010) report titled Archaeological Management Plan & Heritage Impact Assessment;
- A site history search including a review of historical aerial photos (and other readily available historical photos), a search of the Contaminated Land Register for Notices issued under the Contaminated Land Management Act 1997 and a search of the licensed Groundwater Bore database;
- A walkover inspection to identify current site uses and features as well as any visual or olfactory indicators of potential contamination;
- An underground service location prior to drilling to locate detectable services as a
 precautionary measure using a professional service tracing company. The underground
 services search included a review of the service plans made available by SOHT as well
 as dial-before-you dig records. All drilling locations were checked with an
 electromagnetic scanning device and ground penetrating radar (GPR) to identify
 detectable services. In addition, a concrete thickness radar was used in one location
 (Test Bore 206) to attempt t to detect the underground tension beams beneath the
 monumental steps;
- Concrete coring in six locations (the limestone pavers were first removed by Sydney Opera House staff to expose the underlying concrete/cement at bores 201-204);
- The drilling of six (6) test bores across the accessible areas of the VAPS works area (i.e. the footprint of the proposed loading dock, access ramp and sewer diversions). It is noted that two test bores (Test Bores 101 and 102) were drilled and sampled during a previous investigation by DP and have been incorporated into the findings of the current assessment. Five of the test bores were drilled with a truck mounted scout rig (Test Bores 201 to 205) and one with a bobcat mounted drilling rig (Test Bore 206). The bores were drilled to a maximum depth of 2.9 m or prior refusal on sandstone or in filling;
- Samples (including 10% field replicates for QA/QC purposes) were collected at regular depth intervals based on field observations, the sub-surface profile encountered and signs of contamination;

- All recovered samples were screened in the field using a field portable photo-ionisation detector (PID);
- Selected samples from the six bores were dispatched to a NATA accredited laboratory for quantitative analysis for the following potential contaminants:

Soils

- Heavy Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc) 18 samples
- Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene and Xylene BTEX) – 16 samples;
- Total Petroleum Hydrocarbons (TPH) 16 samples;
- Polycyclic aromatic hydrocarbons (PAHs) 16 samples;
- Organochlorine Pesticides (OCP) 12 samples;
- Polychlorinated Biphenyls (PCB) 12 samples;
- Phenols 12 samples;
- Volatile Organic Compounds (VOC) 6 samples;
- Asbestos 12 samples; and
- TCLP 6 samples for PAH and 2 samples for lead.

Groundwater

- Heavy Metals (8 priority plus manganese and iron)- 1 sample;
- TPH and BTEX 1 sample;
- PAH 1 sample;
- pH 1 sample; and
- oil and grease 1sample.

QA/QC

- QA/QC samples including 2 intralaboratory duplicates for TPH, BTEX, PAH and heavy metals, 1 interlaboratory duplicate for TPH, BTEX and PAH, 3 trip spikes for BTEX and 3 trip blanks for BTEX.
- Preparation of a preliminary contamination assessment report (this report) which included the following:
 - A preliminary assessment of the contamination status of the site;

Page 5 of 43

- A preliminary assessment of groundwater quality beneath the site;
- A preliminary waste classification of the various material types encountered;
- Recommendations regarding the disposal and/or management of excavated materials;
- Any identified health risks to workers;
- Recommendations for further investigative works or reporting beyond that included in this scope (e.g. a Remedial Action Plan or Soil Management Plan which may be required if contaminated soils are encountered); and;
- Samples not tested were held for a period of one month pending the need for further analysis.

4. SITE IDENTIFICATION AND DESCRIPTION

The Sydney Opera House is located on Bennelong Point on Sydney Harbour. Bennelong Point is bounded by Circular Quay to the west and Farm Cove to the east. The Sydney Opera House and the adjoining forecourt occupy an area of approximately 30,000 m². It extends from the vertical rock cutting to the south known as the Tarpeian Way to the northern tip of the Bennelong Point, a distance of approximately 250 m. The width of the Sydney Opera House and forecourt is approximately 120 m in an east-west direction.

The works area for the VAPS project occupies only a portion of the total Opera House and forecourt area, being about 6000 m². For the purpose of this report "the site" is defined as the area in which the subsurface is likely to be disturbed by the VAPS project, including the access tunnel, loading dock, stormwater and HV cable diversions. Approximate outlines of these features are shown on Drawing 1, Appendix A. Due to access limitations, no bore drilling or sampling could be undertaken beneath the Opera House itself. However, it is understood that the proposed service corridors beneath the Opera House will be formed through tunnel excavation in the sandstone bedrock.

The site is broadly level with the Opera House forecourt and surrounding boardwalks at approximately 3 m to 5 m above the harbour seawater level, at approximately RL 3.6 m

AHD. The Opera House itself comprises a complex of terraced theatres and halls linked together beneath a roof comprising sets of interlocking vaulted shells surrounded by terrace areas that function as pedestrian concourses.

An underground car-park comprising two concentric cylindrical excavations to depths of approximately 40 m is located to the south of the Opera House and the Tarpeian Way cliffline. The Sydney Harbour Tunnel is located within about 80 m of western seawall of the Sydney Opera House and strikes in an approximately north-north-west orientation.

Selected photos (Photos 1 to 6) of the site and the test bore locations are provided in Appendix B.

5. REGIONAL GEOLOGY, TOPOGRAPHY AND HYDROGEOLOGY

Following is a description of the regional geology, topography and hydrogeology.

Reference to the 1:100,000 Geological Map Sheet for Sydney indicates that the site is underlain by filling and/or a soil layer overlain by Triassic-Aged Hawkesbury Sandstone. The Hawkesbury Sandstone typically comprises medium to coarse-grained quartz sandstone with very minor shale and laminite lenses. Field observations generally confirm the published geological mapping. A more detailed assessment of the local geology is provided in the geotechnical report (DP Project 71529).

The Department of Land and Water Conservation Acid Sulphate Soil Risk Map (1:25,000) for Prospect and Parramatta River (9130N3) indicates that the site is located in an area classed as X2 – disturbed terrain. The Map described disturbed terrain as land that may include "filled areas which occur during reclamation of low lying swamps for urban development. Other disturbed terrain includes areas which have been mined or dredged or have undergone heavy ground disturbance through general urban development or construction of dams or levees". The map indicates that "soil investigations are required to assess these areas for potential acid sulphate soils". It is noted (as discussed in Section 6) results from the acid sulphate soils assessment conducted in conjunction with this investigation indicated that the filling/soils within the VAPS works area were not actual or potential acid sulphate soils.

According to the Soil Landscapes of the Sydney 1:100,000 Sheet the site is mapped as being part of the disturbed soil landscape group which includes reclaimed and filled areas. The conditions of the soil group can vary depending of the quality and nature of the fill.

A search of the Department of Environment, Climate Change and Water (DECCW) groundwater bore database was conducted as part of the assessment. The search of registered groundwater bores was conducted within a 1 km radius (refer to the Drawing 3 in Appendix C and accompanying groundwater works records). In total there were 4 registered groundwater bores within the 1 km radius. The registered groundwater bores were all up gradient of the site and had no details. In any case the groundwater at the site would be expect to be highly tidal and influenced by Sydney Harbour.

Surface water runoff drains into stormwater drains in and around the site. These drains exit almost directly into Sydney Harbour.

6. **PREVIOUS REPORTS**

6.1 Previous Investigations conducted by Douglas Partners

Geotechnical investigations and construction based inspections conducted by DP (for other projects at or near the site) are given in chronological order as follows:

1995 – Borehole investigation comprising 28 boreholes for the new boardwalk foundations along the eastern (denoted "DPBHE") and northern boardwalk (denoted "DPBHN") for contractors McConnell Dowell (DP Project 20619A). The boreholes were drilled from the boardwalk (deck) level (approximately 3.6 m AHD) to depths of between 7.75 and 11.45 m, below deck level. The subsurface profile encountered in most of the boreholes comprised sand and boulder filling directly overlying sandstone bedrock. The sandstone was generally medium or high strength and slightly fractured.

- 1998 Borehole drilling for the installation of 6 mini-piles (denoted "MP") for the proposed boardwalk studio located on the western side of the Opera House for contractors Austin Australia (DP Project 24937). The mini-piles were core drilled within sandstone to depths between 8.0 and 9.0 m from the boardwalk (deck) level (approximately 3.6 m AHD).
- 2004 Inspection of trenching work and reporting on settlement was undertaken during construction of the mechanical bollards for contractors Construction Building Design (DP Project 36814). No borehole information was associated with this project.

6.2 Previous Investigations Conducted by Others

Geotechnical investigations conducted by others (for other projects at or near the site, that DP aware of) are given in chronological order as follows:

- MacDonald, Wagner and Priddle (1958) Twelve hand-drawn boreholes logs (denoted TH) were obtained from a geotechnical investigation undertaken in 1958 for preliminary work on the Opera House when tram sheds existed on the site. Reduced levels at the ground surface and at the top of rock (converted to AHDm) were able to be read from Drawing 7095/1 (1958) with some degree of confidence.
- Jeffrey and Katauskas (1994) Initial borehole investigation comprising seven boreholes (denoted JKBH) for the proposed upgrade to the northern and eastern boardwalk. The boreholes were drilled from the boardwalk (deck) level (approximately 12' Level) to depths of between 7.8 and 9.6 m.
- ARUP Geotechnics (2004) Borehole investigation comprising four boreholes (denoted ARUPBH) drilled to depths of 18.5 m for the proposed Set Storage Area located within the eastern side of the Opera House.

6.3 Previous/Concurrent Investigations undertaken for VAPS Project

DP previously conducted a geotechnical investigation at the site for the VAPS project (DP Project 71529) and also conducted a preliminary acid sulphate soils assessment (DP Project

71529.02) in conjunction with the current preliminary contamination assessment. The report details and a brief summary of the investigations and their findings are presented below.

 Report on Preliminary Geotechnical Investigation and Waste Classification Assessment, Vehicle and Pedestrian Safety (VAPS) Project, Sydney Opera House. DP Project 71529, dated 27 January 2010; and

The preliminary geotechnical investigation involved the drilling of two test bores (BH 101 and BH102, shown on Drawing 1, Appendix A). The bores were augered to refusal in sandstone bedrock then, cored using NMLC-coring to depths of 13.48 m (BH101) and 17.11 m (BH102).

Filling was encountered in Test Bore BH101 to a depth of 4.95 m consisting of sands and gravels to a depth of 2.0 m underlain by blue metal gravel and cobbles (ballast) to 4.1 m and loose sand and clayey silt to 4.95 m. Sandstone was encountered at 4.95 m. Test Bore BH102 encountered sand and gravel filling and sandstone filling to 1.4 m underlain by blue metal gravel (ballast filling). Sandstone was encountered at a depth of 1.8 m.

A standpipe was installed into BH101 to measure groundwater levels. This piezometer was developed and sampled during the current contamination assessment.

Based on the results of chemical analysis the filling was preliminary classified as General Solid Waste (non-putrescible). No comment was made on site suitability (from a contamination standpoint) as no such assessment was required at the time.

The results of the contamination and waste classification testing undertaken during the geotechnical investigation have been incorporated into this report and used in combination with recent results to assess the site contamination status and preliminary waste classification.

The test bore logs from the geotechnical investigation are included (along with the logs from the current investigation) in Appendix D. In addition, the laboratory reports have been included in Appendix E.

• Report on Preliminary Acid Sulphate Soil Assessment, Vehicle and Pedestrian Safety (VAPS) Project, Sydney Opera House. DP Project 71529.02, dated 7 June 2010.

The acid sulphate soils assessment was conducted in conjunction with the current preliminary contamination assessment. Additional soil samples were collected from the six boreholes drilled for the contamination assessment and the samples subjected to acid sulphate soil screening tests, with selected samples submitted for laboratory analysis for Suspension Peroxide Oxidation Combined Acidity and Sulphate (SPOCAS) testing.

Based on the results of the assessment it was considered that the materials encountered in the test bores did not contain actual acid sulphate soils or potential acid sulphate soils. Therefore based on the findings at this stage no acid sulphate soils management plan was deemed necessary.

It was, however, recommended that the materials be inspected following excavation by a qualified environmental consultant, particularly at and close to bore locations where refusal was encountered in the filling, in areas where deeper filling was encountered (i.e. near the Man-O-War Steps) and in between test bore locations to confirm that the underlying materials are consistent with those observed (and tested) during the investigation. If the materials are inconsistent with those observed during the current investigation or if signs of acid sulphate soils are detected then it was recommended that additional assessment should be conducted to confirm the presence/absence of potential or actual acid sulphate soils.

7. SITE HISTORY INFORMATION

Following is a limited site history assessment including a review of the Hertigate Report prepared by Godden, Mackay Logan, a review of available aerial and historical site photos and a review of DECCW notices and licences database.

7.1 Heritage Report

A review of the Archaeological and Heritage Report entitled *Sydney Opera House, Loading Dock, Archaeological Management Plan and Heritage Impact Assessment* prepared by Godden Mackay Logan Heritage Consultants dated October 2009 was conducted as part of this assessment. The pertinent site history information in the report is summarised below;

- 1788-1802 early European settlement in Sydney Cove when Bennelong Point was the location of Bennelong brick hut and a saltworks and windmill. Later a redoubt (1789) was constructed which was then replaced by a half moon battery (1788);
- 1810-1843 work commenced on the construction of a fort on the northern tip of Bennelong Point, while large parts of the point were reserved for public parks and reserves;
- 1817-1901. The fort was present on the site. The fort was augmented with new gun batteries in the 1860s and at the same time an esplanade built around the fort creating an encircling seawall and ferries began operating around the shore. In the late 19th century, the eastern side of Sydney Cove (western shore of Bennelong Point) was converted to use by trading companies for major longshore wool, mail and passenger wharves. In the late 1890s the western rampart of the fort was demolished to make way for the facilities associated with the P&O operation;
- 1901-1958. Bennelong point was used to accommodate a number of jetties for use by the public serviced by a tramline and a tram-car house which became known as "the shed". The shed was built on the site of Fort Macquarie and was large enough to house 72 trams on 12 parallel tracks. The shed became redundant in the 1950s;
- 1955 to present period of the conception of the Sydney Opera House which was completed and opened by 1973.

In addition to the general history of the site the report also includes some information on the historical filling and land reclamation at the site. The following key points are noted;

 By 1829 parts of the shoreline along Bennelong Point had been modified and reclaimed. This process continued over the next century with various phases of seawall and wharf construction;

- The shoreline along the south eastern section of the peninsula was the first section to be reclaimed (by 1829) and a boat slip was created in this area by 1845;
- In 1861 an esplanade was created around Fort Macquarie by erecting an encircling seawall and filling the area formerly covered by high tides;
- The western shoreline was used from the 1860s for wharves, jetties and wharve buildings;
- The present shoreline of Bennelong Point which are contained by seawalls are entirely reclaimed land;
- Episodes of reclaimed land have taken place throughout the 19th and 20th centuries;
- The Bennelong Drain (based on historic site photos) is estimated to be located approximately 2 m below the existing surface level suggesting that up to 2 m of fill is present across the site;
- During the construction of the Sydney Opera House (1960s to 1970s) significant earthworks were undertaken including
 - Modification to the shape of Bennelong Point with the construction and/or replacement of seawalls around the entire shoreline;
 - Regularisation of the ground level through the introduction of fill deposits to create level forecourt and boardwalk platforms;
 - Excavation for the construction of the basement levels and other structural elements of the opera house;
 - Construction of infrastructure associated with the opera house;

7.2 Historical Aerial and Site photographs

A review of historical aerial and other photographs was undertaken as part of the assessment. Aerial photographs for the years 1930, 1943, 1951, 1970, 1978, 1986, 1991, 2004, 2005 and 2010 were examined. These were supplemented with historic photos of the site for the 1850s, late 19th century, early 20th century and 1960s. Copies of the aerial and historic site photographs are presented in Appendix C.

1850's and late 19th Century Site Photos

The 1850's site photo shows the north western corner of the former fort (Fort Macquarie) and the exposed top of Bennelong Drain. It addition there is a small single storey house present in the north eastern corner what is now the forecourt area. Sandstone cliff and boulders are visible in the background of the photo to the north of the site and Government House is also visible to the north of the site. A copy of the Photo is presented in Photo 7, Plate 4, Appendix C.

The late 19th century site photo (taken from the eastern side of the site) shows Fort Macquarie. The fort consists of a sandstone wall and tower and several small and medium sized buildings. The photo is presented in Photo 8, Plate 5, Appendix C.

Early 20th Century Photo

The early 20th century photo shows the site after the fort and ancillary structures were demolished and replaced with the tram shed. A number of tram lines are present heading into the tram shed. A number of warehouses are present to the west of the site and the Tar vertical rock cutting to the south of the site known as the Tarpeian Way is present. The photo is presented in Photo 9, Plate 5, Appendix C.

1930 Aerial Photograph

In the 1930 aerial photograph the tram shed and tram line are visible. The northern end of Bennelong Point appears to be a public park. A number of finger wharves are present along the eastern shoreline of Bennelong Point and a warehouse along the western side. The northern end of the western side of Bennelong Point appears to be being used as a docking port for cargo ships. The Royal Botanical Gardens and Government House are visible to the south of the site and Sydney Harbour to the east, north and west. A copy of the photo is presented in Photo 10, Plate 6, Appendix C.

1943 Aerial Photograph

The 1943 aerial photograph is generally similar to the 1930 aerial photograph. It is possible that some minor works have been conducted on the finger wharves, but it is difficult to determine due to the poor quality of the 1930 aerial photograph. The immediate surrounds also appear consistent with the 1930 aerial photograph. A copy of the photo is presented in Photo 11, Plate 7, Appendix C.

1951 Aerial Photograph

The 1951 aerial photograph is generally similar to the 1943 and 1930 aerial photographs. There have been some changes to the finger wharves on the eastern side on Bennelong Point with the two northern most wharves being removed and replaced with a single finger wharve which is connected to the north eastern corner of the point (although this is outside the VAPS works area). The immediate surrounds also appear consistent with the 1943 and 1930 aerial photograph. A copy of the photo is presented in Photo 12, Plate 8, Appendix C.

1960s Historical Site Photos Aerial Photograph

The 1960s historical site photos show the site during the construction of the Sydney Opera House and forecourt. The tram shed and tram lines have been demolished. In addition the Warehouses and docking ports on the western side of Bennelong Point have been removed and the finger wharves along the eastern side of Bennelong Point removed. The only remaining wharf on the eastern side is the Man-O-War Steps. Copies of the photos are presented in Photo 13, 14 and 15, Plate 9, Appendix C.

1970 Aerial Photograph

The 1970 aerial photograph shows the site after the completion of the Sydney Opera House. There appears to be some works on-going in the forecourt area. The immediate surrounds do not appear to have undergone significant change with the exception of increasing number of multi-story office buildings to the south east of the site. A copy of the photo is presented in Photo 16, Plate 10, Appendix C.

1978 Aerial Photograph

The 1978 aerial photograph shows the site following the completion of works in the forecourt. The western side of Bennelong Point appears to have undergone some minor reshaping and the Ma-O-War Steps appear to have been re-designed and possibly small area along the shoreline at the Man-O-War Steps reclaimed to "smooth out" the shoreline. A copy of the photo is presented in Photo 17, Plate 11, Appendix C.

1986 Aerial Photograph

The 1986 aerial photograph does not show any significant change at the site to the 1978 aerial photograph. Similarly there are no significant changes to the surrounding area. A copy of the photo is presented in Photo 18, Plate 12, Appendix C.

1991 Aerial Photograph

The 1991 aerial photograph does not show any significant change ate the site to the 1986 aerial photograph. Similarly there are no significant changes to the surrounding area. A copy of the photo is presented in Photo 19, Plate 13, Appendix C.

2004 Aerial Photograph

The 2004 aerial photograph does not show any significant change at the site to the 1991 aerial photograph. Similarly there are generally significant changes to the surrounding area with the exception of the construction of a new residential apartment block to the south east ("the toaster"). A copy of the photo is presented in Photo 20, Plate 14, Appendix C.

2005 Aerial Photograph

The 2005 aerial photograph does not show any significant change at the site to the 2004 aerial photograph. Similarly there are no significant changes to the surrounding area. A copy of the photo is presented in Photo 21, Plate 15, Appendix C.

2010 Aerial Photograph

The 2010 aerial photograph shows the current site condition and does not show any significant change at the site to the 1986 to 2005 aerial photographs. Similarly, there are no

significant changes to the surrounding area. A copy of the photo is presented in Photo 22, Plate 16, Appendix C.

7.3 EPA Contaminated Land Register

A search was undertaken of the Department of Environmental and Climate Change (DECC) Contaminated Land Register on 7 June 2010.

There were no records, notices or orders to investigate or remediate the site. In addition there were no EPA licences held for the site. A copy of the EPA Licence notices search is provided in Appendix C.

8. POTENTIAL CONTAMINANTS

Based on the previous investigations and past site use it is generally considered that there is a low to moderate potential for contamination at the site. As no specific contamination sources or areas of specific concern were noted, apart from the importation of filling for land reclamation, the investigation was, thus, designed to cover a wide range of commonly occurring contaminants that may be present in the filling which include:

- The priority heavy metals arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc;
- Polycyclic Aromatic Hydrocarbons (PAH);
- Total Recoverable Hydrocarbons (TRH) and benzene, toluene, ethyl benzene and xylenes (BTEX);
- Organochlorine pesticides (OCP);
- Total Phenols;
- Volatile organic compounds (VOC);
- Polychlorinated biphenyls (PCB); and
- Asbestos.

9. FIELD WORK

9.1 Data Quality Objectives

The data quality objectives (DQO) of the Preliminary Contamination Assessment have been developed to define the type and quality of the data to achieve the project objectives and were based broadly in accordance with the seven step data quality objective process, as defined in Australian Standard (AS) *Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 1: Non-volatile and Semi-volatile Compounds* (AS 4482.1 – 2005). The DQO process is outlined in the AS and defined by:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

Detailed discussions of the 7 step DQO process is provided in Appendix F and are summarised in Table 1, below.

Data Quality Objective	Report Section where addressed
State the Problem	S1 Introduction
	S2 Proposed development and Objectives
	S4 Site Description
Identify the Decision	S10 Site Acceptance Criteria
	S12 Discussion of Results
	S13 Conclusions and Recommendations
Identify Inputs into the Decision	S4 Site Description
	S5 Regional Geology
	S6 Previous Reports
	S7 Site History
	S8 Potential Contaminants
	S10 Site Assessment Criteria
	S11 Results of Assessment
	S12 Discussion of Results
Define the Boundary of the Assessment	S4 Site Description, Appendix A
Develop a Decision Rule	S10 Site Assessment Criteria
Specify Acceptable Limits on Decision Errors	Appendix E
Optimise the Design for Obtaining Data	S9 Fieldwork

Table 1 – Data Quality Indicators

9.2 Sample Rationale

Based on the NSW EPA Sampling Design Guidelines a minimum of 15 Test Bores is recommended for the characterisation of the site (i.e. a plan area of 6,000 m²). However, due to the limited access restrictions and the linear nature of the proposed tunnel, stormwater and HV cable diversions (to which area based sampling densities in the Sample Design Guidelines do not strictly apply) a "full" phase 2 sampling density based on site area was not considered appropriate. Therefore six test bores were drilled over the accessible areas of the site. In addition two test bores were drilled during the previous geotechnical investigation (a total of eight test bores utilised for the purpose of this assessment). A groundwater sample was also collected from a piezometer installed during the geotechnical investigation.

Based on site observations and the site history review (i.e. identifying no specific target areas other than filling), the sampling locations were placed over the accessible portions of the site with a view to providing a reasonable site coverage. Soil samples were collected at broadly regular intervals, or based on field observations, including changes in strata and signs of contamination. The locations of the test bores are shown in the attached Drawing 1, Appendix A.

9.3 Sampling Procedures

9.3.1 Soil Sampling

All sample locations were cleared for services and pipes using Dial-before-you-dig information and an electro-magnetic sweep by an accredited service locater. A ground penetrating radar survey was completed at each location to attempt to identify deeper services and services not typically detectable by electromagnetic sweeps (such as clay and concrete pipes).

In addition to the electromagnetic and GPR sweeps, an additional concrete thickness radar survey was conducted at Test Bore 206 in an attempt to identify the locations of the underground beam pairs in conjunction with a review of the GBG Report entitled *Investigation using Ground Penetrating Radar of the Subsurface Construction of the Concourse East, Sydney Opera House, Sydney, NSW* dated 4 March 2010. The GBG report was relied upon for the locations of the beam pairs in view of the inconclusive results of the GPR and concrete radar surveys.

The limestone pavement in the forecourt (where Test Bores 201 to 204 were located) was removed by Opera House Staff to expose the underlying cement/concrete. The cement and concrete was then pre-cored using a 150 mm diameter diatube corer with a wetvac to reduce drilling fluids. Test Bore 205 was located on a bitumen pavement and was pre-cored with a 150 mm diatube corer.

Test Bores 201 to 205 were drilled using a truck mounted Scout Rig. The rig was moved into position after the pavement was removed and underlying concrete/bitumen cored. Once in

position barricades were put in place to prevent vehicle and pedestrian access to the works area.

At Test Bore 206 a pilot hole was cored through the asphalt and concrete using a 50 mm diameter diatube corer. Following the completion of the pilot hole demonstrating that the hole was not located over a beam pair a 150 mm core was cored over the top of the pilot hole. Once the concrete core was removed a bobcat mounted drilling rig was moved into position and barricades put in place to prevent vehicle and pedestrian access to the works area.

The recent field investigation comprised the drilling of six test bores (BH201 to BH206) to depths of between 13.5 m and 17.1 m. The borehole locations were set out relative to existing surface features (e.g. walls, staircases and gutters). The locations of test bores are shown in Drawing 1 within Appendix A. Also shown on Drawing 1 are the locations of Test Bores 101 and 102.

Each bore (BH201 to BH206) was drilled using solid, spiral flight augers. Test bores were extended to borehole refusal (on sandstone or in filling) to depths of between 0.9 m and 2.9 m.

All Environmental sampling was performed according to standard operating procedures outlined in the DP *Field Procedures Manual*. All sampling data will be recorded on DP chain of custody sheets. The general soil sampling procedure comprised:-

- Collection of soil samples from auger returns at the surface then at regular intervals or upon signs of contamination, at the observed water table and at test bore completion;
- decontamination of all sampling equipment using a 3% solution of phosphate free detergent (Decon 90) and distilled water prior to collecting each sample;
- transfer of samples into sealable plastic bags. All air was removed from the bags before they were sealed;
- labelling of sample bags with individual and unique identification, including project number, sample location and sample depth; and

 placement of the sample bags into a cooled, insulated and sealed container for transport to DP offices where upon they were placed in a freezer to prevent oxidation and sent to the laboratory in a cooled insulated container (following acid sulphate soil screening).

NATA accredited laboratories were employed to conduct the sample analysis. The laboratories are required to carry out routine in-house QC procedures.

The approximate ground surface level for the boreholes was determined by interpolation between survey makers shown on the drawing prepared by Hard & Forester Consulting Surveyors, 2005 entitled: *Sydney Opera House Survey Control Plan, Ground Floor* +12 *External, in particular, Sydney Opera House Bench Mark P6-01 (SOHBM – P6-01).* SOHBM P6-01 was located at the base of the foyer stairs adjacent to the eastern boardwalk, a distance of between 7 m and 17 m from the borehole locations. The Reduced Level (RL) shown on SOHBM – P6-01 is understood to be relative to AHD.

A photoionisation detector (PID) was used to screen the headspace gases of the replicate samples placed in the sealed zip-lock bag. The PID provides an indication of the likely presence of volatile organic compounds in the soil. The PID had a 10.6eV lamp and was calibrated with isobutylene gas prior to commencement of each day's field work.

9.3.2 Piezometer Installation and Groundwater Sampling Methods

The piezometer (installed in Test Bore 101 during the geotechnical investigation) was constructed using 50 mm diameter acid washed class 18 PVC casing and machine slotted well screen. Joints were screw threaded, thereby avoiding the use of glues and solvents which may contaminate the groundwater. The piezometer was completed with a gravel pack extending to 0.1 m above the well screen and a bentonite plug of at least 0.2 m thickness and backfilled with drill returns to the surface. The piezometer was finished with a gatic cover on the ground surface.

Subsequent to installation, the groundwater level in the well was measured and then the well was developed by removing a minimum of 3 bore volumes of water, using a submersible pump.

The well recharged immediately and after a one hour period to allow stabilisation levels remeasured. The well was then micro-purged until field parameters (pH, temperature, dissolved oxygen, conductivity, redox potential and turbidity) stabilised, and sample was collected using a peristaltic pump.

Samples were placed with minimum of disturbance and aeration into appropriately preserved bottles. For heavy metal analysis the relevant sample fraction was filtered using a sterilized 0.45 μ m filter. The sample pump and all non disposable sampling equipment was decontaminated between samples via a "triple rinse" procedure i.e. a rinse of all particulates in tap water followed a decontamination using a 3% Decon 90 solution and a final rinse in deionised water. A rinsate sample was collected from the sampling equipment at the completion of sampling to demonstrate that decontamination methodology was adequate.

Sample handling and transport was as set out below:-

- sample containers, supplied by the laboratory (listed below), labelled with individual and unique identification, including project number and sample number;
 - BTEX, C_6 - C_9 and VOCs 2 x 40 ml HCl preserved glass vial;
 - C10-C36 glass 500 ml;
 - PAH glass 1000 ml;
 - Phenols 250 ml H₂SO₄ preserved plastic;
 - PCB/OPP/OCP 1000 ml glass;
 - Heavy metals and hardness filtered, 50 ml HNO₃ preserved plastic;
 - VOCs 2 x 40 ml HCL preserved; and
 - pH 20 ml plastic or glass.
- samples were placed in insulated coolers and maintained at a temperature of approximately 4°C until transported to the analytical laboratory, and
- chain of custody documentation was maintained at all times and countersigned by the receiving laboratory on transfer of samples.

All samples were dispatched to NATA accredited laboratories for analysis.

9.4 Analytical Rationale

The analytical scheme (Table 2) was designed to assess the potential for contamination which may have arisen from current and past use of the site, and more specifically the importation of filling. The analytical scheme also targeted primarily the contaminants commonly associated with old filling around the Sydney Metropolitan area (i.e. Heavy Metals, TPH, BTEX, PAH and Asbestos). A total of 25 (from both the current investigation and previous geotechnical investigation) selected soil samples (including four QA/QC replicates), were analysed for various combinations of the contaminants of concern. In addition, one groundwater sample was also analysed as shown in Table 3.

Sam	nple	Heavy Metals	РАН	ТРН	BTEX	OCP	РСВ	Total Phenols	VOCs	Asbestos	TCLP
101	0.2	✓	\checkmark	✓	\checkmark	\checkmark	-	_	-	✓	~
101	1.5	\checkmark	✓	✓	~	~	-	-	-	✓	✓
102	0.45	\checkmark	✓	✓	~	✓	-	-	-	✓	✓
102	1	\checkmark	✓	✓	~	~	-	-	-	✓	✓
BD 20)1209	\checkmark	✓	✓	~	✓	-	-	-	✓	-
201	0.4-0.5	\checkmark	✓	✓	~	✓	✓	~	~	✓	✓
201	0.8-1	\checkmark	\checkmark	✓	~	-	-	-	-	-	-
201	1.3-1.5	\checkmark	✓	✓	~	✓	✓	✓	-	✓	~
202	0.4-0.5	\checkmark	✓	✓	~	✓	✓	~	-	✓	-
202	0.6-0.8	\checkmark	✓	✓	~	✓	✓	~	~	✓	-
202	0.8-0.9	\checkmark	\checkmark	✓	~	-	-	-	-	-	-
203	0.4-0.5	\checkmark	\checkmark	✓	~	\checkmark	\checkmark	\checkmark	-	✓	~
203	0.8-1	\checkmark	\checkmark	✓	~	-	-	-	✓	✓	-
204	0.4-0.5	\checkmark	✓	✓	~	✓	\checkmark	✓	✓	✓	-
204	0.8-1	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	-	\checkmark	-
BD2 17	70510⁵	\checkmark	\checkmark	✓	\checkmark	-	-	-	-	-	-
204	1.2-1.3	\checkmark	\checkmark	✓	\checkmark	-	-	-	-	-	-
205	0.3-0.5	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	-	\checkmark	~
BD4 1	70510	\checkmark	\checkmark	✓	\checkmark	-	-	-	-	-	~
205	1.3-1.5	\checkmark	✓	✓	~	-	-	-	-	✓	-
205	2.3-2.5	\checkmark	\checkmark	✓	~	\checkmark	\checkmark	✓	~	-	-
206	0.4-0.5	\checkmark	✓	✓	~	\checkmark	\checkmark	✓	-	✓	-
BD1 24	40510 ⁴	\checkmark	✓	✓	~	-	-	-	-	-	~
206	0.8-1	\checkmark	✓	✓	~	\checkmark	\checkmark	✓	✓	✓	-
206	1.1-1.2	\checkmark	✓	✓	~	-	-	-	-	-	✓

Table 2 – Analytical Scheme for Soil Samples

Sample ID (Location)	Heavy Metals	TPH/ BTEX	PAH	рН	Oil and Grease	Iron	Manganese
101-GW	√	~	~	√	\checkmark	✓	✓

Table 3 – Analytical Scheme for Groundwater Sample

10. SITE ASSESSMENT CRITERIA

10.1 Soils

The DECCW's standard, health risk based site assessment settings are defined in the *Guidelines for the NSW Site Auditor Scheme*, 2nd edition, 2006, Appendix I and it includes health based assessment criteria for the following land uses;

- Residential with accessible soil and use of home grown produce. Includes child-care centres, primary schools, pre-schools, town houses and villas (HIL Column 1)
- Residential with minimal access to soil such as high rise apartments and flats (HIL Column 2);
- Parks, recreational open space or [playing fields and including secondary schools (HIL Column 3);
- Commercial or industrial use (HIL Column 4).

In addition, the DECCW also sets provisional phytotoxicity-based investigation levels (PPIL, Column 5) for the protection of plants in the appropriate setting (residential with gardens, areas outside of the building footprint of apartments and flats and open space). The PPIL are not relevant to the current assessment as there are no landscaping areas proposed within the works area.

With regards to the site, the Opera House forecourt is a public open space. While the site will be fully paved upon completion of the project such there will be no direct exposure pathway to the underlying soils a conservative approach had been adopted for the purpose of the current assessment and the threshold values for Parks and recreational open space

[including playing fields and secondary schools] (HIL Column 3) have been used, even though the exposure setting more closely resembles commercial exposure and risk scenarios.

Appendix II of the *Guidelines for the NSW Site Auditor Scheme* and the NSW EPA publication *Guidelines for Assessing Service Station Sites* 1994 provides the health-based investigation levels (HIL) for these settings and the site acceptance criteria (SAC) for the assessment of the site which the soil analytical results have been compared to. The adopted site assessment criteria are shown in Table 4, below.

A contaminant concentration in soil/filling material is considered to be significant if:

- The concentration of the contaminant is more than 2.5 times the site assessment criteria (SAC). Any location more than 2.5 times the SAC is classified as a 'hotspot', requiring further assessment/ management.
- ii) For a data of like material, with respect to the health-based criteria, the calculated 95%
 Upper Confidence Limit of average concentrations (excluding any 'hotspot' concentrations) exceeds the SAC.
- iii) The standard deviation of the results is greater than 50% of the health-based investigation levels (HIL).

Contaminant	Adopted Criteria (SAC)	Source
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	65 mg/kg 1000 mg/kg 1.4 mg/kg 3.1 mg/kg 14 mg/kg	NSW EPA ¹ Contaminated Sites <i>Guidelines for</i> <i>Assessing Service Station Sites</i> (1994) threshold concentrations for sensitive land use-soils. Currently there are no other comprehensive EPA endorsed investigation levels for petroleum hydrocarbons.
Metals Arsenic (total) Cadmium Chromium Copper Lead Mercury Nickel Zinc	HIL-Column 4 200 mg/kg 40 mg/kg 24% 2000 mg/kg 600 mg/kg 30 mg/kg 600 mg/kg 14000 mg/kg	
Total Phenols PAH Total Benzo(a)Pyrene PCB	1700 mg/kg 40 mg/kg 2 mg/kg 20 mg/kg	Guidelines for the NSW Site Auditor Scheme, 2nd edition, 2006, Appendix II. Guidelines for Parks and Recreational Open Space (Column 3)
OCP aldrin + dieldrin chlordane DDT (including DDD, DDE, DDT)	20 100 400	
Heptachlor VOC	20 Not defined	
Asbestos	No asbestos present in soil	No current NSW EPA endorsed guideline levels were available

Table 4 – Site Assessmen	Criteria for Soil/ Filling
--------------------------	----------------------------

Providing that the 95% Upper Confidence Limit (UCL) of average concentrations is within the SAC (health-based), and no concentrations of the contaminants are at hotspot level, minor exceedances of the SAC may be considered to pose an insignificant human health risk under the proposed land-use.

It is noted that no SAC has been defined for VOC in soil. Should concentrations exceed the laboratory detection limits, a risk-based assessment of the concentrations detected will be carried out.

¹ NSW EPA and NSW DEC is now part of the NSW Department of Environment and Climate Change (DECC). ² Commonwealth Department of Health and Aging. NSW EPA took part in the formulation of the enHealth guidance document.

^{*} Other than a low reliability trigger value of 7µg/L, which is not routinely achievable by NATA accredited laboratories

10.2 Groundwater

The levels of contaminants in groundwater were assessed against Groundwater Investigation Levels (GILs) adopted from applicable guidelines, specifically, the ANZECC (2000) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. The ANZECC 2000 Guidelines and their source documents are detailed in Table 5. Guidelines for marine waters have been adopted given the proximity of the site to Sydney Harbour.

Contaminant	Adopted Criteria (GIL)	Source
TPH C ₆ – C ₉ >C ₉	150 µg/L 600 µg/L	At this stage, there are no high reliability guideline value for TPH* in ANZECC 2000 or endorsed by NSW EPA. For reference purposes, DP has referred to other available Australian guidelines for TPH viz. Airport (Environment Protection) Regulations (1997), Schedule 2 Water Pollution Accepted Limits: Table 1.03 – Accepted limits of contamination. It should be noted however that these have not been endorsed by EPA and are used as 'screening levels' only.
BTEX Benzene Toluene Ethylbenzene Xylene	500 μg/L 180 μg/L ^a 5 μg/L ^a 425 μg/L ^a	ANZECC (2000) low to moderate reliability trigger levels, Australian Water Quality Guidelines for the protection of 95% of marine water species a. low reliability trigger value ANZECC (2000)
PAH Total Benzo(a)Pyrene Naphthalene Anthracene Phenanthrene Fluoranthene	Not Specified 0.2 μg/L ^a 70 μg/L 0.4 μg/L ^a 2.0 μg/L ^a 1.4 μg/L ^a	ANZECC (2000) Australian Water Quality Guidelines for the protection of 95% of marine water species a. low reliability trigger value ANZECC (2000)
Metals ¹ Arsenic (V) Cadmium Chromium (VI) Copper Lead Mercury Nickel Zinc Total Iron Manganese	2.3 μg/L ^a 5.5 μg/L 27.4 μg/L 1.3 μg/L 4.4 μg/L 0.4 μg/L 70 μg/L 15 μg/L 300 μg/L ^a 80 μg/L ^a	ANZECC (2000) Australian Water Quality Guidelines for the protection of 95% of marine water species a. low reliability trigger value ANZECC (2000)
Oil and Grease	-	
рН	-	

Table 5 – Groundwater I	nvestigation	Levels (GIL)
-------------------------	--------------	----------	------

Notes:

1. Metals GILs in results tables are adjusted for hardness of 100 mg CaCO $_3/L$

a For PAHs, in cases where no high reliability ANZECC trigger values are provided, the low reliability trigger values and the PQLs have been used as screening levels, along with a review of the recorded PAH levels in the soil samples.

10.3 Waste Classification

For the purpose of waste classification the results have been compared to the NSW DECC *Waste Classification Guidelines* 2008 (updated 2009).

11. RESULTS OF SOIL INVESTIGATION

11.1 Field Observations

Details of the sub-surface conditions encountered during the course of the investigation are included in the Test Bore Report Sheets (Appendix D). The bore locations are shown on Drawing 1, Appendix A. The soils were generally free of obvious signs of chemical contamination such as odours or staining. Trace ash was encountered in Test Bores 102, 203 and 205.

The boreholes generally encountered soil and rock filling material over sandstone bedrock. The general sequence of materials encountered in the boreholes is described below:

- **PAVEMENTS:** typically comprised limestone pavers overlying concrete/cement layer or asphaltic concrete (AC) also referred to as bituminous concrete over concrete where present over roadbase gravel with a combined pavement thickness of between 0.2 m to 0.4 m; overlying.
- FILLING: Filling was encountered in all test bores to depths ranging between 0.8 m below ground level to 4.95 m below ground level. The depth of filling generally increased to the eastern side of the site (near the Man-O-War Steps), or near service trenches/pits. The filling generally comprised sand with inclusions of sandstone gravel overlying ballast ("blue metal" gravels and cobbles). Trace ash was noted in the filling in Test Bores 201, 203 and 205; overlying.

BEDROCK: the bedrock generally comprised medium and high strength sandstone. Sandstone was not reached in all bores due to refusal in the overlying filling (see Table 6 below).

Table 6 summarises the subsurface profile encountered during the current investigation.

Sampling Location	Concrete/ Bitumen	Filling	Sandstone	Completion Depth
101	0-0.13	0.13-4.95	4.95-13.48	13.48
102	0-0.44	0.44-1.8	1.8-17.11	17.11
201	0-0.3	0.3-1.9*	-	1.9
202	0-0.35	0.35-0.8	0.8-0.9	0.9
203	0-0.3	0.3-1.3*	-	1.3
204	0-0.3	0.3-1.1	1.1-1.2	1.2
205	0-0.2	0.2-2.7	2.7-2.9	2.9
206	0-0.4	0.4-1.3*	_	1.3

Table	6 -	Observed	Lithology
I GIOIO	•	00001100	Linerogy

Note: * Refusal in filling

11.2 Total Photoionisable Compounds (TOPIC) Results

The replicate soil samples collected in plastic bags were allowed to equilibrate under ambient temperatures before screening for Total Photoionisable Compounds (TOPIC) using a calibrated Photoionisation Detector (PID). Results of sample screening are shown in the Test Bore Reports in Appendix D. All PID readings were less then 1 ppm.

11.3 Groundwater

The condition of the groundwater was generally in the neutral pH range. The Electrical conductivity results were saline (marine) waters. The groundwater field parameters are presented in Table 7.

It is noted that the measured water levels would be expected to vary depending on tide conditions within the surrounding Sydney Harbour and would typically be similar to the water levels in the harbour.

Bore ID	Water Depth (m)	Water Level (m AHD)	Oxygen (ppm)	Conductivity (mS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Redox (Mv)
BH101	3.47	0.13	3.4	18.2	6.7	20	20.7	16.5

11.4 Laboratory Results

The results of laboratory analysis of the soil and groundwater samples are summarised in Tables 8 to 10, with NATA Reports provided in Appendix E.

Table 8 - Soil Results

											able	5 - 30	il Res	uits											
					Heavy	<u>y Metals</u>	<u>.</u>			PA	н		TF	РΗ			ВТ	EX				<u>s</u>		Asbes	tos
Bore ID	Sample Depth (m) Material Type	As	Cd	Cr ¹	Cu	Pb	Hq	Ni	Zn	B(a)P ²	Total +ve PAH ³		C10- C14	C15- C28	C29- C36	3enzene	Toluene	Ethyl-benzene	Fotal Xylene	OCP ³	PCB ³	Total Phenols	VOCS ³	In soil	Тгасе
											revious (nber 200	09						1		
101	0.2	<4	<0.5	9	81	4	<0.1	77	41	<0.05	<0.1	<25	<50	<100			<0.5	<1	<3	<0.1	-	-	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
101	1.5	<4	<0.5	25	63	54	<0.1	37	82	3.5	35.4	<25	<50	120	<100	<0.5	<0.5	<1	<3	<0.1	-	-	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
102	0.45	4	<0.5	10	41	70	1.6	11	43	4.2	41.1	<25	<50	140	<100	<0.5	<0.5	<1	<3	<0.1	-	-	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
102	1	<4	<0.5	13	22	25	0.8	7	17	1.3	14.7	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	-	-	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
В	D 201209	<4	<0.5	12	19	32	0.9	8	18	1.4	15.1	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	-	-	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
					1	1						Current	Investig	ation M	ay 2010			1		Γ			1	1	
201	0.4-0.5	5	<0.5	5	11	7	<0.1	14	12	2.7	25.6	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	<1	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
201	0.8-1	<4	<0.5	3	7	3	0.1	8	7	0.1	0.9	<25	<50	<100	<100	<0.5	<0.5	<1	<3	-	-	-	-	-	-
201	1.3-1.5	<4	<0.5	13	19	6	<0.1	22	17	1.3	12.4	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
202	0.4-0.5	<4	<0.5	11	70	12	0.1	77	48	0.8	5.8	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
202	0.6-0.8	<4	<0.5	14	52	11	0.1	61	41	0.8	6.5	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	<1	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
202	0.8-0.9	<4	<0.5	8	<1	6	<0.1	<1	26	<0.05	<0.1	<25	<50	<100	<100	<0.5	<0.5	<1	<3	-	-	-	-	-	-
203	0.4-0.5	4	1.7	10	66	38	0.2	33	66	0.7	11.1	<25	57	210	200	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
203	0.8-1	<4	1.8	15	43	660	0.2	16	62	1.6	16	<25	<50	210	240	<0.5	<0.5	<1	<3	-	-	-	<1	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
204	0.4-0.5	<4	<0.5	16	10	17	<0.1	15	32	0.9	8.8	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	<1	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
204	0.8-1	<4	<0.5	13	6	12	<0.1	6	17	0.1	1.1	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
BC	02 170510 ⁵	<1	0.2	9	4	10	<0.05	4	21	<0.5	<0.5	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.5	-	-	-	-	-	-
204	1.2-1.3	<4	<0.5	19	3	11	<0.1	5	28	0.1	0.8	<25	<50	<100	<100	<0.5	<0.5	<1	<3	-	-	-	-	-	-
205	0.3-0.5	<4	<0.5	11	37	45	<0.1	14	58	16	177.7	<25	<50	870	550	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
BL	D4 170510	<4	<0.5	10	60	43	0.2	31	67	18	222.4	<25	<50	890	550	<0.5	<0.5	<1	<3	-	-	-	-	-	-
205	1.3-1.5	<4	<0.5	10	<1	8	<0.1	<1	5	0.5	5.2	<25	<50	<100	<100	<0.5	<0.5	<1	<3	-	-	-	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
205	2.3-2.5	<4	<0.5	10	60	43	0.2	31	67	0.07	0.27	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	<1	-	-
206	0.4-0.5	<4	<0.5	7	22	41	0.1	5	31	0.07	0.37	<25	<50	<100	<100	<0.5	<0.5	<1	<3	<0.1	<0.1	<5	-	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
BD	01 240510 ⁴	<4	<0.5	7	38	130	0.5	16	110	0.7	7.3	<25	<50	<100	<100	<0.5	<0.5	<1	<3	-	-	-	-	-	-
206	0.8-1	<4	<0.5	8	33	65	0.3	19	78	0.6	6	<25	<50	<100			<0.5	<1	<3	<0.1	<0.1	<5	<1	no asbestos found at reporting limit of 0.1 g/kg	respirable fibres not detected
206	1.1-1.2	5	<0.5	32	50	91	0.4	16	100	1	10.9	<25	<50	<100	<100	<0.5	<0.5	<1	<3	-	-	-	-	-	-
HIL ⁷		200	40	24%	2000	600	30	600	14000	2	40	65 ⁸		1000 ⁸		1 ⁸	1.4/130 ⁸		14/25 ⁸	20/1000/400/20 6	50	17000	-	None detected	None detected
Waste ¹⁰		100	20	100	-	100	4	40	-	0.8	200	650		10000		10	288	600	1000	<50	<50	288	-	None detected	None detected

Notes

- All Chromium are assumed to exist in the stable Cr(III) oxidation state, as Cr(VI) is too reactive and unstable under the normal environment 1
- 2 benzo(a)pyrene
- 3 where results less than practical quantitative limit (PQL), quoted as less than PQL for most individual compounds
- 4 Intralaboratory Duplicate of sample listed above
- 5 Interlaboratory duplicate of sample listed above
- 6 OCP SACs given in order Aldrin+Dieldrin/Chlordane/ DDD+DDE+DDT/Heptachlor
- NSW DECC Contaminated Sites Guidelines for the NSW Site Auditor Scheme 2nd edition (2006) Soil Investigation Levels for Urban Redevelopment Sites in NSW Heath-based investigation levels for Parks, recreational open space, playing fields including secondary schools. 7
- 8 NSW EPA Contaminated Sites Guidelines for Assessing Service Station Sites (1994)
- 9 NSW DECC Contaminated Sites Guidelines for the NSW Site Auditor Scheme 2nd edition (2006) Provisional Phytotoxicity Based Investigation Levels (PPIL) Waste Classification Guidelines 2008. General Solid Waste
- 10 Without TCLP
- not analysed
- ND Not defined
- BOLD Exceeds SAC
- Red Hotspot Concentration
- exceeds General Solid Waste without TCLP Italics

	Tus	ie 3 - Was				ouno		
	Tota	al PAH	Benzo	(a)Pyrene	Le	ead	Ni	ckel
Sample	Total	TCLP ³	Total	TCLP	Total	TCLP	Total	TCLP
101/0.2	NA	NA	NA	NA	NA	NA	77	0.1
101/1.5	35.4	0.004	3.8	<0.001	NA	NA	NA	NA
102/0.45	41.1	0.004	4.2	<0.001	NA	NA	NA	NA
102/1.0	14.7	0.005	1.3	<0.001	NA	NA	NA	NA
201/0.4-0.5	25.6	0.01	2.7	<0.001	NA	NA	NA	NA
201/1.3-1.5	12.4	0.012	1.3	<0.001	NA	NA	NA	NA
203/0.8-1	16	<0.001	1.6	<0.001	660	0.03	NA	NA
205/0.3-0.5	177.7	0.059	16	<0.001	NA	NA	NA	NA
BD4 170510	222.4	0.01	18	<0.001	NA	NA	NA	NA
206/1-1.2	10.9	<0.001	1	<0.001	NA	NA	NA	NA
BD1 240510	NA	NA	NA	NA	130	0.5	NA	NA
		Gene	eral Solid	Waste Guide	elines			
Without TCLP	-	-	0.8	-	100	-	40	-
With TCLP	200	-	10	0.04	1500	5	1050	2

Table 9 - Waste Classification (TCLP) Results

Notes

1	Waste Classification Guidelines 2008. General Solid Waste Without TCLP
2	Waste Classification Guidelines 2008. General Solid Waste With TCLP
3	where results less than practical quantitative limit (PQL), quoted as less than PQL for most individual compounds
NA	Not applicable TCLP test not run for sample/analyte
bold and shading	exceeds General Solid Waste Guidelines with TCLP

Page 33 of 43

Table 10 – Groundwater Results

	Heavy Metals					ТРН ВТЕХ							РАН												
Sample ID	As	Cd	Ch	Cu	Pb	Hg	Ni	Zn	Fe (total)	Fe (ferrous)	Mn	C6-C9	C10-C36	Benzene	Toluene	Ethyl Benzene	Xylenes	Total ³	B(a)P	Anthracene	Phenanthrene	Fluoranthene	Naphthalene	Grease (mg/L)	рН
101-GW	<1	<0.1	<1	8	15	<0.5	<1	12	53,000	9100	2900	<10	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1	<1	<5	6.5
	Guidelines																								
ANZECC ¹	2.3*	5.5	27.4	1.3	4.4	0.4	70	15	300*	-	80*	1502	6002	500	180*	5*	425*	-	0.2*	0.4*	2*	1.4*	70	-	-

Notes:

1 ANZECC 2000 Trigger levels for marine water moderate reliability for 95% of species unless otherwise indicated.

2 Airport Regulations (1997)

3 Given as sum of PQL of all analytes in list where all analytes below PQL

* Low reliability guideline

Shading Exceeds GIL

12. DISSCUSSION OF RESULTS

Based on the site history review the site appears to have been occupied since European settlement. This site was the location of Fort Macquarie until 1901 and was later redeveloped for a tram shed and wharves/jetties between 1901 and 1950. The site was redeveloped for the Sydney Opera House in the 1960s and 1970s. During the course of the European occupation of the site it has been subject to several episodes of filling and reclamation associated with the various uses of the site.

Generally speaking it is considered that the land use would have a low overall contamination potential, although there is a potential for contamination from filling imported to the site from unknown and various sources.

Details of the sub-surface conditions encountered during the course of the investigation are included in the Test Bore Report Sheets (Appendix D). The bore locations are shown on Drawing 1, Appendix A. The soils were generally free of obvious signs of chemical contamination such as odours or staining, however trace ash was noted in Test Bores 201, 203 and 205.

The conditions encountered typically consisted of pavements to depths between 0.2 m to 0.4 underlain by filling to depths ranging between 0.8 m below ground level to 4.95 m below ground level consisting of sand with inclusions of sandstone gravel overlying ballast ("blue metal" gravels and cobbles). The filling was underlain by sandstone.

12.1 Contaminants in Soil

Soil samples were analysed for a variety of commonly occurring contaminants including heavy metals, TPH, BTEX, PAH, OCP, PCB, phenols, VOCs and asbestos.

12.1.1 Heavy Metals

Soil samples were analysed for the priority heavy metals (i.e. arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. The concentrations of all heavy metals were within the SAC for all samples tested. It is therefore considered that the site is not likely to be significantly impacted by heavy metals.

12.1.2 TPH, BTEX

Soil samples were tested for total petroleum hydrocarbons (TPH) and BTEX (benzene, toluene, ethyl benzene and xylenes). The concentrations of the volatile fraction TPH (C_6 - C_9) and BTEX were below the laboratory detection limits in all samples and therefore within the SAC. It is therefore considered that the site is not likely to be significantly impacted by volatile fraction TPH (C_6 - C_9) or BTEX.

The regards to heavy fraction TPH the test results were below detection limits in the majority of the samples tested. The following exceptions were noted;

- Sample 101/1.5 (C₁₅-C₂₉ 120 mg/kg);
- Sample 102/0.45 (C₁₅-C₂₉ 140 mg/kg);
- Sample 203/0.4-0.5 (C_{10} - C_{14} -57 mg/kg, C_{15} - C_{29} 210 mg/kg and C_{29} - C_{36} 200 mg/kg);
- Sample 203/0.8-1 (C_{15} - C_{29} 210 mg/kg and C_{29} - C_{36} 240 mg/kg);
- Sample 205/0.3-0.5 (C_{15} - C_{29} 870 mg/kg and C_{29} - C_{36} 550 mg/kg);
- Sample BD4 170510 (replicate of sample 205/0.3-0.5) (C₁₅-C₂₉ 870 mg/kg and C₂₉-C₃₆ 550 mg/kg).

In the case of samples 101/1.5, 102/0.45, 203/0.4-0.5 and 203/0.8-1 the sum of the C10-C36 fraction was less then the adopted SAC of 1000 mg/kg and therefore not considered significant. In the case of sample 205/0.3-0.5 (and its replicate BD4 170510) the sum of the C10-C36 fraction exceeded the SAC of 1000 mg/kg. This elevated level is however considered to be associated with the PAH levels (discussed further in Section 12.1.4) detected in the samples and given the nature of the site and the thick pavements does not represent a significant risk to site users or construction workers exposed during construction. It is therefore considered that remediation and removal of the impacted soils (outside that which is required for excavation works associated with the VAPS project) is not

necessary and that any residual impacted soils would be effectively capped under the pavement once the works are completed.

12.1.3 VOCs

Six selected soil samples were analysed for volatile organic compounds (VOCs). The concentrations of VOCs were below the laboratory detection limits in all samples It is therefore considered that the site is not likely to be significantly impacted by VOCs.

12.1.4 PAH

Soil samples, including filling and natural soils were analysed for PAH. Generally speaking the concentrations of PAH were low and within the adopted SAC. The following exceedances were detected for PAH;

- Sample 101/1.5 benzo(a)pyrene 3.5 mg/kg compared to SAC of 2 mg/kg;
- Sample 102/0.45 benzo(a)pyrene 4.2 mg/kg compared to SAC of 2 mg/kg and total PAH 41.1 mg/kg compared to SAC of 40 mg/kg;
- Sample 201/0.4-0.5 benzo(a)pyrene 2.7 mg/kg compared to SAC of 2 mg/kg;
- Sample 205/0.4-0.5 benzo(a)pyrene 16 mg/kg compared to SAC of 2 mg/kg and total PAH 177.7 mg/kg compared to SAC of 40 mg/kg; and
- Sample BD4 170510 (replicate of 205/0.4-0.5) benzo(a)pyrene 18 mg/kg compared to SAC of 2 mg/kg and total PAH 222.4 mg/kg compared to SAC of 40 mg/kg.

The locations of the PAH exceedances are shown on Drawing 2, Appendix A.

It is noted that the benzo(a)pyrene and total PAH concentrations detected in sample 205/0.4-0.5 and BD4 170510 are at hotspot (2.5 times the guideline level) concentrations.

It is noted that, based on site observations and test bore logs the elevated PAH levels are likely to be associated with trace ash and in the case of sample 205/0.3-0.5 (and its replicate BD4 170510) trace bitumen fragments in the filling. It is therefore considered that there is a limited potential adverse health impact from the elevated levels (i.e. they are generally locked into particulate) and they are therefore not significant unless the particulate is ingested.

Furthermore TCLP results demonstrate that the elevated PAH levels are not leachable and therefore there is not considered to be an off-site migration risk.

It is therefore considered that the elevated PAH levels do not present a significant risk to site users or workers during the VAPS construction works. Therefore it is not necessary to remove (remediate) the PAH impacted at the site beyond that which will be removed as part of the VAPS excavation works and that any residual PAH impacted soils would be effectively capped once the pavement is reinstated.

12.1.5 OCP and PCB

Soil samples were analysed for OCP and PCB. The concentration of OCP and PCB was below the laboratory detection limits and therefore with the site SAC in all samples. On this basis it is considered that the site soils are not likely to be impacted by OCP or PCB.

12.1.6 Phenols

The results of soil samples analysed for phenols were all below the laboratory detection limits and therefore well within the adopted assessment criteria. On this basis it is considered that the site soils are not likely to be impacted by phenols.

12.2 Asbestos

The filling soil samples were analysed for asbestos. Asbestos was not detected at reporting limits in any of samples tested. It is noted however that the site contained uncontrolled filling and therefore at the time of excavation the excavated spoil should be inspected by an experienced environmental consultant to confirm the absence (or otherwise) of asbestos in the filling prior to disposal.

12.3 Preliminary Waste Classification

A Preliminary Waste Classification of the *in situ* fill material was generally conducted in accordance with the six step process as set out in the NSW Department of Environment and Climate Change (DECC) *Waste Classification Guidelines* (2008 Revised July 2009) and summarised in Table 11 below.

Step	Classification	Rationale
1. Is it special waste?	No	Waste not considered to be clinical waste, tyre waste. No fibre-cement fragments were observed in the test bores
2. Is it liquid waste?	No	Waste composed of soil matrix (i.e. no liquids)
3. Is the waste "pre-classified"?	No	Waste not observed to contain coal tar, batteries, lead paint or dangerous goods containers.
4. Does the waste have hazardous waste characteristics?	No	Waste not observed to/ or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances or corrosive substances
5. Chemical Assessment	Laboratory Analysis conducted to confirm contaminant concentrations were within General Solid Waste Criteria	Waste not observed to/ or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances or corrosive substances, waste not observed to contain coal tar, batteries or dangerous goods containers. However, laboratory analysis was carried out to verify the contaminant concentrations
6. Is the waste putrescible?	No	All observed soil / fill are of non-putrescible nature (i.e. soil and gravel)

It is noted that Sample 205/0.3-0.5 had a total benzo(a)pyrene concentration of 16 mg/kg its replicate sample BD4 170510 had a total benzo(a)pyrene concentration of 18 mg/kg which are in excess of the General Soil Waste Guidelines with TCLP. However trace ash and bitumen fragments were noted in the sample and therefore the soil can be classified on the basis of TCLP results only as per the DECCW's general approval of immobilisation of contaminants in waste, Approval Number 1999/05. Taking this into account, based on the low leachability of the sample, the sample is classified as general solid waste.

It is noted that the based on the acid sulphate soils assessment (DP project 43529.01) the soils at the site are not actual or potential acid sulphate soils and therefore do not impact the waste classification. If however actual or potential acid sulphate soils are discovered during the excavation works the materials would need to be assessed and treated prior to disposal.

Based on the results of the assessment the filling at the site is assigned a preliminary classification as **General Solid Waste (non-putrescible)**.

It is noted that the site was filled/reclaimed with uncontrolled filling over an extensive period of time. Extreme care should therefore be exercised in verifying the presence or otherwise of asbestos in the waste material. If detected during excavation works, any waste material containing asbestos must be classified as Asbestos Waste. Furthermore, it is recommended that any filling material that is disposed of off site should be verified *ex situ* (i.e. after excavation in stockpile) to confirm the waste classification.

The underlying natural sandstone (as described in the test bore logs) is classified as virgin excavated natural material (VENM) provided it has not been impacted by odours or staining and it is not cross contaminated with non-VENM material during excavation, stockpiling and disposal.

12.4 Groundwater Results

A groundwater sample was collected from a piezometer installed in Test Bore BH101. The groundwater sample was analysed for a variety of common contaminants including, heavy metals, TPH, BTEX, PAH, iron, manganese, oil and grease and pH.

The results of the organic analysis (TPH, BTEX, PAH and oil and grease) were below the detection limits and therefore well within the adopted GIL. It is noted that elevated levels of some heavy metals were detected (including Cu – 8 μ g/L compared to a GIL of 1.3 μ g/L, Pb – 15 μ g/L compared to a GIL of 4.4 μ g/L, iron – 53,000 μ g/L compared to a GIL of 300 μ g/L and Mn 2900 μ g/L compared to a GIL of 80 μ g/L).

However the elevated metal concentrations were not considered to be significant due the fact that the waters are highly tidal and likely to be representative of conditions in Sydney Harbour (i.e. background conditions).

It should be noted, however, that the groundwater sample was recovered from one location and one instant in time. Should dewatering be required as part of the VAPS project, it may be necessary to undertake further groundwater assessment, possibly on a regular basis during the works, prior to disposal.

13. CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this preliminary assessment it is considered that the site is suitable (from a contamination standpoint) for the proposed development and that the levels and nature of contamination detected are not likely to pose a significant risk to site users or workers during the construction period of the VAPS works. Furthermore, the final construction outcome will eliminate exposure pathways between general users of the site and the underlying soils with all floors, walls and ceilings being lined.

The filling at the site is provisionally classified as General Solid Waste (non-putrescible), however it is recommended that the waste classification be confirmed via *ex situ* assessment of the excavated spoil prior to final classification and disposal. The underlying natural sandstone is classified as VENM, provided it has not been impacted by odours or staining, however care should be taken in segregating natural and filling materials to avoid cross-contamination and the excavated VENM inspected prior to removal (and additional analysis conducted as/if necessary).

Based on the one test conducted, it is considered that groundwater beneath the site is not likely to present a significant health risk to workers involved in the VAPS project. However, should dewatering be required as part of the VAPS project, it may be necessary to undertake further groundwater assessment, possibly on a regular basis during the works, prior to disposal.

Due to the inherent variability of the filling beneath the site, and the fact that a number of the investigation bores refused within filling material (i.e. deeper filling could not be assessed at some locations) it is recommended that filling excavation works be monitored by an experienced environmental consultant. Furthermore, it is recommended that a Construction Environmental Management Plan be prepared and implemented to control segregation of materials, final waste classification, and management "unexpected finds".

14. LIMITATIONS OF THIS REPORT

The scope of the site assessment activities and consulting services undertaken by DP were limited to those detailed in the proposal dated 29 April 2010 and accepted by The Sydney Opera House Trust.

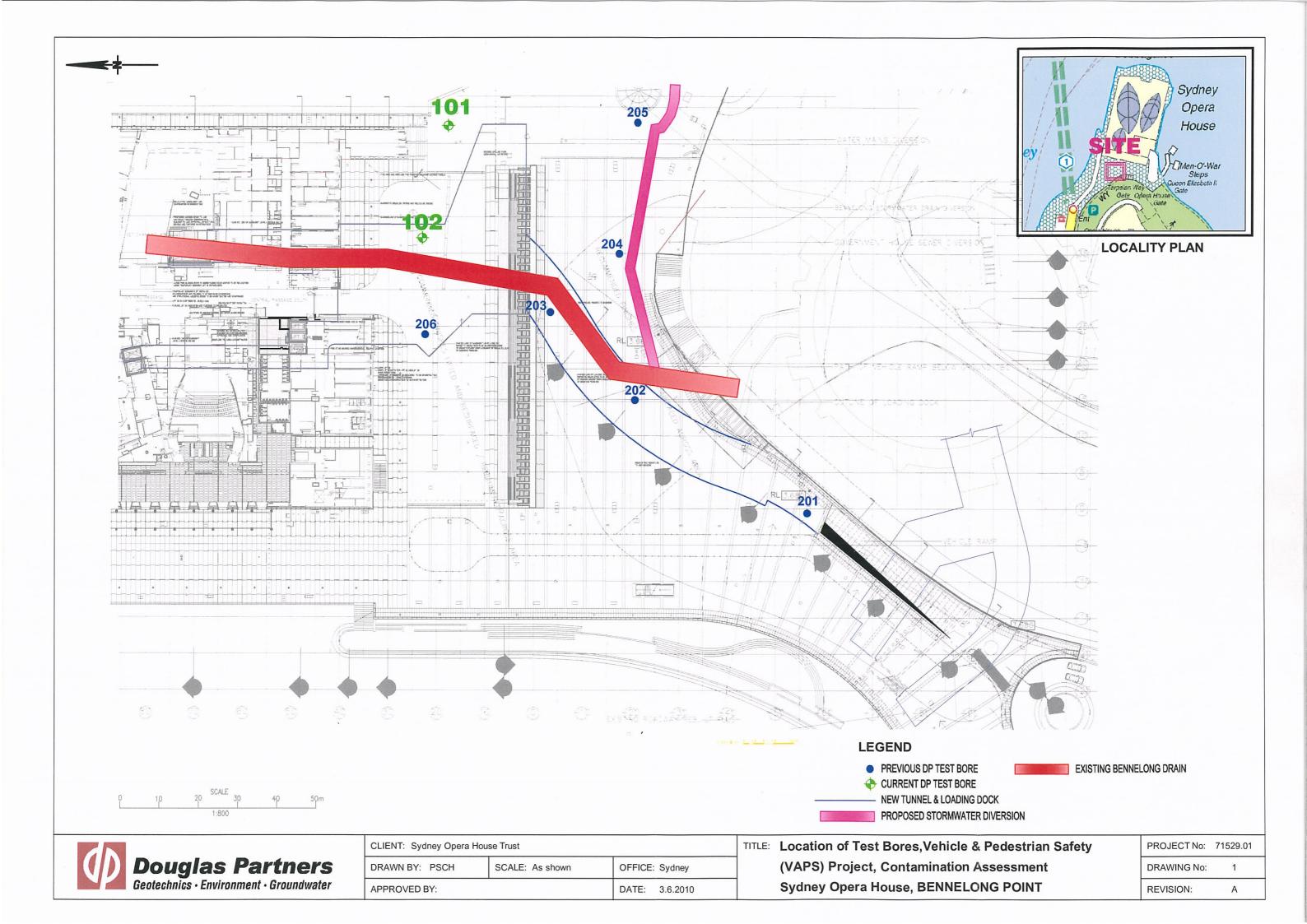
DP's assessment is necessarily based upon the result of a limited site investigation and the restricted programme of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. DP cannot provide unqualified warranties with regards to site contamination nor does DP assume any liability for site conditions not observed or accessible during the time of the investigations.

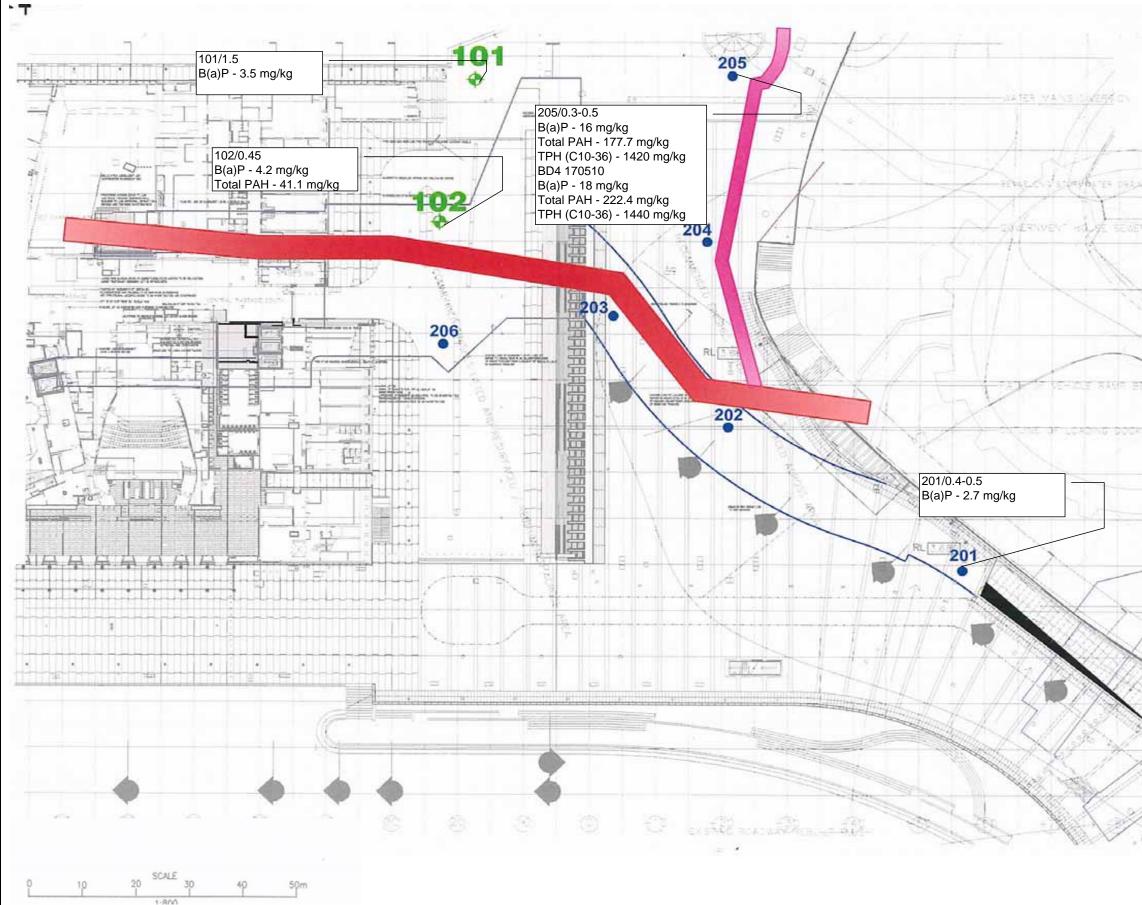
Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change over time due to activities such as spillages of contaminating substances. These changes may occur subsequent to DP's investigations and assessment.

Page 43 of 43

This report, its associated documentation and the information herein have been prepared solely for the use of the Sydney Opera House trust. Any reliance assumed by third parties on this report shall be at such parties' own risk.

DOUGLAS PARTNERS PTY LTD

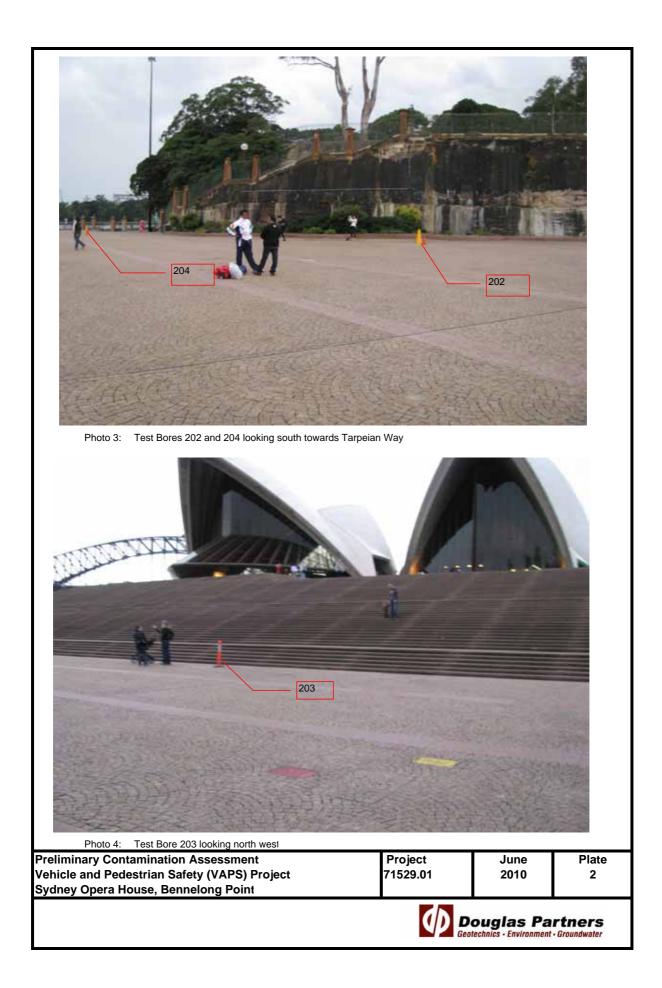

na

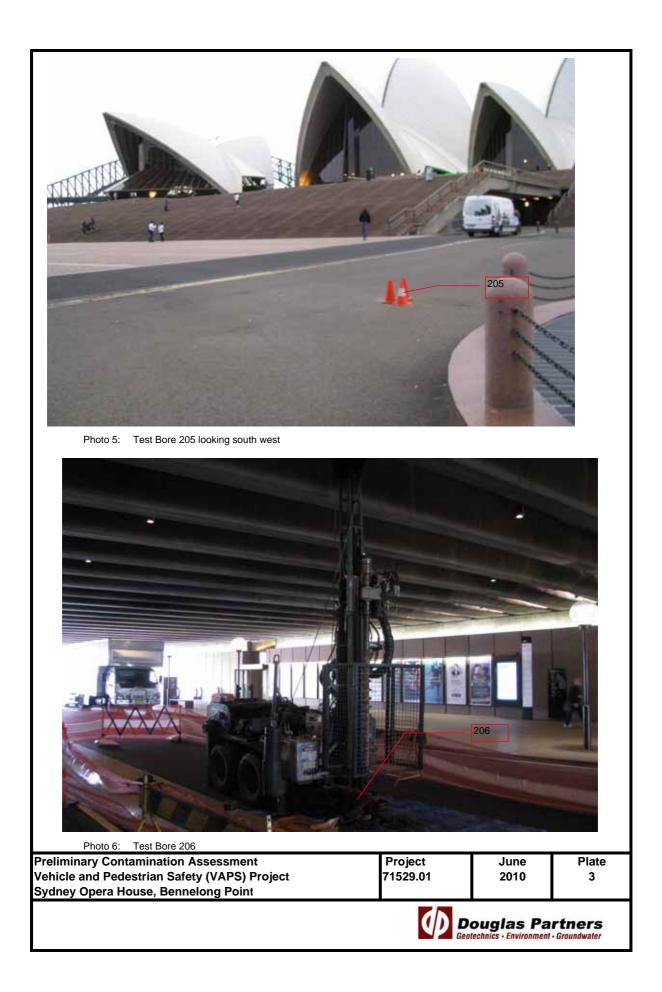

Kurt Plambeck Environmental Scientist

Reviewed by

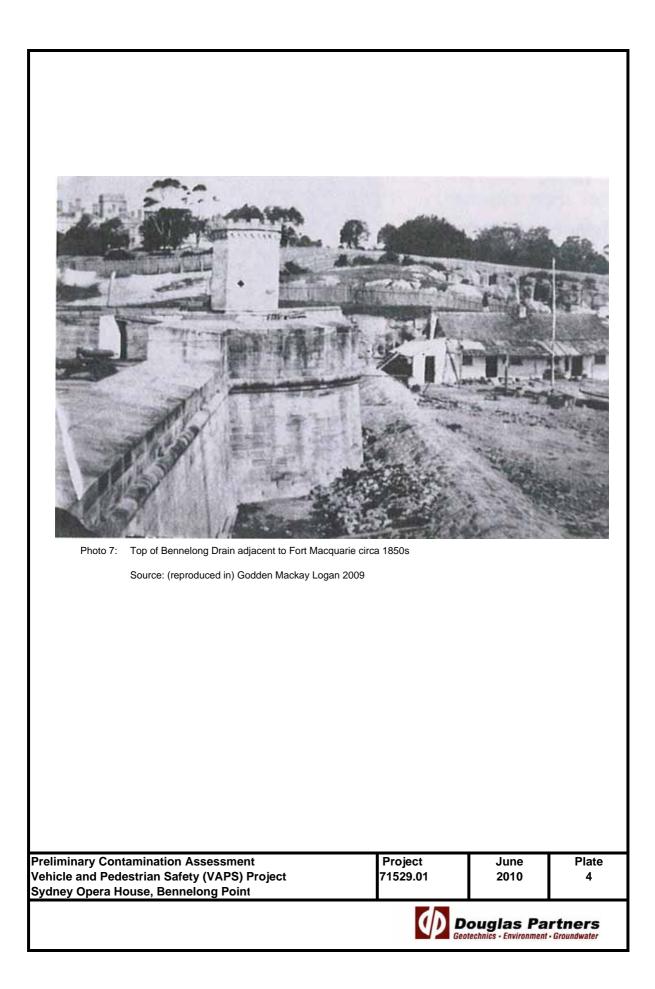
Paul Gorman Manager, Environmental Services

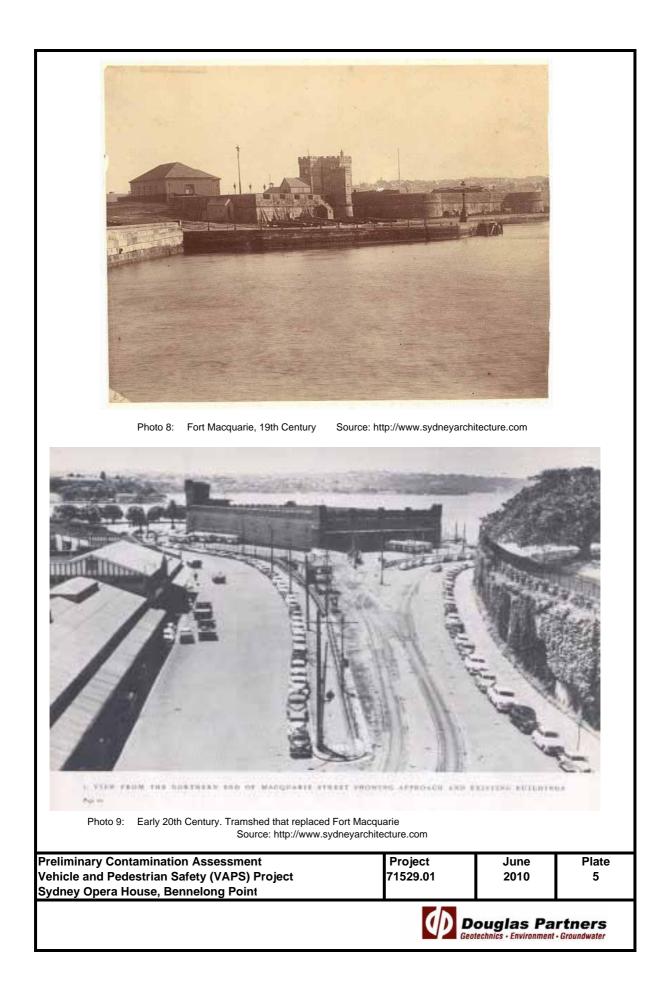
APPENDIX A Site Drawings

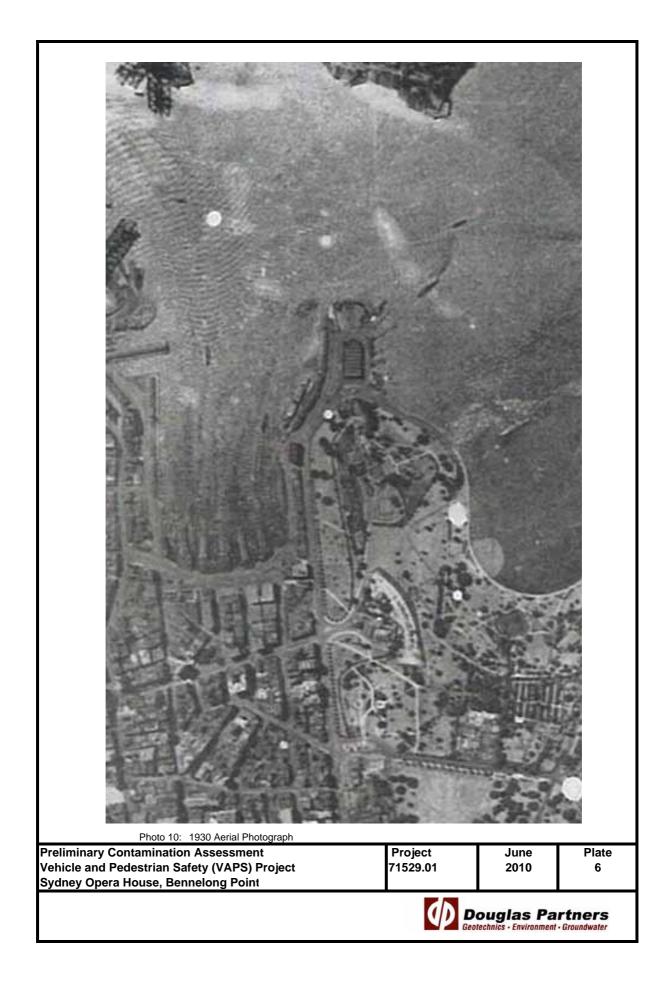


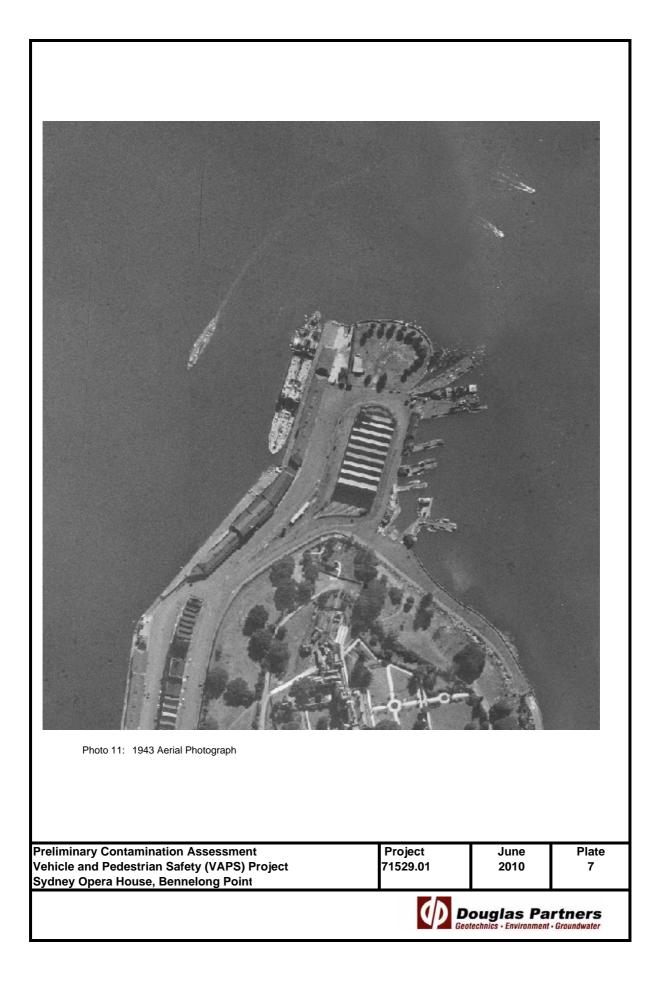

Douglas Partners Geotechnics · Environment · Groundwater	CLIENT: Sydney Opera House Trust			TITLE:	Location of Exceedances
	DRAWN BY: FW	SCALE: NTS	OFFICE: Sydney		VAPS Contamination Assess
	APPROVED BY: KP		DATE: 08.03.2010		Sydney Opera House, Bennel

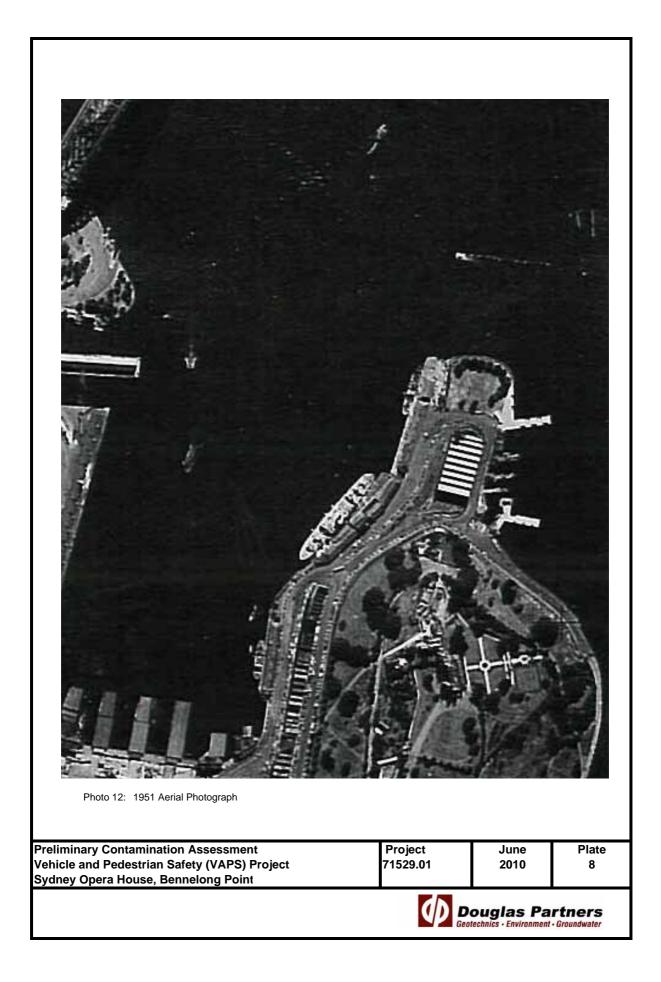
2.17.380		
14		
Ca) Listin		
Co search		
8		
CA 14-		
\$4		
C. Marine		
and a factor of the second		
T		
T		
VEHTLE RAVE		
2742		
× 11/2		
Les 1		
A A A A A A A A A A A A A A A A A A A		
11 111		
	Project No:	71529.01
ssment	Drawing No:	2
nelong Point	Revision:	А

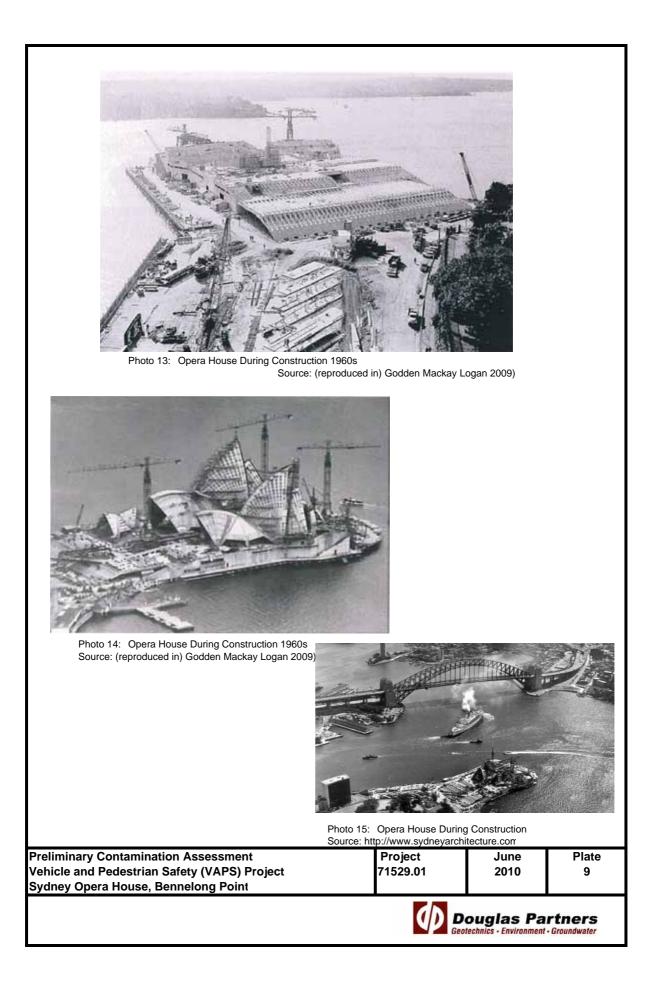

APPENDIX B Site Photographs

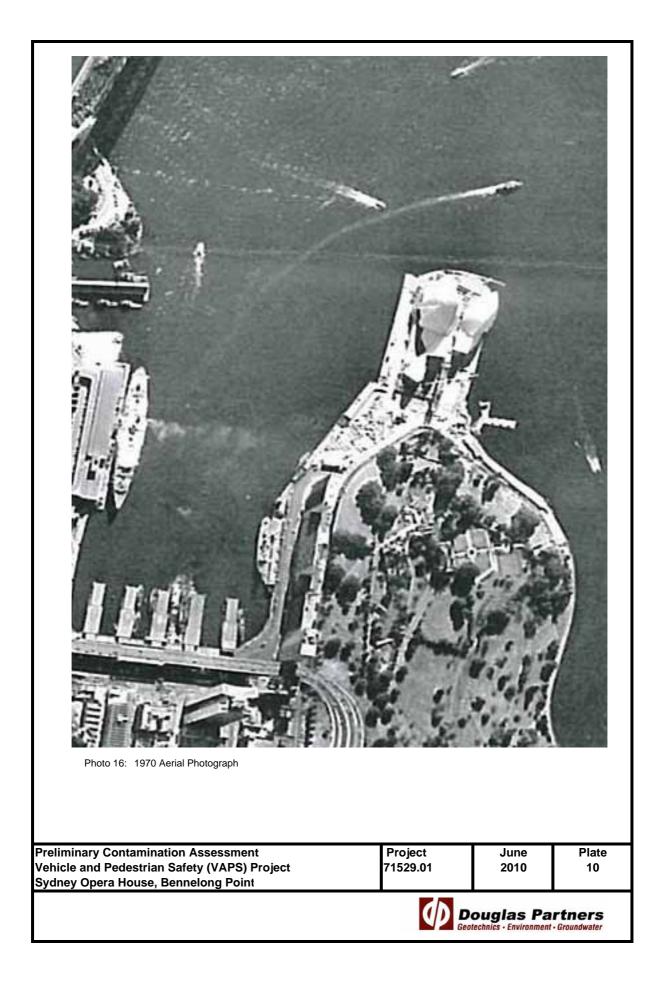


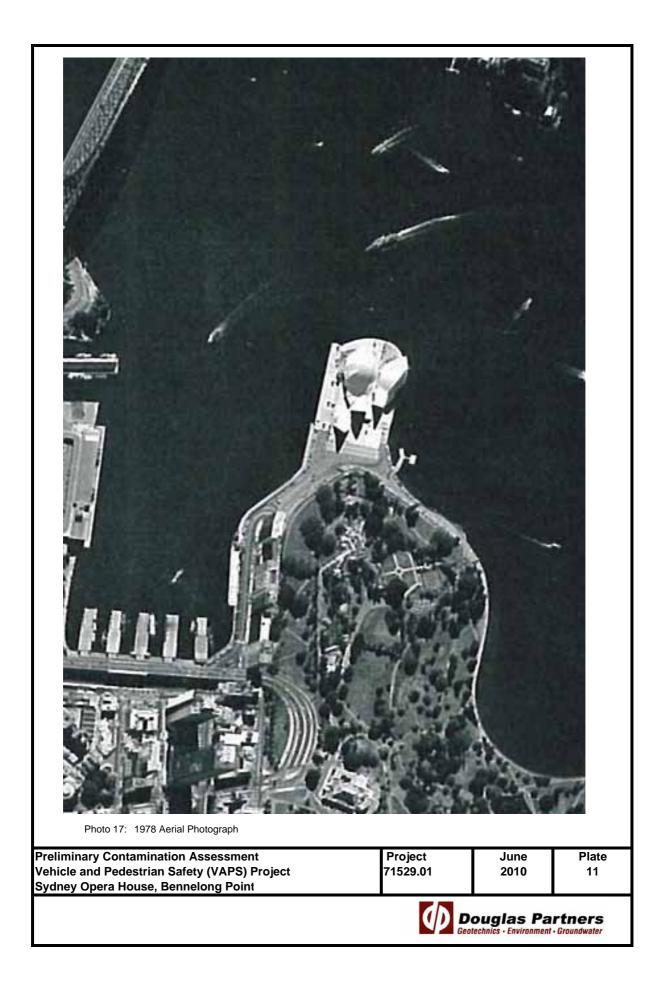


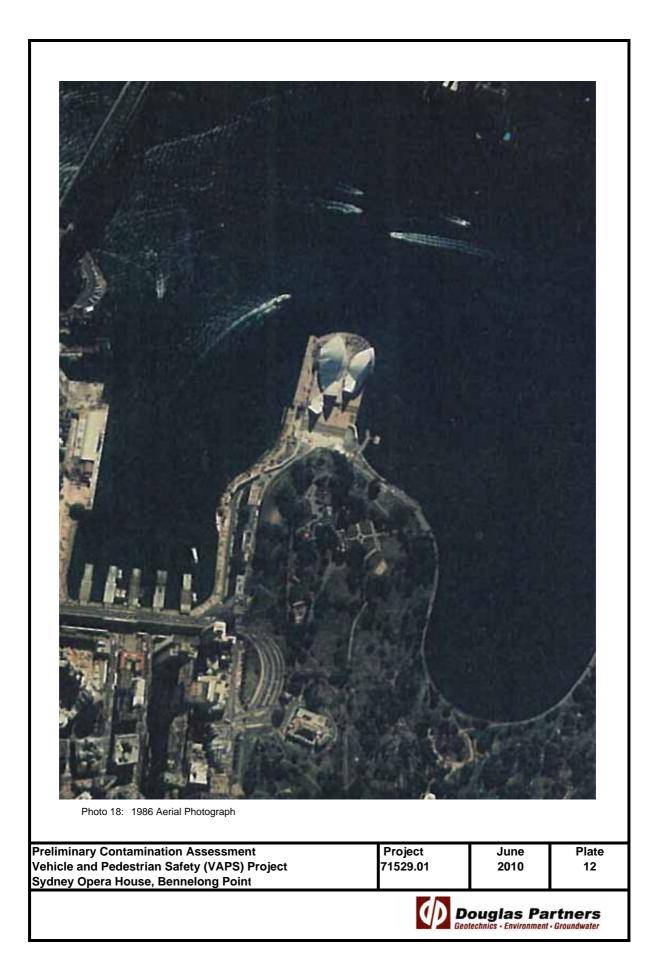


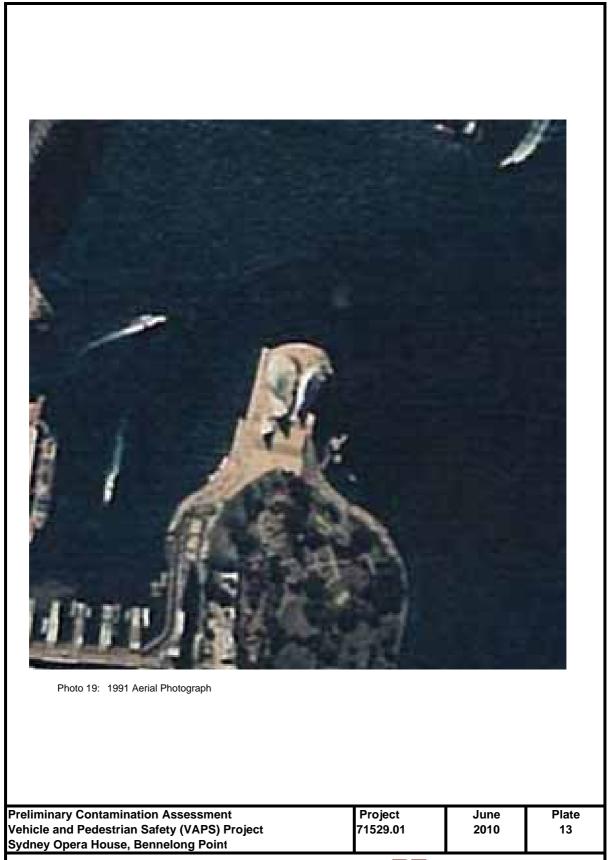

APPENDIX C Site History Information

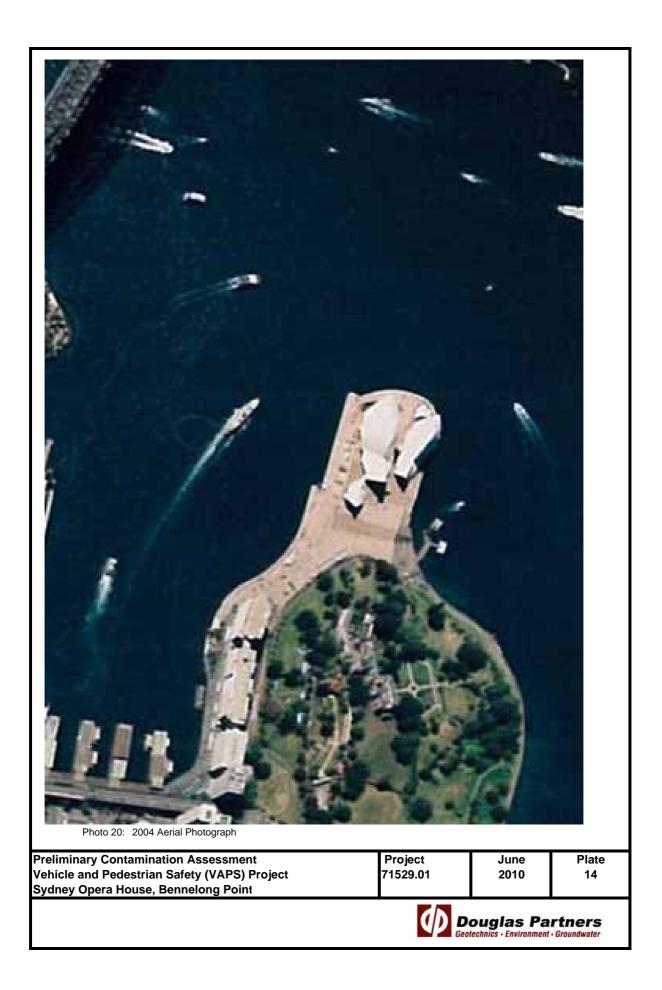


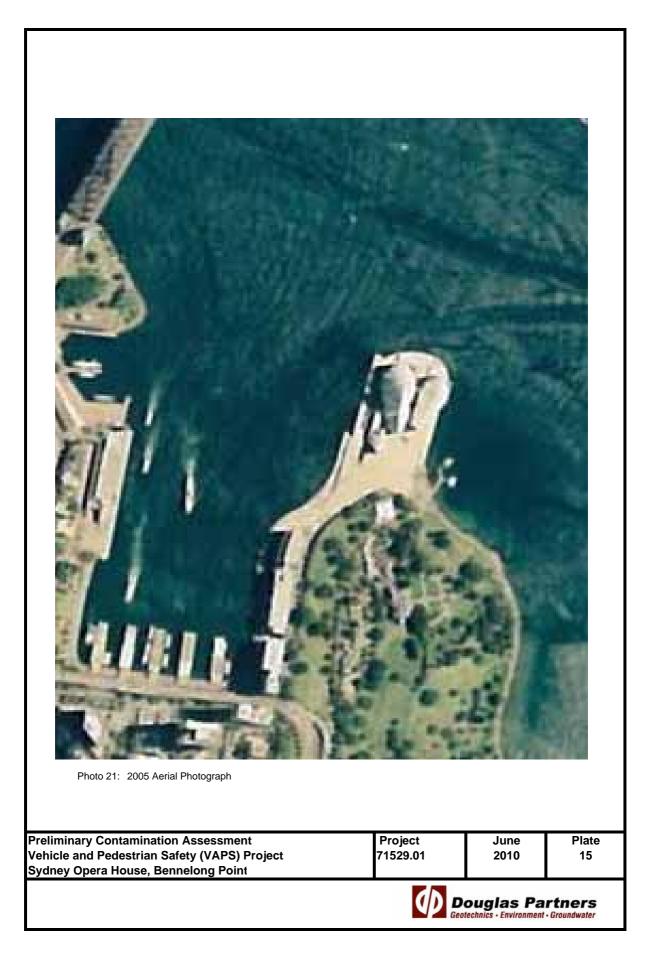


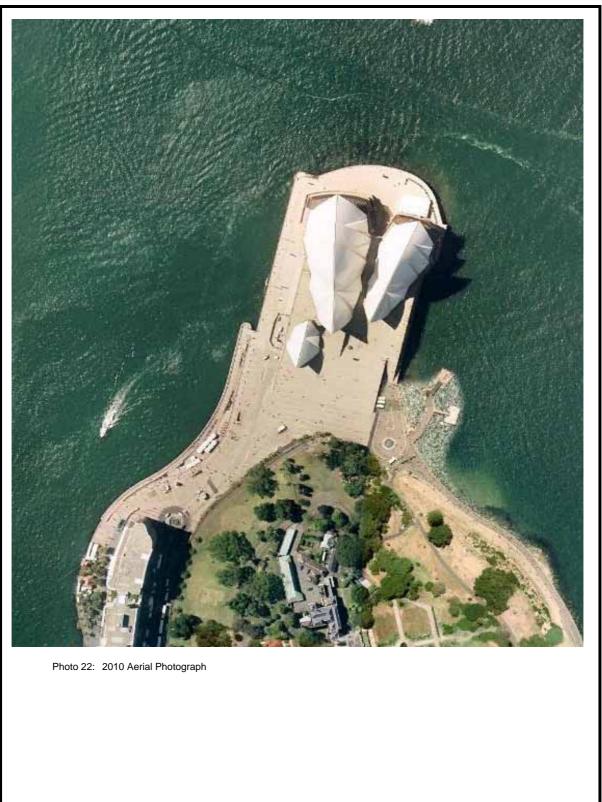


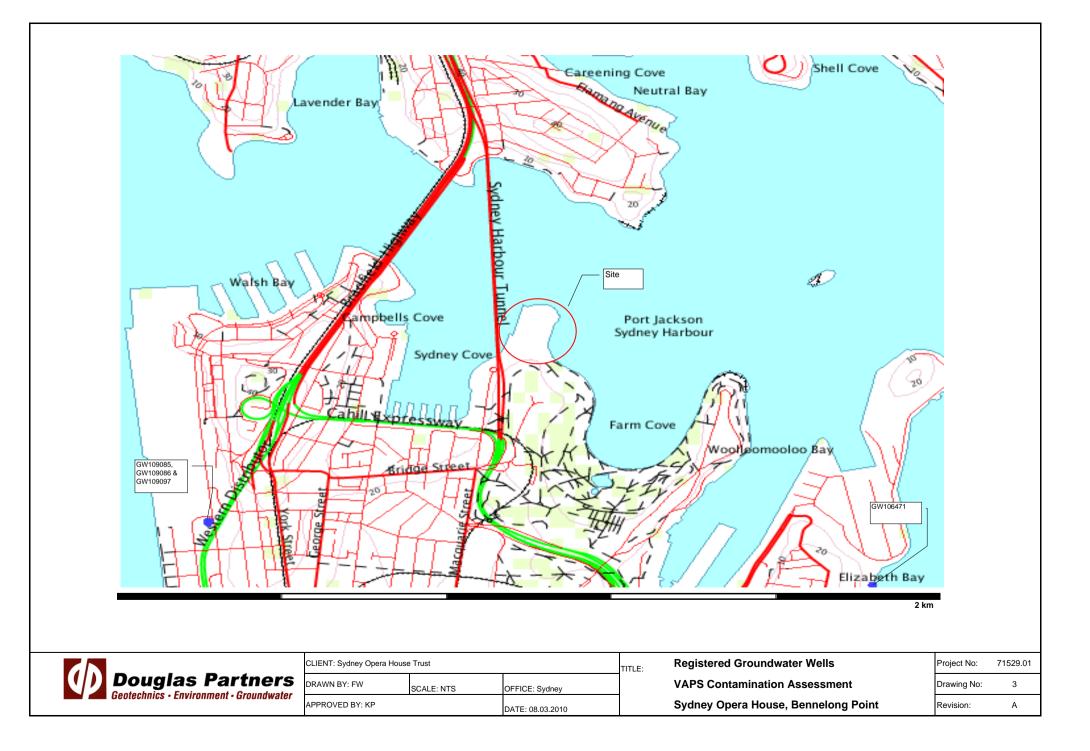












Preliminary Contamination Assessment	Project	June	Plate
Vehicle and Pedestrian Safety (VAPS) Project	71529.01	2010	16
Sydney Opera House, Bennelong Point			
			rtners Groundwater

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, June 7, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW109085

Works Details (top)

GROUNDWATER NUMBER GW109085 LIC-NUM AUTHORISED-PURPOSES INTENDED-PURPOSES WORK-TYPE WORK-STATUS CONSTRUCTION-METHOD **OWNER-TYPE** COMMENCE-DATE **COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres)** CONTRACTOR-NAME **DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD Site Details (top)

REGION RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE SCALE ELEVATION ELEVATION-SOURCE NORTHING EASTING LATITUDE LONGITUDE GS-MAP AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, June 7, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW109086

Works Details (top)

GROUNDWATER NUMBER GW109086 LIC-NUM AUTHORISED-PURPOSES **INTENDED-PURPOSES** WORK-TYPE WORK-STATUS CONSTRUCTION-METHOD **OWNER-TYPE** COMMENCE-DATE COMPLETION-DATE **FINAL-DEPTH (metres) DRILLED-DEPTH (metres)** CONTRACTOR-NAME DRILLER-NAME PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE SCALE ELEVATION ELEVATION-SOURCE NORTHING EASTING LATITUDE LONGITUDE GS-MAP AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, June 7, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW109087

Works Details (top)

GROUNDWATER NUMBER GW109087 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES WORK-TYPE WORK-STATUS CONSTRUCTION-METHOD **OWNER-TYPE** COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) **DRILLED-DEPTH (metres)** CONTRACTOR-NAME **DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD Site Details (top)

REGION RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE SCALE ELEVATION ELEVATION-SOURCE NORTHING EASTING LATITUDE LONGITUDE GS-MAP AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

You are here: Home > Contaminated land > Record of EPA notices

Search results

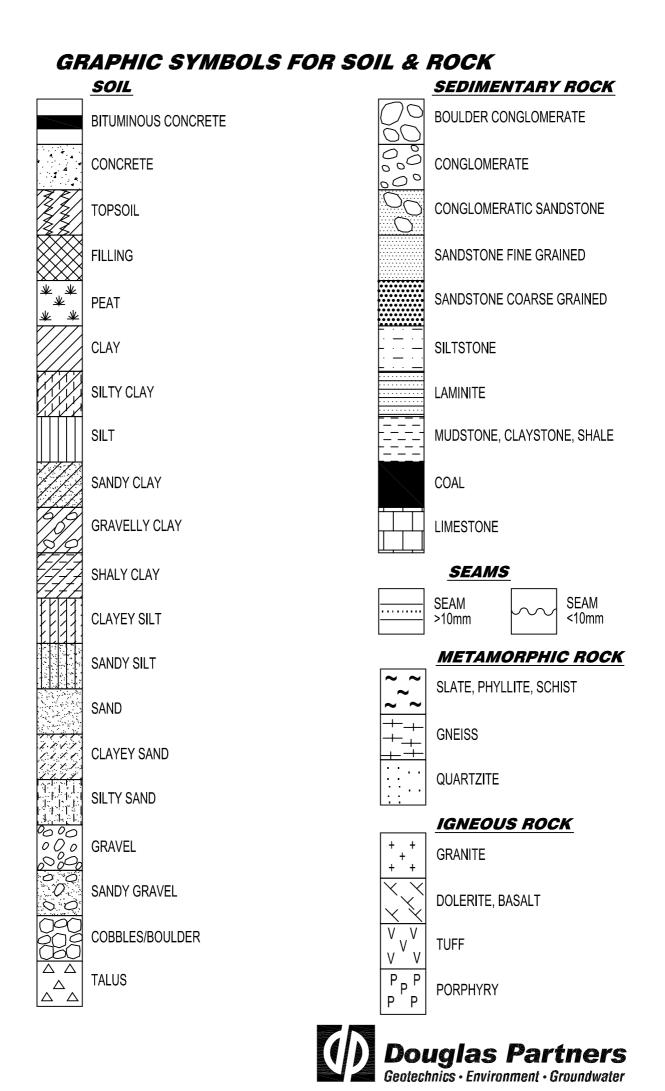
A A 🖼

Refine Search

Your search for: LGA: Sydney City Council

Matched 27 notices relating to 14 sites.

Search Again


Suburb	Address	Site Name	Notices related to this site
Alexandria	Off Huntley Street	Alexandra Canal	2 current
Alexandria	49-59 O'Riordan Street	Cadbury Schweppes Site	1 former
Erskineville	Off Burren Street	Macdonaldtown Triangle	2 former
Millers Point	36 Hickson Road	Millers Point Gasworks	2 former
Millers Point	Wharves 5 and 7, Hickson Road	Millers Point Gasworks	1 current and 2 former
Millers Point	Hickson Road	Millers Point Gasworks	1 current and 2 former
Newtown	81 Wilson Street	MBL Service Station	4 former
Newtown	79 Wilson Street	Property Adjacent to MBL Service Station	3 former
Pyrmont	Pyrmont Road	Pyrmont Power Station	7 former
Waterloo	903-921 Bourke Street	Affected by Lawrence Dry Cleaners	4 current and 1 former
Waterloo	901 Bourke Street	Affected by Lawrence Dry Cleaners	4 current and 1 former
Waterloo	895-899 Bourke Street	Affected by Lawrence Dry Cleaners	4 current and 1 former
Waterloo	207-229 Young Street	Affected by Lawrence Dry Cleaners	4 current and 1 former
Waterloo	887-893 Bourke Street	Lawrence Dry Cleaners	4 current and 1 former
Page 1 of 1			

7 June 2010

NSW Government | jobs.nsw

Accessibility | Privacy | Disclaimer | Copyright | Feedback

APPENDIX D Test Bore report results and Notes Relating to this Report

CLIENT: Sydney Opera House Trust PROJECT: Vehicle & Pedestrian Safety (VAPS) Project LOCATION: Bennelong Point

SURFACE LEVEL: 3.5 m AH	D*BORE No: 101
EASTING:	PROJECT No: 71529
NORTHING:	DATE: 17 Dec 09
DIP/AZIMUTH: 90°/	SHEET 1 OF 2

<u> </u>		T		·						- 1	OF	2
	Depth	Description	Degree of Weathering	2	Rock Strength		Fracture	Discontinuities	Sa	mpli	ng &	In Situ Testing
Ξ	(m)	of	Weathering			Vate	Spacing (m)	B - Bedding J - Joint	Ą	<u>ہ</u> 8	٥.	Test Results
		Strata	₩¥¥%££	בר ש		7	100 000	S - Shear D - Drill Break	Type	ပိုမ်မှု	RoD %	& Comments
ł	0.13			X9					A			·
÷		and some sand		X.				· · ·			ŀ	
ŀ		FILLING - grey sand filling, with some sandstone gravel, dry		\bigotimes				· · ·				
ł	-1	server and the graver, ary		\otimes								: :
			liiii X	X.			11 11		A	1		PID<1ppm 3,3,3
	1,5			XI.				· ··	S			N = 6 30/150mm
		FILLING - grey sand filling, with some sandstone gravel and blue		×.			11.11		A			refusal
ŀ	-2 2,0	metal gravel and cobbles (ballast)	Li III K	\otimes					-			PID<1ppm
	,	FILLING - bluemetal gravel and cobbles (ballast)		X						l		
				\otimes			ii ii				1	Water level
				X.					ļ			measured on 9/1/10 at 2.48m
	-3			X.				· · ·				
	-		X	X.						· .		Water level measured on
				X						ľ		12/1/10 at 3,15m
k k				8							· .	
	4		liii X	X.		ì		······································				
	4,1	FILLING - loose, black, medium		X.		¥.		······································	A			PID<1ppm
		grained sand filling with some clayey silt, wet		X.		12-09						
				X		17-						
	5 4,95	CALIBOTAL	X	X		1						
	Ŭ	SANDSTONE - high strength, fresh, slightly fractured and				Í	11	Note: Unless otherwise stated, bedding planes		İ		
5		unbroken, light grey with yellow coating, medium to coarse grained	同日日後					are planar and rough	·· C	100	100	· ·
		sandstone		:::				5.61m: B2°, clay veneer	_			
	5,8 6	5.8-7.63m: fine to medium grained sandstone			LI III	i		olo mi. oz , ciay veneer		· · ·		PL(A) = 1.2MPa
Ì	-	Satingfolds				1	│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │					· · · · ·
						Į		6.15m: B2°				
		· · · · · · · · · · · · · · · · · · ·				I		6,38m; B2° 6,55m; D				PL(A) = 1.4MPa
	7							6.82m: D				
				, ,		I.						
ļ						ľ		7.15m: B2° 7.25m: B2°	С	100	100	
ţ	7,63							7.49m: B3*				
-	8					l		∽7,62m: B2°				PL(A) = 1.3MPa UCS=17.1MPa
	-									:		UCS-17.1MPa
	•					··		··· · · · · · · · · · · · · · · · · ·				
	· 1					1						
L.L.	9											PL(A) = 1.4MPa
ł			日間隊			1		9m: B4°	1			-e-y (1-900) d
j.						i		9.28m: B2*	c	100	100	
	9.6 9.68	9.6-9.68m: very high strength										PL(A) = 3 2MPa
Ì	<u> </u>	siltstone band		3 I		ľ		9.68m: B4°, ironstained '9.75m: B3°, clay smear			ļ	PL(A) = 1 2MPa
۱G	: Multi-I	Drill Drill	ER:Traccess			i 			i	l	Ł	J
ΥF	E OF B	ORING: Solid flight auger (TC-bit) t	o 4.5m; Rota	iry to		ALC.	ED: PGH Coring to 1:	CASIN 3.48m				
VA.	FER OF	3SERVATIONS: Free groundwater (observed at 4.	1m v	whilst augerin	na ír	ossibly sea	water level) 80% water	loss	from	app	rox 6.0m depth
(El	MARKS	and interpolated from survey p	lan (Svdnev C	reen Doer=	17.5-13.5m.* a House Sup	Bore	hole surfac	e level (approximate only	y) mu	easu	red fr	om SOBM-P601
A	Auger san			- 1- we z C	CH	ECK			спа	i) oy	nard	∝ rorester
	Disturbed Bulk samp	sample PID Photo loni le S Standard I	nstromater (KPa) sation detector Senstration test		Initiats:	B	JM		-)	
ŵ c	Water san Core dritin	iole V Shear Var	strength Is(50) MPa ie (kPa) P I Water les		Date	181	2lio		as	5 	a	rtners

PL Point load strength 1s(50) MPa V Shear Vane (kPa) D Water seep I Water level

Douglas Partners Geotechnics - Environment - Groundwater

CLIENT: Sydney Opera House Trust PROJECT: Vehicle & Pedestrian Safety (VAPS) Project LOCATION: Bennelong Point

SURFACE LEVEL: 3,5 m A	AHD*BORE No: 101
EASTING:	PROJECT No: 71529
NORTHING:	DATE: 17 Dec 09
DIP/AZIMUTH: 90°/	SHEET 2 OF 2

	Description	Degree of	U	Rock Strength	Τ.Τ	Fracture	Discon	tinuities	Sa	moli	na &	In Situ Testing
문 Depth (m)	of	Degree of Weathering	Sraphi Log	Strength	Vater	Spacing (m)	8 - Bedding		. f omericano		-	
	Strata	W M M M M M M M M M M M M M M M M M M M	0		100		S - Shear	D - Drill Break	ĥ	Core Rec. %	5%	& Comments
- 11	SANDSTONE - high strength, fresh, slightly fractured and unbroken, pale grey with yellow coating, medium to coarse grained sandstone (continued)						10.37m: D		С		100	PL(A) = 1.5MPa
							5					
- 12	- indistinct cross-beds at 12.20m				Í		11.95m: D	· · ·				PL(A) = 1.5MPa
a,									С	100	400	
13					1		12.94m: D			100	100	PL(A) = 1.3MPa
달 13.48	- low strength siltstone band							: : · ·				PL(A) = 1.3MPa
	Bore discontinued at 13.48m				Г							
-14								· · ·				· · · · · · · · · · · · · · · · · · ·
-												
- 15												-
21,												· · ·
- 16										·		
C.							•					
- 17			i.				:					
- 18												
										· · ·		• • •
-19							• •					
						N - Marine - Annue - Marine - Annue - Annu						
IG: Multi-	Drill DBULL	ER:Traccess	i	مغسمة ومناهوه والمساقي والمساق	OGG					l.	Ł	

Standpipe installed: Solid PVC 0.0-7.5m; Screen 7.5-13.5m.*Borehole surface level (approximate only) measured from SOBM-P601 and interpolated from survey plan (Sydney Opera House Survey Control Plan, Ground Floor + 12' External) by Hard & Forester SAMPLING & IN SITU TESTING LEGEND pp Pocket penetrometer (kPa) PID Photo ionisation delector S Standard penetration test mm dia.) PL Point local strength Is(50) MPa V Shear Vane (kPa) V Water seep * Water fevel

Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling A D B U,W C

CLIENT: Sydney Opera House Trust PROJECT: Vehicle & Pedestrian Safety (VAPS) Project LOCATION: Bennelong Point

SURFACE LEVEL: 3.6 m AHD*BORE No: 102 EASTING: NORTHING:

DIP/AZIMUTH: 90*/--

PROJECT No: 71529 DATE: 20 Dec 09 SHEET 1 OF 2

		Description	, C	egr	ree of hering	U .	Rock Strength		Fracture	Discontinuities	Sa	mpli	ng &	In Situ Testing
RL	Depth (m)	of		cut	incluing .	aph log		water	Spacing (m)	B - Bedding J - Joint	1			
		Strata	Ň	≩ §	SS E	ັ	지희외리희희 귀운?	5	80 85 85 88	S - Shear D - Drill Break	Typë	Core Rec. %	۵ ۳	& Comments
F	0.07		Ŧ			<u>م</u> د		Ĩ			+		1	Comments
ŀ	0.44	CONCRETE - 370mm thick		1. 		D I		1						
	U.44	FILLING - sand filling with sandstone and blue metal gravel	D.			$\overline{\mathbf{X}}$		Ĩ			A			PID<1ppm
Î	t	(ballast), dry				X					s			17,15,15 N = 30
F	-1 1,0	FILLING - sandstone filling, dry	1		i i i k	X		i			A			PID<1ppm
ţ	ŀ	training, ary				\otimes								(is uppli
ŀ	1.4	FILLING - blue metal gravel filling	ļ	Ì		\mathfrak{A}		i						10/40mm
	1.6	(baliast)				X		Ц		Note: Unless otherwise	<u>(S)</u>	ļ		refusal
1	-2	SANDSTONE - medium strength, slightly to moderately weathered,	1.1	Ì		Υ.Υ		ï		stated, all bedding planes are planar and				
ţ	2.2	white grey, medium grained	L	1		÷:••;		ļ		rough				
		Sandstone	1	Ì				I						
		SANDSTONE - high strength, fresh then slightly weathered, slightly		- -		•				2.5m: D	C	100	100	PL(A) = 1.7MPa
ł		fractured and unbroken, light grey, medium to coarse grained		į.				1						
÷	-3	sandstone						1		2.9m; D				
ł	-		1	11				i	11- fi					
				11				1		3.3m: B10° 3.34m: B10°		.		PL(A) = 2MPa
			1	11				í		3.34m; B10* 3.52m; B10*				1 60 y - 200 a
	-4			. :				1		3.76m B2°, clay			· .	
ŀ					iil			1		4.03m; B5*	с	100	.91	
		4.25-4.95m: moderately weathered, fractured zone, 700mm		1.81				1		∖ 4.19m: D √ 4.2m: B2°				
-				l				È		4.38m: B2° 4.59m: crushed zone,	· · · ·			
	. 4,95	4.95-5.2m; high strength, laminite				÷:-]		ļ		x 2°, 60mm thick				PL(A) = 1.2MPa
	-5 ^{4,95} 5,2	band, fresh	1		ΠĒ	•••]				4.78m: B2° 4.84m: B, ironstained				
	5.2	SANDSTONE - high strength						Ţ		5.07m: B2°, 2mm clay 5.17m: B2°		·		
- ņ		fresh, slightly fractured and unbroken, light grey with yellow	÷					- 1		5.41m: B0°				PL(A) = 1.1MPa
		coating, medium grained sandstone, medium bedded	1	11		1			j⊢Ji	5.5m: B0°, carbonaceous	<u> </u>			
	~6	Sandstone, medium bedded	1					1		laminations 5.85m; B6°				
ł			1	ŀ I		•		1		6,05m; 80°				
			1											
- 7			I.	11				1			c	100	100	
			1	1 I I I		1		1		6.75m: D				PL(A) = 1.9MPa
	~/	7.0-9.1m: possible 'yellow block'	1	11				li		6.92m: D				
		sandstone	1					II.		7.15m: B1°				
┝╺╡			Ĵ.	i i			iiiiii	ţi.						
			- () - 1					H.				 		PL(A) = 1.5MPa
ŀŀ	8		i	i i				1						
ŀŀ														
╞╞		· · ·	Ì		i i t	1		ľ						PL(A) = 1.6MPa
ŀ			 	. . 1						8,55m: B10°	C	100	96	
[[9		1					H.						
			ľ		115			1		8.94m; B1* 8.95m; B1*, smooth				
╞╞			l							9.3m: B1°				
.φ.		9.45-9.55m: carbonaceous laminations				<u>.</u>		ļį.	511	√9.44m: B2°				PL(A) = 1.9MPa
										9 52m: B2° 9 73m: B3°,	С	100	96	
		j	1	السا.	116	<u>:</u>		<u>lí</u>	<u>ii ili l</u>	carbonaceous infill	<u> </u>	100	90	
	3: Multi-Drill DRILLER: Traccess LOGGED: PGH CASING: HW to 2.5m													
TY	PE OF BORING: Solid flight auger to 2.2m; NMLC-Coring to 17.11m													
WA	TER O	BSERVATIONS: No free groundwta	er q	bse	erved v	vhils	t augering			· · · ·				
RE	MARKS	S: (S) Indicates no SPT sample r from survey plan (Sydney Ope SAMPLING * DI SIZU TOSTICO	ecc	vei	red, *Bi	oreh	ole surface levi	el (a	pproximat	e only) measured from \$	SÖBN	1-P60	01 an	d interpolated
		OVINE TING O IN 2110 1521ING C		NU		vey				 12 External) by Hard 8 	Fore	ster		
A D R	Augerisan Disturbed Bulk sam	somple po Pocket pe Somple PID Photo onl	notro antilo	mote n det	n (iPa) Ioclór		Initials.	-	······					
80%C	Tube say Water say	ple (x min dia.) PL Point liad	SINDY	vath I	n lesi Is(50) MP	a		<u>23</u> 7.7		(/)] Dou al	as	\$ F	a	rtners
C	Core onsi		na ijal H	<i>ି "</i> #	Mataria	sai	Date: (5/2	he h	A Carlo Carlos Martin				

Bulk sample Tube sample (x mm dia;) Water sample Core drilling

PL Point load strength ts(S0) MPa PL Point load strength ts(S0) MPa V Shear Vana (kPa) D Water seep T Water level

Indials BJM Dato: 18/2

CLIENT: Sydney Opera House Trust PROJECT: Vehicle & Pedestrian Safety (VAPS) Project LOCATION: Bennelong Point

SURFACE LEVEL: 3.6 m AHD*BORE No: 102 EASTING: PROJECT No: 71529 NORTHING: DATE: 20 Dec 09

DIP/AZIMUTH: 90°/--

SHEET 2 OF 2

Γ	T	D 11-	Description	Degree of Weathering ≥≥≥≥∞ m	<u>u</u>	Rock Strength	Fracture	Discontinuities	Sa	mpli	ng &	In Situ Testing	
ā	z	Depth (m)	of	, rounding	Log		Spacing (m)	B - Bedding J - Joint					
				MM H MA	Ö		52 98 58 5	S - Shear D - Drill Break	Type	ပိုပ္ဆို	aos 20%	& Comments	
-	-2-2		SANDSTONE - high strength, fresh, slightly fractured and		33				1			Commenta	
ŝ			unbroken, light grey with yellow coating, medium grained						C	100	96		
ŀ	, F		sandstone, medium bedded					10.41m: B5°, clay infill, 30mm thick			<u> </u>		
ł	ł	11	(continued)				ווב	10.5m: D 10.74m: B2°				PL(A) = 1:6MPa	
f								10.87m: B2° 11.1m: B2°	с	100	97		
	ł							11,28m: D				PL(A) = 1.3MPa	
Ę.	÷.							11.45m: B5°			ŀ		
	ł							11.62m: B2° 11.7m: D1°				4	
	1	12						11.8-11.90m; (x3) B1*					
	ŀ		and the second					12.15m: B1°					
-0	<u>9</u> -		· ·			╡╡╴╡╻╡╹ ╎╴╵╵╵╵┖┶┿╾┿╾┿┱	╺╾╦┿═┥╎		C	100	87	PL(A) = 1,2MPa	
Ļ	12							12,62-12,70m: clay 80mm thick on possible					
1		13						thrust fault, 20°					
ĥ	-		· .										
			· · · · · · · · · · · · · · · · · · ·					13,52m: B5°, clay				PL(A) = 1,1MPa	
	ŀ				÷; -)			veneer 13,57m; B5°, clav					
ţ		14						veneer 14,05m: D	С	100	97		
ŀ				1111			11 11	14,31m; D					
		ľ						14,58m: D				PL(A) = 1.8MPa	
	ľ	15						14.85m: D		·····		UCS=18,8MPa	
ŀ	F			i jej i i			TE II.						
ľ			15.28-17,11m: core undersized with numerous drill breaks					15,15m: D 15,28-17,11m: D (x33)	c	100	100		
÷۹			(possible bent drill rod)									PL(A) = 1,6MPa	
Ĺ	Ĺ	6											
	2												
ŀ	Ì											PL(A) = 1.3MPa	
1.5	ŀ							16,58m; B4°	C	100	100		
ľ.	ľ.	7											
		17.11	Bore discontinued at 17.11m							<u> </u>			
ŀ	ſ								ł. ł.				
	Ļ	j			ļ		- 11 TI: 11		i-minin				
l	ļ,	8											
5	- April and												
ľ	L.												
ŀ	-1	9											
	ľ.							· companyor and a second se					
6	Ļ												
[]	F									-			
Ц	ŀ.	<u> </u>	·]		<u>. </u>	
		Multi-I		ER:Tracces		LOG	GED: PGH	CASI	IG· I	-1\V/ +/	0.25	m	
TY	YPE OF BORING: Solid flight auger to 2.2m; NMLC-Coring to 17.11m ATER OBSERVATIONS: No free groundwtaer observed whilst augering												
۷۷ RF	A Î EM	ER OE ARKS:	SERVATIONS: No free groundwta	er observed	whilst	t augering							
			from survey plan (Sydney Ope	ecovered. "I era House Si	urvey	ole surface level Control Plan, Gro	approximation of the second se	e only) measured from S 12' External) by Hard &	OBN Fore	I-P60 ster)1 an	d interpolated	
AD	ļ	luger sam Disturbed s	ple op Pocket ce	EGEND		CHECK	ED		-				
В 0.	1	Sulk sampl Tube samp	le S Standard ; ble (xmm dia) PL Point load	sation detector penetration test strength is(50) M	Pa	Instials: B.	TM C		20	- 1	2-	rtners	
l w	2	Vater sam Core drillin	ple V Shear Var	ie (kPa)		Date: /8/	2/10	Benteckinics -					

Date: 18/2/10 Dougras Partners Geotechnics · Environment · Groundwater

CLIENT:Sydney Opera House TrustPROJECT:Vehicle & Pedestrial Safety (VAPS) ProjectLOCATION:Bennelong Point

.

.

SURFACE LEVEL: 3.6 AHD EASTING: 334801 NORTHING: 6252104 DIP/AZIMUTH90°/-- BORE No: 201 PROJECT No: 71529.01 DATE: 17/05/2010 SHEET 1 OF 1

			Description	. <u>c</u>		Sam		& In Situ Testing		Well	
R	Dej (n	ptn 1)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Constructio	n
			Strata	U	Ę.	ð	San	Results & Comments	_	Details	
ŀ	-	0.07		44							
ł	ŀ		CONCRETE	0.0 0.0							
Ē	[0.3	FILLING - yellow brown, medium grained sand filling with trace ash, dry	ŔŔ						-	
$\left \right $	-		with trace ash, dry	\bigotimes	A TASS	0.4 0.5		PID<1ppm		[
-~	ŀ			\bigotimes	A33					-	
ŀ	ł			\bigotimes						-	
	[\bigotimes	A	0.8		PID<1ppm			
ł	-1			\bigotimes	ASS	1.0				-1	
ŀ	-			\boxtimes						-	
I	[1.27		\bigotimes		1.3					
ŀ	-		FILLING - brown, gravelly sand filling with concrete rubble and blue metal, dry	\bigotimes	A	1.5		PID<1ppm		-	:
ŀ	ŀ			\bigotimes	ASS	1.5				-	
-~		1.6	FILLING - gravel and cobble filling (ballast)	XX							
ŀ			- no sample recovery	\bigotimes						[
ł		1.9	Bore discontinued at 1.9m	\bigotimes							
ţ	-2									-2	
ļ	-										
ł	-										
ł	-										
[Ì	
ŀ	-										
ŀ	-										
	-3										
ŀ	-									-3	
ł	-									-	
Ì	-									-	
ļ	-									-	:
	-									-	
ł	-									-	
	_										
ł	-4									-4	
ŀ	-									-	
[-									t	
-	-									-	
	•									-	
										ŀ	
$\left \right $										ļ.	
$\left \right $	-									ŀ	

 RIG: Scout
 DRILLER:K Ennis
 LOGGED: KP

 TYPE OF BORING: Diatube to 0.3m;
 Solid flight auger to 1.9m. Auger snapped, 1.5m left in ground

 WATER OBSERVATIONS: No free groundwater observed

CASING: Uncased

 REMARKS:
 ASS = Acid sulphate soil sample

 SAMPLING & IN SITU TESTING LEGEND
 CH

- A Auger sample D Disturbed sample B Bulk sample U, Tube sample (x mm dia.) W Water sample C Core drilling
- J TESTING LEGEND

 pp
 Pocket penetrometer (kPa)

 PiD
 Photo ionisation detector

 S
 Standard penetration test

 PL
 Point load strength Is(50) MPa

 V
 Shear Vane (kPa)

 D
 Water seep

 ¥
 Water level

SURFACE LEVEL: 3.6 AHD BORE No: 202 EASTING: 334834 NORTHING: 6252133 DIP/AZIMUTH90°/--

PROJECT No: 71529.01 DATE: 17/05/2010 SHEET 1 OF 1

	_		Description	.0		San	ipling &	չ In Situ Testing		Well		
뉟	De	pth n)	of	hqe Bo	Ð	£	e		Water	Construction		
	ų	"	Strata	Graphic Log	Type	Depth	Sample	Results & Comments	3	Details		
\vdash			PAVERS	h			Ö			Details		
F		0.08	CONCRETE	4						-		
łł			CONCRETE	0.D						-		
$\left \right $	•	0.35								-		
łł			FILLING - brown, gravelly sand filling with roadbase gravel inclusions, dry	\otimes		0.4		PID<1ppm		-		
			gravel inclusions, dry	\mathbb{X}	-ASS	0.5		Pioktphitt		-		
[마		0.6	FILLING - brown, gravely sand filling with cobbles	\bigotimes		0.6				-		
11		•	FILLING - brown, gravelly sand filling with cobbles (ballast), dry	\bigotimes	Α					-		
ţ ŀ		0.8	SANDSTONE - grey, fine to medium grained	\sim	A	0.8		PID<1ppm		-		
t t		0.9	SANDSTONE - grey, fine to medium grained sandstone, dry	····		-0.9-		T ID TIPPIT				
Ϊİ	-1		Bore discontinued at 0.9m							-1		
Ιİ			- refusal on sandstone							-		
Ϊİ		ļ										
İ										-		
ĪĪ												
["]					1							
[[-		
[[
[.[-2											
[[-2									-2		
[[r l		
[[
[[•		
[[-		
										-		
	3											
	•									-3		
ļļ												
\downarrow												
$\left\{ \right\}$												
$\left \right $												
$\left \right $					ĺ							
F												
F	4									-4		
$\left \right $												
$\left \cdot \right $												
łł										- 1		
\mathbf{F}												
┠┯┠												
ŀŀ												
⊧ ŀ												
F												
L]					

RIG: Scout DRILLER: K Ennis TYPE OF BORING: Diatube to 0.35m; Solid flight auger to 0.9m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

LOGGED: KP

Initials:

Date:

CASING: Uncased

ASS = Acid sulphate soil sample. *Denotes field duplicate sample BD3/150510 collected

A D B U,¥C

SAMPI Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling

.

CLIENT:

LOCATION: Bennelong Point

Sydney Opera House Trust

PROJECT: Vehicle & Pedestrial Safety (VAPS) Project

 SAMPLING & IN SITU TESTING LEGEND

 pp
 Pocket penetrometer (kPa)

 le
 PID Photo ionisation detector

 standard penetration test
 Standard penetration test

 mm dia.)
 PL Point load strength Is(50) MPa

 V
 Shear Vane (kPa)

 D
 Water seep

 Water level

CHECKED

CLIENT:Sydney Opera House TrustPROJECT:Vehicle & Pedestrial Safety (VAPS) ProjectLOCATION:Bennelong Point

.

SURFACE LEVEL: 3.7 AHD EASTING: 334864 NORTHING: 6252156 DIP/AZIMUTH90°/-- BORE No: 203 PROJECT No: 71529.01 DATE: 17/05/2010 SHEET 1 OF 1

Γ		Description	<u>.</u>		San	npling 8	In Situ Testing		Well			
ᆋ	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Construction			
		Strata	U	Ţ	Del	San	Results & Comments	-	Details			
ŀ	0.07	LIMESTONE PAVERS							-			
ł	-	CEMENT	4.4						-			
F	- 0.3	CONCRETE	<u></u> 						-			
t	- 0.4	FILLING - dark brown, gravelly sand filling with blue	1XX	A	0.4		PID<1ppm					
Ļ	-	metal, crushed sandstone and sandstone fragments and trace ash, dry	\bigotimes	ASS	0.5			1				
-07	-		\bigotimes					1	-			
F	-		\bigotimes	A	0.81				-			
ŀ			\bigotimes	4.00								
Ĺ	- I •		\bigotimes	ASS	1.0		PID<1ppm		-1			
ŀ	- 1.2	FILLING server and filler with a server day	\bigotimes		1.2				-			
r	- 1.3	FILLING - grey, sand filling with concrete, dry Bore discontinued at 1.3m	\sim	A	-1.3-		PID<1ppm					
t	-	- refusal on concrete in filling										
	-											
-~												
ŀ	-											
ţ	-											
Ī	-2								-2			
ŀ	-											
ł	-								-			
ł									-			
t												
 	-											
ł	ŗ											
ł									-			
t	-3								-3			
ŀ	-											
ł	•											
ł	-											
[[
ŀ	-								-			
ł	-											
ł	-4								-4			
[
ŀ	-								-			
ł	-											
ł	-											
Į.												
1								1				
\mathbf{F}	}											
T` W	PE OF	G: Scout DRILLER:K Ennis LOGGED: KP CASING: Uncased 'PE OF BORING: Diatube to 0.4m; Solid flight auger to 1.3m ATER OBSERVATIONS: No free groundwater observed										
R	EMARK	,										
A	Auger s	SAMPLING & IN SITU TESTING LEGEND ample pp Pocket penetrometer (kPa) d sample PID Photo ionisation detector		CHI	ECKED							
18	Disturbe Bulk sar	nple S Standard penetration test		nitials;					Jlas Partners s · Environment · Groundwate			
U V C	Water s Core dri	ample V Shear Vane (kPa)	[Date:			Geotec	nic hnic	s · Environment · Groundwate			

SURFACE LEVEL: 3.7 AHD EASTING: 334872 NORTHING: 6252134 DIP/AZIMUTH90°/--

BORE No: 204 PROJECT No: 71529.01 DATE: 17/05/2010 SHEET 1 OF 1

Description		Description	<u>.</u>		Sarr	pling &	& In Situ Testing	Γ.	Well	
RL	Depth (m)	of	Graphic Log	e	oth	ple	Results &	Water	Construction	
		Strata	้ช_	Type	Depth	Sample	Results & Comments		Details	
	. 0.08								_	
-	-	CONCRETE	4 A A A						-	
ł	- 0,3	I ROADBASE - blue metal and gravel roadbase	it.						-	
Ì	· 0.4	FILLING - orange brown, crushed sandstone filling with some roadbase inclusions, dry	\bigotimes	Α	0.4		PID<1ppm		-	
ļ	-	some roadbase inclusions, dry	\bigotimes	"ASS"	0.5				•	
-10	-		\bigotimes						-	
-	-		\bigotimes		0.8				-	
	- - 1		\bigotimes	A*			PID<1ppm	1		
	- 1.1		\bowtie	"ASS"	1.0		PID<1ppm		-1	
$\left \right $	1.2	1 SANDSTONE - orange sandstone_dov		A	-1.2-					
$\left \right $	•	- refusal on sandstone							-	
									.	
	-									
-~										
ŀ										
	-2									
									-2	
$\left \right $										
ŀ										
	•									
	-3									
									-3	
$\left \right $								1	-	
$\left\{ \right\}$									-	
Ė	•								-	
									- I	
ŀ									-	
t	-4								-	
	- 4								-4	
$\left \right $										
$\left \right $									\mathbf{F}	
ţ									F	
$\left \right $									-	
									F [
RI	G: Sco				COF	D: KP)		SING: Uncased	

DRILLER:K Ennis TYPE OF BORING: Diatube to 0.3m; Solid flight auger to 1.2m LOGGED: KP

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed

REMARKS: ASS = Acid sulphate soil sample. *Denotes field duplicate sample BD2/150510 collected

SAMPI Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling ADBU¥C

SAMPLING & IN SITU TESTING LEGEND
 PD
 Pocket penetrometer (kPa)

 PID
 Photo ionisation detector

 S
 Standard penetration test

 PL
 Point load strength Is(50) MPa

 V
 Shear Vane (kPa)

 D
 Water seep

CHECKED Initials: Date:

Douglas Partners Geotechnics · Environment · Groundwater

CLIENT:

.

.

PROJECT: Vehicle & Pedestrial Safety (VAPS) Project LOCATION: Bennelong Point

Sydney Opera House Trust

SURFACE LEVEL: 3.5 AHD BORE No: 205 EASTING: 334909 NORTHING: 6252125 DIP/AZIMUTH90°/--

PROJECT No: 71529.01 DATE: 17/05/2010 SHEET 1 OF 1

	əpth	Description	hic	Sampling & In Situ Te			& In Situ Testing	5	Well	
	m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
┣-┼━-		BITUMINOUS CONCRETE				Ö		<u> </u>		
		BITOMINOUS CONCRETE							-	
[[0.2	FILLING - brown, gravelly sand filling with roadbase gravel with bitumen fragments and trace ash	\times		• •					
		gravel with bitumen fragments and trace ash		A*	0.3		PID<1ppm]		
- 17 -	0.5		\mathbb{X}	ASS	0.5		110 - 19941			
$\left\{ \right\}$		FILLING - brown, crushed sandstone filling, damp		A33				1		
<u>}</u>									-	
Ìİ					0.8				-	
[[]				A	1.0		PID<1ppm		- 1	
[.]	1.1			ASS	1.0					
$\left \cdot \right $		FILLING - orange brown, sandy clay filling (crushed sandstone), damp	\mathbb{X}							
			\otimes		1.3				-	
			\otimes	А			PID<1ppm		-	
-01			\otimes		1.5					
[[1.7		\otimes							
		FILLING - brown, medium grained sand filling, moist	\otimes		1.8					
	1.9			А			PID<1ppm			
-2	2.0	FILLING - yellow brown, medium grained sand filling FILLING - orange and grey, sandy clay filling, wet	+	- ASS-	2.0				-2	
h h		FILLING - brange and grey, sandy day minng, wet	\otimes						-	
			\otimes						-	
[[\otimes	Α	2.3					
					2.5	:	PID<1ppm			
$\left \right $			\otimes	ASS	2.0					
╞╞	2.7	SANDSTONE - yellow orange, sandstone	$-\underline{NN}$		2.7					
				ASS			PID<1ppm			
3	2.9	Bore discontinued at 2.9m			-2.9-					
		- refusal on sandstone							-3	
- 0-										
								1		
4									-4	
									\mathbf{b}	
t t									F I	
[[
								1		
$\left \right $										
┝┟										
	RIG: Scout DRILLER:K Ennis LOGGED: KP CASING: Uncased									

TYPE OF BORING: Solid flight auger to 2.9m

CHECKED

WATER OBSERVATIONS: No free groundwater observed

REMARKS: ASS = Acid sulphate soil sample. *Denotes field duplicate sample BD4/150510 collected

 SAMPLING & IN SITU TESTING LEGEND

 pp
 Pocket penetrometer (kPa)

 le
 PID

 mm dia.)
 PL

 V
 Shear Vane (kPa)

 v
 Shear Vane (kPa)

 V
 Water seep

 SAMPi Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling A D B D, W C

Initials: Date:

CLIENT:

. .

2

Sydney Opera House Trust PROJECT: Vehicle & Pedestrial Safety (VAPS) Project LOCATION: Bennelong Point

Sydney Opera House Trust PROJECT: Vehicle & Pedestrial Safety (VAPS) Project LOCATION: Bennelong Point

. • .

CLIENT:

SURFACE LEVEL: 3.6 AHD EASTING: NORTHING: DIP/AZIMUTH90°/--

BORE No: 206 PROJECT No: 71529.01 DATE: 24/05/2010 SHEET 1 OF 1

Γ		Description of		Sampling &			In Situ Testing		10/-11	
님	Depti					•		Water	Well Construction	
	(m)	Strata	Graphic Log	Type	Depth	Sample	Results & Comments	N N	Details	
-	0.0			•		<i>ö</i>		-	Details	
ł	. 0.0	CONCRETE	44							
ļ	0.2									
ļ	- 0	A	1 D		0.4					
ŀ	-	FILLING - light grey, crushed sandstone filling	\mathbb{K}	A ASS	0.5		PID<1ppm			
-	-		\bigotimes							
ŀ	•		\mathbb{X}							
ľ	- 0	8 FILLING - brown, gravelly sand filling with concrete rubble and cobbles (ballast)	\bigotimes		0.8					
ļ	[1	rubble and cobbles (ballast)	\otimes	A*	1.0		PID<1ppm		-1	
$\left \right $			\otimes	ASS	1.1					
ŀ	-		\bigotimes	A ASS	1.2		PID<1ppm			
ł	- 1	Bore discontinued at 1.3m	KXX	1.00		1		+		
t	-	- refusal on possible concrete or ballast filling (ballast)							-	
[
	_									
$\left \right $	-									
$\left \right $	-								-	
ł	-2								-2	
ŀ										
[
ļ	-									
ļ	-								-	
	-								-	
	-									
ŀ	-								-	
t	- -3									
	-0								-3	
-	-								[
$\left \right $	-								-	
ŀ	•									
ŀI	-									
ľ										
ļ	-									
$\left \right $	-4								-4	
$\left \right $	-								-	
t	•								-	
	-						·			
	-									
┝╤	-									
ŀ	-								-	
ŀ	-									
t	•									
	o. n			·						
	RIG: Bobcat DRILLER:S Salib LOGGED: KP CASING: Uncased "YPE OF BORING: Diatube to 0.4m; Solid flight auger to 1.3m Casing: Uncased									
	WATER OBSERVATIONS: No free groundwater observed									
	REMARKS: ASS = Acid sulphate soil sample									
_		*Denotes field duplicate samples BD1/150510 and SAMPLING & IN SITU TESTING LEGEND	1 BD2/2			ected				
A D B	Auger Disturt	ed sample pp Pocket penetrometer (kPa) ed sample PID Photo ionisation detector			CKED					
I B Bulk sample S Standard penetration test I I Mutals:						las Partners				
U. Tube sample (x mm dia.) S Standad perenation rest W Water sample V Shear Vane (kPa) C Core drilling > Water seep ¥ Water level Date: Date:						s · Environment · Groundwater				

Douglas Partners Geotechnics • Environment • Groundwater

DESCRIPTION AND CLASSIFICATION OF ROCKS FOR ENGINEERING PURPOSES

DEGREE OF WEATHERING

Term	Symbol	Definition
Extremely Weathered	EW	Rock substance affected by weathering to the extent that the rock exhibits soil properties - i.e. it can be remoulded and can be classified according to the Unified Classification System, but the texture of the original rock is still evident.
Highly Weathered	HW	Rock substance affected by weathering to the extent that limonite staining or bleaching affects the whole of the rock substance and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original fresh rock substance is no longer recognisable.
Moderately Weathered	MVV	Rock substance affected by weathering to the extent that staining or discolouration of the rock substance usually by limonite has taken place. The colour of the fresh rock is no longer recognisable.
Slightly Weathered	SW	Rock substance affected by weathering to the extent that partial staining or discolouration of the rock substance usually by limonite has taken place. The colour and texture of the fresh rock is recognisable.
Fresh Stained	Fs	Rock substance unaffected by weathering, but showing limonite staining along joints.
Fresh	Fr	Rock substance unaffected by weathering.

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index ($I_{S(50)}$) and refers to the strength of the rock substance in the direction normal to the bedding. The test procedure is described by Australian Standard 4133.4.1 - 1993.

Term	Symbol	Field Guide*	Point Load Index I _{S(50)} MPa	Approx Unconfined Compressive Strength q _u ** MPa
Extremely low	EL	Easily remoulded by hand to a material with soil properties	<0.03	< 0.6
Very low	VL	Material crumbles under firm blows with sharp end of pick; can be peeled with a knife; too hard to cut a triaxial sample by hand. SPT will refuse. Pieces up to 3 cm thick can be broken by finger pressure.	0.03-0.1	0.6-2
Low	L	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long 40 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	0.1-0.3	2-6
Medium	м	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.	0.3-1.0	6-20
High	н	Can be slightly scratched with a knife. A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow, rock rings under hammer.	1 - 3	20-60
Very high	∨н	Cannot be scratched with a knife. Hand specimen breaks with pick after more than one blow, rock rings under hammer.	3 - 10	60-200
Extremely high	EH	Specimen requires many blows with geological pick to break through intact material, rock rings under hammer.	>10	> 200

Note that these terms refer to strength of rock material and not to the strength of the rock mass, which may be considerably weaker due to rock defects.

* The field guide assessment of rock strength may be used for preliminary assessment or when point load testing is not able to be done.

** The approximate unconfined compressive strength (q_u) shown in the table is based on an assumed ratio to the point load index of 20:1. This ratio may vary widely.

STRATIFICATION SPACING

Term	Separation of Stratification Planes
Thinly laminated	<6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	>2 m

DEGREE OF FRACTURING

This classification applies to diamond drill cores and refers to the spacing of all types of natural fractures along which the core is discontinuous. These include bedding plane partings, joints and other rock defects, but exclude known artificial fractures such as drilling breaks. The orientation of rock defects is measured as an angle relative to a plane perpendicular to the core axis. Note that where possible, recordings of the actual defect spacing or range of spacings is preferred to the general terms given below.

Term	Description
Fragmented	The core consists mainly of fragments with dimensions less than 20 mm.
Highly Fractured	Core lengths are generally less than 20 mm - 40 mm with occasional fragments.
Fractured	Core lengths are mainly 40 mm - 200 mm with occasional shorter and longer sections.
Slightly Fractured	Core lengths are generally 200 mm - 1000 mm with occasional shorter and longer sections.
Unbroken	The core does not contain any fracture.

ROCK QUALITY DESIGNATION (RQD)

This is defined as the ratio of sound (i.e. low strength or better) core in lengths of greater than 100 mm to the total length of the core, expressed in percent. If the core is broken by handling or by the drilling process (i.e. the fracture surfaces are fresh, irregular breaks rather than joint surfaces) the fresh broken pieces are fitted together and counted as one piece.

SEDIMENTARY ROCK TYPES

This classification system provides a standardised terminology for the engineering description of sandstone and shales, particularly in the Sydney area, but the terms and definitions may be used elsewhere when applicable.

Rock Type	Definition
Conglomerate	More than 50% of the rock consists of gravel-sized (greater than 2 mm) fragments
Sandstone:	More than 50% of the rock consists of sand-sized (0.06 to 2 mm) grains
Siltstone:	More than 50% of the rock consists of silt-sized (less than 0.06 mm) granular particles and the rock is not laminated.
Claystone:	More than 50% of the rock consists of clay or sericitic material and the rock is not laminated.
Shale:	More than 50% of the rock consists of silt or clay-sized particles and the rock is laminated.

Rocks possessing characteristics of two groups are described by their predominant particle size with reference also to the minor constituents, eg. clayey sandstone, sandy shale.

Copyright © 2000 Douglas Partners Pty Ltd

Douglas Partners Geotechnics · Environment · Groundwater

NOTES RELATING TO THIS REPORT

Introduction

These notes have been provided to amplify the geotechnical report in regard to classification methods, specialist field procedures and certain matters relating to the Discussion and Comments section. Not all, of course, are necessarily relevant to all reports.

Geotechnical reports are based on information gained from limited subsurface test boring and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, Geotechnical Site Investigations Code. In general, descriptions cover the following properties strength or density, colour, structure, soil or rock type and inclusions.

Soil types are described according to the predominating particle size, qualified by the grading of other particles present (eg. sandy clay) on the following bases:

Soil Classification	Particle Size
Clay	less than 0.002 mm
Silt	0.002 to 0.06 mm
Sand	0.06 to 2.00 mm
Gravel	2.00 to 60.00 mm

Cohesive soils are classified on the basis of strength either by laboratory testing or engineering examination. The strength terms are defined as follows.

	Undrained
Classification	Shear Strength kPa
Very soft	less than 12
Soft	12—25
Firm	25—50
Stiff	50—100
Very stiff	100—200
Hard	Greater than 200

Non-cohesive soils are classified on the basis of relative density, generally from the results of standard penetration tests (SPT) or Dutch cone penetrometer tests (CPT) as below:

Relative Density	SPT "N" Value (blows/300 mm)	CPT Cone Value (q _c — MPa)
Very loose	less than 5	less than 2
Loose	5—10	2—5
Medium dense	10—30	5—15
Dense	30—50	15—25

Very dense greater than 50 greater than 25 Rock types are classified by their geological names. Where relevant, further information regarding rock classification is given on the following sheet.

Sampling

Sampling is carried out during drilling to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing with a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Details of the type and method of sampling are given in the report.

Drilling Methods.

The following is a brief summary of drilling methods currently adopted by the Company and some comments on their use and application.

Test Pits — these are excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descent into the pit. The depth of penetration is limited to about 3 m for a backhoe and up to 6 m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Large Diameter Auger (eg. Pengo) — the hole is advanced by a rotating plate or short spiral auger, generally 300 mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube sampling.

Continuous Sample Drilling — the hole is advanced by pushing a 100 mm diameter socket into the ground and withdrawing it at intervals to extrude the sample. This is the most reliable method of drilling in soils, since moisture content is unchanged and soil structure, strength, etc. is only marginally affected.

Continuous Spiral Flight Augers — the hole is advanced using 90—115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow

sampling or in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be contaminated. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability, due to remoulding, contamination or softening of samples by ground water.

Non-core Rotary Drilling — the hole is advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from 'feel' and rate of penetration.

Rotary Mud Drilling — similar to rotary drilling, but using drilling mud as a circulating fluid. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg. from SPT).

Continuous Core Drilling — a continuous core sample is obtained using a diamond-tipped core barrel, usually 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in very weak rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation.

Standard Penetration Tests

Standard penetration tests (abbreviated as SPT) are used mainly in non-cohesive soils, but occasionally also in cohesive soils as a means of determining density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" — Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of say 4, 6 and 7

 In the case where the test is discontinued short of full penetration, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm

as 15, 30/40 mm.

The results of the tests can be related empirically to the engineering properties of the soil.

Occasionally, the test method is used to obtain

samples in 50 mm diameter thin walled sample tubes in clays. In such circumstances, the test results are shown on the borelogs in brackets.

Cone Penetrometer Testing and Interpretation

Cone penetrometer testing (sometimes referred to as Dutch cone — abbreviated as CPT) described in this report has been carried out using an electrical friction cone penetrometer. The test is described in Australian Standard 1289, Test 6.4.1.

In the tests, a 35 mm diameter rod with a cone-tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130 mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are connected by electrical wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20 mm per second) the information is plotted on a computer screen and at the end of the test is stored on the computer for later plotting of the results.

The information provided on the plotted results comprises: —

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone expressed in MPa.
- Sleeve friction the frictional force on the sleeve divided by the surface area expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed in percent.

There are two scales available for measurement of cone resistance. The lower scale (0-5 MPa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main scale (0-50 MPa) is less sensitive and is shown as a full line.

The ratios of the sleeve friction to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1%—2% are commonly encountered in sands and very soft clays rising to 4%—10% in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:—

 q_c (MPa) = (0.4 to 0.6) N (blows per 300 mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range: $q_c = (12 \text{ to } 18) c_u$

Interpretation of CPT values can also be made to allow estimation of modulus or compressibility values to allow calculation of foundation settlements.

Inferred stratification as shown on the attached reports is assessed from the cone and friction traces and from experience and information from nearby boreholes, etc. This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties, and where precise information on

soil classification is required, direct drilling and sampling may be preferable.

Hand Penetrometers

Hand penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows for successive 150 mm increments of penetration. Normally, there is a depth limitation of 1.2 m but this may be extended in certain conditions by the use of extension rods.

Two relatively similar tests are used.

- Perth sand penetrometer a 16 mm diameter flatended rod is driven with a 9 kg hammer, dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling.
- Cone penetrometer (sometimes known as the Scala Penetrometer) — a 16 mm rod with a 20 mm diameter cone end is driven with a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). The test was developed initially for pavement subgrade investigations, and published correlations of the test results with California bearing ratio have been published by various Road Authorities.

Laboratory Testing

Laboratory testing is carried out in accordance with Australian Standard 1289 "Methods of Testing Soil for Engineering Purposes". Details of the test procedure used are given on the individual report forms.

Bore Logs

The bore logs presented herein are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable, or possible to justify on economic grounds. In any case, the boreholes represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes, the frequency of sampling and the possibility of other than 'straight line' variations between the boreholes.

Ground Water

Where ground water levels are measured in boreholes, there are several potential problems;

- In low permeability soils, ground water although present, may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.

- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Engineering Reports

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal (eg. a three storey building), the information and interpretation may not be relevant if the design proposal is changed (eg. to a twenty storey building). If this happens, the Company will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface condition, discussion of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- unexpected variations in ground conditions the potential for this will depend partly on bore spacing and sampling frequency
- changes in policy or interpretation of policy by statutory authorities
- the actions of contractors responding to commercial pressures.

If these occur, the Company will be pleased to assist with investigation or advice to resolve the matter.

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the Company requests that it immediately be notified. Most problems are much more readily resolved when conditions are exposed than at some later stage, well after the event.

Reproduction of Information for Contractual Purposes

Attention is drawn to the document "Guidelines for the Provision of Geotechnical Information in Tender Documents", published by the Institution of Engineers,

Australia. Where information obtained from this investigation is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The Company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Copyright © 1998 Douglas Partners Pty Ltd

APPENDIX E Laboratory Reports and Chain of Custody Documentation

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 41144

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kurt Plambeck

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

71529.01, Opera House VAPS Project 21 Soils 18/05/10 18/05/10

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by:
 27/05/10

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 26/05/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Rhian Morgan Metals Supervisor

Jacinta/Hurst Laboratory Manager

Envirolab Reference: 41144 Revision No: R 00

M. thangjelly

Matt Mansfield Approved Signatory

Page 1 of 27

VOCs in soil						
Our Reference:	UNITS	41144-1	41144-5	41144-8	41144-9	41144-13
Your Reference		201/0.4-0.5	202/0.6-0.8	203/0.8-1	204/0.4-0.5	205/2.3-2.5
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	21/05/2010	21/05/2010	21/05/2010	21/05/2010	21/05/2010
Dichlorodifluoromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chloroform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Cyclohexane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
carbon tetrachloride	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
dibromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromodichloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
dibromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
tetrachloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromoform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
styrene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0

Envirolab Reference: 41144 Revision No: R 00

۲

.

ACCREDITED FOR TECHNICAL COMPETENCE

Client Reference:	71529.01, Opera House VAPS Project
-------------------	------------------------------------

VOCs in soil						
Our Reference:	UNITS	41144-1	41144-5	41144-8	41144-9	41144-13
Your Reference		201/0.4-0.5	202/0.6-0.8	203/0.8-1	204/0.4-0.5	205/2.3-2.5
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
isopropylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
tert-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
sec-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
hexachlorobutadiene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluorometha	%	85	87	84	84	80
Surrogate aaa-Trifluorotoluene	%	131	140	129	126	125
Surrogate Toluene-da	%	109	112	108	107	105
Surrogate 4-Bromofluorobenzene	%	101	99	101	101	101

r r

Client Reference: 71529.01, Opera House VAPS Project

. <u></u>		~				
vTPH & BTEX in Soil						
Our Reference:	UNITS	41144-1	41144-2	41144-3	41144-4	41144-5
Your Reference		201/0.4-0.5	201/0.8-1	201/1.3-1.5	202/0.4-0.5	202/0.6-0.8
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	21/05/2010	21/05/2010	21/05/2010	21/05/2010	21/05/2010
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	131	99	107	109	140
		·····				
vTPH & BTEX in Soil						
Our Reference:	UNITS	41144-6	41144-7	41144-8	41144-9	41144-10
Your Reference		202/0.8-0.9	203/0.4-0.5	203/0.8-1	204/0.4-0.5	204/0.8-1
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	21/05/2010	21/05/2010	21/05/2010	21/05/2010	21/05/2010
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	104	108	129	126	104
		- γ		1		
vTPH & BTEX in Soil						
Our Reference:	UNITS	41144-11	41144-12	41144-13	41144-15	41144-16
Your Reference		205/0.3-0.5	205/1.3-1.5	205/2.3-2.5	BD4/170510	Trip Spike
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	21/05/2010	21/05/2010	21/05/2010	21/05/2010	21/05/2010
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	[NA]
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	94%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	97%
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	95%
•						

Envirolab Reference: 41144 Revision No:

m+p-xylene

o-Xylene

Surrogate aaa-Trifluorotoluene

٩

٠

R 00

mg/kg

mg/kg

%

<2.0

<1.0

110

<2.0

<1.0

110

Page 4 of 27

96%

95%

92

<2.0

<1.0

109

<2.0

<1.0

125

Client Reference: 71529.01, Opera House VAPS Project

vTPH & BTEX in Soil			
Our Reference:	UNITS	41144-17	41144-18
Your Reference		Trip Blank	204/1.2-1.3
Date Sampled		17/05/2010	17/05/2010
Type of sample		Soil	Soil
Date extracted	-	20/05/2010	20/05/2010
Date analysed	-	21/05/2010	21/05/2010
vTPH C6 - C9	mg/kg	<25	<25
Benzene	mg/kg	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	114	105

,

•

Client Reference: 71529.01, Opera House VAPS Project

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	41144-1	41144-2	41144-3	41144-4	41144-5
Your Reference		201/0.4-0.5	201/0.8-1	201/1.3-1.5	202/0.4-0.5	202/0.6-0.8
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	100	95	92	98	95
	<u> </u>	1	1			
sTPH in Soil (C10-C36) Our Reference:	UNITS	41144-6	41144-7	414.44.0	414.44.0	4444440
Your Reference	UNITS	202/0.8-0.9	203/0.4-0.5	41144-8 203/0.8-1	41144-9 204/0.4-0.5	41144-10
Date Sampled		17/05/2010	17/05/2010	17/05/2010	204/0.4-0.5	204/0.8-1 17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
TPH C10 - C14	mg/kg	<50	57	<50	<50	<50
TPH C15 - C28	mg/kg	<100	210	210	<100	<100
TPH C29 - C36	mg/kg	<100	200	240	<100	<100
Surrogate o-Terphenyl	%	95	105	111	97	92
-77911 - 0-11 (010,000)	1		1			
sTPH in Soil (C10-C36) Our Reference:		4444444	444440	41144.40		444440
Your Reference	UNITS	41144-11 205/0.3-0.5	41144-12 205/1.3-1.5	41144-13 205/2.3-2.5	41144-15 BD4/170510	41144-18
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	204/1.2-1.3 17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	870	<100	<100	890	<100
TPH C29 - C36	mg/kg	550	<100	<100	550	<100
Surrogate o-Terphenyl	%	#	97	90	#	88

٠

•

Client Reference:	71529.01, Opera House VAPS Project
-------------------	------------------------------------

						•••
PAHs in Soil Our Reference:	UNITS	41144-1	41144-2	41144-3	41144-4	444 44 F
Your Reference	010113	201/0.4-0.5	41144-2 201/0.8-1	201/1.3-1.5	202/0.4-0.5	41144-5 202/0.6-0.8
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted		20/5/10	20/5/10	20/5/10	20/5/10	20/5/10
Date analysed	_	21/5/10	21/5/10	21/5/10	21/5/10	20/3/10
Naphthalene	-	0.3	<0.1		<0.1	
	mg/kg			0.1		<0.1
Acenaphthylene	mg/kg	0.7	<0.1	0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	2.3	0.2	1.0	0.2	0.4
Anthracene	mg/kg	0.5	<0.1	0.3	<0.1	0.1
Fluoranthene	mg/kg	3.6	0.2	2.1	0.7	0.9
Pyrene	mg/kg	4.8	0.2	2.2	0.9	1.0
Benzo(a)anthracene	mg/kg	2.1	0.1	1.0	0.5	0.6
Chrysene	mg/kg	2.2	0.1	1.1	0.6	0.6
Benzo(b+k)fluoranthene	mg/kg	3.3	<0.2	1.7	1.1	1.1
Benzo(a)pyrene	mg/kg	2.7	0.1	1.3	0.8	0.8
Indeno(1,2,3-c,d)pyrene	mg/kg	1.4	<0.1	0.8	0.5	0.5
Dibenzo(a,h)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	1.2	<0.1	0.7	0.5	0.5
Surrogate p-Terphenyl-d14	%	112	104	104	106	105
		· · · · ·	·			
PAHs in Soil						
Our Reference: Your Reference	UNITS	41144-6	41144-7	41144-8	41144-9	41144-10
Date Sampled		202/0.8-0.9 17/05/2010	203/0.4-0.5 17/05/2010	203/0.8-1 17/05/2010	204/0.4-0.5 17/05/2010	204/0.8-1 17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted		20/5/10				
Date analysed	-	20/5/10	20/5/10 21/5/10	20/5/10 21/5/10	20/5/10	20/5/10
Naphthalene	- malka		0.2		22/5/10	22/5/10
	mg/kg	<0.1		<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.4	0.2	0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	1.8	1.4	0.9	<0.1
Anthracene	mg/kg	<0.1	1.8	0.3	0.2	<0.1
Fluoranthene	mg/kg	<0.1	1.9	2.6	1.6	0.2
Pyrene	mg/kg	<0.1	1.8	2.7	1.7	0.2
Benzo(a)anthracene	mg/kg	<0.1	0.7	1.3	0.7	0.1
Chrysene	mg/kg	<0.1	0.7	1.4	0.8	0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	0.3	2.3	1.1	0.2
Benzo(a)pyrene	mg/kg	<0.05	0.7	1.6	0.9	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.4	1.1	0.4	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.4	1.0	0.4	0.1
1						

.

.

PAHs in Soil						
Our Reference:	UNITS	41144-11	41144-12	41144-13	41144-15	41144-18
Your Reference		205/0.3-0.5	205/1.3-1.5	205/2.3-2.5	BD4/170510	204/1.2-1.3
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/5/10	20/5/10	20/5/10	20/5/10	20/5/10
Date analysed	-	22/5/10	22/5/10	22/5/10	22/5/10	22/5/10
Naphthalene	mg/kg	0.7	<0.1	<0.1	0.9	<0.1
Acenaphthylene	mg/kg	2.2	<0.1	<0.1	2.0	<0.1
Acenaphthene	mg/kg	1.5	<0.1	<0.1	2.2	<0.1
Fluorene	mg/k g	2.4	<0.1	<0.1	2.3	<0.1
Phenanthrene	mg/kg	24	0.7	<0.1	35	<0.1
Anthracene	mg/kg	6.4	0.2	<0.1	9.2	<0.1
Fluoranthene	mg/kg	31	0.9	0.1	40	0.2
Pyrene	mg/kg	28	0.9	0.1	35	0.2
Benzo(a)anthracene	mg/kg	13	0.4	<0.1	16	0.1
Chrysene	mg/kg	13	0.4	<0.1	16	<0.1
Benzo(b+k)fluoranthene	mg/kg	21	0.7	<0.2	25	<0.2
Benzo(a)pyrene	mg/kg	16	0.5	0.07	18	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	8.9	0.3	<0.1	10	0.1
Dibenzo(a,h)anthracene	mg/kg	1.4	<0.1	<0.1	1.6	<0.1
Benzo(g,h,i)perylene	mg/kg	8.2	0.2	<0.1	9.2	0.1
Surrogate p-Terphenyl-d14	%	110	112	115	106	112

Client Reference: 71529.01, Opera House VAPS Project

Envirolab Reference: 41144 Revision No: R 00

•

.

ACCREDITED FOR TECHNICAL GOMPETENCE

	Client Reference	e: 71529.0	71529.01, Opera House VAPS Proje				
Organochlorine Pesticides in soil Our Reference:	UNITS	41144-1	41144-3	41144-4	41144-5		

Our Reference: Your Reference Date Sampled Type of sample	UNITS 	41144-1 201/0.4-0.5 17/05/2010 Soil	41144-3 201/1.3-1.5 17/05/2010 Soil	41144-4 202/0.4-0.5 17/05/2010 Soil	41144-5 202/0.6-0.8 17/05/2010 Soil	41144-7 203/0.4-0.5 17/05/2010 Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
HeptachlorEpoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	98	99	101	100

Envirolab Reference: 41144 Revision No: R 00

•

.

ACCREDITED FOR TECHNICAL COMPETENCE

Organochlorine Pesticides in soil						
Our Reference:	UNITS	41144-8	41144-9	41144-10	41144-11	41144-1
Your Reference Date Sampled		203/0.8-1	204/0.4-0.5	204/0.8-1	205/0.3-0.5	205/2.3-2
Type of sample		17/05/2010 Soil	17/05/2010 Soil	17/05/2010 Soil	17/05/2010 Soil	17/05/201 Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/201
Date analysed	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/201
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	103	100	103	99	98

Envirolab Reference: 41144 Revision No: R 00

•

.

ACCREDITED FOR TEECHNICAL COMPETENCE

Client Reference:	71529.01, Opera House VAPS Project
-------------------	------------------------------------

PCBs in Soil	<u> </u>					
Our Reference:	UNITS	41144-1	41144-3	41144-4	41144-5	41144-7
Your Reference		201/0.4-0.5	201/1.3-1.5	202/0.4-0.5	202/0.6-0.8	203/0.4-0.5
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221*	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	98	99	101	100
		1		1		
PCBs in Soil						
Our Reference: Your Reference	UNITS	41144-8	41144-9	41144-10	41144-11	41144-13
Date Sampled	************	203/0.8-1 17/05/2010	204/0.4-0.5 17/05/2010	204/0.8-1 17/05/2010	205/0.3-0.5 17/05/2010	205/2.3-2.5 17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted						
	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Date analysed	-	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221*	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	103	100	103	99	98

•

•

Total Phenolics in Soil						
Our Reference:	UNITS	41144-1	41144-3	41144-4	41144-5	41144-7
Your Reference		201/0.4-0.5	201/1.3-1.5	202/0.4-0.5	202/0.6-0.8	203/0.4-0.5
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/5/2010	20/5/2010	20/5/2010	20/5/2010	20/5/2010
Date analysed	-	20/5/2010	20/5/2010	20/5/2010	20/5/2010	20/5/2010
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
Total Phenolics in Soil	_ · · · · ·					
Our Reference:	UNITS	41144-8	41144-9	41144-10	41144 -11	41144-13
Your Reference		203/0.8-1	204/0.4-0.5	204/0.8-1	205/0.3-0.5	205/2.3-2.5
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/5/2010	20/5/2010	20/5/2010	20/5/2010	20/5/2010
Date analysed	-	20/5/2010	20/5/2010	20/5/2010	20/5/2010	20/5/2010
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0

Envirolab Reference: 41144 Revision No: R 00

•

.

ACCREDITED FOR TECHNICAL COMPETENCE

Page 12 of 27

			T			
Acid Extractable metals in soil						
Our Reference:	UNITS	41144-1	41144-2	41144-3	41144-4	41144-5
Your Reference		201/0.4-0.5	201/0.8-1	201/1.3-1.5	202/0.4-0.5	202/0.6-0.
Date Sampled Type of sample		17/05/2010 Soil	17/05/2010 Soil	17/05/2010 Soil	17/05/2010 Soil	17/05/201
					500	Soil
Date digested	-	20/05/10	20/05/10	20/05/10	20/05/10	20/05/10
Date analysed	-	21/05/10	21/05/10	21/05/10	21/05/10	21/05/10
Arsenic	mg/kg	5	<4	<4	<4	<4
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	5	3	13	11	14
Copper	mg/kg	11	7	19	70	52
Lead	mg/kg	7	3	6	12	11
Mercury	mg/kg	<0.1	0.1	<0.1	0.1	0.1
Nickel	mg/kg	14	8	22	77	61
Zinc	mg/kg	12	7	17	48	41
		I				
Acid Extractable metals in soil						
Our Reference: Your Reference	UNITS	41144-6	41144-7	41144-8	41144-9	41144-10
Date Sampled		202/0.8-0.9 17/05/2010	203/0.4-0.5 17/05/2010	203/0.8-1 17/05/2010	204/0.4-0.5 17/05/2010	204/0.8-1 17/05/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	+	20/05/10		1		
	-		20/05/10	20/05/10	20/05/10	20/05/10
Date analysed	-	21/05/10	21/05/10	21/05/10	21/05/10	21/05/10
Arsenic	mg/kg	<4	4	<4	<4	<4
Cadmium	mg/kg	<0.5	1.7	1.8	<0.5	<0.5
Chromium	mg/kg	8	10	15	16	13
Copper	mg/kg	<1	66	43	10	6
Lead	mg/kg	6	38	660	17	12
Mercury	mg/kg	<0.1	0.2	0.2	<0.1	<0.1
Nickel	mg/kg	<1	33	16	15	6
Zinc	mg/kg	26	66	62	32	17
Acid Extractable metals in soil		1				
Our Reference:	UNITS	41144-11	41144-12	41144-13	41144-15	41144-18
Your Reference		205/0.3-0.5	205/1.3-1.5	205/2.3-2.5	BD4/170510	204/1.2-1
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/05/10	20/05/10	20/05/10	20/05/10	20/05/10
Date analysed	-	21/05/10	21/05/10	21/05/10	21/05/10	21/05/10
Arsenic	mg/kg	<4	<4	<4	<4	<4
		<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium	mg/kg	1 .010		1	1	1
	mg/kg mg/kg	11	10	1	10	19
Cadmium Chromium	mg/kg		10 <1	1	10 60	19 3
Cadmium	mg/kg mg/kg	11 37	<1	<1	60	3
Cadmium Chromium Copper Lead	mg/kg mg/kg mg/kg	11 37 45	<1 8	<1 2	60 43	3 11
Cadmium Chromium Copper	mg/kg mg/kg	11 37	<1	<1	60	3

Envirolab Reference: 41144 Revision No:

•

.

R 00

sPOCAS		<u> </u>	<u> </u>	l
Our Reference:	UNITS	41144-19	41144-20	41144-21
Your Reference		204/1.0	205/2.5	201/1.0
Date Sampled		17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil
Date prepared	-	20/5/10	20/5/10	20/5/10
Date analysed	-	20/5/10	20/5/10	20/5/10
рН ка	pH units	8.8	7.7	10.0
TAA pH 6.5	moles H⁺/t	<5	<5	<5
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01
pH ox	pH units	6.4	4.3	7.3
TPA pH 6.5	moles H⁺/t	<5.0	<5.0	<5.0
s-TPA pH 6.5	%w/w S	<0.01	<0.01	<0.01
TSA pH 6.5	moles H⁺/t	<5.0	<5.0	<5.0
s-TSA pH 6.5	%w/w S	<0.01	<0.01	<0.01
ANCE	% CaCO3	<0.05	<0.05	0.63
a-ANCe	moles H⁺/t	<5	<5	125
s-ANCE	%w/w S	<0.05	<0.05	0.20
SKCI	%w/w S	0.006	<0.005	<0.005
SP	%w/w	0.007	0.025	0.005
Spos	%w/w	<0.005	0.021	<0.005
a-Spos	moles H⁺/t	<5.0	13	<5.0
Саксі	%w/w	0.058	0.051	0.11
Cap	%w/w	0.055	0.058	0.42
Сал	%w/w	<0.005	0.007	0.32
Мдксі	%w/w	0.014	0.008	<0.005
MgP	%w/w	0.020	0.009	0.016
MgA	%w/w	0.006	<0.005	0.013
SRAS	%w/w	<0.005	<0.005	<0.005
Sha	%w/w S	0.006	<0.005	0.005
Snas	%w/w S	<0.005	<0.005	<0.005
a-Snas	moles H⁺/t	<5	<5	<5
s-Snas	%w/w S	<0.01	<0.01	<0.01
a-Net Acidity	moles H⁺/t	<10	13	<10
Liming rate	kg CaCO3/t	<0.75	0.99	<0.75
a-Net Acidity without ANCE	moles H⁺/t	NA	NA	<10
Liming rate without ANCE	kg CaCO3/t	NA	NA	<0.75

Envirolab Reference: 41144 Revision No: R 00

.

.

Moisture						
Our Reference:	UNITS	41144-1	41144-2	41144-3	41144-4	41144-5
Your Reference		201/0.4-0.5	201/0.8-1	201/1.3-1.5	202/0.4-0.5	202/0.6-0.8
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/5/10	20/5/10	20/5/10	20/5/10	20/5/10
Date analysed	-	20/5/10	20/5/10	20/5/10	20/5/10	20/5/10
Moisture	%	15	19	16	6.8	8.1
		1		1		
Moisture						
Our Reference: Your Reference	UNITS	41144-6	41144-7	41144-8	41144-9	41144-10
		202/0.8-0.9	203/0.4-0.5	203/0.8-1	204/0.4-0.5	204/0.8-1
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/5/10	20/5/10	20/5/10	20/5/10	20/5/10
Date analysed	-	20/5/10	20/5/10	20/5/10	20/5/10	20/5/10
Moisture	%	17	7.6	10	20	11
Moisture		<u> </u>				
Our Reference:	UNITS	41144-11	41144-12	41144-13	41144-15	41144-17
Your Reference		205/0.3-0.5	205/1.3-1.5	205/2.3-2.5	BD4/170510	Trip Blank
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
		20/5/10	20/5/10	20/5/10	20/5/10	20/5/10
Date prepared	-	2010/10				
Date prepared Date analysed	-	20/5/10	20/5/10	20/5/10	20/5/10	20/5/10
	- - %		20/5/10 12	20/5/10 20	20/5/10 9.4	20/5/10 0.10

Moisture		
Our Reference:	UNITS	41144-18
Your Reference		204/1.2-1.3
Date Sampled		17/05/2010
Type of sample		Soil
Date prepared	-	20/5/10
Date analysed	-	20/5/10
Moisture	%	7.7

•

.

Envirolab Reference: 41144 Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

Asbestos ID - soils						
Our Reference:	UNITS	41144-1	41144-3	41144-4	41144-5	41144-7
Your Reference		201/0.4-0.5	201/1.3-1.5	202/0.4-0.5	202/0.6-0.8	203/0.4-0.5
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	21/5/10	21/5/10	21/5/10	21/5/10	21/5/10
Sample Description	-	Approx 30g Sandy Soil	Approx 40g Sandy Soil & Rocks			
Asbestos ID in soil	-	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected
Asbestos ID - soils						
Our Reference:	UNITS	41144-8	41144-9	41144-10	41144-11	41144-12
Your Reference		203/0.8-1	204/0.4-0.5	204/0.8-1	205/0.3-0.5	205/1,3-1,5
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	21/5/10	21/5/10	21/5/10	21/5/10	21/5/10
Sample Description	-	Approx 40g Sandy Soil & Rocks	Approx 40g Sandy Soil & Rocks	Approx 40g Sandy Soil & Rocks	Approx 40g Sandy Soil & Rocks	Approx 40g Sandy Soil & Rocks
Asbestos ID in soil	-	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

•

•

Method ID	Methodology Summary
GC.14	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.64	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
AS4964-2004	Asbestos ID - Qualitative identification of asbestos type fibres in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques.

•

•

Client Reference:

4

.

71529.01, Opera House VAPS Project

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II %RPD		Trecovery
Date extracted	-	†		20/05/2 010	41144-1	20/05/2010 20/05/2010	LCS-4	20/05/2010
Date analysed	-			21/05/2 010	41144-1	21/05/2010] 21/05/2010	LCS-4	21/05/2010
Dichlorodifluoromethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0] <1.0	[NR]	[NR]
Chloromethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0] <1.0	[NR]	[NR]
Vinyl Chloride	mg/kg	1	GC.14	<1.0	41144-1	<1.0] <1.0	[NR]	[NR]
Bromomethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0] <1.0	[NR]	[NR]
Chloroethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 [] <1.0	[NR]	[NR]
Trichlorofluoromethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	LCS-4	90%
cis-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
bromochloromethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
chloroform	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	LCS-4	83%
2,2-dichloropropane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	LCS-4	82%
1,1,1-trichloroethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	LCS-4	79%
1,1-dichloropropene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
Cyclohexane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
carbon tetrachloride	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
Benzene	mg/kg	0.5	GC.14	<0.5	41144-1	<0.5 <0.5	[NR]	[NR]
dibromomethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0] <1.0	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	
trichloroethene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	LCS-4	83%
bromodichloromethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	LCS-4	84%
trans-1,3-dichloropropen e	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
Toluene	mg/kg	0.5	GC.14	<0.5	41144-1	<0.5 <0.5	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
dibromochloromethane	mg/kg	1	GC.14	<1.0	41144 -1	<1.0 <1.0	LCS-4	81%
1,2-dibromoethane	mg/kg	1	GC.14	<1.0	41144-1	<1.0] <1.0	[NR]	[NR]
tetrachloroethene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	LCS-4	85%
1,1,1,2-tetrachloroethan e	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
chlorobenzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
Ethylbenzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
bromoform	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
m+p-xylene	mg/kg	2	GC.14	<2.0	41144-1	<2.0 [<2.0	[NR]	[NR]
styrene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,1,2,2-tetrachloroethan e	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]

Envirolab Reference: 41144 Revision No:

R 00

Page 18 of 27

ł

.

71529.01, Opera House VAPS Project

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil			<u> </u>			Base II Duplicate II %RPD		
o-Xylene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,2,3-trichloropropane	mg/kg	1	GC.14	<1.0	41144-1	<1.0] <1.0	[NR]	[NR]
isopropylbenzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
bromobenzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
n-propyl benzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
2-chlorotoluene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
4-chlorotoluene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
tert-butyl benzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
sec-butyl benzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
n-butyl benzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,2-dibromo-3-chloropro pane	mg/kg	1	GC.14	<1.0	41144-1	<1 .0] < 1.0	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0] <1.0	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	GC.14	<1.0	41144-1	<1.0 <1.0	[NR]	[NR]
S <i>urrogate</i> Dibromofluorometha	%		GC.14	95	41144-1	85 82 RPD: 4	LCS-4	92%
S <i>urrogate</i> aaa-Trifluorotoluene	%		GC.14	118	41144-1	131 120 RPD: 9	LCS-4	106%
S <i>urrogate</i> Toluene-da	%		GC.14	100	41144-1	109 111 RPD: 2	LCS-4	99%
Surrogate 4-Bromofluorobenzene	%		GC.14	99	41144-1	101 101 RPD: 0	LCS-4	102%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil						Base II Duplicate II %RPD		
Date extracted	-			20/05/2 010	41144-11	20/05/2010 20/05/2010	LCS-1	20/05/2010
Date analysed	-			21/05/2 010	41144-11	21/05/2010 21/05/2010	LCS-1	21/05/2010
vTPH C6 - C9	mg/kg	25	GC.16	<25	41144-11	<25 <25	LCS-1	96%
Benzene	mg/kg	0.5	GC.16	<0.5	41144-11	<0.5 <0.5	LCS-1	98%
Toluene	mg/kg	0.5	GC.16	<0.5	41144-11	<0.5 <0.5	LCS-1	93%
Ethylbenzene	mg/kg	1	GC.16	<1.0	41144-11	<1.0 <1.0	LCS-1	95%
m+p-xylene	mg/kg	2	GC.16	<2.0	41144-11	<2.0 <2.0	LCS-1	96%
o-Xylene	mg/kg	1	GC.16	<1.0	41144-11	<1.0 <1.0	LCS-1	100%
<i>Surrogate</i> aaa-Trifluorotoluene	%		GC.16	100	41144-11	110 110 RPD: 0	LCS-1	107%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			20/05/2 010	41144-1	20/05/2010 20/05/2010	LCS-1	20/05/2010
Date analysed	-			20/05/2 010	41144-1	20/05/2010 20/05/2010	LCS-1	20/05/2010
TPH C10 - C14	mg/kg	50	GC.3	<50	41144-1	<50 <50	LCS-1	88%
TPH C15 - C28	mg/kg	100	GC.3	<100	41144-1	<100 <100	LCS-1	103%
TPH C29 - C36	mg/kg	100	GC.3	<100	41144-1	<100 <100	LCS-1	102%
S <i>urrogate</i> o-Terphenyl	%		GC.3	92	41144-1	100 101 RPD: 1	LCS-1	87%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil			_			Base II Duplicate II %RPD		
Date extracted	-		-	20/5/10	41144-1	20/5/10 20/5/10	LCS-1	20/5/10
Date analysed	-			21/5/10	41144-1	21/5/10 21/5/10	LCS-1	21/5/10
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	0.3 0.4 RPD: 29	LCS-1	94%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	0.7 1.8 RPD: 88	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	0.3 0.4 RPD: 29	LCS-1	95%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	2.3 2.5 RPD: 8	LCS-1	97%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	0.5 0.8 RPD; 46	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	3.6 7.0 RPD: 64	LCS-1	89%
Pyrene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	4.8 10 RPD: 70	LCS-1	99%

Envirolab Reference: 41144 Revision No:

٠

R 00

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	2.1 5.1 RPD: 83	[NR]	[NR]
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	2.2 4.9 RPD: 76	LCS-1	103%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	41144-1	3.3 8.0 RPD: 83	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	41144-1	2.7 6.8 RPD: 86	LCS-1	114%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	1.4 3.4 RPD: 83	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	0.2 0.5 RPD: 86	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	41144-1	1.2 3.3 RPD: 93	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12 subset	113	41144-1	112] 101 [RPD: 10	LCS-1	113%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			20/05/2 010	41144-1	20/05/2010 20/05/2010	LCS-1	20/05/2010
Date analysed	-			20/05/2 010	41144-1	20/05/2010 20/05/2010	LCS-1	20/05/2010
HCB	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	LCS-1	104%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1] <0.1	LCS-1	104%
Heptachlor	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	LCS-1	93%
delta-BHC	mg/kg	0.1	GC-5	<0.1	41144-1	<0. 1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	LCS-1	103%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	LCS-1	107%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 [<0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	LCS-1	106%
Dieldrin	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	LCS-1	111%
Endrin	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	LCS-1	104%
pp-DDD	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	LCS-1	111%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	41144-1	<0.1 <0.1	LCS-1	101%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	41144-1	<0,1] <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-5	98	41144-1	99 100 R PD: 1	LCS-1	100%

Envirolab Reference: 41144 Revision No: R 00

.

.

ACCREDITED FOR TECHNICAL COMPETENCE

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PCBs in Soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			20/05/2 010	41144-1	20/05/2010 20/05/2010	LCS-1	20/05/2010
Date analysed	-			20/05/2 010	41144-1	20/05/2010 20/05/2010	LCS-1	20/05/2010
Arochlor 1016	mg/kg	0.1	GC-6	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1221*	mg/kg	0.1	GC-6	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	GC-6	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	GC-6	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	GC-6	<0.1	41144-1	<0.1 (<0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	GC-6	<0.1	41144-1	<0.1 <0.1	LCS-1	110%
Arochlor 1260	mg/kg	0.1	GC-6	<0.1	41144-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-6	98	41144-1	99 100 RPD: 1	LCS-1	99%
		•	·			···	· <u></u> -	·
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Soil						Base II Duplicate II %RPD		
Date extracted	-			20/5/20 10	41144-1	20/5/2010 20/5/2010	LCS-1	20/5/2010
Date analysed	-			20/5/20 10	41144-1	20/5/2010 20/5/2010	LCS-1	20/5/2010
Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0	41144-1	<5.0 <5.0	LCS-1	90%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Durlingto Smith		Caller Cart	0
		FUL		Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			20/05/1	41144-1	20/05/10 20/05/10	LCS-1	20/05/10
				0				
Date analysed	-			21/05/1 0	41144-1	21/05/10 21/05/10	LCS-1	21/05/10
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4	41144-1	5 4 RPD: 22	LCS-1	106%
Cadmium	mg/kg	0.5	Metals.20 ICP-AES	<0.5	41144-1	<0.5 <0.5	LCS-1	108%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1	41144-1	5 4 RPD: 22	LCS-1	107%
Copper	mg/kg	1	Metals.20 ICP-AES	<1	41144-1	11 11 RPD: 0	LCS-1	108%
Lead	mg/kg	1	Metals.20 ICP-AES	<1	41144-1	7 6 RPD: 15	LCS-1	107%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.1	41144-1	<0.1 < 0.1	LCS-1	100%
Nickel	mg/kg	1	Metals.20 ICP-AES	<1	41144- 1	14 14 RPD: 0	LCS-1	110%
Zinc	mg/kg	1	Metals.20 ICP-AES	<1	41144-1	12 12 RPD: 0	LCS-1	110%

`

•

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS						Base II Duplicate II %RPD		Recovery
Date prepared	-	1	1	20/5/10	41144-21	20/5/10 20/5/10	LCS	20/5/10
Date analysed	-			20/5/10	41144-21	20/5/10 20/5/10	LCS	20/5/10
рН ка	pH units		LAB.64	5.2	41144-21	10.0 10.0 RPD: 0	LCS	101%
TAA pH 6.5	moles H⁺/t	5	LAB.64	<5	41144-21	<5 <5	LCS	110%
s-TAA pH 6.5	%w/w S	0.01	LAB.64	<0.01	41144-21	<0.01 <0.01	LCS	107%
pH ox	pH units		LAB.64	4.3	41144-21	7.3 7.4 [RPD: 1	LCS	104%
TPA pH 6.5	moles H⁺/t	5	LAB.64	<5.0	41144-21	<5.0 <5.0	LCS	75%
s-TPA pH 6.5	%w/w S	0.01	LAB.64	<0.01	41144-21	<0.01 <0.01	LCS	75%
TSA pH 6.5	moles H ⁺ /t	5	LAB.64	<5.0	41144-21	<5.0 <5.0	LCS	70%
s-TSA pH 6.5	%w/w S	0.01	LAB.64	<0.01	41144-21	<0.01 <0.01	LCS	69%
ANCE	% CaCO3	0.05	LAB.64	<0.05	41144-21	0.63 0.63 RPD: 0	[NR]	[NR]
a-ANCE	moles H⁺/t	5	LAB.64	<5	41144-21	125 125 RPD: 0	[NR]	[NR]
s-ANCe	%w/w S	0.05	LAB.64	<0.05	41144-21	0.20 0.20 RPD: 0	[NR]	[NR]
SKCI	%w/w S	0.005	LAB.64	<0.005	41144-21	<0.005 <0.005	LCS	122%
Sp	%w/w	0.005	LAB.64	<0.005	41144-21	0.005 <0.005	LCS	110%
SPOS	%w/w	0.005	LAB.64	<0.005	41144-21	<0.005 <0.005	LCS	107%
a-Spos	moles H⁺/t	5	LAB.64	<5.0	41144-21	<5.0 <5.0	LCS	108%
Саксі	%w/w	0.005	LAB.64	<0.005	41144-21	0.11 0.11 RPD: 0	LCS	91%
Сар	%w/w	0.005	LAB.64	<0.005	41144-21	0.42 0.34 RPD: 21	LCS	85%
Сал	%w/w	0.005	LAB.64	<0.005	41144-21	0.32 0.23 RPD: 33	[NR]	[NR]
Мдксі	%w/w	0.005	LAB.64	<0.005	41144-21	<0.005 <0.005	LCS	90%
MgP	%w/w	0.005	LAB.64	<0.005	41144-21	0.016 0.013 RPD: 21	LCS	102%
MgA	%w/w	0.005	LAB.64	<0.005	41144-21	0.013 0.011 RPD: 17	[NR]	[NR]
SRAS	%w/w	0.005	LAB.64	<0.005	41144-21	<0.005 <0.005	[NR]	[NR]
Sнсі	%w/w S	0.005	LAB.64	<0.005	41144-21	0.005 0.005 RPD: 0	LCS	88%
Snas	%w/w S	0.005	LAB.64	<0.005	41144-21	<0.005 <0.005	[NR]	[NR]
a-Snas	moles H⁺/t	5	LAB.64	<5	41144-21	<5 <5	[NR]	[NR]
s-Snas	%w/w S	0.01	LAB.64	<0.01	41144-21	<0.01 <0.01	[NR]	[NR]
a-Net Acidity	moles H⁺/t	10	LAB.64	<10	41144-21	<10 <10	LCS	106%
Liming rate	kg CaCO3	0.75	LAB.64	<0.75	41144-21	<0.75 <0.75	LCS	106%

Envirolab Reference: 41144 Revision No:

•

•

R 00

Page 23 of 27

		Clie	ent Referen	ce: 71	529.01, Opera	a House VAPS Project	•	
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS						Base II Duplicate II %RPD		
a-Net Acidity without ANCE	moles H⁺/t	10	LAB.64	<10	41144-21	<10 <10	[NR]	[NR]
Liming rate without ANCE	kg CaCOз л	0.75	LAB.64	<0.75	41144-21	<0.75 <0.75	[NR]	[NR]
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank]			
Date prepared Date analysed Moisture	- - %	0.1	LAB.8	20/5/10 20/5/10 <0.10				
QUALITY CONTROL	UNITS	PQL	METHOD	Blank]			
Asbestos ID - soils								
Date analysed	-	<u> </u>		[NT]				
QUALITY CONTROL sTPH in Soil (C10-C36)	UNITS	6	Dup. Sm#		Duplicate Duplicate + %RPD		Spike % Recovery	
Date extracted	-		41144-11	20/05/2	010 20/05/2010	41144-5	20/05/2010	
Date analysed	-		41144-11	20/05/2	010 20/05/2010	41144-5	20/05/2010	
TPH C10 - C14	mg/kg	g .	41144-11		<50 <50	41144-5	88%	
TPH C15 - C28	mg/kg	, .	41144-11	870	850 RPD: 2	41144-5	107%	
TPH C29 - C36	mg/kg	, .	41144-11	550	560 RPD: 2	41144-5	110%	
Surrogate o-Terphenyl	%		41144-11		# #	41144-5	91%	
QUALITY CONTROL PAHs in Soil	UNITS	6	Dup. Sm#		Duplicate Duplicate + %RPD		Spike % Recovery	
Date extracted	-		41144-11	20/5	5/10 20/5/10	41144-5	20/5/10	
Date analysed	-		41144-11	22/5	5/10 22/5/10	41144-5	21/5/10	
Naphthalene	mg/kg	3	41144-11	0.7 [0.7 [RPD: 0	41144-5	92%	
Acenaphthylene	mg/kg	, .	41144-11	2.2	2.3 RPD: 4	[NR]	[NR]	
Acenaphthene	mg/kg	3 -	41144-11		1.4 RPD: 7	[NR]	[NR]	
Fluorene	mg/kg	3	41144-11	2.4	2.4 RPD: 0	41144-5	97%	
Phenanthrene	mg/kę	g .	41144-11	24	22 RPD: 9	41144-5	93%	
Anthracene	mg/kę	g .	41144-11	6.4	6.1 RPD: 5	[NR]	[NR]	
Fluoranthene	mg/kg	g .	41144-11	31	29 RPD: 7	41144-5	90%	
Pyrene	mg/kę	g -	41144-11	28	26 RPD: 7	41144-5	100%	
Benzo(a)anthracene	mg/kę	g .	41144-11	13] 12] RPD: 8	[NR]	[NR]	
Chrysene	mg/kę	g .	41144-11	13] 13 RPD: 0	41144-5	94%	
Benzo(b+k)fluoranthene	mg/kg	a -	41144-11		21 RPD: 0	[NR]	[NR]	
Benzo(a)pyrene	mg/kg	a -	41144-11		16 RPD: 0	41144-5	102%	
Indeno(1,2,3-c,d)pyrene	mg/kg		41144-11	· ·	8.5 RPD: 5	[NR]	[NR]	
Dibenzo(a,h)anthracene	mg/kg	, .	41144-11		1.5 RPD: 7	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg		41144-11		7.4 RPD: 10	(NR)	[NR]	

71529.01, Opera House VAPS Project

Client Reference:

Envirolab Reference: 41144 Revision No: R 00

.

,

QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recover
Surrogate p-Terphenyl-d14	%	41144-11	110 114 RPD: 4	41144-5	103%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recover
Date extracted	-	41144 -11	20/05/2010 20/05/2010	41144-5	20/05/2010
Date analysed	-	41144-11	20/05/2010] 20/05/2010	41144-5	20/05/2010
HCB	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	41144-11	<0.1 <0.1	41144-5	102%
gamma-BHC	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	41144-11	<0.1 <0.1	41144-5	104%
Heptachlor	mg/kg	41144-11	<0.1 <0.1	41144-5	104%
delta-BHC	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	4 11 44-11	<0.1 <0.1	41144-5	101%
Heptachlor Epoxide	mg/kg	4 11 44-11	<0.1 <0.1	41144-5	106%
gamma-Chlordane	mg/kg	4 11 44-11	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	4 11 44-11	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	4 11 44-11	<0.1 j <0.1	[NR]	[NR]
pp-DDE	mg/kg	4 1144- 11	<0.1 <0.1	41144-5	105%
Dieldrin	mg/kg	41144-11	<0.1 <0.1	41144-5	110%
Endrin	mg/kg	41144-11	<0.1 <0.1	41144-5	106%
pp-DDD	mg/kg	41144-11	<0.1 <0.1	41144-5	112%
Endosulfan II	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	41144-11	<0.1 <0.1	41144-5	103%
Methoxychlor	mg/kg	4114 4-11	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	41144 -11	99 100 RPD: 1	41144-5	100%

•		Client Referen	ce: 71529.01, Opera H	louse VAPS Proj	ect
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	41144-11	20/05/2010 20/05/2010	41144-5	20/05/2010
Date analysed	-	41 1 44-11	20/05/2010 20/05/2010	41144-5	20/05/2010
Arochlor 1016	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
Arochior 1221*	mg/kg	41144-11	<0.1 [<0.1	[NR]	[NR]
Arochlor 1232	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	41144-11	<0.1 <0.1	41144-5	106%
Arochlor 1260	mg/kg	41144-11	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	41144-11	99 100 RPD: 1	41144-5	104%
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Total Phenolics in Soil			Base + Duplicate + %RPD		:
Date extracted	-	41144-11	20/5/2010 20/5/2010	41144-3	20/5/2010
Date analysed	-	41144-11	20/5/2010 20/5/2010	41144-3	20/5/2010
Total Phenolics (as Phenol)	mg/kg	41144-11	<5.0 <5.0	41144-3	92%
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date digested	-	41144-11	20/05/10 20/05/10	41144-5	20/05/10
Date analysed	-	41144-11	 21/05/10 21/05/10	41144-5	21/05/10
Arsenic	mg/kg	41144-11	<4 <4	41144-5	101%
Cadmium	mg/kg	41144-11	<0.5 <0.5	41144-5	92%
Chromium	mg/kg	41144-11	11 9 RPD: 20	41144-5	105%
Copper	mg/kg	4 1144 - 11	37 35 RPD: 6	41144-5	119%
Lead	mg/kg	41144-11	45 43 RPD: 5	41144-5	94%
Mercury	mg/kg	41144-11	<0.1 <0.1	41144-5	110%
Nickel	mg/kg	41144-11	14 14 RPD: 0	41144-5	98%
Zinc	mg/kg	41144-11	58 57 RPD: 2	41144-5	99%

.

Report Comments:

Total Petroleum Hydrocarbons in soil (semivol):The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.# Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

PAH's in soil: The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s. Asbestos was analysed by Approved Identifier: Matt Mansfield Asbestos was authorised by Approved Signatory: Matt Mansfield INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit <: Less than >: Greater than RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

Envirolab Reference: 41144 Revision No: R 00

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

ph: 02 9809 0666 Fax: 02 9809 4095

Attention: Kurt Plambeck

Sample log in details:	
Your reference:	71529.01, Opera House VAPS Project
Envirolab Reference:	41144
Date received:	18/05/10
Date results expected to be reported:	27/05/10

Samples received in appropriate condition for analysis:	YES
No. of samples provided	21 Soils
Turnaround time requested:	Standard
Temperature on receipt	Cool
Cooling Method:	lce

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

	where a subscription of the subscription of th														
Project Name: Opera H Project No:71529 Project MgrKP Email: kurt.pla Date Required:stand	Ope 71 Kurt. st	Opera House 71529.01 KPM kurt.plambeck standard	se VAl Mob.	Opera House VAPS Project . 71529.01	ect Sam 0402 Dartne Lab	Opera House VAPS ProjectKDP	.KDP 147 m.au e No.			To: Attn: Emai	_	Service Street, taras 2 9910 62 @enviro	s Chatsw ⁱ 200 Fax: labservi	To: Envirolab Services 12 Ashley Street, Chatswood NSW 2068 Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au	σ
		5	Sampl		-					Analytes					
Sample Sample ID Depth	D	briiqmsč đe Digese	water 5	ype Jontainer		Heavy metals	TRH BTEX	РАН	PCB PCB	Phenols	Asbestos	Loc Voc	s.		Notes
						ł	F	f				>	 		
	- [17/5	ω	ധ		+							 		
201 05-1	4				_ _	+							 	۲ ۳	Trifall Envirolation Survey St
201/13-1.5	~	-+-			<u>L</u>	-								ij/	Ph: 9310 6200
202 6. 4-2.5	5					-								ior	101 101 41(44
202/0603	5						-+-	-+-	>	<u>_</u>	>			Cat	Date received: 1015110 Three received: 2000
202 14.8-04	<u>9</u>							-+							۳L 🛓
+~~			1						>	>	>				reno: your control of the control of
4.4		<u> </u>					•		>		7	>		×.	ANNA ANNA
1-0-0/007	_				<u></u>				>	\geq		>			
	2						 	+ +	> `	>	> \				
							<u></u>		>	>	> >				
205/13-15	1					•		₽ -	-				Phone:		9
Lab Keport No.	Douglas Partners	Partne		Address:		96 Hermitage Road.	Road, W	West Ryde 2114	2114			-	Fax:	(02) 9809 4095 Date & Time:1 & / ((02) 9809 4095 Date & Time:1 な / C / い、 イエハハン
1		Sig	Signed:		1	ö	Date & Time:	;; ;;						Date & Time:	
			Cianod.			Da	Date & Time:	<u>.</u> ,		Recei	Received By:				

•

...

Form COC Rev0/November 2006

Page____ of ____

Georgectinics - Equiportment - Exoundwater	nent - Groundwater													
Project Name: Project No: Project Mgr: Email: Date Required:	Opera House 71529.01 KPN kurt.plambec standard	louse V/ Mob mbeck@ ard	Opera House VAPS Project	ect Sam 0402 partne Lab	Opera House VAPS Project	e G G G G G G G G G G G G G G G G G G G			To: Attn: Email	To: Envirolab Services 12 Ashley Street, Chatswood NSW 2 Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au	b Servic vy Stree otaras)2 9910 s@envit	t, Chats 6200 Fa rolabser	wood x: 02 99 vices.co	Envirolab Services 12 Ashley Street, Chatswood NSW 2068 Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 ; tnotaras@envirolabservices.com.au
		Sampl							Analytes		1			-
Sample Sample iD Depth)ste		ype Container	<u> </u>	Heavy metals	BTEX	PAH	PCB PCB	Phenols	Asbestos	s voc	が出	Artho State	Notes
	∦		+ >	_॥								L		
205 / 3-25	13 17/15	S	υ		> `	, `					 			inter lab
602 mosus	<u>ب</u>			L	>	>	>				_			when by
	12				>	>	>				- +	_ \ -		111/100 400
-	19			L		4				_	_	>		
				L		>				_				
<u> </u>		 				>	>						<u>></u>	
5-21 7707				·	,	, , ,							>	
204/1.0	6)										 		7	
205/21S	20													
201/1.0	121											-		
											-			
				1			- +						-	
											4	- Hoh	Phone: (0)	II (02) 9809 0666
Lab Report No.			•		:	-	0 1	4440				Fax:		(02) 9809 4095
	Douglas Partners	rtners	Address:		96 Hermitage Koad, West Ryde 2114	Road, Wes	est ryut		Receiv	Received Bv:	- 		۲ ۵	Date & Time: 18/5 /10 Grow
Relinquished by:		Signed:			ן ב ו		, 		Receiv	Received Rv:	4		Date {	Date & Time:
Dotinguished hv		Signed:			Ö	Date & lime:						ļ		

)

ه

Form COC Rev0/November 2006

Page____ of

••

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 41366

Client: Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kurt Plambeck

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

71529.01, VAPs Opera House 7 Soils 24/05/10 24/05/10

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 31/05/10 Date of Preliminary Report: Not Issued Issue Date: 29/05/10 NATA accreditation number 2901. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Mign Morgen

Rhian Morgan Metals Supervisor

Jacinta/Hurst Laboratory Manager

Envirolab Reference: 41366 Revision No: R 00

M. Ilandje Matt Mansfield

TECHNICAL COMPETENCE

Approved Signatory

Page 1 of 24

VOCs in soil		
Our Reference:	UNITS	41366-2
Your Reference		206/0.8-1.0
Date Sampled		24/05/2010
Type of sample		Soil
Date extracted	-	25/05/2010
Date analysed	-	26/05/2010
Dichlorodifluoromethane	mg/kg	<1.0
Chloromethane	mg/kg	<1.0
Vinyl Chloride	mg/kg	<1.0
Bromomethane	mg/kg	<1.0
Chloroethane	mg/kg	<1.0
Trichlorofluoromethane	mg/kg	<1.0
1,1-Dichloroethene	mg/kg	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0
1,1-dichloroethane	mg/kg	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0
bromochloromethane	mg/kg	<1.0
chloroform	mg/kg	<1.0
2,2-dichloropropane	mg/kg	<1.0
1,2-dichloroethane	mg/kg	<1.0
1,1,1-trichloroethane	mg/kg	<1.0
1,1-dichloropropene	mg/kg	<1.0
Cyclohexane	mg/kg	<1.0
carbon tetrachloride	mg/kg	<1.0
Benzene	mg/kg	<0.5
dibromomethane	mg/kg	<1.0
1,2-dichloropropane	mg/kg	<1.0
trichloroethene	mg/kg	<1.0
bromodichloromethane	mg/kg	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0
1,1,2-trichloroethane	mg/kg	<1.0
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1.0
dibromochloromethane	mg/kg	<1.0
1,2-dibromoethane	mg/kg	<1.0
tetrachloroethene	mg/kg	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0
chlorobenzene	mg/kg	<1.0
Ethylbenzene	mg/kg	<1.0
bromoform	mg/kg	<1.0
m+p-xylene	mg/kg	<2.0
styrene	mg/kg	<1.0
1,1,2,2-tetrachloroethane	mg/kg	<1.0

`

,

Envirolab Reference: 41366 Revision No: R 00

Client Reference:

•

÷.

71529.01, VAPs Opera House

VOCs in soil		
Our Reference:	UNITS	41366-2
Your Reference		206/0.8-1.0
Date Sampled	·	24/05/2010
Type of sample		Soil
o-Xylene	mg/kg	<1.0
1,2,3-trichloropropane	mg/kg	<1.0
isopropylbenzene	mg/kg	<1.0
bromobenzene	mg/kg	<1.0
n-propyl benzene	mg/kg	<1.0
2-chlorotoluene	mg/kg	<1.0
4-chlorotoluene	mg/kg	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0
tert-butyl benzene	mg/kg	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0
1,3-dichlorobenzene	mg/kg	<1.0
sec-butyl benzene	mg/kg	<1.0
1,4-dichlorobenzene	mg/kg	<1.0
4-isopropyl toluene	mg/kg	<1.0
1,2-dichlorobenzene	mg/kg	<1.0
n-butyl benzene	mg/kg	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0
hexachlorobutadiene	mg/kg	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0
Surrogate Dibromofluorometha	%	96
Surrogate aaa-Trifluorotoluene	%	119
Surrogate Toluene-da	%	119
Surrogate 4-Bromofluorobenzene	%	98

vTPH & BTEX in Soil						
Our Reference:	UNITS	41366-1	41366-2	41366-3	41366-4	41366-6
Your Reference		206/0.4-0.5	206/0.8-1.0	206/1.1-1.2	BD1240510	Trip Spike
Date Sampled		24/05/2010	24/05/2010	24/05/2010	24/05/2010	24/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	25/5/10	25/5/10	25/5/10	25/5/10	25/5/10
Date analysed	-	26/5/10	26/5/10	26/5/10	26/5/10	26/5/10
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	[NA]
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	100%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	122%
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	104%
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	104%
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	104%
Surrogate aaa-Trifluorotoluene	%	100	119	101	99	109

vTPH & BTEX in Soil		
Our Reference:	UNITS	41366-7
Your Reference		Trip Blank
Date Sampled		24/05/2010
Type of sample		Soil
Date extracted	-	25/5/10
Date analysed	-	26/5/10
Benzene	mg/kg	<0.5
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1.0
m+p-xylene	mg/kg	<2.0
o-Xylene	mg/kg	<1.0
Surrogate aaa-Trifluorotoluene	%	86

•

+

sTPH in Soil (C10-C36)					
Our Reference:	UNITS	41366-1	41366-2	41366-3	41366-4
Your Reference		206/0.4-0.5	206/0.8-1.0	206/1.1-1.2	BD1240510
Date Sampled		24/05/2010	24/05/2010	24/05/2010	24/05/2010
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	25/05/2010	25/05/2010	25/05/2010	25/05/2010
Date analysed	-	25/05/2010	25/05/2010	25/05/2010	25/05/2010
TPH C10 - C14	mg/kg	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100
Surrogate o-Terphenyl	%	92	101	103	105

Envirolab Reference: 41366 Revision No: R 00

•

.

ACCREDITED FOR TECHNICAL COMPETENCE

•

PAHs in Soil					
Our Reference:	UNITS	41366-1	41366-2	41366-3	41366-4
Your Reference		206/0.4-0.5	206/0.8-1.0	206/1.1-1.2	BD1240510
Date Sampled		24/05/2010	24/05/2010	24/05/2010	24/05/2010
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	25/5/10	25/5/10	25/5/10	25/5/10
Date analysed	-	26/5/10	26/5/10	26/5/10	26/5/10
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.7	1.5	0.7
Anthracene	mg/kg	<0.1	0.1	0.3	0.1
Fluoranthene	mg/kg	0.1	1.0	1.9	1.3
Pyrene	mg/kg	0.1	1.1	1.9	1.3
Benzo(a)anthracene	mg/kg	<0.1	0.5	0.9	0.6
Chrysene	mg/kg	0.1	0.6	1.0	0.7
Benzo(b+k)fluoranthene	mg/kg	<0.2	0.8	1.4	1.1
Benzo(a)pyrene	mg/kg	0.07	0.6	1	0.7
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.3	0.5	0.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.3	0.5	0.4
Surrogate p-Terphenyl-d14	%	77	79	80	86

Envirolab Reference: 41366 Revision No: R 00

•

•

ACCREDITED FOR TECHNICAL COMPETENCE Page 6 of 24

Client	Reference:	

٠ .

•

Organochlorine Pesticides in soil			
Our Reference:	UNITS	41366-1	41366-2
Your Reference		206/0.4-0.5	206/0.8-1.0
Date Sampled		24/05/2010	24/05/2010
Type of sample		Soil	Soil
Date extracted	-	24/05/2010	24/05/2010
Date analysed	-	26/05/2010	26/05/2010
НСВ	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	104	100

Envirolab Reference: 41366 Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

PCBs in Soil			
Our Reference:	UNITS	41366-1	41366-2
Your Reference		206/0.4-0.5	206/0.8-1.0
Date Sampled		24/05/2010	24/05/2010
Type of sample		Soil	Soil
Date extracted	-	24/05/2010	24/05/2010
Date analysed	-	26/05/2010	26/05/2010
Arochlor 1016	mg/kg	<0.1	<0.1
Arochlor 1221*	mg/kg	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0. 1
Arochlor 1248	mg/kg	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	104	100

3

•

Envirolab Reference: 41366 Revision No: R 00

71529.01, VAPs Opera House **Client Reference:**

Total Phenolics in Soil			
Our Reference:	UNITS	41366-1	41366-2
Your Reference		206/0.4-0.5	206/0.8-1.0
Date Sampled	•	24/05/2010	24/05/2010
Type of sample		Soil	Soil
Date extracted	-	25/5/2010	25/5/2010
Date analysed	-	25/5/2010	25/5/2010
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0

,

.

Envirolab Reference: 41366 **Revision No:**

R 00

sPOCAS		
Our Reference:	UNITS	41366-5
Your Reference		206/1.0
Date Sampled		24/05/2010
Type of sample		Soil
Date prepared	-	25/5/10
Date analysed	-	25/5/10
рН ка	pH units	9.2
TAA pH 6.5	moles H⁺/t	<5
s-TAA pH 6.5	%w/w S	<0.01
pH ox	pH units	7.2
TPA pH 6.5	moles H⁺/t	<5.0
s-TPA pH 6.5	%w/w S	<0.01
TSA pH 6.5	moles H⁺/t	<5.0
s-TSA pH 6.5	%w/w S	<0.01
ANCE	% CaCO3	0.4
a-ANCE	moles H⁺/t	80
s-ANCe	%w/w S	0.13
SKCI	%w/w S	0.014
SP	%w/w	0.014
Spos	%w/w	<0.005
a-Spos	moles H⁺/t	<5.0
Саксі	%w/w	0.13
Сар	%w/w	0.16
Сал	%w/w	0.038
Mgkci	%w/w	0.022
Мдр	%w/w	0.036
MgA	%w/w	0.013
SRAS	%w/w	<0.005
S нсі	%w/w S	0.008
SNAS	%w/w S	<0.005
a-Snas	moles H⁺/t	<5
s-Snas	%w/w S	<0.01
a-Net Acidity	moles H⁺/t	<10
Liming rate	kg CaCO3/t	<0.75
a-Net Acidity without ANCE	moles H⁺/t	<10
Liming rate without ANCE	kg CaCO3/t	<0.75

•

.

Envirolab Reference: 41366 Revision No: R 00 ACOREDITED FOR TECHNICAL COMPETENCE

Acid Extractable metals in soil			ļ		
Our Reference:	UNITS	41366-1	41366-2	41366-3	41366-4
Your Reference		206/0.4-0.5	206/0.8-1.0	206/1.1-1.2	BD1240510
Date Sampled		24/05/2010	24/05/2010	24/05/2010	24/05/2010
Type of sample		Soil	Soil	Soil	Soil
Date digested	-	26/05/10	26/05/10	26/05/10	26/05/10
Date analysed	-	26/05/10	26/05/10	26/05/10	26/05/10
Arsenic	mg/kg	<4	<4	5	<4
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	7	8	32	7
Copper	mg/kg	22	33	50	38
Lead	mg/kg	41	65	91	130
Mercury	mg/kg	0.1	0.3	0.4	0.5
Nickel	mg/kg	5	19	16	16
Zinc	mg/kg	31	78	100	110

Envirolab Reference: 41366 Revision No: R 00

•

.

ACCREDITED FOR TECCHNICAL COMPETENCE

Moisture			T			
Our Reference:	UNITS	41366-1	41366-2	41366-3	41366-4	41366-7
Your Reference	**	206/0.4-0.5	206/0.8-1.0	206/1.1-1.2	BD1240510	Trip Blank
Date Sampled		24/05/2010	24/05/2010	24/05/2010	24/05/2010	24/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	25/5/10	25/5/10	25/5/10	25/5/10	25/5/10
Date analysed	-	25/5/10	25/5/10	25/5/10	25/5/10	25/5/10
Moisture	%	7.1	9.3	8.7	8.6	21

Envirolab Reference: 41366 Revision No: R 00

.

4

ACCREDITED FOR TECHNICAL COMPETENCE

Page 12 of 24

Asbestos ID - soils			
Our Reference:	UNITS	41366-1	41366-2
Your Reference		206/0.4-0.5	206/0.8-1.0
Date Sampled		24/05/2010	24/05/2010
Type of sample		Soil	Soil
Date analysed	-	27/5/10	27/5/10
Sample Description	-	Approx 20g Sandy Soil	Approx 40g Soil & Rocks
Asbestos ID in soil	-	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected

.

.

ACCREDITED FOR TECHNICAL COMPETENCE

Methodology Summary
Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Total Phenolics - determined colorimetrically following disitillation.
sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.
Determination of various metals by ICP-AES.
Determination of Mercury by Cold Vapour AAS.
Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
Asbestos ID - Qualitative identification of asbestos type fibres in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques.

.

•

Client Reference: 71529.01, VAPs Opera House

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II %RPD		
Date extracted	-			25/05/2 010	41366-2	25/05/2010 25/05/2010	LCS-4	25/05/2010
Date analysed	-			26/05/2 010	41366-2	26/05/2010 26/05/2010	LCS-4	26/05/2010
Dichlorodifluoromethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
Chloromethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
Vinyl Chloride	mg/kg	1	GC.14	<1.0	41366-2	<1.0 [<1.0	[NR]	[NR]
Bromomethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
Chloroethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
Trichlorofluoromethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	LCS-4	91%
cis-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
bromochloromethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
chloroform	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	LCS-4	87%
2,2-dichloropropane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	LCS-4	87%
1,1,1-trichloroethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	LCS-4	86%
1,1-dichloropropene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
Cyclohexane	mg/kg	1	GC.14	<1.0	41366-2	<1.0] <1.0	[NR]	[NR]
carbon tetrachloride	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
Benzene	mg/kg	0.5	GC.14	<0.5	41366-2	<0.5 [<0.5	[NR]	[NR]
dibromomethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
trichloroethene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	LCS-4	77%
bromodichloromethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	LCS-4	77%
trans-1,3-dichloropropen e	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0] <1.0	[NR]	[NR]
Toluene	mg/kg	0.5	GC.14	<0.5	41366-2	<0.5 <0.5	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
dibromochloromethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	LCS-4	74%
1,2-dibromoethane	mg/kg	1	GC.14	<1.0	41366-2	<1.0] <1.0	[NR]	[NR]
tetrachloroethene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	LCS-4	80%
1,1,1,2-tetrachloroethan e	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
chlorobenzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
Ethylbenzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
bromoform	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
m+p-xylene	mg/kg	2	GC.14	<2.0	41366-2	<2.0 <2.0	[NR]	[NR]
styrene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,1,2,2-tetrachloroethan e	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]

Envirolab Reference: 41366 Revision No:

.

.

R 00

Page 15 of 24

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
								Recovery
VOCs in soil						Base II Duplicate II %RPD		
o-Xylene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,2,3-trichloropropane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
isopropylbenzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
bromobenzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
n-propyl benzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
2-chlorotoluene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
4-chlorotoluene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0] <1.0	[NR]	[NR]
tert-butyl benzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0] <1.0	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
sec-butyl benzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
n-butyl benzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,2-dibromo-3-chloropro pane	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	GC.14	<1.0	41366-2	<1.0 <1.0	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%		GC.14	88	41366-2	96 88 RPD: 9	LCS-4	89%
S <i>urrogate</i> aaa-Trifluorotoluene	%		GC.14	93	41366-2	119 112 RPD: 6	LCS-4	98%
Surrogate Toluene-da	%		GC.14	90	41366-2	119 112 RPD: 6	LCS-4	91%
Surrogate 4-Bromofluorobenzene	%		GC.14	98	41366-2	98] 97 RPD: 1	LCS-4	97%

•

.

Client Reference: 71529.01, VAPs Opera House

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil						Base II Duplicate II %RPD		
Date extracted	-	-		25/5/10	41366-2	25/5/10 25/5/10	LCS-4	26/5/10
Date analysed	-			26/5/10	41366-2	26/5/10 26/5/10	LCS-4	26/5/10
vTPH C6 - C9	mg/kg	25	GC.16	<25	41366-2	<25 <25	LCS-4	98%
Benzene	mg/kg	0.5	GC.16	<0.5	41366-2	<0.5 <0.5	LCS-4	96%
Toluene	mg/kg	0.5	GC.16	<0.5	41366-2	<0.5 <0.5	LCS-4	101%
Ethylbenzene	mg/kg	1	GC.16	<1.0	41366-2	<1.0] <1.0	LCS-4	96%
m+p-xylene	mg/kg	2	GC.16	<2.0	41366-2	<2.0] <2.0	LCS-4	98%
o-Xylene	mg/kg	1	GC.16	<1.0	41366-2	<1.0 <1.0	LCS-4	102%
S <i>urrogate</i> aaa-Trifluorotoluene	%		GC.16	93	41366-2	119 112 RPD: 6	LCS-4	111%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		
Date extracted		1		25/05/2 010	41366-2	25/05/2010 25/05/2010	LCS-4	25/05/2010
Date analysed	-			25/05/2 010	41366-2	25/05/2010 25/05/2010	LCS-4	25/05/2010
TPH C10 - C14	mg/kg	50	GC.3	<50	41366-2	<50 <50	LCS-4	89%
TPH C15 - C28	mg/kg	100	GC.3	<100	41366-2	<100 <100	LCS-4	99%
TPH C29 - C36	mg/kg	100	GC.3	<100	41366-2	<100 <100	LCS-4	97%
Surrogate o-Terphenyl	%		GC.3	94	41366-2	101 100 RPD: 1	LCS-4	103%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Date extracted	-	1	T	25/5/10	41366-2	25/5/10 25/5/10	LCS-5	25/5/10
Date analysed	-			26/5/10	41366-2	26/5/10 26/5/10	LCS-5	26/5/10
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	<0.1 <0.1	LCS-5	87%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	<0.1] <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	<0.1] <0.1	LCS-5	95%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	0.7] 0.6 RPD: 15	LCS-5	95%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	0.1 0.1 RPD: 0	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	1.0 1.0 RPD: 0	LCS-5	88%
Pyrene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	1.1 1.1 RPD: 0	LCS-5	99%
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	0.5 0.6 RPD: 18	[NR]	[NR]

Envirolab Reference: 41366 Revision No: R 00

•

•

ient Reference	9	;
----------------	---	---

.

.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
								Recovery
PAHs in Soil				_		Base II Duplicate II %RPD		
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	0.6 0.6 RPD: 0	LCS-5	102%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	41366-2	0.8 0.9 RPD: 12	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	41366-2	0.6 0.7 RPD: 15	LCS-5	105%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	0.3 0.4 RPD; 29	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	<0.1] 0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	41366-2	0.3 0.5 RPD: 50	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12 subset	96	41366-2	79 83 RPD: 5	LCS-5	100%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Durlingto Ort	Dunlingto genulto	Cullin Curt	0-11-0/
QUALITY CONTROL		FQL		DIAIIK	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			24/05/2 010	41366-2	24/05/2010 24/05/2010	LCS-1	24/05/2010
Date analysed	-			26/05/2 010	41366-2	26/05/2010 26/05/2010	LCS-1	26/05/2010
HCB	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	107%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	100%
Heptachlor	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	92%
delta-BHC	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	105%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	104%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	99%
Dieldrin	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	104%
Endrin	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	94%
pp-DDD	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	95%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	LCS-1	94%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	ļ	GC-5	97	41366-2	100 98 RPD: 2	LCS-1	99%

Envirolab Reference: 41366 Revision No: R 00

Client Reference:

71529.01, VAPs Opera House

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PCBs in Soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			24/05/2 010	41366-2	24/05/2010 24/05/2010	LCS-1	24/05/2010
Date analysed	-			26/05/2 010	41366-2	26/05/2010 26/05/2010	LCS-1	26/05/2010
Arochlor 1016	mg/kg	0.1	GC-6	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Arochior 1221*	mg/kg	0.1	GC-6	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	GC-6	<0.1	41366-2	<0.1 [<0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	GC-6	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	GC-6	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	GC-6	<0.1	41366-2	<0.1 <0.1	LCS-1	99%
Arochlor 1260	mg/kg	0.1	GC-6	<0.1	41366-2	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-6	97	41366-2	100 98 RPD: 2	LCS-1	99%
						· · · · ·		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Soil						Base II Duplicate II %RPD		
Date extracted	-		-	25/5/20 10	41366-1	25/5/2010 25/5/2010	LCS-2	25/5/2010
Date analysed	-			25/5/20 10	41366-1	25/5/2010 25/5/2010	LCS-2	25/5/2010
Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0	41366-1	<5.0 <5.0	LCS-2	95%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
sPOCAS						Base II Duplicate II %RPD		Recovery
				05/5/40			100	
Date prepared	-			25/5/10	[NT]	[NT]	LCS	25/5/10
Date analysed	-			25/5/10	[NT]	[NT]	LCS	25/5/10
pH ka	pH units	_	LAB.64	5.3	[NT]	[NT]	LCS	101%
TAA pH 6.5	moles H ⁺ /t	5	LAB.64	<5	[NT]	[NT]	LCS	99%
s-TAA pH 6.5	%w/w S	0.01	LAB.64	<0.01	[TM]	[NT]	LCS	97%
pH ox	pH units		LAB.64	4.2	[NT]	[NT]	LCS	107%
TPA pH 6.5	moles H⁺/t	5	LAB.64	<5.0	[דא]	[NT]	LCS	95%
s-TPA pH 6.5	%w/w S	0.01	LAB.64	<0.01	[דא]	[NT]	LCS	95%
TSA pH 6.5	moles H⁺/t	5	LAB.64	<5.0	נזאן	[NT]	LCS	94%
s-TSA pH 6.5	%w/w S	0.01	LAB.64	<0.01	נזאן	[NT]	LCS	93%
ANCE	% CaCO3	0.05	LAB.64	<0.05	[NT]	[TV]	[NR]	[NR]
a-ANCE	moles H⁺/t	5	LAB.64	<5	[דא]	[NT]	[NR]	[NR]

Envirolab Reference: 41366 Revision No:

.

.

R 00

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
POCAS						Base II Duplicate II %RPD		Recovery
s-ANCe	%w/w S	0.05	LAB.64	<0.05	[TN]	[NT]	[NR]	[NR]
SKCI	%w/w S	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	111%
SP	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	100%
SPOS	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	97%
a-Spos	moles H⁺/t	5	LAB.64	<5.0	[NT]	[NT]	LCS	98%
Cakci	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	93%
Сар	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	78%
CaA	%w/w	0.005	LAB.64	<0.005	[דא]	[NT]	[NR]	[NR]
Мдксі	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	91%
MgP	%w/w	0.005	LAB.64	<0.005	[TM]	[NT]	LCS	95%
MgA	%w/w	0.005	LAB.64	<0.005	[TM]	[NT]	[NR]	[NR]
SRAS	%w/w	0.005	LAB.64	<0.005	[דא]	[NT]	[NR]	[NR]
S нсі	%w/w S	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	89%
Snas	%w/w S	0.005	LAB.64	<0.005	[NT]	נדא]	[NR]	[NR]
a-Snas	moles H⁺/t	5	LAB.64	<5	[NT]	נדא]	[NR]	[NR]
s-Snas	%w/w S	0.01	LAB.64	<0.01	[NT]	[NT]	[NR]	[NR]
a-Net Acidity	moles H⁺/t	10	LAB.64	<10	[TN]	[TM]	LCS	96%
Liming rate	kg CaCO3 π	0.75	LAB.64	<0.75	[NT]	[NT]	LCS	96%
a-Net Acidity without ANCE	moles H⁺/t	10	LAB.64	<10	[NT]	[ТИ]	[NR]	[NR]
Liming rate without ANCE	kg CaCO3	0.75	LAB.64	<0.75	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			26/05/1 0	41366-2	26/05/10 26/05/10	LCS-1	26/05/10
Date analysed	-			26/05/1 0	41366-2	26/05/10 26/05/10	LCS-1	26/05/10
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4	41366-2	<4 <4	LCS-1	100%
Cadmium	mg/kg	0.5	Metals.20 ICP-AES	<0.5	41366-2	<0.5 <0.5	LCS-1	105%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1	41366-2	8 8 RPD: 0	LCS-1	106%
Copper	mg/kg	1	Metals.20 ICP-AES	<1	41366-2	33 31 RPD: 6	LCS-1	110%

Envirolab Reference: 41366 Revision No: R 00

•

ACCREDITED FOR TECHINICAL COMPETENCE

Page 20 of 24

			ent Referen		1529.01, VAPs	Opera House		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Acid Extractable metals in soil						Base II Duplicate II %RPD		Recovery
Lead	mg/kg	1	Metals.20 ICP-AES	<1	41366-2	65 69 RPD: 6	LCS-1	101%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.1	41366-2	0.3 0.3 RPD: 0	LCS-1	91%
Nickel	mg/kg	1	Metals.20 ICP-AES	<1	41366-2	19 12 RPD: 45	LCS-1	108%
Zinc	mg/kg	1	Metals.20 ICP-AES	<1	41366-2	78 83 RPD: 6	LCS-1	106%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Date prepared	-			25/5/10	1			
Date analysed	-			25/5/10				
Moisture	%	0.1	LAB.8	<0.10				
QUALITY CONTROL Asbestos ID - soils	UNITS	PQL	METHOD	Blank				
Date analysed	-			[NT]				
QUALITY CONTROL		S I	Uup. Sm#		Duplicate	Spike Sm#	Spike % Recovery	
sTPH in Soil (C10-C36)					Duplicate + %RPE	,	,	
Date extracted	-		[NT]		[NT]	41366-1	25/05/2010	
Date analysed	-		[NT]		[NT]	41366-1	25/05/2010	
TPH C10 - C14	mg/kg	3	[NT]		[NT]	41366-1	82%	
TPH C15 - C28	mg/kę	9	[NT]		[NT]	41366-1	102%	
TPH C29 - C36	mg/kg		[NT]		[NT]	41366-1	97%	
Surrogate o-Terphenyl	%		[NT]		[NT]	41366-1	106%	
QUALITY CONTROL	UNITS	6	Dup. Sm#		Duplicate	Spike Sm#	Spike % Recovery	1
PAHs in Soil				Base + I	Duplicate + %RPD)		
Date extracted	-		[NT]		[NT]	41366-1	25/5/10	
Date analysed	-		[NT]		[NT]	41366-1	26/5/10	
Naphthalene	mg/kg	9	[NT]		[NT]	41366-1	86%	
Acenaphthylene	mg/kg	9	[NT]		[NT]	[NR]	[NR]	
Acenaphthene	mg/kg	a	[NT]		[NT]	[NR]	[NR]	
Fluorene	mg/kg	9	[NT]		[NT]	41366-1	91%	
Phenanthrene	mg/kg	a	[NT]		[NT]	41366-1	90%	
Anthracene	mg/kg	9	[NT]		[NT]	[NR]	[NR]	
Fluoranthene	mg/kg	9	[NT]		[NT]	41366-1	92%	
Pyrene	mg/kg	9	[NT]		[NT]	41366-1	100%	
Benzo(a)anthracene	mg/kg	9	[NT]			[NR]		
Chrysene	mg/kg	9	[NT]	[NT] 41366-1 97%		97%		
Benzo(b+k)fluoranthene	mg/kg	9	[NT]		[NT]	[NR]	[NR]	
Benzo(a)pyrene	mg/kg	3	[NT]		[NT]	41366-1	101%	

Envirolab Reference: 41366 Revision No: R 00

•

.

•

_		Client Referen	ce: 71529.01, VAPs Op	oera House	
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[TV]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[דא]	[TN]	41366-1	79%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	41366-1	24/05/2010
Date analysed	-	[NT]	[NT]	41366-1	26/05/2010
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	41366-1	111%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	41366-1	99%
Heptachlor	mg/kg	[NT]	[NT]	41366-1	86%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	41366-1	106%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	41366-1	103%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	41366-1	96%
Dieldrin	mg/kg	[NT]	[NT]	41 366-1	103%
Endrin	mg/kg	[NT]	[NT]	4 1 366-1	86%
pp-DDD	mg/kg	[NT]	[NT]	41366-1	91%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp - DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	41366-1	90%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	41366-1	100%

•

+

		Client Referen	ce: 71529.01, VAPs Op	oera House	
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	41366-1	24/05/2010
Date analysed	-	[NT]	[NT]	41366-1	26/05/2010
Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1221*	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	[NT]	[NT]	41366-1	101%
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	41366 -1	110%

Envirolab Reference: 41366 Revision No: R 00

У

۱.

Report Comments:

 Asbestos was analysed by Approved Identifier:
 Matt Mansfield

 Asbestos was authorised by Approved Signatory:
 Matt Mansfield

 INS: Insufficient sample for this test
 NT: Not tested
 PQL: Practical Quantitation Limit
 <: Less than</td>
 >: Greater than

 RPD: Relative Percent Difference
 NA: Test not required
 LCS: Laboratory Control Sample
 NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate:** This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

Envirolab Reference: 41366 Revision No: R 00

٤

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

ph: 02 9809 0666 Fax: 02 9809 4095

Attention: Kurt Plambeck

Sample log in details:	
Your reference:	71529.01, VAPs Opera House
Envirolab Reference:	41366
Date received:	24/05/10
Date results expected to be reported:	31/05/10

Samples received in appropriate condition for analysis:	YES
No. of samples provided	7 Soils
Turnaround time requested:	Standard
Temperature on receipt	Cool
Cooling Method:	Ice

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

<u>Contact details:</u> Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

Project Mgr. Email: Date Required: Sample Sa
equired:
ple
206
5012
206/
tripp)
Send Results to: Relinquished by:

Form COC Rev0/November 2006

÷

Page of

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 41144-A

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kurt Plambeck

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

71529.01, Opera House VAPS Project

Additional Testing on 5 Soils 18/05/10 28/05/10

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by:
 4/06/10

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 3/06/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

Envirolab Reference: 41144-A Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

Page 1 of 6

Metals in TCLP USEPA1311				· · · ·		
Our Reference:	UNITS	41144-A-1	41144-A-3	41144-A-8	41144-A-11	41144-A-15
Your Reference		201/0.4-0.5	201/1.3-1.5	203/0.8-1	205/0.3-0.5	BD4/170510
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/05/2010	31/05/2010	31/05/2010	31/05/2010	31/05/2010
Date analysed	-	[NA]	[NA]	01/06/2010	[NA]	[NA]
pH of soil for fluid# determ.	pH units	9.40	9.20	9.40	9.20	9.40
pH of soil for fluid # determ. (acid)	pH units	1.20	1.30	1.20	1.10	1.20
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.50	6.10	5.90	5.20	5.20
Lead in TCLP	mg/L	[NA]	[NA]	0.03	[NA]	[NA]

Envirolab Reference: 41144-A Revision No: R 00

•

Client Reference:	71529.01, Opera House VAPS Project
-------------------	------------------------------------

PAHs in TCLP (USEPA 1311)						
Our Reference:	UNITS	41144-A-1	41144-A-3	41144-A-8	41144-A-11	41144-A-15
Your Reference		201/0.4-0.5	201/1.3-1.5	203/0.8-1	205/0.3-0.5	BD4/170510
Date Sampled		17/05/2010	17/05/2010	17/05/2010	17/05/2010	17/05/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/06/2010	01/06/2010	01/06/2010	01/06/2010	01/06/2010
Date analysed	-	01/06/2010	01/06/2010	01/06/2010	01/06/2010	01/06/2010
Naphthalene in TCLP	mg/L	0.003	0.002	<0.001	0.009	0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001	<0.001	0.007	0.002
Fluorene in TCLP	mg/L	0.002	0.001	<0.001	0.008	0.001
Phenanthrene in TCLP	mg/L	0.005	0.006	<0.001	0.024	0.006
Anthracene in TCLP	mg/L	<0.001	0.001	<0.001	0.004	<0.001
Fluoranthene in TCLP	mg/L	<0.001	0.001	<0.001	0.004	<0.001
Pyrene in TCLP	mg/L	<0.001	0.001	<0.001	0.003	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(b+k)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Surrogate p-Terphenyl-d14	%	116	124	115	109	111

Envirolab Reference: 41144-A Revision No: R 00

,

.

Client Reference: 71529.01, Opera House VAPS Project

Method ID	Methodology Summary
LAB.4	Toxicity Characteristic Leaching Procedure (TCLP).
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
GC.12 subset	Leachates are extracted with Dichloromethane and analysed by GC-MS.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC.12	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

٠

,

Client Reference: 71529.01, Opera House VAPS Project

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP USEPA1311						Base II Duplicate II %RPD		
Date extracted	-			31/05/2 010	[NT]	[NT]	LCS-W1	31/05/2010
Date analysed	-			01/06/2 010	[דא]	[TN]	LCS-W1	01/06/2010
Lead in TCLP	mg/L	0.03	Metals.20 ICP-AES	<0.03	[TM]	[NT]	LCS-W1	92%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in TCLP (USEPA 1311)						Base II Duplicate II %RPD		
Date extracted	-			01/06/2 010	[דא]	[NT]	LCS-W1	01/06/2010
Date analysed	-			01/06/2 010	[NT]	[TM]	LCS-W1	01/06/2010
Naphthalene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[דא]	[NT]	LCS-W1	89%
Acenaphthylene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[דא]	[NR]	[NR]
Fluorene in TCLP	mg/L	0.001	GC.12 subset	<0.001	נדאן	[NT]	LCS-W1	91%
Phenanthrene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	נדא]	LCS-W1	89%
Anthracene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[TN]	[NR]	[NR]
Fluoranthene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[דא]	[דא]	LCS-W1	80%
Pyrene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[ТИ]	[NT]	LCS-W1	87%
Benzo(a)anthracene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Chrysene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[TN]	LCS-W1	97%
Benzo(b+k)fluoranthene in TCLP	mg/L	0.002	GC.12 subset	<0.002	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	116%
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[TN]	[NR]	[NR]
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[TM]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[TN]	[NR]	[NR]
S <i>urrogate</i> p-Terphenyl-d14	%		GC.12	114	[NT]	נדאן	LCS-W1	113%

Envirolab Reference: 41144-A Revision No:

۰.

,

R 00

Report Comments:

 Asbestos was analysed by Approved Identifier:
 Not applicable for this job

 Asbestos was authorised by Approved Signatory:
 Not applicable for this job

 INS: Insufficient sample for this test
 NT: Not tested
 PQL: Practical Quantitation Limit
 <: Less than</td>
 >: Greater than

 RPD: Relative Percent Difference
 NA: Test not required
 LCS: Laboratory Control Sample
 NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

Envirolab Reference: 41144-A Revision No: R 00

.

٠

Aileen Hie

· · ·

From:	Kurt Plambeck [kurt.plambeck@douglaspartners.c	:om.au]	
Sent:	Friday, 28 May 2010 01:09 PM		
To:	Jacinta Hurst		
Cc;	Aileen Hie		
Subject	t: RE: Results for registration '41144 - 71529.01, Op	era House VAPS Proj	ect'
Jacinta,	-1 -3 -8	- []	-15
and	lease run samples 201/0.4-0.5, 201/1.3-1.5, 203/0.8 03/0.8-1 for TCLP lead	-1, 205/0.3-0.5 and BI	04 170510 for TCLP PAH
Regards	-8		
Kurt Plam	beck		
Sent: We To: Kurt P	cinta Hurst [mailto:]Hurst@envirolabservices.com.au dnesday, 26 May 2010 3:35 PM Plambeck Results for registration '41144 - 71529.01, Opera He	-	
a copy of t a copy of t	fer to attached for: the Certificate of Analysis the COC ile containing the results		
Please no	te that a hard copy will not be posted.		
Jacinta Hu	should be made directly to: urst on jhurst@envirolabservices.com.au		
•	inger on dspringer@envirolabservices.com.au	call alab	Ref: 41144A
or Tania Not	aras on tnotaras@envirolabservices.com.au	ENGINCIAN	Ref: 41144A DUE: 416/10
Regards			std tiA
ph 02 991	Services St Chatswood NSW 2067 0 6200 fax 02 9910 6201 rolabservices.com.au		
The informati	IALITY NOTICE ion contained in these documents may be privileged and confidential ed for the exclusive use of the addressee designated above. If you		

and is intended for the exclusive use of the addressee designated above. If you are not the addressee, you are hereby notified that any disclosure, reproduction, astribution, or other dissemination or use of this communication is strictly prohibited. If you have received this transmission in error, please inform us and destroy the original message. The opinions expressed in this correspondence are not necessarily those of Envirolab Services Pty. Ltd Thank you.

This e-mail message has been scenned for Viruses.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 36506-A

Client: **Douglas Partners** 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Hartcliff

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

71529, Sydney Opera House (VAPS)

Additional Testing on 4 Soils 22/12/09 08/01/10

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:

11/01/10 Date results requested by: Not Issued Date of Preliminary Report: 11/01/10 Issue Date: NATA accreditation number 2901. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Joshuh Chemist

Envirolab Reference: Revision No: R 00

36506-A

Page 1 of 6

Metals in TCLP USEPA1311					
Our Reference:	UNITS	36506-A-1	36506-A-2	36506-A-3	36506-A-4
Your Reference		BH101/0.2	BH101/1.5	BH102/0.45	BH102/1.0
Date Sampled		17/12/2009	17/12/2009	20/12/2009	20/12/2009
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	8/01/2010	8/01/2010	8/01/2010	8/01/2010
Date analysed	-	11/01/2010	[NA]	[NA]	[NA]
pH of soil for fluid# determ.	pH units	9.70	9.50	9.90	9.60
pH of soil for fluid # determ. (acid)	pH units	0.900	0.900	1.00	0.900
Extraction fluid used	-	1	1	1	1
pH of final Leachate	pH units	5.20	5.30	6.30	5.10
Nickel in TCLP	mg/L	0.1	[NA]	[NA]	[NA]

Envirolab Reference: 36506-A Revision No: R 00

.

.

ACCREDITED FOR TECHNICAL COMPETENCE Page 2 of 6

PAHs in TCLP (USEPA 1311)				
Our Reference:	UNITS	36506-A-2	36506-A-3	36506-A-4
Your Reference		BH101/1.5	BH102/0.45	BH102/1.0
Date Sampled		17/12/2009	20/12/2009	20/12/2009
Type of sample		Soil	Soil	Soil
Date extracted	-	11/01/2010	11/01/2010	11/01/2010
Date analysed	-	11/01/2010	11/01/2010	11/01/2010
Naphthalene in TCLP	mg/L	0.001	<0.001	0.002
Acenaphthylene in TCLP	mg/L	<0.001	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001	<0.001
Phenanthrene in TCLP	mg/L	0.003	0.004	0.003
Anthracene in TCLP	mg/L	<0.001	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001
Benzo(b+k)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001
Surrogate p-Terphenyl-d14	%	116	122	119

۰.

.

Client Reference: 71529, Sydney Opera House (VAPS)

Envirolab Reference: 36506-A Revision No: R 00

Client Reference: 71529, Sydney Opera House (VAPS)

Method ID	Methodology Summary
LAB.4	Toxicity Characteristic Leaching Procedure (TCLP).
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
GC.12 subset	Leachates are extracted with Dichloromethane and analysed by GC-MS.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC.12	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

•

.

.

Client Reference: 71529, Sydney Opera House (VAPS)

QUALITY CONTROL	UNITS PQL METHOD Blank Duplicate Sm# Duplicate results		Spike Sm#	Spike % Recovery				
Metals in TCLP USEPA1311						Base II Duplicate II %RPD		
Date extracted	-			08/01/1 0	[NT]	[NT]	LCS-W1	08/01/10
Date analysed	-			11/01/1 0	[NT]	[NT]	LCS-W1	11/01/10
Nickel in TCLP	mg/L	0.02	Metals.20 ICP-AES	<0.02	[NT]	[NT]	LCS-W1	93%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in TCLP (USEPA 1311)						Base II Duplicate II %RPD		
Date extracted	-			11/01/2 010	[NT]	[NT]	LCS-W1	11/01/2010
Date analysed	-			11/01/2 010	[NT]	[NT]	LCS-W1	11/01/2010
Naphthalene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	98%
Acenaphthylene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[דא]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	94%
Phenanthrene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	101%
Anthracene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluoranthene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	90%
Pyrene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	94%
Benzo(a)anthracene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Chrysene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	109%
Benzo(b+k)fluoranthene in TCLP	mg/L	0.002	GC.12 subset	<0.002	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene in TCLP	mg/L	0.001	GC.12 subset	<0.001	{NT]	[NT]	LCS-W1	117%
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12	117	[NT]	[174]	LCS-W1	113%

Envirolab Reference: 36506-A Revision No:

.

.

R 00

Report Comments:

 Asbestos was analysed by Approved Identifier:
 Not applicable for this job

 INS: Insufficient sample for this test
 NT: Not tested
 PQL: Practical Quantitation Limit
 <: Less than</td>
 >: Greater than

 RPD: Relative Percent Difference
 NA: Test not required
 LCS: Laboratory Control Sample
 NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for SVOC and speciated phenols.

Envirolab Reference: 36506-A Revision No: R 00

Aileen Hie

From: Jacinta Hurst	
Sent: Friday, 8 January 2010 02:20 PM	
To: Aileen Hie	
Subject: FW: Results for registration '36506 - 71529, Sydney Opera House (VAPS)'	
Regards, DUE: 11/11/D	
Regards, DUE-11/11/D	
Envirolab Services Pty Ltd 12 Ashley St Chatswood NSW 2067 T 02 9910 6200 F 02 9910 6201	
D 02 9910 6220 M 0407 00 3037 hurst@envirolabservices.com.au www.envirolabservices.com.au	
From: Peter Hartcliff [mailto:Peter.Hartcliff@douglaspartners.com.au] Sent: Friday, 8 January 2010 02:20 To: Jacinta Hurst Subject: RE: Results for registration '36506 - 71529, Sydney Opera House (VAPS)'	
Jacinta,	
Can I please get you guys to conduct TCLP (ASAP) on samples 1, 2, 3 and 4 (for PAH analys 2, 3 and 4 and for Nickel for sample 1).	sis for samples
Thanks	

Peter Hartcliff | Engineering Geologist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 8878 0616 | F: 02 9809 4095 | M: 0423 564 775 | E: Peter.Hartcliff@douglaspartners.com.au

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

and a second sec

From: Jacinta Hurst [mailto:]Hurst@envirolabservices.com.au] **Sent:** Wednesday, 30 December 2009 1:10 PM **To:** Peter Hartcliff **Subject:** Results for registration '36506 - 71529, Sydney Opera House (VAPS)'

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC an excel file containing the results

- ----

Please note that a hard copy will not be posted.

Enquiries should be made directly to: Jacinta Hurst on jhurst@envirolabservices.com.au

or Joshua Lim on jlim@envirolabservices.com.au or David Springer on dspringer@envirolabservices.com.au or Tania Notaras on tnotaras@envirolabservices.com.au

Regards

Envirolab Services 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 www.envirolabservices.com.au

CONFIDENTIALITY NOTICE

The information contained in these documents may be privileged and confidential and is intended for the exclusive use of the addressee designated above. If you are not the addressee, you are hereby notified that any disclosure, reproduction, distribution, or other dissemination or use of this communication is strictly prohibited. If you have received this transmission in error, please inform us and destroy the original message. The opinions expressed in this correspondence are not necessarily those of Envirolab Services Pty. Ltd. Thank you.

This e-mail message has been scanned for Viruses.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 36506

Client: Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Hartcliff

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

71529, Sydney Opera House (VAPS) 5 Soils 22/12/09 22/12/09

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details: 6/01/10 Date results requested by: Not issued Date of Preliminary Report: 30/12/09 Issue Date: NATA accreditation number 2901. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Operations Manager

Envirolab Reference: 36506 R 00 Revision No:

Joshuh I Chemist

Page 1 of 13

vTPH & BTEX in Soil						
Our Reference:	UNITS	36506-1	36506-2	36506-3	36506-4	36506-5
Your Reference		BH101/0.2	BH101/1.5	BH102/0.45	BH102/1.0	BD/201 209
Date Sampled		17/12/2009	17/12/2009	20/12/2009	20/12/2009	17/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/12/2009	23/12/2009	23/12/2009	23/12/2009	23/12/2009
Date analysed	-	23/12/2009	23/12/2009	23/12/2009	23/12/2009	23/12/2009
VTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	88	89	81	89	86

Envirolab Reference: 36506 Revision No: R 00

*

١

ACCREDITED FOR TECHNICAL COMPETENCE

Page 2 of 13

Client Reference:	71529, Sydney Opera House (VAPS)
-------------------	----------------------------------

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	36506-1	36506-2	36506-3	36506-4	36506-5
Your Reference		BH101/0.2	BH101/1.5	BH102/0.45	BH102/1.0	BD/201 209
Date Sampled		17/12/2009	17/12/2009	20/12/2009	20/12/2009	17/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted		23/12/2009	23/12/2009	23/12/2009	23/12/2009	23/12/2009
Date analysed	-	24/12/2009	24/12/2009	24/12/2009	24/12/2009	24/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	120	140	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	90	97	. 96	93	92

Envirolab Reference: 36506 Revision No: R 00

*,

.

PAHs in Soil						
Our Reference:	UNITS	36506-1	36506-2	36506-3	36506-4	36506-5
Your Reference		BH101/0.2	BH101/1.5	BH102/0.45	BH102/1.0	BD/201 209
Date Sampled		17/12/2009	17/12/2009	20/12/2009	20/12/2009	17/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/12/2009	23/12/2009	23/12/2009	23/12/2009	23/12/2009
Date analysed	-	23/12/2009	23/12/2009	23/12/2009	24/12/2009	24/12/2009
Naphthalene	mg/kg	<0.1	0.1	0.1	0.1	0.1
Acenaphthylene	mg/kg	<0.1	0.3	0.4	0.1	0.1
Acenaphthene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.2	0.1	0.1	0.1
Phenanthrene	mg/kg	<0.1	3.5	4.0	2.1	2.1
Anthracene	mg/kg	<0.1	0.9	0.9	0.4	0.4
Fluoranthene	mg/kg	<0.1	6.1	7.0	2.5	2.6
Pyrene	mg/kg	<0.1	6.1	7.3	2.7	2.7
Benzo(a)anthracene	mg/kg	<0.1	2.9	3.3	1.1	1.2
Chrysene	mg/kg	<0.1	3.0	3.3	1.2	1.2
Benzo(b+k)fluoranthene	mg/kg	<0.2	4.7	5.4	1.7	1.8
Benzo(a)pyrene	mg/kg	<0.05	3.5	4.2	1.3	1.4
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	2.0	2.6	0.7	0.7
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.2	0.2	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	1.8	2.3	0.7	0.7
Surrogate p-Terphenyl-d14	%	90	88	91	92	90

71529, Sydney Opera House (VAPS) Client Reference:

Envirolab Reference: 36506 Revision No:

.

·

R 00

Organochlorine Pesticides in soil						
Our Reference:	UNITS	36506-1	36506-2	36506-3	36506-4	36506-5
Your Reference		BH101/0.2	BH101/1.5	BH102/0.45	BH102/1.0	BD/201 209
Date Sampled		17/12/2009	17/12/2009	20/12/2009	20/12/2009	17/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/12/2009	23/12/2009	23/12/2009	23/12/2009	23/12/2009
Date analysed	-	23/12/2009	23/12/2009	23/12/2009	23/12/2009	23/12/2009
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	97	99	101	101	102

۰,

1

Client Reference: 71529, Sydney Opera House (VAPS)

Envirolab Reference: 36506 R 00 Revision No:

Client Reference:	71529, Sydney Opera House (V	APS)
onene reference.	Troms, oganog opera neuse (1	, u v j

.

Acid Extractable metals in soil						•
Our Reference:	UNITS	36506-1	36506-2	36506-3	36506-4	36506-5
Your Reference		BH101/0.2	BH101/1.5	BH102/0.45	BH102/1.0	BD/201 209
Date Sampled		17/12/2009	17/12/2009	20/12/2009	20/12/2009	17/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	23/12/2009	23/12/2009	23/12/2009	23/12/2009	23/12/2009
Date analysed	-	29/12/2009	29/12/2009	29/12/2009	29/12/2009	29/12/2009
Arsenic	mg/kg	<4	<4	4	<4	<4
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	9	25	10	13	12
Copper	mg/kg	81	63	41	22	19
Lead	mg/kg	4	54	70	25	32
Mercury	mg/kg	<0.1	<0.1	1.6	0.8	0.9
Nickel	mg/kg	77	37	11	7	8
Zinc	mg/kg	41	82	43	17	18

Envirolab Reference: 36506 Revision No: R 00

:

۰.

Client Reference: 71529, Sydney Opera House (VAPS)

Moisture						
Our Reference:	UNITS	36506-1	36506-2	36506-3	36506-4	36506-5
Your Reference		BH101/0.2	BH101/1.5	BH102/0.45	BH102/1.0	BD/201 209
Date Sampled		17/12/2009	17/12/2009	20/12/2009	20/12/2009	17/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/12/2009	23/12/2009	23/12/2009	23/12/2009	23/12/2009
Date analysed	-	23/12/2009	23/12/2009	23/12/2009	23/12/2009	23/12/2009
Moisture	%	7.3	6.9	16	5.3	5.5

Envirolab Reference: 36506 Revision No: R 00

۰.

~

ACCREDITED FOR TECHNICAL COMPETENCE Page 7 of 13

Client Reference:	71529, Sydney Opera House (VAPS)
-------------------	----------------------------------

Asbestos ID - soils						
Our Reference:	UNITS	36506-1	36506-2	36506-3	36506-4	36506-5
Your Reference		BH101/0.2	BH101/1.5	BH102/0.45	BH102/1.0	BD/201 209
Date Sampled		17/12/2009	17/12/2009	20/12/2009	20/12/2009	17/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed		24/12/2009	24/12/2009	24/12/2009	24/12/2009	24/12/2009
Sample Description	-	Approx 30g Soil	Approx 30g Soil	Approx 30g Soil	Approx 30g Soil	Approx 40g Soil
Asbestos ID in soil	-	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

Envirolab Reference: 36506 Revision No:

:

• -

R 00

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Metais.20 ICP-AES	Determination of various metals by ICP-AES.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB.1	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.

٠.

·

..

Client Reference: 71529, Sydney Opera House (VAPS)

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil						Base II Duplicate II %RPD		
Date extracted	•			23/12/0 9	36506-4	23/12/2009 23/12/2009	LCS-3	23/12/09
Date analysed	-			23/12/0 9	36506-4	23/12/2009 23/12/2009	LCS-3	23/12/09
vTPH C6 - C9	mg/kg	25	GC.16	<25	36506-4	<25 <25	LCS-3	114%
Benzene	mg/kg	0.5	GC.16	<0.5	36506-4	<0.5 [<0.5	LCS-3	85%
Toluene	mg/kg	0.5	GC.16	<0.5	36506-4	<0.5 <0.5	LCS-3	108%
Ethylbenzene	mg/kg	1	GC.16	<1.0	36506-4	<1.0 <1.0	LCS-3	122%
m+p-xylene	mg/kg	2	GC.16	<2.0	36506-4	<2.0 <2.0	LCS-3	127%
o-Xylene	mg/kg	1	GC.16	<1.0	36506-4	<1.0 <1.0	LCS-3	132%
S <i>urrogate</i> aaa-Trifluorotoluene	%		GC.16	90	36506-4	89 93 RPD: 4	LCS-3	94%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			23/12/0 9	36506-4	23/12/2009 23/12/2009	LCS-3	23/12/09
Date analysed	-			24/12/0 9	36506-4	24/12/2009 24/12/2009	LCS-3	24/12/09
TPH C10 - C14	mg/kg	50	GC.3	<50	36506-4	<50 [] <50	LCS-3	104%
TPH C15 - C28	mg/kg	100	GC.3	<100	36506-4	<100 <100	LCS-3	123%
TPH C29 - C36	mg/kg	100	GC.3	<100	36506-4	<100 <100	LCS-3	126%
Surrogate o-Terphenyl	%		GC.3	98	36506-4	93 92 RPD: 1	LCS-3	95%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Date extracted	-			23/12/0 9	36506-4	23/12/2009 23/12/2009	LCS-3	23/12/09
Date analysed	-			23/12/0 9	36506-4	24/12/2009 24/12/2009	LCS-3	23/12/09
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	0.1 0.1 RPD: 0	LCS-3	93%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	0.1] 0.1 RPD: 0	LCS-3	95%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	2.1 1.9 RPD: 10	LCS-3	94%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	0.4 0.4 RPD: 0	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	2.5 2.2 RPD: 13	LCS-3	84%
Pyrene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	2.7 2.3 RPD: 16	LCS-3	96%

36506 Envirolab Reference: **Revision No:** R 00

NΔ

Page 10 of 13

Client Reference: 71529, Sydney Opera House (VAPS)

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	1.1] 1.0 ! RPD: 10	[NR]	[NR]
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	1.2 1.0 RPD: 18	LCS-3	101%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	36506-4	1.7 1.5 RPD: 12	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	36506-4	1.3 1.2 RPD: 8	LCS-3	104%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	0.7 0.6 RPD: 15	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	<0.1 <0.1	(NR)	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	36506-4	0.7 0.6 RPD: 15	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12 subset	93	36506-4	92 89 RPD: 3	LCS-3	93%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			23/12/0 9	36506-4	23/12/2009 23/12/2009	LCS-1	23/12/09
Date analysed	-			23/12/0 9	36506-4	23/12/2009 23/12/2009	LCS-1	23/12/09
HCB	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	LCS-1	103%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	LCS-1	120%
Heptachlor	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	LCS-1	98%
delta-BHC	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	LCS-1	100%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	LCS-1	93%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	LCS-1	119%
Dieldrin	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	LCS-1	104%
Endrin	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1] <0.1	LCS-1	109%
pp-DDD	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	LCS-1	114%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 <0.1	LCS-1	110%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	36506-4	<0.1 j <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-5	93	36506-4	101 97 RPD: 4	LCS-1	94%

Envirolab Reference: 36506 Revision No: R 00

:

.

ACCREDITED FOR TECHNICAL COMPETENCE Page 11 of 13

Client Reference:	71529, Sydney Opera House (VAPS)
-------------------	----------------------------------

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			23/12/0 9	36506-4	23/12/2009 23/12/2009	LCS-6	23/12/09
Date analysed	-			29/12/0 9	36506-4	29/12/2009 29/12/2009	LCS-6	29/12/09
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4	36506-4	<4 <4	LCS-6	105%
Cadmium	mg/kg	0.5	Metals.20 ICP-AES	<0.5	36506-4	<0.5 <0.5	LCS-6	107%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1	36506-4	13 16 RPD: 21	LCS-6	108%
Copper	mg/kg	1	Metals.20 ICP-AES	<1	36506-4	22 22 RPD: 0	LCS-6	111%
Lead	mg/kg	1	Metals.20 ICP-AES	<1	36506-4	25 22 RPD: 13	LCS-6	106%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.1	36506-4	0.8 0.7 RPD: 13	LCS-6	100%
Nickel	mg/kg	1	Metals.20 ICP-AES	<1	36506-4	7 9 RPD: 25	LCS-6	110%
Zinc	mg/kg	1	Metals.20 ICP-AES	<1	36506-4	17 13 RPD: 27	LCS-6	107%

QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank
Date prepared	-			23/12/0 9
Date analysed	-			23/12/0 9
Moisture	%	0.1	LAB.8	<0.10

.

QUALITY CONTROL Asbestos ID - soils	UNITS	PQL	METHOD	Blank
Date analysed	-			[NT]

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 30-40g of sample in it's own container.

Asbestos was analysed by Approved Identifier: Joshua Lim

INS: Insufficient sample for this testNT: Not testedPQL: Practical Quantitation Limit<: Less than</th>>: Greater thanRPD: Relative Percent DifferenceNA: Test not requiredLCS: Laboratory Control SampleNR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for SVOC and speciated phenols.

Envirolab Reference: 36506 Revision No: R 00 ACOREDITED FOR TECHNICAL

Form COC Rev0/November 2006

100001 TINY 010 Chatswood NSW 2067 Phi 9970 6200 Envirolab Services Ξ Ξ E £ Contractived; 7,2,12,00 See note (1) Joh No: 36506 note note See note See note 19-Ja-Holhotes Race Vad by: DE Lerus Cool/Antient below below below See below below See Date & Time: 22 - 17 - 100 Other- coull of OCP's and " 12 Ashley Street, Chatswood NSW 2068 (02) 9809 4095 Asbestos (02) 9809 0666 Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au Date & Time: X × X × X NOCe slonard Phone: Fax: Envirolab Services × × × × × Н∀Ч Ş Attn: Tania Notaras PCBs OPs/ W. втех/ Втех/ Received By: 🤌 × × × X X Received By: Analytes N × × × х X ö Ż × × X × X 96 Hermitage Road, West Ryde 2114 Lab Quote No. βĤ Sydney Opera House (VAPS) × × × × × q Note (1) - Please extract all samples prior to the Christmas shutdown × X × × X Sampler. PGH ... 5 Date & Time: × Date & Time: × X × × Շ X X × × × peter.hartcliff@douglaspartners.com.au 0423 564 775. 8 X Х X × × As X × X × × ədki Address: Jar Jar Jar Jar Container 71529..... Sample Type S - soil W - Water ဟ S S တ Signed: Signed: Douglas Partners Sampling Date 20th 20th 17th 17th 2000 Dec Dec Dec D Lab \sim 5 Ŋ \sim BJM. Sample Depth Date Required: Send Results to: Project Name: 0.45 Relinquished by: Lab Report No. Relinquished by: Project Mgr. 0.2 1,5 , Project No: Email: Sample ID BD/201 **BH102** BH102 BH101 BH101 209

CHAIN OF CUSTODY

Douglas Partners Countered

۰.

.'`

ъ

Page ____

ENVIRONMENTAL LABORATORIES

QUALITY CONTROL

Accredited for compliance with ISO IEC 17025. The results of tests, calibrations and/or measurements included in this document are traceable to Australian inclused standards. NATA is a signatory to the APLAC methal recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

AOIS AUSTRALIAN QUARANTINE AND INSPECTION SERVICE

SYDNEY License No. N0356.

Quantitine Approved Premises criteria 5.1 for quantitine containment level 1 (QCI) facilities, Class five criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

Laboratory Report No: E048260 **Client Name: Douglas Partners Client Reference: Opera House VAPS Project** Kurt Plambeck **Contact Name:** Chain of Custody No: na SOIL Sample Matrix:

Cover Page 1 of 4 plus Sample Results

Date Received: 19/05/2010 Date Reported: 27/05/2010

iitanon No 1645

This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY ASSURANCE CRITERIA

			GLOBAL A	CCEPTANCE (CRITERIA (GAC)
Accuracy: Precision:	matrix spike: lcs, crm, method: surrogate spike: laboratory duplicate:	 1 in first 5-20, then 1 every 20 samples 1 per analytical batch addition per target organic method 1 in first 5-10, then 1 every 10 samples 	Accuracy:	spike, lcs, crm surrogate:	general analytes 70% - 130% recovery phenol analytes 50% - 130% recovery organophosphorous pesticide analytes 60% - 130% recovery phenoxy acid herbicides, organotin 50% - 130% recovery
	laboratory triplicate:	re-extracted & reported when duplicate RPD values exceed acceptance criteria		anion/cation bal	l: +/- 10% (0-3 meq/l), +/- 5% (>3 meq/l)
Halding Times			Precision:	method blank:	not detected >95% of the reported EQL
Holding Times:	Iding Times: soils, waters:	Refer to LabMark Preservation & THT table VOC's 14 days water / soil		duplicate lab RPD (metals):	0-30% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)
		VAC's 7 days water or 14 days acidified VAC's 14 days soil		duplicate lab RPD:	0-50% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)
		SVOC's 7 days water, 14 days soil Pesticides 7 days water, 14 days soil Metals 6 months general elements Mercury 28 days	• -	CONTROL SPECIFIC AC	CEPTANCE CRITERIA (ASAC)
Confirmation:	target organic analysis:	GC/MS, or confirmatory column	Accuracy:	spike, lcs, crm sштоgate:	analyte specific recovery data <3xsd of historical mean
Sensitivity:	EQL:	Typically 2-5 x Method Detection Limit (MDL)	Uncertaint	y: spike, lcs:	measurement calculated from historical analyte specific control
RESULT ANN	OTATION				charts

Data Quality Objective Data Quality Indicator Estimated Quantitation Limit t: not applicable

matrix spike recovery p: laboratory duplicate lcs: laboratory triplicate RPD relative % difference mb:

pending laboratory control sample certified reference material crm: method blank

bcs: batch specific lcs bmb: batch specific mb

s:

d:

r:

Geoff Weir Quality Control (Report signatory) geoff.weir@labmark.com.au

Geoff Weir Authorising Chemist (NATA signatory) geoff.weir@labmark.com.au

11.

Jeremy Truong Authorising Chemist (NATA signatory) jeremy.truong@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

@ copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 n NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

) 9476 8219
 * Telephone: (03) 9538 2277
 * Fax: (03) 9538 2278
 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 * Telephone: (02) 9476 6533 * Fax: (02) 9476 8219

Form QS0144, Rev. 1 : Date Issued 06 02 08

ENVIRONMENTAL LABORATORIES

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E048260

Cover Page 2 of 4

1.

Environmental Laboratory Industry Group
Foundation Member

GENERAL

- A. Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or surrogate recovery data.
- B. EQL's are matrix dependant and may be increased due to sample dilution or matrix interference.

NEPC GUIDELINE COMPLIANCE - DOO

- C. Laboratory QA/QC samples are specific to this project.
- D. Inter-laboratory proficiency results are available upon request. NATA accreditation details available at www.nata.asn.au.
- E. VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to extraction.
- F. Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable.
- G. Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept or reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations.
- H. Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date.
- I. LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

CHAIN OF CUSTODY (COC) & SAMPLE RECEIPT NOTICE (SRN) REQUIREMENTS

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

А.	NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
B.	NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
C.	Subcontracted analyses: Refer to Sample Receipt Notice and additional DQO comments.
0.	

This document is issued in accordance with NATA's accreditation requirements.

Form QS0144, Rev. 1 : Date Issued 06:02:08

ENVIRONMENTAL LABORATORIES

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E048260

Cover Page 3 of 4

.

Environmental Laboratory Industry Group
Foundation Member

4.	QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT
----	--

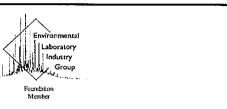
Page:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	BTEX by P&T	1	0	0%	0	0	0%
1	Volatile TPH by P&T (vTPH)	1	0	0%	0	0	0%
2	Petroleum Hydrocarbons (TPH)	1	0	0%	0	0	0%
3	Polyaromatic Hydrocarbons (PAH)	1	0	0%	0	0	0%
4	Acid extractable metals (M7)	1	0	0%	0	0	0%
5	Acid extractable metals - mercury	1	0	0%	0	0	0%
6	Moisture	1					

GLOSSARY:

- #d number of discrete duplicate extractions/analyses performed.
- %d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).
- #t number of triplicate extractions/analyses performed.

#s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%).


5. ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, unless indicated below.

This document is issued in accordance with NATA's accreditation requirements.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E048260

Cover Page 4 of 4

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES</u> <u>NOT</u> report <u>NON-RELEVANT BATCH OA/OC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

This document is issued in accordance with NATA's accreditation requirements.

G's abarre	Labora	Laboratory Report No:	t No:	E048260			Page:	Page: 1 of 6		Final
	Client	Client Name:		Douglas Partners	lers		plus co	plus cover page		Certificate
ENVIRONMENTAL LABORATORIES	Contac	Contact Name:		Kurt Plambeck	¥		Date:	Date: 27/05/10		of Analysis
	Client	Client Reference:		Opera House VAPS Project 71529.01	VAPS Proje	st 71529.01	This repo	ort supercedes 1	This report supercedes reports issued on: N/A	1/A
Laboratory Identification		262777	lcs	qm						
Sample Identification		BD2	Ş	S						
Depth (m)			1	1						
Sampling Date recorded on COC		15/5/10	ł	;						
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		21/5/10 24/5/10	21/5/10 21/5/10	21/5/10 21/5/10						
Method:E029.2/E016.2 BTEX by P&T	EQL									
Benzene	0.2	<0.2	97%	<0.2						
Toluene	0.5	<0.5	97%	<0.5						
Ethy Ibenzene	0.5	<0.5	%06	<0.5						
meta- and para-Xylene	1	7	93%	7						
ortho-Xylene	0.5	<0.5	94%	<0.5						
Total Xylene	Ļ	ł	ł	1						
CDFB (Surr @, 4 mg/kg)	ł	103%	107%	104%						
Method : E029.2/E016.2 Volatile TPH by P&T (vTPH) C6 - C9 Fraction	EQL 10	<10	104%	<10						

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E029.2/E016.2: 8-10g soil extracted with 20ml methanol. Analysis by P&T/GC/FID/MSD. E029.2/E016.2: 8-10g soil extracted with 20ml methanol. Analysis by P&T/GC/MSD.

LabMark Pty Ltd ABN 27 079 798 397 SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 Telephone: (02) 9476 6533 Fax: (02) 9476 6219 MELBOURNE: 116 Moray Street, South Melbourne VIC 3205 Telephone: (03) 9686 8344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 8344 Fax: (03) 9686 7344 Fax: (03) 9686 8344 Fax: (03) 9686 8344 Fax: (03) 9686 8344 Fax: (03) 9686 8344 Fax: (03) 9686 7344

.

Girbmerk	Labora	Laboratory Report No:		E048260			Page	Page: 2 of 6		Final	
	Client]	Client Name:	J	Douglas Partners	lers		plus	plus cover page		Certificate	e
ENVIRONMENTAL LABORATORIES	Contac	Contact Name:	-	Kurt Plambeck	ĸ		Date	Date: 27/05/10		of Analysis	
	Client]	Client Reference:)	Opera House VAPS Project 71529.01	VAPS Projec	st 71529.01	This re	port supercedes	This report supercedes reports issued on: N/A	N/A	
Laboratory Identification		262777	lcs	dm							Π
Sample Identification		BD2	8	SC							
(Depth (m)		01c0c1	ł	ł							
Sampling Date recorded on COC		15/5/10	1	1							
Laboratory Extraction (Preparation) Date		21/5/10	21/5/10	21/5/10						-	
Laboratory Analysis Date		22/5/10	21/5/10	21/5/10							
Method : E006.2 Petroleum Hydrocarbons (TPH)	EOL										
C10 - C14 Fraction	<u>5</u> 0	<50	ł	<50							
C15 - C28 Fraction	100	<100	80%	<100							
C29 - C36 Fraction	100	<100	1	<100							
Sum of TPH C10 - C36	1	I	I	ł							
	. .	.									Ī

.

.

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E006.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/FID.

.

6) Leib Merly	Labor	Laboratory Report No:		E048260			Page: 3 of 6	3 of 6	ц	Final
	Client	Client Name:		Douglas Partners	STS		plus co	plus cover page	Ŭ	Certificate
ENVIRONMENTAL LABORATORIES	Conta	Contact Name:	, ,	Kurt Plambeck			Date: 2	Date: 27/05/10	0	of Analysis
	Client	Client Reference:		Opera House V	Opera House VAPS Project 71529.01	529.01	This repo	This report supercedes reports issued on: N/A	s issued on: N/A	
Laboratory Identification		262777	lcs	qm						
Sample Identification		BD2	8	ŚĊ						
Depth (m)		010001	ł	1						
Sampling Date recorded on COC		15/5/10	1	}						
Laboratory Extraction (Preparation) Date		21/5/10	21/5/10	21/5/10						
Laboratory Analysis Date		21/5/10	21/5/10	21/5/10						
Method:E007.2 Polvaromatic Hydrocarhons (PAH)	FOL									
Naphthalene	0.5	<0.5	95%	<0.5						
Acenaphthylene	0.5	<0.5	36%	≪0.5						
Acenaphthene	0.5	<0.5	92%	<0.5						
Fluorene	0.5	<0.5	%06	<0.5						
Phenanthrene	0.5	<0.5	105%	<0.5						
Anthracene	0.5	<0.5	106%	<0.5						
Fluoranthene	0.5	<0.5	%06	<0.5						
Pyrene	0.5	<0.5	89%	<0.5						
Benz(a)anthracene	0.5	<0.5	75%	<0.5						
Chrysene	0.5	<0.5	101%	<0.5						
Benzo(b)&(k)fluoranthene	<u> </u>	Ÿ	88%	V						
Benzo(a) pyrene	0.5	<0.5	%06	<0.5						
Indeno(1,2,3-c,d)pyrene	0.5	<0.5	%06	<0.5						
Dibenz(a,h)anthracene	0.5	<0.5	108%	<0.5						
Benzo(g,h,i)perylene	0.5	<0.5	97%	<0.5						
Sum of reported PAHs	ł	1	1	1						
2-FBP (Surr @ 5mg/kg)	}	84%	86%	88%						
TP-d14 (Surr @ 5mg/kg)	1	20%	77%	20%						
									-	

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E007.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/MS.

LabMark Pty Ltd ABN 27 079 798 397 SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 Telephone: (02) 9476 6533 Fax: (02) 9476 8219 MELBOURNE: 116 Moray Street, South Melbourne VIC 3205 Telephone: (03) 9686 8344 Fax: (03) 9686 7344 Fax: (03) 9686 7348 Fax: (03) 9686 8344 Fax: (03) 9686 7348 Fax: (03) 9686 8344 Fax: (03) 9686 8344 Fax: (03) 9686 8344 Fax: (03) 9686 7348 Fax: (03) 9686 7348 Fax: (03) 9686 Fax: (03) 9686 8344 Fax: (03) 9686 Fax: (03) 976

.

٠

	aborat	Laboratory Report No:		E048260			Page:	Page: 4 of 6		Final
	Client Name:	ame:	Q	Douglas Partners	lers		plus c	plus cover page		Certificate
	Ontact	Contact Name:	X	Kurt Plambeck	k		Date:	Date: 27/05/10		of Analysis
Ū	lient R	Client Reference:	0	pera House	Opera House VAPS Project 71529.01	ж 71529.01	This rep	ort supercedes re	This report supercedes reports issued on: N/A	, A
Laboratory Identification		262777	crm	lcs	dm					
Sample Identification		BD2	8	SC	Ş					
Depth (m)		016061	ł	:	ł					
Sampling Date recorded on COC		15/5/10	1	1	1					
Laboratory Extraction (Preparation) Date		21/5/10	21/5/10	21/5/10	21/5/10					
Laboratory Analysis Date		25/5/10	22/5/10	22/5/10	22/5/10					
Method : E022.2 Acid extractable metals (M7) Arsenic Cadmium Chromium Chromium Copper Nickel Lead Zinc	EQL 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>^ 10.2 √ 0.2 4 4 9 10.2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1</pre>	109% 97% 116% 115% 103% 99%	115% 103% 129% 109% 112% 103% 118%	$\triangle \stackrel{\otimes}{:} \triangle \Diamond \triangle \Diamond \Diamond \Diamond$					

Results expressed in mg/kg dry weight unless otherwise specified

Comments:

E022.2: 0.5g digested in nitric/hydrochloric acid. Analysis by ICP-MS.

.

,

Gil all Maril	Labor	Laboratory Report No:		E048260			Page: 5 of 6	E	Final
	Client	Client Name:		Douglas Partners	lers		plus cover page	0	Certificate
ENVIRONMENTAL LABORATORIES	Contac	Contact Name:		Kurt Plambeck	ĸ		Date: 27/05/10	0	of Analysis
	Client	Client Reference:	-	Opera House VAPS Project 71529.01	VAPS Project	t 71529.01	This report supercedes reports issued on: N/A	ports issued on: N/A	
Laboratory Identification		262777	crm	lcs	qm				
Sample Identification		BD2	8	8	SC				
Danth (m)		150510							
Sampling Date recorded on COC		15/5/10	1	E	1				
Laboratory Extraction (Preparation) Date		21/5/10	21/5/10	21/5/10	21/5/10				
Laboratory Analysis Date		24/5/10	21/5/10	21/5/10	21/5/10				
Method: E026.2 Acid extractable metals - mercury Mercury	EQL 0.05	<0.05	%L6	%L6	<0.05				
Results expressed in mg/kg dry weight unless otherwise specified	otherwise s	specified							

<u>Ś</u>. ġ. 5 5 Ř

Comments:

E026.2: 0.5g digested with nitric/hydrochloric acid. Analysis by CV-ICP-MS or FIMS.

LabMark Pty Ltd ABN 27 079 798 397 SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 Telephone: (02) 9476 6533 Fax: (02) 9476 6219 MELBOURNE: 116 Moray Street, South Melbourne VIC 3205 Telephone: (03) 9686 8344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (03) 9686 7344 Fax: (02) 9476 6533 Fax: (02) 9476 6533 Fax: (02) 9476 6534 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476 6544 Fax: (02) 9476

•

.

	Labora	Laboratory Report No:	No:	E048260			Page	Page: 6 of 6		Final	
	Client Name:	Name:		Douglas Partners	ers		plus c	plus cover page		Certificate	
ENVIRONMENTAL LABORATORIES	Contac	Contact Name:		Kurt Plambeck	<u></u>		Date:	Date: 27/05/10		of Analysis	
	Client]	Client Reference:		Opera House VAPS Project 71529.01	VAPS Proje	ot 71529.01	This rej	oort supercedes	This report supercedes reports issued on: N/A	N/A	
Laboratory Identification		262777									
Sample Identification		BD2						~~			
Danih (m)		150510									
Sampling Date recorded on COC		15/5/10									
Laboratory Extraction (Preparation) Date		21/5/10									
Laboratory Analysis Date		24/5/10									
Method : E005.2											
Moisture	EQL										
Moisture	1	7									
					-			*	•		

•

•

Results expressed in % w/w unless otherwise specified

Comments:

E005.2: Moisture by gravimetric analysis. Results are in % w/w.

Quality, Service, Support

Report Date : 20/05/2010 Report Time : 10:31:51AM

Sample Receipt

Notice (SRN) for E048260

	Client Deta	ils	Laboratory	Reference Information
Client Name: Client Phone:	Douglas Partners			ve this information ready contacting Labmark.
Client Fax:	02 9809 0666 02 98094095		wileii	
Contact Name:	Kurt Plambeck		Laboratory Report:	E048260
Contact Email:		ouglaspartners.com.au	Quotation Number:	- Not provided, standard prices apply
Client Address:	96 Hermitage Roa	•	Laboratory Address:	Unit 1, 8 Leighton Pl.
	West Ryde NSW		Lubolatory Address.	Asquith NSW 2077
Project Name:	Opera House VAF	°S Project	Phone:	61 2 9476 6533
Project Number:	71529.01		Fax:	61 2 9476 8219
CoC Serial Number	•		Sample Receipt Contac	et: Ros Schacht
Purchase Order:	- Not provided -		Email:	Ros.Schacht@labmark.com.au
Surcharge:	No surcharge app due date)	lied (results by 6:30pm on	Reporting Contact:	Leanne Boag
Sample Matrix:	SOIL		Email:	leanne.boag@labmark.com.au
Date Sampled (ear		15/05/2010	NATA Accreditation:	13542
Date Samples Rec	•	19/05/2010	TGA GMP License:	185-336 (Sydney)
Date Sample Recei			APVMA License:	6105 (Sydney)
Date Preliminary R	•	27/05/2010	AQIS Approval:	NO356 (Sydney)
Client TAT Reques	t Date:	27/05/2010	AQIS Entry Permit:	200521534 (Sydney)
Reporting Require	ments: Electroni	c Data Download required:N	lo Ir	nvoice Number: 10EA9581
Sample Condition	Samples Samples Samples Security	eived with samples. Report received in good order . received with cooling media received chilled. seals not used . container & chemical preserv	a: Ice bricks .	ed on COC.
Comments:		D/Sampling date as labelled s M8 (As, Cd, Cr, Cu, Ni, Pb		ed TRH as TPH C6-C36 & Heavy instructed
Holding Times:	Date rec	eived allows for sufficient tin	ne to meet Technical Holdir	ng Times.
Preservation:	Chemica	l preservation of samples sa	atisfactory for requested an	alvtes.

LabMark shall responsibly dispose of spent customer soil and water samples which includes the disintegration of the sample label. A sample disposal fee of \$1.00 is applicable on all samples received by the laboratory regardless of whether they have undergone analytical testing. Sample disposal of environmental samples shall be 31 days (water) and 3 months (soil, HN03 preserved samples) after laboratory receipt, unless otherwise requested in writing by the client. Samples requested to be held in non-refrigerated storage shall incur \$5.00/ sample/ 3 months. Additional refrigerated storage shall incur \$30/ sample/ 3 months. Combination prices apply only if requested. Transfer of report ownership from LabMark to the client shall occur once full and final payment has been settled and verified. All report copies may be retracted where full payment does not occur within the agreed settlement period.

Analysis comments:

Subcontracted Analyses:

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Report Date : 20/05/2010 Report Time: 10:31:51AM

Sample Receipt Notice (SRN) for E048260

Quality, Service, Support

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

_	C	RID R	EVIEW TABLE			,						Re	ques	ted A	nalys	sis				
No.	Date	Depth	Client Sample ID	BTEX by P&T	Acid extractable metals - mercury	Acid extractable metals (M7)	Moisture	Polyaromatic Hydrocarbons (PAH)	PREP Not Reported	Petroleum Hydrocarbons (TPH)	Volatile TPH by P&T (VTPH)	-								
262777	15/05		BD2 150510	•	٠	٠	٠	٠	٠	٠	•									
			Totals:	1	1	1	1	1	1	1	1									

'PREP Not Reported' refers to an internal laboratory instruction - client confirmation of this parameter is not required.

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Quality, Service, Support

Report Date : 20/05/2010 Report Time : 10:31:51AM

Sample Receipt

Notice (SRN) for E048260

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			 	•		Re	ques	ted A	nalys	sis				
							Ke	ques							
No. Date Depth 262777 15/05	Client Sample ID BD2 150510	● M2-T_S													
	Totals:	1	Ī		<u> </u>							<u> </u>			

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

L 1	Г		
CHAIN OF CUSTODY	VSW 2068 10 6201 m.au	Notes interlats case in eps intro ab case in eps	: (02) 9809 0666 (02) 9809 4095 Date & Time: 1 2/5/10 4pm Date & Time: 19 /5/10 しょうどう
	To: Envirolab Services 12 Ashley Street, Chatswood NSW 2068 Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au	A C C DEX BC DEX	Da Da
	To: Envirolab Services 12 Ashiey Street, C Attn: Tania Notaras Phone: 02 9910 62 Email: tnotaras@envirot	Analytes Phenois Asbestos	Received By: Z.L. Received By:
		A PAH CB PAH	d, West Ryde 2114 Time: Time:
	ect	Heavy TRH metals BTEX	96 Hermitage Road, West Ryde 2114 Date & Time: Date & Time:
	louse VAPS Proje 3.01Mob. Phone: mbeck@douglasf ard	Ar Ar Gi Date Ar Ar Gi S - soil Ar Ar Gi S - soil Ar Ar Gi S - soil Ar Ar Gi M - water Ar Ar Gi M - water Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar A	<i>P.P. 2.60</i> Irtners Address: Signed: Signed:
Douglas Partners	ne: Opera Hous 71529.01 KP kurt.plambe red:standard	0 0 0 7 × 10 0 7 × 10 0 0 1 × 10 0 0 0 × 10 0 0 0 × 10 0 0 0	lo
Doug Geotechnic	Project Name: Project No: Project Mgr: Email: Date Required:	Sample Sample Sample ID Depth 10 Depth 10 Depth 10 Depth 205/2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	Lab Report No. Send Results to: Relinquished by: Relinquished by:

••

Form COC RevO/November 2006

Page / of

 $\sum_{i=1}^{n}$

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 41366-A

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kurt Plambeck

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

71529.01, VAPs Opera House

Additional Testing on 2 Soils 24/05/10 02/06/10

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

 Report Details:

 Date results requested by:
 9/06/10

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 9/06/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

Envirolab Reference: 41366-A Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

Page 1 of 6

ĩ

,

•

.

Metals in TCLP USEPA1311			
Our Reference:	UNITS	41366-A-3	41366-A-4
Your Reference		206/1.1-1.2	BD1240510
Date Sampled		24/05/2010	24/05/2010
Type of sample		Soil	Soil
Date extracted	-	03/06/2010	03/06/2010
Date analysed	-	[NA]	04/06/2010
pH of soil for fluid# determ.	pH units	9.20	9.30
pH of soil for fluid # determ. (acid)	pH units	1.40	1.30
Extraction fluid used	-	1	1
pH of final Leachate	pH units	5.10	5.10
Lead in TCLP	mg/L	[NA]	0.5

Envirolab Reference: 41366-A Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE Page 2 of 6

Client Reference:

71529.01, VAPs Opera House

PAHs in TCLP (USEPA 1311)		
Our Reference:	UNITS	41366-A-3
Your Reference		206/1.1-1.2
Date Sampled		24/05/2010
Type of sample		Soil
Date extracted	-	03/06/2010
Date analysed	-	03/06/2010
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(b+k)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L.	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Surrogate p-Terphenyl-d14	%	106

,

•

Envirolab Reference: 41366-A Revision No: R 00

Page 3 of 6

Client Reference: 71529.01, VAPs Opera House

Method ID	Methodology Summary
LAB.4	Toxicity Characteristic Leaching Procedure (TCLP).
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
GC.12 subset	Leachates are extracted with Dichloromethane and analysed by GC-MS.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC.12	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

. *

.

•

.

ACCREDITED FOR TECHNICAL COMPETENCE

Client Reference: 71529.01, VAPs Opera House

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP USEPA1311						Base II Duplicate II %RPD		
Date extracted	-			03/06/2 010	[NT]	[NT]	LCS-W2	03/04/2010
Date analysed	-			04/06/2 010	[NT]	(NT)	LCS-W2	04/06/2010
Lead in TCLP	mg/L	0.03	Metals.20 ICP-AES	<0.03	[NT]	[NT]	LCS-W2	80%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in TCLP (USEPA 1311)						Base II Duplicate II %RPD		Recovery
Date extracted	-			03/06/2	[NT]	[NT]	LCS-W1	03/06/2010
Date analysed	-			03/06/2 010	[NT]	[NT]	LCS-W1	03/06/2010
Naphthalene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	94%
Acenaphthylene in TCLP	mg/L	0.001	GC.12 subset	<0.001	(NT)	[NT]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	109%
Phenanthrene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	105%
Anthracene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluoranthene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	98%
Pyrene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[TM]	LCS-W1	110%
Benzo(a)anthracene in TCLP	mg/L	0.001	GC.12 subset	<0.001	(NT)	[NT]	[NR]	[NR]
Chrysene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	112%
Benzo(b+k)fluoranthene in TCLP	mg/L	0.002	GC.12 subset	<0.002	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	105%
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	GC.12 subset	<0.001	[TN]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12	109	[חת]	[NT]	LCS-W1	106%

Envirolab Reference: 41366-A Revision No:

, **·**

•

•

R 00

Report Comments:

 Asbestos was analysed by Approved Identifier:
 Not applicable for this job

 Asbestos was authorised by Approved Signatory:
 Not applicable for this job

 INS: Insufficient sample for this test
 NT: Not tested
 PQL: Practical Quantitation Limit
 <: Less than</td>
 >: Greater than

 RPD: Relative Percent Difference
 NA: Test not required
 LCS: Laboratory Control Sample
 NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

Envirolab Reference: 41366-A Revision No: R 00

Aileen Hie From: Kurt Plambeck [kurt.plambeck@douglaspartners.com.au] Sent: Wednesday, 2 June 2010 11:31 AM To: **Jacinta Hurst** Cc: Aileen Hie Subject: RE: Results for registration '41366 - 71529.01, VAPs Opera House' Jacinta, Can you please run TCLP on the following samples Envirolab Ref. 41366A Due: 916110 std TIA. ን 206/1-1.2 for PAH BD1 240510 for lead U Regards Kurt Plambeck From: Jacinta Hurst [mailto:JHurst@envirolabservices.com.au] Sent: Saturday, 29 May 2010 12:15 PM To: Kurt Plambeck Subject: Results for registration '41366 - 71529.01, VAPs Opera House' Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC an excel file containing the results Please note that a hard copy will not be posted. Enquiries should be made directly to: Jacinta Hurst on jhurst@envirolabservices.com.au or David Springer on dspringer@envirolabservices.com.au ог Tania Notaras on tnotaras@envirolabservices.com.au Regards Envirolab Services 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 www.envirolabservices.com.au CONFIDENTIALITY NOTICE

The information contained in these documents may be privileged and confidential and is intended for the exclusive use of the addressee designated above. If you are not the addressee, you are hereby notified that any disclosure, reproduction, distribution, or other dissemination or use of this communication is strictly prohibited. If you have received this transmission in error, please inform us and destroy the original message. The optinions expressed in this correspondence are not necessarily those of Envirolab Services Pty. Ltd. Thank you.

This e-mail message has been scanned for Viruses

Į

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 41145

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kurt Plambeck

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received: 71529.01, Opera House VAPS 6 Waters 18/05/10 18/05/10

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by:
 25/05/10

 Date of Preliminary Report:
 Not issued

 Issue Date:
 24/05/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Juan Morgen

Rhian Morgan Metals Supervisor

Jacmia Harsi

Jacmia Harst Labor tory Manager

Envirolab Reference: 41145 Revision No: R 00

Page 1 of 12

vTPH & BTEX in Water Our Reference: Your Reference Date Sampled Type of sample	UNITS	41145-1 101-GW 17/05/2010 Water	41145-5 TB 17/05/2010 Water	41145-6 TS 17/05/2010 Water
Date extracted	-	20/5/10	20/5/10	20/5/10
Date analysed	-	20/5/10	20/5/10	20/5/10
TPH C6 - C9	µg/L	<10	<10	[NA]
Benzene	μg/L	<1.0	<1.0	73%
Toluene	μg/L	<1.0	<1.0	77%
Ethylbenzene	μg/L	<1.0	<1.0	76%
m+p-xylene	µg/L	<2.0	<2.0	75%
o-xylene	µg/L	<1.0	<1.0	76%
Surrogate Dibromofluoromethane	%	101	100	100
Surrogate toluene-d8	%	100	98	100
Surrogate 4-BFB	%	98	99	100

•

.

Envirolab Reference: 41145 Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

sTPH in Water (C10-C36)		
Our Reference:	UNITS	41145-1
Your Reference		101-GW
Date Sampled		17/05/2010
Type of sample		Water
Date extracted	-	21/5/10
Date analysed	-	21/5/10
TPH C10 - C14	µg/L	<50
TPH C15 - C28	µg/L	<100
TPH C29 - C36	µg/L	<100
Surrogate o-Terphenyl	%	95

•

•

PAHs in Water		
Our Reference:	UNITS	41145-1
Your Reference		101-GW
Date Sampled		17/05/2010
Type of sample		Water
Date extracted	-	21/05/2010
Date analysed	÷	21/05/2010
Naphthalene	µg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Surrogate p-Terphenyl-d14	%	81

•

.

Envirolab Reference: 41145 Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

Page 4 of 12

HM in water - dissolved		
Our Reference:	UNITS	41145-1
Your Reference		101-GW
Date Sampled		17/05/2010
Type of sample		Water
Date prepared	-	20/5/10
Date analysed	-	20/5/10
Arsenic-Dissofved	µg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	8
Lead-Dissolved	μg/L	15
Mercury-Dissolved	µg/L	<0.5
Nickel-Dissolved	µg/L	<1
Zinc-Dissolved	μg/L	12

•

~

Envirolab Reference: 41145 Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

Metals in Waters - Acid extractable		
Our Reference:	UNITS	41145-1
Your Reference		101-GW
Date Sampled		17/05/2010
Type of sample		Water
Date prepared	-	21/05/10
Date analysed	-	21/05/10
Iron - Total	mg/L	53
Manganese - Total	mg/L	2.9

•

.

Envirolab Reference: 41145 Revision No: R 00

Page 6 of 12

Miscellaneous Inorganics		
Our Reference:	UNITS	41145-1
Your Reference		101-GW
Date Sampled		17/05/2010
Type of sample		Water
Date prepared	-	19/5/2010
Date analysed	-	24/5/2010
рН	pH Units	6.5
Oil & Grease (LLE)	mg/L	<5
Ferrous Iron	mg/L	9.1

•

.

Envirolab Reference: 41145 Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Metals.22 ICP-MS	Determination of various metals by ICP-MS.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
LAB.3	Oil & Grease - determine gravimetrically following extraction with Hexane/tert-Methyl Butyl Ether, in accordance with APHA 20th ED, 5220-B.
LAB.76	A sample is determined colourimetrically by discrete analyser.

•

.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Water						Base II Duplicate II %RPD		-
Date extracted	-			20/5/10	[NT]	[NT]	LCS-W1	20/5/10
Date analysed	-			20/5/10	[NT]	[NT]	LCS-W1	20/5/10
TPH C6 - C9	µg/L	10	GC.16	<10	[NT]	[NT]	LCS-W1	94%
Benzene	µg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	94%
Toluene	µg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	93%
Ethylbenzene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	93%
m+p-xylene	μg/L	2	GC.16	<2.0	[NT]	[NT]	LCS-W1	95%
o-xylene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	93%
Surrogate Dibromofluoromethane	%		GC.16	100	נדאן	[NT]	LCS-W1	100%
Surrogate toluene-d8	%		GC.16	98	[NT]	[NT]	LCS-W1	99%
Surrogate 4-BFB	%		GC.16	97	[NT]	[NT]	LCS-W1	100%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Water (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-	-		21/5/10	[TN]	[NT]	LCS-W2	21/5/10
Date analysed	-			21/5/10	[NT]	[NT]	LCS-W2	21/5/10
TPH C10 - C14	µg/L	50	GC.3	<50	[NT]	[NT]	LCS-W2	77%
TPH C15 - C28	µg/L	100	GC.3	<100	[NT]	[NT]	LCS-W2	128%
TPH C29 - C36	µg/L	100	GC.3	<100	[NT]	[NT]	LCS-W2	97%
<i>Surrogate</i> o-Terphenyl	%		GC.3	109	[NT]	[NT]	LCS-W2	102%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-		-	21/05/2 010	[NT]	[NT]	LCS-W1	21/05/2010
Date analysed	-			21/05/2 010	[NT]	[NT]	LCS-W1	21/05/2010
Naphthalene	µg/L	1	GC.12 subset	<1	נזאז	[N T]	LCS-W1	83%
Acenaphthylene	µg/L	1	GC.12 subset	<1	נדא]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	GC.12 subset	<1	[TN]	[NT]	LCS-W1	91%
Phenanthrene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	91%
Anthracene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	GC.12 subset	<1	נזאן	[NT]	LCS-W1	84%
Pyrene	µg/L	1	GC.12 subset	<1	נדא]	[NT]	LCS-W1	95%

Envirolab Reference: 41145 Revision No:

.

.

R 00

Client Reference: 71529.01, Opera House VAPS								
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Benzo(a)anthracene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	99%
Benzo(b+k)fluoranthene	µg/L	2	GC.12 subset	<2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	GC.12 subset	<1	[TN]	[NT]	LCS-W1	98%
Indeno(1,2,3-c,d)pyrene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	GC.12 subset	<1	[TM]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	GC.12 subset	<1	[דא]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12 subset	74	[NT]	[NT]	LCS-W1	85%

QUALITY CONTROL HM in water - dissolved	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD
Date prepared	-			20/5/10	41145-1	20/5/10 20/5/10
Date analysed	-			20/5/10	41145-1	20/5/10 20/5/10
Arsenic-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	41145-1	<1 <1
Cadmium-Dissolved	µg/∟	0.1	Metals.22 ICP-MS	<0.1	41145-1	<0.1 <0.1
Chromium-Dissolved	µg/∟	1	Metals.22 ICP-MS	<1	41145-1	<1] <1
Copper-Dissolved	µg/∟	1	Metals.22 ICP-MS	<1	41145-1	8 8 RPD: 0
Lead-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	41145-1	15 16 RPD: 6
Mercury-Dissolved	µg/∟	0.5	Metals.21 CV-AAS	<0.5	41145-1	<0.5 <0.5
Nickel-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	41145-1	<1 <1
Zinc-Dissolved	µg/∟	1	Metals.22 ICP-MS	<1	41145-1	12 9 RPD: 29

Envirolab Reference: 41145 Revision No: R 00

•

.

ACCREDITED FOR TECHNICAL COMPETENCE

Page 10 of 12

Client Reference: 71529.01, Opera House VAPS

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in Waters - Acid extractable						Base II Duplicate II %RPD		
Date prepared	-			21/05/1 0	[NT]	[NT]	LCS-W1	21/05/10
Date analysed	-			21/05/1 0	[NT]	נדא]	LCS-W1	21/05/10
Iron - Total	mg/L	0.02	Metals.20 ICP-AES	<0.02	[NT]	[דא]	LCS-W1	106%
Manganese - Total	mg/L	0.01	Metals.20 ICP-AES	<0.01	[NT]	[ти]	LCS-W1	107%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II %RPD	1	
Date prepared	-			19/5/20 10	41145-1	19/5/2010 19/5/201	0 LCS-W1	19/5/2010
Date analysed	-			24/5/20 10	41145-1	24/5/2010 24/5/201	0 LCS-W1	24/5/2010
pН	pH Units		LAB.1	[NT]	41145-1	6.5 [N/T]	LCS-W1	100%
Oil & Grease (LLE)	mg/L	5	LAB.3	<5	41145-1	<5 [N/T]	LCS-W1	93%
Ferrous Iron	mg/L	0.10	LAB.76	<0.10	41145-1	9.1 9.3 RPD: 2	LCS-W1	96%
QUALITY CONTROL	UNITS	8	Dup. Sm#		Duplicate	Spike Sm#	Spike % Recovery	
HM in water - dissolved				Base +	Duplicate + %RPI	D		
Date prepared	-		[NT]		[NT]	LCS-W1	20/5/10	
Date analysed	-		[NT]		[NT]	LCS-W1	20/5/10	
Arsenic-Dissolved	µg/L		[NT]		[NT]	LCS-W1	103%	
Cadmium-Dissolved	µg/L		[NT]		[NT]	LCS-W1	105%	
Chromium-Dissolved	µg/L		[NT]		[NT]	LCS-W1	102%	
Copper-Dissolved	µg/L		[NT]		[NT]	LCS-W1	97%	
Lead-Dissolved	µg/L		[NT]		[NT]	LCS-W1	101%	
Mercury-Dissolved	µg/L		[NT]		[NT]	LCS-W1	120%	
Nickel-Dissolved	µg/L		[NT]		[NT]	LCS-W1	98%	
Zinc-Dissolved	µg/L		[NT]		[NT]	LCS-W1	99%	

•

٠

Report Comments:

 Asbestos was analysed by Approved Identifier:
 Not applicable for this job

 Asbestos was authorised by Approved Signatory:
 Not applicable for this job

 INS: Insufficient sample for this test
 NT: Not tested
 PQL: Practical Quantitation Limit
 <: Less than</td>
 >: Greater than

 RPD: Relative Percent Difference
 NA: Test not required
 LCS: Laboratory Control Sample
 NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

ph: 02 9809 0666 Fax: 02 9809 4095

Attention: Kurt Plambeck

Sample log in details:	
Your reference:	71529.01, Opera House VAPS
Envirolab Reference:	41145
Date received:	18/05/10
Date results expected to be reported:	25/05/10

Samples received in appropriate condition for analysis:	YES
No. of samples provided	6 Waters
Turnaround time requested:	Standard
Temperature on receipt	Cool
Cooling Method:	lce

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

	(-								F	doloci vo doloci	Control of	c		
Project Name: Project No: Droigot Morr	_	Орега Ноиse 71529.01 ко л	iouse V. .01	Upera House VAPS Project 71529.01 Sampl ко Моћ Броле: 0402 (Sam Sam	Upera House VAPS Project	(DP			10: Attn:	Envirolad Services 12 Ashley Street, Chatswood NSW 2068 Tania Notaras	v Street, faras	s Chatswo	NSN por	V 2068
Erruject wigt. Email: Date Required:		r. curt.plambe standard	nbeck@ ard	douglas	partn. Lab	kurt.plambeck@douglaspartners.com.au . standard Lab Quote No.				Email	Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au	2 9910 6 @enviro	200 Fax: labservic	02 9910 6 es.com.s	3201 au
			Sample Tvpe		╞				Ā	Analytes					
Sampl Sampl e e ID Depth	th ID	Sampling Date		Container type	L	Heavy metals	BTEX BTEX	РАН	Oil and grease	Hd	Mn, Fe (total and Ferrous)		,		Notes
M-101	 	17/5	s	υ	<u> </u>	>	>	>	$\left \right>$	>	2				
FB	2														
805	5													_	
806	4												n <u>ti uini Gen</u>		
1 6	r						>				1	Environtation -	12 A. ht	htey St w 2067	
5.4	و				L		>				i ve			6200	
2	<u> </u>										ž	1012 1101	3 .1		
	 				<u> </u>						ιά Ι	Detersteers Here received	4 Pm	2	
					l						£ F :	To hyperson and	- 10%s		
					1						u us.	Perlitik Kutan	Interview Brokeningte		
					<u> </u>									-	
Lah Renort No	•											_	- Hq	Phone: (02)	(02) 9809 0666
Send Results to:		Douglas Partners		Address:		96 Hermitage Road, West Ryde 2114	Road, W	'est Ryde	: 2114				Fax:	(02)	(02) 9809 4095
Relinquished by:							Date & Time:	me:		Rect	Received By:	-7 - Z		Date &	Date & Time 18 5 /10
Colinariahad hy.		ď	Sinned.				Date & Time:	.eu		Rece	Received Bv:			Date & Time:	Time:

, **•**

.

Form COC Rev0/November 2006

.

Page____ of APPENDIX F Quality Assurance/Quality Control Procedures and Results

QA/QC PROCEDURES AND RESULTS

Data Quality Objectives

The scope of the Preliminary Contamination Assessment has been devised broadly in accordance with the seven step data quality objective process, as defined in Australian Standard "*Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds* (AS 4482.1 – 1997). The DQO process is outlined as follows:

(1) State the Problem

The "problem" is to characterise the nature and extent of contamination, if any in in the works area for the VAPS project, and to determine if the site is suitable for the proposed development.

(2) Identify the Decision

The suitability of the site for redevelopment and the scope of the required remedial works will be assessed against the SAC and GIL provided in Section 9.

(3) Identify Inputs to the Decision

The primary inputs in assessing the requirements for assessing the suitability of the site for the proposed development will be:

- Available site Information regarding activities undertaken on the site and the surrounding area;
- Results of previous investigations;
- Results from the current round of investigation as detailed in the scope of works;
- The local geology, topography and hydrology;
- Potential contaminants;
- Published guidelines for assessing soil and groundwater quality;
- Field observations/measurements, field mapping and analytical results.

(4) Define the Boundary of the Assessment

The site is identified as the works areas for the VAPS project within the forecourt of the Sydney Opera House Described in Section 4. The site is presented in the Drawing 1, Appendix A

(5) Develop a Decision Rule

The decision rule is the comparison of the analytical results against relevant published guideline criteria including:

- i) NSW DECC Guidelines for the NSW Site Auditor Scheme 2nd edition (2006);
- ii) NSW DECC Guidelines for Assessing Service Station Sites (1994);
- ANZECC Guidelines for Fresh and Marine Water Quality ANZECC (2000) for the protection of 95% of species; and
- iv) Other screening references including Commonwealth legislation the Airports Act (1997), Airport (Environment Protection) Schedule 2 Water Pollution Accepted Limits: Table 1.03; Dutch Intervention Value (Dutch IV) from the Environmental Quality Standards in the Netherlands 1999 and USEPA Region IX modified Preliminary Remediation Goals (PRG).

These assessment criteria will be used to evaluate whether the site is compatible with the current and intended land use from a contamination standpoint.

(6) Specify Acceptable Limits on Decision Errors

In order to ensure the quality of the soil and groundwater data, appropriate and adequate quality assurance and quality control (QA/QC) measures and evaluations should be incorporated into the validation sampling and testing regime.

A field and laboratory QA/QC regime, comprising the collection and analysis of Interlaboratory duplicate / replicate samples, Intra-laboratory duplicate / replicate samples will be implemented to meet the requirements associated with the following data quality indicators (DQIs).

- conformance with specified holding times;
- accuracy of spiked samples within the laboratory's acceptable range (typically 70-130% for inorganic contaminants and greater for some organic contaminants);
- field and laboratory duplicates and replicates samples will have a precision average of +/- 30% relative percent difference (RPD) for inorganic analytes and +/- 50% RPD for organic analytes;
- field replicates will be collected at a frequency of 10% of all samples; and
- no evidence of significant cross contamination during sampling or handling activities
- (7) Optimise the Design for Obtaining Data

The purpose of the current investigation is to provide representative information within the VAPS works area, subject to current site access restrictions. The sampling programme has a targeted approach within the VAPS works area (rather then across the entire Opera House Site) in accessible locations. The proposed sampling locations are provided in Drawing 1, Appendix A.

Procedures for the collection of environmental samples, as described in Section 8, were developed prior to undertaking the assessment phase of works, which were in line with NSW EPA guidelines and current industry practice. DP employs NATA-accredited analytical laboratories to conduct sample analysis. Envirolab Services Pty Ltd was employed to conduct primary sample analysis and Labmark Pty Ltd was employed to conduct interlaboratory sample analysis.

It is therefore considered that the data quality of assessment was of a satisfactory standard.

Quality assurance and control formed an integral part of this assessment. The results of the QA/QC assessments are detailed below.

The Data Quality Indicators (DQI's) have been addressed as follows in Table F1.

DQI	Evaluation Procedure
Documentation	Completion of field and laboratory documentation
completeness	including chain of custody, test bore reports.
Data completeness	Sampling at an appropriate density as per the requirements of the <i>Sampling Design Guidelines</i> , analysis of appropriate contaminants, analysis of appropriate soil horizons, analysis of appropriate QA samples etc
Data comparability	Use of NATA accredited analytical methods, use of consistent sampling technique, commitment to equipment decontamination, field sample storage techniques etc.
Data representativeness	Sampling from targeted areas and a broad grid pattern across the site in order to obtain samples representative of contamination present.
Precision and accuracy for sampling and analysis	Use of NATA accredited analytical methods, achievement of 30-50% RPD for replicate analysis (as appropriate) and achievement of laboratory QC criteria.

Table F1 – DQIs and Evaluation Procedures

As indicated above, the DQIs for sampling and analysis were achieved and the quality of the data satisfactorily meets the objectives of the current assessment.

Q1 - FIELD QUALITY ASSURANCE AND QUALITY CONTROL

The field QC procedures for sampling as prescribed in Douglas Partners *Field Procedures Manual* were followed at all times during the assessment.

Q1.1 Sampling Team

Field sampling was undertaken by DP Environmental Scientist Kurt Plambeck. Soil samples were collected from test bores on 17 and 24 May 2010. The piezometer (201) was installed on 17 December 2009 during a previous geotechnical investigation. The piezometer was developed and sampled on 17 May 2010. Sampling was undertaken during fine or slightly overcast weather conditions.

Q1.2 Sample Collection

Sample collection procedures and dispatch for soil and groundwater are reported in Section 5.3.

Q1.3 Logs

Logs for each sampling location were recorded in the field. The individual samples were recorded on the field logs along with the sample identity, location, depth, initials of sampler, duplicate locations, duplicate type, site observations. Analysis to be performed on each sample and the dispatch courier were recorded on the COC, Appendix E. Logs are presented in Appendix D. Groundwater field sheets are presented in Appendix G.

Q1.4 Chain of Custody

Chain of custody information was recorded on the Chain of Custody (COC) sheets and accompanied samples to the analytical laboratory. Signed copies of COCs are presented in Appendix E, following the laboratory reports.

Q1.5 Sample Splitting Techniques

Replicate samples were collected in the field as a measure of accuracy, precision and repeatability of the results. Field replicate samples for soil were collected from the same location and an identical depth to the primary sample. Equal portions of

the primary sample were placed into the sampling jars and sealed. The sample was not homogenised in a bowl and then split to prevent the loss of volatiles from the soil. Replicate samples were labelled with a DP identification number, recorded on DP bore logs, so as to conceal their relationship to their primary sample from the analysing laboratory. Groundwater replicate collection involved filling two sample containers by decanting approximately equal portions of the primary sample.

Q1.6 Duplicate Frequency

Field sampling comprised replicate sampling, at a rate of approximately one duplicate sample for every ten original samples for intra-laboratory analysis, one duplicate/triplicate sample for every 10 samples for inter-laboratory analysis, trip spikes, trip blanks and a rinsate sample from the groundwater pump during groundwater sampling.

Q1.7 Field Blank Results

A field blank is a sample taken as an indication to demonstrate correct field handling. A rinsate sample was collected as the field blank to demonstrate correct decontamination procedures were undertaken during groundwater sampling. This is further discussed in Section Q1.9.

Q1.8 Background Sample

A background sample is representative of natural background soil conditions. Background samples were not applicable as part of this assessment as the land at the site and in the surrounding area have been developed over a significant period of time and not in a natural state.

Q1.9 Rinsate Samples

Decontamination was carried out between groundwater and soil sampling events and on augurs between test bores. New tubing was used to sample the groundwater. No rinsate sample was collected, but sample results were examined for signs if cross contamination between sample events. There was no evidence that cross contamination had occurred. It is therefore considered that suitable decontamination techniques were employed.

Q1.10 Trip Spikes

According to *the NSW EPA Guidelines for Consultants Reporting on Contaminated Sites (1997)*, laboratory prepared trip spikes are to be taken into the field, subjected to the same preservation methods as the field samples, then analysed, for the purposes of determining the losses in volatile organics incurred prior to reaching the laboratory.

The practicalities of trip spikes are currently being debated and a detailed procedure is yet to be finalised. Discussions with the laboratory indicated that trip spikes are generally prepared as aqueous solutions. The laboratory prepared an aqueous trip spike and a soil trip spike which were preserved in the standard manner and taken into the field unopened. The volatile organic recovery rates are shown below. At this stage, the laboratory has no standard acceptance limits in recovery rates as results from in-house laboratory controls often vary. Results (Table Q1) indicate that the percentage loss for BTEX during the trip was minimal and therefore appropriate preservation techniques were employed.

				Recovery (%)		
				Ethyl		
Sample ID	Matrix	Benzene	Toluene	Benzene	m+p xylene	o xylene
Trip Spike 170510	soil	94	97	95	96	95
Trip Spike 170510	water	73	77	76	75	76
Trip Spike 240510	soil	100	122	104	104	104

Table Q1 – Trip Spike Results

Q1.11 Trip Blanks

Laboratory prepared soil and water trip blanks were taken out to the field unopened, subjected to the same preservation methods as the field samples, then analysed for the purposes of determining the transfer of contaminants into the blank sample incurred prior to reaching the laboratory. The result of the laboratory analysis for the trip blanks is shown in Table Q2.

		TPH			BTEX	
Sample ID	Matrix	C6-C9	Benzene	Toluene	Ethyl Benzene	Xylenes
Trip Blank 170510	soil	<25	<0.5	<0.5	<1	<3
Trip Blank 170510	water	<10	<1	<1	<1	<3
Trip Blank 240510	soil	-	<0.5	<0.5	<1	<3

Table Q2 Trip Blank Results – TPH/BTEX mg/kg (water µg/L)

Levels of analytes were all below detection limits indicating that cross contamination had not occurred during the course of the round trip from the site to the laboratory.

Q1.12 Field Instrument Calibration

The groundwater parameters were measured with a 90FL-T water quality meter. The water quality meter was calibrated at Enviroequip on 17/12/09 and the pH meter was calibrated prior to use in the field with pH buffer solutions of 4 and 10. The calibration certificate can be found in Appendix G.

All soil samples were screened for the presence of Total Photo-Ionisable Compounds (TOPIC) using a calibrated Photo-Ionisation Detector (PID). The PID was calibrated at Enviroequip and in the field with Isobutylene gas. The calibration certificate and daily calibration records can be found in Appendix G.

Q1.13 Relative Percentage Difference

A measure of the consistency of results for field samples is derived by the calculation of relative percentage differences (RPDs) for duplicate samples. A RPD of \pm 30% is generally considered typically acceptable for inorganic analytes by EPA, although in general a wider RPD range (50%) may be acceptable for organic analytes.

Q1.13.1 Intra-Laboratory Analysis

Intra-laboratory duplicates were conducted as an internal check of the reproductively within the primary laboratory (Envirolab Pty Ltd) and as a measure of consistency of

sampling techniques. Replicate samples were collected at a rate of approximately one replicate sample for every ten original samples collected and also analysed at a rate of 5% of primary samples analysed.

The comparative results of analysis between original and duplicate samples are summarised in the tables below.

	As	Cd	Cr ¹	Cu	Pb	Hg	Ni	Zn
102/1.0	<4	< 0.5	13	22	25	0.8	7	17
BD/201209	<4	< 0.5	12	19	32	0.9	8	18
Difference	0	0	1	3	7	0.1	1	1
RPD (%)	0	0	8	17	25	12	13	6
205/0.3-0.5	<4	< 0.5	11	37	45	< 0.1	14	58
BD4 170510	<4	< 0.5	10	60	43	0.2	31	67
Difference	0	0	1	23	2	0.1	17	9
RPD (%)	0	0	10	47	5	67	76	14
206/0.4-0.5	<4	<0.5	7	22	41	0.1	5	31
BD1 240510	<4	<0.5	7	38	130	0.5	16	110
Difference	0	0	0	16	89	0.4	9	79
RPD (%)	0	0	0	53	104	133	86	112

Table Q3 – Intra-laboratory Results Heavy Metals

 Table Q4 – Intra-laboratory Results PAH, TPH and BTEX

	B(a)P ²	Total +ve PAH ³	C6-C9	C10-C36	Benzene	Toluene	Ethylbenzene	Total Xylene
102/1.0	1.3	14.7	<25	<250	< 0.5	<0.5	<1	<3
BD/201209	1.4	15.1	<25	<250	<0.5	<0.5	<1	<3
Difference	0.1	0.4	0	0	0	0	0	0
RPD (%)	7	3	0	0	0	0	0	0
205/0.3-0.5	16	177.7	<25	1420	< 0.5	< 0.5	<1	<3
BD4 170510	18	222.4	<25	1440	< 0.5	< 0.5	<1	<3
Difference	2	44.7	0	0	0	0	0	0
RPD (%)	12	22	0	0	0	0	0	0
206/0.4-0.5	0.07	0.37	<25	<250	<0.5	<0.5	<1	<3
BD1 240510	0.7	5.5	<25	<250	<0.5	<0.5	<1	<3
Difference	0.63	5.13	0	0	0	0	0	0
RPD (%)	164	175	0	0	0	0	0	0

	ОСР	Asbestos
102/1.0	<0.1	Nil detected
BD/201209	<0.1	Nil detected
Difference	0	0
RPD (%)	0	0

Table Q5 – Intra-laboratory Results – OCP and Asbestos

Most of calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes (\pm 50% for organic) for the sample and its duplicates with the exception of those shaded. However, this is not considered to be of concern due to:

- The low actual differences in the concentrations of the replicate pairs;
- Replicates, rather than homogenised duplicates were used to avoid volatile loss;
- Some of the duplicate samples being collected in filling material which is heterogeneous in nature, therefore differences are representative of the material and not the result inconsistencies in the sampling technique or laboratory precision; and
- Most of the recorded concentrations being at/ close to the practical quantitation limit.
- All other QA/QC parameters met the DQI's

It is therefore considered that the results indicate an acceptable consistency between the samples and their duplicates and indicate that suitable field sampling methodology was adopted and laboratory precision was achieved.

Q1.13.2 Inter-Laboratory Analysis

Inter-laboratory duplicates were conducted as a check of the reproductively of results between the primary laboratory (Envirolab Pty Ltd) and a secondary laboratory (Labmark Pty Ltd) and as a measure of consistency of sampling techniques. Interlaboratory duplicates were collected at a rate at least one replicate sample for every 5 original samples collected and also analysed at a rate of 5% of primary samples analysed. Primary chemicals of concern were analysed at a higher frequency to other chemicals.

The comparative results of analysis between original and inter-laboratory duplicates are summarised in the tables below. Note that where the laboratory PQL are different and both samples are below PQL (or one sample is below PQL and other has a recorded detection below the other lab PQL) the difference and RPD has been given as zero (0).

	As	Cd	Cr ¹	Cu	Pb	Hg	Ni	Zn
204/0.8-1.0	<4	< 0.5	13	6	12	< 0.1	6	17
BD2 170510	<1	0.2	9	4	10	< 0.05	4	21
Difference	0	0	4	2	2	0	2	4
RPD (%)	0	0	36	40	18	0	40	21

Table Q6 Inter-laboratory Results Heavy Metals

Table Q7 Inter-laboratory Results PAH, TPH and BTEX

	B(a)P ²	Total +ve PAH ³	C6-C9	C10-C36	Benzene	Toluene	Ethylbenzene	Total Xylene
204/0.8-1.0	0.1	1.1	<25	<250	< 0.5	< 0.5	<1	<3
BD2 170510	< 0.5	< 0.5	<10	<250	< 0.2	< 0.5	<0.5	<1.5
Difference	0	0	0	0	0	0	0	0
RPD (%)	0	0	0	0	0	0	0	0

Most of calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes (\pm 50% for organic) for the sample and its duplicates with the exception of those shaded. However, this is not considered to be of concern due to:

- The low actual differences in the concentrations of the replicate pairs;
- Replicates, rather than homogenised duplicates were used to avoid volatile loss;
- The duplicate samples being collected in filling material which is heterogeneous in nature, therefore differences are representative of the material and not the result inconsistencies in the sampling technique or laboratory precision; and
- Most of the recorded concentrations being at/ close to the practical quantitation limit.
- All other QA/QC parameters met the DQI's

It is therefore considered that the results indicate an acceptable consistency between the samples and their duplicates and indicate that suitable field sampling methodology was adopted and laboratory precision was achieved.

Q2 - LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

Q2.1 Chain of Custody

Chain of custody information was recorded on the Chain of Custody (COC) sheets and accompanied samples to the analytical laboratory. COCs contained receipt date and time and the identity of samples. Signed copies of COCs are presented in Appendix E, following the laboratory reports.

Q2.2 Holding Times

A review of the laboratory report sheets and chain-of-custody documentation indicated that holding times were met, as summarised in the table below.

Matrix	Analyte	Recommended maximum holding time	Holding time met
Soil	Heavy Metals: As, Cd, Cr, Cu, Pb, Hg, Ni, Zn	6 months	Yes
	TPH C ₆ -C ₉	14 days	Yes
	TPH C ₁₀ -C ₃₆	14 days	Yes
	VOC	14 days	Yes
	BTEX	14 days	Yes
	PAH	14 days	Yes
	OCP	14 days	Yes
	OPP	14 days	Yes
	PCB	14 days	Yes
	Phenols	14 days	Yes
	рН	7 days	Yes
	Asbestos	Nil	yes
Water	Metals	6 months	yes
	TPH C ₆ -C ₉	14 days	yes
	TPH C ₁₀ -C ₃₆	7 days	yes
	BTEX	14 days	yes
	PAH	7 days	yes

Q2.3 Analytical Laboratory

Samples were submitted to the following laboratories for analysis:

- Primary Laboratory: Envirolab Services Pty Ltd (Chatswood);
- Secondary Laboratory: Labmark Environmental Laboratories (Asquith)

Both laboratories are NATA accredited. Envirolab's accreditation number is 2901 and is accredited for compliance with ISO/IEC 17025. Envirolab tests comply with NATA and NEPM. In house procedures are employed by Envirolab in the absence of documented standards.

Labmark's NATA accreditation number is: 13542. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA/ APHA documents.

Q2.4 Analytical Methods

The laboratory analytical methods are provided on the laboratory certificates in Appendix H and summarised below in Tables Q9 and Q10:

Table Q9 - Soil Analysis

Analyte	Limit of Reporting (mg/kg) Envirolab/labmark	Envirolab Reference Method	Labmark Reference Method
Heavy Metals Cd, Cr, Cu, Pb, Ni, Zn	1.0/0.1-5.0	Metals.20 ICP-AES	E022.2 digested in nitric/hydrochloric acid, analysis by ICP-MS
Arsenic (As)	4.0/1.0	Metals.20 ICP-AES	E022.2 digested in nitric/hydrochloric acid, analysis by ICP-MS
Mercury (Hg)	0.10/0.05	Metals.21 ICP-AAS	E026.2 digested in nitric/hydrochloric acid, analysis by CV-ICP-MS or FIMS
VOC	0.5-10/0.5-5.0	GC.14	E016.2 methanol extraction, analysis by P&T/GC/MS
TPH C ₆ -C ₉	25/10	GC.16	E029.2/E016.2 methanol extraction, analysis by P&T/GC/FID/MSD
TPH C ₁₀ -C ₃₆	250/250	GC.3	E006.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/FID
BTEX	0.5-2/0.2-1.0	GC.14	E002.2 methanol extraction, analysis by P&T/GC/PID/MSD
OCP	0.1/0.05	GC-5	E013.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/dual ECD
OPP	0.1/0.5-1.0	GC.8	E014.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/MSD
PCB	0.1/0.5	GC-6	E013.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/dual ECD
РАН	0.05-0.1/0.5-1.0	GC.12 subset	E007.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/MS
Phenols	1-10/0.5-1.0	GC.12	E008.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/MS
Asbestos	qualitative identification	AS4964-2004, qualitative identification using Polarised Light Microscopy and Dispersion Staining Techniques.	Not analysed
VOC	1-10	P&T and GC/MS	-

Analyte	Limit of Reporting (µg/L) Envirolab/labmark	Envirolab Reference Method	Labmark Reference Method
Heavy Metals, As, Cd, Cr, Cu, Pb, Ni, Zn	0.1-1.0/0.5-5.0	Metals.22 ICP-MS	E022.1 digested in nitric/hydrochloric acid, analysis by ICP-MS
Mercury (Hg)	0.5-0.1	Metals.21 CV-AAS	E026.1 digested with nitric/hydrochloric acid, analysis by CV-ICP-MS or FIMS
VOC	1-10/5-50	GC.13	E016.1 direct analysis by P&T/GC/MS
BTEX	1-2/5-10	GC.13	E016.1 direct analysis by P&T/GC/MS
TPH C ₆ -C ₉	10/50	GC.16	E003.1 direct injection into P&T/GC/FID
TPH C ₁₀ -C ₃₆	250/250	GC.3	E004.1 triple extraction with DCM, analysis by GC/FID
РАН	0.1-0.2	GC.12 subset	E007.1: triple extraction with DCM, analysis by GC/MS
РСВ	0.01	Ext-020	E013.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/dual ECD
pН	0.1	LAB.1	Not analysed
OCP	0.001	Ext-020	E014.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/MSD

Table Q10 - Groundwater Analysis

The following QA/QC procedures were conducted by the laboratory. The results are included in the laboratory reports in Appendix E.

Q2.5 Surrogate Spike

This sample is prepared by adding a known amount of surrogate, which behaves similarly to the analyte, prior to analysis to each sample. The recovery result indicates the proportion of the known concentration of the surrogate that is detected during analysis. These results are within acceptance limits as specified in Envirolab Services, indicating that the extraction technique was effective.

The laboratory acceptance criteria for surrogate samples is generally 60-140% for organics; and 10-140% for SVOC and speciated phenols.

Q2.6 Practical Quantitation Limits - PQLs

The PQL is the lowest quantity of an analyte which can be detected during the analysis. PQLs at different analytical laboratories can differ based on the analytical techniques.

Q2.7 Reference and Daily Check Sample Results - Laboratory Control Sample (LCS)

This sample comprises spiking either a standard reference material or a control matrix (such as a blank of sand or water) with a known concentration of specific analytes. The LCS is then analysed and results compared against each other to determine how the laboratory has performed with regard to sample preparation and analytical procedure. LCSs are analysed at a frequency of 1 in 20, with a minimum of one analysed per batch.

The laboratory acceptance criteria for LCS samples is generally 70-130% for inorganics/ metals; and 60-140% for organics; and 10-140% for SVOC and speciated phenols.

Q2.8 Laboratory Duplicate Results

These are additional portions of a sample which are analysed in exactly the same manner as all other samples. The laboratory acceptance criteria for duplicate samples is: in cases where the level is <5xPQL - any RPD is acceptable; and in cases where the level is >5xPQL - 0.50% RPD is acceptable.

Q2.9 Laboratory Blank Results

The laboratory blank, sometimes referred to as the method blank or reagent blank is the sample prepared and analysed at the beginning of every analytical run, following calibration of the analytical apparatus. This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, it can be determined by processing solvents and reagents in exactly the same manner as for samples. Laboratory blanks are analysed at a frequency of 1 in 20, with a minimum of one per batch.

Q2.10 Matrix Spike

This is a sample duplicate prepared by adding a known amount of analyte prior to analysis, and then treated exactly the same as all other samples. The recovery result indicates the proportion of the known concentration of the analyte that is detected during analysis. The laboratory acceptance criteria for matrix spike samples is generally 70-130% for inorganics/metals; and 60-140% for organics; and 10-140% for SVOC and speciated phenols.

Q2.11 Results of Laboratory QA

The laboratory QA for surrogate spikes, LCS, laboratory duplicate results, method blanks and matrix spikes were generally within the acceptance standards. There were, however a few comments made in the laboratory reports which are summarised in Table Q11 below.

Laboratory Report	Comment
ELS 36506	No comment
ELS 35506-A	No comment
ELS 41144	TPH RPD accepted due to non-homogeneous nature of sample. % recovery mo possible due to high concentration in samples causing interference
ELS 41144A	No comment
ELS 41145	No comment
ELS 41366	No comment
ELS 41366A	No comment
LM E048260	No comment

 Table Q11 - Laboratory QA Comments

It was therefore considered that an acceptable level of laboratory precision and consistency was achieved and that surrogate spikes, LCS, laboratory duplicate results, method blanks and matrix spike results were of an acceptable level.

APPENDIX G Calibration Certificates

SERVICE OR REPAIR: 90-FLT

COMPANY	Douglas Partners Pty Ltd						
CONTACT	Wen Fei Yuan						
SERIAL NO.	S1753 ~	CALL NO.	69420	RECEIVED	17/12/2009		

REQUEST/PROBLEM DESCRIPTION

- 1. Add Redox parameter.
- 2. Check Turbidity sensor.
- 3. Service and calibration.

This equipment has been calibrated to the manufacturer's specifications, using the standards shown below:

PARAMETER	STANDARD	TRACEABILITY LOT NO.	PRE CALIBRATION READING	POST CALIBRATION READING
TEMPERATURE	24.1°C	. –	23.6°C	24.1°C
рН	7.00		7.05	7.00
pm	4.00		3.98	4.00
CONDUCTIVITY	0.0µS/cm	- 2	-0.2µS/cm	0.0µS/cm
	2.76mS/cm		2.77mS/cm	2.76mS/cm
TDS	0.0ppm	-	0.0ppm	0.0ppm
103	36.0ppk		35.7ppk	36.0ppk
DISSOLVED OXYGEN	0.00ppm		-0.10ppm	0.00ppm
DISSOLVEDUATGEN	Air		9.04ppm	8.50ppm
TURBIDITY	0 NTU	· -	-4NTU	0NTU
	360 NTU		349NTU	360NTU

COMMENTS/ADDITIONAL REPAIRS/SERVICES PERFORMED

- 1. Clean/decon the meter.
- 2. Sent to manufacturer TPS for assessment and repair.
- 3. Input connectors replaced.
- 4. pH sensor replaced due to noise.
- 5. DO membrane replaced.
- 6. Faulty charger replaced.
- 7. Tested/calibrated OK.
- 8. This older version 90FLT meter cannot be fitted with Redox range.

SERVICED BY	Yingjie Liu	COMPLETED	04/02/2010
SIGNATURE	bofiel	•	
	V		

Phone: (Free Call) 13	300 735 295 Enviro	nmental Assessment Technolog	ies Fax: (Free	Call) 1800 657 123
Melbourne Branch 5 Caribbean Drive, Scoresby 3179 Email: RentalsEnviroVIC@thermofisher.com	Sydney Branch Level 1, 4 Talavera Road, North Rydd 2113 Email: RentalsEnviroNSW@thermofisher.com	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5067 Email: RentalsEnviroSA@thermol[sher.com	Brisbane Branch Unit 2/5 Ross St Newstead 4006 Email: RentalsEnviroQLD@thermofisher.com	Perth Branch 121 Beringarra Ave Malaga WA 6090 Email: RentalsEnvireWA@thermofisher.com
			_	

ACTIVE ENVIRONMENTAL SOLUTIONS Alemir International Pty Ltd, trading as Active Environmental Solutions

Calibration and Service Report

Company: Contact: Address:Douglas Partners Pty LtdManufacturer: Instrument: MiniRAE Lite Model: PGM 7300Serial #: Part #: 059-A110-0Address: Suburb: Phone: (02) 9809 0666 Fax: (02) 9809 4095 Email: Wenfei.yuan@douglaspartners.com.auModel: Configuration: VOC Details: VOC Details: PumpSerial #: Part #: 059-A110-0 Date Sold: July 2008 Last Cal: Job #: 100-11304 Order #: 87039ItemTestPass Comments Pass Details: VOC Details:Comments Pump Part codeQtyItemTestPass Pas	00
Battery NiCd, NiMH, Dry cell, Li Ion ✓ Li Ion SN: 167J2W0104 Charger, Power supply ✓ 240VAC ✓ Pump Flow ✓ >500ml/min ✓ Filter Filter, fitting, etc ✓ ✓ >600ml/min ✓ Alarms Audible, visual, external ✓ ✓ ✓ ✓ ✓ Display Operation ✓ ✓ ✓ ✓ ✓ ✓	Cost
Battery NiCd, NiMH, Dry cell, Li lon ✓ Li lon SN: 167J2W0104 Charger, Power supply ✓ 240VAC Pump Flow ✓ >500ml/min Filter Filter, fitting, etc ✓ Alarms Audible, visual, external ✓ Display Operation ✓	
Pump Flow ✓ >500ml/min Filter Filter, fitting, etc ✓ Alarms Audible, visual, external ✓ Alarm code ✓ Display Operation ✓	
Filter Filter, fitting, etc ✓ Alarms Audible, visual, external ✓ Alarm code ✓ Display Operation ✓	
Filter Filter, fitting, etc ✓ Alarms Audible, visual, external ✓ Alarm code ✓ ✓ Display Operation ✓ ✓	
Alarm code Image: Colored and colore	
Alarm code ✓ Display Operation ✓	
Display	
PCB Operation	
Connectors Condition	
Firmware Version V1.05	
Datalogger Operation	
Case Condition	
Sensors	
Oxygen Lo/Hi	
Toxic 1 Inst/STEL/TWA	
Toxic 2 Inst/STEL/TWA	
Toxic 3 Inst/STEL/TWA	
LEL Alarm 1, Alarm 2	
%vol Alarm 1, Alarm 2 PID IR other Alarm 1 Alarm 2	
	1000.00
	\$290.00
	\$290.00
PID sensor replaced Labour	
	\$90.00
Total	\$38.00 \$418.00

Calibration Certificate

			<u>danbration dertindate</u>			*. ~.		
Sensor Type	Туре	Serial#	Span Gas	Concentration	Traceability	CF	Rea	ding
	Date Code			Lot #		Zero	Span	
Oxygen			Air Nitrogen	20.9% 99.9%				
Toxic 1	_			ppm				
Toxic 2				ppm				
Toxic 3				ppm				
% LEL				% LEL				
% VOL				% VOL				1
PID	10.6	106GA20365	Isobutvlene	100ppm	28459-1-1		0	100

Calibrated/Repaired by:

j

1. Class ------

Peter Donnellan

29 January 2010 Calibration/repair date:

Next due: 29 July 2010

Melbourne - Head Office Unit 3, 288 Bolton Street Eltham VIC 3095 Australia T: +(613) 9431 3500 F: +(613) 9431 3577 **Sydney - Office** Suite 14, Level 2, 6-8 Holden Street Ashfield NSW 2131 Australia T: +(612) 9716 5966 F: +(612) 9716 5988 ISO 9001:2000 < CERTIFIED

\Aesmel2\data\Service Reports\Gas\Douglas Partners\590-000221.doc REV AT.2

Douglas Partners Pty Ltd ABN 75 053 980 117 96 Hermitage Road West Ryde NSW 2114 Australia PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095 www.douglaspartners.com.au

FIELD PID CALIBRATION RECORD

Unit ID. DP401
Date of Calibration 17/5/10
Calibration Gas. Isobutylene
Calibrated by
Battery Charged Yes/No
Lamp OK (Yeə)/No)
Operated by
Signed

Douglas Partners Pty Ltd ABN 75 053 980 117 96 Hermitage Road West Ryde NSW 2114 Australia PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095 www.douglaspartners.com.au

FIELD PID CALIBRATION RECORD

Unit ID. DP401
Date of Calibration. $24/5/10$
Calibration Gas. ISO butylene
Calibrated by
Battery Charged
Lamp OK (Yes/No)
Operated by
Signed

