

Engineering Consultants Rock-Soil-Water

> G3 56 Delhi Road North Ryde NSW 2113 P: 61-2 9812 5000 F: 61-2 9812 5001 mailbox@psmconsult.com.au www.psmconsult.com.au

Our Ref: PSM1397.R1 Date: 27 October 2009

Taylor Thomson Whitting Pty Ltd Level 3, 48 Chandos St ST LEONARDS NSW 2065

ATTENTION: RICHARD GREEN

(via. e-mail: richard.green@ttw.com.au)

Dear Sir,

RE: UNSW ENERGY TECHNOLOGIES BUILDING, KENSINGTON GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION

We are pleased to submit our report on the geotechnical investigation undertaken for the above project.

Please do not hesitate to contact the undersigned if you have any queries.

For and on behalf of <u>PELLS SULLIVAN MEYNINK</u>

enter

GARRY MOSTYN

Distribution: 1 electronic copy TTW 3 hard copies TTW Original held by PSM Taylor Thomson Whitting Pty Ltd

UNSW ENERGY TECHNOLOGIES BUILDING, KENSINGTON GEOTECHINCAL AND ENVIRONMENTAL INVESTIGATION

PSM1397.R1 OCTOBER 2009

CONTENTS

1.	INTR	ODUCTION	1		
2.	PRO	POSED DEVELOPMENT	1		
3.	GEO	TECHNICAL INVESTIGATION	1		
	3.1. 3.2.		1 2		
4.	STA	GE 1 CONTAMINATION ASSESSMENT	3		
5.	SITE CONDITIONS				
	5.4.	Surface Conditions Subsurface Conditions Groundwater	4 4 5		
6.	DISC	CUSSIONS AND RECOMMENDATIONS	5		
		Bulk Excavation Conditions Permanent and Temporary Batters Excavation Support Foundation Advice 6.5.1. General 6.5.2. Pad and Raft Footings 6.5.3. Piles 6.5.4. Differential Settlements	5 5 6 7 7 7 7 8 8 8 8 8 8 9		
REF	ERENC	ES	12		

FIGURES

- 1 CPT and borehole location plan
- 2 FWD test location plan
- 3 Summary of FWD test results
- 4 CBR sampling location plan
- 5 Curvature deflection ratio

APPENDICES

- A Cone Penetration Test Result Sheets
- B Engineering Borehole Logs and Explanation Sheets
- C Falling Weight Deflectometer Test Data
- D Geotechnical Laboratory Test Result Sheets
- E Stage 1 Contamination Assessment Report
- F Building L5 and F8 Cone Penetration Test Result Sheets

1. INTRODUCTION

This report presents the results of the geotechnical investigation undertaken by Pells Sullivan Meynink Pty Ltd (PSM) at the proposed site for the University of New South Wales (UNSW) Energy Technologies Building. In addition, it presents the results of the Stage 1 contamination assessment completed by Urban Environmental Consulting (UEC) on behalf of PSM.

The study was undertaken in accordance with our proposal A1103.L1 dated 20 August 2009 as varied in the e-mail from Bernard Shen of PSM dated 24 August 2009. The proposal was prepared in response to the Taylor Thomson Whitting (TTW) Geotechnical Investigation Brief (Ref. 091426) dated 11 August 2009.

Confirmation to proceed was provided in a letter dated 10 September 2009 (Ref. 091426).

The aim of the geotechnical investigation was to assess the subsurface conditions, assess the adequacy of the existing pavement and provide geotechnical advice for the proposed development. The aim of the Stage 1 contamination assessment was to identify past and present potentially contaminating activities. We have also included investigation results for previous projects undertaken within 300 m of the site.

2. PROPOSED DEVELOPMENT

We understand that the project comprises construction of a concrete frame building with four (4) storeys above ground, a roof and one (1) basement level. The basement level is approximately 4.0 m to 4.5 m below the existing ground level. The site is located at the existing tennis courts along Anzac Parade in UNSW, Kensington. A maximum working column load of 16,000 kN is proposed.

3. <u>GEOTECHNICAL INVESTIGATION</u>

3.1. Fieldwork

The fieldwork was undertaken on 23 September 2009 and 25 September 2009 and comprised:

- 5 x CPTs (CPT201 to CPT 205).
- 1 x borehole (BH101).
- 37 x Falling Weight Deflectometer (FWD) tests.

The CPTs were undertaken by Ground Test Pty Ltd, using a 15.5 tonne truck mounted testing rig. Four (4) CPTs were undertaken to 20 m depth and one (1) CPT to 25 m depth. The CPT locations are shown on Figure 1. CPT results and interpreted profiles are presented in Appendix A.

Borehole BH101 was drilled by Soil Check Pty Ltd using a truck mounted drill rig. The borehole was drilled to a depth of 27.25 m, using auger drilling and washboring techniques. The borehole location is shown in Figure 1. Drilling was undertaken in the full time presence of a PSM geotechnical engineer. Standard Penetration Tests (SPT) were undertaken and soil samples recovered. The engineering borehole log, together with the explanation sheets are presented in Appendix B.

A standpipe piezometer was installed in borehole BH101. Depth to the water table was measured immediately after the installation of piezometer and on three (3) occasions after installation. Groundwater levels are tabulated in Table 1. The measurement taken on 27 October 2009 was after significant rainfall.

	GROUNDWATER MEASUREMENTS					
DATE / TIME	DEPTH (m)	REDUCED LEVEL (m AHD)				
Immediately after piezometer installation 25/09/2009 (5:00 pm)	5.9	21.0				
1/10/2009 (6:00 pm)	6.2	20.7				
13/10/2009 (7:00 pm)	6.1	20.8				
27/10/2009 (7:00 am)	5.9	21.0				

TABLE 1 SUMMARY OF GROUNDWATER LEVEL MEASUREMENTS

The testing and sampling locations were measured by tape relative to existing site features. The surface levels of testing and sampling locations were measured with respect to levels of existing site features shown on a survey plan provided by UNSW.

The FWD testing was undertaken by Australian Surface Testing Pty Ltd. Testing was carried out at approximately 25 m intervals per lane of traffic and the test locations are shown on Figure 2. The results are summarised in Figure 3 and data shown in Appendix C.

3.2. <u>Geotechnical laboratory Testing</u>

Five (5) bulk samples (CBR1 to CBR5) were recovered for California Bearing Ratio (CBR) testing. The locations of the CBR sampling are shown in Figure 4.

The geotechnical laboratory test results are attached in Appendix D and summarised in Table 2.

SAMPLE	DEPTH	DESCRIPTION	CBR ⁽¹⁾	FIELD MOISTURE CONTENT	DRY DENSITY RATIO (STANDARD)
	(m)		(%)	(%)	(%)
CBR1	0.05 – 0.40	Silty Clay: high plasticity, dark grey and black	2.0	30.2	98
CBR2	0.20 – 0.30	Silty Sand: grey, with medium to coarse gravel	7.0	19.1	98
CBR3	0.15 – 0.30	Silty Sand: light brown, with medium to coarse gravel, with foreign material (ceramic, glass, root fibres)	15.0	4.3	98
CBR4	0.15 – 0.40	Silty Sand: grey and black, with foreign material (ceramic, grass cuttings, glass, root fibres)	3.0	9.0	98
CBR5	0.10 – 0.30	Silty Sand: grey, black and brown, with medium to coarse gravel, with foreign material (ceramic, glass, root fibres)	8.0	4.7	98

TABLE 2 SUMMARY OF CBR TESTING RESULTS

Notes: ⁽¹⁾ 4 day soaked CBR, 4.5 kg surcharge

4. STAGE 1 CONTAMINATION ASSESSMENT

The Stage 1 contamination assessment was performed by Urban Environmental Consultants (UEC). The Stage 1 contamination assessment report prepared by UEC (Ref. UES006.R01 dated 7 October 2009) is included in Appendix E.

As part of the contamination assessment, UEC completed preliminary waste classification testing of disturbed soil jar samples provided by PSM. PSM retrieved a total of four (4) samples from three (3) locations; BH101, CBR2 and CBR3. The samples were retrieved from between 0.2 to 2.0 m depth below the ground surface.

Laboratory analysis completed by UEC included testing for contaminants such as metals (CU, Pb, Zn, Cr, Cd, Ni, As, Hg), Petroleum Hydrocarbons (TPH / BTEX), Polyaromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and Pesticides (OCP/OPPs). Results are included in Appendix E.

5. <u>SITE CONDITIONS</u>

5.1. <u>Geological Setting</u>

The 1:100,000 Sydney Geological map indicates that the site is underlain by medium to fine-grained "marine" sand with podsols (a leached soil).

The published information was consistent with the encountered subsurface conditions in the field investigation.

5.2. <u>Surface Conditions</u>

The site is rectangular in shape with dimensions approximately 75.0 m (east to west) and 35.0 m (north to south). The site comprises tennis courts within the UNSW campus. It is bound by the University Mall to the north, Anzac Parade to the west, Grounds Depot (Building J6) to the south and Sam Cracknell Pavilion (Building H8) to the east.

The site survey plan show the existing tennis courts level at approximately RL 27 m AHD. The architectural drawings provided by TTW show the proposed basement at RL 23.7 m AHD.

5.3. <u>Subsurface Conditions</u>

The subsurface conditions encountered within the borehole and CPTs are summarised in Table 3 and Table 4. The subsurface conditions comprised a thin veneer of fill over aeolian and marine sand. The density index of the sand above approximately 10 m depth ranged from medium dense to dense, while below this depth the sand was typically dense to very dense.

TABLE 3
SUMMARY OF SUBSURFACE CONDITIONS ENCOUNTERED AT
BOREHOLE AND CPT LOCATIONS

_. _. _ _

UNIT NAME	REDUCED LEVEL OF TOP OF UNIT (m AHD)	DESCRIPTION
FILL	26.8 to 27.1	GRAVEL and SAND: fine to medium gravel, up to 20 mm, angular, grey, medium grained sand.
SAND 1	26.7 to 27.0	SAND: fine to medium grained, dark brown and yellow brown, some thin clay bands. Density index range from medium dense to dense, typically within the medium dense range. Aeolian origin (wind blown deposit).
SAND 2	16.3 to 18.3	SAND: medium grained, yellow brown. Density index range from dense to very dense, typically within the dense range. Marine origin (marine deposit).

 TABLE 4

 LEVELS OF GEOTECHNICAL UNITS AT BOREHOLE AND CPT LOCATIONS

UNIT	REDUCED LEVEL OF TOP OF UNIT (m AHD)								
NAME	CPT201	CPT202	CPT203	CPT204	CPT205	BH101			
FILL	26.9	27.1	27.2	27.2	27.0	26.9			
SAND 1	26.7	26.9	27.0	27.0	26.8	26.7			
SAND 2	16.3	16.9	18.3	18.1	17.9	20.0 - 18.0			

5.4. <u>Groundwater</u>

Groundwater was encountered at levels of between RL 20.7 m AHD and RL 21.0 m AHD. It is noted however that groundwater levels do fluctuate with rainfall and other factors.

6. DISCUSSIONS AND RECOMMENDATIONS

6.1. <u>Site Classification</u>

The site has been classified in accordance with Australian Standard AS 2870 (1996), *Residential slabs and footings – Construction*. Table 2.1 of the standard provides classification by foundation material.

Based on the site observations, we recommend that structures relevant to this code be designed for a site classification of Class "A" (i.e. Most sand and rock sites with little or no ground movements from moisture changes).

6.2. Bulk Excavation Conditions

We understand that excavation to a depth between 4.0 m and 4.5 m is required for the proposed basement level. Based on the results of the investigation, excavation in FILL and SAND 1 units will be required. The SAND 2 unit is not expected to be exposed during excavation.

Excavation in FILL and SAND 1 units should be achievable using conventional earth moving equipment, including excavators, dozers and front end loaders.

The trafficability of excavated material will be dependent on preventing saturation of the near surface soils. Based on water levels measured from the piezometer, the water table is expected to occur about 1.5 m below the excavation level. Groundwater levels may increase especially during protracted periods of rain. Allowance for dewatering such as by pump and sump techniques may be required. Placement of a granular working platform may also be a suitable option.

6.3. <u>Permanent and Temporary Batters</u>

The following batter slope angles shown in Table 5, subject to the comments below, are recommended for the design of batters up to 5.0 m height.

TABLE 5 BATTER SLOPE ANGLES

UNIT NAME	TEMPORARY	PERMANENT
SAND 1	2.5H : 1V	3H : 1V

All batters should be protected from erosion. Permanent batters should be drained. Temporary batters should not be left unsupported for more than 3 months.

6.4. <u>Excavation Support</u>

It is understood that excavation would be approximately 4.0 m to 4.5 m deep. Structural support will be required to provide temporary and permanent support for the SAND 1 unit which will occur around the perimeter of the excavation.

The design of support structures should be based on the effective soil strength parameters, c' and ϕ' or the 'at rest' coefficient of lateral earth pressure K_o provided in Table 6.

We note that we have not provided active earth pressure coefficients (K_a) as these are dependent on the wall type and geometry, the batter angle, the backfill angle, the flexibility of the wall, the construction sequence, the acceptable deformation, surcharge etc. The retaining wall designer should consider all the above as part of the design.

Design of retention systems may be based on either K_a or K_o pressures. Design using active earth pressures provides the minimum lateral earth pressure that must be supported and requires a wall that can move to allow the pressures to reduce to these values (vertical and lateral movements up to 2% of height may occur, typical movements will be much less).

If there is concern regarding movement due to basement excavation affecting adjacent structures or buried services, it is recommended that the design and construction be based on K_o pressures and construction be carefully controlled to ensure support is provided throughout all stages of construction. It should be noted that designing for K_o pressures does not, of itself, ensure that movement does not occur. Movements are controlled by construction method, especially sequence. The proximity of the

neighbouring buildings to the boundaries will need to be considered when designing the basement retaining structure.

Passive earth pressures should be used for calculation of resisting forces in embedded sections of retaining structures. Note these require large strains to mobilise the full geotechnical capacity. Where basement excavations extend below the water table, design of retention systems should take into account hydrostatic pressures.

Contiguous pile walls may be appropriate for the northern and southern boundary, though will require care to ensure that gaps between piles are filled to prevent loss of sand. This is based on the assumption that there are no movement sensitive structures along the boundaries.

Secant pile walls may be required adjacent to the Sam Cracknell Pavilion and western boundary, including a short return along the northern and southern walls. Use of soil anchors may be required, though installation of such anchors may result in ground loss, which could cause a problem at the Sam Cracknell Pavilion.

It is considered unlikely that a cantilevered wall will be economical for the proposed excavation depth.

6.5. <u>Foundation Advice</u>

6.5.1. General

The following sections provide advice and parameters that may be used when proportioning rafts, pad footings or bored piles for the proposed structure.

6.5.2. Pad and Raft Footings

Pad footings should be founded on or within the SAND 1 unit. The design parameters in Table 6 can be adopted.

6.5.3. Piles

Piles should be designed in accordance with the requirements in AS 2159 (1995), *Piling - Design and Installation*. The parameters provided in Table 6 and 7 may assist in the design of piles.

We envisage that piles will be founded within the SAND 2 unit, and with toe levels between RL 16 m AHD and RL 9 m AHD.

With regards to pile design we recommend that:

- A geotechnical strength reduction factor, $\Phi_g = 0.55$ (AS2159 Cl. 4.2.2) be adopted.
- For bored concrete piles, a strength reduction factor of 0.75 (AS2159 CI. 5.3.2) be adopted.
- For bored grout piles, a strength reduction factor of 0.65 (AS2159 Cl. 5.3.3) be adopted.

6.5.4. Differential Settlements

Where adjacent foundation details differ (e.g. pile and pad, differing loads or ground conditions) differential settlement will need to be assessed.

6.6. <u>Earthquake Provisions</u>

From AS 1170.4 (2007), Structural design actions – Part 4: Earthquake actions in Australia, Section 4.2, the site is classified as Class C_e , with depth of soil not exceeding 45 m for medium dense sand. The hazard factor (Z) for the site is 0.08 as per Table 3.2 of AS1170.4 - 2007.

6.7. <u>Pavements</u>

6.7.1. Existing Southern Drive

As shown in Figure 3, the FWD testing indicates the following:

- An overall deflection of between 0.2 mm and 1.2 mm, with a mean of 0.7 mm.
- A curvature deflection ratio of between 5% and 57%, with a mean of 26%.

The calculated Characteristic Deflection (CD) as defined by Austroads AP-G87/04 (Eqn. 6.2) is 1.0 mm.

Austroads AP-G87/04, *Pavement Rehabilitation: A guide to design of rehabilitation treatments for road pavements,* provides guidelines on the condition of a pavement based on deflection testing data. Its states that very high local deflections (more than 1.5 mm) may indicate weak subgrade conditions and a curvature deflection ratio of higher than about 35% may indicate low stiffness of the base course. The FWD results did not exceed either of these values.

Austroads presents a method whereby the CD can be used to assess the required thickness of asphalt overlay for different design traffic. The criteria for this is pavement rutting. Based on Figure 6.5 of Austroads AP-G87/04, an overlay is not required for a CD of 1.0 mm and traffic loading of up to 3x10⁶ Equivalent Standard Axles (ESA). We note that the design charts presented in Austroads are for a standard FWD test pressure of 566 kPa and the FWD testing undertaken was at a pressure of 700 kPa. The measured deflections used in our assessment of traffic loading have not been corrected for this and therefore the assessment is conservative.

By adopting 4.5 ESAs for a construction vehicle (i.e. truck and trailer), this would be equivalent to more than 600,000 loaded movements, which we consider is unlikely to be exceeded for the proposed development.

A basic inspection of the Southern Drive was undertaken on 27 October 2009. The following was observed:

- Cracks and patch work between chainage 350 m to 450 m (i.e. outside Building L6, New College).
- Patch work between chainage 220 m to 280 m (i.e. outside Building N9, Shalom College).
- Other areas appeared to be in a relatively good condition.

Based on the above observations, some localised areas of the Southern Drive may experience further distress due to construction traffic and may require further patching.

6.7.2. New pavement

The CBR testing has indicated that the subgrade (at depth 0.05 m to 0.4 m below the ground surface) has a CBR between 2.0% to 15.0% when compacted to 98% of Standard Maximum Dry Density. The low CBR values for CBR1 and CBR4 is likely due to the subgrade being fill. We recommend that a design CBR of 8% be adopted for pavements founded on the SAND 1 unit.

 TABLE 6

 RECOMMENDED GEOTECHNICAL DESIGN PARAMETERS FOR RETAINING STRUCTURES AND SHALLOW FOOTINGS

		EFFECTIVE	STRENGTH P	ARAMETERS							
UNIT NAME	UNIT WEIGHT	Cohesion	Friction angle	At rest coefficient of lateral earth pressure	YOUNG'S MODULUS						POISSON'S RATIO
		C'	φ'	Ko							
	(kN/m³)	(kPa)	(degrees)		(MPa)						
SAND 1	20	0	32	0.47	Above RL 23 m AHD	15	0.25				
SAND	20	0	52	0.47	Below RL 23 m AHD	30	0.25				
SAND 2	22	0	38	N.A.	60		0.3				

	CONTINUOUS FLIGHT AUGER PILES			DISPLACEMENT PILES ⁽¹⁾			DRIVEN PILES		
UNIT NAME	Modulus	Ultimate shaft adhesion	Ultimate end bearing pressure	Modulus	Ultimate shaft adhesion	Ultimate end bearing pressure	Modulus	Ultimate shaft adhesion	Ultimate end bearing pressure
	(MPa)	(kPa)	(MPa)	(MPa)	(kPa)	(MPa)	(MPa)	(kPa)	(MPa)
SAND 1 (below RL 23 m AHD)	30	30	3.5	70	60	6	70	60	6
SAND 2 (between RL 17 m AHD and RL 2 m AHD)	40	50	10	90	80	12	90	80	12

TABLE 7 **RECOMMENDED GEOTECHNICAL DESIGN PARAMETERS PILES**

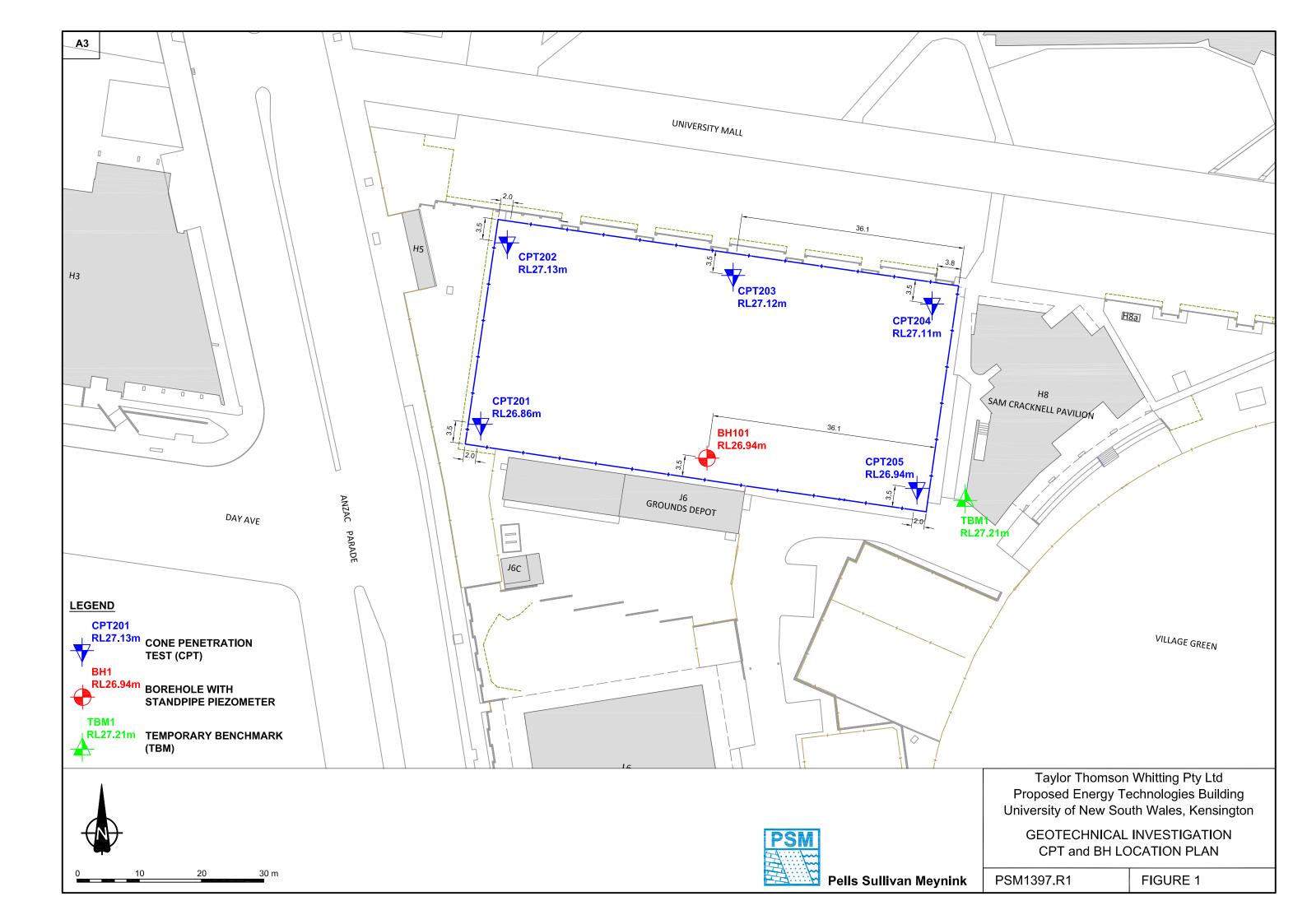
Notes:

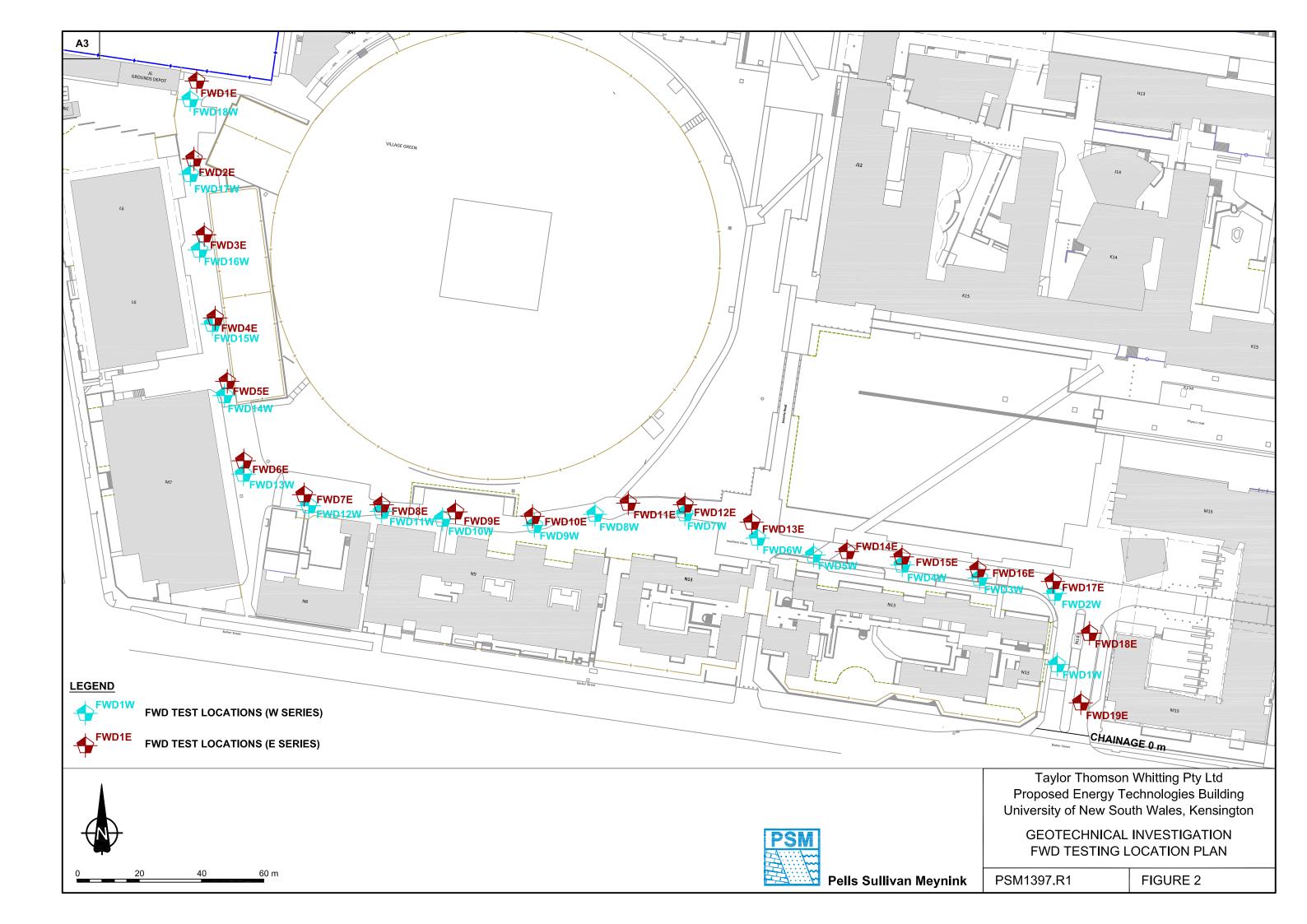
⁽¹⁾eg. Frankipile Australia Atlas piles or Vibropile Omega piles ⁽²⁾The parameters above are not to be used for piles founded below RL 2 m AHD, as the geotechnical investigation did not extend below RL 0 m AHD.

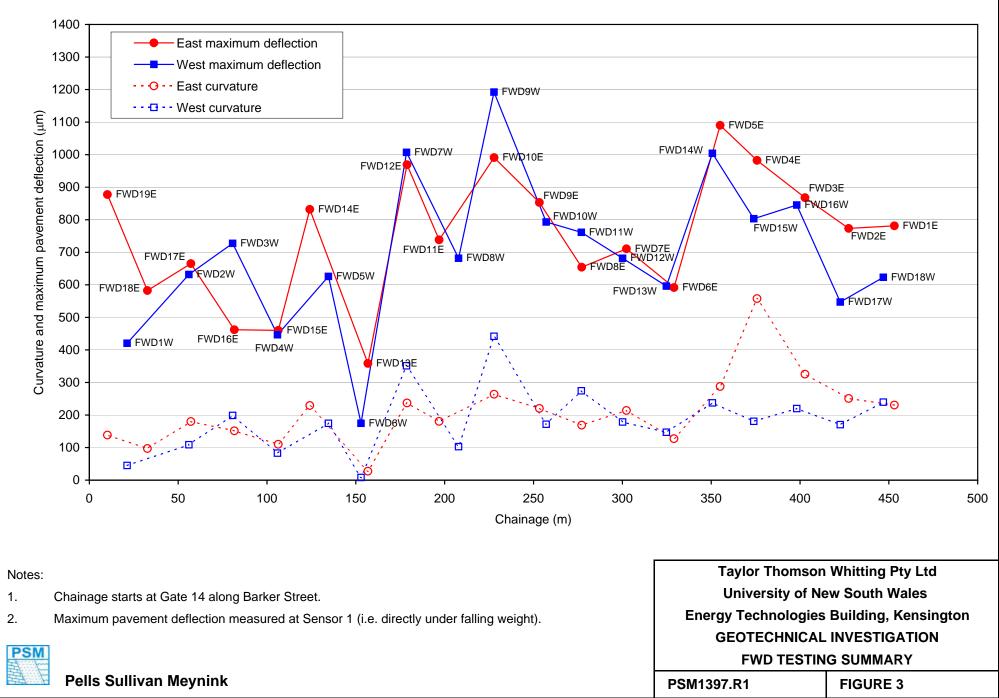
If subsurface conditions are found to vary from those described in this report, further advice should be sought.

Should there be any queries, do not hesitate to contact the undersigned.

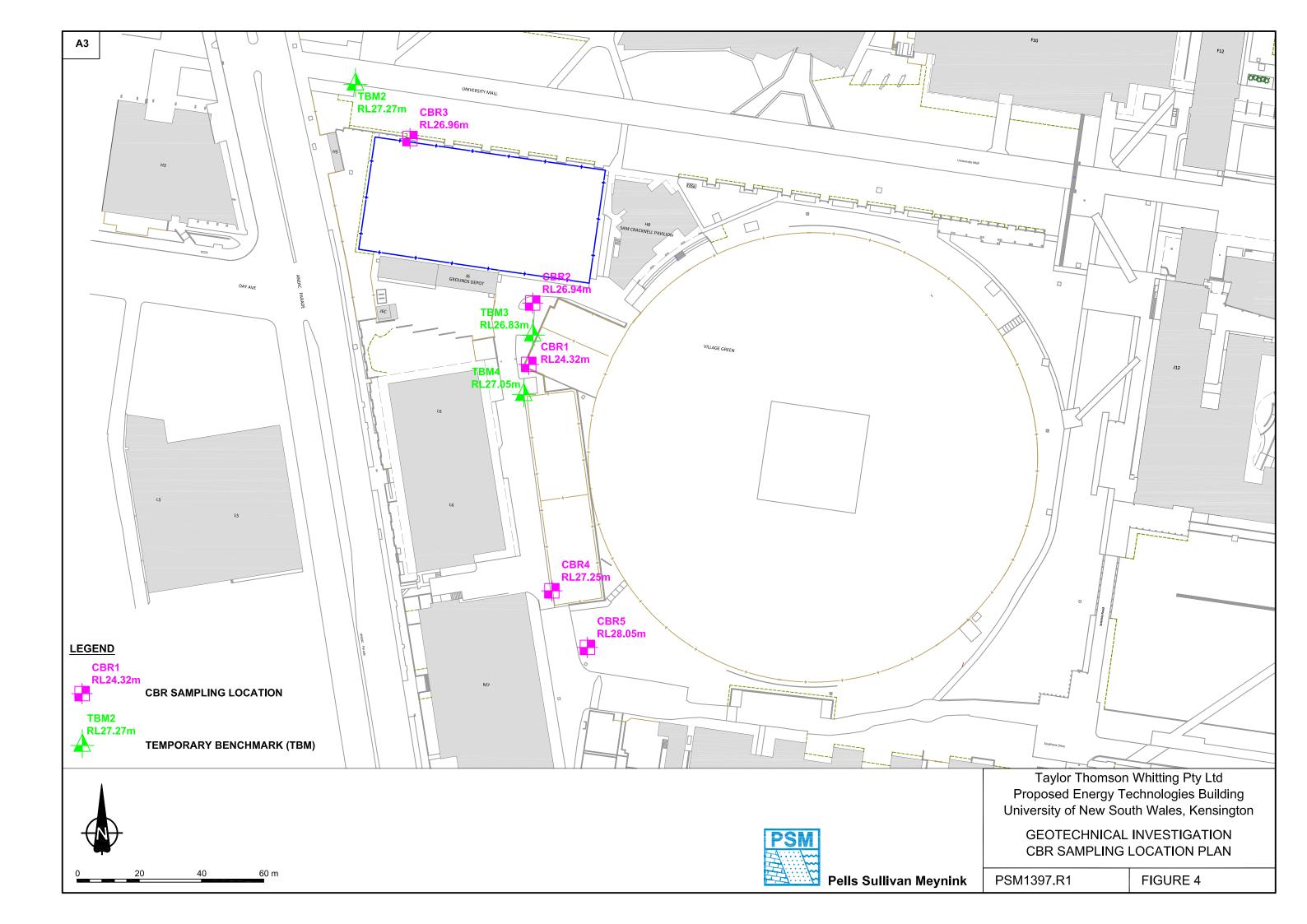
For and on behalf of <u>PELLS SULLIVAN MEYNINK</u>

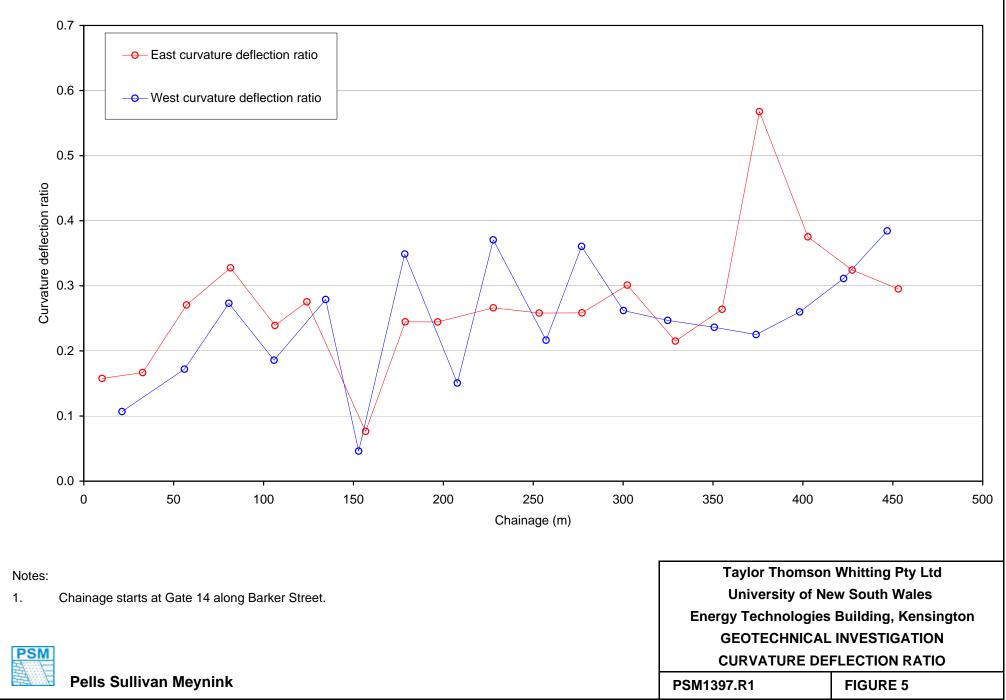

Emposy


GARRY MOSTYN


REFERENCES

Austroads AP-G87/04 (2004), *Pavement Rehabilitation: A guide to design of rehabilitation treatments for road pavements.*





U:\Jobs 1301 to 1400\PSM1381 to 1400\PSM1397\Engineering\FWD\[FWD data.xls]Summary

U:\Jobs 1301 to 1400\PSM1381 to 1400\PSM1397\Engineering\FWD\[FWD data.xls]Summary

APPENDIX A

CONE PENETRATION TEST RESULT SHEETS

Job No. PSM1397	Test No.	CPT201
Project UNSW Energy Technologies Building, Kensington, NSW		
Pushing rigDouglas Partners truckLocationSee PSM1397.R1 Figure 1R.L. Surface26.86 m (AHD)	Test date Probe I.D. Field work	23/09/2009 CONE-HH4 Ground Test
Cone Resistance, q. (MPa) 0 10 20 30 40 50 60 70 0 5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	So Cravelly Sand	Tred Soil Type

CONE PENETRATION TEST - INFERRED SOIL TYPE

Job No.	PSM1397	Test No.	CPT202
Project	UNSW Energy Technologies Building, Kensington, NSW		
Pushing rig Location R.L. Surface	Douglas Partners truck See PSM1397.R1 Figure 1 27.13 m (AHD)	Test date Probe I.D. Field work	23/09/2009 CONE-HH4 Ground Test
	20 30 40 50 60 70 0 5 10 0<	Gravelly Sand Sands - Clean	red Soil Type
20 +	0.5 1.0	┘ [

U:Jobs 1301 to 1400\PSM1381 to 1400\PSM1397\Engineering\CPT\[CPT202 Interpretation.xls]SOIL TYPE

Job No.	PSM1397	Test No.	CPT203
Project	UNSW Energy Technologies Building, Kensington, NSW	Sheet	1 of 2
Pushing rig Location R.L. Surface	Douglas Partners truck See PSM1397.R1 Figure 1 27.12 m (AHD)	Test date Probe I.D. Field work	23/09/2009 CONE-HH4 Ground Test
С	20 30 40 50 60 70 0 5 10 0<) Infer Gravelly Sand	red Soil Type

Job No.	PSM1397		Test No.	CPT203
Project	UNSW Energy Technolo	gies Building, Kensington, NSW	Sheet	2 of 2
Pushing rig Location R.L. Surface	Douglas Partners truck See PSM1397.R1 Figure 1 27.12 m (AHD)		Test date Probe I.D. Field work	23/09/2009 CONE-HH4 Ground Test
0 10 20 	one Resistance, q _c (MPa) 20 30 40 50 60 70	Friction Ratio (%) Pore Pressure (kPa 0 5 10 $\stackrel{\circ}{\sim}_{i}$ $\stackrel{\circ}{\otimes}_{i}$		red Soil Type
21	And the second s			
²³ ₂₄ <				
25	<u>}</u>			
26				
27				
28				
29 E 30				
Deptr 30 31				
32				
33				
34 - 35 -				
35 -				
37				
38 -				
-				

Job No.	PSM1397			Test No.	CPT204
Project	UNSW Energy Technologies	Building, Kensir	ngton, NSW		
Pushing rig Location R.L. Surface	Douglas Partners truck See PSM1397.R1 Figure 1 27.11 m (AHD)			Test date Probe I.D. Field work	23/09/2009 CONE-HH4 Ground Test
С	27.11 m (AHD) pine Resistance, q _c (MPa) Fric 20 30 40 50 60 70 0	tion Ratio (%) 5 10	Pore Pressure (kPa)	Inferr Gravelly Sand t	ed Soil Type

Job No.	PSM1397			Test No.	CPT205
Project	UNSW Energy Technolo	gies Building, Kens	sington, NSW		
Pushing rig Location R.L. Surface	Douglas Partners truck See PSM1397.R1 Figure 1 26.94 m (AHD)			Test date Probe I.D. Field work	23/09/2009 CONE-HH4 Ground Test
С	one Resistance, q. (MPa) 20 30 40 50 60 70	Friction Ratio (%) 0 5 10	Pore Pressure (kPa)	Infer Gravelly Sand	red Soil Type

APPENDIX B

ENGINEERING BOREHOLE LOGS AND EXPLANATION SHEETS

	^o S	M	P	ells	s S	Su	llivan Meynink			Borehole No:	BH1
	<u>}</u>	n. m	~ Ro	ck-So	ring oil-Wa	ater	sultants			Sheet:	1 of 3
Ę	<u>A</u>	f	B	ore	ehe	olo	e Log			Job No:	PSM1397
Pri Pro	ient: incipa oject: te loca			SW E	nerg	у Те	Vhitting Pty Ltd chnologies Building			Date commenced: Date completed: Logged by: Checked by:	25/09/2009 25/09/2009 BS/HCH
Dr Eq	illing (Juipmo	cont ent t	tractor type:	: Soi JK5	l Che 500 T	eck F rucł	Pty Ltd R.L. surface: 26.94 Mounted Rig Easting: Northing:			Vertical datum: Horizontal datum: Inclination / azimuth:	AHD -90 / -
Method	Samples	Water	R.L. (m)	Depth (m)	Graphic Log	USCS Symbol	Material SOIL TYPE; plasticity or particle characteristics, colour, secondary and minor components ROCK TYPE; weathering, particle characteristics, colour, secondary and minor components	Moisture Condition	Estimated Strength	Struct Additional (ure and Dbservations
Concrete saw	E		-				BITUMEN, 45 mm thick, black // GRAVEL: fine, up to 20 mm, angular, grey, with some sand // SAND: fine to medium grained, brown	D		∖Tennis court surface ∖Fill	
	E		26.0 	1.0 -			Becoming fine grained, yellow brown				
			- - - - - - - - - - - - - - - - - - -	3.0 -			Becoming dark brown and yellow brown				
Auger	SPT	09 (5.00pm)	- 	4.0 -				М			
	6,9,14 N=23	Measured on 25/09/09	22.0	5.0 -		SP					
		<u> </u>	- - 21.0 - - -	6.0 -						Water level measured in installation of piezomete	nmediately after r
			- - - - - - -	7.0 -			Becoming medium grained, brown				
			- - - - - - - - - - - - - - - - - - -	8.0 -			Becoming yellow brown	w			
Washboring	SPT 35(100n N>50	im)	- - - - - - - - - - - -	9.0 -							
Ň			- - 17.0]						

Refer to Explanation Sheets Attached for Classification Systems

PSM	Pells Su	Illivan Meynink			Borehole No:	BH1
	Engineering Co Rock-Soil-Wate	nsultants			Sheet:	2 of 3
	Borehol	e Log			Job No:	PSM1397
Client: Principal: Project: Site location	Taylor Thomson UNSW Energy T Kensington, NSV	echnologies Building			Date commenced: Date completed: Logged by: Checked by:	25/09/2009 25/09/2009 BS/HCH
Drilling cont Equipment ty	ractor: Soil Check ype: JK500 Truc	Pty Ltd R.L. surface: 26.94 k Mounted Rig Easting: Northing:			Vertical datum: Horizontal datum: Inclination / azimuth:	AHD : -90 / -
Method Samples Water	R.L. (m) Depth (m) Graphic Log USCS Symbol	Material SOIL TYPE; plasticity or particle characteristics, colour, secondary and minor components ROCK TYPE; weathering, particle characteristics, colour, secondary and minor components	Moisture Condition	Estimated Strength	Struct Additional	ture and Observations
SPT SPT 30(130mm) N>50	16.0 11.0 15.0 12.0 14.0 13.0 13.0 14.0 12.0 15.0 11.0 16.0 9.0 18.0 9.0 18.0 7.0		W			

Refer to Explanation Sheets Attached for Classification Systems

F	^D S	M] P	Pell	s S	Su	llivan Meynink			Borehole No:	BH1
H		nd. M.	~ Er ~ Ro	nginee ock-So	oil-W	ater	sultants			Sheet:	3 of 3
Ê		f					e Log			Job No:	PSM1397
Pi Pi	Client: Taylor Thomson Whitting Pty Ltd Principal: Project: UNSW Energy Technologies Building Site location: Kensington, NSW									Date commenced: Date completed: Logged by: Checked by:	25/09/2009 25/09/2009 BS/HCH
Di E(rilling quipmo	cont ent f	tracto type:	o r: So JK	il Che 500 T	eck F Fruci	Pty Ltd R.L. surface: 26.94 K Mounted Rig Easting: Northing:			Vertical datum: Horizontal datum: Inclination / azimuth	AHD : -90 / -
Method	Samples	Water	R.L. (m)	Depth (m)	Graphic Log	USCS Symbol	Material SOIL TYPE; plasticity or particle characteristics, colour, secondary and minor components ROCK TYPE; weathering, particle characteristics, colour, secondary and minor components	Moisture Condition	Estimated Strength	Struct Additional	ure and Observations
F			-			•					
						•					
10.0	SPT 2,32(120		6.0	21.0 -							
19,2	N>50										
			5.0	22.0 -							
			-			•					
						•					
			- 4.0 - -	23.0 -		•					
Washboring						SP		w			
Was			- 3.0	24.0 -							
			- 2.0	25.0 -		•					
				25.0 -							
			- - -			•					
			- 1.0 -	26.0 -		•					
			- 0.0	27.0 -							
		$\left \right $	<u> </u>		 	:	End of the hole at 27.25 m				
			- - 1 0	⁾ 28.0 -							
				28.0 -							
			2.0 E	9 29.0 -							
)							

Pells Sullivan Meynink Engineering Consultants

Rock-Soil-Water

EXPLANATION SHEET BOREHOLE LOG

GENERAL

Method

Coring Size

Non-Cored Borehole	
Auger	
Hand Auger	
Diamond Rotary	
Percussion	
Washboring	

Testing

Symbol	Description
UCS	Uniaxial Compressive Strength
TXL	Triaxial Test
BT	Brazilian Test
DT	Direct Tensile
SD	Slake Durability
Packer	Rock Mass Permeability

Cored Borehole	Nominal Core Diameter (mm)
NMLC	51.9
BQ	36.5
BQ3	33.5
NQ	47.6
NQ3	45.1
HQ	63.5
HQ3	61.1
PQ	85
PQ3	83.1
Diatube	Variable
Other	-

Samples

Symbol	Description
Е	Environmental sample
D	Disturbed sample
Bs	Bulk sample

Water

Symbol	Description
	Water level
►	Water inflow
	Complete water loss
	Partial water loss

SOIL DESCRIPTIONS

Unified Soil Classification System (USCS)

	Major Divisions	6	Symbol	Typical Names
		Clean	GW	Well-graded gravels and gravel-sand mixtures, little or no fines.
Coarse-	Gravels (more than 50%	Gravels	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines.
Grained Soils	coarser than 2mm)	Gravels	GM	Silty gravels, gravel-sand-silt mixtures.
More	,	With Fines	GC	Clayey gravels. gravel-sand-clay mixtures.
50% coarser	Sands	Clean	SW	Well-graded sands and gravelly sands, little or no fines.
than 0.075mm	(more than 50% of coarse	Sands	SP	Poorly graded sands and gravelly sands, little or no fines.
	fraction finer than 2mm)	Sand With	SM	Silty sands, sand-silt mixture.
	,	Fines	SC	Clayey sands, sand-clay mixtures.
			ML	Inorganic silts, very fine sands, rock flour silty or clayey fine sands.
Fine- Grained	Silts and Clays 50% or	•	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
Soils 50% or			OL	Organic silts and silty clays of low plasticity.
more finer than 0.075mm	Silts and		MH	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts.
	Liquid I greater tha		СН	Inorganic clays of high plasticity, fat clays.
			ОН	Organic clays of medium to high plasticity.
	Highly Organic So	ils	PT	Peat etc.

Moisture Condition

Term	Symbol
Dry	D
Moist	М
Wet	W
Wet at Plastic Limit	WP
Wet at Liquid Limit	WL

Strength

COHESIVE SOILS are described in terms of undrained shear strength, colour and structure with comments on minor constituents or apparent special features. Undrained shear strength is measured by hand penetrometer or determined by laboratory testing or estimated from experience. Classification in terms of undrained shear strength is as follows:

Term	Symbol	Description for Field Estimation	Shear Strength (kPa)	UCS (kPa)
Very Soft	VS	Easily penetrated several centimetres by fist.	<12	<25
Soft	S	Easily penetrated several centimetres by thumb. Can be moulded by light finger pressure.	12-25	25-50
Firm	F	Can be penetrated by thumb with moderate effort. Can be moulded by strong finger pressure.	25-50	50-100
Stiff	ST	Readily indented by thumb.	50-100	100-200
Very Stiff	VST	Readily indented by thumbnail.	100-200	200-400
Hard	Н	Indented with difficulty by thumbnail	>200	>400

NON-COHESIVE SOILS are described in terms of density, colour, with comments on minor constituents or special features. Density (density index) is generally based on standard penetration testing (AS1289 Method 6.3.1), or other forms of penetration testing. Terms used in describing density are set out below:

Term	Symbol	Density Index	SPT N Values
Very Loose	VL	<15%	<5
Loose	L	15-35 %	5-10
Medium Dense	MD	35-65 %	10-30
Dense	D	65-85 %	30-50
Very Dense	VD	>85 %	>50

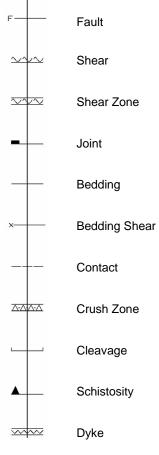
ROCK DESCRIPTIONS

Weathering

Term	Symbol	Description
Fresh	FR	Rock substance unaffected by weathering.
Slightly Weathered	SW	Rock substance affected by weathering to the extent that partial staining or partial discolouration of the rock substance usually by limonite has taken place. The colour and texture of the fresh rock is recognisable; strength properties are essentially those of the fresh rock substance.
Moderately Weathered	MW	Rock substance affected by weathering to the extent staining extends throughout whole of the rock substance and the original colour of the fresh rock is no longer recognisable.
Highly Weathered	HW	Rock substance affected by weathering to the extent that limonite staining or bleaching affects the whole of the rock substance and signs of chemical or physical decomposition of individual minerals are usually evident. Porosity and strength may be increased or decreased when compared to the fresh rock substance, usually as a result of the leaching or deposition of iron. The colour and strength of the original fresh rock substance is no longer recognisable.
Extremely Weathered	EW	Rock substance affected by weathering to the extent that the rock exhibits soil properties, i.e. it can be remoulded and can be classified according to the Unified Soil Classification System, but the texture of the original rock is still evident.

Strength

Term	Symbol	Description for Field Estimation	UCS (MPa)
Extremely Low	R0	Thumbnail easily scratches; gentle blow with geological pick leaves deep impression.	0.7-1.5
Very Low	R1	Can be peeled by a pocket knife. Crumbles under firm blows with geological pick.	1.5-3.0
Low	R2	Can be peeled by a pocket knife with difficulty; shallow indentation made by firm blow of geological pick.	3.0-10
Medium	R3	Cannot be scraped or peeled with a pocket knife; specimen can be fractured with single firm blow of hammer end of geological pick.	10-25
High	R4	Specimen requires more than one blow with hammer end of geological pick to fracture.	25-80
Very High	R5	Specimen requires many blows of hammer end of geological pick to fracture.	>80


Defect Description

Order of description: type, inclination, shape, roughness, infill type, infill thickness, number

Symbol	Description	
CL	Clay Seam	
FL	Fault - fracture along which displacement is recognisable.	
SR	Shear - a fracture along which movement has taken place but no displacement is recognisable. Evidence for movement may be slickensides, polishing and/or clay gouge.	
SH	Sheared Zone - zone of multiple closely spaced fracture planes with roughly parallel planar boundaries usually forming blocks of lenticular or wedge shaped intact material. Fractures are typically smooth, polished or slickensided; and curved.	
BG	Bedding parting - arrangement in layers of mineral grains or crystals parallel to surface of deposition along which a continuous observable parting occurs.	
BSH	Bedding plane shear - a shear formed along a bedding plane	
JN	Joint - a single fracture across which rock has little or no tensile strength and is not obviously related to rock fabric.	
CN	Contact - surface between two lithologies.	
SC	Schistosity - plane formed by the preferred orientation of the constituent minerals in a parallel arrangement in a coarse grained rock which has undergone regional metamorphism (schist).	
CV	Cleavage - plane of mechanical fracture in a rock normally sufficiently closely spaced to form parallel- sided slices.	
FO	Foliation	
CZ	Crushed Zone - zone with roughly parallel, planar boundaries (commonly slickensided) containing disoriented usually angular rock fragments of variable size often in a soil matrix.	
VN	Vein - fracture in which a tabular or sheet-like body of minerals have been intruded.	
DK	Dyke - Igneous intrusion - often weathered and altered to a clay like substance.	
DZ	Decomposed Zone - zone of any shape but commonly with parallel planar boundaries containing moderately to gradational boundaries into fresher rock.	
FZ	Fractured Zone - a zone of closely spaced defects (mainly joints, bedding, cleavage and/or schistosity) comprised of core lengths in the order of 50 mm or less.	

Defect Type

Standard Defect Symbols

Shape

Term	Symbol	Description
Planar	PL	Forms a continuous plane without variation in orientation.
Curved	CU	Has a gradual change in orientation.
Undulating	UN	Has a wavy surface shape.
Stepped	ST	Has one or more well defined steps
Irregular	IR	Many changes of orientation.

Infill Type

Symbol	Description
KL	Clean
CA	Calcite
СВ	Carbonaceous
CHL	Chlorite
FE	Iron oxide
QZ	Quartz
MG	Manganese
SU	Sulphides
SE	Sericite
RF	Rock fragments
G	Gravel
S	Sand
Z	Silt
CL	Clay

Term Symbol Description Slickensided Very smooth, Ro1 or polished reflects light. Roughness not detected with Smooth Ro2 finger. Sandpaper feel Defined (fine to medium Ro3 ridges sandpaper). Sandpaper feel (medium to Small steps Ro4 coarse sandpaper). Very well defined Very rough Ro5 ridges and/or

Roughness

Infill Thickness

steps.

Where infilling is present, the thickness of infill is recorded using the following convention:

STIron oxide staining of less than 1 mmVNVeneer coating of less than 1 mm

If the infilling is greater than 1 mm, the actual thickness of infill is recorded in millimeters.

If infill is not present, a dash (-) is recorded

Number

Number of defects with similar characteristics.

APPENDIX C

FALLING WEIGHT DEFLECTOMETER TEST DATA

Falling Weight Deflectometer Test Result Summary

_										Deflection	S								Norr	nalised deflect	ctions				1 1	Tempe	erature											
Road II	• Test#	Lane	e# Chainage (km)	e Visual Code		Sensor 1 (0mm)	Sensor 2 (200mm)	Sensor 3 (300mm)		4 Sensor 5) (600mm)	Sensor 6 (750mm		Sensor 8 (1200mm)	Sensor 9 (1500mm)	Normalised Force	Sensor 1 (0mm) Normalised	Sensor 2 (200mm) Normalised	Sensor 3 (300mm) Normalised	Sensor 4 (450mm) Normalised	Sensor 5 (600mm) Normalised	Sensor 6 (750mm) Normalised	• •	Sensor 8 (1200mm) Normalised	Sensor 9 (1500mm) Normalised	Curvature	Pavement Temp	Air Temp	Drop Sequence Completed Time	GPS Quality	Latitude	Longitude	PDOP	Start Date-Time	Sensors	Weight/s pring	ocation O	Operator C	omments
East	1	1	0	0	48.82	762.90	532.22	393.65	254.30	176.83	125.11	100.43	69.33	58.22	50	781.340	545.084	403.165	260.447	181.104	128.134	102.857	71.006	59.627	230.68	40.2	26.83	10:12	DGPS Fix	3355.072368	S 15113.615395 E	0.00	09/25/2009 10:11:48	Chop118-05A	3	UNSW E	Brendan	
East	2	1	25	0	48.93	756.82	506.05	377.24	226.99	181.70	141.00	118.86	80.90	65.29	50	773.370	517.116	385.489	231.954	185.673	144.083	121.459	82.669	66.718	250.77	40.6	26.83	10:13	DGPS Fix	3355.085882	S 15113.614547 E	0.00	09/25/2009 10:11:48	Chop118-05A	3	UNSW E	Brendan	
East	3	1	50	0	49.26	855.04	529.33	376.00	264.89		202.22	176.25	140.58	122.10	50	867.885	537.282	381.648	268.869	232.998	205.258	178.898	142.692	123.934	325.71	24.5	26.83	10:14	DGPS Fix	3355.099114	S 15113.616422 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	4	1	77	0	49.15	965.72	407.96	398.47	251.45	200.66	162.15	172.49	111.66	111.61	50	982.421	415.015	405.361	255.799	204.130	164.954	175.473	113.591	113.540	557.76	23.3	26.83	10:17	DGPS Fix	3355.113617	S 15113.618404 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	5	1	98	0	47.82	1042.58	754.79	562.74	389.90		257.61	222.15	174.31	139.45	50	1090.109	789.199	588.394	407.675	320.054	269.354	232.277	182.256	145.807	287.79	36.1	26.83	10:20	DGPS Fix	3355.124681	S 15113.620685 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	6	1	125	0	51.15	605.31	477.97	408.80	315.12	245.94	187.98	147.59	97.20	75.82	50	591.701	467.224	399.609	308.035	240.411	183.754	144.272	95.015	74.115	127.34	41.6	26.83	10:21	DGPS Fix	3355.138537	S 15113.623848 E	0.00	09/25/2009 10:11:48	Chop118-05A	3	UNSW E	Brendan	
East	7	1	150	0	50.48	717.45	503.45	372.83	234.68	157.82	108.43	86.22	61.40	54.15	50	710.628	498.663	369.285	232.448	156.319	107.399	85.400	60.816	53.635	214.00	44.1	26.83	10:24	DGPS Fix	3355.144608	S 15113.636316 E	0.00	09/25/2009 10:11:48	Chop118-05A	3	UNSW E	Brendan	
East	8	1	175	0	50.37	658.93	489.88	383.54	261.56		118.78	89.09	57.69	48.54	50	654.090	486.282	380.723	259.639	174.469	117.907	88.436	57.266	48.183	169.05	41.2	26.83	10:25	DGPS Fix	3355.146603	S 15113.652462 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	9	1	200	0	48.93	834.77	614.50	464.54	324.83		215.11	188.83	147.72	118.76	50	853.025	627.938	474.699	331.933	271.275	219.814	192.959	150.950	121.357	220.27	41.0	26.83	10:26	DGPS Fix	3355.148052	S 15113.667823 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	10	1	225	0	48.93	969.83	705.96	545.95	385.58		216.89	181.42	138.66	119.92	50	991.038	721.398	557.889	394.012	286.665	221.633	185.387	141.692	122.542	263.87	40.0	26.83	10:27	DGPS Fix	3355.149068	S 15113.683873 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	11	1	257	0	49.60	732.38	551.83	445.52	323.79	254.73	202.67	170.33	129.42	108.82	50	738.286	556.280	449.113	326.401	256.784	204.304	171.704	130.464	109.698	180.55	35.5	26.83	10:28	DGPS Fix	3355.147048		0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	12	1	275	0	49.15	952.68	715.54	556.28	384.21	285.87	227.92	192.27	133.93	105.91	50	969.156	727.915	565.900	390.855	290.814	231.862	195.595	136.246	107.742	237.14	37.8	26.83	10:29	DGPS Fix	3355.147517		0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	13	1	300	0	50.37	361.31	333.93	314.67	277.88		220.54	198.06	162.52	138.36	50	358.656	331.477	312.359	275.839	245.007	218.920	196.605	161.326	137.344	27.38	23.1	26.83	10:30	DGPS Fix		S 15113.729569 E	0.00	09/25/2009 10:11:48			UNSW E		Concrete
East	14	1	332	0	47.48	790.08	560.89	392.44	260.31	185.04	146.20	120.57	88.88	79.50	50	832.013	590.659	413.269	274.126	194.861	153.960	126.969	93.597	83.719	229.19	21.9	26.83	10:31	DGPS Fix		S 15113.749334 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	15	1	350	0	51.04	469.66	359.60	291.64	216.49		130.57	108.25	76.14	59.05	50	460.090	352.273	285.697	212.079	163.342	127.909	106.044	74.589	57.847	110.06	31.5	26.83	10:32	DGPS Fix			0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	16	1	375	0	49.93	461.31	309.94	242.35	174.82		115.21	97.69	72.49	58.65	50	461.957	310.375	242.690	175.065	140.597	115.372	97.827	72.592	58.732	151.37	22.5	26.83	10:33	DGPS Fix	3355.159653	S 15113.776562 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	17	1	400	0	48.71	648.14	468.09	381.62	282.40		185.45	158.13	122.10	98.07	50	665.305	480.487	391.727	289.879	230.599	190.361	162.318	125.334	100.667	180.05	42.2	26.83	10:34	DGPS Fix		S 15113.792185 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	18	1	427	0	49.71	579.27	482.12	413.16	335.66		245.29	212.50	162.62	126.47	50	582.649	484.933	415.570	337.618	285.969	246.721	213.740	163.569	127.208	97.15	40.4	26.83	10:34		3355.171058		0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
East	19	1	450	0	46.82	821.62	683.17	576.67	440.57	349.15	279.96	227.79	150.03	102.19	50	877.424	729.571	615.837	470.493	372.864	298.975	243.261	160.220	109.131	138.45	37.6	26.83	10:35	DGPS Fix	3355.183132	S 15113.797548 E	0.00	09/25/2009 10:11:48	Chop118-05A			Brendan	
West	1	1	25	0	49.71	418.15	373.22	345.16	310.85	277.90	248.08	222.41	179.34	149.00	50	420.589	375.397	347.174	312.663	279.521	249.527	223.708	180.386	149.869	44.93	40.2	29.98	10:38	DGPS Fix	3355.176404		0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	2	1	50	0	48.71	615.50	506.81	449.80	381.09		270.62	230.55	168.09	125.87	50	631.800	520.232	461.712	391.183	332.735	277.787	236.656	172.542	129.203	108.69	43.1	29.98	10:39	DGPS Fix	3355.164018		0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	3	1	75	0	47.59	692.44	493.65	393.44	285.75	218.04	169.57	137.43	95.93	76.91	50	727.506	518.649	413.364	300.221	229.082	178.157	144.390	100.788	80.805	198.79	22.9	29.98	10:40	DGPS Fix		S 15113.776880 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	4	1	101	0	48.59	433.91	350.96	297.16	226.38	176.74	138.42	114.58	78.63	59.44	50	446.501	361.144	305.783	232.949	181.869	142.437	117.905	80.912	61.165	82.95	38.4	29.98	10:41	DGPS Fix	3355.158615	S 15113.760795 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	5	1	131	0	46.26	579.14	404.54	303.97	229.01	186.21	160.18	140.73	111.40	90.03	50	625.962	437.246	328.545	247.525	201.265	173.130	152.108	120.406	97.309	174.60	24.1	29.98	10:42	DGPS Fix	3355.156625	S 15113.742343 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	6	1	150	0	50.71	177.04	168.99	161.48	153.60		135.17	126.35	110.83	93.78	50	174.561	166.624	159.219	151.449	141.422	133.277	124.581	109.278	92.467	8.05	24.3	29.98	10:43	DGPS Fix	3355.153520	S 15113.730703 E	0.00	09/25/2009 10:38:26	Chop118-05A		UNSW		Concrete
West	7	1	175	0	46.26	931.60	580.32	444.79	316.39		184.60	159.00	124.81	101.72	50	1006.917	627.237	480.750	341.969	253.124	199.524	171.855	134.901	109.944	351.28	43.7	29.98	10:44	DGPS Fix	3355.149051	S 15113.715653 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	8	1	205	0	48.15	656.43	553.69	479.33	383.40	305.89	239.92	193.04	133.88	100.22	50	681.651	574.964	497.747	398.131	317.643	249.138	200.457	139.024	104.071	102.74	24.5	29.98	10:45	DGPS Fix	3355.148894	S 15113.696905 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	9	1	225	0	50.93	1214.46	772.62	580.62	403.88		227.18	193.33	143.40	128.14	50	1192.284	758.512	570.018	396.505	285.539	223.032	189.800	140.781	125.800	441.84	42.0	29.98	10:48			S 15113.684240 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	10	1	255	0	51.26	813.08	641.39	511.07	356.57		216.90	179.60	127.02	101.92	50	793.094	625.624	498.508	347.805	269.391	211.568	175.185	123.898	99.415	171.69	43.1	29.98	10:49	DGPS Fix			0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	11	1	276	0	51.49	784.08	509.54	370.40	246.07	167.21	113.09	209.15	64.47	59.63	50	761.391	494.795	359.681	238.949	162.371	109.817	203.098	62.604	57.904	274.54	45.7	29.98	10:50	DGPS Fix		S 15113.652428 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	12	1 1	300	U	51.04	695.83	517.19	404.05	277.24		156.97	128.36	80.84	62.47	50	681.652	506.652	395.817	271.591	203.889	153.772	125.745	79.193	61.197	178.64	48.5	29.98	10:51	DGPS FIX	3355.146529	S 15113.637231 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	13	1	325	0	51.49	613.88	466.71	373.43	255.61		135.73	110.62	77.54	60.98	50	596.116	453.205	362.624	248.213	180.919	131.802	107.419	75.296	59.215	147.17	45.5	29.98	10:52	DGPS Fix	3355.140846	S 15113.623738 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	14	1	351	0	49.60	995.98	758.72	619.32	452.23		293.88	252.93	199.49	171.16	50	1004.012	764.839	624.315	455.877	359.748	296.250	254.970	201.099	172.540	237.26	45.7	29.98	10:52	DGPS Fix		S 15113.620073 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	15	1	375	0	50.60	812.79	631.98	422.82	271.03		164.16	149.30	108.08	97.27	50	803.152	624.486	417.806	267.816	204.951	162.213	147.530	106.798	96.117	180.81	30.6	29.98	10:54	DGPS Fix	3355.114682	S 15113.617801 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	16	1	400	0	50.60	855.41	635.65	488.03	347.76		233.10	207.99	157.12	129.00	50	845.267	628.113	482.243	343.636	279.042	230.336	205.524	155.257	127.470	219.76	29.6	29.98	10:54	DGPS Fix	3355.101748	S 15113.615381 E	0.00	09/25/2009 10:38:26	Chop118-05A			Brendan	
West	17	1	425 449	0	51.71 50.93	565.88	395.57 395.27	300.09	211.40 180.39		125.35	104.91	73.38 59.26	56.19	50	547.167 623.199	382.489	290.166	204.409	153.848	121.205 97.320	101.441	70.953 58.178	54.332 48.724	170.31	46.9 44.7	29.98	10:55	DGPS Fix	3355.088575	S 15113.613744 E	0.00	09/25/2009 10:38:26	Chop118-05A		UNSW E	Brendan	
West	18	1	449	U	50.93	634.79	395.27	279.12	180.39	132.86	99.13	82.37	59.20	49.63	50	023.199	388.052	274.023	177.096	130.434	97.320	80.866	38.178	48.724	239.52	44.7	29.98	10:56	DGPS FIX	3355.075569	S 15113.613957 E	0.00	09/25/2009 10:38:26	Chop 118-05A	3	UNSW E	Diendan	

client:	Taylor Thomson Whitting Pty Ltd	job no:	PSM1397.R1
principal:		date:	6/10/2009
project:	University of New South Wales	by:	BS
In option:	Energy Technologies Building, Kensington		

Falling Weight Deflectometer Test Results (East)

b b																							
1 0 0 0 0 0	ight/s Location Operator	Jht/s Locatio	Weight/s pring	Wei pr	s V	ors	ors	۳s	rs	s V	s [\]	w	We F	Weig pri	/eight pring	ight/s ring	t/s g	Locat	ation	Ope	erato	or C	Cor
1 0 0 0 0 0	3 UNSW Brendan	J UNSW	3	J5A	-05A	18-05/	8-05A	3-05A	8-05A	-05A	-05A)5 <i>A</i>	Ā	3	3	3	ι	UNS	SW	Br∉	endar	an	-
1 2 4 4 7 4 4 7 4 5 1 1	3 UNSW Brendan		3											з	3	3				Bre	endar	an	
1 1 2 0 444 753 0.520 1100 0.410 0.510 0.500 0.500 0.500	3 UNSW Brendan		3											3	3	3							
1 2 6 4.3 7.4 2.5 6 4.3 7.4 2.5 6 4.3 7.4 2.5 7.4 2.5 7.4 2.5 7.4 2.5 7.4 2.5 7.4 2.5 7.4 2.5 2.5 2.5 <th< td=""><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			3											-	-	-							
1 0 0 -7.0 41.00 -4.00 41.00 -4.00 -0.00			3											3	3	3							
1 0 0 4.4 6.4.3 6.7.4 7.7.5 7.7.5 7.7.5	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
1 0 0 4.1 0 0.4.2 0.1.2	3 UNSW Brendan		3											3	3	3							
4 1 7 7 0 4.83 1117 51.97 111.85 10.97 11.95 11.95 <th< td=""><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>3</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			3											3	3	3							
4 7 7 0 4.15 6.27 4.27 1.28 1.19 1.19 1.19	3 UNSW Brendan	3 UNSW	3	15A	-05A	18-05/	8-05A	3-05A	8-05A	-05A	-05A)5A	Æ	3	3	3	ι	UNS	SW	Bre	endar	an	
1 0 0 47.04 (m1) 75.00 96.10 97.00 98.10 97.00 98.10 97.00 98.10 97.00 98.10 97.00 98.10 97.00 98.10 97.00 98.10 97.00 98.10 97.00 98.10 97.00 97.00 98.10 97.00 97.00 97.00			3	15A	-05A	18-05/	8-05A	3-05A	3-05A	-05A	-05A)5 <i>A</i>	A	3	3	3				Bre	endar	an -	
1 9 1 9 4 7			3											3	3	3							
5 1 98 0 77.2 98.7 38.0 98.7 78.0 98.7 78.0 98.7 78.0 98.7 78.0 98.7 78.0 98.0 97.77 78.2 10.2 0007 78.5 10.0 0007 78.5 10.0 0007 78.5 10.0 0007 78.5 10.0 0007 78.5 10.0 0007 78.5 10.0 0007 78.5 10.0 0007 78.5 10.0 0007 78.5 10.0 0007 78.5 10.0 0007 78.5 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6 0007 78.6	3 UNSW Brendan		3											3	3	3							
0 0 0 0 0 0 0 0 1 125 0 0 0 1 125 0 0 0 1 0 0 0 0	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
0 1 155 0 9.9.39 40.207 47.207 47.40 97.20 7.5.6 90.9 97.27 7.5.6 90.7 97.28 97.28 97.28 97.28 97.28 97.28 97.28 97.28 97.28 97.28 97.28 97.28 97.28 97.28 97.28 97.28 <td>3 UNSW Brendan 3 UNSW Brendan</td> <td></td> <td>3</td> <td></td> <td>3</td> <td>3</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
b 1 158 0 51:15 000:57:19 040.00 177.00 177.00 174.14 187.70 177.00 174.14 187.70 177.00 174.14 188.70 1000:10 000:2000000000000000000000000000000000			3											3	3	3							
7 1 150 0 4.9.3 77.8.8 0.9.7.9 38.9.1 0.5.8.9 15.8.8 15.8.8			3											3	3	3							
1 1 100 0 50.40 77.74 50.40 57.75 113.80 62.40 107.30 84.40 63.41 107.30 84.40 63.40 44.10 23.83 24.40 107.30 84.40 64.30 107.30 113.83	3 UNSW Brendan		3											3	3	3							
b 1 175 0 50.2 675.266 49.51 365.77 42.49 177.70 64.11 41.2 28.83 120.2 00CPG Fig 355.4400.85 1511365242.2 100.0 00252000 101.18 Chapter 10.00 00252000 101.18 Chapter 10.00 00252000 101.18 Chapter 10.00 00252000 101.18 Chapter 10.00 00252000 Chapter 10.00 Chapter 10.00 Ch	3 UNSW Brendan		3	15A	-05A	18-05/	8-05A	3-05A	3-05A	-05A	-05A)5 <i>A</i>	A	3	3	3				Bre	endar	an -	
b 1 175 0 50.37 68.37 48.49 322.3 29.39 77.49 117.77 77.7 16.41 44.49 17.34 41.2 28.33 122 DCPF Fr 335.148033 511.882428 E 0.00 00222009111140 Chorp15.05 5 1 200 44.71 88.16 61.52 474.44 322.4 28.33 122 DCPF Fr 335.148023 511.882428 E 0.00 00222009111140 Chorp15.05 5 1 200 44.71 88.16 61.62 474.44 322.45 10.00 17.354 242.30 10.00 26.357 11.05 0.00 0025200911144 Chorp11.05 0.00 0025200911144 Chorp11.05 0.00 0025200	o onon brondan		3											3	3	3							
b 1 175 0 49.77 117.77 117.77 117.77 117.			3											-	-	-							
9 1 200 0 49.71 85.16 15.26 42.24 85.16 15.26 42.24 41.0 26.3 12.36 13.36 13.36			3											-	-	-							
9 1 200 0 49.37 641.38 61.672 441.04 21.75 245.48 217.75 245.49 47.673 326.668 277.85 219.841 326.668 271.37 222.27 41.00 26.83 12.26 0.0P3F FX 3355.44002S 5113.58723 E 0.00 92.522000 101148 Chop118-057 10 1 225 0 448.04 696.47 712.72 54.66 335.7 67.67 335.7 27.08 1113.88873 E 0.00 62.52200 101148 Chop118-057 10 1 225.7 0 44.85 51.06 27.75 40.0 28.83 1027 OLDE FX 335.75 0.00 62.5200 101144 Chop118-057 11 1 257.7 0 44.85 51.30.327.7 100.233.7 20.00 10.277.7 100.283.7 10.00 62.57200 101144 Chop118-057 11 1 257.7 0 44.56 51.30.327.7 10.02 25.777.7 10.02 10.277.7 10.0			3											3	3	3							
9 1 200 0 48.33 83.77 614.50 464.44 32.48 111 62.50 62.50.38 74.499 311.33 217.27 218.14 192.26 150.96 12.77 24.80 12.27 110 11 22.5 0 48.92 97.15 151.3673335 150.00 137.85 170.5 50 999.785 730.111 558.873 387.78 287.55 22.54 140.0 28.83 102.7 10.75 40.0 28.83 102.7 10.75 40.0 28.83 102.7 10.75 10 11 12.75 10 44.15 74.44 56.56 24.83 10.72 12.76 10.02 12.76 10.00 28.83 10.72 12.84 10.02 10.76 10.00 0.0252000 1011.48 10.00 00.0252000 1011.48 10.00 00.0252000 1011.48 10.00 00.0252000 1011.48 10.01 10.00 10.02 17.67 10.00 28.83 10.00 00.0252000 1011.48 10.00 00.0252000 1011.4	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
10 1 225 0 49.04 99.74 71.27 54.60 187.06 170.05 50 100.840 726.67 255.06 181.10 183.159 122.00 263.31 100.0 268.3 107.00 568.8 1513.083377 0.00 992705 721.35 100.0 50.9 997.05 721.35 100.0 263.31 141.95 122.00 263.31 410.0 263.31 40.0 268.3 10.27 DePF ra 3355.40808 5113.083377 0.00 992700 1011.48 Chop11-9.65 11 1 257 0 44.55 74.44 55.3 44.99 323.7 24.7 125.0 762.41 75.5 203.177 170.52 130.177 170.52 125.0 183.45 120.00 9252009 1011.48 Chop11-9.65 100.00 9252009 101.148	3 UNSW Brendan		3											3	3	3							
10 1 225 0 48.82 97.19 712.88 546.66 386.44 207.3 217.28 580.73 280.73 217.38 550.73 225.01 14.371 41.49 122.900 28.33 40.00 26.33 10.27 DOPS Ft 335.140068 S 1111.80387 E 0.00 0.0252009 1011-85 0.00 0.00 0.0			3											3	3	3							
1 1 2 7 0 49.46 66.00 42.73 324.86 22.58 102.8 762.421 571.32 460.563 327.34 255.32 0.01 682.322 0.01 682.322 0.01 168.0 111.373879 0.00 692.320011148 Chop111e605 11 1 257 0 48.60 732.8 551.83 44.52 323.73 24.73 24.74 55.7 26.83 10.28 0.058.5 26.83 10.28 0.078 Fr i 335.171478 15113.73879 0 0.00 0.025200011148 Chop111e605 12 12 275 0 48.82 90.16 77.18 151.37.1789 151.37.1789 151.37.1789 151.37.1789 151.37.1789 151.37.1789 0.00 0.025200011148 Chop111e605 12 13 0 48.33 28.17 27.75 48.86 22.89 198.11 135.17 151.37.1789 151.37.1789 151.37.1789 151.37.1789 151.37.1789 151.37.17879 151.37.1	3 UNSW Brendan	3 UNSW	3	15A	-05A	18-05/	8-05A	3-05A	8-05A	-05A	-05A)5A	Æ	3	3	3	ι	UNS	SW	Bre	endar	an	
1 1 2 7 0 44.9.6 734.4 55.8 44.6.9 323.0 23.3 20.7 1 10.7.3 50 74.4.7 56.1.8 32.7.93 27.7.3 27.7.4 10.0.668 10.2.8 10.2.8 DGPS Fix 3355.147048 S 15113.703879 E 0.00 092520091 01:1146 Chop11=067 12 1 27.5 0 44.6.9 965.2 74.8.1 57.7.57 392.54 28.8.6 102.7.5 28.8.6 102.7.5 28.8.6 22.9.9.6 13.5.1 17.4.57 55.8.4 38.1 20.0 09252009 10:1146 Chop11=067 12 1 27.5 0 44.6.6 37.8 26.8.3 10.2.9 10.6.8 17.1.5 10.0.0 09252009 10:114.6 Chop11=067 13 1 27.5 0 44.0.6 37.8 26.8.3 10.2.9 10.6.8 37.8.2 26.8.3 10.2.9 10.6.8 37.8.2 26.8.3 10.2.9 20.6.8 33.1 27.7.6 33.8.3<	o onon brondan		3	,5A	-05A	18-05/	8-05A	3-05A	8-05A	-05A	·05A)5A	A	3	3	3				Bre	endar	an	
1 1 2 7 0 4.6.0 732.38 51.8.3 4.4.5.2 32.7.9 2.5.7.3 2.0.0 732.38 55.2.0 4.9.11 32.6.0 17.0.4 130.46 190.688 190.55 2.6.8 10.28 DCPS Fix 335.6170748 5113.716899 0.00 0.02/5/2009 101.1140 Chont11-065 12 1 2.75 0 48.62 960.16 71.4.55 556.28 38.147 27.15 556.28 38.31 28.57 22.7.1 392.50 28.86 29.0.01 17.476 24.56 36.6 31.21 27.115 556.28 38.147 27.117 556.28 39.21 27.715 556.28 39.21 27.715 556.28 39.21 27.715 556.28 30.241 28.65 30.326 23.14 29.27 38.21 27.27 28.55 36.60 30.35 20.81 39.35 10.38 10.32 0.02 S56.78 33.33 31.31 33.33 31.31 33.33 31.31 31.33<	3 UNSW Brendan		3											3	3	3							
1 1 275 0 48.59 985.29 738.83 561.26 381.47 280.72 228.41 197.28 101.3.81 100.70 577.57 392.40 288.96 12.71 1151.37.1699 E 0.00 996/2/009 10:11.48 Chop118-054 12 1 275 0 48.59 960.16 714.55 556.48 313.2 280.0 226.51 191.37.1699 E 0.00 996/2/009 10:11.48 Chop118-054 12 1 0.0 49.15 95.68 714.55 566.28 332.09 312.31 277.67 398.30 231.482 231.862 195.95 136.246 107.742 245.64 37.8 26.83 10.29 DGPS Fx 335.147517 S 15113.71699 E 0.00 996/2/2009 10:11.48 Chop118-054 13 1 0.00 50.26 338.43 335.83 316.47 73.82 28.08 120.20 26.83 10.30 DGPS Fx 335.147517 S 15113.71699 E 0.00 996/2/2009 10:11.48 Chop118-054 13 10 20.0 50.25 335.1 31.1 33	3 UNSW Brendan		3											3	3	3							
1 275 0 48.82 960.16 714.55 58.04 38.12 28.0 102.9 107.476 1131.71699 E 0.00 09252009 10:11.48 Chop118-055 12 1 300 0 50.26 715.4 56.28 715.4 56.29 715.4 56.90 390.305 291.991 213.91 107.476 245.61 37.8 28.8 10.29 DGPS Fix 355.14751 S 15113.715699 E 0.00 09252009 10:11.48 Chop118-055 13 1 300 0 50.48 363.41 37.8 28.08 12.99 276.902 291.991 21.985 291.891 136.46 210.36 26.36 23.1 26.83 10.30 DGPS Fix 3355.160724 S 15113.729569 E 0.00 99252009 10:11.48 Chop118-055 13 13 300 0 50.46 381.61 17.75 28.28 50.50 388.65 31.239 276.90 28.13 13.33 16.12 137.44 27.38 23.1 26.83 10.30 DGPS Fix 335.561072 S 15113.73934 Z 15.11 14	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
1 1 275 0 49.15 952.86 715.54 562.8 38.24 28.87 227.92 192.27 133.33 105.91 50 969.166 727.915 565.900 308.65 220.814 218.24 195.95 335.14757 5113.72699 E 0.00 992/5/2009 10:11:46 Chop118-054 13 1 300 0 50.48 333.81 315.61 279.56 248.76 222.45 198.88 103.00 0 50.48 103.00 0.975/5009 10:11:46 Chop118-054 13 1 300 0 50.37 31.13 333.93 31.477 27.88 28.26 31.2646 31.2646 31.2646 31.264 143.17 50.355.150724 15113.72659 E 0.00 092/5/2009 10:11:46 Chop118-054 14 13 32.0 46.33 33.23 31.477 31.33.93 32.47 73.83 24.07 21.83.29 246.07 22.91 24.83 23.1 26.83 10.30 DGPS Fix 3355.150724 15113.72699 E 0.00 092/5/2009 011:1:46 Chop			3											3	3	3							
13 1 300 0 50.26 38.45 332.99 312.31 27.76 24.89 22.049 195.11 1117.21 50 366.96 330.372 310.894 219.349 194.101 160.336 196.500 26.83 10.30 DGPS Fx 3355.150724 51137.29569 E 0.00 09/25/2009 10:11:48 Chop118-054 13 1 300 0 50.37 31.61 277.76 24.87 22.054 198.88 163.80 121.329 276.02 246.35 10.30 DGPS Fx 3355.150724 51137.29569 E 0.00 09/25/2009 10:11:48 Chop118-054 14 1 332 0 46.93 815.5 569.59 40.49 260.25 182.32 60.851 431.483 277.75 194.385 154.677 125.559 95.131 81.078 246.38 10.31 DGPS Fx 3355.156115 151137.49334 E 0.00 09/25/2009 10:11:48 Chop118-054 14 13 32 0 47.47 79.08 560.59 40.92 27.105 83.121 29.29 83.131 10.77	3 UNSW Brendan		3											3	3	3							
13 1 300 0 50.48 363.41 338.88 15.61 279.56 282.65 198.88 161.17 50 359.954 326.96 312.09 246.39 220.33 196.89 162.242 198.88 15.11 229.56 15113.729599 E 0.00 09/25/2009 10:11:48 Chop118-054 13 1 300 0 56.95 46.93 31.457 27.88 220.54 198.86 1511.729599 E 0.00 09/25/2009 10:11:48 Chop118-054 14 1 332 0 47.04 791.12 57.77 398.73 26.07 181.55 144.44 117.71 88.88 75.0 50 84.09 52.92 125.117 93.92 85.61 26.83 10.31 DGPS Fx 3355.150125 15113.749334 0.00 09/25/2009 10:11:48 Chop118-054 14 1 332 0 47.48 79.08 66.08 33.93 14.62 120.57 88.8 75.0 50 84.103 61.126 131.42 126.83 10.31 DGPS Fx 3355.15015	3 UNSW Brendan		3											3	3	3							
14 1 332 0 46.93 81.95 569.9 40.499 260.25 142.45 14.84 117.85 89.29 76.10 50 869.37 606.851 431.482 277.75 194.385 154.677 125.559 95.131 81.078 246.38 21.9 26.83 10.31 DGPS Fx 3355.156115 S1137.49334 E 0.00 09/25/2009 10:11:48 Chop118-054 14 1 332 0 47.48 790.08 506.89 392.44 280.71 181.55 144.44 117.71 88.36 80.58 50 84.09 592.89 12.517 93.920 85.719 28.31 10.31 DGPS Fx 3355.156115 S1137.49334 E 0.00 09/25/2009 10:11:48 Chop118-054 15 1 350 0 50.59 47.8 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.59 50.55 50.55 50.55 50.5	3 UNSW Brendan	3 UNSW	3											3	3	3	l	UNS	SW	Bre	endar	an	
1 332 0 47.04 794.12 57.79 398.73 260.70 181.55 144.44 117.71 83.86 80.58 50 844.090 592.89 423.820 277.105 192.974 153.520 125.117 93.920 86.81 26.83 10.31 DGPS Fx 3355.156115 15113.749334 E 0.00 09/25/2009 10:11:48 Chop118-054 15 1 332 0 47.04 794.12 57.79 38.73 129.274 153.250 125.117 93.920 86.81 236.33 21.9 26.83 10.31 DGPS Fx 3355.156115 15113.749334 E 0.00 09/25/2009 10:11:48 Chop118-054 15 1 350 0 51.37 476.86 363.17 294.22 21.91 188.03 131.41 108.17 73.493 82.00 98.73 23.68 10.32 DGPS Fx 3355.15715 15113.760372 0.00 9/25/2009 10:11:48 Chop118-054 15 1 350 0 51.04 10.81 10.81 10.81 10.82 74.44 59.78	3 UNSW Brendan	3 UNSW	3	15A	-05A	18-05/	8-05A	3-05A	8-05A	-05A	-05A)5A	A	3	3	3	ι	UNS	SW	Bre	endar	an	
14 1 332 0 47.48 790.8 560.89 392.44 260.31 148.04 148.02 120.57 88.8 79.0 50 832.013 590.659 413.269 274.126 194.861 153.960 126.969 93.597 83.719 229.9 21.9 </td <td>3 UNSW Brendan</td> <td></td> <td>3</td> <td></td> <td>3</td> <td>3</td> <td>3</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	3 UNSW Brendan		3											3	3	3			-				
15 1 350 0 50.93 481.00 368.20 297.30 221.49 188.96 131.21 108.57 76.99 59.35 50 472.806 381.47 291.871 217.446 166.877 75.290 58.266 113.40 31.5 26.83 10:32 DGPS Fx 3355.157215 S15113.760782 E 0.0 09/25/200910:11:48 Chop118-054 15 1 350 0 51.04 469.68 363.15 24.22 219.15 168.30 131.61 108.11 76.30 56.266 113.40 31.5 26.83 10:32 DGPS Fx 3355.157215 S15113.760782 E 0.00 09/25/200910:11:148 Chop118-054 15 1 350 0 51.04 40.61.02 352.472 285.69 212.079 163.812 128.10 105.27 74.304 58.168 113.73 31.5 26.83 10:32 DGPS Fx 3355.157215 51513.760782 E 0.00 09/25/20091011:148 Chop118-054 Chop118-054 168.412 348.45 248.69 176.46 138.663 113.70 <td></td> <td></td> <td>3</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			3											-	-	-							
15 1 350 0 51.37 476.88 363.15 294.22 219.15 168.30 131.61 108.11 76.34 59.78 50 464.162 353.465 286.37 213.305 163.812 128.100 105.27 74.304 58.186 113.73 31.5 26.83 10:32 DGPS Fix 3355.157215 15113.760782 E 0.00 09/25/20091011:48 Chop118-054 15 1 350 0 51.04 469.66 359.60 291.64 168.70 108.25 76.4 50.0 460.09 352.273 285.697 212.09 160.44 74.589 57.847 110.06 31.5 26.83 10:32 DGPS Fix 3355.157215 15113.760782 E 0.00 09/25/20091011:48 Chop118-054 16 1 375 0 49.04 13.32 24.83 10.32 24.89 10.84 13.76 96.146 75.89 57.847 110.06 31.5 26.83 10.33 DGPS Fix 3355.157215 15113.766782 E 0.00 09/25/200910111:48 Chop118-054 10.64<			3											3	3	3			-				
1 350 0 51.04 469.66 359.00 291.64 216.74 130.57 108.25 76.14 59.05 50 460.090 352.273 285.697 212.079 163.342 127.999 106.04 74.589 57.847 110.06 31.5 26.83 10:32 DGPS Fx 3355.157215 \$15113.760782 E 0.00 0925200910:11:48 Chop118-05A 16 1 375 0 40.84 31.32 24.369 176.04 139.45 24.457 176.676 139.663 113.76 25.82 26.83 10:33 DGPS Fx 3355.157215 15113.766722 E 0.00 0925200910:11:48 Chop118-05A 16 1 375 0 50.15 461.049 31.452 24.457 176.676 139.663 96.146 72.89 58.185 161.377 22.5 26.83 10:33 DGPS Fx 3355.15963 S 15113.776652 E 0.00 0925200910:11:48 Chop118-05A 16 1 375 0 59.413 310.78 24.269 175.665 140.597 114.695 <td>3 UNSW Brendan 3 UNSW Brendan</td> <td></td> <td>3</td> <td></td> <td>3</td> <td>3</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
16 1 375 0 49.82 47.49 313.22 243.69 176.04 193.16 17.2 245.69 176.04 193.16 173.20 58.02 50.4 476.405 314.452 244.570 176.676 189.663 113.776 96.146 72.89 58.20 161.37 22.5 26.83 10.33 DGPS Fx 3355.159863.5 15113.776562.E 0.00 09/25/200910111.48 Chop118-054 16 1 375 0 50.15 468.49 311.72 243.15 175.99 140.08 173.70 58.36 50 467.09 310.78 242.493 175.464 140.459 114.696 96.146 72.892 58.205 161.37 22.5 26.83 10.33 DGPS Fx 3355.159863.5 15113.776562.E 0.00 09/25/200910111.48 Chop118-054 16 1 375 0 49.93 46.31 30.97 15.372 97.517 73.480 58.182 151.37 22.5 26.83 10.33 DGPS Fx 3355.159863.5 15113.776562.E 0.00 09/25/200910111.48 Chop118-054 <	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
16 1 375 0 50.15 468.49 311.72 243.15 175.99 140.88 115.04 97.81 73.70 58.36 50 467.089 310.78 242.423 175.464 140.459 114.696 97.517 73.480 58.185 156.77 22.5 26.83 10:33 DGPS Fix 3355.159653 S 15113.776562 E 0.00 09/25/2009 10:11:48 Chop118-054 16 1 375 0 49.93 461.31 309.94 242.35 174.82 140.459 114.059 114.059 114.059 151.37 22.5 26.83 10:33 DGPS Fix 3355.159653 S 15113.776562 E 0.00 09/25/2009 10:11:48 Chop118-054 16 1 375 0 49.93 163.33 309.94 242.35 175.464 140.459 114.059 114.059 151.37 25.5 26.83 10:33 DGPS Fix 3355.159653 S 15113.776562 E 0.00 09/25/2009 10:11:148 Chop118-054 Chop118-054 151.37 25.5 26.83 10:33 DGPS Fix 3355.1596653 S 15113.776562 E 0.00	3 UNSW Brendan		3											3	3	3			-				
16 1 375 0 49.93 461.31 309.94 242.35 174.82 140.40 115.21 97.69 72.49 58.65 50 461.957 310.375 242.690 175.065 140.597 115.372 97.827 72.592 58.732 151.37 22.5 26.83 10:33 DGPS Fix 3355.159653 \$ 15113.776562 E 0.00 09/25/2009 10:11:48 Chop118-05A			3											3	3	3							
			3											3	3	3							
	3 UNSW Brendan		3	5A	-05A	18-05/	8-05A	3-05A	3-05A	05A	·05A)5A	A	3	3	3				Bre	endar	ın	
17 1 400 0 48.59 652.72 470.17 382.57 282.33 223.08 183.88 157.35 120.12 98.00 50 671.661 483.814 393.672 290.523 229.553 189.216 161.916 123.606 100.844 182.55 42.2 26.83 10:34 DGPS Fix 3355.161948 \$ 15113.792185 E 0.00 09/25/2009 10:11:48 Chop118-05A	3 UNSW Brendan		3											3	3	3							
17 1 400 0 48.71 648.14 468.09 381.62 282.40 224.65 185.45 158.13 122.10 98.07 50 665.305 480.487 391.727 289.879 230.599 190.361 162.318 125.334 100.667 180.05 42.2 26.83 10.34 DGPS Fix 3355.161948 S 15113.792.185 E 0.00 09/25/2009 10:11:48 Chop118-05A	3 UNSW Brendan		3											3	3	3			-				
18 1 427 0 49.26 594.80 485.28 415.89 338.34 285.11 245.68 210.67 161.22 123.67 50 603.735 492.570 422.138 343.423 289.393 249.371 213.835 163.642 125.528 10.94 DGPS Fix 3355.171058 \$1513.799609 E 0.00 09252009 10.11.48 Chop118-054	3 UNSW Brendan		3											3	3	3							
18 1 427 0 49.93 585.96 485.82 416.69 339.47 286.90 246.48 212.91 162.68 126.44 50 586.781 486.501 417.274 339.946 287.302 246.826 213.208 162.908 126.617 100.14 40.4 26.83 10:34 DGPS Fix 3355.171058 \$ 15113.799609 E 0.00 09/25/2009 10:11:48 Chop118-05A 18 14 14 14 14 14 14 14 14 14 14 14 14 14	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
18 1 427 0 49.71 579.27 482.12 413.16 335.66 284.31 245.29 212.50 162.62 126.47 50 582.649 484.933 415.570 337.618 285.969 246.721 213.740 163.569 127.208 97.15 40.4 26.83 10:34 DGPS Fix 3355.171058 \$ 15113.799609 E 0.00 09/25/2009 10:11:48 Chop118-05A 19 1 450 0 47.59 859.24 705.13 594.63 454.24 359.07 286.77 228.38 151.35 100.67 50 902.753 740.838 624.743 477.243 377.254 301.292 239.945 159.014 105.768 154.11 37.6 26.83 10:35 DGPS Fix 3355.18132 \$ 15113.797548 E 0.00 09/25/2009 10:11:48 Chop118-05A	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
19 1 450 0 46.59 692.4705.13 594.63 494.24 399.07 226.77 1226.36 151.35 100.67 50 902.75 740.63 624.14 37.24 301.292 239.94 195.014 105.76 154.1 37.6 26.63 10.35 DGP'S FR 3355.163125 1513.797945 E 0.00 092520091011:140 Chop116-05A	3 UNSW Brendan 3 UNSW Brendan		3											3	3	3							
19 1 450 0 46.82 821.62 683.17 576.67 440.57 349.15 2000 224.30 145.17 50.0 100.47 120.17 100.47 100.47 120.17 100.47 100.47 120.17 100.47 100.47 120.17 100.47 100.47 120.17 120.17 120	3 UNSW Brendan		3											3	3	3							
																							_

client:	Taylor Thomson Whitting Pty Ltd	job no:	PSM1397.R1
principal:		date:	6/10/2009
project:	University of New South Wales	by:	BS
In option:	Energy Technologies Building, Kensington		

Falling Weight Deflectometer Test Results (West)

_									Deflection	ıs			1					Norn	nalised deflect	tions				1	Tempe	erature	1										
Test	Lane#	Chainage (km)			Sensor 1 (0mm)	Sensor 2 (200mm)		3 Sensor 4) (450mm)			6 Sensor 7) (900mm)	Sensor 8 (1200mm)	Sensor 9 (1500mm)	Normalised Force	Sensor 1 (0mm) Normalised	Sensor 2 (200mm) Normalised	Sensor 3 (300mm) Normalised	Sensor 4 (450mm) Normalised	Sensor 5 (600mm) Normalised	Sensor 6 (750mm) Normalised	Sensor 7 (900mm) Normalised	Sensor 8 (1200mm) Normalised	Sensor 9 (1500mm) Normalised	Curvature	Pavement Temp	Air Temp	Drop Sequence Completed Time	GPS Quality	Latitude	Longitude	PDOP	Start Date-Time	Sensors	Weight/s pring	Location	Operator C	Comments
1	1	25	0	48.59	414.57	368.28	341.16	307.49	275.65	244.83	220.68	177.27	145.35	50	426.600	378.967	351.060	316.413	283.649	251.935	227.084	182.414	149.568	46.29	40.2	29.98	10:38	DGPS Fix	3355.176404 S	15113.792737 E	0.00	09/25/2009 10:38:26	Chop118-05/	3	UNSW	Brendan	
1	1	25	0	49.93	420.13	375.25	347.48		280.42	250.05		180.93	148.63	50	420.719	375.776	347.967	313.259	280.813	250.401	223.813	181.184	148.838	44.88	40.2	29.98	10:38	DGPS Fix	3355.176404 S	15113.792737 E	0.00	09/25/2009 10:38:26		3		Brendan	
1	1	25	0	49.71	418.15	373.22	345.16		277.90	248.08		179.34	149.00	50	420.589	375.397	347.174	312.663	279.521	249.527	223.708	180.386	149.869	44.93	40.2	29.98	10:38		3355.176404 S	15113.792737 E	0.00	09/25/2009 10:38:26		3	UNSW		
2	1	50	0	47.59	611.96	503.99	447.72		319.98	269.28		164.26	124.16	50	642.950	529.513	470.393	398.182	336.184	282.917	238.002	172.578	130.448	107.97	43.1	29.98	10:39	DGPS Fix		15113.792531 E	0.00	09/25/2009 10:38:26		3		Brendan	
2	1	50 50	0	48.48 48.71	610.09	503.79	447.09		321.03	269.46		166.43	123.92	50 50	629.218	519.585	461.108	392.048	331.095	277.908	235.757	171.648	127.805	106.30 108.69	43.1	29.98	10:39		3355.164018 S	15113.792531 E	0.00	09/25/2009 10:38:26		3	UNSW UNSW		
2	1	50 75	0	48.71 46.82	615.50 723.47	506.81 504.99	449.80 398.02		324.15 220.20	270.62 170.31		168.09 95.73	125.87 77.16	50 50	631.800 772.608	520.232 539.289	461.712 425.053	391.183 308.127	332.735 235.156	277.787 181.877	236.656 147.651	172.542 102.232	129.203 82.401	108.69 218.48	43.1 22.9	29.98 29.98	10:39 10:40		3355.164018 S	15113.792531 E 15113.776880 E	0.00 0.00	09/25/2009 10:38:26 09/25/2009 10:38:26		3		Brendan Brendan	
3	1	75	0	46.70	693.12	504.99 489.57	398.02	288.53	220.20	166.11	138.26	95.73	74.81	50 50	742.099	539.289 524.165	425.053 414.390	308.127 301.349	235.156	177.848	147.651	102.232	82.401 80.096	218.48 203.55	22.9	29.98	10:40	DGPS FD DGPS Fix	3355.161146 S	15113.776880 E	0.00	09/25/2009 10:38:26		3		Brendan	
3	1	75	0	47.59	693.12	489.57	393.44		214.92	169.57		94.58	76.91	50	742.099	518.649	414.390	300.221	229.082	177.040	144.679	101.263	80.805	198.79	22.9	29.98	10:40		3355.161146 S		0.00	09/25/2009 10:38:26		3		Brendan	
4	1	101	ő	48.59	445.93	357.33	299.49	229.73	177.11	140.47		78.57	58.50	50	458.870	367.699	308.181	236.396	182.249	144.546	116.732	80.850	60.198	88.60	38.4	29.98	10:41		3355.158615 S		0.00	09/25/2009 10:38:26		3		Brendan	
4	1	101	0	48.71	433.37	352.01	294.24		175.58	138.73		77.64	58.04	50	444.847	361.332	302.032	232.344	180.230	142.404	117.307	79.696	59.577	81.36	38.4	29.98	10:41		3355.158615 S		0.00	09/25/2009 10:38:26		3		Brendan	
4	1	101	0	48.59	433.91	350.96	297.16	226.38	176.74	138.42	114.58	78.63	59.44	50	446.501	361.144	305.783	232.949	181.869	142.437	117.905	80.912	61.165	82.95	38.4	29.98	10:41	DGPS Fix	3355.158615 S	15113.760795 E	0.00	09/25/2009 10:38:26	Chop118-05/	3	UNSW	Brendan	
5	1	131	0	45.26	569.03	405.25	306.61	228.23	184.56	158.35	137.17	108.85	90.85	50	628.624	447.691	338.721	252.132	203.889	174.934	151.536	120.250	100.365	163.78	24.1	29.98	10:42	DGPS Fix	3355.156625 S	15113.742343 E	0.00	09/25/2009 10:38:26	Chop118-05/	3	UNSW	Brendan	
5	1	131	0	46.26	587.79	407.53	307.48	230.59	187.31	160.72	140.00	111.77	16.98	50	635.311	440.478	332.339	249.233	202.454	173.714	151.319	120.806	18.353	180.26	24.1	29.98	10:42	DGPS Fix	3355.156625 S	5 15113.742343 E	0.00	09/25/2009 10:38:26	Chop118-05A	3	UNSW	Brendan	
5	1	131	0	46.26	579.14	404.54	303.97	229.01	186.21	160.18		111.40	90.03	50	625.962	437.246	328.545	247.525	201.265	173.130	152.108	120.406	97.309	174.60	24.1	29.98	10:42		3355.156625 S	5 15113.742343 E	0.00	09/25/2009 10:38:26		3		Brendan	
6	1	150	0	50.48	178.49	169.61	161.75		143.98	134.89		109.38	93.60	50	176.793	167.997	160.212	152.070	142.611	133.607	124.792	108.340	92.710	8.88	24.3	29.98	10:43		3355.153520 S	5 15113.730703 E	0.00	09/25/2009 10:38:26		3		Brendan	
6	1	150	0	50.37	175.95	167.97	160.16	150.53	141.01	132.07	122.96	107.02	91.17	50	174.658	166.736	158.984	149.424	139.974	131.100	122.057	106.234	90.500	7.98	24.3	29.98	10:43		3355.153520 S	5 15113.730703 E	0.00	09/25/2009 10:38:26		3		Brendan	
6	1	150	0	50.71	177.04	168.99	161.48		143.43	135.17		110.83	93.78	50	174.561	166.624	159.219	151.449	141.422	133.277	124.581	109.278	92.467	8.05	24.3	29.98	10:43		3355.153520 S	5 15113.730703 E	0.00	09/25/2009 10:38:26		3		Brendan	
7	1	175	0	46.04	977.70	580.93	444.93		232.73	183.98		121.86	100.12	50	1061.794	630.897	483.199	341.898	252.748	199.805	170.080	132.341	108.732	396.77	43.7	29.98	10:44		3355.149051 S		0.00	09/25/2009 10:38:26		3		Brendan	
7	1	175	0	46.48 46.26	957.28 931.60	581.72	443.86 444.79		236.53 234.19	187.88 184.60		125.37 124.81	102.79	50 50	1029.776 1006.917	625.775 627.237	477.474 480.750	348.085	254.443 253.124	202.108 199.524	171.730 171.855	134.864	110.574 109.944	375.56	43.7 43.7	29.98 29.98	10:44		3355.149051 S 3355.149051 S	15113.715653 E 15113.715653 E	0.00 0.00	09/25/2009 10:38:26 09/25/2009 10:38:26		3	UNSW UNSW		
	1	175 205	0	46.26	670.33	580.32 560.34	444.79		234.19 308.78	240.46		124.81	101.72 97.95	50	705.908	590.080	480.750 516.049	341.969 407.877	253.124 325.168	253.222	202.727	134.901 137.237	109.944	351.28 109.99	43.7 24.5	29.98	10:44 10:45		3355.149051 S	15113.715653 E		09/25/2009 10:38:26		3		Brendan Brendan	
8	1	205	0	47.48	661.01	556.01	490.04		306.31	239.91		130.32	97.95	50	692.883	582.820	506.583	407.877	325.168	255.222	202.727 201.635	137.237	103.149	109.99	24.5	29.98	10:45		3355.148894 S		0.00	09/25/2009 10:38:26		3	UNSW		
8	1	205	0	48.15	656.43	553.69	479.33		305.89	239.92		133.88	100.22	50	681.651	574.964	497.747	398.131	317.643	249.138	200.457	139.024	103.040	102.74	24.5	29.98	10:45		3355.148894 S		0.00	09/25/2009 10:38:26		3		Brendan	
9	1	225	ő	48.93	1212.83	764.61	575.93		286.98	222.35		141.11	125.13	50	1239.352	781.330	588.524	406.295	293.256	227.212	193.879	144.196	127.866	448.22	42.0	29.98	10:48		3355.150644 S	15113.684240 E	0.00	09/25/2009 10:38:26		3		Brendan	
9	1	225	0	50.04	1233.41	774.10	586.93		295.40	228.27		145.40	128.76	50	1232.424	773.481	586.461	406.705	295.164	228.088	196.193	145.284	128.657	459.31	42.0	29.98	10:48		3355.150644 S	15113.684240 E	0.00	09/25/2009 10:38:26		3		Brendan	
9	1	225	0	50.93	1214.46	772.62	580.62	403.88	290.85	227.18	193.33	143.40	128.14	50	1192.284	758.512	570.018	396.505	285.539	223.032	189.800	140.781	125.800	441.84	42.0	29.98	10:48	DGPS Fix	3355.150644 S	15113.684240 E	0.00	09/25/2009 10:38:26	Chop118-05/	3	UNSW	Brendan	
10	1	255	0	50.93	839.94	650.36	518.62	356.55	273.90	211.64	175.52	121.77	98.97	50	824.602	638.484	509.150	350.039	268.898	207.775	172.315	119.546	97.163	189.58	43.1	29.98	10:49	DGPS Fix	3355.149284 S	15113.665108 E	0.00	09/25/2009 10:38:26	Chop118-05A	3	UNSW	Brendan	
10	1	255	0	51.60	850.65	639.73	517.14	358.78	276.00	216.55	178.87	126.26	101.85	50	824.273	619.893	501.105	347.655	267.442	209.835	173.324	122.345	98.692	210.92	43.1	29.98	10:49	DGPS Fix	3355.149284 S	15113.665108 E	0.00	09/25/2009 10:38:26	Chop118-05A	3	UNSW	Brendan	
10	1	255	0	51.26	813.08	641.39	511.07	356.57	276.18	216.90		127.02	101.92	50	793.094	625.624	498.508	347.805	269.391	211.568	175.185	123.898	99.415	171.69	43.1	29.98	10:49		3355.149284 S	5 15113.665108 E	0.00	09/25/2009 10:38:26		3		Brendan	
11	1	276	0	51.04	811.71	527.21	376.11	242.69	162.24	110.09		61.77	58.33	50	795.170	516.467	368.446	237.745	158.934	107.847	495.151	60.511	57.141	284.50	45.7	29.98	10:50		3355.147733 S			09/25/2009 10:38:26		3		Brendan	
11	1	276	0	51.60	801.18	525.24	372.09		165.38	111.66		63.25	60.62	50	776.337	508.953	360.552	237.539	160.252	108.198	406.812	61.289	58.740	275.94	45.7	29.98	10:50		3355.147733 S		0.00	09/25/2009 10:38:26		3		Brendan	
11	1	276 300	0	51.49 50.04	784.08	509.54	370.40 406.55		167.21	113.09		64.47	59.63	50 50	761.391	494.795 521.123	359.681	238.949	162.371	109.817	203.098	62.604	57.904 62.020	274.54 197.19	45.7	29.98 29.98	10:50 10:51		3355.147733 S		0.00	09/25/2009 10:38:26		3	UNSW UNSW		
12	1	300	0	50.04 51.49	718.73 708.25	521.54 520.99	406.55		204.44 209.24	153.26 157.09		78.15 79.85	62.07 61.90	50 50	718.155 687.755	521.123	406.225 397.825	275.829 272.247	204.277 203.185	153.137 152.544	123.691 124.616	78.088 77.539	62.020	197.19	48.5 48.5	29.98	10:51		3355.146529 S		0.00 0.00	09/25/2009 10:38:26 09/25/2009 10:38:26		3		Brendan Brendan	
12		300	0	51.04	695.83	520.99	409.00	277.24	209.24 208.13	156.97		80.84	62.47	50	681.652	506.652	397.825	272.247	203.185	152.544	124.010	79.193	61.197	178.64	48.5	29.98	10:51		3355.146529 S	15113.637231 E	0.00	09/25/2009 10:38:26		2		Brendan	
12	1	325	0	50.37	647.37	468.32	374.01		179.68	131.37		73.90	59.37	50	642.615	464.880	371.263	250.050	178.360	130.405	104.100	73.357	58.934	179.05	45.5	29.98	10:52		3355.140846 S		0.00	09/25/2009 10:38:26		3		Brendan	
13	1	325	ő	51.93	624.84	471.47	379.57		185.73	135.89		77.53	63.32	50	601.618	453.948	365.463	247.949	178.827	130.840	106.961	74.649	60.967	153.37	45.5	29.98	10:52		3355.140846 S	15113.623738 E	0.00	09/25/2009 10:38:26		3		Brendan	
13	1	325	0	51.49	613.88	466.71	373.43		186.31	135.73		77.54	60.98	50	596.116	453.205	362.624	248.213	180.919	131.802	107.419	75.296	59.215	147.17	45.5	29.98	10:52		3355.140846 S	15113.623738 E	0.00	09/25/2009 10:38:26		3		Brendan	
14	1	351	0	47.26	990.26	738.13	603.34		342.32			185.33	156.54	50	1047.672	780.925	638.320	462.156	362.167	293.758	250.984	196.075	165.616	252.13	45.7	29.98	10:52		3355.127135 S			09/25/2009 10:38:26		3	UNSW		
14	1	351	0	48.48	986.20	745.33	609.93	444.54	349.67	287.14	246.28	196.04	164.51	50	1017.120	768.698	629.053	458.478	360.633	296.143	254.002	202.186	169.668	240.87	45.7	29.98	10:52	DGPS Fix	3355.127135 S	15113.620073 E	0.00	09/25/2009 10:38:26	Chop118-05/	3	UNSW	Brendan	
14	1	351	0	49.60	995.98	758.72	619.32		356.87	293.88		199.49	171.16	50	1004.012	764.839	624.315	455.877	359.748	296.250	254.970	201.099	172.540	237.26	45.7	29.98	10:52		3355.127135 S		0.00	09/25/2009 10:38:26		3	UNSW	Brendan	
15	1	375	0	48.59	816.07	626.11	458.41	265.54	201.69	161.22		104.55	97.18	50	839.751	644.279	471.712	273.246	207.543	165.898	147.993	107.584	100.000	189.96	30.6	29.98	10:54		3355.114682 S		0.00	09/25/2009 10:38:26		3		Brendan	
15	1	375	0	50.04	813.49	634.20	478.30		205.25	163.59		107.80	98.52	50	812.840	633.693	477.918	268.245	205.086	163.459	147.612	107.714	98.441	179.29	30.6	29.98	10:54		3355.114682 S		0.00	09/25/2009 10:38:26		3		Brendan	
15	1	375	0	50.60	812.79	631.98	422.82		207.41	164.16		108.08	97.27	50	803.152	624.486	417.806	267.816	204.951	162.213	147.530	106.798	96.117	180.81	30.6	29.98	10:54		3355.114682 S		0.00	09/25/2009 10:38:26		3		Brendan	
16	1	400	0	49.71	864.93	643.78	482.70		274.23	224.34		149.41	124.30	50	869.976	647.536	485.516	343.935	275.830	225.649	199.557	150.282	125.025	221.15	29.6	29.98	10:54		3355.101748 S		0.00	09/25/2009 10:38:26		3		Brendan	
16	1	400	0	50.26 50.60	849.07	632.00	484.98		277.53	227.75		154.01	129.02	50 50	844.678	628.731	482.471	342.191	276.094	226.572	200.706	153.213	128.353	217.07 219.76	29.6	29.98 29.98	10:54		3355.101748 S	15113.615381 E	0.00	09/25/2009 10:38:26		3		Brendan	
10		400 425	0	50.60	855.41 583.99	635.65 400.63	488.03 302.69		282.39 157.56	233.10 124.43		157.12 73.11	129.00 55.82	50 50	845.267 578.437	628.113 396.821	482.243 299.812	343.636 209.231	279.042 156.062	230.336 123.247	205.524 102.476	155.257 72.415	127.470 55.289	183.36	29.6 46.9	29.98	10:54 10:55		3355.101748 S 3355.088575 S		0.00 0.00	09/25/2009 10:38:26 09/25/2009 10:38:26		2	UNSW	Brendan	
17		425	0	50.48	569.31	400.63 397.59	302.69		157.56	124.43		75.01	55.82 55.88	50 50	578.437 556.510	396.821	299.812 294.174	209.231 206.794	155.806	123.247	102.476	72.415	55.289 54.624	183.36	46.9	29.98	10:55		3355.088575 S		0.00	09/25/2009 10:38:26		3	UNSW		
17		425	0	51.71	565.88	397.59	300.94		159.39	125.00		73.38	56.19	50	547.167	382.489	294.174 290.166	206.794 204.409	153.808	122.190	102.121	70.953	54.624	170.31	46.9	29.98	10:55			15113.613744 E	0.00	09/25/2009 10:38:26		3	UNSW		
18	1	449	ŏ	50.15	677.13	399.13	281.58		129.18	95.76	78.02	57.00	48.99	50	675.105	397.936	280.738	177.308	128.794	95.474	77.787	56.830	48.843	278.00	44.7	29.98	10:56		3355.075569 S	15113.613957 E	0.00	09/25/2009 10:38:26		3	UNSW		
18	1	449	ŏ	50.93	656.26	397.15	283.12	181.79	132.82	99.24	80.35	58.59	49.95	50	644.276	389.898	277.950	178.470	130.395	97.428	78.883	57.520	49.038	259.11	44.7	29.98	10:56		3355.075569 S	15113.613957 E	0.00	09/25/2009 10:38:26		3	UNSW		
18	1	449	0	50.93	634.79	395.27	279.12		132.86	99.13		59.26	49.63	50	623.199	388.052	274.023	177.096	130.434	97.320	80.866	58.178	48.724	239.52	44.7	29.98	10:56	DGPS Fix		15113.613957 E		09/25/2009 10:38:26		3	UNSW		
4	-		-	-											-				•					-	-		-		-	•	-	•					

APPENDIX D

GEOTECHNICAL LABORATORY TEST RESULT SHEETS

TABLE A

SUMMARY OF FOUR DAY SOAKED C.B.R.TEST RESULTS

Client: Pells Sullivan Meynink

Project: Lab Testing

Location: Proposed UNSW Energy Technologies Building

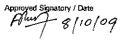
Your Ref No:PSM1397.L1

STS Job No:L3058 Table A: Page 1 of 1 Lab Report No:1

SAMPLE NUMBER	1				
Surcharge (kg)	4.5	2	3	4	5
Soil Description	SILTY CLAY: high plasticity,	4.5 SH TV SANDI ATTU	4.5	4.5	4.5
	dark grey/black	SILTY SAND: grey, with medium to coarse	SILTY SAND:light	SILTY SAND:grey/black	SILTY SAND:grey/black
		gravel	brown, with medium to	with foreign material	brown, with medium to
		graver	coarse gravel, with	(ceramic,grass cuttings	coarse gravel, with
			foreign material(ceramic,	glass,root fibers)	foreign material(ceramic,
Maximum Dry Density (t/m ³)	1.502 STD	1.602 STD	glass,root fibers)		glass,root fibers)
Optimum Moisture Content (%)	26.8	15.9	1.713 STD	1.380 STD	1.713 STD
Moulded Dry Density (t/m ³)	1.47	1.57	11.3	17.6	13.4
Sample Density Ratio (%)	98	98	1.68	1.35	1.69
Sample Moisture Ratio (%)	101	99	98	98	98
Moisture Contents		55	102	102	98
Insitu (%)	30.2	19.1	4.3	2.2	
Moulded (%)	27.0	15.7	4.5	9.0	4.7
After soaking and		10.1	11.5	18.0	13.2
After Test, Top 30mm(%)	37.5	26.1	17.8	36.3	00 F
Remaining Depth (%)	34.6	19.4	15.4	36.2 27.7	22.5
Material Retained on 19mm Sieve (%)	0	0	0	0	16.7
Swell (%)	2.5	0.0	0.0	0.0	0
			0.0	0.0	0.0
C.B.R. value: @5.0mm penetration	2.0	7	15	3.0	8

NOTES:

Test Methods :

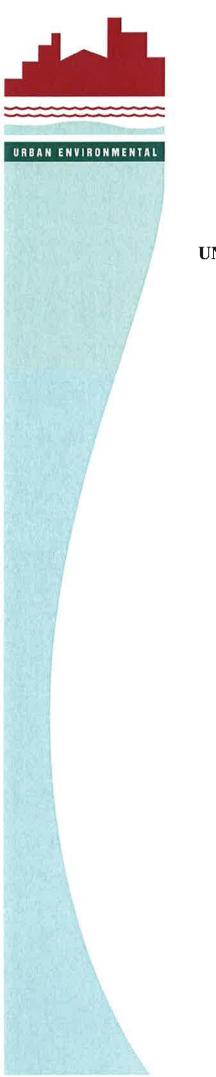

(a) Soaked C.B.R. : AS 1289 6.1.1 (b) Standard Compaction : AS 1289 5.1.1

(c) Moisture Content : AS 1289 2.1.1

Test materials sampled and supplied by others on 24/9/09

NATA Accredited Laboratory Number:1327

NATĂ



(A. Tatikonda)

APPENDIX E

STAGE 1 CONTAMINATION ASSESSMENT REPORT

STAGE 1 CONTAMINATION ASSESSMENT UNSW ENERGY TECHNOLOGIES BUILDING KENSINGTON NSW

Prepared for:

Pells Sullivan Meynink Pty Ltd G3 56 Delhi Road NORTH RYDE, NSW, 2113

7 October, 2009

Project Ref: UES006.R01

URBAN ENVIRONMENTAL SERVICES PTY LTD E&J LYCETT BUILDING SUITE 1, 18 MOORE STREET, ROZELLE PO BOX 1070, ROZELLE, 2039 NSW PHONE: 02 9555 7570 FAX: 02 9555 6313 MOB: 0413 584 110 EMAIL: urban.environmental@bigpond.com

DISTRIBUTION LIST

No. of Copies	Reference	Status	Date Issued	Prepared for:	Initials
1	UES006.R01	Final	7/10/09	Pells Sullivan Meynink	1
1	UES006.R01	Final	7/10/09	Urban Environmental	

PREPARED BY

Franco Fuccenecco BSc (Hons) MAppSc Principal Consultant

TABLE OF CONTENTS

EXE	CUT	IVE SUMMARYii
1	INT	RODUCTION1
	1.1	Background1
	1.2	Objectives1
	1.3	Scope of Works
2	BAC	CKGROUND INFORMATION2
	2.1	Site Identification
	2.2	Regional Geology2
	2.3	Regional Hydrology and Hydrogeology2
	2.4	Site Condition and Surrounding Environment2
3	SITI	E HISTORY
	3.1	Site Title Deeds
	3.2	Aerial Photography4
	3.3	Notices, Permits and Licences
4	CON	OCLUSIONS
5	REF	ERENCES7

LIST OF APPENDICES

APPENDICES

- APPENDIX A Background Information
- APPENDIX B Title Records
- APPENDIX C Aerial Photography

EXECUTIVE SUMMARY

Urban Environmental Services Pty Ltd was commissioned by Pell Sullivan Meynink Pty Ltd to undertake a Stage 1 contamination assessment of the area comprising the proposed UNSW Energy Technologies Building forming part of the University of NSW campus.

A preliminary contamination assessment as per the NSW EPA (1997) Guidelines for Consultants Reports – Stage 1 assessment was undertaken to determine potential contamination issues associated with the future redevelopment of the site.

The site currently comprises tennis courts with the university mall to the north, village green to the east, new college to the south and Anzac Parade to the west.

Review of the geological and hydrological setting indicates the site forms part of the Tuggerah Aeolian Landscape comprising gently undulating to rolling coastal dunefields. Geotechnical drilling undertaken by PSM indicated the site is underlain by fine to medium grained sands.

The nearest surface water feature is Eastlakes, located 1km to the south of the site.

Review of historical title information indicates that the site has the following history:

- University of NSW from 1964 to present
- Department of Education from 1952 1964
- Part of the site Commissioner of Railways and Trams 1940 1954
- Crown Land prior to 1952

Review of historical aerial photography indicates that the site has had the following history:

- The site appears as tennis courts within the university from 1970 to the present.
- The site appears as vacant land from 1951 1961.
- The site appears as race track in 1930.

A search of the NSW EPA website register indicated that there are no notices pertaining to environmental issues under the Contaminated Land Management Act (1997) for the sites.

Urban Environmental Services Pty Ltd concludes the following based on the historical evaluation of site usage:

- The subject site has had a history of education use since the 1950's.
- The site does not have a history of potential contaminating activities and is suitable for education redevelopment. No further investigations are warranted from a contamination perspective.

1 INTRODUCTION

1.1 Background

Urban Environmental Services Pty Ltd was commissioned by Pell Sullivan Meynink Pty Ltd to undertake a Stage 1 contamination assessment of the area comprising the proposed UNSW Energy Technologies Building forming part of the University of NSW campus. A site location plan is contained in Appendix A.

1.2 Objectives

The objective of the assessment was to determine the likelihood of site contamination by undertaking a Stage 1 Site Assessment as per the NSW EPA (1997) Guidelines for Consultants Reports.

1.3 Scope of Works

To achieve the objective, the following work scope was undertaken:

- Site review and discussions with the client;
- Review of background geological and hydrogeological information;
- Review of historical title deeds associated with the property;
- Review of historical aerial photography;
- Review of readily available reports and records;
- Preparation of a report detailing the findings of the assessment.

2 BACKGROUND INFORMATION

2.1 Site Identification

The proposed new building is located on the western part of the campus fronting Anzac Parade. The site comprises Lot 3 DP 1104617.

2.2 Regional Geology

Review of the Department of Land and Water Conservation Sydney Soil Landscape Series Sheet 9130 (2004) indicate the site is within the Tuggerah Aeolian Landscape comprising gently undulating to rolling coastal dunefields. Soils are podzols on dunes and podzol/humus podzols intergrades on swales. The soils pose a wind erosion hazard, non cohesive, highly permeable, localised flooding with permanently high watertables.

Review of the DLWC Acid Sulfate Soil Risk Map – Botany Bay, Edition 2, 1997 indicates the site is within a typical landform comprising bedrock slopes, elevated Pleistocene and Holocene dunes and elevated alluvial plains. Acid sulfate soils are not known or expected to occur in these environments. The environmental risk is indicated as land management activities not likely to be affected by acid sulfate soil materials.

Geotechnical drilling undertaken by PSM indicated the site is underlain by fine to medium grained sands.

2.3 Regional Hydrology and Hydrogeology

The nearest surface water feature is Eastlakes, located 1km to the south of the site.

2.4 Site Condition and Surrounding Environment

The site is situated in the campus of the University of NSW. The surrounding landuse is predominantly residential with Randwick racecourse to the north

3 SITE HISTORY

3.1 Site Title Deeds

The site title deeds indicated the properties have evolved as follows:

Lot 3 DP 1104617

Year	Proprietor
2006 - to date	The University of New South Wales
(2006 to date)	(various current leases see Folio Identifier 3/1104617)
(2006 to date)	(various leases see Historical Folio 3/1104617)
	(Lot 3 DP 553914)
1988 - 2006	The University of New South Wales
(1988 – 2006)	(various leases see Historical Folio 3/553914)
	(Lot 3 DP 553914 – CTVol 11821 Fol 74)
1972 - 1988	The University of New South Wales
(1972 – 1988)	(various leases see CTVol 11821 Folio 74)
	(Lot 3 DP 522797 – CTVol 10503 Fol 17)
1967 - 1972	The University of New South Wales
(1967 – 1972)	(various leases see CTVol 10503 Folio 17)
	(Lot 1 DP 509893 – CTVol 9787 Fol 110)
1964 - 1967	The University of New South Wales
1964 - 1964	The Minister for Education

See Notes (a) & (b)

Note (a)

	(Portion 1486 Parish Alexandria – Area 59 Acres 3 Roods 25 ³ / ₄ Perches – GG 28 Nov 1952 Fol 4355)
1952 - 1964	The Minister for Education
	(Portion 1486 Parish Alexandria – Area 59 Acres 3 Roods 25 ³ / ₄ Perches)
Prior – 1952	Crown Land
(Prior – 1952)	(Reserve from sale or lease other than annual leases)

Note (b)

	(Portion 1491 Parish Alexandria – Area 3 Acres 2 Roods 32 Perches – GG 28 May 1954 Fol 1587)
1954 - 1964	The Minister for Education
	(Portion 1487 Parish Alexandria – Area 3 Acres 2 Roods 32 Perches – GG 12 Jan 1940 Fol 66)

1940 - 1954	The Commissioner for Railways and Tramways
	(Portion 1487 Parish Alexandria – Area 3 Acres 2 Roods 32 Perches)
Prior – 1940	Crown Land
(Prior – 1940)	(Reserve from sale or lease other than annual leases)

Review of historical title information indicates that the site has the following history:

- University of NSW from 1964 to present
- Department of Education from 1952 1964
- Part of the site Commissioner of Railways and Trams 1940 1954
- Crown Land prior to 1952

Detailed title information is contained in Appendix B.

3.2 Aerial Photography

Review of historical aerial photographs held by the Department of Land & Water Conservation indicates the site has undergone the following changes since 1930. A summary of photographs reviewed is outlined below:

• Sydney 1:16,000 20044 Run 7 Photo 14-25 The site appears as tennis courts with the university mall to the north, village green to the east, new college to the south and Anzac Parade to the west.

• S	ydney	1:25,000	1994	Run 11	Photo 153-164
The site a	appears as ab	ove.			
• Sj	ydney	1:16,000	1986	Run 24e	Photo 3527-116
The site a	appears as ab	ove.			
• C	Sumberland	1:16,000	1978	Run 18	Photo 2713 -149

The site appears as above.

1970 Run 19 Cumberland No Scale Photo 1909-5005 • The site appears as above. Cumberland No Scale 1961 Run 38e • Photo 1042-5174 The site appears as vacant land with an outline of tennis courts and the village green. Sydney 1951 1:12,200 Run 15 Photo 467-32 • The site appears as vacant land.

•	Sydney	No Scale	1930	Run 17	Photo 3428
The si	ite appears as r	ace track.			

Review of historical aerial photography indicates that the site has the following history:

- The site appears as tennis courts within the university from 1970 to the present.
- The site appears as vacant land from 1951 1961.
- The site appears as race track in 1930.

A copy of select aerial photography is contained in Appendix C.

3.3 Notices, Permits and Licences

A search of the NSW EPA website register indicated that there are no notices pertaining to environmental issues under the Contaminated Land Management Act (1997) for the site.

4 CONCLUSIONS

Based on the results of the preliminary stage 1 site assessment, Urban Environmental Services Pty Ltd concludes the following:

- The site appears as tennis courts with the university mall to the north, village green to the east, new college to the south and Anzac Parade to the west.
- Review of geological maps indicates the site form part of the Tuggerah Aeolian Landscape comprising gently undulating to rolling coastal dunefields. Geotechnical drilling undertaken by PSM indicated the site is underlain by fine to medium grained sands.
- Review of historical title deeds indicates the site was Crown Land prior to 1952, part of the site Commissioner of Railways and Trams 1940 – 1954, Department of Education from 1952 – 1964, University of NSW from 1964 to present.
- Review of historical aerial photography indicates the site appears as race track in 1930, vacant land from 1951 1961 and as tennis courts within the university from 1970 to the present.
- A search of the NSW EPA website register indicated that there are no notices pertaining to environmental issues under the Contaminated Land Management Act (1997) for the site.
- Urban Environmental concludes that based on the historical evaluation of site usage, the subject site has had a history of education use since the 1950's. The site does not have a history of potential contaminating activities and is suitable for education redevelopment. No further investigations are warranted from a contamination perspective.

5 **REFERENCES**

NSW Department of Mineral Resources (1983). Sydney Geological Series Sheet 9130 (Edition 1) 1:100,000 scale.

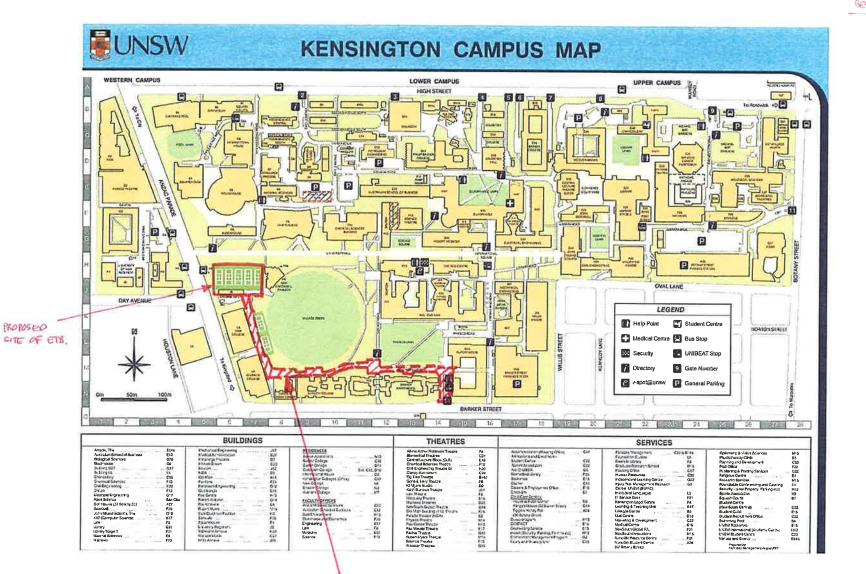
Department of Land and Water Conservation (2004). Sydney Soil Landscape Series Sheet 9130

NSW EPA (1997). Guidelines for Consultants Reporting on Contaminated Sites.

NEPC (1999). The National Environment Protection – Assessment of Site Contamination Measure (NEPM), National Environment Protection Council, December 1999.

PSM (2009). Geotechnical borelogs.

DISCLAIMER


Urban Environmental Services Pty Ltd have conducted work concerning the environmental status of the property which is the subject of this report, and has prepared this report on the basis of that assessment.

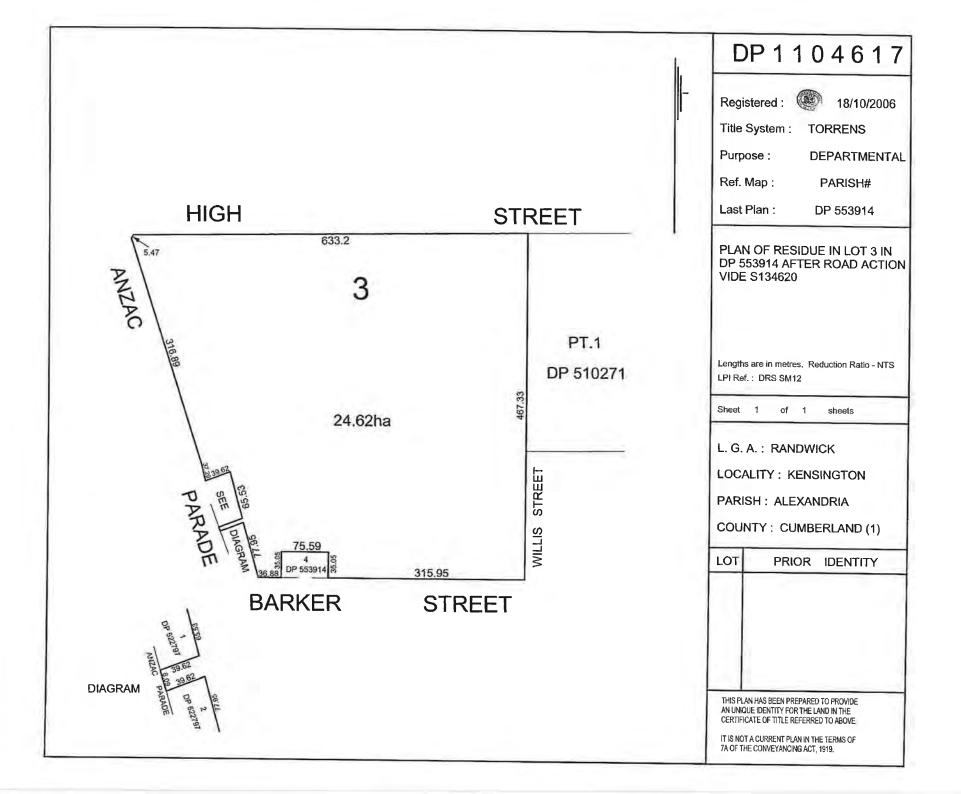
The work was conducted, and the report has been prepared, in response to specific instructions from the client to whom this report is addressed, within the time and budgetary requirements of the client, and in reliance on certain data and information made available to Urban Environmental Services Pty Ltd. The analyses, evaluations, opinions and conclusions presented in this report are based on that information, and they could change if the information is in fact inaccurate or incomplete.

Urban Environmental Services Pty Ltd will not update the report and has not taken into account events occurring after the time its assessment was conducted.

This report is intended for the sole use of the client and only for the purpose for which it was prepared. Any representation contained in the report is made only to the client. Any third party who relies on the report or on any representation contained in it does so at their own risk.

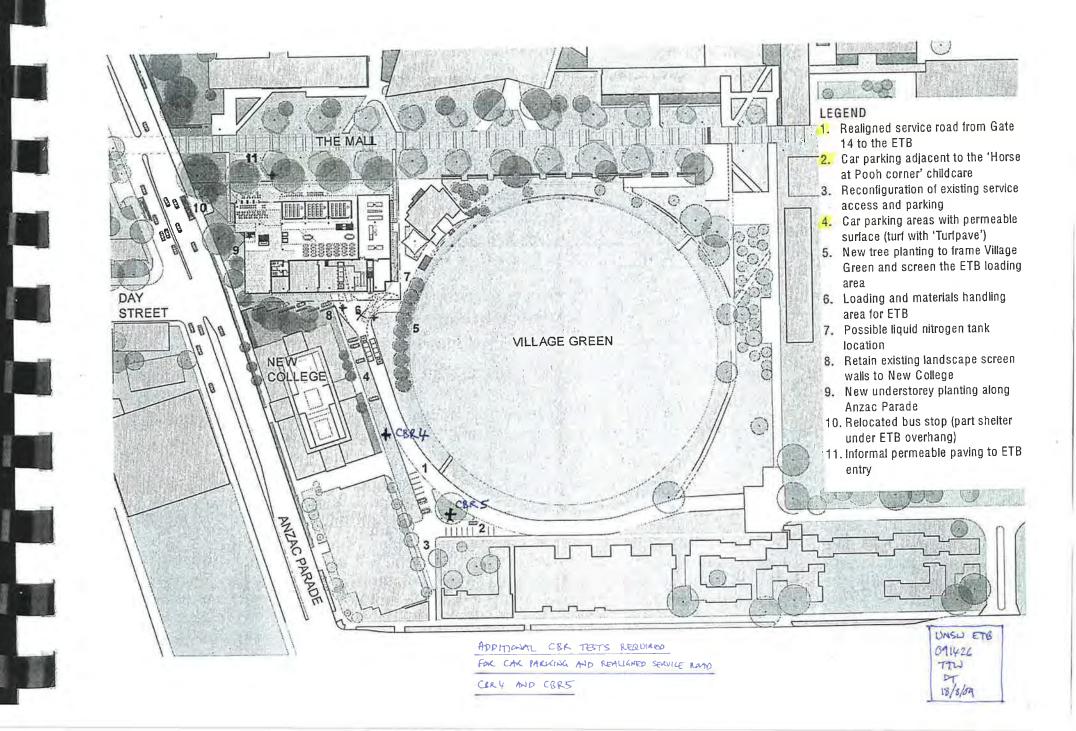
APPENDIX A BACKGROUND RECORDS

.


DENOTES EXTENT OF BONKELMINN BEAM TEST

PROPOSED EXTENT OF BENKELMAN BEAM TRUS

UNSW ETS


10/8/09

091426

the northern edge are more sympathetic in terms of scale and setback.

align the northern edge of the building with Spooners former 'sandstock' brick walls

APPENDIX B TITLE RECORDS

12

ADVANCE LEGAL SEARCH PTY LIMITED

(ACN 077 067 068) ABN 49 077 067 068

PO Box 149 Yagoona NSW 2199

 Telephone:
 +612
 9754
 1590

 Mobile:
 0412
 169
 809

 Facsimile:
 +612
 9754
 1364

 Email:
 alsearch@optusnet.com.au

23rd September 2009

URBAN ENVIRONMENTAL CONSULTANTS PTY LTD PO Box 1070, ROZELLE NSW 2039

Attention: Franco Fuccenecco

RE:

University of New South Wales Anzac Parade, Kensington

Current Search

Folio Identifier 3/1104617 (title attached) DP 1104617 (plan attached) Dated 17th September 2009 Registered Proprietor: **THE UNIVERSITY OF NEW SOUTH WALES**

-2-Title Tree Lot 3 DP 1104617

Folio Identifier 3/1104617

Folio Identifier 3/553914

Certificate of Title Volume 11821 Folio 74

Certificate of Title Volume 10503 Folio 17

Certificate of Title Volume 9787 Folio 110

(a)

PA 43788

PA 43789

(b)

Government Gazette 28 November 1952 Folio 4355 Government Gazette 28 May 1954 Folio 1587

Summary of Proprietors Lot 3 DP 1104617

Year

Proprietor

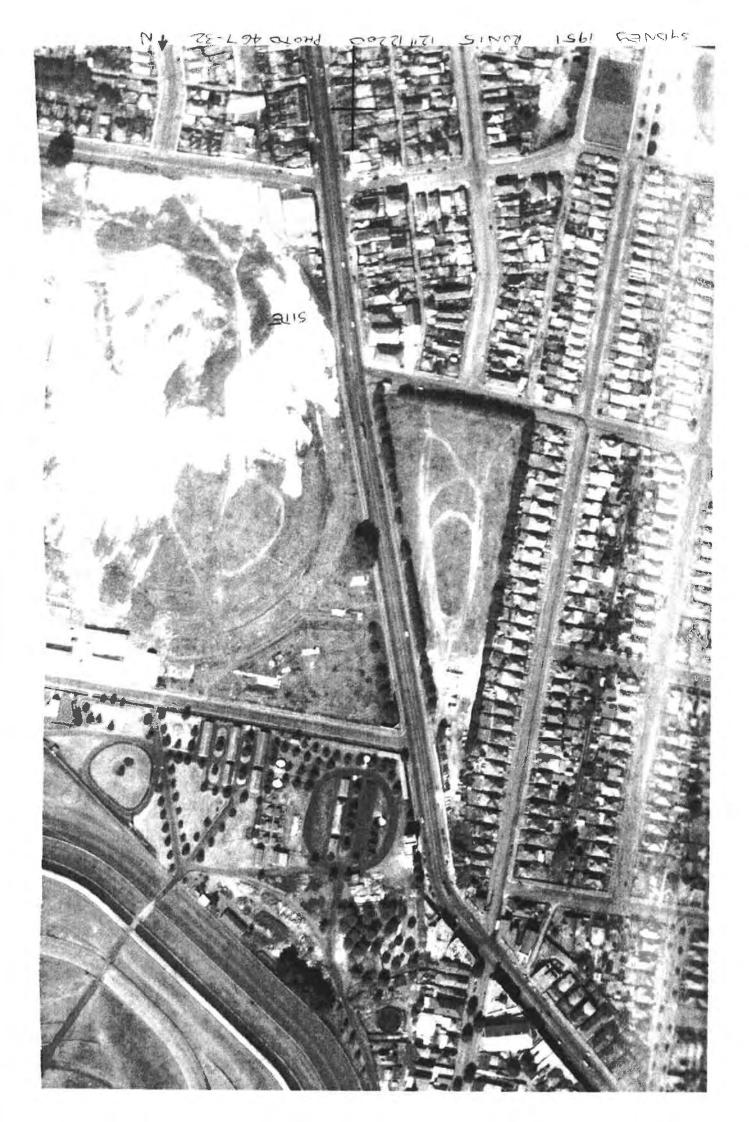
	(Lot 3 DP 1104617)
2006 - todate	The University of New South Wales
(2006 – todate)	(various current leases see Folio Identifier 3/1104617)
(2006 – todate)	(various leases see Historical Folio 3/1104617)
	(Lot 3 DP 553914)
1988 - 2006	The University of New South Wales
(1988 – 2006)	(various leases see Historical Folio 3/553914)
	(Lot 3 DP 553914 – CTVol 11821 Fol 74)
1972 – 1988	The University of New South Wales
(1972 – 1988)	(various leases see CTVol 11821 Folio 74)
	(Lot 3 DP 522797 – CTVol 10503 Fol 17)
1967 – 1972	The University of New South Wales
(1967 – 1972)	(various leases see CTVol 10503 Folio 17)
	(Lot 1 DP 509893 – CTVol 9787 Fol 110)
1964 – 1967	The University of New South Wales
1964 - 1964	The Minister for Education

See Notes (a) & (b)

Note (a)

	(Portion 1486 Parish Alexandria – Area 59 Acres 3 Roods 25 ³ / ₄ Perches – GG 28 Nov 1952 Fol 4355)			
1952 - 1964	The Minister for Education			
	(Portion 1486 Parish Alexandria – Area 59 Acres 3 Roods 25 ³ / ₄ Perches)			
Prior - 1952	Crown Land			
(Prior – 1952)	(Reserve from sale or lease other than annual leases)			

Note (b)


(Portion 1491 Parish Alexandria – Area 3 Acres 2 Roods 32 Perches – GG 28 May 1954 Fol 1587)		
1954 - 1964	The Minister for Education	
	(Portion 1487 Parish Alexandria – Area 3 Acres 2 Roods 32 Perches – GG 12 Jan 1940 Fol 66)	
1940 - 1954	The Commissioner for Railways and Tramways	
	(Portion 1487 Parish Alexandria – Area 3 Acres 2 Roods 32 Perches)	
Prior - 1940	Crown Land	
(Prior – 1940)	(Reserve from sale or lease other than annual leases)	

APPENDIX C AERIAL PHOTOGRAPHY

390

7 October, 2009

Pell Sullivan Meynink Pty Ltd G3 56 Delhi Road NORTH RYDE NSW 2113

Attention: Mr Bernard Shen

Re: Waste Classification – UNSW Energy Technologies Building

Further to your request, we have undertaken laboratory analysis and reporting of soil samples collected from geotechnical drilling undertaken on site. The soils were assessed for contaminant characteristics and waste classification for planning purposes. Geotechnical drilling undertaken by PSM indicated the site is underlain by fine to medium grained sands.

Review of the Department of Land and Water Conservation Sydney Soil Landscape Series Sheet 9130 (2004) indicate the site is within the Tuggerah Aeolian Landscape comprising gently undulating to rolling coastal dunefields.

Review of the DLWC Acid Sulfate Soil Risk Map – Botany Bay, Edition 2, 1997 indicates the site is within a typical landform comprising bedrock slopes, elevated Pleistocene and Holocene dunes and elevated alluvial plains. Acid sulfate soils are not known or expected to occur in these environments.

Four samples of the soil material (CBR2 0.3, CBR3 0.25, BH101 0.2 & 2.0) were collected and analysed for a broad range of contaminants including Petroleum Hydrocarbons (TPH/BTEX), Polyaromatic Hydrocarbons (PAHs), Phenols, Polychlorinated Biphenyls, (PCB's), Pesticides (OCP/OPP) and Metals (Cu, Pb, Zn, Cr, Cd, Ni, As, Hg) to determine waste classification.

Results indicate no petroleum hydrocarbons (TPH/BTEX), Polyaromatic Hydrocarbons (PAHs), Phenols, Polychlorinated Biphenyls (PCB's), or Pesticides (OCP/OPP) were detected. Metals results were low indicating background levels. Laboratory Analytical Certificates are attached for reference.

Based on review of the results and applying the NSW EPA (2008) Waste Classification Guidelines: Part 1 Classifying Waste, the underlying sandy materials would be classified as virgin excavated natural material (VENM). The excavated material is suitable for reuse, subject to local government approvals, at other sites or is suitable for disposal as VENM to landfill. If during excavation, should any material exhibit signs of potential contamination (odours, staining or anthropogenic inclusions) the material should be stockpiled separately for inspection and assessment.

Yours faithfully, URBAN ENVIRONMENTAL SERVICES PTY LTD

Franco Fuccenecco Principal Consultant BSc (Hons) MAppSc

> URBAN ENVIRONMENTAL SERVICES PTY LTD E&J LYCETT BUILDING SUITE 1, 18 MOORE STREET, ROZELLE PO BOX 1070, ROZELLE, 2039 NSW PHONE: 02 9555 7570 FAX: 02 9555 6313 MOB: 0413 584 110 EMAIL: urban.environmental@bigpond.com

Waste Classification - Limitations

Urban Environmental Services Pty Ltd (UES) assessment of the site is based on a limited site investigation and upon the program of surface and subsurface screening and/or laboratory testing of samples. The findings of this report are based on site conditions existing at the time the inspection. On this basis UES cannot provide unqualified warranties or assume liability for site conditions not observed and/or not accessible during the time of its investigation. Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated.

Site characteristics may change in response to natural conditions, chemical reactions, spillage of contaminated substances or dumping of fill. These changes may occur subsequent to the investigations of UES. On this basis conclusions have been made from a limited number of observation points assuming that the geological and chemical conditions are representative across the site. No other warranties are made or intended.

This report and associated documents has been prepared solely for the use of Pells Sullivan Meynink Pty Ltd and interested parties for the purpose of transport of materials. Any reliance assumed by third parties on this report shall be at such parties own risk. Any ensuring liability resulting from use of the report by third parties cannot be transferred to UES.

Section 143 of the Protection of the Environment Operations Act 1997 (POEO) states that it is an offence for waste to be transported to a place that cannot lawfully be used as a facility to accept that waste. It is the duty of the owner and transporter of the waste to ensure that the waste is disposed appropriately and the site can accept the waste. UES does not accept responsibility for material tracking, loading, transport or disposal of waste from the site.

Prior arrangement with the receiving waste facility or relevant authority should be obtained prior to the disposal or reuse of any material offsite. The receiving site should check the materials received to ensure that the imported materials match the description provided in this report.) LeibMeirk

ENVIRONMENTAL LABORATORIES

Accredited for compliance with ISO/IEC 17025. The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. AQIS AUSTRALIAN QUARANTINE AND INSPECTION SERVICE

SYDNEY License No N0356

Quarantine Approved Premises criteria 5.1 for quarantine containment level 1 (QCI) facilities Class live criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

Laboratory Report No:E044Client Name:UrbarClient Reference:PSMContact Name:FrancChain of Custody No:naSample Matrix:SOIL

E044824 Urban Environmental PSM Syd Uni Franco Fuccenecco na SOU

Cover Page 1 of 4 plus Sample Results

Date Received: 28/09/2009 Date Reported: 06/10/2009

This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY CONTROL

QUALITY ASSURANCE CRITERIA

			GLOBAL ACCEPTANCE CRITERIA (GAC)				
Accuracy: Precision:	matrix spike: lcs, crm, method: surrogate spike: laboratory duplicate:	 in first 5-20, then 1 every 20 samples per analytical batch addition per target organic method in first 5-10, then 1 every 10 samples 	Accuracy:	spike, lcs, crm surrogate:	general analytes 70% - 130% recover phenol analytes 50% - 130% recovery organophosphorous pesticide analytes 60% - 130% recovery phenoxy acid herbicides, organotin 50% - 130% recovery		
	laboratory triplicate:	re-extracted & reported when duplicate RPD values exceed acceptance criteria	Develotere		+/- 10% (0-3 meq/l), +/- 5% (>3 meq/l)		
Holding Times:	soils, waters:	Refer to LabMark Preservation & THT	Precision:		not detected >95% of the reported EQI		
		table VOC's 14 days water / soil		-	0-30% (>10xEQL), 0-75% (5-10xEQL 0-100% (<5xEQL)		
		VAC's 7 days water or 14 days acidified VAC's 14 days soil SVOC's 7 days water, 14 days soil		duplicate lab RPD:	0-50% (>10xEQL), 0-75% (5-10xEQL 0-100% (<5xEQL)		
		Pesticides 7 days water, 14 days soil Metals 6 months general elements Mercury 28 days	QUALITY CONTROL ANALYTE SPECIFIC ACCEPTANCE CRITERIA (ASAC)				
Confirmation:	target organic analysis:	GC/MS, or confirmatory column	Accuracy:	spike, lcs, crm surrogate:	analyte specific recovery data <3xsd of historical mean		
Sensitivity:	EQL:	Typically 2-5 x Method Detection Limit (MDL)	Uncertainty	v: spike, lcs:	measurement calculated from historical analyte specific control		
	DTATION				charts		

Data Quality Indicator d: laboratory duplicate laboratory control sample lcs: bmb: batch specific mb Estimated Quantitation Limit t: laboratory triplicate certified reference material crm: not applicable RPD relative % difference method blank Г: mb:

Simon Mills Quality Control (Report signatory) simon.mills@labmark.com.au

Geoff Weir Authorising Chemist (NATA signatory) geoff.weir@labmark.com.au

Au

Jeremy Truong Authorising Chemist (NATA signatory) jeremy.truong@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

C copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

 * Telephone: (02) 9476 6533
 * Fax: (02) 9476 8219
 * Telephone: (03) 9538 2277

ENVIRONMENTAL LABORATORIES

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E044824

Cover Page 2 of 4

Environmental Laboratory Industry Group Poundation

GE	NERAL
A.	Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or surrogate recovery data.
В.	EQL's are matrix dependant and may be increased due to sample dilution or matrix interference.
C.	Laboratory QA/QC samples are specific to this project.
D.	Inter-laboratory proficiency results are available upon request. NATA accreditation details available at <u>www.nata.asn.au</u> .
E.	VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to extraction.
F.	Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable.
G.	Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations.
H.	Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date.
I,	LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

А.	NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
В.	NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
C.	Subcontracted analyses: Refer to Sample Receipt Notice and additional DQO comments.

This document is issued in accordance with NATA's accreditation requirements.

C copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

 * Telephone: (02) 9476 6533
 * Fax: (02) 9476 8219
 * Telephone: (03) 9538 2277

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E044824

Cover Page 3 of 4

4. QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT

Page:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	BTEX by P&T	4	0	0%	0	0	0%
1	Volatile TPH by P&T (vTPH)	4	0	0%	0	0	0%
2	Petroleum Hydrocarbons (TPH)	4	0	0%	0	0	0%
3	Polyaromatic Hydrocarbons (PAH)	4	0	0%	0	0	0%
4	Phenols by GC/MS	4	0	0%	0	0	0%
5	Organochlorine Pesticides (OC)	4	0	0%	0	0	0%
6	Organophosphorus Pesticides (OP)	4	0	0%	0	0	0%
7	Polychlorinated Biphenyls (PCB)	4	0	0%	0	0	0%
8	Acid extractable metals (M7)	4	0	0%	0	0	0%
9	Acid extractable metals - mercury	4	0	0%	0	0	0%
10	Moisture	4					

GLOSSARY:

#d number of discrete duplicate extractions/analyses performed.

%d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).

#t number of triplicate extractions/analyses performed.

#s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%)_

This document is issued in accordance with NATA's accreditation requirements.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E044824

Cover Page 4 of 4

5. ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, unless indicated below.

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES</u> <u>NOT</u> report <u>NON-RELEVANT BATCH QA/QC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

This document is issued in accordance with NATA's accreditation requirements.

() LabMark	Labora	atory Repor	t No: E	2044824			Page	: 1 of 10		Final
	Client	Name:	τ	Jrban Enviro	nmental		plus	cover page		Certificate
ENVIRONMENTAL LABORATORIES	Contac	et Name:	F	Franco Fucce	necco		Date	: 06/10/09		of Analysis
	Client	Reference:	P	SM Syd Un	i EU5006		This re	port supercedes repor	ts issued on: N/A	Ą
Laboratory Identification		229089	229090	229091	229092	lcs	mb			
Sample Identification		CBR2	CBR3	BH101	BH101	QC	QC			
Depth (m) Sampling Date recorded on COC		0.3 25/9/09	0.25 25/9/09	0.2 25/9/09	2.0 25/9/09	-				
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		30/9/09 1/10/09	30/9/09 1/10/09	30/9/09 1/10/09	30/9/09 1/10/09	30/9/09 30/9/09	30/9/09 30/9/09			
Method : E002.2 BTEX by P&T Benzene Toluene Ethylbenzene meta- and para-Xylene ortho-Xylene Total Xylene CDFB (Surr @ 10mg/kg)	EQL 0.2 0.5 0.5 1 0.5 -	<0.2 <0.5 <0.5 <1 <0.5 108%	<0.2 <0.5 <0.5 <1 <0.5 - 107%	<0.2 <0.5 <0.5 <1 <0.5 - 106%	<0.2 <0.5 <0.5 <1 <0.5 - 104%	85% 88% 85% 89% 88% 	<0.2 <0.5 <0.5 <1 <0.5 116%			
Method : E003.2 Volatile TPH by P&T (vTPH) C6 - C9 Fraction	EQL 10	<10	<10	<10	<10	88%	<10			

Comments:

E002.2: 8-10g soil extracted with 20ml methanol. Analysis by P&T/GC/PID/MSD. E003.2: 8-10g soil extracted with 20ml methanol. Analysis by P&T/GC/FID.

() LabMark	Labora	atory Repor	t No: E	E044824			Page	e: 2 of 10	Final
	Client	Name:	τ	Jrban Enviro	onmental		plus	cover page	Certificate
ENVIRONMENTAL LABORATORIES	Contac	t Name:	F	Franco Fucce	necco		Date	e: 06/10/09	of Analysis
	Client	Reference:	F	SM Syd Un	i EU5006		This re	eport supercedes repor	ts issued on: N/A
Laboratory Identification		229089	229090	229091	229092	lcs	mb		
Sample Identification		CBR2	CBR3	BH101	BH101	QC	QC		
Depth (m) Sampling Date recorded on COC	1	0.3 25/9/09	0.25 25/9/09	0.2 25/9/09	2.0 25/9/09		-		
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		30/9/09 30/9/09	30/9/09 30/9/09	30/9/09 30/9/09	30/9/09 30/9/09	30/9/09 30/9/09	30/9/09 30/9/09		
Method : E006.2 Petroleum Hydrocarbons (TPH) C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction Sum of TPH C10 - C36	EQL 50 100 100	<50 <100 <100 	<50 <100 <100	<50 <100 <100	<50 <100 <100 -	94% 	<50 <100 <100		

Comments:

E006.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/FID.

() LabMark	Labora	atory Repor	t No:	E044824			Page:	3 of 10	Final
	Client	Name:		Urban Enviro	nmental		plus c	over page	Certificate
ENVIRONMENTAL LABORATORIES	Conta	et Name:		Franco Fucce	necco		Date:	06/10/09	of Analysis
	Client	Reference:		PSM Syd Un	i EU5006		This rep	oort supercedes reports	issued on: N/A
Laboratory Identification	Chiche	229089	229090	229091	229092	lcs	mb		
Sample Identification		CBR2	CBR3	BH101	BH101	QC	QC		
Depth (m) Sampling Date recorded on COC		0.3 25/9/09	0.25 25/9/09	0.2 25/9/09	2.0 25/9/09		-		
Laboratory Extraction (Preparation) Date		30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	30/9/09		
Laboratory Analysis Date		30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	30/9/09		
Method : E007.2					2019103	5015105	5015105		
Polyaromatic Hydrocarbons (PAH) Naphthalene	EQL 0.5	<0.5	<0.5	-0.5	-0.5	10.50/			
Acenaphthylene	0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	125%	<0.5		
Acenaphthene	0.5	<0.5	< 0.5	<0.5	<0.5	126%	<0.5		
Fluorene	0.5	<0.5	< 0.5	<0.3	<0.5 <0.5	127% 121%	<0.5		
Phenanthrene	0.5	<0.5	<0.5	<0.3	<0.5		<0.5 <0.5		
Anthracene	0.5	<0.5	<0.5	<0.3	<0.5	126% 128%			
Fluoranthene	0.5	<0.5	<0.5	<0.3	<0.5	128%	<0.5 <0.5		
Pyrene	0.5	<0.5	< 0.5	<0.5	<0.5	128%	<0.5		
Benz(a)anthracene	0.5	< 0.5	< 0.5	<0.5	<0.5	128%	<0.5		
Chrysene	0.5	< 0.5	<0.5	<0.5	<0.5	12976	<0.5		
Benzo(b)&(k)fluoranthene	1	<1	<0.5	<1	<1	103%	<1		
Benzo(a) pyrene	0.5	< 0.5	< 0.5	<0.5	<0.5	122%	<0.5		
Indeno(1,2,3-c,d)pyrene	0.5	< 0.5	< 0.5	<0.5	<0.5	118%	<0.5		
Dibenz(a,h)anthracene	0.5	< 0.5	< 0.5	< 0.5	<0.5	117%	<0.5		
Benzo(g,h,i)perylene	0.5	< 0.5	< 0.5	< 0.5	<0.5	120%	<0.5		
Sum of reported PAHs			- 240	-		-			
2-FBP (Surr @, 5mg/kg)		82%	86%	84%	82%	99%	93%		
TP-d14 (Surr @, 5mg/kg)		90%	96%	79%	84%	109%	110%		

Comments:

E007.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/MS.

- LabMark Pty Ltd ABN 27 079 798 397 SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 Telephone: (02) 9476 6533 Fax: (02) 9476 8219 MELBOURNE: 116 Moray Street, South Melbourne VIC 3205 Telephone: (03) 9686 8344 Fax: (03) 9686 7344 No. 13542

6 LabMark	Labora	atory Repor	t No: E	2044824			Page	e: 4 of 10	Final
	Client	Name:	τ	Jrban Enviro	nmental		plus	cover page	Certificate
ENVIRONMENTAL LABORATORIES	Contac	et Name:	F	Franco Fucce	necco		Date	: 06/10/09	of Analysis
	Client	Reference:	F	SM Syd Un	i EU5006		This re	eport supercedes reports	issued on: N/A
Laboratory Identification		229089	229090	229091	229092	les	mb		
Sample Identification		CBR2	CBR3	BH101	BH101	QC	QC		
Depth (m)		0.3	0.25	0.2	2.0	÷.			
Sampling Date recorded on COC		25/9/09	25/9/09	25/9/09	25/9/09			· · · · · · · · · · · · · · · · · · ·	
Laboratory Extraction (Preparation) Date		30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	30/9/09		
Laboratory Analysis Date		30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	· · · · · · · · · · · · · · · · · · ·	
Method : E008.2									
Phenols by GC/MS	EQL								
Phenol	0.5	<0.5	<0.5	<0.5	< 0.5	104%	<0.5		
2-chlorophenol	0.5	<0.5	<0.5	< 0.5	< 0.5	111%	< 0.5		
2-methylphenol	0.5	<0.5	< 0.5	< 0.5	< 0.5	107%	< 0.5		
3-&4-methylphenol	1.0	<1.0	<1.0	<1.0	<1.0	107%	<1.0		
2-nitrophenol	0.5	< 0.5	<0.5	< 0.5	< 0.5	84%	< 0.5		
2,4-dimethylphenol	0.5	< 0.5	<0.5	< 0.5	< 0.5	115%	< 0.5		
2,4-dichlorophenol	0.5	< 0.5	< 0.5	< 0.5	< 0.5	112%	< 0.5		
4-chloro-3-methylphenol	0.5	< 0.5	< 0.5	< 0.5	< 0.5	104%	< 0.5		
2,4,6-trichlorophenol	0.5	< 0.5	< 0.5	< 0.5	< 0.5	105%	<0.5		
2,4,5-trichlorophenol	0.5	< 0.5	< 0.5	< 0.5	< 0.5	95%	< 0.5		
Pentachlorophenol	1	<1	<1	<1	<1	82%	<1		
Sum of reported phenols			-		1.44				
2-FP (Surr @ 5mg/kg)		84%	88%	87%	85%	94%	99%		
Phenol-d5 (Surr @ 5mg/kg)		90%	89%	93%	81%	97%	96%		
2,4,6-TBP (Surr @ 5mg/kg)	-	97%	104%	104%	95%	112%	98%		

Comments:

E008.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/MS.

6 LabMark	Labora	atory Repor	t No:	E044824			Page	e: 5 of 10	Final
	Client	Name:		Urban Enviro	nmental		plus	cover page	Certificate
ENVIRONMENTAL LABORATORIES	Contac	et Name:		Franco Fucce	necco		Date	e: 06/10/09	of Analysis
	Client	Reference:		PSM Syd Un	i EU5006		This r	eport supercedes reports	issued on: N/A
Laboratory Identification		229089	229090	229091	229092	lcs	mb		
Sample Identification		CBR2	CBR3	BH101	BH101	QC	QC		
Depth (m) Sampling Date recorded on COC		0.3 25/9/09	0.25 25/9/09	0.2 25/9/09	2.0 25/9/09	-			
Laboratory Extraction (Preparation) Date		30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	30/9/09		
Laboratory Analysis Date		1/10/09	1/10/09	1/10/09	1/10/09	30/9/09	30/9/09		
Method : E013.2 Organochlorine Pesticides (OC)	EQL								
a-BHC	0.05	< 0.05	< 0.05	< 0.05	< 0.05	89%	< 0.05		
Hexachlorobenzene	0.05	< 0.05	< 0.05	< 0.05	< 0.05	94%	< 0.05		
b-BHC	0.05	< 0.05	< 0.05	< 0.05	< 0.05	89%	< 0.05		
g-BHC (Lindane)	0.05	< 0.05	< 0.05	< 0.05	< 0.05	90%	< 0.05		
d-BHC	0.05	< 0.05	< 0.05	< 0.05	< 0.05	100%	< 0.05		
Heptachlor	0.05	< 0.05	< 0.05	< 0.05	< 0.05	86%	< 0.05		
Aldrin	0.05	< 0.05	< 0.05	< 0.05	< 0.05	87%	< 0.05		
Heptachlor epoxide	0.05	< 0.05	< 0.05	< 0.05	< 0.05	93%	< 0.05		
trans-chlordane	0.05	< 0.05	< 0.05	< 0.05	< 0.05	89%	< 0.05		
Endosulfan I	0.05	< 0.05	< 0.05	< 0.05	< 0.05	87%	< 0.05		
cis-chlordane	0.05	< 0.05	< 0.05	< 0.05	< 0.05	92%	< 0.05		
Dieldrin	0.05	< 0.05	< 0.05	< 0.05	< 0.05	91%	< 0.05		
4,4-DDE	0.05	< 0.05	< 0.05	< 0.05	< 0.05	90%	< 0.05		
Endrin	0.05	< 0.05	< 0.05	< 0.05	< 0.05	91%	< 0.05		
Endosulfan II	0.05	< 0.05	< 0.05	< 0.05	< 0.05	92%	< 0.05		
4,4-DDD	0.05	< 0.05	< 0.05	< 0.05	< 0.05	92%	< 0.05		
Endosulfan sulphate	0.05	< 0.05	< 0.05	< 0.05	< 0.05	105%	< 0.05		
4,4-DDT	0.2	<0.2	< 0.2	<0.2	<0.2	88%	<0.2		
Methoxychlor	0.2	<0.2	< 0.2	<0.2	<0.2	89%	<0.2		
DBC (Surr @ 0.2mg/kg)		74%	75%	72%	75%	105%	77%		

Comments:

E013.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/dual ECD.

LabMark Pty Ltd ABN 27 079 798 397 SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 Telephone: (02) 9476 6533 Fax: (02) 9476 8219 MELBOURNE: 116 Moray Street, South Melbourne VIC 3205 Telephone: (03) 9686 8344 Fax: (03) 9686 7344 Form Q80145, Rev 0: Date Issued 10/03/05

6) LabMark	Labora	atory Repor	t No:	E044824			Page	e: 6 of 10	Final
	Client	Name:	1	Urban Enviro	nmental		plus	cover page	Certificate
ENVIRONMENTAL LABORATORIES	Contac	et Name:	J	Franco Fucce	necco		-	e: 06/10/09	of Analysis
		Reference:		PSM Syd Un				eport supercedes reports	issued on: N/A
Laboratory Identification	Chent	229089	229090	229091	229092	lcs	mb		
Sample Identification		CBR2	CBR3	BH101	BH101	QC	QC		
							¥0		
Depth (m) Sampling Date recorded on COC		0.3 25/9/09	0.25 25/9/09	0.2 25/9/09	2.0 25/9/09	-			
Laboratory Extraction (Preparation) Date		30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	30/9/09		
Laboratory Analysis Date	1	1/10/09	1/10/09	1/10/09	1/10/09	1/10/09	1/10/09		
Method : E014.2									
Organophosphorus Pesticides (OP)	EQL								
Dichlorvos	0.5	< 0.5	< 0.5	<0.5	<0.5	127%	<0.5		
Mevinphos (Phosdrin)	0.5	<0.5	<0.5	< 0.5	< 0.5	122%	<0.5		
Demeton (total)	1	<1	<1	<1	<1	103%	<1		
Ethoprop	0.5	<0.5	<0.5	<0.5	<0.5	95%	<0.5		
Monocrotophos	0.5	<0.5	< 0.5	<0.5	<0.5	60%	<0.5		
Phorate	0.5	<0.5	< 0.5	< 0.5	<0.5	82%	<0.5		
Dimethoate	0.5	<0.5	< 0.5	< 0.5	<0.5	105%	<0.5		
Diazinon	0.5	<0.5	< 0.5	<0.5	<0.5	81%	<0.5		
Disulfoton	0.5	<0.5	< 0.5	< 0.5	<0.5	88%	<0.5		
Methyl parathion	0.5	<0.5	< 0.5	< 0.5	<0.5	94%	<0.5		
Ronnel	0.5	< 0.5	< 0.5	<0.5	< 0.5	85%	<0.5		
Fenitrothion	0.5	<0.5	< 0.5	< 0.5	< 0.5	82%	<0.5		
Malathion	0.5	<0.5	< 0.5	< 0.5	< 0.5	76%	<0.5		
Chlorpyrifos	0.5	<0.5	< 0.5	< 0.5	< 0.5	78%	<0.5		
Fenthion	0.5	<0.5	< 0.5	< 0.5	< 0.5	79%	< 0.5		
Parathion	0.5	< 0.5	<0.5	< 0.5	< 0.5	84%	<0.5		
Stirofos	0.5	<0.5	<0.5	< 0.5	<0.5	83%	<0.5		
Prothiofos	0.5	<0.5	< 0.5	< 0.5	<0.5	77%	< 0.5		
Azinophos methyl	0.5	< 0.5	< 0.5	< 0.5	<0.5	122%	<0.5		
Coumaphos	0.5	< 0.5	< 0.5	< 0.5	< 0.5	124%	< 0.5		
TPP (Surr @ 2mg/kg)	*	79%	81%	78%	75%	70%	74%		

Comments:

E014.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/MSD.

LabMark Pty Ltd ABN 27 079 798 397 SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 Telephone: (02) 9476 6533 Fax: (02) 9476 8219 MELBOURNE: 116 Moray Street, South Melbourne VIC 3205 Telephone: (03) 9686 8344 Fax: (03) 9686 7344 Form QS0/45, Rev 0: Date Issued 10/03/05

() LabMark	Labora	atory Repor	rt No:	E044824			Page	: 7 of 10		Final	
	Client	Name:		Urban Enviro	nmental		plus	cover page		Cert	ificate
ENVIRONMENTAL LABORATORIES	Contac	t Name:		Franco Fucce	necco		Date	: 06/10/09		of Ana	lysis
	Client	Reference:		PSM Syd Un	i EU5006		This re	port supercedes	s reports issued	on: N/A	
Laboratory Identification		229089	229090	229091	229092	lcs	mb				
Sample Identification		CBR2	CBR3	BH101	BH101	QC	QC		1		
Depth (m) Sampling Date recorded on COC		0.3 25/9/09	0.25 25/9/09	0.2 25/9/09	2.0 25/9/09	-	-				
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		30/9/09 1/10/09	30/9/09 1/10/09	30/9/09 1/10/09	30/9/09 1/10/09	30/9/09 30/9/09	30/9/09 30/9/09			10	_
Method : E013.2 Polychlorinated Biphenyls (PCB) Arochlor 1016 Arochlor 1232 Arochlor 1242 Arochlor 1248	EQL 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	-	<0.5 <0.5 <0.5 <0.5 <0.5				
Arochlor 1254 Arochlor 1260 Sum of reported PCBs DBC (Surr @ 0.2mg/kg)	0.5 0.5 	<0.5 <0.5 74%	<0.5 <0.5 75%	<0.5 <0.5 72%	<0.5 <0.5 - 75%	84% 85%	<0.5 <0.5 -77%				

Comments:

E013.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/dual ECD.

() LabMark	Labora	atory Repor	rt No: E	E044824			Pag	e: 8 of 10	Final
	Client	Name:	U	Jrban Enviro	onmental		plus	cover page	Certificate
ENVIRONMENTAL LABORATORIES	Contac	t Name:	F	Franco Fucce	enecco		Dat	e: 06/10/09	of Analysis
	Client	Reference:	F	SM Syd Un	i EU5006		This	report supercedes r	eports issued on: N/A
Laboratory Identification		229089	229090	229091	229092	crm	les	mb	
Sample Identification		CBR2	CBR3	BH101	BH101	QC	QC	QC	
Depth (m) Sampling Date recorded on COC		0.3 25/9/09	0.25 25/9/09	0.2 25/9/09	2.0 25/9/09		-	-	
Laboratory Extraction (Preparation) Date Laboratory Analysis Date	1.1	30/9/09 30/9/09	30/9/09 30/9/09	30/9/09 30/9/09	30/9/09 30/9/09	30/9/09 30/9/09	30/9/09 30/9/09	30/9/09 30/9/09	
Method : E022.2 Acid extractable metals (M7) Arsenic Cadmium Chromium Copper Nickel Lead Zinc	EQL 1 0.1 1 2 1 2 5	1 <0.1 13 24 62 8 62	2 <0.1 5 8 2 26 74	4 0.1 75 30 62 9 65	$ \begin{array}{c} 1 \\ < 0.1 \\ 12 \\ 2 \\ 6 \\ < 2 \\ 6 \end{array} $	100% 92% 100% 99% 104% 91% 98%	87% 98% 95% 95% 90% 96% 96%	<1 <0.1 <1 <2 <1 <2 <1 <2 <5	

Comments:

E022.2: 0.5g digested in nitric/hydrochloric acid. Analysis by ICP-MS.

() LabMark	Labora	ntory Repor	t No: E	2044824			Pag	e: 9 of 10	Final
	Client	Name:	τ	Jrban Enviro	nmental		plus	cover page	Certificate
ENVIRONMENTAL LABORATORIES	Contac	t Name:	F	ranco Fucce	necco		Dat	e: 06/10/09	of Analysis
	Client	Reference:	P	SM Syd Uni	i EU5006		This 1	eport supercedes rep	ports issued on: N/A
Laboratory Identification		229089	229090	229091	229092	crm	lcs	mb	
Sample Identification		CBR2	CBR3	BH101	BH101	QC	QC	QC	1
Depth (m)		0.3	0.25	0.2	2.0		-		
Sampling Date recorded on COC		25/9/09	25/9/09	25/9/09	25/9/09				
Laboratory Extraction (Preparation) Date		30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	30/9/09	
Laboratory Analysis Date		1/10/09	1/10/09	1/10/09	1/10/09	30/9/09	30/9/09	30/9/09	
Method : E026.2 Acid extractable metals - mercury Mercury	EQL 0.05	<0.05	0.09	0.09	<0.05	99%	92%	<0.05	

Comments:

E026.2: 0.5g digested with nitric/hydrochloric acid. Analysis by CV-ICP-MS or FIMS.

() LabMark	Labora	atory Repor	t No: I	E044824			Pag	e: 10 of 10)	Final
	Client	Name:	ι	Jrban Enviro	onmental		plus	s cover page	•	Certificate
ENVIRONMENTAL LABORATORIES	Contac	t Name:	H	ranco Fucce	necco		Dat	e: 06/10/09		of Analysis
	Client	Reference:	F	SM Syd Un	i EU5006		This	report supercede	es reports issued on	: N/A
Laboratory Identification		229089	229090	229091	229092					
Sample Identification		CBR2	CBR3	BH101	BH101					
Depth (m)	- 1	0.3	0.25	0.2	2.0					
Sampling Date recorded on COC		25/9/09	25/9/09	25/9/09	25/9/09	10.000	11.		1.	
Laboratory Extraction (Preparation) Date		30/9/09	30/9/09	30/9/09	30/9/09					
Laboratory Analysis Date		1/10/09	1/10/09	1/10/09	1/10/09	1				
Method : E005.2 Moisture Moisture	EQL	9	3	5	1					

Results expressed in % w/w unless otherwise specified

Comments:

E005.2: Moisture by gravimetric analysis. Results are in % w/w.

Quality, Service, Support

Sample

Receipt

Notice (SRN) for E044824

	Client Deta	ils	Laboratory	Reference Information
Client Name:	Urban Environme	ntal	Please ha	ve this information ready
Client Phone:	02 9555 7570		when	contacting Labmark.
Client Fax:	02 9555 6313			
Contact Name:	Franco Fucceneco	0	Laboratory Report:	E044824
Contact Email:	urban.environmen	tal@bigpond.com	Quotation Number:	 Not provided, standard prices apply
Client Address:	PO Box 1070 ROZELLE NSW	2039	Laboratory Address:	Unit 1, 8 Leighton Pl. Asquith NSW 2077
Project Name:	PSM Syd Uni		Phone:	61 2 9476 6533
Project Number:	EU5006		Fax:	61 2 9476 8219
CoC Serial Numbe	r: - Not provided -		Comula Dessint Conto	
Purchase Order:	- Not provided -		Sample Receipt Contac	
Surcharge:		lied (results by 6:30pm on	Email:	Ros.Schacht@labmark.com.au
	due date)		Reporting Contact: Email:	Leanne Boag
Sample Matrix:	SOIL		Eman.	leanne.boag@labmark.com.au
Date Sampled (ear		25/09/2009	NATA Accreditation:	13542
Date Samples Rec		28/09/2009	TGA GMP License:	185-336 (Sydney)
Date Sample Rece		29/09/2009	APVMA License:	6105 (Sydney)
Date Preliminary F		06/10/2009	AQIS Approval:	NO356 (Sydney)
Client TAT Reques	st Date:	06/10/2009	AQIS Entry Permit:	200521534 (Sydney)
Reporting Require	ements: Electronic	Data Download required: N	o Ir	voice Number: 09EA6103
Sample Condition	Samples Samples Samples Security s	eived with samples. Report received in good order . received with cooling media received chilled. seals not required. Direct La ontainer & chemical preserv	: Crushed ice . bmark's custody taken .	d on COC.
Comments:				
Holding Times:	Date rece	ived allows for sufficient tim	e to meet Technical Holdir	g Times.
Preservation:	Chemical	preservation of samples sa	tiofactory for service to down	ali teo

LabMark shall responsibly dispose of spent customer soil and water samples which includes the disintegration of the sample label. A sample disposal fee of \$1.00 is applicable on all samples received by the laboratory regardless of whether they have undergone analytical testing. Sample disposal of environmental samples shall be 31 days (water) and 3 months (soil, HN03 preserved samples) after laboratory receipt, unless otherwise requested in writing by the client. Samples requested to be held in non-refrigerated storage shall incur \$5.00/ sample/ 3 months. Additional refrigerated storage shall incur \$30/ sample/ 3 months. Combination prices apply only if requested. Transfer of report ownership from LabMark to the client shall occur once full and final payment has been settled and verified. All report copies may be retracted where full payment does not occur within the agreed settlement period.

Analysis comments:

Subcontracted Analyses:

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Report Date : 29/09/2009 Report Time: 11:43:22AM

Sample Receipt Notice (SRN) for E044824

Quality, Service, Support

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

	G	RID	REVIEW TABLE	1	F	-		Г	_		—	_	Re	ques	ted A	naly	sis	—	П		-		
No.	Date	Depth	Client Sample ID		BTEX by P&T	Acid extractable metals - mercury	Acid extractable metals (M7)	Moisture	Organochlorine Pesticides (OC)	Organophosphorus Pesticides (OP)	Polyaromatic Hydrocarbons (PAH)	Polychlorinated Biphenyls (PCB)	Phenols by GC/MS	PREP Not Reported	Petroleum Hydrocarbons (TPH)	Volatile TPH by P&T (vTPH)							
229089	25/09	0.3	CBR2		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠							
229090	25/09	0.25	CBR3		٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠							
229091	25/09	0.2	BH101		٠	٠	•	•	٠	•		•	٠	٠		٠				1.1		1	- 30
229092	25/09	2.0	BH101		•	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠							
			Totals:		4	4	4	4	4	4	4	4	4	4	4	4						1.1	

'PREP Not Reported' refers to an internal laboratory instruction - client confirmation of this parameter is not required.

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Quality, Service, Support

Report Date : 29/09/2009 Report Time : 11:43:22AM

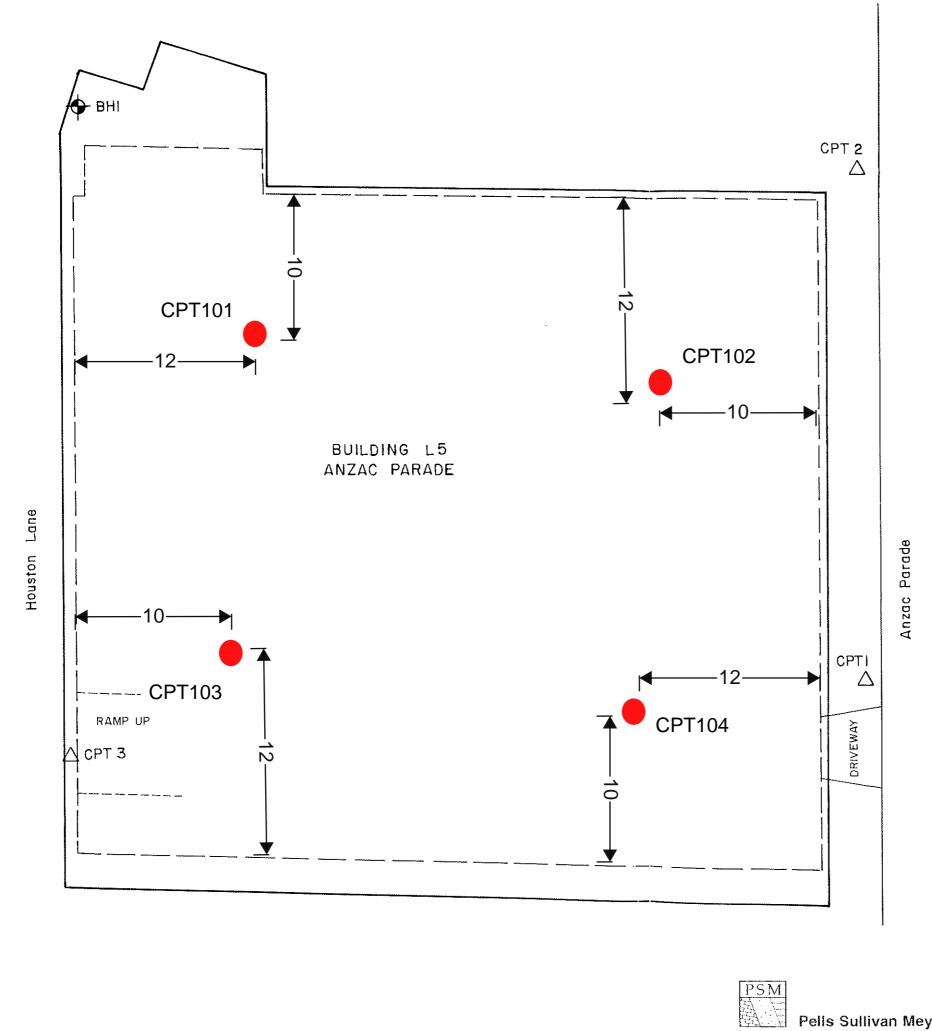
Notice (SRN) for E044824

				Requested Analysis
No. D	Date	Depth	Client Sample 1D	M8 - M7-T_S
229089 2			CBR2	2
29090 2			CBR3	
29091 2	_		BH101	
29092 2			BH101	
			Totals:	4

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

LABM	ARK	NATA 13542, AQIS N0356			Client Details			1.	1000	S00001			
Dispatch samples to: Unit1/ 8 Leighlon Place Asquith NSW 2077 or 116 Moray Struet South Melbourne VIC 3205		Tel (SYD): 612-9476-8533		8533 8219 14 -7544 17 (14355:9520 2011 au	Company & Address: UR		RONM CLO Sam Proje	ENTAL plar: PSM act No: \$UE5006	Tel: 99357570 Fx: 95956313 Date Required:				
Global	Specificat	ions I r	equire	Cefeult is N	ot required IF Not ticked):		Analysis Request						
YES (tick) Urgent FAT required? (please circle: 1 day 2 days 3 days days) L Do you reque sectiment present a violater to be included in organic exactly as? Do you reque additional QAVDC reported where sample backess submitted are < 10 samples? (Fee Applies) Do you reque additional QAVDC reported where sample backess submitted are < 10 samples? (Fee Applies) Do you reque additional QAVDC reported where sample backess submitted are < 10 samples? (Fee Applies) Do you reque additional QAVDC reported where sample backess submitted are < 10 samples? (Fee Applies) Do you reque additional QAVDC reported where sample backess submitted are < 10 samples? (Fee Applies) Do you reque DifFERENT standard EQL's from those stated in the current LabMark price saturations? Do you seque to supplier? Additional fee applies; T Electronic data transfer (racte, for just, cov prist). Prese specify. Note1: Additional valier sample must be submitted for tab, duplicate & splice analysis.							11200-1004-1004 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 11-00-000 10-000 10-00000 10-00000 10-00000000	125g yma 4 yessi 300 mei 900 400-800 i L 190 mei 193 est 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	cheed, wood, wood, and a company to the company of	NO2 No2 P. TKP Control of total Control of total Control of the control of t	CarMal - CarMal Nerki - CarMal Nerki		
Lab. Number		Sample . Depth	-	Mauto	Nyses late a single sample container. Container Type (Net = urpreservet, Generative, Gene	1	HTEX+VTPH(040) VHC, FISCANS THM PY-SCANS WTBE PY-SCANS	<u>VOC втасине</u> ПРИ. (стасине РАН'я всике Рануа всике Рибора соже Аголициа Априета ПРИ со аконациа Априета Сура С. С. 2019. РСВ мезони ЗУОС сеже Рибора учес нис.	CLP (specify test CLP (specify test HE TCLP (specify resu) DM, EC	wey NO ₂₁			
229090 229091	CBL 2 CBL 3 BH101 BH101	0.3 0.25 0.2 2.0	25 9										
			• •••••	 									
Totala													
Fe ^{3*} , Be, B	ncie): As, Cd, Cr, Ci 3, Al, V, Mn, Fe, Ce ad by formation	Se, Sr, Sa	tito, Ag, B	a, TI, Bi, Sb	Comments (Highly certaininated samples):	Data	23/9	Lab Report No. E044824 Received By:	Sec Sec	arity Seal Appfled arity Seal Sarial 9 Date: 10/01/00-	YESA		
I REPURCING DE	ed by (print):	~ man	11ymes		hed //	Date	4011	Received By:	wall	_ Date: 28/9/09 Ti	ma:////		

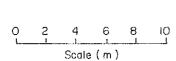
. .


- 6

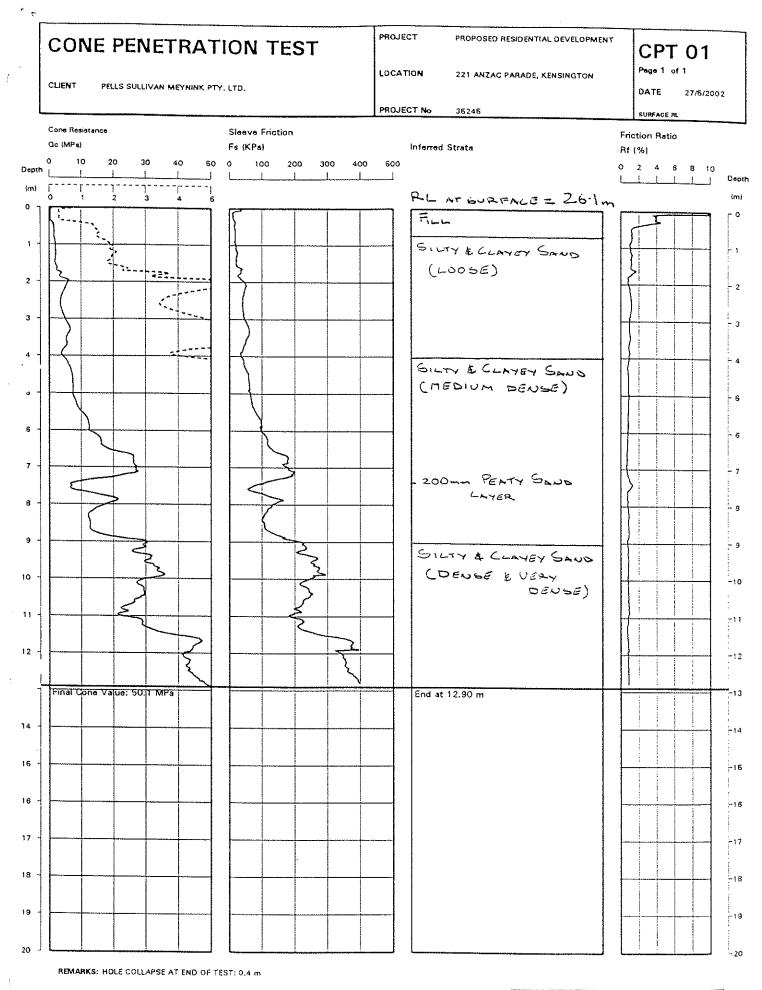
.

APPENDIX F

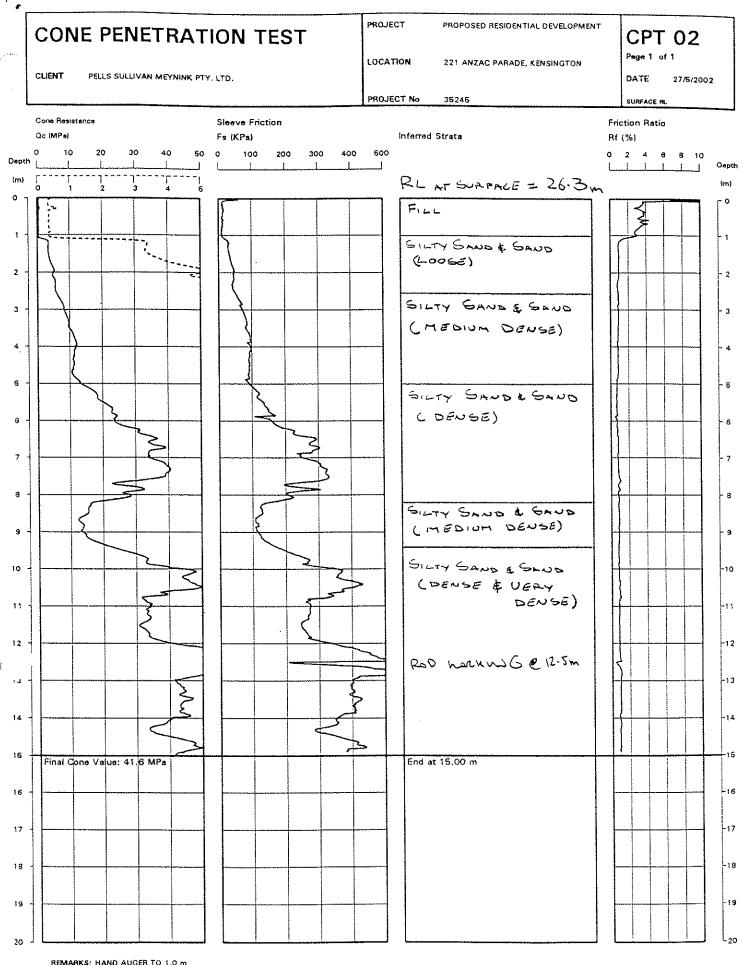
BUILDING L5 AND F8 CONE PENETRATION TEST RESULT SHEETS



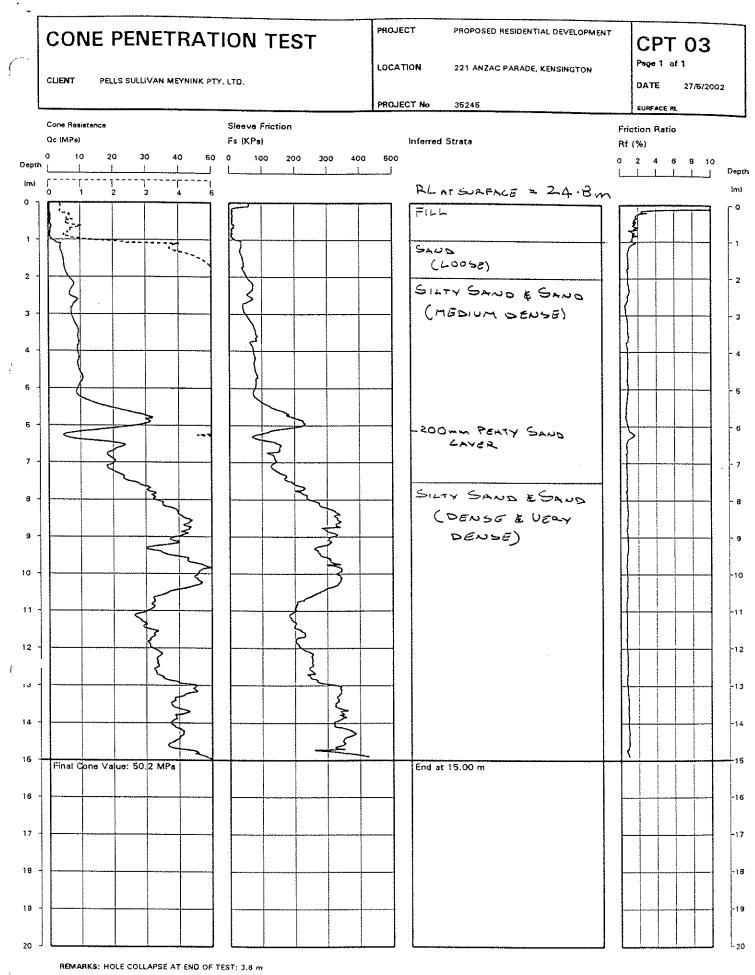
Pells Sullivan Meynink Pty Ltd


1

	Taylor Thom	son Whitting									
	Taylor Thomson Whitting NS Global Building , Kensington Geotechnical Site Investigation										
SITE PLAN & TEST LOCATIONS											
PSM	595·RI	Figure I									


LEGEND	
	CONE PENETRATION TEST LOCATION
🔶 вні	BOREHOLE LOCATION
	SITE BOUNDARY
	EXISTING BUILDING

Date 27.3.92 Plotted KM2 Checked File: A:\35245-01.CPT Cone ID: CONE-203 Type: Standard


GROUND TEST PTY LTD A subsidiary of Douglas Partners Pty Ltd

REMARKS: HAND AUGER TO 1.0 m HOLE COLLAPSE AT END OF TEST: 1.1 m

> File: A:\35246-02,CPT Come ID: CONE-203 Type: Standard

Date 27.5.07 Plotted K.SM Checked GROUND TEST PTY LTD A subsidiary of Douglas Partners Pty Ltd

Date 27.5.07 6

Date 24.3.02 Plotted WJVL Checked File: A:\35245-03,CPT Cone ID: CONE-203 Type: Standard

GROUND TEST PTY LTD A subsidiary of Douglas Partners Pty Ltd

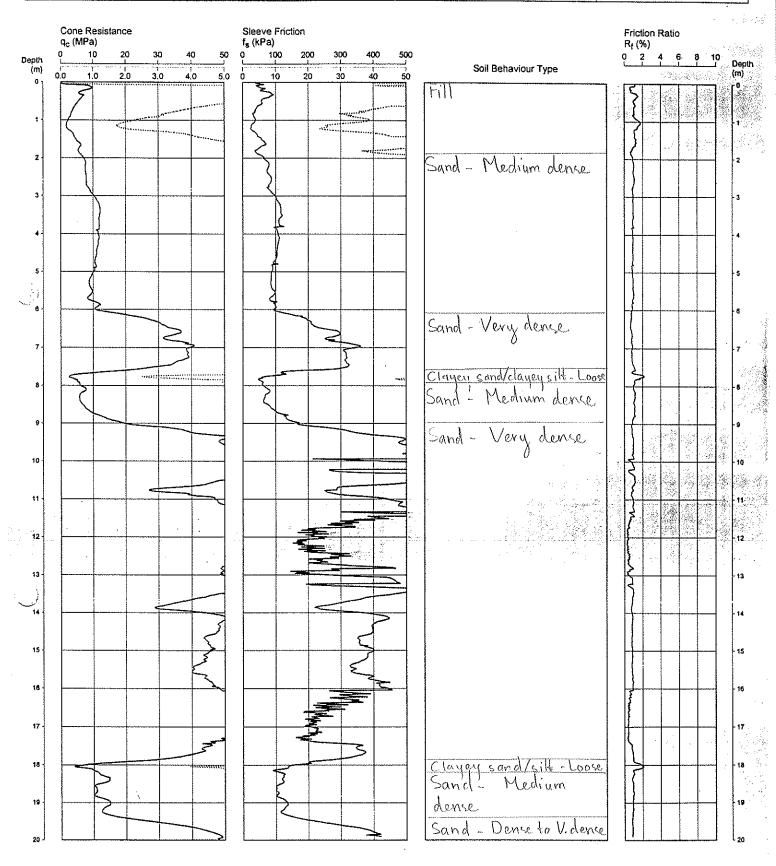
CLIENT: PELLS SULLIVAN MEYNINK PTY LTD

PROJECT: NSG BUILDING

LOCATION: 221 ANZAC PARADE, KENSINGTON

PROJECT No: 36051

CPT 101 Page 1 of 2 DATE


and the second second

Douglas Partners

Geotechnics · Environment · Groundwater

28 May, 2003 SURFACE RL: RL 25.4 m *

n i galan kinangan dari

REMARKS: HOLE COLLAPSE AT 4.8 m AT COMPLETION OF TEST. *LEVELLING TO BOREHOLE ON HOUSTON LANE TAKEN AS RL 25.9 m AHD.

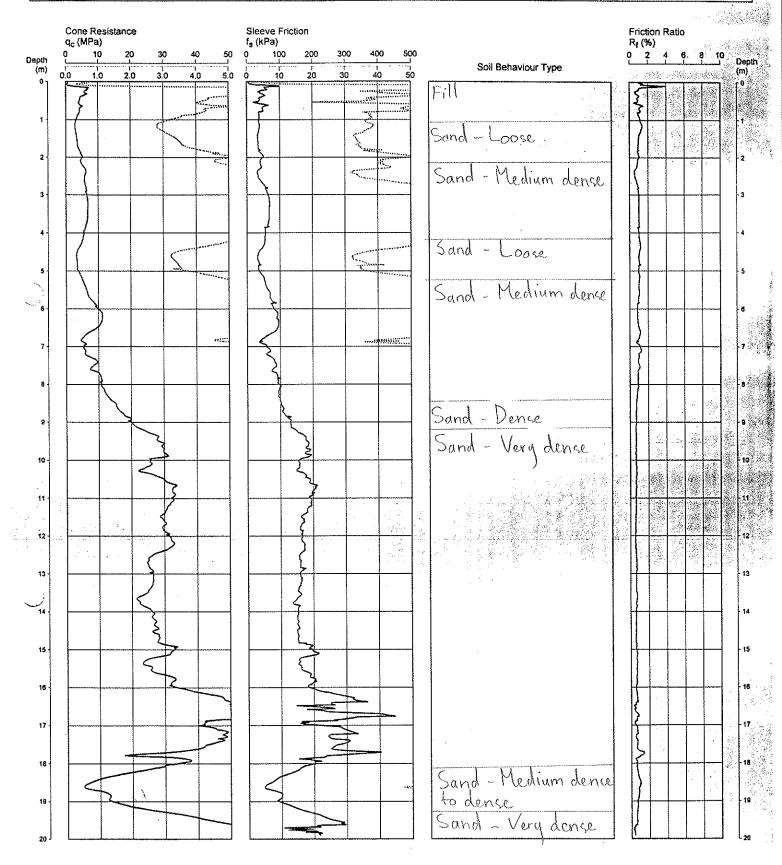
File: C:\dutchcone\36051101.cp5 Cone ID: CONE-404 Type: 2 Standard

ConaPlot Version 5.7.2 © 2001 Douglas Partners Pty Ltd

CLIENT: PELLS SULLIVAN MEYNINK PTY LTD

κ.,

PROJECT: NSG BUILDING


LOCATION: 221 ANZAC PARADE, KENSINGTON

PROJECT No: 36051

CPT 102 Pege 1 of 2 DATE 28 May, 2003 SURFACE RL: RL 25.4 m*

\$1.C.

Douglas Partners Geotechnics · Environment · Groundwater

REMARKS: HOLE COLLAPSE AT 4.4 m AT COMPLETION OF TEST. *LEVELLING TO BOREHOLE ON HOUSTON LANE TAKEN AS RL 25.9 m AHD.

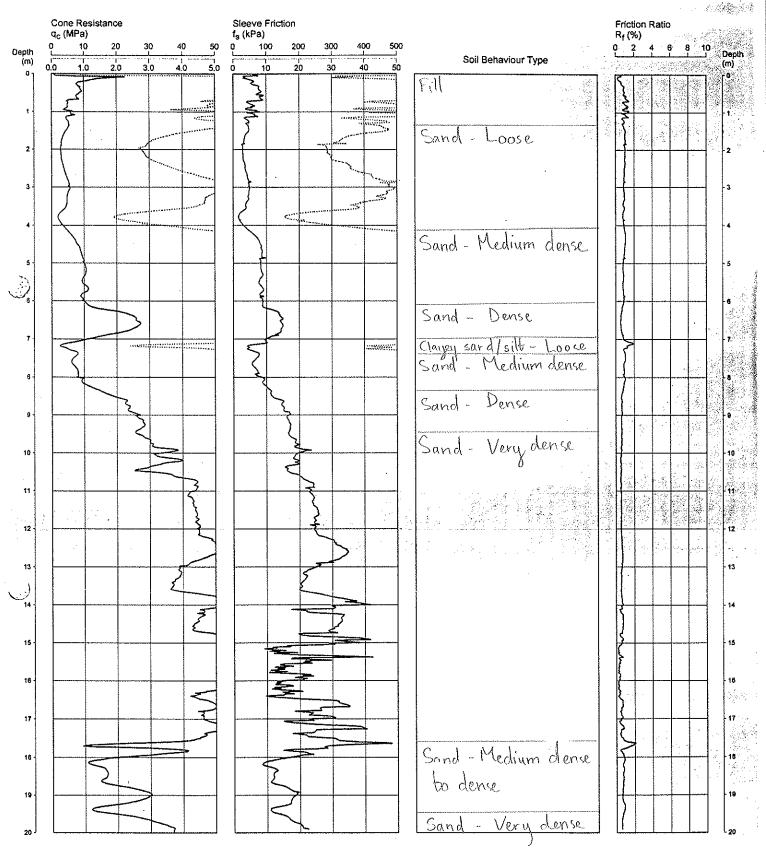
File: C:\dutchcone\36051102.cp5 Cone ID: CONE-404 Type: 2 Standard

ConePlot Version 5.7.2 © 2001 Douglas Partners Pty Ltd

CLIENT: PELLS SULLIVAN MEYNINK PTY LTD

PROJECT: NSG BUILDING

LOCATION: 221 ANZAC PARADE, KENSINGTON


PROJECT No: 36051

CPT 103 Page 1 of 2

Douglas Partners Geotechnics · Environment · Groundwater

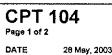
DATE 28 May, 2003 SURFACE RL: RL 25.2 m*

A Month Annalysis

REMARKS: HOLE COLLAPSE AT 4.6 m AT COMPLETION OF TEST. *LEVELLING TO BOREHOLE ON HOUSTON LANE TAKEN AS RL 25.9 m AHD.

File: C:\dutchcone\36051103.cp5 Cone ID: CONE-404 Type: 2 Standard

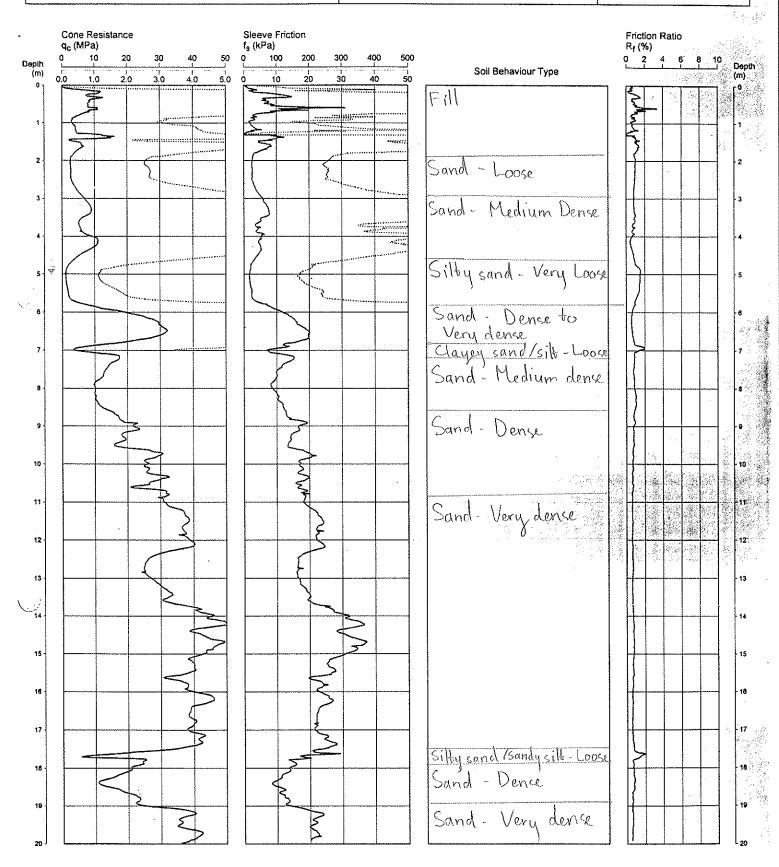
ConePlot Version 5.7.2 © 2001 Douglas Partners Pty Ltd


CLIENT: PELLS SULLIVAN MEYNINK PTY LTD

PROJECT: NSG BUILDING

and and the second

LOCATION: 221 ANZAC PARADE, KENSINGTON


PROJECT No: 36051

entre and a second s

Douglas Partners Geotechnics · Environment · Groundwater

SURFACE RL: RL 25.4 m *

REMARKS: GROUNDWATER LEVEL AT COMPLETION OF TEST: 4.9 m *LEVELLING TO BOREHOLE ON HOUSTON LANE TAKEN AS RL 25.9 m AHD.

File: C:\dutchcone\36051104.cp5 Cone ID: CONE-404 Type: 2 Standard

ConePlot Version 5.7.2 © 2001 Douglas Partners Pty Ltd

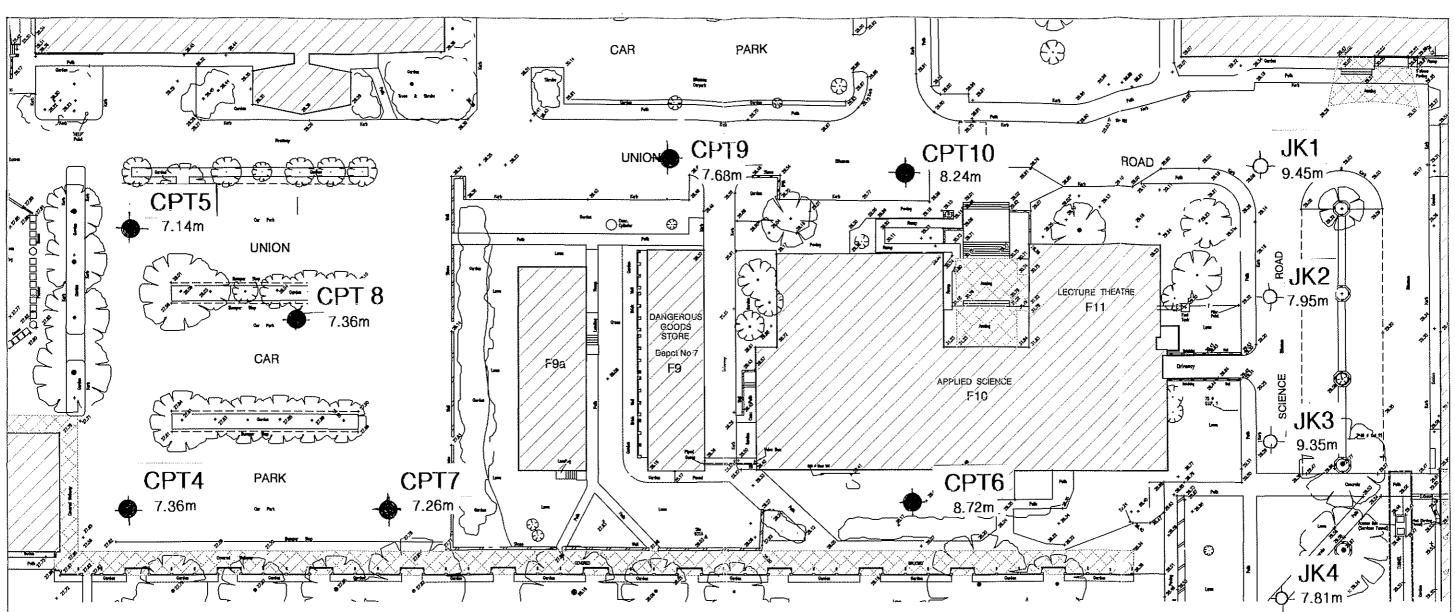
Pells Sullivan Meynink Pty Ltd **Borehole Log** PSM Engineering Consultants Rock-Soil-Water A.C.N. 061447621 Hole No: BH1 job no: PSM595 drill information: Truck Mounted Drill Rig Sheet 1 of 2 client: Taylor Thomson Whitting borehole location: E N Logged by: DP project: Building L5 Site Investigation drilling subcontractor: McDermott Driling Pty Ltd date hole commenced: 31/05/02 date hole complete: 31/05/02 inclination/azimuth: -90° / surface R.L.: 25.9 m datum: AHD core diameter: Consistency Graphic Log Material Description Depth (m) / Density Testing Method Water uscs Moisture Ξ Comments (Soil Type: Plasticity or Particle Characteristics, Colour, Secondary and Minor Components) Soil R (Soil Origin, Structure etc) Non Cohesive Conesive <u>_____</u> FILL ASPHALT: Road Surface FILL ROAD BASE 0 0 QUATERNARY SAND: medium to fine grained, white and light grey with some brown, dry Hand MARINE SAND sw - 25 CLAYEY SAND: medium grained, brown and light brown sand, with dark grey clay D SC 24 2 SAND: medium grained, orange and yellow sand 23 3 - moist from 3.0 m SPT 6,7,10 N=17 sw -22 4 Auger М During Drilling SILTY SAND: medium grained grey and light grey with a trace of dark grey clay -21 5 ■ 31/05/02 SPT 9,9,10 N=19 20 6 - yellow brown and grey from 0.6 m SOILS LOG BH11 GPJ PSMV3 GDT 05/06/02 SM N - 19 Concrete piece recovered from SPT Possibly affected the SPT result. 7. grey and dark grey with trace of peat and clay SPT from 7.0 m

Washboring

33,25/7 N>50 R

- 18

- 200 C

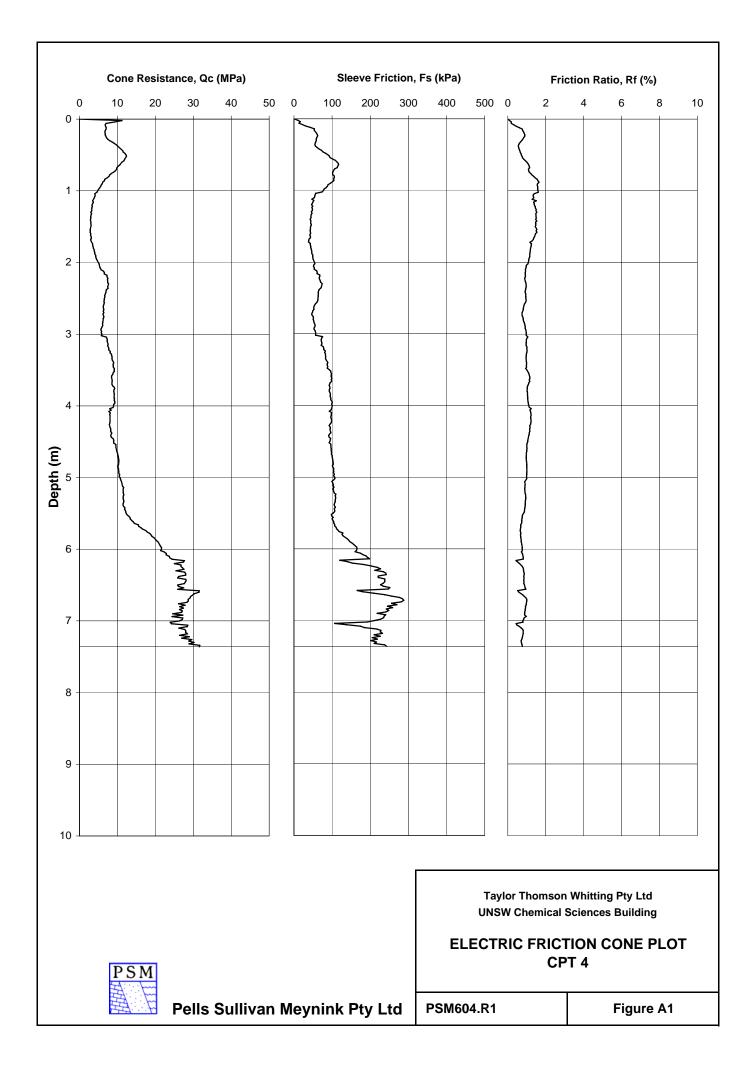

Pells Sullivan Meynink Pty Ltd Engineering Consultants Rock-Soil-Water

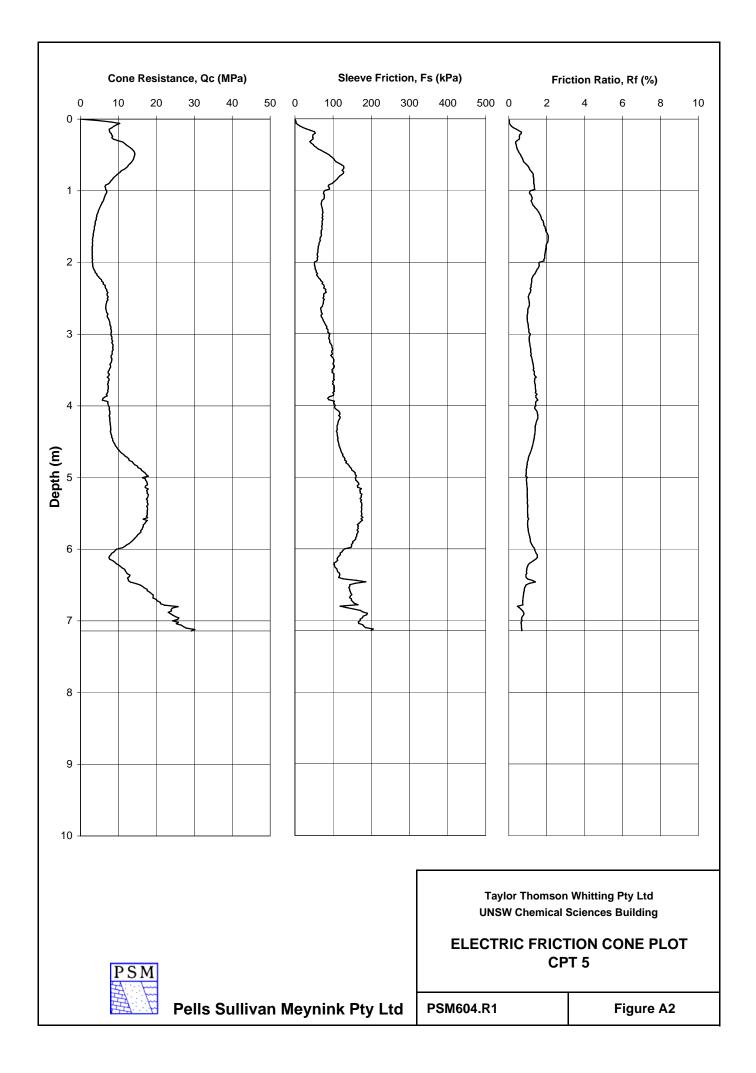
. ---(

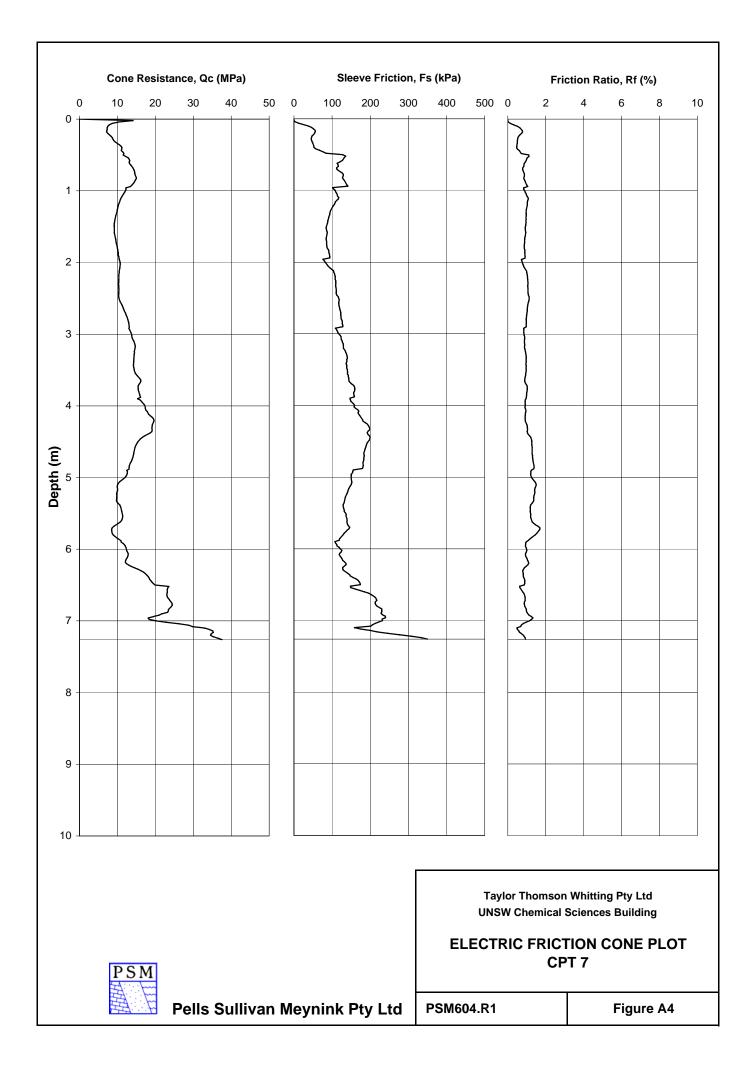
Borehole Log Hole No: BH1

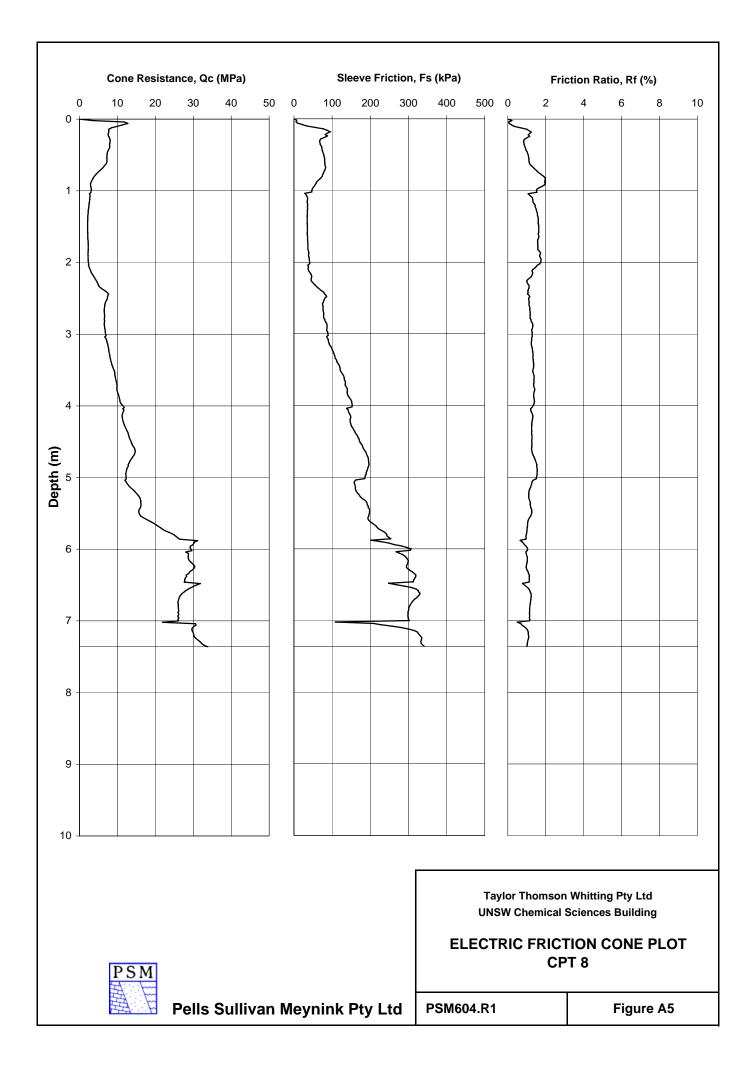
ci p d	ient: rojec rillin ate h	ct:⊟ Ig su ìole	ylor Juilc bcc con	Thon ling L	5 Site tor: ced:	e Inve McDe 31/05	stigat ermot 5/02	tion t DrIling Pty Ltd	drill information: Truck Mounted Drill Rig borehole location: E N inclination/azimuth: -90° / surface R.L.: 25.9 m datum: AHD core diameter:					
Method	Taeting	fillear	Water	Rt (m)	Depth (m)	Graphic Log	nscs	Material Description (Soil Type: Plasticity or Particle Characteri Secondary and Minor Componen	stics, Colour, hts)	Soit Moisture	Consis / Der Cohesive នូខ្លួរភូនីក	Non Cobesive	Comments (Soil Origin, Structure etc)	
			T				SM			_		:		
					-		sc-or	thin daik brothi pour and out)g-	grey sand very visible					
					-	///		 in cuttings CLAYEY SAND: fine to medium graine and grey sand, with dark grey clay 	d, dark grey					
				- 17	- 9	//								
	5,8,7,	SPT 11,12	17											
		1=47			-		sc							
					-									
				16	10									
		:			-						- -			
		SPT	-		-	<u>/</u>		SAND: medium grained, light grey brown with some grey clay	own sand	4				
		.51,18/ N>50	TOR	- 15		-		······································		w				
	VVasn				11 -									
												· .		
											1			
	-		-	- 14	12 -	: - :;;		- light grey with some a trace of clay for	om 12.0 m				 SPT bounding. Stopped testing at 35 blows for 75 mm movement. 	
	3	SPT 15/75R N>50				 	sw-c		01112.011					
	-										:			
				- 13		-								
					13 -									
	11.25	SPT 5.29.40	-)/40F	2		: . .	:	- light grey at 13.6 m						
		N>50	-	- 12	14			End of Hole at 13.95m				· · ·		
202						-								
T 05/06						-								
V3 GD						-								
PSM				- 11	15	~								
H1 G						-								
SOILS LOG BH11 GPJ PSMV3 GDT 05/06/02														
SOILS				- 10									1	

LEGEND


PSM CONE PENETROMETER TESTS


10 15 20 25 0 5 Scole (m)


J&K BOREHOLES



		JK4 7.81m	A A A A A
		omson Whitting nces Building UNSW	
	SITE PL INVESTIGAT	AN SHOWING ION LOCATIONS	
PSM	604 · RI	Figure	

