NSW HEALTH PENRITH HEALTH CAMPUS REDEVELOPMENT

STRUCTURAL AND CIVIL SCHEME DESIGN REPORT

ICU REDEVELOPMENT AND EAST BLOCK BUILDING

AUGUST 2009

PREPARED BY:	SIGNED:	REVIEWED BY:	SIGNED:
MJJ		JRW	

PHCR

ICU Redevelopment and East Block Building

1.0 INTRODUCTION	1
2.0 SITE DATA	2
2.1 GEOTECHNICAL REPORT	2
 2.1.1 Site Classification	2 3 3
2.2 EXISTING CONDITIONS	4
2.2.1 Detail Survey2.2.2 Stormwater2.2.3 Road Network	4
3.0 LOADINGS	5
3.1 FLOOR LOADS	5
3.2 EARTH PRESSURES	5
3.3 Hydrostatic Pressures	5
3.4 WIND LOADS	6
3.5 EARTHQUAKE LOADS	6
3.6 SNOW LOADS	6
3.7 LATERAL LOADING SYSTEM	6
3.8 VIBRATION OF SLABS	7
3.8.1 Footfall 3.8.2 Equipment and Plant	
4.0 REGULATORY	9
4.1 BCA	9
4.1.1 East Block Building	
5.0 BUILDING CONSTRUCTION	1
5.1 EAST BLOCK BUILDING1	1
5.2 ICU REDEVELOPMENT1	1

PHCR ICU Redevelopment and East Block Building

6.0	PR	OPOSED DEVELOPMENT	12
(6.1	SITE GRADING	12
(6.2	ROAD NETWORK	12
(6.3	Stormwater	12
APP	END	VIX A – CIVIL SCHEME DESIGN DRAWINGS	13

PHCR

ICU Redevelopment and East Block Building

COMMERCIAL IN CONFIDENCE

The information, project approach and concepts, including intellectual property, contained in this document is confidential and proprietary to Hughes Trueman. This intellectual property must not be imparted to any third party or utilised for a subsequent project without prior written approval of Hughes Trueman. Hughes Trueman reserves all legal rights and remedies in relation to any infringement of its rights in respect of its intellectual property and confidential information.

	Scheme Design Report
HughesTausmen	PHCR
Consulting Engineers Planners & Managers	ICU Redevelopment and East Block Building

1.0 INTRODUCTION

The purpose of this report is to define the structural and civil design parameters adopted for the preparation of design documentation.

PHCR ICU Redevelopment and East Block Building

2.0 SITE DATA

2.1 **GEOTECHNICAL REPORT**

A draft geotechnical investigation report has been prepared by Golder Associates Pty Ltd covering the proposed "East Block" building for the Penrith Health Campus Redevelopment project. The report is dated 17th July 2009. The report reference number is 097622055 002 Rev0.

2.1.1 Site Classification

The geotechnical report classifies the subsurface profile in accordance with AS2870 "Residential Slabs and Footings - Construction". The site has been given a Class H classification due to the presence of residual soils with a high potential for shrink/swell behaviour.

2.1.2 Foundations

The building foundations will generally be piles founding in the low to medium strength bedrock. Piles will be designed adopting the end bearing and shaft adhesion values detailed in Table 2.1.

Soil/Rock Type	Depth to Base of Unit (m)	Unit Weight (kN/m3)	End Bearing Capacity (kPa)	Shaft Adhesion (kPa)
Topsoil/Fill (BH01 only)	0.9	18	0	0
Topsoil (BH02 to BH07)	0.1-0.2	16	0	0
Residual Soil	1.4-2.7	20	200	15
Extremely Weathered Bedrock (Class V)	2.7-5.6	21	700	50
Extremely to Highly Weathered Bedrock (Class IV)	10.3-11.4	22	1000	75
Moderately Weathered Bedrock (Class IV-III)	-	24	1500	100

Table 2.1: Design Serviceability End Bearing Pressure and Shaft Adhesion Values

Note: This table has been adapted from Table 3 presented in the referenced Golder geotechnical report

Pad or strip footings founding on the residual clay materials may be adopted for lightly loaded elements such as water tanks and access ramps. These will be designed using a serviceability bearing pressure of 150 kPa. To achieve this pressure, footings will have an embedment depth of at least 500mm below adjacent ground surface levels.

PHCR

ICU Redevelopment and East Block Building

2.1.3 Unsupported Cut Slopes

Batter slopes are to be as detailed in Table 2.2.

Table 2.2: Recommended Cut Slope Batters

Material	Temporary Batter	Permanent Batter [*]
Residual soils (mainly gravelly silt/clay soils of firm to stiff consistency)	1.5H:1V	2.5H:1V
Residual soils (mainly gravelly silt/clay soils of very stiff to hard consistency) or Extremely weathered shale of very low strength	1.5H:1V	2H:1V
Highly weathered shale of low to medium strength	1H:1V	1.5H:1V

* Permanent batters are to be protected against erosion by grassing, stone pitching or other suitable methods Note: This table has been adapted from Table 4 presented in the referenced Golder geotechnical report

2.1.4 Retaining Walls and Excavation Retention

Design of retaining walls will be based on the following earth pressure distributions:

For flexible walls	$\sigma_z = K_a \gamma z + K_a q$	kPa
For rigid or propped walls	$\sigma_z = 6H + K_a q$	kPa

where:

 σ_z horizontal earth pressure at depth z (measured from the top of the retaining wall), kPa

K_a dimensionless coefficient of active earth pressure

- γ bulk unit weight of soil, kN/m³
- q uniform distributed vertical surcharge acting on the top of the soil, kPa
- H effective vertical wall height, m

Design values for the required earth pressure parameters are given in Table 2.3.

Table 2.3: Earth Pressure Parameters

Material	Ka	$\gamma (kN/m^3)$	C (kPa)
Residual soils and extremely weathered sandstone	0.4	20	5
Weathered shale	0.32	24	10

If compacted fill is to be placed behind walls, a minimum lateral earth pressure of 20 kPa is to be applied in conjunction with the above earth pressures.

PHCR ICU Redevelopment and East Block Building

2.1.5 Soil Salinity

The geotechnical report highlights the detection of saline soils in soil 1.5m below ground level. Saline soils may potentially be even shallower in low lying areas. The possible encounter of saline soils will be considered in the design of steel and concrete elements where appropriate.

2.2 **EXISTING CONDITIONS**

2.2.1 Detail Survey

A surface and underground services survey of the site and road reserves surrounding the site was undertaken by Vince Morgan Surveyors as part of the project investigation. This survey includes details of the road network and trunk stormwater lines and local street drainage.

2.2.2 Stormwater

Existing stormwater pipes and pits are located within the footprint of the proposed East Block building. Where the stormwater system served the existing Nurses Accommodation building which is to be demolished, then this stormwater system will be made redundant. Where it serves other existing buildings on the site, then it will be relocated to suit the proposed new development.

2.2.3 Road Network

The proposed East Block building will result in the demolition of the existing access road to the west of the existing Nurses Accommodation building. The existing road will be replaced with a road which will be located to the south and east of the proposed building.

PHCR ICU Redevelopment and East Block Building

3.0 LOADINGS

3.1 FLOOR LOADS

Floor loadings will be taken from AS/NZS 1170.1:2002. The loads for particular floor types are given in Table 3.1.

Table 3.1: Floor Loads

Floor Type	Live Load (kPa)	Superimposed Dead Load (kPa)
Laboratories, offices	3	2
Stairs, ramps	4	0.5
Corridors and foyer areas	5	2.5
Operating theatres, x-ray rooms	3	2
Wards	2	2
Plant rooms, freezer rooms	5	2
Kitchens	5	2
Loading docks/stores on suspended slabs	7.5	2

3.2 EARTH PRESSURES

Refer to section 2.1.5

3.3 HYDROSTATIC PRESSURES

Ground slabs and lift pits are above any ground water level and need not be designed to resist hydrostatic uplift pressures.

	SCHEME DESIGN REPORT
HughesTrueman Consulting Engineers Planners & Managers	PHCR ICU Redevelopment and
	East Block Building

3.4 WIND LOADS

The overall wind pressures will be calculated using AS1170.2:2002. Relevant information has been outlined in Table 3.2.

Table 3.2: Wind Load Parameters

Location	Region A2
Vu	48m/s
Vs	37m/s
Ms	1.0
Mt	1.0
Md	1.0
Terrain Category	3

3.5 EARTHQUAKE LOADS

The overall earthquake loads will be calculated using AS1170.4:2007 and the Building Code of Australia. Relevant information has been outlined in Table 3.3.

Table 3.3: Earthquake Load Parameters

Importance Level	4
Probability Factor, kp	1.5
Hazard Factor, Z	0.08
Sub-Soil Class	C _e
Earthquake Design Category	III

3.6 SNOW LOADS

Snow loadings are not applicable.

3.7 LATERAL LOADING SYSTEM

It is intended that lateral loads resulting from wind will be resisted by shear walls or similar vertical concrete elements.

PHCR ICU Redevelopment and East Block Building

3.8 VIBRATION OF SLABS

AISC, 2003 proposes vibration criteria considered suitable for various types of sensitive equipment. This information is reproduced in Table 3.4.

Table 3.4: Vibration Criteria for Sensitive Equipment

Category	Facility/Equipment/Use	Vibrational Velocity			
Category	Facinty/Equipment/Ose	(µ in./sec)	(µm/sec)		
1	Computer systems; Operating Rooms; Surgery; Bench microscopes at up to 100x magnification	8,000	200		
2	Laboratory robots	4,000	100		
3	Bench microscopes at up to 400x magnification; Optical and other precision balances; Coordinate measuring machines; Metrology laboratories; Optical comparators; Microelectronics manufacturing equipment – Class A***	2,000	50		
4	Micro surgery, eye surgery, neuro-surgery; Bench microscopes at magnification greater than 400x; Optical equipment on isolation tables; Microelectronics manufacturing equipment – Class B***				
5	Electron microscopes at up to 30,000x magnification; Microtomes; Magnetic resonance imagers; Microelectronics manufacturing equipment – Class C***50012				
6	Electron microscopes at greater than 30,000x magnification; Mass spectrometers; Cell implant equipment; Microelectronoids manufacturing equipment2506				
7	Microelectronics Manufacturing equipment – Class E***; Unisolated laser and optical research systems	130	3		
	*** Class A: Inspection, probe test and other manufact	uring support equi	ipment		
	Class B: Aligners, steppers and other critical equipment for photolithogr with line widths of 3 microns or more				
	Class C: with lineAligners, steppers and other critical equipment for photolithograp widths of 1micronClass D: with lineAligners, steppers and other critical equipment for photolithograp widths of ½ micron; includes electron-beam systems				
	Class E: Aligners, steppers and other critical equipment for photolithography with line widths of ¹ / ₄ micron; includes electron-beam systems				

PHCR ICU Redevelopment and East Block Building

Following the guidelines given in the AISC table, the operating theatre areas will be designed to meet the Category 1 vibration criteria of 200µm/sec.

The following sources of vibration will be considered:

- Footfall •
- Equipment and plant

3.8.1 Footfall

Footfall design parameters have been taken from the recommendations made by Murray, Allen and Ungar in the AISC, 2003.

Table 3.5.	Footfall Design	Parameters
------------	-----------------	-------------------

Walking Type	Rate (steps per minute)	Dynamic force Fm (kN)	1/t _o (HZ)	Location for application of load
Fast	100	1.4	5.0	Major thoroughfares
Medium	75	1.25	2.5	Operating theatres

The idealised footfall impulse is defined as:

$$F(t) = \frac{F_m}{2} \left[1 - \cos\left(\frac{\pi t}{t_0}\right) \right] \qquad \text{for } t < t_0$$
$$F(t) = F_m \qquad \text{for } t_0 < t < t_p$$

3.8.2 Equipment and Plant

Machinery and equipment that emits vibration is either to:

- (a) be supported on mounts which reduce vibrations emitted to acceptable levels; or
- (b) be located at a sufficient distance from the operating theatres to prevent disturbance to the equipment

Levels of vibration cannot be quantified accurately. It is recommended that after commissioning of the base building plant, prior to occupation, on-site vibration testing be undertaken to determine levels of vibration produced by the different types of mechanical plant and equipment.

PHCR

ICU Redevelopment and East Block Building

4.0 REGULATORY

BCA 4.1

The BCA report gives the provisions listed in Sections 4.1.1 and 4.1.2.

4.1.1 East Block Building

Construction type - Type A

Table 4.1: Building Classification

Floor Level	Use	BCA Class
Level 1	Carpark	Class 7a
Level 2	Operating Theatres and Outpatient Clinics	Class 9a and 5
Level 3	Inpatient Wards	Class 9a

Table 4.2: Minimum FRL as specified by BCA

Building Element	FRL
External Walls (load-bearing)	120/120/120
External Columns	120/-/-
Fire Walls	120/120/120
Shafts (non load-bearing)	-/120/120
Other load-bearing walls/beams/trusses/columns	120/-/-
Floors	120/120/120
Roofs	N/A

PHCR

ICU Redevelopment and East Block Building

4.1.2 ICU Redevelopment

Construction type – Type A

Table 4.3: Building Classification

Floor Level	Use	BCA Class
Level 2	Intensive Care and Cardiovascular Ultrasound	Class 9a and 5
Level 3	Research and Training	Class 9b

Table 4.4: Minimum FRL as specified by BCA

Building Element	FRL	
External Walls (load-bearing)	120/120/120	
External Columns	120/-/-	
Fire Walls	120/120/120	
Shafts (non load-bearing)	-/120/120	
Other load-bearing walls/beams/trusses/columns	120/-/-	
Floors	120/120/120	
Roofs	N/A	

PHCR

ICU Redevelopment and East Block Building

5.0 BUILDING CONSTRUCTION

5.1 EAST BLOCK BUILDING

Item	Type of Construction		
Footings	Piles to rock		
Level 1	AC pavement		
Suspended slabs	Post-tensioned concrete, FRL 120/120/120		
Lift, stair and shear walls	In-situ concrete, FRL 120/120/120		
Columns	Reinforced concrete, FRL 120/-/-		
External walls	Non-load bearing lightweight		
Internal walls	Non-load bearing lightweight		
Roof over operating theatres	Post-tensioned concrete with metal deck roof over		
Roof over wards and offices	Metal deck		

5.2 ICU REDEVELOPMENT

Item	Type of Construction
Level 2 slabs	Existing
Level 3 suspended slabs	Concrete slabs on bondek sheeting
Columns	Structural steel
External walls	Brick veneer
Internal walls	Non-load bearing lightweight
Roof	Metal deck

PHCR ICU Redevelopment and East Block Building

6.0 PROPOSED DEVELOPMENT

6.1 SITE GRADING

The western end of the building will be excavated below the existing natural surface to allow for the Basement construction. Generally the proposed roads around the building will be at existing natural surface.

6.2 **ROAD NETWORK**

The proposed access road will connect to the existing road network on the northern and southern sides of the proposed building. The proposed road will be graded from the vicinity of the existing carpark to the south of the proposed building to the existing roundabout to the north. It will fall in a continuous grade from west to east such that any stormwater overland flows will be diverted around the proposed building. Indicative road levels are shown on Drg No. 09S569-C10.

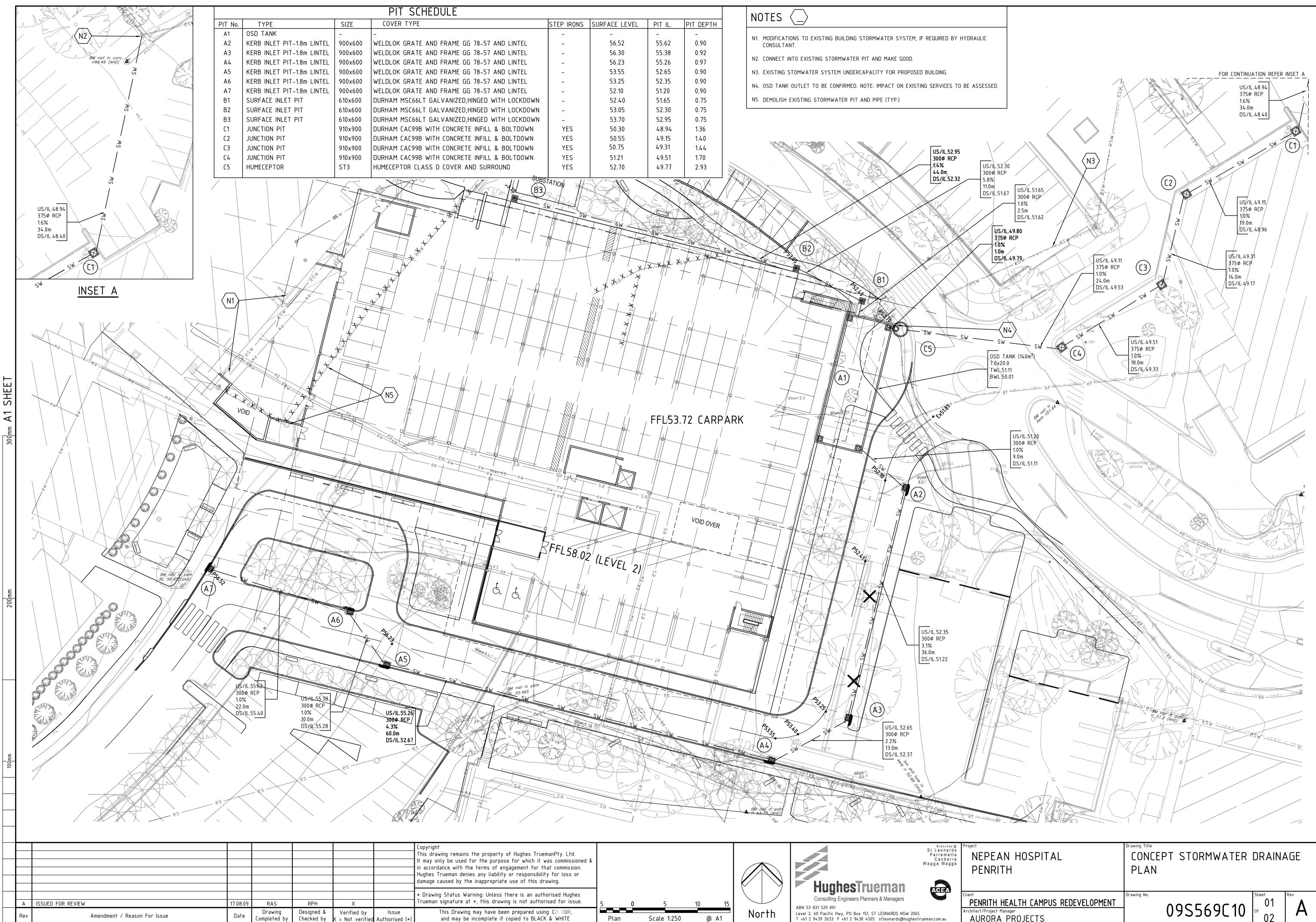
The proposed road will be graded at a maximum longitudinal grade of 5% in order to cater for disabled access. It will be 7.0 metres wide to accommodate service vehicle access through the site. Truck turning paths are shown on Drg No. 09S569-C12. Minor amendments to the proposed road edges as shown on this drawing may be required depending on the operational policies regarding whether this infrequent service vehicle traffic can be allowed to cross the road centreline.

The road pavement design will be undertaken in accordance with traffic figures and subgrade conditions provided by the Traffic Engineer and Geotechnical Engineer respectively.

6.3 STORMWATER

A conceptual stormwater drainage layout is shown on Drg No. 09S569-C10. In the preliminary investigation phase of the project, liaison was undertaken by the Department of Commerce with Penrith City Council. Council advised that on-site stormwater detention is required for the proposed development. Council also advised that some portion of this stormwater detention volume may be in the form of rainwater harvesting.

A preliminary investigation of the existing site stormwater system in the vicinity of the proposed building shows it is inadequate for the anticipated stormwater flows from the building. Therefore it is intended to connect the stormwater system for the proposed building to the stormwater system east of the existing carpark. This location has sufficient piped capacity for the proposed building. No allowance has currently been made in the proposed stormwater system for stormwater flows from other parts of the Nepean Hospital site.


All site stormwater will be designed in accordance with Penrith City Council's Stormwater Guidelines.

PHCR

ICU Redevelopment and East Block Building

APPENDIX A - CIVIL SCHEME DESIGN DRAWINGS

erty of Hughes TruemanPty. Ltd. urpose for which it was commissioned & of engagement for that commission. ability or responsibility for loss or priate use of this drawing.					HughesTrueman	St Leonards Parramatta Canberra Wagga Wagga	NEPEAN PENRITH
ess there is an authorised Hughes drawing is not authorised for issue.	5 0	5	10 15		Consulting Engineers Planners & Managers	ACEA	Client PENRITH HE
e been prepared using COLOUR, te if copied to BLACK & WHITE	Plan	Scale 1:250	@ A1	North	Level 2, 60 Pacific Hwy, PO Box 151, ST LEONARDS NSW 2065 T +61 2 9439 2633 F +61 2 9438 4505 stleonards@hughestru	Jeman.com.au	Architect/Project Mana

H	PLAN
EALTH CAMPUS REDEVELOPMENT	Drawing No. 09\$569C10 01 01 01 01 01 01 01 01 01 01 01 01 0

